
This is the published version of the bachelor thesis:

Cendagorta-Galarza Friend, Daniel; Borrego Iglesias, Carlos, dir. A musical way
of representing criptographic keys. 2021. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/257838

under the terms of the license

https://ddd.uab.cat/record/257838

TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

A musical way of representing cryptographic
keys

Cendagorta-Galarza Friend, Daniel

Resum— Motivat pel problema existent amb els mètodes actuals de representació de claus criptogràfiques, que intenten
representar un munt de lletres i números sense sentit, s'ha desenvolupat un nou mètode de representació. Prenent com a
referència el mètode “The Drunken Bishop”, el nostre mètode es basa en la reproducció d'una melodia com a representació de
la tonalitat. En lloc de dibuixar el camí del bisbe, hem creat un tauler d'escacs compost per notes musicals, creant una melodia
a mesura que el bisbe es mou. Aquesta melodia és determinista, ja que no canvia en funció de l'execució, característica
necessària a l'hora de representar claus criptogràfiques. S'han desenvolupat dos mètodes diferents per comparar-los amb els
anteriors i avaluar si aquesta nova representació s'adapta al marc que s'estudia. A més, com a exemple d'ús, el mètode
seleccionat s'ha implementat al protocol SSH.

Paraules clau—Clau criptogràfica, Representació musical, Bisbe borratxo, SSH, Cercle de quintes, md5, fingerprint,
randomart, musicalbeeps, keygen.

Abstract—Motivated by the existing problem with the current cryptographic key representation methods, which try to represent
a bunch of meaningless letters and numbers, a new representation method has been developed. Taking as reference “The
Drunken Bishop” method, our method is based on the reproduction of a melody as a representation of the key. Instead of
drawing the path of the bishop, we have created a chessboard composed of musical notes, creating a melody as the bishop
moves. This melody is deterministic, as it doesn’t change depending on the execution, a necessary feature when representing
cryptographic keys. Two different methods have been developed in order to compare them with the previous methods and
evaluate whether this new representation fits within the framework under study. Also, as a use-case example, the selected
method has been implemented into the SSH protocol.

Index Terms—Cryptographic key, Musical representation, Drunken Bishop, SSH, Circle of fifths, md5, fingerprint, randomart,
musicalbeeps, Keygen.

—————————— ◆ ——————————

1 INTRODUCTION

 INCE some time ago, people have been interacting
with computers in many ways to establish new rela-

tionships between both of them. The interface between
these two is crucial to facilitating this interaction. This
interface can be visual-based or audio-based. In this
project, we are developing an audio-based human-
computer interface. The interaction between human
and computer comes with the computer playing audio
and the human recognizing this audio as a manner of
recognizing a cryptographic key.

When connecting to a server, public key authentica-
tion must be done to ensure that the server is the one
the client wants to connect. These cryptographic keys
can be represented in many ways. Not only written
representations but also visual representations such as
the ASCII randomart. These tools allow the user to

recognize the cryptographic key easily. As Tyler Cipri-
ani says in [1]: “Public key authentication is confusing,
even for “professionals”. Part of the confusion is that
base64-encoded public keys and private keys are just
huge globs of meaningless letters and numbers. Even
the hashed fingerprints of these keys are just slightly
smaller meaningless globs of letters and numbers.
Ensuring that two keys are the same means comparing
key hashes— fingerprints. When using the md5 hash
algorithm, comparing a key fingerprint means compa-
ring 16, 16-bit numbers (and for the uninitiated that
means blankly staring at 32 meaningless letters and
numbers). In practice, that usually means not compa-
ring 32 meaningless letters and numbers except when
strictly necessary: Security at the expense of usability
comes at the expense of security.”

So, the main purpose of this project is to create an
audible representation to compare it with the previous
visual representations. We have based our proposal on
“The Drunken Bishop” randomart representation,
which draws the path of a bishop moving through a
chessboard. Assigning musical notes to the different

S

————————————————

• E-mail de contacte: 1459480@uab.cat

• Menció realitzada: Tecnologies de la Informació

• Treball tutoritzat per: Carlos Borrego Iglesias (DEIC)

• Curs 2021/22

2 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

chess boxes, we created a deterministic, random look
alike melody generator, which represents the public
key as a musical melody. Also, we will use the SSH
protocol as a use-case example, where the implementa-
tion of these generators could be useful to facilitate the
recognition of a public key.

In this paper we will show the fundamental aspects
of the project development, starting with a description
of what is intended to do and which is the initial situa-
tion. Later, the objectives to be achieved will be ap-
pointed, detailing the priority level and the execution
thread. The methodology that has been followed for
the smooth running of the project will be shown, as the
planning that has gone on during this period. There
will be shown the main aspects of the development of
the project and the findings of the survey. Finally, we
will expose the future lines for the project to be impro-
ved and the conclusions drawn from the development
of the project.

2 STATE OF THE ART

The audible representation we will be developing is
based on another kind of representation, visual this
time, called “The Drunken Bishop” [1]. This represen-
tation is based on a chessboard, which has 17x9 chess
boxes. The bishop will move all around the chessboard
while drawing its path. When it passes twice through
the same chess box, it will change its character, and the
same if it passes 3 times or more, as can be seen from
Figure 1.

Figure 1: The Drunken Bishop representation.

To determine the movements of the bishop it is used
the md5 checksum. The hexadecimal value of the md5
checksum is converted to its binary representation.
Later, this will be divided into pairs, representing the
bishop’s movement. All four combinations of the two
bits will be translated into one of the four movements
the bishop can do. This way, the algorithm will be

deterministic.

To create a musical melody, we have used the
Python library “musicalbeeps”. This library allows the
user to program just in a few lines the reproduction of
a single note. It allows to chose the specific note, the
duration of the sound, and the relative volume of it-
self.

3 OBJECTIVES

Nowadays the use of SSH is at its peak. The fact that

it allows a user to safely connect remotely to a server

has made this protocol the most widely used in this

area. But, with its increasing popularity, it is being

used by more and more users, who are more inexperi-

enced than the previous ones.

The purpose of the project is to program a generator
of melodies. This generator of melodies has as a requi-
rement that the melody has to come from an SSH key.
It has to be deterministic, therefore, each execution of
the program with a given key has to result in the same
melody. Also, two programs must be developed to
compare them with “The Drunken Bishop” method
and determine which method is better for representing
SSH keys.

Table 1 is shown the set of objectives to be achieved
during the implementation of this project.

Objective Priority

Theoretical study in search of a
technique or tool from music the-
ory that allows creating melodies
from a string of zeros and ones.

Essential

Application of music theory to the
field of study

Essential

Programming the structure of the
chessboard

Essential

Programming the movement of
the king through the chessboard

Essential

Programming the creation and
reproduction of the melody

Essential

Creation and dissemination of a
survey to evaluate the developed
methods with “The Drunken Bis-
hop”

Essential

Data processing, statistical study,
and conclusions on the developed
methods

Essential

Implementation of the chosen
method into the SSH protocol

Optional

Table 1: Objectives

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 3

These objectives can be classified into these four
bigger groups:

• Music theory study

• Programming melodies generator

• Evaluation

• SSH implementation

4 METHODOLOGY AND PLANNING

4.1 Methodology

Due to the nature of the project, it has been decided
to use an iterative waterfall methodology. Since each
task requires the completion of the previous task and
there are groups of tasks that need to be repeated to
ensure the proper development of the project, this
methodology seemed the right one. It has also allowed
studying different approaches to the problem itself,
necessary to develop several alternatives.

The project has been developed in a Linux envi-
ronment, making use of Python, C, and bash, to pro-
gram the different parts of the project. It has been car-
ried out in a local environment, meant to easily check
the correct functioning of the programs.

4.2 Planning

The Planning of the project has been a crucial aspect
taking into account the strong dependency between
tasks. The uncertainty and lack of knowledge about
the topic of study have led to a changing planning
over time.

The project has been divided into three main activi-
ties. First, to program, at least, two melodies genera-
tors, which will form the basis of the project. Second,
the drafting of a survey for the later evaluation and
comparison of the two implemented melodies genera-
tors. And finally, the implementation in the SSH pro-
tocol. Finding a good grounding in musical theory,
which could be applied to our scheme was a tough job.
As well as the drafting of the survey, which, due to the
difficulty of comparing visual and auditory methods,
was delayed three weeks from what was expected.

In the first instance, it was planned to spend two
weeks on the music theory study, which was underes-
timated. Also, it was planned that were needed four
weeks to program the melodies generator. Finally, it
took several iterations to find two solid implementati-
ons, spending more than two months in total to achi-
eve two final implementations.

5 MELODIES GENERATORS

5.1 Musical theory

The music theory on which the project is based is
one of the main pillars and is important to understand.
Since fifty thousand years ago, when the first men left
Africa, music has been accompanying human beings.
But creating it is not that simple. Even for the most
talented people in history, composing has been no easy
task. A huge amount of studies have been done to try
to explain how music works, but none of them has
succeeded. However, they have allowed explaining
certain aspects of it.

One of the ways to order musical sounds is through
the so-called scales [2]. These scales are nothing more
than a set of sounds ordered in a certain way, which
create a particular sound environment. This set of
sounds is not random, they are the resulting notes
from choosing a note and multiplying its frequency by
2/1, 3/2, 4/3, etc. This is the way our brain has evol-
ved and that group of sounds all together are what it
recognizes as pleasant.

We have used these scales to create the chessboard
over which the king is going to move. This way, whe-
rever the king moves, it is going to reproduce a note in
the same scale that the ones before. To create these
chessboards we have one principle: each note has to be
surrounded by all the notes composing the scale. But
the scales we chose only have seven notes. So, we add
another two composing techniques from music theory,
the silence note and the repetition of the previous note.
With these two new boxes, we complete all eight boxes
surrounding a note and can fill all the chessboard.

Figure 2: The circle of fifths.

The other music theory concept we have used to

4 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

elaborate a melodies generator is the circle of fifths [3].
This theory was created by Nikolay Diletsky in 1679
and is a way of showing the relationships among the
twelve semitones of the chromatic scale. In the other
melodies generator we spread the notes through the
chessboard “randomly”, but with this theory, we can
elaborate a more correlated chessboard.

This theory doesn’t apply directly to the notes insi-
de a scale, but the chords created from those notes. A
chord is composed of three notes, which in a major
chord will be the note, its third, and its fifth note. We
have adapted this circle so we will only have into ac-
count the main note of each chord. Figure 2 shows
how the circle of fifths is distributed. It is divided into
three levels, which are the major, minor and dimi-
nished chords levels. This layout allows jumping from
chord to chords following some simple rules, to create
a pleasant melody. As we are basing our melodies on
simple notes, this pleasant effect won’t be as noticea-
ble, but still will be a consonant sound, instead of a
dissonant one.

To create this chessboard we will simply take the
three levels of the circle of fifths and separate them, so
the king will be moving through the levels or jumping
from one to another.

Another element we are going to count on is time.
As said before we have established a box that repeats
the note of the previous one. This kind of box allows
the melody to create some rhythm, as it breaks with
the constant change of notes. Also, to apply more
rhythm to the melody is necessary the use of the musi-
cal figures, which represent the duration of each note.
These musical notes and the associated time can be
seen in Figure 3; from left to right, whole note, half
note, quarter note, and eighth note.

Figure 3: Musical figures.

5.2 King’s movement

Now that we have our chessboards created it is time
to discuss how the king is going to move through
them. First of all, why a king?. As mentioned before,
we are basing our representation in “The Drunken
bishop” representation, but in our scenario, just four
possible movements were too few. The melody would
have been way longer. So, we decided that instead of a
bishop it would be a king. This way there would be
fewer movements and the melody would be Shorter
and easier to memorize.

In the case of the scales chessboard the movement is
simple, the king will follow the chess rules, being able
to move throughout the chessboard, but only one box
at a time.

In the case of the circle chessboard, we have based
the king’s movement on three principles. First, the
king can move through the first and second levels with
no limit, but not through the third level. This one can
only be accessed if coming from the first or second
level. And vice versa, from the third level, is only pos-
sible to move to the first and second levels. Second, the
king can only move through levels to a contiguous
box. For example, if the king were in the box “Em”
from the shaded area in Figure 2, he could only move
to any box inside that shaded area. Third, for the king
to have eight possible movements, and to add the si-
lence and repetition boxes, the two remaining move-
ments will be to a silenced box and a repetition box.
When this movement is done, the king will return to
its previous position to continue with the circle of
fifths.

Once the king is moving through the chessboard,
the notes of the boxes it moves through will be stored
in a list for its later reproduction.

5.3 Key decomposition

An SSH key is a base64-encoded key, which is com-
posed, as Tyler Cipriani says, of a huge glob of mea-
ningless letters and numbers. This key can be hashed,
therefore reducing the number of letters and numbers
that compose it. In order to generate the melodies, the
longer the key is, the longer is the melody obtained.
That is why to generate the melody we use the md5
hash algorithm, to obtain a fingerprint of the key and
produce with it the melody.

As already mentioned, the melody is created by the
movement of the king throughout the chessboard. But,
how these movements are determined is what we are
going to explain. First of all, we need to transform the
hexadecimal md5 fingerprint to binary. Then, the bi-
nary string will be divided into chunks of five bits,
which will determine each movement. When dividing
the string into chunks of five bits, a two bits chunk will
be left. These two bits are used to determine, in the
case of the scales chessboard, one of the four scales to
be used; and in the case of the circle chessboard the
note to start with.

From every chunk, we determine the duration of the
note, one of the four from Figure 3, and the next mo-
vement of the king. The easiest way to implement this
was using dictionaries, where the keys are the possible
combinations made by the bits and the contents are the
duration in milliseconds and the next movement as an
increaser or decreaser of the king’s actual position.

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 5

5.4 Musicalbeeps

Musicalbeeps is a Python package to play sound be-
eps corresponding to musical notes [4]. This Package is
based on the numpy and simpleaudio packages. It
allows the user to simply play musical notes, just in a
few lines of code. First of all, an instance from the
“Player” class must be created, where we will be able
to select the desired volume. Then, we will only use
one function from this class, “play_note”, which plays
a beep corresponding to the musical note and the du-
ration that has been passed by parameter. To play a
silence, the note “pause” must be played. This library
makes the job much easier since it allows us to store
the names of the notes in a list and afterward iterate
over it to play the notes. This way the melody won’t
have any interruption or delay based on the execution
of the program.

The duration of the note is given by the multiplica-
tion of the standard time and the musical figure atta-
ched to the note.

6 EVALUATION

To evaluate the developed methods we have deci-
ded to elaborate a survey. The elaboration of a survey
is a necessary step when developing a project of this
nature. In this case, exists the need of comparing the
two developed representation methods with the previ-
ous one. As our representation is based on “The
Drunken Bishop” method, this is the one we are going
to compare them with. Also, we find the need of com-
paring those two methods between them, so that we
could decide which is the best one to implement in the
SSH protocol.

6.1 Elaboration of the survey

To elaborate on this survey it is important to take in-
to account what are the main characteristics for evalua-
ting the different methods. The purpose of this project
is to develop a representation method in order to make
it easier to compare the SSH cryptographic keys. So,
one of the main characteristics has to be how pleasant
the representation in question is. This is a very subjec-
tive question since everyone has their own musical
tastes. That is why we have decided to define this cha-
racteristic as two qüestions. Both are subjective, but
somehow, together, they allow to define quite well the
issue to be addressed. The first question is direct,
which representation seems more pleasant to the in-
terviewee. The interviewees have one example of
every representation and they have to decide. The
second question follows in the same vein, asking
which representation, among three different examples,

they perceive as the longest. The duration of the three
representations is quite similar, but depending on how
pleasant it seems to the interviewee, the shorter it will
be felt. This characteristic is also very important to

remember the representation. As Jørgen Sugar, a post-

doctoral student at the Norwegian University of Scien-
ce and Technology's Kavli Institute for Systems Neu-
roscience says in an article published in National Geo-
graphic: “ Even though time flies when you're having
fun, when you remember back on it, you can remem-
ber much more of this extended experience compared
to a boring experience” [6].

The next two qüestions will allow us to determine,
between the most logical standard times, which one is
the most appropriate for the circle representation and
the scales representation. Here the same melody is
played three times, but changing this characteristic.

After having played a few examples of melodies
and having shown, also, a few examples of “The
Drunken Bishop”, we ask the interviewees if they can
tell us if they have heard or seen before any of the re-
presentation that will be shown. This question is the
most objective, since it refers to the main goal of the
project, to be able to remember the key representation.
The interviewees don’t know at the beginning that this
question is going to be asked, so they don’t pay special
attention to every detail, but that is precisely what we
want. According to a study carried out by researchers
at the University of California in Davis, and published
in the Neuron magazine, our brain prioritizes rewar-
ding memòries over other memòries [7].

Finally, since it is normal to access the same server
or servers every day, or very often, we ask the inter-
viewees which method do they think they would re-
member if they hear it or see it every day.

To have a good population sample, we need at least
40 samples and subjects of all ages have been sought.
As well as subjects with and without musical theory
knowledge, and subjects that play and don’t play any
instrument. Also, is important to know if the inter-
viewee has an absolute pitch or not, since he/she
would have a significant advantage regarding the re-
cognition of the melody. The absolute or perfect pitch
is the rare ability of a person to identify or re-create a
given musical note without the benefit of a reference
tone [8]. This ability is present in a proportion of 1 in
10000 people.

6.2 Results

Taking into account the limits at hand, this survey
shows the trend of a group of 40 people. As mentioned
before, to be able to analyze the best representation
method we have analyzed which option is the most

6 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

pleasant for the interviewees.

As can be seen in Figure 4 the circle of fifths seems
to be the most pleasant of the method presented.
Compared to the other methods this one has a clear
advantage since it has more than two-thirds of the
samples. If we look at Figure 5 we see the opposite
tendency. Here, the circle of fifths has the lowest rate
while the scales and the graphic methods increases.
This makes sense with the correlation made between
those two parameters since it is assumed that the shor-
test the method seems, the more pleasant it is for the
interviewee.

Figure 4: Percentage of method pleasantness

Figure 5: Percentage of longest perceived duration

When deciding which standard time is the best
every interviewee agrees between both methods. A
60% of the interviewees find the melody more pleasant
when the standard time is 0.15 milliseconds and the
other 40% when it is 0.3 milliseconds. None of the in-
terviewees found it pleasant when the standard time is
0.5 milliseconds.

The success rate of every repeated representation
can be seen in Figure 6. This rate shows that the circle
of fifths is the most correctly guessed when its stan-
dard time is 0.15 milliseconds, being followed by the
scales with the same standard time and in third positi-
on the graphic method. Both scales and circle of fifths
methods when played with a standard time of 0.3 or

0.5 milliseconds are the less correctly guessed.

Figure 6: Success rate on representation recognition.

As can be seen in the next images, we found a simi-
lar behavior when segregating the samples by musical
knowledge and by age. People with musical knowled-
ge seen in Figure 9 and people under 30 years old seen
in Figure 7 tend to prefer the circle of fifths method
over the other two methods. More than 80% of people
with musical knowledge prefer this method and in the
case of the people under 30, this percentage decreases
to 60%.

Figure 7: Chosen method people under 30 years old.

Figure 8: Chosen method people with musical knowledge.

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 7

It happens the opposite with people over 30 years
old or without musical knowledge as can be seen in
Figure 9 and Figure 10. In these two cases, the percen-
tages are pretty similar, more than 60% agree that the
graphic method is the best for them.

Figure 9: Chosen method people over 30 years old.

Figure 10: Chosen method people with no musical knowledge.

7 SSH IMPLEMENTATION

To exemplify the use of these generators, it was
thought as a good example to implement the chosen
one into the SSH protocol. This protocol asks for a
cryptographic public key authentication to connect to a
host. As mentioned before, this process is not
straightforward for everyone since the representation
and comparison of these keys is not simple. Among all
the existing options to represent these keys, there is
none based on the music or any kind of audible repre-
sentation. That is why this example is important as a
first step into what could be the first musical represen-
tation of a cryptographic key. We decided to imple-
ment it in the OpenSSH portable version, which source
code could be found on the OpenSSH website.

The moments at which such representations were to
be carried out are mainly two. First, when a new key is
generated, the representation must be shown to the
administrator. And second, when a public key authen-
tication is requested, where the representation must be

shown to the client. The first task of this part of the
project was to find the files where these representati-
ons were done and include ours. These representations
are done in these two files: “ssh-keygen.c” and “ssh-
connect.c”. Although the behavior of the melodies
generator is the same in both examples, the implemen-
tation is not, because the first one is shown in the ser-
ver where the program is running while the second
one has to be sent to the client who is trying to connect
to the server.

7.1 Ssh-keygen

In this file, the generation of a new public key is car-
ried out in the server. To do this the program asks the
administrator for a directory to save the new key, ge-
nerates it, saves it and finally, the key is shown in both
‘base64-encoded’ and ‘randomart’ formats. After these
two representations, we will reproduce the melody
generated by our melodies generator. As this melody
is generated by a Python program, we will need to call
it from our OpenSSH code, which is in C. To do this
we create a bash shell script, which is called from the C
code and executes the Python program with the neces-
sary parameters.

The parameters that the melodies generator needs
are the cryptographic key md5 hash and the standard
time for the melody. The standard time is a static ar-
gument inside the bash shell script, while the crypto-
graphic key has to be sent from the OpenSSH code. In
order to do this, the function sshkey_fingerprint has to
be called with the “SSH_DIGEST_MD5” option, so it
will return the md5 hash of the cryptographic key. As
the format in which the fingerprint is returned is diffe-
rent from the one used in the previous executions,
minor changes had to be done in the melodies genera-
tor Python code.

7.2 Ssh-connect

Unfortunately, this part of the SSH implementation
could not be finished due to unsolved problems with
the OpenSSH-portable installation. The behavior and
functioning are the same that the one from the key
generation. When a client wants to connect to a server,
it needs to authenticate the server’s public key. This
key is shown with the ‘base64-encoded’ and ‘rando-
mart’ formats and then the melody would be reprodu-
ced. The only difference we found within these two
parts of the implementation is the communications
carried out by the program since in this case, the me-
lody reproduction has to be done by the client, so so-
mehow, the melody has to be sent to the client for its
later reproduction.

8 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

8 FUTURE LINES

Once the project has been finished, there are a cou-
ple of improvements that would be interesting to in-
corporate.

First of all, it would be interesting to improve the
circle of fifths generator, implementing the reproducti-
on of the chords instead of the notes. The circle of fifths
music theory is based on the relation between chords.
In the implemented generator we took the main note
of the chord, but not all the notes that compose the
chord. This implementation will allow to create more
pleasant melodies.

Secondly, regarding the scales generator, it would
be also interesting to play the chords corresponding to
the scale where the melody is played. It would create
an ambient sound that would produce the feeling of
belonging of the notes in the scale.

Thirdly, a more complex algorithm could be deve-
loped, taking into account diverse aspects of the music
theory and bringing them together to create new rules
for the ones established.

Finally, it would be important to finish the SSH im-
plementation, adding the reproduction of the melody
when connecting to a server. Also, for the melody to be
correctly reproduced, it is necessary to run the Python
program with no CPU interruptions so that the rhythm
of the melody is not affected by the pauses produced
by the system.

9 CONCLUSIONS

Taking into account the nature of the project, not
only a computer science question, but also a study into
the different methods to create artificial melodies, the
results are very satisfying. Both of the melodies gene-
rators have been successfully developed and we have
found out that there is an application, where the deve-
loped method is one of the better solutions for repre-
senting cryptographic keys.

Regarding the planning, all the essential objectives
have been accomplished. Even though all the problems
found along the way have retarded the execution of
the project, we have finished with a very satisfactory
result. It is to admit that when the part referring to the
generator of melodies was finished, it was thought that
the toughest job was done. In the end, the implementa-
tion into the SSH protocol took most of the effort and
time, even making it impossible to finish this part of
the project.

Nevertheless, the music theory study and the appli-
cation to the presented problem were satisfactorily
completed. The melodies generators were also succes-

sfully developed and correctly evaluated. And the SSH
implementation was partly completed, but still
allowed to exemplify the functioning of the project.

ACKNOWLEDGMENTS

I would like to thank my tutor Carlos Borrego Igle-
sias for his unconditional help and for supporting me
and encouraging me to overcome the challenges I fa-
ced throughout this project. Also, I would like to thank
my family and friends who supported me when I was
most unmotivated and also for helping me by answe-
ring the surveys.

BIBLIOGRAPHY

[1] Tyler Cipriani, “Ssh Key Fingerprint, Identicons,
And ASCII Art” Sept. 26, 2017.
https://tylercipriani.com/blog/2017/09/26/ssh-
key-fingerprints-identicons-and-ascii-art/ (acces-
sed Sept. 12, 2021)

[2] Amir Al-Majdalawi Álvarez, “Acustica musical”
2005-2006,
https://www.lpi.tel.uva.es/~nacho/docencia/ing
_ond_1/trabajos_05_06/io2/public_html/escalas.
html (accessed Jan. 16, 2022)

[3] Wikipedia, “Circle of fifths” Dec. 28, 2021,
https://en.wikipedia.org/wiki/Circle_of_fifths
(accessed Nov. 8, 2021)

[4] PyPi, “musicalbeeps 0.2.9” Nov 20, 2020,
https://pypi.org/project/musicalbeeps/ (acces-
sed Sept. 23 2021)

[5] Stephanie Briggs, “Surveys 101: A simple guide to
asking effective qüestions” Jun. 25, 2015.
https://zapier.com/learn/forms-
surveys/writing-effective-survey/ (accessed on
Nov. 20, 2021)

[6] Dough Johnson, “How you perceive time may
depend on your income” Sept 22, 2020.
https://www.nationalgeographic.com/science/ar
ticle/how-you-perceive-time-may-depend-on-
income-memory-formation?utm_source=digg (ac-
cessed on Dec. 13, 2021)

[7] Mathias J. Gruber et Al, “Post-learning Hippo-
campal Dynamics Promote Preferential Retention
of Rewarding Events” Feb. 11, 2016.
https://www.cell.com/neuron/fulltext/S0896-
6273(16)00018-0 (accessed on Jan. 2, 2022)

[8] Wikipedia, “Absolute pitch” 13 Jan. 2021.
https://en.wikipedia.org/wiki/Absolute_pitch
(accessed on Jan. 21, 2022)

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 9

APÈNDIX

A1. SOURCE CODE CIRCLE OF FIFTHS GENERATOR

#!/usr/bin/env python

-*- encoding: utf-8 -*-

from __future__ import print_function

import argparse

import base64

import hashlib

import sys

import time

import musicalbeeps

player = musicalbeeps.Player(volume=0.3, mu-

te_output = False)

melody = []

notas = []

NOTA = {

 ('0', '0') : 0.5,

 ('0', '1') : 1,

 ('1', '0') : 2,

 ('1', '1') : 4,

}

CASILLA = {

 ('0', '0', '0') : (-1, 1),

 ('0', '0', '1') : (0, 1),

 ('0', '1', '0') : (1, 1),

 ('0', '1', '1') : (1, 0),

 ('1', '0', '0') : (-1, 0),

 ('1', '0', '1') : (0, -1),

 ('1', '1', '0') : (-1, -1),

 ('1', '1', '1') : (1, -1),

}

NOTE_TAB = {

 (0, 0) : ("C4"),

 (0, 1) : ("G4"),

 (0, 2) : ("D4"),

 (0, 3) : ("A4"),

 (0, 4) : ("E4"),

 (0, 5) : ("B4"),

 (0, 6) : ("F#"),

 (0, 7) : ("D4b"),

 (0, 8) : ("A4b"),

 (0, 9) : ("E4b"),

 (0, 10) : ("B4b"),

 (0, 11) : ("F4"),

 (1, 0) : ("A4"),

 (1, 1) : ("E4"),

 (1, 2) : ("B4"),

 (1, 3) : ("F4#"),

 (1, 4) : ("C4#"),

 (1, 5) : ("G4#"),

 (1, 6) : ("E4b"),

 (1, 7) : ("B4b"),

 (1, 8) : ("F4"),

 (1, 9) : ("C4"),

 (1, 10) : ("G4"),

 (1, 11) : ("D4"),

 (2, 0) : ("B4"),

 (2, 1) : ("F4#"),

 (2, 2) : ("C4#"),

 (2, 3) : ("G4#"),

 (2, 4) : ("D4#"),

 (2, 5) : ("A4#"),

 (2, 6) : ("F4"),

 (2, 7) : ("C4"),

 (2, 8) : ("G4"),

 (2, 9) : ("D4"),

 (2, 10) : ("A4"),

 (2, 11) : ("E4"),

}

"""def md5sum(datum):

 m = hashlib.md5()

 m.update(datum)

 return m.hexdigest()"""

def parse_args():

 ap = argparse.ArgumentParser()

 ap.add_argument('-e', '--base', ac-

tion='store')

 ap.add_argument('-t', '--time', ac-

tion='store')

 return ap.parse_args()

def move_king(king, move):

 mov = list(move)

 notas.append(NOTA[mov[0], mov[1]])

 x = int(king[0]) + CASILLA[mov[2],

mov[3], mov[4]][0]

 y = int(king[1]) + CASILLA[mov[2],

mov[3], mov[4]][1]

 if x > 2:

 x = 0

 elif x < 0:

 x = 2

 if y < 0:

 y = 11

 elif y > 11:

 y = 0

 elif x == 0 or x == 1:

 melody.append(NOTE_TAB[x, y])

 elif x == 2:

 if CASILLA[mov[2], mov[3], mov[4]][0]

== 1:

 melody.append("pause")

 elif CASILLA[mov[2], mov[3],

mov[4]][0] == -1:

 melody.append(melody[-1])

 y = king[0]

 return (x, y)

def play_melody():

 for note, duration in zip(melody, notas):

 player.play_note(note, duration*tEst)

if __name__ == '__main__':

 args = parse_args()

 x = args.base.split(":")

 x.pop(0)

 x = ''.join(x)

 print(x)

 md5 = int(x, base=16)

10 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

 pad, rjust, size, kind = '0', '>', 128,

'b'

 bin_key =

str(f'{md5:{pad}{rjust}{size}{kind}}')

 tEst = float(args.time)

 n = 5

 moves = [bin_key[i:i + n] for i in ran-

ge(0, len(bin_key), n)]

 nota_inicial = list(moves.pop())

 melo-

dy.append(NOTE_TAB[int(nota_inicial[0]),int(n

ota_inicial[1])])

 notas.append(NOTA['0', '1'])

 king = nota_inicial

 try:

 for move in moves:

 king = move_king(king, move)

 finally:

 play_melody()

A2. SOURCE CODE SCALES GENERATOR

#!/usr/bin/env python

-*- encoding: utf-8 -*-

from __future__ import print_function

import argparse

import base64

import hashlib

import sys

import time

import musicalbeeps

player = musicalbeeps.Player(volume=0.3, mu-

te_output = False)

FLDBASE = 8

FLDSIZE_X = (FLDBASE * 2 + 1)

FLDSIZE_Y = (FLDBASE + 1)

START = (int(FLDSIZE_X / 2), int(FLDSIZE_Y /

2))

melody = []

notas = []

NOTA = {

 ('0', '0') : 0.5,

 ('0', '1') : 1,

 ('1', '0') : 2,

 ('1', '1') : 4,

}

CASILLA = {

 ('0', '0', '0') : (-1, 1),

 ('0', '0', '1') : (0, 1),

 ('0', '1', '0') : (1, 1),

 ('0', '1', '1') : (1, 0),

 ('1', '0', '0') : (-1, 0),

 ('1', '0', '1') : (0, -1),

 ('1', '1', '0') : (-1, -1),

 ('1', '1', '1') : (1, -1),

}

ESCALA = {

 ('0', '0') : {

 (0, 0) : "B4",

 (1, 0) : "R",

 (2, 0) : "pause",

 (3, 0) : "B4",

 (4, 0) : "R",

 (5, 0) : "pause",

 (6, 0) : "B4",

 (7, 0) : "R",

 (8, 0) : "pause",

 (9, 0) : "B4",

 (10, 0) : "R",

 (11, 0) : "pause",

 (12, 0) : "B4",

 (13, 0) : "R",

 (14, 0) : "pause",

 (15, 0) : "B4",

 (16, 0) : "R",

 (0, 1) : "G4",

 (1, 1) : "C4",

 (2, 1) : "E4",

 (3, 1) : "G4",

 (4, 1) : "C4",

 (5, 1) : "pause",

 (6, 1) : "G4",

 (7, 1) : "C4",

 (8, 1) : "pause",

 (9, 1) : "G4",

 (10, 1) : "D4",

 (11, 1) : "E4",

 (12, 1) :"R",

 (13, 1): "C4",

 (14, 1): "pause",

 (15, 1): "G4",

 (16, 1): "D4",

 (0, 2) : "R",

 (1, 2) : "D4",

 (2, 2) : "pause",

 (3, 2) : "R",

 (4, 2) : "D4",

 (5, 2) : "E4",

 (6, 2) : "R",

 (7, 2) : "D4",

 (8, 2) : "E4",

 (9, 2) : "R",

 (10, 2) : "C4",

 (11, 2) : "pause",

 (12, 2) : "G4",

 (13, 2): "D4",

 (14, 2): "E4",

 (15, 2): "R",

 (16, 2): "C4",

 (0, 3) : "R",

 (1, 3) : "B4",

 (2, 3) : "pause",

 (3, 3) : "R",

 (4, 3) : "B4",

 (5, 3) : "pause",

 (6, 3) : "R",

 (7, 3) : "B4",

 (8, 3) : "pause",

 (9, 3) : "R",

 (10, 3) : "B4",

 (11, 3) : "E4",

 (12, 3) : "R",

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 11

 (13, 3): "B4",

 (14, 3): "pause",

 (15, 3): "R",

 (16, 3): "B4",

 (0, 4) : "G4",

 (1, 4) : "C4",

 (2, 4) : "E4",

 (3, 4) : "G4",

 (4, 4) : "C4",

 (5, 4) : "pause",

 (6, 4) : "G4",

 (7, 4) : "C4",

 (8, 4) : "pause",

 (9, 4) : "G4",

 (10, 4) : "D4",

 (11, 4) : "E4",

 (12, 4) : "R",

 (13, 4): "C4",

 (14, 4): "pause",

 (15, 4): "G4",

 (16, 4): "D4",

 (0, 5) : "R",

 (1, 5) : "D4",

 (2, 5) : "pause",

 (3, 5) : "R",

 (4, 5) : "D4",

 (5, 5) : "E4",

 (6, 5) : "R",

 (7, 5) : "D4",

 (8, 5) : "E4",

 (9, 5) : "R",

 (10, 5) : "C4",

 (11, 5) : "pause",

 (12, 5) : "G4",

 (13, 5): "D4",

 (14, 5): "E4",

 (15, 5): "R",

 (16, 5): "C4",

 (0, 6) : "B4",

 (1, 6) : "pause",

 (2, 6) : "R",

 (3, 6) : "B4",

 (4, 6) : "pause",

 (5, 6) : "R",

 (6, 6) : "B4",

 (7, 6) : "pause",

 (8, 6) : "R",

 (9, 6) : "B4",

 (10, 6) : "pause",

 (11, 6) : "R",

 (12, 6) : "B4",

 (13, 6): "pause",

 (14, 6): "R",

 (15, 6): "B4",

 (16, 6): "pause",

 (0, 7) : "G4",

 (1, 7) : "C4",

 (2, 7) : "E4",

 (3, 7) : "G4",

 (4, 7) : "C4",

 (5, 7) : "pause",

 (6, 7) : "G4",

 (7, 7) : "C4",

 (8, 7) : "pause",

 (9, 7) : "G4",

 (10, 7) : "D4",

 (11, 7) : "E4",

 (12, 7) : "R",

 (13, 7): "C4",

 (14, 7): "pause",

 (15, 7): "G4",

 (16, 7): "D4",

 (0, 8) : "R",

 (1, 8) : "D4",

 (2, 8) : "pause",

 (3, 8) : "R",

 (4, 8) : "D4",

 (5, 8) : "E4",

 (6, 8) : "R",

 (7, 8) : "D4",

 (8, 8) : "E4",

 (9, 8) : "R",

 (10, 8) : "C4",

 (11, 8) : "pause",

 (12, 8) : "G4",

 (13, 8): "D4",

 (14, 8): "E4",

 (15, 8): "R",

 (16, 8): "C4",

 },

 ('0', '1') : {

 (0, 0): "D4#",

 (1, 0): "R",

 (2, 0): "pause",

 (3, 0): "D4#",

 (4, 0): "R",

 (5, 0): "pause",

 (6, 0): "D4#",

 (7, 0): "R",

 (8, 0): "pause",

 (9, 0): "D4#",

 (10, 0): "R",

 (11, 0): "pause",

 (12, 0): "D4#",

 (13, 0): "R",

 (14, 0): "pause",

 (15, 0): "D4#",

 (16, 0): "R",

 (0, 1): "B4",

 (1, 1): "E4",

 (2, 1): "G4#",

 (3, 1): "B4",

 (4, 1): "E4",

 (5, 1): "pause",

 (6, 1): "B4",

 (7, 1): "E4",

 (8, 1): "pause",

 (9, 1): "B4",

 (10, 1): "F4#",

 (11, 1): "G4#",

 (12, 1): "R",

 (13, 1): "E4",

 (14, 1): "pause",

 (15, 1): "B4",

 (16, 1): "F4#",

 (0, 2): "R",

 (1, 2): "F4#",

 (2, 2): "pause",

 (3, 2): "R",

 (4, 2): "F4#",

 (5, 2): "G4#",

 (6, 2): "R",

 (7, 2): "F4#",

 (8, 2): "G4#",

 (9, 2): "R",

12 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

 (10, 2): "E4",

 (11, 2): "pause",

 (12, 2): "B4",

 (13, 2): "F4#",

 (14, 2): "G4#",

 (15, 2): "R",

 (16, 2): "E4",

 (0, 3): "R",

 (1, 3): "D4#",

 (2, 3): "pause",

 (3, 3): "R",

 (4, 3): "D4#",

 (5, 3): "pause",

 (6, 3): "R",

 (7, 3): "D4#",

 (8, 3): "pause",

 (9, 3): "R",

 (10, 3): "D4#",

 (11, 3): "G4#",

 (12, 3): "R",

 (13, 3): "D4#",

 (14, 3): "pause",

 (15, 3): "R",

 (16, 3): "D4#",

 (0, 4): "B4",

 (1, 4): "E4",

 (2, 4): "G4#",

 (3, 4): "B4",

 (4, 4): "E4",

 (5, 4): "pause",

 (6, 4): "B4",

 (7, 4): "E4",

 (8, 4): "pause",

 (9, 4): "B4",

 (10, 4): "F4#",

 (11, 4): "G4#",

 (12, 4): "R",

 (13, 4): "E4",

 (14, 4): "pause",

 (15, 4): "B4",

 (16, 4): "F4#",

 (0, 5): "R",

 (1, 5): "F4#",

 (2, 5): "pause",

 (3, 5): "R",

 (4, 5): "F4#",

 (5, 5): "G4#",

 (6, 5): "R",

 (7, 5): "F4#",

 (8, 5): "G4#",

 (9, 5): "R",

 (10, 5): "E4",

 (11, 5): "pause",

 (12, 5): "B4",

 (13, 5): "F4#",

 (14, 5): "G4#",

 (15, 5): "R",

 (16, 5): "E4",

 (0, 6): "D4#",

 (1, 6): "pause",

 (2, 6): "R",

 (3, 6): "D4#",

 (4, 6): "pause",

 (5, 6): "R",

 (6, 6): "D4#",

 (7, 6): "pause",

 (8, 6): "R",

 (9, 6): "D4#",

 (10, 6): "pause",

 (11, 6): "R",

 (12, 6): "D4#",

 (13, 6): "pause",

 (14, 6): "R",

 (15, 6): "D4#",

 (16, 6): "pause",

 (0, 7): "B4",

 (1, 7): "E4",

 (2, 7): "G4#",

 (3, 7): "B4",

 (4, 7): "E4",

 (5, 7): "pause",

 (6, 7): "B4",

 (7, 7): "E4",

 (8, 7): "pause",

 (9, 7): "B4",

 (10, 7): "F4#",

 (11, 7): "G4#",

 (12, 7): "R",

 (13, 7): "E4",

 (14, 7): "pause",

 (15, 7): "B4",

 (16, 7): "F4#",

 (0, 8): "R",

 (1, 8): "F4#",

 (2, 8): "pause",

 (3, 8): "R",

 (4, 8): "F4#",

 (5, 8): "G4#",

 (6, 8): "R",

 (7, 8): "F4#",

 (8, 8): "G4#",

 (9, 8): "R",

 (10, 8): "E4",

 (11, 8): "pause",

 (12, 8): "B4",

 (13, 8): "F4#",

 (14, 8): "G4#",

 (15, 8): "R",

 (16, 8): "E4",

 },

 ('1', '0'): {

 (0, 0): "G4#",

 (1, 0): "R",

 (2, 0): "pause",

 (3, 0): "G4#",

 (4, 0): "R",

 (5, 0): "pause",

 (6, 0): "G4#",

 (7, 0): "R",

 (8, 0): "pause",

 (9, 0): "G4#",

 (10, 0): "R",

 (11, 0): "pause",

 (12, 0): "G4#",

 (13, 0): "R",

 (14, 0): "pause",

 (15, 0): "G4#",

 (16, 0): "R",

 (0, 1): "E4",

 (1, 1): "A4",

 (2, 1): "C4#",

 (3, 1): "E4",

 (4, 1): "A4",

 (5, 1): "pause",

 (6, 1): "E4",

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 13

 (7, 1): "A4",

 (8, 1): "pause",

 (9, 1): "E4",

 (10, 1): "B4",

 (11, 1): "C4#",

 (12, 1): "R",

 (13, 1): "A4",

 (14, 1): "pause",

 (15, 1): "E4",

 (16, 1): "C4#",

 (0, 2): "R",

 (1, 2): "B4",

 (2, 2): "pause",

 (3, 2): "R",

 (4, 2): "B4",

 (5, 2): "C4#",

 (6, 2): "R",

 (7, 2): "B4",

 (8, 2): "C4#",

 (9, 2): "R",

 (10, 2): "A4",

 (11, 2): "pause",

 (12, 2): "E4",

 (13, 2): "B4",

 (14, 2): "C4#",

 (15, 2): "R",

 (16, 2): "A4",

 (0, 3): "R",

 (1, 3): "G4#",

 (2, 3): "pause",

 (3, 3): "R",

 (4, 3): "G4#",

 (5, 3): "pause",

 (6, 3): "R",

 (7, 3): "G4#",

 (8, 3): "pause",

 (9, 3): "R",

 (10, 3): "G4#",

 (11, 3): "C4#",

 (12, 3): "R",

 (13, 3): "G4#",

 (14, 3): "pause",

 (15, 3): "R",

 (16, 3): "G4#",

 (0, 4): "E4",

 (1, 4): "A4",

 (2, 4): "C4#",

 (3, 4): "E4",

 (4, 4): "A4",

 (5, 4): "pause",

 (6, 4): "E4",

 (7, 4): "A4",

 (8, 4): "pause",

 (9, 4): "E4",

 (10, 4): "B4",

 (11, 4): "C4#",

 (12, 4): "R",

 (13, 4): "A4",

 (14, 4): "pause",

 (15, 4): "E4",

 (16, 4): "B4",

 (0, 5): "R",

 (1, 5): "B4",

 (2, 5): "pause",

 (3, 5): "R",

 (4, 5): "B4",

 (5, 5): "C4#",

 (6, 5): "R",

 (7, 5): "B4",

 (8, 5): "C4#",

 (9, 5): "R",

 (10, 5): "A4",

 (11, 5): "pause",

 (12, 5): "E4",

 (13, 5): "B4",

 (14, 5): "C4#",

 (15, 5): "R",

 (16, 5): "A4",

 (0, 6): "G4#",

 (1, 6): "pause",

 (2, 6): "R",

 (3, 6): "G4#",

 (4, 6): "pause",

 (5, 6): "R",

 (6, 6): "G4#",

 (7, 6): "pause",

 (8, 6): "R",

 (9, 6): "G4#",

 (10, 6): "pause",

 (11, 6): "R",

 (12, 6): "G4#",

 (13, 6): "pause",

 (14, 6): "R",

 (15, 6): "G4#",

 (16, 6): "pause",

 (0, 7): "E4",

 (1, 7): "A4",

 (2, 7): "C4#",

 (3, 7): "E4",

 (4, 7): "A4",

 (5, 7): "pause",

 (6, 7): "E4",

 (7, 7): "A4",

 (8, 7): "pause",

 (9, 7): "E4",

 (10, 7): "B4",

 (11, 7): "C4#",

 (12, 7): "R",

 (13, 7): "A4",

 (14, 7): "pause",

 (15, 7): "E4",

 (16, 7): "B4",

 (0, 8): "R",

 (1, 8): "B4",

 (2, 8): "pause",

 (3, 8): "R",

 (4, 8): "B4",

 (5, 8): "C4#",

 (6, 8): "R",

 (7, 8): "B4",

 (8, 8): "C4#",

 (9, 8): "R",

 (10, 8): "A4",

 (11, 8): "pause",

 (12, 8): "E4",

 (13, 8): "B4",

 (14, 8): "C4#",

 (15, 8): "R",

 (16, 8): "A4",

 },

 ('1', '1'): {

 (0, 0): "F4#",

 (1, 0): "R",

 (2, 0): "pause",

 (3, 0): "F4#",

14 EE/UAB TFG INFORMÀTICA: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS

 (4, 0): "R",

 (5, 0): "pause",

 (6, 0): "F4#",

 (7, 0): "R",

 (8, 0): "pause",

 (9, 0): "F4#",

 (10, 0): "R",

 (11, 0): "pause",

 (12, 0): "F4#",

 (13, 0): "R",

 (14, 0): "pause",

 (15, 0): "F4#",

 (16, 0): "R",

 (0, 1): "D4",

 (1, 1): "G4",

 (2, 1): "B4",

 (3, 1): "D4",

 (4, 1): "G4",

 (5, 1): "pause",

 (6, 1): "D4",

 (7, 1): "G4",

 (8, 1): "pause",

 (9, 1): "D4",

 (10, 1): "A4",

 (11, 1): "B4",

 (12, 1): "R",

 (13, 1): "G4",

 (14, 1): "pause",

 (15, 1): "D4",

 (16, 1): "A4",

 (0, 2): "R",

 (1, 2): "A4",

 (2, 2): "pause",

 (3, 2): "R",

 (4, 2): "A4",

 (5, 2): "B4",

 (6, 2): "R",

 (7, 2): "A4",

 (8, 2): "B4",

 (9, 2): "R",

 (10, 2): "G4",

 (11, 2): "pause",

 (12, 2): "D4",

 (13, 2): "A4",

 (14, 2): "B4",

 (15, 2): "R",

 (16, 2): "G4",

 (0, 3): "R",

 (1, 3): "F4#",

 (2, 3): "pause",

 (3, 3): "R",

 (4, 3): "F4#",

 (5, 3): "pause",

 (6, 3): "R",

 (7, 3): "F4#",

 (8, 3): "pause",

 (9, 3): "R",

 (10, 3): "F4#",

 (11, 3): "B4",

 (12, 3): "R",

 (13, 3): "F4#",

 (14, 3): "pause",

 (15, 3): "R",

 (16, 3): "F4#",

 (0, 4): "D4",

 (1, 4): "G4",

 (2, 4): "B4",

 (3, 4): "D4",

 (4, 4): "G4",

 (5, 4): "pause",

 (6, 4): "D4",

 (7, 4): "G4",

 (8, 4): "pause",

 (9, 4): "D4",

 (10, 4): "A4",

 (11, 4): "B4",

 (12, 4): "R",

 (13, 4): "G4",

 (14, 4): "pause",

 (15, 4): "D4",

 (16, 4): "A4",

 (0, 5): "R",

 (1, 5): "A4",

 (2, 5): "pause",

 (3, 5): "R",

 (4, 5): "A4",

 (5, 5): "B4",

 (6, 5): "R",

 (7, 5): "A4",

 (8, 5): "B4",

 (9, 5): "R",

 (10, 5): "G4",

 (11, 5): "pause",

 (12, 5): "D4",

 (13, 5): "A4",

 (14, 5): "B4",

 (15, 5): "R",

 (16, 5): "G4",

 (0, 6): "F4#",

 (1, 6): "pause",

 (2, 6): "R",

 (3, 6): "F4#",

 (4, 6): "pause",

 (5, 6): "R",

 (6, 6): "F4#",

 (7, 6): "pause",

 (8, 6): "R",

 (9, 6): "F4#",

 (10, 6): "pause",

 (11, 6): "R",

 (12, 6): "F4#",

 (13, 6): "pause",

 (14, 6): "R",

 (15, 6): "F4#",

 (16, 6): "pause",

 (0, 7): "D4",

 (1, 7): "G4",

 (2, 7): "B4",

 (3, 7): "D4",

 (4, 7): "G4",

 (5, 7): "pause",

 (6, 7): "D4",

 (7, 7): "G4",

 (8, 7): "pause",

 (9, 7): "D4",

 (10, 7): "A4",

 (11, 7): "B4",

 (12, 7): "R",

 (13, 7): "G4",

 (14, 7): "pause",

 (15, 7): "D4",

 (16, 7): "A4",

 (0, 8): "R",

 (1, 8): "A4",

 (2, 8): "pause",

 (3, 8): "R",

DANIEL CENDAGORTA-GALARZA FRIEND: A MUSICAL WAY OF REPRESENTING CRYPTOGRAPHIC KEYS 15

 (4, 8): "A4",

 (5, 8): "B4",

 (6, 8): "R",

 (7, 8): "A4",

 (8, 8): "B4",

 (9, 8): "R",

 (10, 8): "G4",

 (11, 8): "pause",

 (12, 8): "D4",

 (13, 8): "A4",

 (14, 8): "B4",

 (15, 8): "R",

 (16, 8): "G4",

 },

}

def parse_args():

 ap = argparse.ArgumentParser()

 ap.add_argument('-e', '--base', ac-

tion='store')

 ap.add_argument('-t', '--time', ac-

tion='store')

 return ap.parse_args()

def move_king(king, move):

 mov = list(move)

 nota = NOTA[mov[0], mov[1]]

 x = int(king[0]) + CASILLA[mov[2],

mov[3], mov[4]][0]

 y = int(king[1]) + CASILLA[mov[2],

mov[3], mov[4]][1]

 x = max(x, 0)

 y = max(y, 0)

 x = min(x, FLDSIZE_X - 1)

 y = min(y, FLDSIZE_Y - 1)

 if NOTE_TAB[x, y] != "R":

 melody.append(NOTE_TAB[x, y])

 notas.append(tEst * nota)

 else:

 melody.append(melody[-1])

 notas.append(notas[-1])

 return (x, y)

def play_melody():

 pla-

yer.play_note(NOTE_TAB[int(nota_inicial[0]),

int(nota_inicial[1])], tEst)

 for note, duration in zip(melody, notas):

 player.play_note(note, duration)

if __name__ == '__main__':

 args = parse_args()

 md5 = int(args.base, base=16)

 pad, rjust, size, kind = '0', '>', 128,

'b'

 bin_key =

str(f'{md5:{pad}{rjust}{size}{kind}}')

 tEst = float(args.time)

 n = 5

 moves = [bin_key[i:i + n] for i in ran-

ge(0, len(bin_key), n)]

 nota_inicial = list(moves.pop())

 NOTE_TAB = ESCALA[nota_inicial[0], no-

ta_inicial[1]]

 melody.append(NOTE_TAB[START[0],

START[1]])

 notas.append(tEst)

 king = START

 try:

 for move in moves:

 king = move_king(king, move)

 finally:

 play_melody()

