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Abstract

This thesis presents a unifying description of a variety of experiments on micro-
and nano-scale heat transport in semiconductors like silicon or germanium. A
hydrodynamic-like heat transport model is used to predict the non-diffusive
thermal response of complex systems in technologically relevant situations, like
the process of energy release from nanostructured heat sources towards a semi-
conductor substrate. The model does not use geometry-dependent or fitted pa-
rameters, but use intrinsic material properties that can be calculated from first
principles. Small-size and high-frequency effects are captured through the use
of specific boundary conditions, thus resulting in a practical tool for complex
microelectronic device design. Since hydrodynamic modeling is not the state-of-
the-art approach to describe standard semiconductors like silicon, special care is
devoted to quantitatively determine the applicability of the model, and multiple
experiments using different techniques are considered and studied in a unifying
way. As a result, previously unreported non-Fourier phenomena in materials
like silicon or germanium is identified and demonstrated (e.g. second sound in
rapidly varying thermal fields or multiple decay times characterizing the evo-
lution of nano-structured heaters). Furthermore, the hydrodynamic description
is compared with alternative modern frameworks describing size and frequency
effects in semiconductor heat transport, and a summarized overview of the the-
oretical background, namely non-equilibrium thermodynamics and kinetic the-
ory, is presented. In light of the extensive experimental evidence provided, this
thesis demonstrate the predictive capability of hydrodynamic-like thermal trans-
port modeling in semiconductors within a certain range of applicability that is
well beyond the diffusive regime.
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1 Introduction

The number of transistors on a microprocessor chip has been doubled every two
years since the information-technology revolution in the 1960s. This exponen-
tial increase, known as Moore’s law, has been translated into the miniaturization
of electronic devices along with an improvement of its performance, thus giv-
ing raise to high-speed internet, the smartphone and many other engines that
modified the way we consume, we access to information, or we interact among
ourselves. However, the success of the electronic industry on producing new
technologies directly impacting to our daily life has recently reached a critical
limitation: the inefficient thermal response of current nanostructured circuitry
in silicon devices [1]. In other words, the heat that is unavoidably generated by
a dense distribution of electronic components can not be efficiently evacuated
from the devices, thus limiting its efficiency and lifetime. Unfortunately, current
knowledge of thermal transport phenomena is insufficient to develop strategies
to surpass this limit.

The origin of the problem is that fabrication techniques scaled the character-
istic sizes of the chips down to the mean free paths of the phonons, which are
microscopic energy carriers in semiconductors [2]. At these scales, the interac-
tion of the phonon population with the system boundaries is critical for predic-
tive modeling, and the simple models governing the evolution at the macroscale,
like the Fourier's law, breaks down. The dominant state-of-the-art techniques to
model heat transport are based on predicting the phonon dynamics in terms of
the Boltzmann Transport equation (BTE) and kinetic theory. Since the BTE can
be fully characterized using first principles calculations in infinite crystals [3, 4],
such self-contained frameworks pursue a mechanical description of the system,
with avoiding the use of phenomenological or fitting parameters. In this context,
most of the effort is focused on developing smart and efficient ways to solve the
BTE, and thermodynamic considerations have been usually relegated to a set of
requirements that the solutions must fulfill. These approaches are usually in-
tended to characterize the apparently reduced thermal conductivity or enhanced
interfacial resistance observed in nanostructured semiconductor systems, with
maintaining the same simple relations between macroscopic quantities that ap-
ply in the bulk, like the Fourier’s law relating the heat flux and the temperature
field. This reductionist perspective has had limited success in predicting exper-
imental observations at the nanoscale, due to the complexity of the BTE and the
difficulties on integrating the influence of boundaries or external energy sources
within the microscopic description.

The tradition of the Statistical Physics group of the Universitat Autònoma
de Barcelona does not follow the dominant school of thought. It was origi-
nated by the pioneering works by David Jou, José Casas-Vázquez, and Georgy
Lebon, who developed a framework to extend the use of thermodynamic con-
cepts and restrictions to non-equilibrium situations, the so-called Extended Irre-
versible Thermodynamics (EIT) theory [5]. The EIT is a guide to simplify the mi-
croscopic or kinetic description of the system into generalized mesoscopic mod-
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els without missing the fundamental physical information contained in the BTE.
It is assumed that the complete microscopic description is not necessary to suc-
cessfully model the experiments, but the control of the slowly relaxing thermo-
dynamic magnitudes like the heat flux is sufficient. The key advantage of this
approach is that size or frequency effects are captured through the use of appro-
priate boundary conditions rather than with the use of effective parameters in
the transport equations. In consequence, this framework is perfectly suited for
engineering applications, since arbitrary complex geometries and conditions are
accessible.

This thesis combines both disciplines, kinetic theory and non-equilibrium ther-
modynamics, to provide a unifying description of a variety of experiments on
nanoscale thermal transport in standard semiconductors like silicon. The specific
model proposed, known as Kinetic Collective Model (KCM), was first envisioned
by F. Xavier Alvarez and it is based in the seminal work by R. A. Guyer and J.
A. Krumhansl [6]. It consists of a non-Fourier description of heat transport that
resembles mass transport in fluid dynamics, and it is simple enough to be used
by engineers for microelectronic device design [7]. Recently, hydrodynamic phe-
nomena in nanoscale heat transport has been theoretically and experimentally
demonstrated for some exotic materials at low temperatures [8]. The main goal
of this thesis is to show that this behavior is generally obtained in a wider range
of materials and for room temperature applications. Therefore, special care has
been taken here to discuss and analyze the applicability of the model and to unify
the description of different phenomena observed by different groups using dif-
ferent experimental techniques in a variety of materials and temperatures.

From a more general point of view, this thesis argues for the need of refined
mesoscopic descriptions to complement and contrast the available microscopic
models, which are based in axiomatic sets of fundamental rules. It is obvious that
the information provided by such microscopic frameworks, including molecular
dynamics simulations, is valuable. However, such approaches are limited by
the computational capabilities, and, most importantly, are usually difficult to in-
terpret since all the microscopic information is included and mixed. Thermal
transport in solids is a paradigmatic example of the limitations of the reduction-
ist approach, since it involves the dynamics of an overwhelmingly high number
of atoms vibrating around their crystal lattice equilibrium positions, whereas ex-
periments only access to the evolution of few averaged magnitudes. Usually, un-
derstanding is associated to the capacity of simplifying the description of certain
phenomena in compact physical models only including the relevant degrees of
freedom, rather than to expensive numerical calculations solving complex mod-
els including all the microscopic information. Therefore, it is risky to trust that
progress in physics depends on the evolution of our computing capabilities, and
that the efforts must be only focused on improving the computing efficiency.
These considerations motivate the main objective of this thesis, which is the em-
pirical validation of the simplest thermal transport model with predictive power
at the nanoscale.
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The thesis is organized as follows. In Chapter 2, we introduce the most rele-
vant theories describing heat transport in semiconductors and we show the diffi-
culties and achievements on describing the thermal behavior of nanoscopic sys-
tems. In Chapter 3, we introduce the widely accepted theory of phonon hydro-
dynamics for some specific materials at low temperatures, and we argument its
general applicability on standard semiconductors like silicon for room tempera-
ture applications. Furthermore, we compactly show all the transport equations,
boundary conditions, and parameters required for experimental modeling and
microelectronic device design. Chapters 4 to 9 contain the experimental vali-
dation of the hydrodynamic model in a variety of situations and materials in-
cluding silicon, germanium, and bismuth telluride. This is the result of multiple
international collaborations with different research groups, and represents the
most important part of the thesis. Chapter 10 aims to provide microscopic inter-
pretation of phonon hydrodynamics phenomenology with the use of alternative
methods like a Monte Carlo solver of the BTE and non-equilibrium molecular dy-
namics simulations. In Chapter 11, implementation and validation of the math-
ematical technique used, namely the Finite Elements solver of the generalized
heat transport equations, is shown. Finally, Chapter 12 is devoted to concluding
remarks.
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2 Heat Transport

Two centuries ago, Joseph Fourier proposed a law to describe thermal conduc-
tion in terms of the local temperature T and the energy flux q:

q = −κ∇T, (1)

where κ is a material property known as the thermal conductivity. This phe-
nomenological law can be combined with the energy conservation equation:

c
dT

dt
= −∇ · q, (2)

being c the specific heat, to characterize the thermal evolution of solids. How-
ever, as it will be defended in this thesis, Eq. 1 needs to be refined to achieve pre-
dictive thermal modeling of nowadays electronic devices. Fundamental deriva-
tion from microscopic grounds and generalization of these equations along with
the methods to calculate its parameters has been the subject of intensive research
study for decades.

Crystal solids like Silicon store thermal energy due to the capability of the
atoms to vibrate around their lattice sites. The transport of this internal energy is
not easily interpreted in terms of the individual atom kinetics and neighboring
interaction, and switching to collective models is required [9]. From a different
perspective, the energy of the solid is distributed among the normal modes of
vibration of the crystal as a whole. Remarkably, this interpretation allows cal-
culating the specific heat c of the solid relating the temperature and the lattice
kinetic and potential energy (Debye model). These normal modes can be inter-
preted as standing waves in the crystal accumulating energy.

The lattice vibrational field can be described by the Hamiltonian including the
(harmonic) interatomic potential, whose quanta is referred to as phonon [9, 10].
The phonons are intuitively interpreted as traveling wave-packets with defined
energy and wave-vector. The translational symmetry of the lattice Hamiltonian
allows its quantization in terms of the phonon states belonging to the first Bril-
louin zone of the reciprocal lattice. In this picture, the solid is considered as a gas
of excitations (or phonons) which carry a significant amount of energy. Transport
phenomena is then more easily approachable by treating phonons as particles
and using concepts of the kinetic theory of gases [2, 11, 12]. It is important to
remark that phonons are the quanta of the Hamiltonian assuming an harmonic
interatomic potential. However, the interatomic potential includes higher order
terms (anharmonicities), which means that the phonons are not eigenstates of
the actual Hamiltonian and, thus, the phonon population evolves in time due to
transitions from different states. In the kinetic theory framework, this is inter-
preted as scattering between phonons.

The phonon gas interpretation permits the use of the Boltzmann Transport
equation (BTE) to predict the non-equilibrium evolution of the thermal energy
of the solid in terms of the non-equilibrium phonon distribution function (see
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sections 2.1, 2.2, and 2.3). As it will be shown, this fundamental equation and
its projections allow connecting the microscopic properties of the phonon pop-
ulation (which can be calculated from first principles using Density Functional
Theory [3, 4, 13–15]), to the characterization of mesoscopic transport properties
like the thermal conductivity κ in equation 1. Furthermore, generalized meso-
scopic transport equations beyond Fourier's can be obtained [16–19].

The kinetic interpretation of heat transport is parallel to alternative approaches
based in non-equilibrium thermodynamics [5]. As discussed in section 2.4, the
generalization of the notion of local entropy and the second principle of ther-
modynamics is the guide to obtain refined mesoscopic thermal descriptions, and
serves as a filter for physically acceptable transport models [20].

Nowadays, both the kinetic and the thermodynamic approaches are focused
to provide predictive tools for heat management in modern electronic devices.
The extreme miniaturization of these devices and the high frequency clock-rates
drive the systems to non-equilibrium conditions where phenomenological trans-
port models like Eq. 1 breakdown [21, 22]. In such conditions, the phonon scat-
tering rates and mean free paths become comparable to the system scales, and the
models should be refined to include boundary effects. In section 2.5, we discuss
different approaches to include size and frequency effects at different levels of
description, and we present the use of hydrodynamic-like heat transport models
as the simplest framework with predictive capabilities.

2.1 Boltzmann Transport Equation

We assume that there exists a distribution function fk(r, t), which quantifies the
number of phonons in the neighborhood of position r at time t in the state (or
mode) k, which also denotes the phonon wave-vector. The state k is character-
ized by a frequency ω and a polarization p. To simplify the notation, the state
(k, p) is simply denoted as k throughout this thesis. In equilibrium at tempera-
ture T , the distribution function is the Bose-Einstein distribution [10]:

f
eq
k (T ) =

1

e~ωk/κBT − 1
, (3)

where κB and ~ are the Boltzmann and reduced Planck constants, respectively.
Out of equilibrium, the distribution function evolves due to two distinct mecha-
nisms. On one hand, the phonons move at its group velocity vk = ∂ωk

∂k
(drift). On

the other hand, the phonons interact with other phonons or with defects in the
lattice as a consequence of the anharmonicity of the Hamiltonian, which tends to
restore equilibrium (collisions). By invoking detailed balance we obtain the BTE
for phonons:

D(fk) ≡ ∂fk
∂t

+ vk
∂fk
∂r

= C(fk), (4)

where we denoted D and C as the drift and collision operators, respectively.
Note that, in contrast to the BTE for electrons, in the previous equation the influ-
ence of external fields is not required. The nonlinear form of the collision opera-
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tor precludes directly using Eq. 4 for applications. For illustration, we show here
the general form of C if only considering the simplest (and most important) kind
of collisions (i.e. the three-phonon transitions):

C(fk) =

∫ ∫
dk′dk′′

(2π)3

[(
fkfk′(1 + fk′′)− (1 + fk)(1 + fk′)fk′′

)
Ωk′′

k,k′+

+
1

2

(
fk(1 + fk′)(1 + fk′′)− (1 + fk)fk′fk′′

)
Ωk′,k′′

k

]
,

(5)

where Ωk′′

k,k′ is the scattering rate between two incident phonons k and k′ result-
ing in an outgoing phonon k′′, and Ωk′k′′

k is the scattering rate between one in-
cident phonons k resulting in two outgoing phonons k′ and k′′. Remarkably,
recent studies pointed out that, in some specific materials like boron arsenide,
the role of higher order transitions involving four phonons is necessary [23, 24].
Moreover, transitions due to mass defects (or isotopic impurities) must be also
accounted for. Fortunately, it is possible to calculate the transition probabilities
from first principles by using perturbation theory and the Fermi’s Golden rule
[9]. The required (periodic) Hamiltonian is obtained using the Density Func-
tional Theory (DFT) [3, 4, 14, 25, 26]. In brief, an adequate pseudopotential is
assumed for the crystal lattice, and the relaxed state is determined by computing
the state of minimum energy. Then, the total energy of a portion of the lattice (or
supercell) is calculated when perturbing the position of two or more atoms with
respect to its equilibrium positions. This allows to calculate the harmonic and an-
harmonic interaction force constants between the atoms, which characterize the
Hamiltonian [27, 28]. The harmonic part of the Hamiltonian allows constructing
fundamental properties of the phonons like the dispersion relation, which relates
the wave-vector and the frequency of each phonon mode. The anharmonic part
is required to calculate the rates Ω with the use of the Fermi’s Golden rule. It is
worth to note that this celebrated rule ensures conservation of energy between
the initial and final states, so the BTE with the full collision operator conserves
the energy. More details about the different transitions and the influence of con-
servation laws in the scattering processes can be found in section 2.2.

The applicability of the BTE demands some simplifying assumptions due to
the complex nonlinear form of operator C. If we restrict ourselves to situations
close enough to local equilibrium, we can simplify Eq. 4 by linearizing the per-
turbation around equilibrium:

fk ≈ f
eq
k +

f
eq
k (f

eq
k + 1)

κBT
gk, (6)

where gk is a linear deviation with respect to local equilibrium i.e. proportional
to a certain perturbation like ∇T . By using Eq.6 in Eq. 5, and neglecting the
nonlinear terms, one can obtain the linearized collision operator [9],

C(fk) =

∫ ∫
dk′dk′′

(2π)3

[(
− gk − g′k + g′′k

)
W k′′

k,k′ +
1

2

(
− gk + g′k + g′′k

)
W k′k′′

k

]
, (7)
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where W are functions of the equilibrium distributions and the scattering rates
Ω, weighted by a delta function ensuring energy conservation in each transition
[29].

Relaxation Time Approximation

In section 2.2, an extended discussion about the different approaches to deal
with the collision operator and obtain physical insight from the BTE is provided.
However, it is illustrative to first consider the Relaxation Time Approximation.
This phenomenological approach is based in assuming that each phonon mode
relaxes independently at a given rate due to collisions. More specifically, each
phonon mode exponentially relax towards equilibrium as if the rest of the popu-
lation was in equilibrium (g′k = g′′k = 0 in Eq. 7). By denoting as Ωk′

k the transition
rate from k to mode k′ through all the phonon scattering processes, this approx-
imation eliminates the off-diagonal elements in operator C, which reads:

C(fk) = −fk − f
eq
k

τk
, (8)

where τk are the independent phonon life times (i.e. the characteristic time the
phonon mode k needs to relax towards equilibrium). From Eq. 7, we have

1

τk
=

∫
dk′

(2π)3
Ωk′

k . (9)

Usually, the relaxation times are approximated by combining the momentum-
destroying phonon-phonon (Umklapp) scattering time, the scattering time due
to mass deffects in the lattice, and the momentum-conserving phonon-phonon
(Normal) scattering time, by using a Matthiessen's rule. The first important
drawback of the RTA is that conservation of energy in collisions is no longer
guaranteed, which leads to nonphysical results in some situations [30, 31]. How-
ever, the simplification of operatorC allows straightforward interpretation of the
transport phenomena. For example, the RTA framework allows defining the no-
tion of phonon mean free path (MFP) Λk = vkτk, which is the average distance
an excited non-equilibrium phonon travels before colliding. As we will discuss
in section 2.5, the phonon MFP is a crucial concept in many interpretations of the
role of size and frequency effects in thermal transport experiments. However, the
results presented in this thesis challenge the physical validity of this simplified
picture of the phonon kinetics at the nanoscale (see Chapter 4 for details).

Nevertheless, the RTA has been shown useful to predict with remarkable ac-
curacy the thermal conductivity of many materials in the absence of boundary
effects. For illustration, here we show a simple derivation of Fourier’s law and a
microscopic expression for the thermal conductivity within the RTA for isotropic
3D materials [11]. We start from the linear BTE using the RTA form of the colli-
sion operator (Eq. 8):

∂fk
∂t

+ vk
∂fk
∂r

= −fk − f
eq
k

τk
. (10)
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Now, we assume there is a stationary temperature gradient in the x direction.
Hence, the distribution function will solely vary in this direction. We now as-
sume that dfk

dx
≈ df

eq
k

dx
. This is a rough assumption only valid for very smooth tem-

perature profiles in the absence of other perturbations like an inhomogeneous
heat flux profile. In fact, avoiding this approximation will be crucial to derive
higher order transport equations beyond Fourier's law as discussed in section
3.2. We have,

fk = f 0
k − τkvxk

∂f 0
k

∂T

∂T

∂x
. (11)

Now we input 11 in the microscopic definition of the total heat flux

q =

∫
dk

(2π)3
fkvk~ωk. (12)

and we obtain the transport equation 1 with the thermal conductivity being

κ =
1

3

∫
dk

(2π)3
ckτkv

2
k (13)

where ck = ~ωk
∂f

eq
k

∂T
is the specific heat of mode k. Note that we used that the

contribution of the equilibrium distribution function to the heat flux is null. It
should also be noted that the integration over vxk is the same as the integration
over vyk or vzk in isotropic materials, so the integration over (vxk)2 is equivalent to
1/3 of the integration over v2

k.

Moreover, the simplified RTA-BTE framework (Eq. 10) has been extensively
used to study more complex non-equilibrium situations including boundary con-
ditions through different numerical solvers [32–39]. In section 10.1, we imple-
mented a Monte Carlo solver of the RTA-BTE [32] to compare with the hydrody-
namic heat transport description used for experimental modeling in Chapters 4
to 9.

Iterative BTE solver

It is also worth mentioning the iterative solvers of the linear BTE beyond
the RTA (i.e. using the complete form of C without neglecting the off-diagonal
terms) in the presence of homogeneous (and small) temperature gradients [14,
28]. The full version of the linear collision operator (Eq. 7) in the BTE is used.
Moreover, the non-equilibrium part of the phonon distribution is assumed to be
solely dependent on a temperature gradient in steady state conditions. Finally, a
linear relation between∇T and q (Fourier's law) is imposed. With all, an expres-
sion for the thermal conductivity can be obtained

κij =
1

κBT 2V N

∑
k

f
eq
k (f

eq
k + 1)(~ωk)2vikv

j
kF

j
k, (14)

where i = x, y, z are the three spatial directions, V is the volume of the unit cell,
N is the number of k-points, and F j

k is the perturbation of phonon mode k in the
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direction j (proportional to gk). The perturbation F j
k is obtained by iteratively

solving the linear BTE with the non-diagonal form of C (expression 7). First, F j
k

is taken equal to τkv
j
k (RTA case). Starting from this initial guess, F j

k is iteratively
obtained and takes the form τk(vjk+∆j

k). Note that, for isotropic materials, tensor
κij in eq. 14 is proportional to the identity. This method provides accurate bulk
thermal conductivity values that, in some materials like graphene, significantly
improve the agreement to experimental bulk (intrinsic) values, with respect to
expression 13.

Furthermore, some numerical methods have been recently proposed to obtain
solutions of the linear BTE also including the off-diagonal terms in the Collision
operator and including boundary conditions [40–42].

2.2 Collision Operator and Conservation Laws

As stated above, it is difficult to deal with the collision operator in the BTE be-
cause collisions mix the phonon modes in a complicated way until the phonon
distribution is relaxed back to equilibrium. In this section we show how the use
of fundamental conservation laws can be used to manipulate the linearized BTE
and extend its applicability.

First, it is important to distinguish the different kinds of phonon collisions
included in operator C. The phonons populating the mode k have a defined
energy ~ωk and a defined crystal momentum ~k. All collisions conserve energy.
Hence, in a three phonon collision involving modes k,k′ resulting in mode k′′ it
is satisfied that

ωk + ω′k = ω′′k, (15)

and in a three phonon collision involving mode k resulting in modes k′,k′′ it is
satisfied that

ωk = ω′k + ω′′k. (16)

In contrast, the conservation of crystal momentum is not guaranteed in the colli-
sions. Due to the translational symmetry of the lattice Hamiltonian, the phonon
with wave-vector k can not be distinguished from the phonon with wave-vector
k+G, being G a reciprocal lattice vector. In fact, the latter phonon (lying outside
the first Brillouin zone) has no physical meaning in a discrete medium such as the
crystal lattice (i.e. there are not enough atoms to propagate a vibration of such
short wavelength). In other words, the maximum crystal momentum that can be
carried throughout the lattice is determined by the phonons inside the first Bril-
louin zone. Hence, we can distinguish two different scattering mechanisms. On
one hand, there are Normal processes, which conserve the crystal momentum:

k = k′ + k′′, (17)

or
k + k′ = k′′. (18)
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On the other hand, there are Resistive processes, where the crystal momentum of
the resulting phonons is reduced due to its wave-vector being rewritten in terms
of G

k = k′ + k′′ + G, (19)
or

k + k′ = k′′ + G. (20)
Therefore, if we imagine a situation where Resistive processes were lacking, col-
lisions would not be able to relax the momentum of the phonon population, and
a certain perturbation would propagate at infinite distances (i.e. we would have
an infinite thermal conductivity). Notice that, in the RTA, Normal and Resistive
collisions are not distinguished, thus introducing a systematic infraprediction of
the thermal conductivity in bulk situations. This partially explains the discrepan-
cies on the κ values obtained by using the RTA and the Iterative solutions of the
BTE in some materials like graphene, since the latter properly include the con-
servation of momentum in Normal collisions. Moreover, this explains why the
RTA provide satisfactory predictions in materials where Normal collisions do not
dominate, like Silicon or germanium. Resistive processes include a portion of the
phonon-phonon interactions (Umklapp) and also interactions with mass deffects
(i.e. presence of lattice impurities or dislocations). Distinguishing Normal and
Resistive collisions has been shown very useful to obtain simplified models from
the BTE and to identify a rich variety of phenomenology in different materials
and temperatures.

Callaway’s Model

One of the most celebrated models beyond the RTA is the Callaway’s Model
[43]. This phenomenological model is based in the incapability of Normal col-
lisions to relax the distribution back to equilibrium. Instead, Normal collisions
relax the distribution towards a non-equilibrium situation with a non-null invari-
able crystal momentum. It is assumed that there is a mode-dependent Normal
relaxation time τNk and a mode-dependent Resistive relaxation time τRk . Call-
away’s operator C reads:

C(fk) = −fk − f
eq
k

τRk
− fk − f 4

k

τNk
, (21)

being f 4
k the displaced Bose-Einstein distribution:

f 4
k = f

eq
k +

~
κBT

f
eq
k (f

eq
k + 1)λk · u, (22)

where u is known as the drift velocity and quantifies the amount of crystal mo-
mentum density, and λk is a mode-dependent function. The form of f 4

k can be
derived in the limit where Resistive collisions are lacking with using maximiza-
tion of entropy arguments [9, 18]. Function λk is determined in situations with
an homogeneous temperature gradient by imposing that Normal collisions pre-
serve the crystal momentum [43]:∫

~k
fk − f 4

k

τNk
dk = 0. (23)
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This model allows more accurate calculation of the bulk thermal conductivity
with respect to the RTA in materials where Normal collisions are important, like
graphene or diamond. Moreover, numerical solvers of the BTE-RTA introduced
in the previous subsection have been adapted to solve the linearized BTE using
the Callaway’s operator also including complex boundary conditions [44–47].
Remarkably, this has been shown useful to model non-Fourier behavior like the
Drifting second sound [48] or the presence of heat vortex [49] (see more details
in Chapter 10).

Theory of Relaxons

So far, we have considered the solutions of the linearized BTE in terms of
the basis of phonon modes, which are the eigenvectors of the Drift operator (i.e.
with a well defined velocity). However, it is possible to switch to a different basis
determined by the eigenvectors of the collision operator [50]. A simple variable
change can be used to symmetrize operator C. Then, the eigenbasis elements
of the symmetrized operator C̃ are linear combinations of phonons known as
relaxon modes |θα〉with eigenvalue Ωα (where α is the relaxon index) [15]:

C̃|θα〉 = Ωα|θα〉. (24)

The relaxon modes are not eigenvectors of the drift operator and, hence, we do
not have a defined velocity for each relaxon. In other words, the independent
movement of the phonon modes at different velocities cause transitions between
relaxons. Therefore, in this basis, the inverse of the diagonal elements of C̃ are
the relaxation times of each relaxon 1/Ωα. Hence, no approximations are needed
to rigorously introduce the notion of relaxation times of the distribution in this
basis. Moreover, identification of the relaxons with macroscopic quantities like
the heat flux is possible, thus leading to microscopic insight of the evolution
of relevant thermodynamic quantities. The relaxon framework was used by
Robert J. Hardy [50] to propose the microscopic conditions to unlock the thermal
wave propagation as described by the Maxwell-Cattaneo equation [51] includ-
ing memory effects . This transport equation predicts an exponential decay for
the heat flux, which allows direct interpretation of this non-Fourier signature in
terms of the BTE in the relaxon basis. These ideas are developed in section 9.1,
and then used for experimental modeling in the same Chapter.

More recently, a kinetic theory of relaxons has been developed to refine the ab
initio calculation of the bulk thermal conductivity [15]. An arbitrary deviation
from equilibrium of the k-mode (∆f̃k = f̃k − f̃

eq
k ) can be expressed in terms of

relaxons:
∆f̃k(r, t) =

∑
α

aα(r, t)|θαk〉 (25)

where |θαk〉 is the projection of relaxon α on phonon mode k, and coefficients aα
are the relaxon occupation numbers. The linearized BTE can also be expressed

17



in terms of relaxons:√
c

κBT 2

(
∂T (r, t)

∂t
〈θ0|θα〉+∇T (r, t) · 〈θ0|v|θα〉

)

+
∂aα(r, t)

∂t
+
∑
α′

〈θα|v|θα′〉 · ∇aα′(r, t) = −Ωαaα(r, t)

(26)

where c is the total specific heat. As stated above, the previous equation provides
a simple and accurate picture of the role of collisions in relaxing the distribution
in terms of relaxation times. However, the drift operator couples different re-
laxon modes, thus increasing the complexity. Nevertheless, if we consider an
steady-state situation and an homogeneous temperature gradient in an infinite
crystal, the resulting perturbation is homogeneous (∇aα(r, t) = 0, ∀α). Hence,
the relaxons have a well defined velocity να ≡ 〈θ0|v|θα〉, and Eq. 26 becomes
simplified: √

c

κBT 2
∇T (r, t) · να = −Ωαaα(r, t). (27)

Now using the microscopic definition of the heat flux (Eq. 12), and the relation
between phonon and relaxon occupation numbers, we obtain an expression for
the thermal conductivity:

κ =
1

3

∑
α

cν2
α/Ω

α. (28)

By using first principles calculations, the previous expression has been shown to
provide accurate predictions for the bulk thermal conductivity of materials like
graphene [15], in which the RTA infrapredicts the experimental value.

The theory of relaxons has been also used to derive a generalized Fourier's
law with a time and space dependent thermal conductivity for situations with
an inhomogeneous temperature gradient [52]. Furthermore, derivation of trans-
port equations beyond Fourier has been proposed in this framework to consider
more complex non-equilibrium situations with an inhomogeneous temperature
gradient or heat flux profiles [18, 53]. The method in [18] is based in solving the
linearized BTE around the displaced distribution 22 including first order per-
turbations, and predicts the emergence of non-local and memory effects in col-
lective materials like graphite or diamond, where Normal collisions dominate.
However, this approach predicts negligible non-Fourier effects in a kinetic ma-
terial like silicon at room temperature, which is in conflict with the main results
of the present thesis. Predicting the thermal behavior of silicon is not possible
if assuming the displaced distribution as initial ansatz for the BTE. In materials
like silicon, a different approach is needed to connect the microscopic properties
of the distribution with continuous models [19]. Alternative BTE solutions pre-
dicting significant hydrodynamic effects in silicon are presented in section 3.2.
Moreover, extensive experimental evidence of hydrodynamic behavior in Sili-
con is presented in Chapters 4 to 7, and further justification using computational
experiments can be found in Chapter 10.
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Guyer-Krumhansl framework

A similar perspective was adopted by R. A. Guyer and J. A. Krumhansl to de-
velop his seminal work [6, 54], which significantly contributed to extract physi-
cal insight from the BTE for phonons with the use of fundamental conservation
laws. The symmetrized collision operator may be divided into two parts:

C̃ = Ñ + R̃, (29)

where Ñ contains the Normal scattering processes and R̃ the Resistive ones.
The Guyer-Krumhansl framework is based in developing a solution of the BTE
for isotropic materials in terms of the eigenvectors of operator Ñ [6]. Since Ñ
modifies neither the energy nor the crystal momentum of the population, there
are four independent distribution functions which are eigenvectors of Ñ with
null eigenvalue: The zero-order element |η0〉, related to the deviational energy
(which is also eigenvector of R with null eigenvalue), and the three first-order el-
ements |η1i〉, related to the total crystal momentum in the three spatial directions
i = x, y, z, respectively:

|η0〉 = µ[2 sinh(x/2)]−1 (30)

|η1i〉 = λiki[κBT2 sinh(x/2)]−1 (31)

where ki is the component i of the wave-vector k, x = ~ω
κBT

, and µ, λi are nor-
malizing constants. The higher order elements with non-null eigenvalue are
all included in |η2〉. The hyperbolic sinus appear as a result of the BTE sym-
metrization. An arbitrary perturbation of the distribution function f̃(r, t) can be
expressed as

∆f̃(r, t) = a0(r, t)|η0〉+
∑
i

a1i(r, t)|η1i〉+ a2(r, t)|η2〉, (32)

where coefficients a are the occupation numbers in the new basis. Remarkably,
for isotropic media and assuming a dispersionless single phonon branch (single
polarization) with Debye velocity v, the most important thermodynamic magni-
tudes can be directly related with the basis elements [6]. The deviational energy
density with respect to the average thermal energy reads

ε(r, t) =
κBT

µ
a0(r, t) (33)

and the heat flux components i = x, y, z read

qi =
κBT~v2

λi
a1i(r, t) (34)

Furthermore, in this basis, it is possible to explicitly impose that R̃ conserves the
energy of the distribution and Ñ conserves both the energy and the momentum.
The BTE in matricial form reads(0 0 0

0 R11 R12

0 R12 N22 +R22

−
D00 D01 0
D10 D11 D12

0 D21 D22

)a0

a1

a2

 =

0
0
0

 . (35)
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The matrix elements of the Drift operator D are the time and space derivatives
acting over the combination of phonon modes represented by each eigenvector of
Ñ . Using equations 33 and 34, the first row of 35 leads to the energy conservation
equation 2. Moreover, the second and third rows of 35 can be combined to obtain
the analog to a momentum balance equation:

D11a1 +D10a0 = [R11 − (R12 −D12)(N22 +R22 −D22)−1(R21 −D21)]a1. (36)

Let us define the relaxation operator τ encompassing all the Collision operator
elements in the previous equation:

τ = [R11 − (R12 −D12)(N22 +R22 −D22)−1(R21 −D21)]−1. (37)

From Eq. 36 and using equations 37, 33, 34, it is possible to obtain the general
transport equation

− (µ~v2/λ)2c∇T =
∂q

∂t
+ τ−1

11 q, (38)

where τ11 is the diagonal element of operator τ associated to the first-order ele-
ment |1〉 (which is a linear combination of eigenvectors |η1x〉, |η1y〉, |η1z〉).

Now it is possible to derive a refined expression for the bulk thermal conduc-
tivity in steady-state conditions (D11 = D22 = ∂

∂t
= 0) with an homogeneous

temperature gradient (D12 = 0 and D21 = 0). In such situation,

τ = [R11 − (R12)(N22 +R22)−1(R21)]−1. (39)

In [6], the previous expression is analyzed in the limiting cases where Normal
collisions dominate N >> R (collective regime), and where Resistive collisions
dominate N → 0 (kinetic regime). Identification of the R and N elements are
then proposed to satisfy the expected behavior in the different limits:

N22 → 1/τN , (40a)
R11 → 〈1|τ−1

R (k)|1〉, (40b)
R22 ≈ R11, (40c)

(R−1)11 → 〈1|τR(k)|1〉. (40d)

being τN and τR the Normal and Resistive relaxation times. Note that τN does
not depend on the momentum of the distribution k, whereas τR depend on the
momentum, so it depends on the specific excited phonon modes contributing
to the deviation with respect to equilibrium. The explicit expressions for the
different projections in 40 can be found in [6]. Using 40, the expression 39 for
operator τ reads

τ = 〈1|τ−1
R (k)|1〉

[τN + 〈1|τ−1
R (k)|1〉−1

τN〈1|τR(k)|1〉

]
, (41)

and the thermal conductivity can be identified from 38 as

κ =
1

3
cv2[τK(1− Σ) + τCΣ], (42)
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where c is the total specific heat, and Σ = 1
1+τN/τK

is a switching factor measuring
the ratio of Resistive scattering rate to Normal scattering rate. We denoted the
kinetic relaxation time τK = 〈1|τR(k)|1〉 and the collective relaxation time τC =
〈1|τ−1

R (k)|1〉−1.

Some physical insight can be obtained from the previous expression for the
thermal conductivity, which, in contrast to RTA, properly includes the role of the
Normal collisions. Even though these collisions do not directly contribute to the
thermal resistance (note that for R → 0 we have κ → ∞), its influence modify
the total thermal conductivity of the system. In fact, Eq. 42 can be interpreted as
a weighted sum of the thermal conductivity in a purely kinetic situation (N → 0)
and in a collective situation (N >> R). In the kinetic limit, the phonon modes
relax independently towards equilibrium through different scattering rates, like
the RTA assumes. In the collective situation, many Normal collisions take place
between each Resistive collision, thus redistributing the momentum which was
lost. Hence, the distribution relax collectively due to the phonon modes with
higher Resistive scattering rates being populated through Normal scattering in-
volving the phonon modes with weak Resistive scattering. This collective evolu-
tion is characterized by a globally defined relaxation time (τC) for the momentum
of all the phonon modes.

An alternative derivation of the refined expression 42 for the thermal conduc-
tivity can be obtained using maximization of entropy arguments in each regime
[55]. The key idea is that the optimization of entropy production is achieved
independently mode by mode in the kinetic limit, whereas it is achieved collec-
tively by all the modes in the collective limit. Moreover, the resulting thermal
conductivity (Eq. 42) values for different materials and temperatures have been
successfully validated with experiments using first principles calculations of the
relaxation times [56].

The Guyer-Krumhansl formalism can be also used to derive generalized trans-
port equations beyond Fourier’s law for transient situations with an inhomo-
geneous gradient of temperature. The derivation is obtained in the collective
regime (Normal dominating collisions) for isotropic materials. From Eq. 38 and
using the properties of the operatorsR,N in the collective limit, a hydrodynamic-
like heat transport equation resembling the Navier-Stokes equation for fluids can
be obtained [6]:

τC
∂q

∂t
+ q + κC∇T = `2

C(∇2q + 2∇∇ · q) (43)

where κC = 1
3
cv2τC and `2

C = 1
5
v2τNτC . Detailed analysis of this transport equa-

tion and its implications is provided in [54]. It is worth remarking that the men-
tioned original derivation of the phonon hydrodynamic model was obtained in
the limit of Normal dominating collisions (i.e. the collective regime) as further
discussed in section 3.1. However, recent derivations from the BTE extended its
applicability beyond this regime as shown in section 3.2, where eq. 43 is gener-
alized. In Chapters 4 to 9 we provide extensive evidence of the applicability of
the previous transport equation along with the appropriate boundary conditions
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and ab initio parameters to model nanoscale experiments in silicon or germa-
nium at room temperature, where Normal collisions do not dominate.

2.3 Approximation Methods in Kinetic Theory

The approaches introduced in the previous section are mainly aimed to calcu-
late the intrinsic (bulk) thermal conductivity appearing in eq. 1. Its applicability
is limited to infinite crystals (as compared to the phonon mean free paths) un-
der homogeneous perturbations like a constant gradient of temperature, where
the diffusive description is valid. However, extensive experimental evidence
has shown the breakdown of Fourier's law with the bulk thermal conductivity
to explain non-equilibrium effects in current electronic devices, which include
nanoscale heat sources and boundaries [21, 22, 57, 58]. Consequently, refined
treatment of the BTE is required to include the effects of higher order pertur-
bations like an inhomogeneous heat flux profile in the macroscopic transport
equations.

The non-equilibrium distribution function f provides a complete picture of
the state of the phonon gas. However, such detailed information is not neces-
sarily required to control and manipulate the thermal response of semiconduc-
tor systems. Instead, one can switch to the description of the moments of the
phonon distribution function, whose tensorial components read

Mn
i1,...,in

=

∫
dk~ωkv

i1
k v

i2
k · · · v

in
k fk, (44)

with n denoting the order of the moment.

Interestingly, the lower order moments can be directly related to physical
quantities like the total energy (n=0) or the total heat flux (n=1). Moreover, the
same projections can be applied to the BTE to obtain an independent equation for
each moment. Therefore, full description of the phonon population evolution can
be obtained in terms of the moments. This description is in principle as complex
as the usual description (in which we have a different equation for each phonon
mode). Note that the drift operator increases the order of any given moment and
the collision operator also mix the different moments, so the different projections
of the BTE are strongly coupled. However, this alternative description has some
important advantages. First, conservation of energy can be directly imposed by
using that the energy is a collision invariant in the zeroth order BTE projection,
as used in section 2.2 to simplify the BTE in eq. 35. Second and most important,
the variational principle and entropic arguments can be used to drastically sim-
plify the system of BTE projections by neglecting the higher order moments [9],
thus providing simple macroscopic transport equations suitable for experiment
modeling.

The celebrated H-theorem states that the entropy production due to collisions
is always positive [59]. Consequently, any free evolving non-equilibrium dis-
tribution irreversibly tends to the maximum entropy state (i.e. the equilibrium
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described by the distribution 3). It may be assumed that this irreversible evo-
lution consists on fast jumps between intermediate states that maximize the en-
tropy of the system at different length or time scales, before the equilibrium is
reached. Accordingly, these intermediate states, known as pseudoequilibrium
states, would describe a stable non-equilibrium situation during a short enough
time interval after an external perturbation, or within a small enough region close
to an external source. For example, consider a nanoscale energy source releasing
heat to a semiconductor substrate. Within a region below the source and smaller
than the average phonon mean free path, the scarcity of collisions preclude that
the system can locally reach equilibrium. Hence, this region is described by a cer-
tain non-equilibrium state accommodating to the imposed heat flux profile, with
locally maximizing the entropy production. Note that, in principle, such pseu-
doequilibrium state strongly depends on the form of the external perturbations,
and it is unknown. However, for non-extreme non-equilibrium situations (i.e.
for small enough Knudsen numbers), it is natural to assume that the pseudoe-
quilbrium is only dependent on the lowest order moments of the distribution.
Microscopically, there are many microstates that can accommodate to the con-
straint imposed by the presence of a heat flux (M1 6= 0), which forces an asym-
metry of the phonon density flux in a given direction. In contrast, the higher
order moments impose more complex constraints and asymmetries to the dis-
tribution, thus drastically reducing the number of available microstates. Hence,
the larger the amount of excited higher order moments, the larger the probabil-
ity that any given collision modifies the global macrostate towards equilibrium.
Therefore, the relaxation of higher order moments imply a faster production of
entropy than the relaxation of the lower order ones. In consequence, collisions
tend to relax much faster the higher order moments, and, hence, the distribution
function rapidly falls into a pseudoequilibrium state where only the low order
moments survive. The existence and identification of such pseudoequilibrium
states is crucial to simplify the microscopic description. As demonstrated in [9],
the variational principle ensures that approximated solutions of the BTE can be
restricted to the subspace determined by the pseudo-equilibrium. The relaxation
of the rest of the distribution can be assumed to be infinitely fast, and hence it can
be excluded from the description. This conceptual framework is fundamental for
the derivation of generalized transport equations (see examples in section 3.2).
The crucial point is to successfully select an appropriate pseudoequilibrium.

There is a variety of methods to properly manipulate the non-equilibrium dis-
tribution function and the BTE to obtain macroscopic transport equations [12].
Such equations, complemented by the balance equations for the conserved quan-
tities, provide a closed description of the system evolution. Standard derivations
were originally meant to model mass transport in fluids, and mainly include
the Chapmann-Eskogg [60] and the Grad methods [61]. The Chapman-Eskog
method is based in expanding the distribution function in terms of the Knudsen
number, with using only the conserved magnitudes as independent variables for
the distribution. For small enough Knudsen, this method leads to the Navier-
Stokes equation for fluids or the Fourier's law for thermal transport. Higher or-
der expansions lead to unstable equations like the Burnett ones. Conversely, the
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Grad's method directly include the moments to the description as new variables
and makes use of the associated BTE projections. To properly close the result-
ing coupled system of equations, this approach is usually limited to the first 13
moments or 26 moments. The resulting equations provide stable solutions, but
its complexity usually preclude including the required boundary conditions for
direct comparison with experiments. Furthermore, the two methods can be com-
bined to derive a regularized form of the Grad equations, which are explicitly
restricted to the manifold generated by a pseudoequilibrium function [12]. The
basic idea is to include the spatial and time derivatives of the moments into the
description to close the system.

The regularized method with assuming appropriate ansatz for the pseudoe-
quilibrium inspire different derivations of generalized heat transport equations
from the BTE. Specifically, in [16], the regularized method is used to derive an
hydrodynamic equation resembling the original Guyer-Krumhansl equation 43
for arbitrary situations beyond the collective regime

τR
∂q

∂t
+ q + κ∇T = `2(∇2q +

1

3
∇∇ · q), (45)

along with the associated pseudoequilibrium distribution function

f = f eq +
3

cv̄2

∂f eq

∂T
qiv̄i +

τ̄R
c

∂qi
∂xi

∂f eq

∂T
− 3τ̄R
cv̄2

v̄iv̄j
∂qi
∂xj

∂f eq

∂T
, (46)

where τ̄R, v̄, and ` represent an averaged phonon relaxation time, velocity, and
mean free path, respectively. Moreover, alternative derivations of the previous
transport equation and the associated pseudoequilibrium distribution have been
recently obtained using a modified version of the regularized method [19].

It is worth to mention that the access to the pseudoequilibrium distribution
function allows to derive consistent boundary conditions using simple kinetic
arguments (see section 3.4), which is the crucial requirement for predictive mod-
eling of heat transport at the nanoscale. Alternatively, other approaches include
the external perturbations explicitly in the perturbed distribution that is inserted
in the BTE [17, 62], thus leading to alternative generalized transport models also
capturing size and frequency effects.

2.4 Extended Irreversible Thermodynamics

Full microscopic description of transport phenomena is precluded due to the
overwhelmingly high number of degrees of freedom involved. Hence, as shown
in the previous sections, microscopic theories are usually manipulated to lead
to simpler mesoscopic or macroscopic descriptions based on few averaged mag-
nitudes. Such descriptions consist of well-known conservation laws (e.g. eq.
2) along with phenomenological or approximated constitutive (transport) equa-
tions (e.g. eq. 1 or eq. 45) to close the system. In this section we show how
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non-equilibrium thermodynamics [5, 63] informs about the validity and robust-
ness of the required constitutive equations.

From a macroscopic point of view, the key independent variables are the con-
served magnitudes in the system (e.g. mass, momentum, or energy). The sim-
plest extension of thermodynamics to the non-equilibrium is the Classical Irre-
versible Thermodynamics (CIT) framework [64], in which the evolution of the
non-conserved variables (like the flux of a conserved one) is assumed to be ex-
tremely fast, so one can treat them as dependent functions of the conserved mag-
nitudes and its gradients. Accordingly, the system can be assumed to locally
behave as in equilibrium. This means that the fundamental thermodynamic re-
lations (like the Gibbs equation for the entropy) can be formulated locally in
terms of the same set of variables that globally describe the equilibrium. The
CIT approach is only reasonable in situations close to the global equilibrium,
where the perturbations are sufficiently slow or homogeneous. However, in
this thesis we consider small and fast excitations comparable to the character-
istic sizes and times of the microscopic evolution (i.e. the phonon mean free
paths and collisions times). In such conditions, the relaxation time of some non-
conserved magnitudes like the energy flux is comparable to the duration of the
perturbation in space or time, so more general frameworks are required. One
of the available theories beyond the notion of local equilibrium is the Extended
Irreversible Thermodynamics (EIT) [5], which is based in treating all the slowly
evolving magnitudes as independent variables that are explicitly included in the
thermodynamic relations. As it will be shown, this formulation allows general-
izing the second principle of the thermodynamics, thus providing insight of the
physically acceptable forms of the constitutive (transport) equations and bound-
ary conditions far from equilibrium. This generalization can be used to inspect
many non-equilibrium processes like fluid dynamics [65] or phase transforma-
tions [66]. For illustration, here we restrict the discussion to thermal transport
phenomena in solids with no external volumetric energy sources [20, 67–69].

Classical Irreversible Thermodynamics for diffusive heat transport

According to the hypothesis of local equilibrium, the entropy density s only
depends on the local internal energy, so the Gibbs equation reads

ds = T−1du, (47)

in which T = (∂s/∂u)−1 is the local temperature and u = cT is the local internal
energy per unit volume. The time derivative of eq. 47 can be combined with the
conservation equation 2 to obtain an entropy balance equation

ds

dt
= −∇ · (T−1q)− T−2q · ∇T. (48)

Eq. 48 can be expressed as
ds

dt
+∇ · Js = σs, (49)

where
Js = T−1q (50)
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is the entropy flux, and
σs = −T−2q · ∇T (51)

is the entropy production. The entropy flux can be either positive or negative
since it represents the internal transport of entropy between contiguous parts of
the system. Conversely, as imposed by the second principle of thermodynam-
ics, the entropy production can not be negative (σs ≥ 0), since it represents the
generation of entropy in a given location. This constrain imposes some physical
limitations for the transport equation required to complement the conservation
equation 2 for a self-contained description of the system. For example, according
to the CIT (based in eq. 47), the Fourier’s law 1 with a defined-positive thermal
conductivity κ satisfies that σs ≥ 0 according to expression 51 (σs = κ( |∇T |

T
)2 ≥ 0).

As it will be shown below, analogous justification of generalized transport equa-
tions would require generalized notions of entropy beyond local equilibrium.

Extended Irreversible Thermodynamics for generalized heat transport

The EIT is based in treating the dissipative fluxes like the energy flux q as in-
dependent variables. The method can be generalized by including higher-order
variables like the flux of the energy flux in the description. It is assumed that the
entropy of the system locally depends both on conserved magnitudes and non-
conserved (but slowly evolving) magnitudes. The resulting entropy is assumed
to be additive and a convex function, and its general formulation can be found
in [5]. Here, for simplicity, we restrict ourselves to the linear version of this the-
ory for isotropic materials, in which the temperature T retains its local character.
Specifically, we use the simplified form proposed in [20], where the entropy is a
function of the internal energy u, the heat flux q, and the traceless symmetric part
of the heat flux gradient∇q0

s = 1
2
(∇q+(∇q)T )− 1

3
(∇·q)I, with the superindex T

denoting the transposed tensor. The resulting generalized Gibbs relation reads

ds = T−1du+
∂s

∂q
· q +

∂s

∂(∇q0
s)

: ∇q0
s, (52)

and we denote ∂s
∂q

= −T−2a(u,q,∇q0
s) and ∂s

∂(∇q0
s)

= −T−2B(u,q,∇q0
s). We as-

sume now the simplest linear relation for the unknown vector a = aq and the
tensor B = b∇q0

s, with a, b being scalars. In order to explore possible forms
of generalized transport equations in good agreement with the second princi-
ple, the physical identification of coefficients a and b is not indispensable. Nev-
ertheless, such parameter identification is possible by envisioning connections
with microscopic theories (like the approximation methods in kinetic theory dis-
cussed in the previous section) as shown in [20]. With these assumptions, the
generalized Gibbs equation 52 reads

ds =
1

T
du− a

T 2
q · dq− b

T 2
∇q0

s : d∇q0
s. (53)

Since the entropy corresponding to local equilibrium (eq. 47) is the maximum
entropy, it is reasonable to assume that a > 0 and b > 0. Accordingly, the in-
tegrated form of equation 53 indicates that the presence of a heat flux reduce
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the total entropy of the system, and this reduction is enhanced if the heat flux is
non-homogeneously distributed. This is consistent with the microscopic notion
of entropy, which is proportional to the number of microstates that can accom-
modate to a given macrostate defined by the averaged variables. The presence
of a heat flux introduce some asymmetry in the phonon distribution, forcing a
higher amount of energy carriers to flow in a specific direction, thus reducing
the amount of available microstates with respect to the equilibrium. Further-
more, some of these microstates are not consistent with an increasing heat flux in
some direction, so that more constraints are imposed on the distribution function
and the entropy is further reduced in the presence of a heat flux gradient.

Tensor ∇q0
s is contained in the flux of the energy flux. The time-derivative of

this higher-order perturbation is assumed to be negligibly small in front of lower
order perturbations like dq

dt
within most of the derivations of generalized heat

transport equations [16, 19]. Hence, in our context, the time derivative of eq. 53
can be reduced to

ds

dt
=

1

T

du

dt
− a

T 2
q · dq

dt
. (54)

Now, in analogy to the CIT procedure shown in the previous subsection, we
combine eq. 54 and the energy conservation eq. 2 to obtain the balance equation
for the entropy:

ds

dt
= −∇ · (T−1q)− T−2q · ∇T − a

T 2
q · dq

dt
. (55)

To use the second principle, identification of the entropy flux and the entropy
production from the previous equation through some method along with iden-
tification of the coefficients a,b is required. Then, all the possible constitutive
equations beyond Fourier’s law (i.e. involving higher-order terms) can be dis-
criminated from the unphysical ones by imposing σs ≥ 0. For example, it is
possible to show that the hydrodynamic heat transport equation 45, which will
be used throughout this thesis to model a variety of experiments, is consistent
with the second principle. As shown in [20], we can identify parameters a,b by
comparing eq. 53 with the kinetic definition of the entropy density for bosons
[20, 70, 71],

s = −κB
∫

[f ln(f)− (1 + f) ln(1 + f)]dk, (56)

where f is the non-equilibrium distribution function 46 bijectively related to the
hydrodynamic equation (see section 2.3). We obtain a = τ

κ
and b = 2τ`2

κ
. More-

over, we can obtain the entropy flux by using its kinetic definition [20, 70, 71]

Js = −κB
∫

vk[f ln(f)− (1 + f) ln(1 + f)]dk. (57)

By identifying the entropy flux (eq. 57) in eq. 55, and with the use of eq. 49
and the hydrodynamic transport equation 45, yields to the entropy production
σs according to the phonon hydrodynamic model:

σs =
q · q
κT 2

+
2`2

κT 2
∇q0

s : ∇q0
s. (58)
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It can be seen that, for positive-defined thermal conductivities κ, the non-negativiness
of the entropy generation is explicitly ensured. Therefore, the hydrodynamic
transport equation is consistent with the second principle in the framework of
the EIT.

Remarkably, similar methods can be used to test the physical validity of the re-
quired boundary conditions to model heat transport experiments at the nanoscale.
In particular, the validity of the boundary conditions used in this thesis (see sec-
tion 3.4) is demonstrated in [20].

2.5 Ballistic effects

Current semiconductor devices have characteristic sizes comparable to the av-
erage phonon MFP at room temperature. Moreover, the computing clock-rates
are approaching the phonon scattering rates. Therefore, boundary and high-
frequency effects play a crucial role in the thermal evolution of current micro
electronic devices [1]. Fortunately, the improvement of experimental techniques
has allowed researchers to probe the thermal response of a wide number of ma-
terials at nanoscale sizes. As a general qualitative trend, the apparent thermal
conductivity is reduced at the nanoscale with respect to the bulk thermal con-
ductivity values if Fourier's law is assumed [72–75]. The main goal of this thesis
is to validate a predictive model based in the phonon hydrodynamic framework
introduced in sections 2.3 and 2.4 to capture such nanoscale effects using a vari-
ety of experiments. For contextualization purposes, in this section we introduce
some alternative approaches to explain the same or similar experiments, with
highlighting the connections and discrepancies with the hydrodynamic trans-
port description. We limit the discussion to the models directly compared with
the hydrodynamic model along this thesis and, hence, some widely used and
remarkable models like the Dual Phase Lag Model [76–79] or the Thermomass
Model [80–82] are not introduced here.

Casimir Regime

The Casimir regime [83] is the limit where the system characteristic size L is
much larger than the average phonon MFP (L > Λ̄ = v̄τ̄ ). In such conditions, the
phonon relaxation time of a given mode k is reduced and may be approximated
by the averaged scattering time with the boundaries L/vk in the kinetic expres-
sion of the thermal conductivity 13. This approach provides a simple explanation
for the reduction of the effective thermal conductivity observed in experiments.
Due to the weak temperature dependence of the phonon velocities, the tempera-
ture dependence of the thermal conductivity is the same as the specific heat one
in this limit, thus we have κ ∝ c ∝ T−3 at low temperatures [9]. This behavior
was originally observed at cryogenic temperatures, where the phonon MFPs are
larger. Nowadays, this limit can be reached in simple structures like nanowires
[84] even at higher temperatures [85].
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Understanding the transition from the Casimir limit to the diffusive behav-
ior, where the bulk thermal conductivity and Fourier’s law apply (no size ef-
fects), has been the subject of intensive research for many years. One simple
approach within the RTA framework is to combine the boundary scattering time
L/vk with the Umklapp scattering time using a Mathiessen rule. However, this
oversimplified picture does not allow to properly model the diffusive to ballistic
transition. Moreover, complex devices usually include more than one charac-
teristic size comparable to the phonon MFPs, so more sophisticated theories are
required.

Ballistic Suppression of Phonons and Mean Free Path spectroscopy

The development of first principles calculation techniques to characterize the
collision operator has been crucial to obtain the intrinsic thermal conductivity
of many materials without fitting parameters [3, 4]. Furthermore, the notion
of the phonons MFPs within the RTA allowed the development of microscopic
frameworks aimed to model the influence of system boundaries on the trans-
port of heat by the different phonon modes. One of this models is the ballistic
phonon suppression and the MFP spectroscopy [86–88]. The simplest version
of this model is based in the use of an effective Fourier's law with removing
the contribution to the thermal conductivity 13 of the phonon modes with MFP
larger than the system characteristic length L [74, 75, 89, 90]. This proposal has
been used in many experimental modelizations, with remarkable results in alloy
semiconductors like SiGe [75, 90]. It has been also used to model the thermal con-
ductivity of Silicon thin films [88] or the phase lag between an harmonic optical
excitation and the oscillating thermal response in Frequency-domain thermore-
flectance (FDTR) experiments in Silicon [89]. Other authors have used the notion
of mean free path spectroscopy to characterize the apparent interfacial thermal
resistance observed during the relaxation of nanoscale heaters on Silicon sub-
strate [57, 91, 92]. Discussion about the applicability of this framework in Silicon
in these particular experiments and comparison with the phonon hydrodynam-
ics predictions is provided in Chapters 4, 6, and 7, respectively.

There is a variety of derivations from the BTE of geometry-dependent sup-
pression functions of ballistic phonons to explain the thermal conductivity re-
duction due to size or frequency effects [93–95]. To illustrate this kind of in-
terpretations, we focus here in the work by A. A. Maznev et. al [95] due to its
simplicity and physical insight. Consider the thermal relaxation of a sinusoidal
temperature distribution (or thermal grating) in 1D with wave-number q. It is
reasonable to assume that phonons with MFPs larger than the grating period
2π/q behave differently than the rest of the phonons. Let us then distinguish the
dynamics of the low-frequency phonons (large MFP), which do not locally fol-
low the temperature gradients, and the high-frequency phonons, which behave
diffusively due to its MFP being much smaller than the characteristic scale of the
perturbation 2π/q. The low-frequency phonons will be described by the non-
equilibrium distribution f obeying the BTE-RTA and the high frequency-ones
will be described by a temperature T obeying Fourier’s law. The interaction
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between the two subsets of phonon modes is the following: On one hand, the
energy of the low-frequency phonons that relax due to scattering is a heat source
for the temperature encompassing the energy of the high-frequency phonons
and, on the other hand, the local equilibrium of the low-frequency phonons is
determined by the local temperature T . This can be expressed using the diffu-
sion equation for T (combination of equations 1 and 2 including a source term)
coupled with the BTE-RTA 10 for f :

c
∂T

∂t
= κr

∂2T

∂x2
+

∫
dk

∫ ω0

0

dω
f − f eq(T )

τω
~ω, (59a)

∂f

∂t
+ vx

∂f

∂x
= −f − f

eq(T )

τω
(59b)

where κr = 1
3

∫ ωmax

ω0
dωcωvωΛω is the kinetic conductivity of the high-frequency

phonon modes, and ω0 is the threshold frequency distinguishing the two sub-
sets. The specific heat c in Eq. 59 is approximately the total specific heat and
the temperature T can be identified with the total thermal energy, since the main
contribution to the specific heat comes from the high-frequency phonon modes.
The exact value of ω0 does not significantly modify the model outputs. Accord-
ing to Eq. 59, the dominant relaxation mechanism for low-frequency phonons
occurs via their absorption or radiation by the thermal reservoir. This is based
in the fact that the three-phonon scattering involving one low-frequency phonon
and two high-frequency phonons from the thermal reservoir is the dominant Re-
sistive mechanism relaxing the low-frequency phonons. These low-frequency
phonons do not locally follow the temperature gradients (i.e. do not contribute
to the thermal conductivity) and uniformly inject energy to the thermal reser-
voir of high-frequency phonons, whose diffusive behavior ultimately relax the
inhomogeneous temperature distribution. Interestingly, by resolving the tran-
sient evolution of the system (eq. 59) considering the grating with wave-vector
q as the initial temperature distribution, one can identify the effective thermal
conductivity displayed by the system

κef(q) =
1

3

∫ ωmax

0

dωA(qΛ)cωvωΛω, (60)

where A(qΛ) is a suppression function for the thermal conductivity contribution
of low-frequency (or ballistic) phonons, which reads

A(qΛ) =
3

q2Λ2

(
1− arctan(qΛ)

qΛ

)
. (61)

This interpretation is inspired by previous frameworks like the ballistic-diffusive
equations [96–98], which originally divided the distribution function into two
parts: One associated to the ballistic phonons originating from the boundaries
and the other to the scattered and excited carriers undergoing diffuse transport.
The suppression function 61 leads to the notion of MFP spectroscopy, i.e. the
possibility of characterizing the MFP spectrum from thermal conductivity mea-
surements in simple experiments like the relaxation of optically induced thermal
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gratings [74, 88, 90]. This has been shown useful to predict the thermal conduc-
tivity in semiconductor alloys like SiGe [90]. However, as it will be discussed in
Chapters 4 and 6, this approach based in Fourier’s law and the notion of cumu-
lative thermal conductivity in terms of the MFPs is in conflict with some exper-
imental measurements in pure materials. Moreover, recent work [99], examine
the reliability of the MFP spectroscopy framework from a theoretical point of
view. It is shown that a given cumulative thermal conductivity does not corre-
spond to a unique relaxation-times function for the phonon modes, in the sense
that more than one distribution of MFPs can result in the same cumulative ther-
mal conductivity.

Lévy Flights

At the macroscale, where Fourier’s law with the bulk thermal conductivity is
valid, the phonon MFP are negligible as compared to the system sizes. Hence,
one can describe the phonon dynamics as a Brownian motion, which ultimately
leads to the macroscopic diffusive behavior of heat. At the nanoscale, this micro-
scopic picture is not adequate due to ballistic effects. The Truncated Lévy Flights
formalism [30, 100] is specially designed to identify and interpret the deviations
with respect to heat diffusion at the nanoscale in semiconductor alloys like SiGe
or InGaAs [101].

Consider the instantaneous injection of a planar pulse in a semiconductor at
the position z = 0 and time t = 0. We assume that the system response is re-
stricted to the cross-plane direction z, and close to the reference equilibrium situ-
ation at temperature T0 (∆T = T − T0 << T0). In such conditions, the linearized
BTE equation in 1D under the RTA can be projected by the phonon energy to
obtain:

∂gk
∂t

+ vzk
∂gk
∂z

= −gk − ck∆T (z, t)

τk
+
ck
c
δ(z)δ(t), (62)

where gk = ~ωk(fk − f
eq
k (T0)) is the deviational energy with respect to equi-

librium. Now we perform Fourier spatial transformation (z ↔ ξ) and Laplace
temporal transformation (t↔ s) of Eq. 62:

Gk(ξ, s) =
ck(∆T (ξ, s) + τk

c
)

1 + sτk + iξΛz
k

(63)

where i is the imaginary unit, and Λz
k = vzkτk is the projected mean free path in

the z direction. As discussed in 2.1, one of the main drawbacks of the RTA is
that energy conservation is not guaranteed. This can be rectified by explicetely
imposing energy conservation on the evolution of Gk:∑

k

1

τk
(Gk − ck∆T ) = 0. (64)

Combining 63, 64, and assuming isotropy in the z direction, we obtain:

P (ξ, s) ≡ c∆(ξ, s) =

∑
kz>0 ckΨk(ξ, s)∑

kz>0
ck
τk

(1−Ψk(ξ, s))
(65)
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where
Ψk(ξ, s) =

1 + sτk
(1 + sτk)2 + (ξΛz

k)2
. (66)

Equation 65 predicts the evolution of the perturbed system in the Fourier-Laplace
space. It can be shown [30] that P (ξ, s) is the characteristic function of a random-
walk process associated to the probability in real space P (z, t)dz of finding the
injected energy pulse in the location [z, z + dz] at time t. One can imagine an
instrument that determines if a given location at a certain time is perturbed with
respect to a reference equilibrium situation or not. The probability of detecting a
deviation is P (z, t)dz, which locally reflects the evolution of the injected energy.
Then, the analysis of the statistical moments of P (z, t) for different materials and
temperatures allow distinguishing different transport regimes.

Due to the symmetry of the studied problem around the z = 0 position, the
first derivative vanish

(dP (z,t)
dz

= 0
)
. The mean-square displacement σ(s) of P (z, t)

characterizes the spatial extend of the injected thermal energy in average. From
65, we have

σ2(s) =
2

s2

∑
k

ckv
z
kΛzk

(1+sτk)2∑
k

ck
1+sτk

. (67)

The mathematical construction σ(s) is physically resembling the thermal pen-
etration depth used to analyze Frequency Domain Thermoreflectance experi-
ments in Chapters 6 and 9. It can be easily shown that for s→ 0 (long time scales
with respect to the relaxation times τk), one obtains in real space σ2(t) → 2tκ/c,
which corresponds to the thermal penetration depth according to Fourier’s law
(diffusive regime). In the opposed limit s → ∞ (small time scales with respect
to τk), one obtains σ2(t) → (v̄zt)2, which corresponds to ballistic propagation
of energy at the average phonon velocity v̄z (no collisions). The transition be-
tween the two limits using ab initio phonon properties is the subject of study in
[30, 100], and informs about the emergence of size effects in different materials
and temperatures. Specifically, an intermediate regime for alloys is identified as
superdiffusive transport or Lévy stable process [102, 103], for which a fractal dif-
fusivity can be defined. Therefore, this model allows distinguishing the thermal
response of alloy materials like SiGe or InGaAs from pure materials like silicon
(see discussion in section 4.4).

Hydrodynamic effects in heat transport: From diffusive to ballistic regimes

The phonon hydrodynamic framework is widely known to apply at low tem-
peratures in specific materials like graphene, where Normal collisions dominate.
In such conditions, the size and frequency effects lead to a non-Fourier regime,
where phenomena beyond the diffusive description like the second sound or the
Poiseuille heat flux profile have been predicted and observed [8, 48, 104, 105]. As
discussed in section 2.2, the Guyer-Krumhansl formalism leads to a generalized
heat transport equation 43 resembling the Navier-Stokes equation for fluids in
this regime.
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The use of generalized transport equations predicting hydrodynamic behav-
ior of heat (eq. 45) have been also proposed to describe size and frequency effects
at arbitrary temperatures in general semiconductors like silicon within extended
non-equilibrium thermodynamics frameworks [67, 68, 106]. More recently, a full
ab initio version of the hydrodynamic heat transport model for general semicon-
ductors have been derived from the linearized BTE [19].

The main idea is that the ballistic effects introduced in the previous subsec-
tions can be captured in a unified way by introducing a single characteristic
length and time scales in the transport equations, with the use of appropriate
boundary conditions [69, 107]. The resulting non-Fourier phenomenology cap-
tures the effective reduction of the thermal conductivity due to size effects as a
nonlocal effect (see section 4.1). Moreover, the model predicts deviations from
Fourier’s law due to memory effects at high excitation frequencies (see section
9.1). In contrast to the usual effective Fourier framework, the hydrodynamic
equation parameters like the thermal conductivity or the non-local length are
intrinsic material properties (i.e. geometry independent). The complete set of
transport equations, boundary conditions, and the microscopic expressions for
the parameters depending on the phonon relaxation times and dispersion rela-
tions can be found in sections 3.3,3.4, and 3.5, respectively.

The new contribution contained in this thesis is an extensive experimental
validation of this generalization of phonon hydrodynamics to situations where
Normal collisions do not dominate (Chapters 4 to 9), along with a microscopic
interpretation and comparison with alternative approaches like a Monte Carlo
solver of the BTE, or non-equilibrium Molecular Dynamics simualtions (Chapter
10).
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3 Phonon Hydrodynamics

At low temperatures or in specific 2D materials, momentum-preserving (Nor-
mal) phonon collisions dominate over the Resistive ones. Hence, the momentum
of the phonon population is mainly destroyed due to collisions with the bound-
aries of the system, in perfect analogy with the momentum of the particles in a
fluid. In such extreme conditions, the phonon distribution function can be char-
acterized by a mode-independent drift velocity (eq. 22), and the emergence of
non-diffusive heat transport phenomena like the Drifting second sound or the
Poiseuille heat flux profile have been predicted and experimentally observed [8].
In consequence, generalized transport equations beyond Fourier’s law like the
Guyer-Krumhansl equation 43 are required at the mesoscopic level of description
[6, 105, 108, 109]. This is the standard and well-established (collective) phonon
hydrodynamic regime.

Recently, it has been shown that phonon hydrodynamic phenomena is not re-
stricted to the collective regime [16, 19]. For high enough excitation frequencies
compared to the average Resistive collision rate or in nanoscale regions with size
comparable to the Resistive mean free path, nonlocal and memory effects in heat
transport are unlocked, also leading to hydrodynamic-like heat transport as de-
scribed by the Guyer-Krumhansl equation. Therefore, phonon hydrodynamics
is not specific of some exotic materials at low temperatures, but it is a useful
framework to understand the diffusive to ballistic transition in arbitrary mate-
rials and temperatures. The main objective of this thesis is to provide extensive
experimental evidence supporting this perspective. In particular, this chapter
contextualizes and details the generalized phonon hydrodynamic model which
is then used to describe a variety of experiments in Chapters 4 to 9.

In section 3.1 we summarize the most important predictions and observations
of hydrodynamic behavior in the collective regime. In section 3.2, we introduce
the generalized phonon hydrodynamic framework, which is derived from the
BTE. Sections 3.3,3.4, and 3.5 contain the required model equations, boundary
conditions and parameter values for different materials and temperatures, re-
spectively. Finally, sections 3.6 and 3.7 are devoted to show the thermoelectric
and thermoelastic couplings to the model equations, respectively.

3.1 Phonon hydrodynamics in the collective regime

The momentum is a conserved magnitude during collisions between particles in
a fluid. Hence, mass transport in a flowing fluid is due to the transport of parti-
cles with a drift velocity, and the total momentum is only modified due to scat-
tering with boundaries. Microscopically, the distribution function deviates from
equilibirum and accommodate to the displaced Maxwell distribution character-
ized by the drift velocity. In general, this microscopic picture is not analogous to
the transport of heat in semiconductors because intrinsic resistive phonon scat-
tering (Umklapp, impurities) destroys crystal momentum. However, at very low
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temperatures or in some specific materials like graphene, momentum-preserving
collisions dominate and the destruction of momentum due to phonon-phonon
Resistive collisions is weak. In analogy to fluids, in such conditions the distribu-
tion of phonons accommodate to the displaced Bose-Einstein distribution 22.

The mesocopic description of heat transport in the collective regime requires
the use of generalized hydrodynamic-like transport equations beyond the diffu-
sive description [7, 8]. As discussed in section 2.2, by splitting the Collision oper-
ator in the Normal and Resistive parts in the BTE, and by assuming weak Resis-
tive scattering, one obtains the Guyer-Krumhansl equation 43 for heat transport
including memory and nonlocal effects. In [108], solutions of the BTE using the
displaced distribution function (Eq. 22) as ansatz lead to similar hydrodynamic
equations. Moreover, in [50] the same ansatz leads to the Maxwell-Cattaneo
transport equation [51] predicting the emergence of wave-like heat transport.
Therefore, demonstrating the abundance of Normal collisions with respect to
Resistive collisions using First Principles calculations is considered an indication
of the phonon hydrodynamic regime. Alternatively, identification of the dis-
placed distribution function for phonons from solutions of the BTE in some spe-
cific non-equilibrium situations has been considered a clear signature of phonon
hydrodynamic behavior [104, 110, 111].

The hydrodynamic transport equations were already introduced in sections
2.2 and 2.3. All the details about these equations along with its parameters and
the required boundary conditions will be introduced in detail in the following
sections. However, an important consideration is in order at this point: The hy-
drodynamic transport equations reduce to Fourier’s law for sufficiently small ex-
citation frequencies or for homogeneous perturbations as compared to the char-
acteristic phonon life times and mean free paths. Therefore, the election of the
material and the temperature range is not enough to unlock hydrodynamic be-
havior even in the collective regime, but the spatial or temporal experimental
time scales should be reduced enough in order to unlock nonlocal or memory ef-
fects, respectively, as predicted by the transport equations. Accordingly, phonon
hydrodynamics can be identified through characteristic non-diffusive behavior
in the appropriate non-equilibrium situations. Paradigmatic examples include
the Poiseuille heat flux profile [110–112] and the peculiar trend of the thermal
conductivity with system size, known as Knudsen minimum [104, 113], or the
Drifting second sound propagation [48, 54, 114–116].

3.2 Generalized hydrodynamic heat transport

The microscopic picture of phonon hydrodynamics associated to the displaced
distribution may lead to believe that hydrodynamic-like heat transport is re-
stricted to the collective regime. However, as we experimentally justify in this
thesis, the same hydrodynamic heat equation 45 also apply to kinetic materi-
als like silicon or germanium at room temperature, that is, even in materials
and temperatures where Normal collisions do not dominate. Therefore, if the
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phonon population is accommodated to the displaced distribution function 22
due to the abundance of Normal collisions, then macroscopic hydrodynamic-like
heat transport is obtained as explained in the previous section, but the inverse
implication is not true.

In fact, early theoretical works envisioned that the emergence of this kind of
behavior is not necessarily restricted to situations where Normal collisions dom-
inate. For example, in the pioneering works by Hardy and others [50, 117] the
wave-like heat propagation in the collective regime is regarded to as Drifting sec-
ond sound to distinguish it from second sound not associated to the displaced
phonon distribution, the so-called Driftless second sound. It was shown that the
key requirement for the emergence of thermal waves is the slow relaxation of the
heat flux as compared to the experimental time scales (i.e. a pseudo-equilibrium
situation characterized by the heat flux relaxing significantly slower than the rest
of the perturbation). Specifically, alternative solutions of the BTE whithout im-
posing the dominance of Normal collisions also lead to non-diffusive transport
due to memory effects. Moreover, deviations from diffusive transport due to
non-local effects have been also proposed to interpret and unify the description
of nanoscale heat transport experiments beyond the collective regime, both in
transient and steady-state situations [16, 69]. According to this vision, phonon
hydrodynamics is expected in certain non-equilibrium conditions in arbitrary
semiconductors, rather than associated to some specific materials in narrow tem-
perature windows. In other words, hydrodynamic transport is unlocked by the
external perturbation and the boundary conditions, rather than the material in-
trinsic properties.

The generalized use of hydrodynamic-like transport equations to model small
size or high frequency effects in semiconductors is extensively motivated in pre-
vious work [7, 67, 68, 106, 118]. This approach has a twofold theoretical motiva-
tion: On one hand, the hydrodynamic transport equation 45 is consistent with
the second principle of thermodynamics within the EIT framework [20] as dis-
cussed in section 2.4. On the other hand, the postulation of a pseudo-equilibrium
distribution function depending on few macroscopic variables like the heat flux
and its first derivatives leads to solutions of the BTE consistent with macroscopic
hydrodynamic transport equations [19] as discussed in section 2.3. In fact, the
crucial advantage of the generalized hydrodynamic model in front of purely mi-
croscopic models is the consistency between the non-equilibrium distribution
satisfying the BTE, and the mesoscopic transport equations resulting from ze-
roth and first order projections of the BTE. Importantly, the non-equilibrium dis-
tribution function allows obtaining the appropriated boundary conditions for
the transport equations by using simple kinetic arguments like detailed energy
balance in the boundary [119].

Justifying the applicability of the Guyer-Krumhansl equation 45 beyond the
collective regime from microscopic grounds, and obtaining microscopic (ab ini-
tio) expressions for its parameters in terms of the phonon properties has been
the subject of intensive research during the last years. Here we summarize three
different proposals leading to the generalized hydrodynamic model.
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Kinetic Collective Model

The Kinetic Collective Model (KCM) is the original and simplest phenomeno-
logical model for the generalized hydrodynamic transport parameters [55, 56,
120–122]. It is inspired by the original Guyer-Krumhansl work [6]. As discussed
in the last subsection of 2.2, by distinguishing Normal and Resistive processes
in the Collision operator, the bulk thermal conductivity can be written as an in-
terpolation between the collective and the kinetic limit (expression 42) with the
interpolation factor Σ = 1

1+τN/τK
. The KCM is based in assuming that the rest of

equation parameters in the transport eq. 45 can be obtained for situations beyond
the collective regime by interpolation in a similar way:

`2 = `2
K(1− Σ) + `2

CΣ, (68)

τ = τK(1− Σ) + τCΣ, (69)

where `C , τC , τK were already introduced in section 2.2, and the non-local length
in the pure kinetic regime `K is postulated as an averaged phonon mean free
path [120].

Remarkably, the ab initio calculation of the non-local length according to ex-
pression 68 agrees quite well with the more refined expressions shown below
(which are derived from the BTE) but fails to estimate the heat flux relaxation
time τ . In section 3.5, we compare the parameter values for different materials
and temperatures according to the different models. Since this simple model
is adequate to calculate the most important parameters (i.e. the thermal con-
ductivity and the non-local length) in this thesis the generalized hydrodynamic
model is referred to as KCM for historical reasons. However, more reliable ex-
pressions for the equation parameters for arbitrary materials and temperatures
can be found below. Moreover, note that this proposal derives neither the gen-
eralized transport equation nor the non-equilibrium distribution function from
the BTE, so the derivations in the following subsections are necessary to obtain
a consistent framework for experimental modeling including boundary condi-
tions.

Derivation from the BTE assuming a mode-independent relaxation time,
identical phonon branches and the Debye approximation.

An explicit derivation of the hydrodynamic heat transport equation 45 was
recently proposed in [16] by a perturbation expansion of the BTE around the
nonequilibrium distribution obtained by the maximum-entropy principle, with
slight modification of the dimensionless equation coefficients on its right-hand
side with respect to the original derivation [6]. The derivation is based in stan-
dard approximation methods in kinetic theory (section 2.3). Specifically, the reg-
ularized moment method combining some advantages of the Grad’s and the
Chapman-Eskog approaches is used. Importantly, the mode-independent Re-
laxation Time Approximation is assumed to model the Collision operator, so the
conservation of momentum in Normal collisions is neglected. This indicates that
hydrodynamic heat transport phenomena as described by eq. 45 is not neces-
sarily a consequence of Normal dominant collisions, and hence it can be used
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beyond the collective regime. Moreover, a mode-independent velocity is also
assumed for all the phonon distribution.

Due to the use of mode-independent properties, this derivation does not pro-
vide microscopic expressions for the equation parameters that can be calculated
from first principles. The authors of [16] propose to use a non-local length equiv-
alent to the median of the phonon MFP spectrum. They show that the corre-
sponding value for Silicon at room temperature (∼190 nm) allows to model the
effective thermal conductivity of thin films or the relaxation of optically-induced
thermal gratings. In fact, this value is very close to the ab initio calculated non-
local length value using the microsopic expressions provided by the more gen-
eral derivation introduced below. Moreover, the authors also show validation
of the generalized hydrodynamic model using energy-based Monte Carlo simu-
lations of the BTE with a mode-independent relaxation time [32]. An extended
validation considering the same microscopic framework is presented in section
10.1. Finally, the form of the non-equilibrium (pseudoequilibrium) distribution
function consistent with the hydrodynamic transport equation is obtained (eq.
46), thus allowing the derivation of consistent boundary conditions.

Derivation from the BTE assuming a general Collision operator and general
phonon dispersion relations

The most general derivation to date of the hydrodynamic equation from the
linearized BTE is shown in [19]. This work is the core of the PhD thesis by Lluc
Sendra, which will be published in the forthcoming years.

In this case, no assumptions are made to simplify the Collision operator and
the full phonon dispersion relation with multiple branches is assumed. The
model is based in expanding the phonon distribution on appropriate macro-
scopic variables, so that the unknowns are now the mode-dependent prefactors
of the macroscopic quantities. This view generalizes the approach of [14], where
the perturbation is set proportional to a constant temperature gradient and the
mode-dependent prefactor is found through some method. The crucial differ-
ence is the choice of the quantities characterizing the macroscopic nonequilib-
rium state or pseudoequilibrium (see section 2.3). It is proposed that for finite
Knudsen numbers the nonequilibrium perturbation depends on the heat flux q
and its first derivatives in time and space, considered as independent variables:

fk = f
eq
k + βk · q + γk ·

∂q

∂t
+Gk : ∇q (70)

whereβk, γk, Gk are unknown mode-dependent weight functions to be deter-
mined. By using the microscopic definitions of the heat flux and the energy,
the transport equations can be obtained by projecting the BTE around the dis-
tribution 70. The equation parameters are functions of the distribution weights,
which can be calculated for a general Collision operator with the use of the mode-
dependent BTE [19]. Therefore, this method provides the distribution function
required to describe complex non-equilibrium situations (i.e. the weights in 70).
This is necessary to derive the boundary conditions consistent with the hydro-
dynamic heat transport equations. Moreover, the expressions for the equation
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parameters in the hydrodynamic transport equations used to model experiments
are obtained for general Collision operators C, thus avoiding the use of any fit-
ting parameter. Iterative methods [14, 28] analogous to the ones introduced in
section 2.1 to calculate the thermal conductivity can be used to obain the weights
and the equation coefficients without simplifying C (see full expressions in [19]).
For simplicity, here we show these expressions assuming a simplified C oper-
ator under the RTA approximation, which is accurate for most of the (kinetic)
materials considered in this work, in which Normal collisions are not dominant.
Defining the phonon phase velocity vpk = ωk/|k| and 〈xk〉 =

∫
~ωk∂Tf

eq
k xkdk/c as

the average of quantity xk, the thermal conductivity expression reads

κ =
1

3
c〈v2

kτk〉, (71)

so the thermal conductivity within the RTA (expression 13) is recovered. The
non-local length expression reads

`2 =
1

5

〈τ 2
kv

3
k/v

p
k〉

〈vk/vpk〉
, (72)

and the heat flux relaxation time expression reads

τ =
〈v2

kτ
2
k〉

〈v2
kτk〉

. (73)

Finally, coefficient 1/3 in 45, or 2 in 43, become also a material and tempera-
ture dependent property denoted as α. According to the present derivation, the
expression for this coefficient is

α = 2− 5

3

〈v2
kτk〉〈τkvk/v

p
k〉

〈τ 2
kv

3
k/v

p
k〉

− κ(τ − 〈τk〉)
c`2

. (74)

In section 3.5, we show the ab initio calculated values according to the pre-
vious expressions for different materials and temperatures, which are used to
experimentally validate the generalized hydrodynamic model in Chapter 4 to 9.

3.3 Transport equations

According to the most general derivation introduced in the previous section and
detailed in [19], the generalized hydrodynamic model is based in the energy con-
servation and the heat flux transport equations for the heat flux q and the tem-
perature T :

c
dT

dt
= −∇ · q +Q, (75)

τ
∂q

∂t
+ q + κ∇T = `2(∇2q + α∇∇ · q), (76)
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where c is the specific heat per unit volume, τ is the heat flux relaxation time 73,
κ is the thermal conductivity 71, ` is the non-local length 72, and α is a dimen-
sionless coefficient 74. All these parameters are intrinsic material properties only
dependent on temperature. Its microscopic expressions in terms of the phonon
lifetimes and velocities are derived from the BTE and provided in the previous
section. The exact values for a variety of materials of interest at different temper-
atures is provided in section 3.5. Note that, in contrast to the original derivation
of the hydrodynamic equation where α=2 (see expression 43), α is a material-
dependent property. Finally, Q denote an external power density source. The
Finite Element implementation of the equation is shown in section 11.1.

Equation 76 adds a non-local term (proportional to `2) and a memory term
(proportional to τ ) to Fourier's law. For large enough system sizes and slow
enough perturbations, the diffusive description is recovered. The interplay be-
tween the two kinds of non-Fourier effects is the subject of detailed study in this
thesis. Non-local effects explain the reduction of the thermal conductivity in mi-
cro and nanoscopic systems (see section 4.1). Memory effects explain deviations
from the diffusive behavior in the form of thermal waves (see section 9.1. How-
ever, the latter effects only emerge in the absence of the former ones. Therefore,
non-locality dominates the thermal response in most of the experiments (Chap-
ters 4, 5, 6, 7, and 8), and only one experiment, in which non-local effects vanish,
is explained through memory effects (Chapter 9).

It is important to remark a couple of crucial differences between mesoscopic
hydrodynamic phenomena in heat transport, and the standard description of
fluids based in the Navier-Stokes equations. On one hand, intrinsic resistive
phonon collisions are never completely avoided in a realistic material. Hence,
viscous or non-local effects due to system boundaries or external perturbations
are confined in regions comparable to the average resistive mean free path char-
acterized by `. Conversely, in fluids the momentum is strictly conserved in par-
ticle collisions so viscous effects have infinite range (note that the coefficient of
viscosity in fluids is not a length). On the other hand, the advective term present
in the Navier-Stokes equations is substituted by the diffusive term q in 76, so
mesoscopic heat transport is always analogous to laminar (non-turbulent) fluid
flow. As it we will shown throughout the thesis, this lead to important differ-
ences between viscous effects in heat transport and in fluids.

3.4 Boundary Conditions

As explained above, the parameters appearing in the transport equations are in-
trinsic material properties only dependent on temperature. Size and frequency
effects are captured through appropriate boundary conditions that can be imple-
mented in realistic geometries using Finite Elements. In this section we show
how the boundary conditions can be derived from microscopic arguments by re-
quiring that, at the boundary, the net balance of a macroscopic quantity due to
incoming and outgoing phonons must be equal to the macroscopic quantity pre-
scribed by the macroscopic equation. Therefore, the transport equation is consis-
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tently related to the boundary conditions through the non-equilibrium distribu-
tion function. Here we discuss the required conditions for modeling in Chapters
4 to 10. In section 11.1, we show the corresponding Finite Element implementa-
tion.

Free Surfaces

At the nanoscale, heat conduction is the dominant energy transport mecha-
nism in semiconductors. Radiation and convection are neglectable and, hence,
the insulation condition is assumed in all the free surfaces:

q · n = 0, (77)

where n is the boundary normal vector pointing towards the semiconductor do-
main.

The transport equation 76 is a second order differential equation, meaning
that the heat flux in the boundary is prescribed by two independent bound-
ary conditions. Hence, a condition for the heat flux tangential to the boundary
qt (= q − (q · n)n) is also required, which allows modeling of the heat flux re-
duction close to the surface due to momentum destruction in phonon-boundary
scattering. In analogy with the flow of rarefied gases with large Knudsen num-
ber, a Maxwell’s slip boundary condition [123–125] with characteristic length of
order `, may be used for the heat flux tangential to the boundary qt [16, 69, 126].
This boundary condition can be obtained using the non-equilibrium distribution
function 46 and kinetic theory [16, 119, 127], by imposing the balance equation
for the flux of the heat flux in the boundary. At the microscopic level of descrip-
tion, this condition reads∫

Ω

fkφvkdk =

∫
Ω−
f−k φvkdk +

∫
Ω+

f+
k φvkdk, (78)

where k is the phonon wave vector, Ω denotes the whole wave vector space, and
Ω− and Ω+ are the hemispherical wave vector space satisfying k · n < 0 (inci-
dent phonons) and k · n > 0 (out-going phonons), respectively. The balanced
magnitude in this case is the heat flux φ = ~ωkvk. The microscopic balance
condition 78 can be used for other macroscopic field variables to obtain different
(but physically consistent) boundary conditions, as shown in the next subsection.
The crucial point is to use appropriate distribution functions for the incident and
out-going phonons in good consistency with the macroscopic transport equation
(eq. 76 in our case). The distribution function of the incident phonons towards
the interface from the semiconductor f− follows the non-equilibrium distribu-
tion function 46, referred to as f . Moreover, the distribution function of reflected
phonons f+ is composed by the specularly reflected ones following f , and the
diffusely reflected phonons, which are assumed to thermalize at the boundary
(i.e. are described by the local equilibrium distribution 3). Accordingly,

f−k = fk, (79a)

f+
k = pf−k′ + (1− p)f eq

k , (79b)
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where k′ = k − 2(k · n)n (specular phonons bounce), and p is the fraction of
specularly reflected phonons

p =

∑
k cke

−π(
4πη cos(θ)

λk
)2∑

k ck
, (80)

with η being the average height of the boundary roughness defects, ck and λk
the specific heat and the wave length of the phonon mode with wave vector
k, respectively, and θ the angle of incidence obtained from the normal vector
to the surface n and the wave vector using cos(θ) = n·k

|k| . The previous expres-
sion is based in basic arguments from geometrical optics [9]. Furthermore, it is
assumed that the phonons that do not collide specularly are absorbed and remit-
ted by the boundary, which acts like a black body for p = 0. This assumption
is extensively used in the literature [2, 119] and provides good agreement both
with experiments (see section 4.2) and numerical simulations of the phonon dy-
namics (see section 10.1). Nevertheless, alternatives based in non-thermalizing
diffusive scattering [128] or enhanced diffusive scattering due to the naturally
grown amorphous layers [129] have also been proposed.

Introducing the distributions 79a and 79b in 78, and with the use of the heat
flux transport equation 76, leads to the slip boundary condition [16]:

qt = C`∇qt · n, (81)

where n points towards the semiconductor, and C is a dimensionless constant
that can be defined in terms of the specularity p (eq. 80):

C =
1 + p

1− p
. (82)

Accordingly, purely diffusive phonon scattering in boundaries corresponds to
C = 1 and purely specular phonon scattering corresponds to C → ∞. No-
tice that, at high temperatures, diffusive scattering strongly dominates even in
smooth surfaces like the ones used in state-of-the-art experiments. As a refer-
ence, in Silicon above 100K, values of C larger than 2 require η < 0.2 nm.

Note that the present framework avoids the use of phenomenological models
for the boundary conditions like generalized Casimir [53] or Fuch-Sondheimer
[129, 130] conditions, since full consistency between the transport equation, the
non equilibrium distribution function and the boundary conditions is achieved.
Taking into account the strong influence of the boundary condition on relevant
model outputs like the relation between the thermal conductivity and the size
or the temperature [41], this robustness is crucial for predictive modeling of
nanoscale thermal transport. Further analysis of the slip boundary condition
81 and its implications can be found in sections 4.1 and 4.2.

It is also worth mentioning that the slip boundary condition 81 facilitates the
interpretation of size effects in heat transport due to the possibility of establishing
analogies with the theory of rarefied gases and fluid mechanics at the nanoscale
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[131]. In particular, possible generalizations of the slip boundary condition in-
cluding higher order terms or including back-scattering effects could be used
to phenomenologically interpret experimental data or pursue generalizations of
the present model. For example, it is reasonable to assume that the extra term
appearing in the generalized Maxwell's slip condition for non-flat surfaces [123]

qt = C` (∇qt · n +∇qn · t), (83)

also plays a role in phonon transport. Hence, we show the Finite Element im-
plementation of this refined boundary condition in section 11.1. However, in
the experiments including curved surfaces that are considered in this thesis, this
refinement is shown to be negligible (see section 4.2).

Metal-Semiconductor Interfaces.

Electronic devices usually include metallic nanocomponents which release
heat to a semiconductor substrate. Therefore, this situation has been extensively
reproduced in experiments as shown in Chapters 5, 6 and 7. The heat carriers in
metals are electrons, with extremely small mean free paths, so that non-local or
memory effects are negligible in front of the non-Fourier effects expected in com-
monly used semiconductors like Silicon. Therefore, diffusive heat transport (and
the corresponding simplified non-equilibrium distribution function) is assumed
in the metal region.

We proceed now to show the boundary conditions connecting a semiconduc-
tor domain (hydrodynamic-like transport) with a metal domain (Fourier-like
transport). Consider the interface normal vector n pointing towards the semi-
conductor. First, continuity of the normal heat flux to the interface should be
satisfied:

q · n = qΓ · n, (84)

where sub-index Γ denotes the metallic domains.

Microscopically, the balance equation for the energy flux at the interface (i.e.
φ = ~ωk in eq. 78) along the normal direction implies that

qx =

∫
Ω

fk~ωkv
x
kdk =

∫
Ω−
f−k ~wkv

x
kdk +

∫
Ω+

f+
k ~wkv

x
kdk (85)

where k is the phonon wave vector, Ω denotes the whole wave vector space, and
Ω− and Ω+ are the hemispherical wave vector space satisfying k · n < 0 and
k · n > 0 respectively. The normal direction is denoted by the index x.

Similar to the previous subsection, the distribution function of the incident
phonons towards the interface from the semiconductor f− follow the non equi-
librium distribution function 46, referred to as f . Moreover, the distribution func-
tion of reflected phonons f+ is composed by the specularly reflected ones fol-
lowing f and the diffusely reflected phonons, which are in equilibrium at some
contact temperature TC . Accordingly,

f−k = fk, (86a)

f+
k (vxk) = pf−(−vxk) + (1− p)f eq

k (TC), (86b)

43



where p is the fraction of specularly reflected phonons (see expression 80) and TC
is an instrumental parameter to define the equilibrium situation of the diffusely
reflected phonons in the interface going towards the semiconductor.

In the metal region, we assume Fourier heat transport. The corresponding
non-equilibrium distribution function fΓ reads

fΓ = f eq +
3

cΓ(vΓ · vΓ)

∂f eq

∂T
vΓ · q. (87)

Again, we impose energy balance at the interface:

qx =

∫
Ω

fkΓ~ωkv
xΓ
k dk =

∫
Ω+

f−kΓ~ωkv
xΓ
k dk +

∫
Ω−
f+
kΓ~ωkv

xΓ
k dk (88)

where f−Γ and f+
Γ are the incident and outgoing phonon distribution functions

satisfying conditions (86a) and (86b), respectively. Notice that TC is also used
to define the equilibrium distribution of the diffusely reflected phonons going
towards the metal.

Current fabrication techniques generate significant roughness defects in metal-
semiconductor interfaces. Hence, according to 80, for experimental modeling we
assume p = 0 (purely diffusive reflections). Now, by using the non-equilibrium
distribution functions (46) and (87) in the balance equations (85, 88) with identi-
fying TC we obtain the boundary condition

T − TΓ = (γ−1 + γ−1
Γ )(−q · n + ε · q) + γ−1(β∇ · q−∇q : χ) (89)

where the ab initio calculated coefficients read for i = x, y, z:

γ =
v̄c

4
, (90a)

γΓ =
v̄ΓcΓ

4
, (90b)

εi =

∫
Ω−

~ωkv
x
k

3

ck(vk · vk)

∂f eq

∂T
vikdk =

1

2
δix, (90c)

β =

∫
Ω−

~ωkv
x
k

τk
ck

∂f
eq
k

∂T
dk, (90d)

χij =

∫
Ω−

~ωkv
x
k

3τk
ck(vk · vk)

∂f
eq
k

∂T
vikv

j
kdk. (90e)

By introducing these coefficients in (89) we obtain the temperature-jump bound-
ary condition

T − TΓ = −1

2
(γ−1 + γ−1

Γ )q · n + γ−1(β∇ · q−∇q : χ). (91)

The parameter values (90) for different materials and temperatures can be
found in section 3.5. Let us define the coefficient Rmin ≡ (γ−1 + γ−1

Γ )/2 denot-
ing the thermal boundary resistance for perfect contact (i.e. total surface contact

44



in the interface) assuming diffusive reflections. Therefore, it can be considered as
a lower bound for the thermal resistance. This estimation of the interfacial resis-
tance is equivalent to the Diffusive Mismatch Model (DMM) [132]. To obtain an
adequate boundary condition for a realistic non-perfect contact area, we adjust
the coefficient multiplying the normal heat flux, which we denote by R:

T − TΓ = −Rq · n + γ−1(β∇ · q−∇q : χ). (92)

The R value is typically 2 or 3 times larger than the lower bound Rmin at each
temperature (see section 3.5). The actual contact area at the interface is usually
unknown. Hence, it is not possible to quantitatively validate such correction to
account for a non-perfect contact area. However, this correction is an intrinsic
property for each specific sample fabrication conditions i.e. it is temperature-,
size-, and frequency-independent. Therefore, as it will be shown in this thesis,
it is always possible to characterize R/Rmin at low frequencies or high sizes in
experiments, where non-Fourier effects are negligible. The resulting values used
for experimental modeling are in good agreement with modern reviews charac-
terizing metal-semiconductor interface properties [133] (see section 3.5).

Equation 92 is the usual Kapitza interface condition along with two non-local
terms. As discussed in Chapter 4, the influence of these extra terms is only rele-
vant at low temperatures or for very small interface sizes. Finally, we note that
a second boundary condition for the heat flux in the semiconductor domain is
required (non-Fourier heat conduction). Hence, the Slip boundary condition 81
is also imposed to determine the tangential component of the heat flux in the
semiconductor side of the interface.

At this point it is important to note that, to simplify the calculations, the
boundary conditions 81 and 91 are derived using the non-equilibrium distribu-
tion function 46 obtained in [16], which is not the most general derivation of the
hydrodynamic heat transport model (see discussion in 3.2). Refinement of the
microscopic expressions for the parameters 90 would be obtained by using the
solution of the BTE 70 for general collision operators and dispersion relations in-
stead of 46. However, such refinement is expected to be negligible here due to the
dominance of the Kapitza term in condition 91 in all the considered experiments.

For illustration, in Figure 1 we show the boundary conditions and transport
equations required to model a metallic transducer built on top a semiconductor
substrate. These are the exact situation required to model FDTR experiments in
Chapter 6. The same interface conditions are used in Chapters 5 and 7.

Auxiliary conditions

In order to compare with experiments or numerical simulations (Chapter 10)
some auxiliary boundary conditions are required, like periodic boundary con-
ditions for the heat flux between two boundaries with imposing a temperature
difference, or isotherm boundary conditions. The corresponding numerical im-
plementation can also be found in section 11.1.
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Figure 1: Reproduced from [134]. Schematic illustration of transport equations and inter-
face boundary conditions for a semiconductor substrate with a metallic transducer on
top. The interface normal vector n points toward the semiconductor. The substrate heat
flux tangential component is denoted by qt , and subindex Γ refers to the transducer
domain in the boundary conditions.

3.5 Parameters

In this section we show the parameter values for the transport equations and
boundary conditions for different temperatures and materials (Ge, Si, Bi2Te3) ac-
cording to the microscopic expressions shown in 3.2 and 3.4, respectively. We
also show the required parameters to model the metallic transducers in experi-
ments (Au/Cr, Au, Ni).

Transport Equations

On one hand, the thermal conductivity and the specific heat used to model
experiments are the bulk values, which are shown in Figure 2 for Ge and Si at
different temperatures. Note that in Chapter 5 we consider highly doped Silicon
samples, so the used thermal conductivity in this specific case is slightly smaller
as characterized from experiments. On the other hand, in Figure 3 we show
the required non-Fourier parameters for the same materials as obtained from ab
initio calculations.

The phenomenological expression 68 and the more refined expression 72 pro-
vide very similar values for the non-local length [19]. In Figure 3 we also show
the non-local length values used for experimental modeling in Si and Ge in Chap-
ters 4 to 7. It can be seen that the ab initio calculations are consistent with the pa-
rameter values used, thus validating the generalized hydrodynamic model pre-
sented in section 3.2. In the same experiments, memory effects are negligible and,
hence, the heat flux relaxation time values can not be simultaneously validated.
Finally, to model experiments in the Bi2Te3 nanostructures at room temperature
(Chapter 8), the non-local length and the thermal conductivity values used are
55 nm and 2.2 W/(m·K), respectively.
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Figure 2: Specific heat c and thermal conductivity κ for Germanium (red) and Silicon
(blue) at different temperatures.

The phenomenological expression 69 can not be used to estimate the heat flux
relaxation time, so the refined expression 73 is required. Remarkably, the heat
flux relaxation time τ is one order of magnitude larger than the usual relaxation
time 〈τk〉 obtained using the specific heat as the averaging weight over phonon
modes. Therefore, according to the generalized hydrodynamic model, memory
effects emerge at smaller excitation frequencies than expected in previous work
[50]. This is experimentally demonstrated for germanium in Chapter 9, where
the heat flux relaxation time values fitted to experimental data are compared with
the ab initio calculations at different temperatures (see Figure 47). This compari-
son is not displayed here because the model used in 9 is a reduced version of the
generalized hydrodynamic model with only including memory effects.

Figure 3: Non-local length ` and heat flux relaxation time τ for Germanium (red) and
Silicon (blue) at different temperatures. The non-local length values used to model ex-
periments are also shown.

It is also worth to mention the role of doping in the non-Fourier parameter
values. All the calculations were done assuming natural doping abundances,
as required for experiments, except in Chapter 5. In this specific experiment,
the samples are doped, and the thermal conductivity decreases as characterized
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Table 1: Thermal properties of metallic transducers used for experimental modeling.

.
Gold (5) Nickel (7) Gold/Chromium (6)

Specific Heat c [Jm−3K−1] - 4·106 2.5·106

Conductivity κ [Wm−1K−1] 310 91 110

from experiments. Conversely, the non-local length is not strongly modified due
to doping since the phonon modes that are more influenced by impurities have
small contribution to the non-local length (expression 72). Hence, the non-local
length value for natural samples displayed in Fig. 3 is also used for the doped
samples in Chapter 5.

As discussed in section 3.2, the original Guyer-Krumhansl derivation [6] pre-
dicted α = 2, and more recent derivations beyond the collective regime with
some simplifying assumptions like a mode-independent relaxation time [16] pre-
dicted α = 1/3. In contrast, the most recent general derivation [19] treats α as an
intrinsic material property, which at room temperature is close to 1. For exper-
imental modeling, a value of α = 1/3 is assumed. The only exception is the
study of the thermal grating relaxation in section 4.3, where this parameter has
a dominant effect and the refined value α=1 is used as obtained from expression
74. In other experiments, refinement of this parameter from 1/3 to 1 would not
cause significant effects. It does not appear in the description of stationary exper-
iments in section 4.2 and Chapters 5, and 8 (where∇∇ · q = 0), and its influence
in transient experiments is usually weak. In particular, the heater relaxation ex-
periments in Chapter 7 are dominated by shear viscosity and the role of volume
viscosity and parameter α is very minor. In the FDTR experiment (Chapter 6),
volume viscosity plays a significant role, and the use of α = 1 would slightly en-
hance the differences between Fourier and the hydrodynamic model, and would
imply a slight modification of the experimentally characterized TBR. Neverthe-
less, the phenomenology and interpretation provided in Chapter 6 is not altered
by changing this parameter value from 1/3 to 1.

Moreover, in some experiments the introduction of metallic transducers is re-
quired to electrically or optically perturb the system. Heat conduction is domi-
nated by electrons in the transducers (diffusive transport). The material proper-
ties used in experiments for these transducers is shown in Table 1.

Boundary conditions

The coefficients of the generalized temperature jump boundary condition 92
can also be calculated ab initio. In Table 2 we show the required values for Sil-
icon at different temperatures studied in experiments. Tensor χ is diagonal and
χyy = χzz, with x denoting the interfacial normal direction pointing toward the
substrate. We also indicate the upper bound of the Si contribution to the inter-
facial conductance γ assuming a perfect contact with diffusive reflections. As
discussed in 3.4 and in good agreement with the DMM [132], considering the
corresponding upper bound of the transducer contribution (γΓ in 91), we esti-
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Table 2: Silicon parameter values of the temperature jump boundary condition 92 ac-
cording to expressions 90 used for experimental modelization in Chapter 4.

.

415 K 300 K 150 K 80 K
γ [MW m−2K−1] 1145 1068 732 359
β [nm] -14 -21 -87 -745
χxx [nm] -21 -31 -129 -1066
χyy [nm] -11 -16 -66 -586

mate a lower bound for the thermal boundary resistance Rmin = (γ−1 + γ−1
Γ )/2.

In this thesis, we consider three experiments including metal-silicon interfaces
and we characterize the intrinsic TBR values R in each case. The actual R values
are larger than Rmin due to the interface defects:

• Section 5 (Au-ox-Si): The TBR is extremely large (R=20·10−9Km2/W) due
to the presence of a thick oxide layer of 20 nm, which precludes comparison
with Rmin.

• Section 7 (Ni-Si): R=2.25·10−9Km2/W and R/Rmin=3.11.

• Section 6 (Cr-Si): R=1.77·10−9, 1.87·10−9, 2.6·10−9, 5.15·10−9 [Km2/W], at
T=415, 300, 150, 80 [K], respectively. The correcting factor R/Rmin=2.71 is
temperature-independent since it only captures geometrical defects.

The reported values are in good agreement with recent reviews [133] character-
izing a variety of metal-semiconductor interfaces fabricated using similar tech-
niques than the ones considered here.

The slip coefficient used in all the experiments is C = 1 corresponding to fully
diffusive reflections. This corresponds to the expected behavior at not extremely
low temperatures taking into account the typical defects in surfaces and inter-
faces obtained by current fabrication methods (see expression 80). In section 4.2,
we also show the influence of modifying the C coefficient on the thermal con-
ductivity of thin films.

3.6 Thermoelastic coupling

One of the key advantages of the present model is its easy coupling with other
physical phenomena. In this section we detail the thermoelastic coupling, which
is required to compare with experiments in Chapter 7.

The elastic evolution is governed by Newton’s mechanics:

ρ
∂2u

∂t2
= ∇ · σ, (93)

where σ is the stress tensor, u the displacement vector and ρ the mass density. To
obtain the expression for σ including thermal expansion we follow [135], and we
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consider a second order expansion of the Helmhotz free energy density with a
linear term on temperature, which reads

F (T ) = F0(T )−KαM(T−T0)∇·u+µ

(
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
− 1

3
δik∇·u

)2

+
1

2
K(∇·u)2,

(94)
being αM the linear coefficient of thermal expansion, and

K = Y0/(3− 6υ) = λ+
2

3
µ (95)

the modulus of compression, which can be expressed in terms of the Lamé coef-
ficients λ, µ or the Poisson ratio υ and the Young’s modulus Y0. The sum over all
the i, k components is implicit in the third term of the right-hand-side in 94.

Now, assuming local equilibrium, we can use the thermodynamic relation be-
tween the free energy density and the Stress Tensor [135] to obtain

σik = −KαM(T − T0)δik +Kδik∇ · u + µ

(
∂ui
∂xk

+
∂uk
∂xi
− 2

3
δik∇ · u

)
. (96)

The previous Stress Tensor can be used to model the elastic evolution of Niquel
nanoheaters in Chapter 7. However, we use an anisotropic version of the Stress
Tensor for the Silicon substrate to account for the structural defects produced
during the fabrication of the nanoheaters [136]. All details and the mechanical
parameter values can be found in Chapter 7.

In order to obtain the mechanical coupling in the thermal equations we con-
sider the amount of heat absorbed per unit time in unit volume

−∇ · q = T
∂s

∂t
(97)

where s is the entropy per unit volume. Now we use another thermodynamic
relation

s(T ) = −∂F (T )

∂T
= s0(T ) +KαM∇ · u. (98)

We note that
∂s0

∂t
=
∂s0

∂T

∂T

∂t
, (99)

where ∂s0/∂T is equivalent to c/T provided ∇ · u ' 0 (i.e. at constant volume).
Using 98 and 99 in 97 we obtain the energy conservation equation 75 including
the thermal coupling

c
dT

dt
= −∇ · q− αMKT

∂

∂t
∇ · u. (100)

In the original derivation of the phonon hydrodynamic model [6] an anal-
ogous coupling between the elastic and thermal fields is obtained, in which a
phonon internal pressure pt is defined. With the notation introduced here,

pt = αMKT. (101)
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Moreover, in [6], a mechanical coupling is also obtained for the heat transport
equation. Specifically, it is shown that the hydrodynamic transport equation 76
includes an extra term and reads:

τ
∂q

∂t
+ q = −κ∇T + `2(∇2q + α∇∇ · q) +

3κ

c
pt∇∇ · u. (102)

This correction (i.e. the last term in the previous equation) is derived by taking
into account the local dependence of the phonon dispersion relations on the local
compression/dilatation of the elastic field [137]. The basic idea is that the energy
of a phonon with a given frequency may change between contiguous regions
with different strain due to the local modification of the dispersion relations,
thus leading to an energy flux. In the experiments in Chapter 7 the uncorrected
version of the heat transport equation 76 is used, since the influence of the extra
term in 102 is found to be negligible in the specific situations considered.

3.7 Thermoelectric coupling

In many semiconductor experiments, including the role of electrons is crucial
to proper modelization of metalic transducers (Chapter 5), or the thermoelectric
phenomena (Chapter 8). Hydrodynamic transport effects for electrons [138, 139]
are neglected in this thesis, because we focus in the length scales where non-
local effects and memory effects emerge for phonons. Due to the mean free path
of phonons being larger than the electrons mean free path, we can approximate
electron transport using the classical description in all the considered situations.
Moreover, we only explicitly include electron transport in steady-state experi-
ments, so no transient effects are discussed here.

The stationary conservation equation for the electrical current J in the absence
of volumetric charge sources reads:

∇ · J = 0. (103)

Scattering between free electrons and the body of the conductor (usually atomic
ions) randomize its direction of motion. Thus, the eletrical energy required to
increase the kinetic energy of electrons and generate a current density J is grad-
ually and irreversibly transferred to thermal energy. This is known as Joule’s
heating. At the mesoscopic level of description, a power density

Q = ρJ · J, (104)

is introduced in the energy conservation equation 75, where ρ is the electrical
resistivity. In the thermoreflectance map experiments discussed in Chapter 5,
an electrical current is imposed through the metalic nanostructured transducers,
thus injecting energy by Joule’s heating 104 that is finally evacuated towards the
semiconductor substrate.

Moreover, the reversible conversion of temperature differences to electric volt-
age and viceversa (Seebeck-Peltier effect) has upmost importance in semiconduc-
tor physics due to its wide range of applications [140]. This effect is caused by
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the coupling between equilibrium phonons and electrons, which results in an
spontaneous tendency of the charge carriers to diffuse from hot to cold (Seebeck
effect). This phenomena is characterized by the Seebeck coefficient S [141, 142].
Accordingly, the thermal gradients are coupled with an electric field E such that,

ρJ = E− S∇T. (105)

The reverse phenomenon of generating/removing heat due to the presence of an
electric field is known as Peltier effect, and it is characterized by the Peltier coef-
ficient Π [141]. Due to the microscopic reversibility of the electron and phonon
motions (i.e. the time-reversibility of the trajectories of electrons and phonons),
the phenomenological laws for the Seebeck and Peltier effects are symmetric and,
hence, the associated coefficients are simply related through the well-known
Onsager relation Π = TS. Consequently, characterization of one of these co-
efficients fully characterizes the thermoelectric performance of a device. It is
worth mentioning that the momentum transferred due to collisions between
non-equilibrium phonons and electrons can enhance the Seebeck effect due to
the existence of a heat flux flowing from hot to cold. This is known as the phonon
drag contribution to the Seebeck coefficient. Naturally, an equivalent effect can
enhance the Peltier effect due to the phonons dragged along by the electric cur-
rent. Here we will not consider the phonon drag contribution, since we focus on
room temperature experiments where this effect is assumed to be negligible.

In Chapter 8, we study the thermoelectric response of a system of intercon-
nected Bi2Te3 nanowire networks at room temperature. In contrast to the other
semiconductors studied in this thesis, Bismuth Telluride is not a good electrical
insulator, so that it is a good candidate to study thermoelectric energy conver-
sion phenomena. Importantly, a significant contribution of free electrons to the
thermal conductivity must be accounted for. We use the empirical Wiedemann-
Franz law, which provides a relation between the electronic contribution to the
thermal conductivity κe and the electrical conductivity ρ−1:

ρκe = LT, (106)

where L =2.44·10−8WΩK−2 is known as the Lorentz number.

Improving the thermoelectric efficiency of a device for applications is based
in optimizing the eletrical/thermal energy conversion along with reducing the
capability of the system to homogenize the temperature field due to heat conduc-
tion. Typical applications are aimed to generating electrical energy from waste
heat or cooling using electric fields. The thermoelectric efficiency is compactly
quantified by the zT figure of merit:

zT =
S2T

κρ
, (107)

where κ is the sum of the phononic and electronic contributions to the thermal
conductivity. Note that smart nanostructuration of materials like Bi2Te3 to sizes
comparable to the phonon MFP is a way to reduce the phononic contribution to
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the thermal conductivity with maintaining its electrical conductivity, and hence
it is a promising strategy to increase the zT [143, 144]. This approach is discussed
using experiments in Chapter 8.
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4 Thin films and Thermal Gratings

In this Chapter we show that the hydrodynamic heat transport model presented
in sections 3.3, 3.4, 3.5 reproduces the thermal behavior of Silicon at the nanoscale
in the simplest cases of study through the emergence of non-local effects. Specif-
ically, we model the stationary effective conductivity of compact and holey films
within a large range of temperatures, and the transient relaxation of thermal grat-
ings at room temperature. We use these experiments to quantitatively determine
the applicability of the model, and we compare it with other approaches like the
ballistic suppression of phonons.

4.1 Non-local effects

It is well known that extracting thermal energy from semiconductor samples
with reduced characteristic sizes is more difficult than from bulk materials [2].
This observation is generally attributed to the role of phonon-boundary scatter-
ing, and it is usually interpreted as a ballistic effect due to the apparent mean
free paths of some phonon modes being larger than the system sizes. In previous
works, an effective form of Fourier’s law with a reduced thermal conductivity
[74, 75, 89, 90] or a size-dependent thermal boundary resistance [57, 91, 92] has
been used to model experimental observations of size effects. These effective in-
terfacial resistances or conductivities are interpreted in terms of the spectral con-
tribution of the phonon modes. As discussed in section 2.5, it is usually assumed
that the phonon modes with mean free paths larger than the system character-
istic sizes do not contribute to the thermal conductivity. This interpretation has
been shown to capture the effective thermal conductivity in alloys like SiGe [90],
and relies on the apparent multiscale nature of the phonon mean free path spec-
trum according to the RTA collision operator neglecting off-diagonal terms (see
section 2.1).

Here we show that the generalized hydrodynamic framework provides an al-
ternative interpretation of experimental data through the emergence of nonlocal
effects with a single characteristic length scale `, which is much smaller than the
longest MFP (` ' 190 nm in Si at 300 K). This length scale informs about the
range of the heat flux correlations in space, thus orienting about the system sizes
where boundary effects are noticeable. As discussed in section 3.2, the solutions
of the BTE and the transport equations are obtained in terms of the lower-order
moments of the non-equilibrium phonon distribution function. Therefore, the re-
sulting transport equation has only one characteristic length scale, and the length
scales associated to higher orders do not appear in the description. The under-
lying assumption is that the evolution of the higher moments is instantaneous
as compared to the evolution of the lower-order moments (like the heat flux) in
experiments (see section 2.3). This interpretation justifies why a single length
scale allows describing the collective evolution of the whole phonon distribu-
tion. This length scale is calculated using the microscopic information of the
phonon modes, and even the RTA can be used to simplify the expression for this
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parameter [19]. The crucial idea is that the only length scale that manifests in
experiments is the scale of the heat flux evolution (i.e. the non-local length), and
the phonon modes do not independently evolve with its own mean free path
in complex non-equilibrium situations. In other words, direct modeling of the
BTE within the RTA (i.e. modeling the independent dynamics of each phonon
mode with distinct mean free paths) is inadequate because these multiple length
scales are not manifested in the description of the thermodynamic variables (i.e.
the experimental observables). Conversely, since the number of length scales
in the transport equation is already determined by the slowly evolving pseudo-
equilibrium function 70 in the hydrodynamic model, the integrated coefficients
in the corresponding BTE projections like the thermal conductivity or the non-
local length can be quantified assuming the simplified RTA collision operator 8
for materials like Si.

The distinct characteristic of the hydrodynamic description of size effects is
thus the use of a single length to model kinetic materials like Silicon. Further-
more, the full Poiseuille heat flux profile predicted in the collective regime in
other materials like graphene (see section 3.1) can be also mesoscopically de-
scribed by the generalized hydrodynamic model. Nonlocal effects are mesoscop-
ically modeled through the Laplacian term in Eq.76, and emerge in regions where
the heat flux profile is not homogeneous. This occurs in multiple relevant situa-
tions like transiently heated samples, in nanostructured materials or, more gen-
erally, close to the system boundaries. In those regions, the Laplacian of the heat
flux is not null, which leads to a reduction of the local heat flux with respect to the
bulk situation for a given temperature gradient (i.e. lower local effective thermal
conductivities). This phenomena is analogous to viscosity in fluids as described
by the Navier-Stokes equation. However, in contrast to fluids, the characteristic
size of this viscous effect is the non-local length, and for large enough system
sizes the diffusive (Fourier) description is naturally recovered. Moreover, other
new phenomena like heat vorticity is predicted.

4.2 Effective thermal conductivity of compact and holey Silicon
films

Multiple experiments have shown that the energy flowing in bulk Silicon for a
given temperature gradient is significantly reduced if the same temperature gra-
dient is imposed in samples with nanoscale or microscale characteristic sizes [73,
145–149]. Here we show that these experiments can be modeled using the hydro-
dynamic heat transport equations within a certain applicability range. Specifi-
cally, we solve the energy conservation equation 75 and the hydrodynamic trans-
port equation 76 to obtain the heat flux and temperature profiles in thin and ho-
ley Silicon films [122]. Periodic boundary conditions are imposed in the ends of
the sample unit cell with fixing a temperature difference ∆T . Moreover, insula-
tion 77 and slip heat flux 81 conditions are imposed in all the free surfaces. The
equation parameter values can be found in section 3.5 and the details of the Fi-
nite Element implementation of the equations and boundary conditions can be
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found in section 11.1.

In contrast to the description based in Fourier’s law, the hydrodynamic model
predicts the emergence of the so-called boundary layers, which are regions of size
2` surrounding the system boundaries where the heat flux is reduced (see Figures
4 and 6c). In these regions the heat flux profile resembles the Poiseuille velocity
profile observed in fluids due to viscous effects. However, the heat flux is non-
null in the boundary according to the slip boundary condition 81. In materials
where normal-collisions dominate, such as graphene, the analogy with fluids is
clear because the phonon momentum is only destroyed in the boundaries and
a common drift velocity appears due to the conservation of momentum under
the intrinsic (normal) collisions. In kinetic materials like Silicon, where normal
collisions do not dominate, the emergence of a boundary layer is also due to the
conservation of momentum, but this time is due to the relative absence of Re-
sistive intrinsic collisions. The phonons generated in the boundary layer have
an average mean free path smaller than the phonons generated in the bulk of
the sample, and hence its ability to contribute to the longitudinal heat flux is
reduced. Therefore, a heat flux inhomogeneous profile is also observed even
though there is not a preserved magnitude (except the energy) in the collision
mechanisms. Most importantly, at the mesoscopic level of description both sit-
uations are described by the Laplacian term in the hydrodynamic heat equation
76. We note that this phenomenology is also predicted from numerical solutions
of the BTE in similar non-equilibrium conditions [44].

Figure 4: Reproduced from [122]. Heat flux profile for a Silicon thin film of widthw = 3 µm
at T = 300 K predicted by Fourier (dashed line) and KCM (solid line). The reduction of
q at the boundaries in the KCM has a nonlocal effect of characteristic size 2`, which is the
cause of the effective thermal conductivity reduction. We refer to this region (indicated
in red) as boundary layer.

As discussed in section 3.4, the characteristic size of the boundary defects
as compared to the phonon wave-lengths determine the fraction of specular
phonon-boundary reflections p (see expression 80), which is introduced in the
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slip boundary condition 81 through the specularity coefficient C = 1+p
1−p . In

smooth enough surfaces the fraction p is increased, which imply an increase of
coefficient C that results in a larger heat flow in the boundaries as illustrated
in Figure 4. Note that the size 2` of the boundary layers is determined by the
intrinsic collisions and do not depend on boundary properties like the C value.

To validate that the heat flux reduction in the boundary layers quantitatively
predicts the influence of system boundaries observed in experiments, we define
the global effective thermal conductivity of the sample

κef =

∫
Γ
|q|dΓ

S∇T
, (108)

where Γ is a cross section transversal to the temperature gradient and S its area.
In Figure 5 we compare model predictions with experimental data in thin films
with different thickness w [73, 145–147]. Specifically, in 5a we show compar-
ison of κef at room temperature by modifying w. In 5b we show comparison
at different temperatures for three films with different thickness w. For high
temperatures, diffusive boundary reflections (C = 1) can be assumed so as to
predict the effective thermal conductivity of the samples considered. However,
the authors of the experimental works [73, 145–147] estimate a small average
roughness-defect height η in the samples, which has a significant effect on κef at
lower temperatures. Hence, consistent with Refs. [73, 145–147], here we assume
η = 0.3 nm to calculate the specularity parameter C. Using Eqs. 82 and 80 we
obtain a constant specularity parameter C = 1.5 above 100K, which improves
the prediction at low temperatures.

Figure 5: Reproduced from [122]. Thin films experimental and predicted thermal conduc-
tivities versus: (a) width at room temperature, and (b) temperature for different widths.
In both panels the KCM applicability region (w > 2`) is indicated in gray.

A distinct advantage of the mesoscopic hydrodynamic model is that it can
be used in arbitrary complex geometries using the same Finite Element imple-
mentation (see section 11.1). In Figure 6b, we show that the model is also able
to predict the experimental conductivity reduction in holey films with similar
characteristic sizes [149] (the exact sizes of the considered holey films are in-
dicated in Figure 6a). Note that purely diffusive phonon-boundary scattering
(p = 0;C = 1) is assumed for holey films because the reported surface defects
have sizes much larger than 0.3 nm in these samples [149]. Moreover, in good
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agreement with experimental data, the model predictions are not significantly
modified by considering staggered patterns for the hole positions. Finally, we
note that the generalized Slip Boundary condition 83 introduced in section 3.4
includes an extra term which is non-null in curved surfaces, as the ones present
in the holey films. However, no significant effect in the predicted κef has been
observed for the present samples.

Figure 6: Reproduced from [122]. (a) Geometric properties of the two different holey Sili-
con membranes considered. (b) The experimental thermal conductivities vs temperature
are compared with the KCM and Fourier predictions. The KCM applicability region is
indicated in gray. (c) Comparison between the Fourier and KCM heat flux profiles along
the line intersecting the centre of two contiguous pores in the holey film B at different
temperatures.

We note that the model predictions agree with experimental data in the cases
where the smallest system length scale L is larger than 2`. These regions of appli-
cability are denoted in gray color in Figures 5 and 6. This corresponds to situa-
tions where the boundary layers do not completely intersect with each other, i.e.
the non-local effects from disconnected boundaries are not overlapped. There-
fore, the breakdown of the model with intrinsic equation parameters occurs for
small enough sample sizes at a given temperature, or at low temperatures in a
given sample due to the increase in the non-local length value (see section 3.5).
The failure of the model is attributed to the use of a single length scale ` to charac-
terize the non-local effects, which is not adequate in extreme ballistic conditions
because of the requirement of higher order moments in the transport equations
(along with its characteristic length scales). More discussion about the validity
limits of the model can be found below.

Furthermore, it is worth to remark that these experiments indicate the inad-
equacy of the ballistic phonon suppression picture in Silicon. Note that the ex-
perimental thermal conductivity of a Silicon thin film at room temperature with
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thickness larger than 1 µm is very close to the bulk thermal conductivity [73, 145–
147], which is in good agreement with the hydrodynamic model. However, the
contribution to the thermal conductivity of the phonon modes with mean free
path larger than 1 µm is ∼ 30% [3, 148].

4.3 Relaxation of optically induced thermal gratings in Silicon
films

Other paradigmatic experiment where non-Fourier behavior has been observed
is the transient relaxation of optically induced thermal gratings (i.e. sinusoidal
temperature profiles with period L) in semiconductor substrates [74, 90, 150]. We
focus on the experiments reported in [74], where a 400nm-thick Silicon film have
been considered at room temperature. Due to the laser extinction length being
much larger than the film thickness, the initial temperature profile is homoge-
neous in the cross-plane direction, and the thermal transport is restricted to 1D
along the thermal gradient direction.

By combining the energy conservation equation 75 and Fourier's law 1, it is
easy to show that the relaxation of the sinusoidal temperature profile (its homog-
enization) has a characteristic decay rate

γ =
κξ2

c
, (109)

where ξ = 2π/L. Hence, Fourier theory predicts a quadratic raise of the decay
rate as a function of L−1. As shown in Figure 7, the experimental functional de-
pendence of γ onL is not quadratic, so Fourier theory breaks down. We note that,
as shown in the previous section, a 400nm-thick Si film at room temperature has
a reduced effective thermal conductivity. However, effective Fourier modeling
using this reduced thermal conductivity does not reproduce the experimentally
observed decay rates for small grating periods L comparable to ` (see Fig. 7).

In this experiment, by substituting Fourier's law by the hydrodynamic heat
equation 76, two different viscous effects that contribute to reduce the effec-
tive thermal conductivity displayed by the system are predicted. On one hand,
the global thermal conductivity is reduced due to the presence of the heat flux
boundary layers introduced in section 4.2, which capture the steady-state ther-
mal response of the film. This effect can be also reproduced using an effective
Fourier’s law with a reduced thermal conducitivity. On the other hand, by re-
ducing the grating period L to values close to ` (ξ2 > 4 µm−2), an extra viscous
effect emerges according to Eq. 76. In these cases the heat flux flows from hot to
cold regions that are separated small distances comparable to `. Thus the nonlo-
cal term in 76 increases, which limits the amount of heat flux flowing and slows
down the homogenization of the initial temperature profile. This extra nonlocal
effect is the responsible of the reduction of the hydrodynamic decay rate with
respect to the effective Fourier solution (which only captures the influence of the
small film thickness), and allows capturing the functional dependence between
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γ and L for small grating periods as shown in Fig. 7. We used Finite Element
solutions of the model equations (see section 11.1). However, simple analytic so-
lutions for this particular case of study can be found in [120]. Again, we used
the ab initio calculated parameter values for eq. 76 shown in section 3.5. Due to
the relevance of volume viscosity in this kind of 1D system, we used here α=1
as predicted by the most general derivation of the hydrodynamic heat equation
[19].

This experiment has been extensively used for inferring the phonon MFP dis-
tribution and the cumulative thermal conductivity within the effective Fourier
framework in materials like Silicon. Furthermore, derivation of the correspond-
ing ballistic phonon suppression function has been derived considering the present
non-equilibrium situation as described in section 2.5. However, the applicability
of the hydrodynamic model, which makes use of a single characteristic length
` much smaller than a significant fraction of phonon MFPs in Si, seems to be at
odds again with these previous interpretations.

Figure 7: Decay rates of a thermal grating with periodL induced in a 400nm-thick Silicon
film at room temperature. We compare experimental data, the bulk Fourier model, the
effective Fourier model using the reduced thermal conductivity displayed by the same
film in steady-state, and the hydrodynamic model (KCM) predictions.

4.4 Discussion on the Hydrodynamic Model Applicability

One important consequence of the applicability of the hydrodynamic model in
these experiments is the breakdown of the ballistic suppression of phonons in-
troduced in section 2.5. In standard materials like Silicon the mean free path
spectrum span from the nanometer to the tens of microns length scales as de-
rived from first principles within the RTA approximation. However, the thermal
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conductivity of the system is only reduced when the system size approaches `,
so the suppression of phonons with MFP >> ` is not manifested. This is a clear
indication that the mean free path spectrum predicted by the RTA can not be
directly extrapolated to the nanoscale in complex non-equilibrium situations. In
other words, the phonon modes do not behave independently with its own mean
free path, but a single collective length scale emerges. This discrepancy can be in-
terpreted in terms of the simplifications used in the ballistic suppression model,
wich assumes that each phonon mode relax to equilibrium independently, i.e.
assuming that the rest of the modes are in equilibrium. Even though the col-
lision rates are calculated from first principles in infinite crystals, the resulting
relaxation times and mean free paths are constructions which are not necessarily
physical at the nanoscale in arbitrary materials and temperatures. In fact, the re-
laxation time of a given mode can only be defined locally since it depends on the
local non-equilibrium situation of the rest of the distribution, which invalidates
assuming g′k = gk = 0 in expression 7.

However, other approaches beyond RTA based in the theory of relaxons, pro-
vide a generalized Fourier law with a size-dependent thermal conductivity qual-
itatively similar to the effective conductivity obtained by suppressing phonons
using the MFP spectrum (from RTA) [52]. More specifically, derivations with a
non-diagonal collision operator also predict a significant reduction of the thermal
conductivity for system sizes of 1 µm in Si at room temperature. One possible
explanation for this is the simplification of the influence of the drift operator on
the distribution function, which is only explicitly dependent on the temperature
gradient in [52]. This contrasts to other analysis of the BTE [19].

The ballistic suppression model failure in Silicon is supported by extensive
experimental evidence in similar conditions [73, 145–149]. Some authors [95,
148] attributed the discrepancies between the ballistic suppression model and
experiments to the Akhieser’s damping. Remarkably, this refinement is not re-
quired within the hydrodynamic framework. Moreover, taking the previous ex-
periments into account, the experimental evidence of the apparent suppression
of phonons with large MFP in Silicon provided in [88, 150] should be analyzed
carefully. In [150], a model with enhanced specular effects is introduced to justify
the reduction of the thermal conductivity of the films. However, the measured
system response can be explained using the bulk thermal conductivity for all the
considered films if no enhanced specular effects are assumed (i.e. all the grating
relaxation times in Figure 1 of [150] can be explained using the bulk conductivity
of Si). In [88], a perfect agreement between experimental data and the suppres-
sion function model is reported. However, the experiments are not carried out
at the same temperature for different system size due to the energy introduced
by the probe laser, and the measurement temperatures are significantly higher
than room temperature. Therefore, direct comparison using the ab initio MFP
spectrum at 300K for Si might not be appropriate.

The hydrodynamic model resolves these inconsistencies and successfully pre-
dicts the transition from a purely diffusive system response to the first stages
of the ballistic regime in non-alloys. In fact, the predictive power of a model
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based in a single length scale is the most important signature of hydrodynamic
transport in kinetic materials like Silicon. Nevertheless, when the distance be-
tween two disconnected boundaries (denoted by L) is small enough, systematic
deviations are observed in experiments with respect to the hydrodynamic de-
scription with ab initio equation coefficients (see Figures 5 and 6). Specifically,
the model applies for Silicon if and only if L > 2` (gray regions). Remarkably for
applications, this condition allows reducing the interface connecting the semi-
conductor and a metallic heater to arbitrary small sizes. For example, in Chapter
7 we model the thermal response of isolated heaters as small as 20 nm. Moreover,
note that an analogous applicability condition could be formulated in terms of
the heat flux relaxation time τ and the frequency of an external excitation. Most
of the experiments in silicon or germanium that we consider in the following
chapters fall within this regime of applicability, with few exceptions where the ab
initio hydrodynamic model systematically breaks down: In Chapter 5 the model
fails to describe small circular heaters at very low temperatures; In Chapter 9,
the external perturbation size is extremely small and, as it will be shown, non-
local effects must be completely neglected; In Chapter 7 we study a system of
close-packed arrays of heaters which, in some cases, is beyond the applicability
regime and the model fails. However, the use of reduced and geometrically-
defined effective values for the non-local length is shown to successfully model
that particular cases. This last observation opens the door to use the generalized
hydrodynamic model out of the applicability regime to provide phenomenolog-
ical interpretations of experimental data. Finally, we note that the applicability
condition can be slightly relaxed in Bi2Te3 samples, as discussed in Chapter 8.

The failure of the model for large Knudsen numbers may be related to the in-
fluence of excited higher-order moments 44 in the distribution function. These
moments can not relax fast enough in extremely fast or confined situations. Hence,
removing them from the description, as done in [19] (see section 3.2), is not ad-
equate. In previous work, the influence of higher-order moments is interpreted
as an effective reduction of the non-local length [68]. This is similar to the ap-
parent reduction of the thermal conductivity within a Fourier description due
to non-local effects (associated to first- and second-order moments). Moreover,
this is qualitatively consistent with the mentioned experimental modeling be-
yond the applicability regime in Chapter 7, where the non-local length needs to
be systematically reduced with respect to the ab initio calculated value.

Size effects in the collective regime: The Poiseuille heat flux profile and
Knudsen minimum

From a kinetic point of view, the synchronized phonon response, which sup-
press the manifestation of a multiscale phonon MFP spectrum and allows the use
of a single length scale `, may attenuate at very large Knudsen numbers, where
most of the MFPs are larger than the system characteristic sizes according to
RTA. It is possible that in such conditions some of the phonons behave indepen-
dently, and the hydrodynamic description breaks down. In materials like Silicon,
where the Normal and Resistive MFPs are comparable, the range of applicability
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is shown to be restrictive. However, in collective materials like graphene, the
Normal MFP is much smaller than the Resistive MFP. In such conditions, the hy-
drodynamic description may hold beyond the applicability regime determined
for silicon. Moreover, a full Poiseuille-like heat flux profile in perfect analogy to
fluids is expected rather than the emergence of disconnected heat flux bound-
ary layers in opposed system contours (see Fig. 4), thus leading to characteristic
phenomena:

In systems with characteristic size L significantly larger than the average Re-
sistive phonon-phonon mean free path ΛR, the randomization of phonon mo-
mentum, which cause a finite thermal conductivity, is mainly due to phonon-
phonon scattering, and the thermal conductivity is size-independent (diffusive
limit). In systems with characteristic size smaller than most of the phonon mean
free paths (both Normal ΛN and Resistive ΛR), the randomization of phonon
momentum is due to phonon-boundary scattering. In such situation, the mean
free path is temperature-independent and it is ∝ L (Casimir or ballistic limit).
Hence, according to expression 13, the thermal conductivity is proportional to
the system size and its temperature dependence is solely determined by the spe-
cific heat (at low temperatures is ∝ T 3). The transition between both limits by
increasing the size of the system can be microscopically interpreted in the col-
lective regime. For appropriate materials and temperatures, the Normal mean
free path is smaller than the Resistive mean free path and, consequently, for
some system sizes the phonons only experience Normal phonon-phonon colli-
sions (ΛR > L > ΛN ) . In such cases, all the phonon momentum is destroyed in
the boundaries and a Poiseuille heat flux profile associated to the phonon drift
velocity is expected, in perfect analogy to the fluid velocity profile in a pipe [110–
112]. Furthermore, a peculiar dependence of the thermal conductivity (i.e. the
Knudsen minimum) is predicted and experimentally observed: When the sys-
tem size is increased to values close to the normal mean free path (L ∼ ΛN ), the
phonon-boundary scattering rate increases because the low-frequency phonons
traveling in the longitudinal direction suffer normal collisions that deviate its
direction. This cause a reduction of the momentum-destroying mean free path
and, hence, the thermal conductivity is reduced. When the system size is fur-
ther increased but it is still smaller than the Resistive phonon-phonon mean free
path, the phonons experience a large number of Normal collisions, which effec-
tively increase the distance they travel before losing its momentum by colliding
to the boundaries. This produces an effective increase of both the momentum-
destroying mean free path and the resulting thermal conductivity. Therefore, a
non-monotonous trend in the thermal conductivity is obtained by increasing the
system size. The minimum of the thermal conductivity is known as the Knud-
sen minimum in analogy to fluids [104, 113]. Experimental evidences [112] and
numerical studies [41, 47, 104] of this peculiar thermal conductivity trend with
system size and temperature are available in the literature.

Further investigation is required to determine the applicability of the meso-
scopic hydrodynamic model with ab initio calculated parameters in the collective
regime to predict this kind of effects. For example, it is still pendant to model the
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graphene experimental thermal conductivity at low temperatures and small sys-
tem sizes using the present hydrodynamic model with ab initio coefficients. It
also remains unclear if the mesoscopic hydrodynamic model can capture pecu-
liar phenomena like the Knudsen minimum.

Note that the particular influence of the boundaries leading to the Knudsen
minimum is specific of the collective regime, since in kinetic materials like Si the
Resistive and the Normal mean free paths are always comparable. However, the
generalized hydrodynamic framework utilized in this thesis also predicts non-
homogeneous heat flux profiles beyond the collective regime due to the presence
of boundaries or inhomogeneous external excitations, which also allow inter-
preting the thermal conductivity dependence on system size and temperature in
silicon as has been shown in section 4.2. Moreover, these profiles are also ex-
plicitly obtained in numerical BTE simulations (e.g. [44]) beyond the collective
regime. Therefore, we conclude that the absence of characteristic phenomena like
the Knudsen minimum in some material does not invalidate the hydrodynamic
description of size effects in kinetic materials.

Size effects in alloys

In this thesis we focus on non-alloys like silicon. For alloy materials like SiGe
or InGaAs, there are strong evidences of the applicability of the ballistic sup-
pression of phonon modes [90], or multiscale Lévy Flight transport [30], which
contrasts with the hydrodynamic description based in a single length scale. In-
terestingly, the latter framework, which is introduced in section 2.5, has been
shown to distinguish the thermal response of such alloys and silicon. In Fig-
ure 8, we show the characteristic thermal penetration depth σ(t) with respect
to the external excitation timescale (Eq. 67) at room temperature for different
materials using its ab initio calculated properties [30]. Remarkably, the alloys
(SiGe and InGaAs) present a distinct regime in between the ballistic and diffu-
sive limits (i.e. for intermediate frequencies s), where a well defined power law
behavior of σ2(t) with fractional exponent is obtained (σ2(t) ∼ t1.34 ). In contrast,
this intermediate regime is not obtained for a non-alloy semiconductor like Sili-
con. The intermediate regime observed for alloys is identified as superdiffusive
transport or Lévy stable process [102, 103], for which a fractal diffusivity can be
defined. This behavior can be clearly distinguished from Fourier transport, and
it was experimentally confirmed using laser transient thermoreflectometry mea-
surements [100]. The existence of this Lévy flight behavior is linked with a cer-
tain slope of the cumulative thermal conductivity, which is not obtained in non-
alloys. This signature could be related with the manifestation of the multiscale
nature of the phonon MFP spectrum in alloys due to the independent evolution
of the phonon modes through collisions with the alloying atoms. This collisions
completely dominate over Normal processes and may destroy all the collective
behavior. Conversely, this multiscale behavior is inhibited in other semiconduc-
tors like Silicon, where Normal collisions are present, and the cumulative ther-
mal conductivity can not be used to interpret experimental observations. Nev-
ertheless, it is worth to note that some authors identified Lévy flight transport
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in Silicon in extremely small systems [151], which are beyond the applicability
of the hydrodynamic model. This might be an indication of the emergence of
ballistic effects (i.e. the independent behavior of the different modes) in front of
hydrodynamic (collective) behavior at sufficiently large Knudsen numbers.

Figure 8: Reproduced from [30]. Normalized mean-square displacement of the thermal
energy 65 using ab initio relaxation times and velocities for InGaAs, SiGe, and Si at
room temperature. The two alloys (InGaAs and SiGe) display de Lévy flight interme-
diate regime, whereas an abrupt transition between the diffusive and ballistic limits is
observed in Silicon.

According to these results, the mainly studied materials in this thesis (i.e.
semiconductor non-alloys) do not display a clear Lévy Flight behavior (at least
for not extremely high Knudsen numbers). Consistently, the influence of nano
heaters on Silicon substrate [152] can be described using the ab initio hydrody-
namic model based in a single length scale as shown in the next Chapter. Con-
versely, the same experiment in InGaAs required the use of geometry-dependent
thermal conductivities [21]. This may be a signature of the multiscale Lévy-Flight
behavior in an alloy like InGaAs, which precludes the use of full ab initio hydro-
dynamic modeling in this material. However, it is worth to note that the inclu-
sion of nonlocal effects within the hydrodynamic framework was still required
to effectively model the experiment in [21]. Therefore, future work should be
aimed to integrate the Lévy flights and the hydrodynamic frameworks to fur-
ther understand the peculiarities of heat transport in alloys and the influence of
hydrodynamic effects in this kind of materials [121].
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5 Linear and circular heat sources on Silicon substrate:
Full field thermoreflectance maps
In collaboration with Birck Nanotechnology Center (University of Purdue)

In this Chapter we study the process of heat release from metallic nanostruc-
tures towards a Silicon substrate in steady-state conditions at different temper-
atures. Importantly for applications, it is shown that the inefficient cooling of
the heaters can be fully understood by properly distinguishing the resistive ef-
fects arising from the metal-semiconductor interface and the non-local effects
influencing the heat conduction in the substrate. Specifically, we use Thermore-
flectance imagining (TRI) to examine the steady-state spatial temperature distri-
bution of electrically-heated Au structures built on Silicon substrates (see Figure
9). These measurements are extremely relevant since local information about
the thermal response is obtained in a technologically relevant device configura-
tion. As it will be shown here, the obtained thermal maps allow identifying clear
non-Fourier signatures on the substrate heat conduction mechanisms close to the
heater [152].

5.1 Thermoreflectance Imaging

Thermoreflectance imaging (TRI) is a high-resolution, non-contact optical imag-
ing technique where the local relative change in the sample's reflection coefficient
varies as a function of local temperature [21, 153]. The change in reflectivity de-
pends on the calibrated thermoreflectance coefficient (CTH), which is a function of
the illumination wavelength, the sample's material, and surface characteristics.
Once the CTH is known, the relative change in the sample's surface reflectivity
(∆R/R) can be translated to a precise temperature change (∆T ) relative to the
experimental ambient temperature.

A green (λ=530 nm) narrow-band LED illuminates the sample's full field-of-
view (the LED wavelength is chosen to maximize the detected reflectivity signal).
The LED is pulsed which provides the ability to obtain thermal images with up
to 50 ns resolution. By controlling the LED timing, the transient and steady-state
thermal response of the imaged devices can be probed. The sampling duration
of the LED (probe) was set to 25 µs, time-delayed to capture the steady-state tem-
perature at the end of the 500 µs stress pulse. A CCD camera synchronized with
the electrical excitation pulse-train quantifies the relative change in the sample's
reflectivity (∆R/R) in each cycle. Some time averaging (over multiple cycles) is
required to improve the signal-to-noise ratio of the thermal image. The thermal
images acquired for the Au structures were averaged for 1-5 minutes yielding a
typical resolution of 0.1 K.

The CTH calibrated values for Au and Si were measured to be -2.2·10−4 ± 5%
K−1 and 1.0·10−4 ± 5% K−1, respectively. The CTH calibration process was per-
formed using methods similar to what is described in [154, 155]. To further val-
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Figure 9: Reproduced from [152]. Overview of TRI experimental setup and outputs. (a)
Experimental setup along with a cross-section of the imaged Au structures on top of a
silicon substrate. (b) Sequence of events leading to a thermal image: (1) the device is elec-
trically excited with a pulse-train; (2) the device self-heats, during the on-current state,
due to Joule heating; and (3) the reflection coefficient for the tested device changes as a
function of temperature. By controlling when to illuminate the sample, a CCD camera
quantifies the thermally induced optical reflectivity variations between the on-current
state and off state, which finally produces a 2D spatial temperature distribution (ther-
mal image) of the top surface. (c) Typical system outputs, which are pairs of optical and
thermal images, obtained for (left) Au wire-structure with a heater width of 0.5 µm, and
(right) Au circular-structure with a heater width of 0.5 µm.

Figure 10: Reproduced from [152]. IVT calibration of the gold thermoreflectance coefficient
for a wire-shaped heater device with W=1 µm.
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idate the measurements and the CTH for Au (CAu
TH), each device was calibrated

using temperature-dependent current-voltage measurements (IVT). In the IVT,
the average temperature of the Au structures is obtained at different current lev-
els. By comparing the average temperature of the heater lines measured by IVT
with that obtained by TRI, the CAu

TH is extracted. To get temperature as a function
of current in the IVT, the 4-wire electrical resistance is measured for each heater
line at different current levels. Then, the linear approximation below is used to
quantify the corresponding average temperature rise (T − T0) of the wire

r(T ) = r0(1 + α(T − T0)) (110)

where r(T ) is the measured 4-wire resistance at currents larger than zero, r0 is
the resistance of the device at zero current (estimated from the slope of the IV-
curve at small current levels), and α is the temperature coefficient of resistance.
Coefficient α was experimentally measured and has values between 0.0026 and
0.0028 K−1, which agrees with reported literature values for thin Au conductors
[156]. Figure 10 shows a sample IVT calibration for a 1 µm-wide gold wire heater
with an extracted CAu

TH=-2.2·10−4 K−1. This thermoreflectance coefficient is very
stable under the temperature ranges considered in our experiments.

We analyze the thermal response of devices with varying the size and the
shape of the heater, and also the ambient temperature using a cryostat. Two sets
of samples (with circular- and wire- shaped heaters) with identical characteris-
tic lengths are considered (see Fig. 9). Both groups of samples consist of gold
heaters and thermometers (sensors) fabricated on a silicon (Si) substrate with an
interfacial Al2O3 layer of 20 nm. The gold structures have a fixed thickness of 100
nm and a variable width W , ranging from 10 µm down to 400 nm. Each heater
has a designed adjacent Au metallization to serve as a nearby thermometer sen-
sor. The samples are placed in the focal plane of the microscope and are electri-
cally excited (heated). A fixed electrical current intensity i is imposed through
the Au heaters that introduces a power density distribution due to Joule's heat-
ing. The resulting stationary 2D temperature distribution of the top surface ∆T
is obtained by the change in its optical reflectivity ∆R using the TRI technique.

5.2 Room Temperature measurements

To compare experimental measurements with theoretical predictions of the tem-
perature field at some point r0, the effect of the optical blurring must be ac-
counted for. Hence, we convolute the theoretically predicted surface tempera-
ture increase with the following transformation function [153, 157]:

f(r) =
1√
2π

exp

(
− (2.44|r|/λN)2

2

)
(111)

where N=(2NA)-1, with NA=0.75 (the numerical aperture), and λ=530 nm (the
probe wavelength used). The convolution reads

∆T (r0) =
1

gCTH

(∫
Au

dr(T−T0)CAu
THf(r−r0)+

∫
Si

dr(T−T0)CSi
THf(r−r0)

)
(112)
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where CTH is CSi
TH if r0 is located in the substrate and CAu

TH otherwise. The normal-
izing constant g = 2π( Nλ

2.44
).

To reproduce the experimental temperature fields with geometry-independent
parameters, we model the heat transport in the metal and semiconductor do-
mains along with the interface effects using the hydrodynamic heat transport
model presented in Chapter 3. The stationary current density J distribution in
the heaters is calculated to obtain the local power density introduced by Joule's
heating using Eq. 103, 104, with imposing electrical insulation J · n = 0 in all the
metal domains except in the heater terminals, where a total current intensity i is
imposed. Importantly, we use the temperature-dependent electrical resistivity as
experimentally characterized:

ρ(T ) = ρ0(1 + α(T − 295)), (113)

where ρ0 = 29Ω·nm is the reference electrical resistivity at room temperature,
and α = 0.0027 K−1.

The thermal response of the gold regions can be described by Fourier's law
(Eq. 1 with κAu=310 W/mK) and the energy conservation (Eq. 75) including
the energy source 104. This is because the nonlocal (hydrodynamic) effects for
heat carriers in metals (electrons) are not relevant at the size scales of our fabri-
cated devices. However, in the Si substrate, heat carriers (phonons) have MFPs
comparable to the geometry characteristic sizes. Therefore, refining the thermal
transport equation of the substrate to include nonlocal effects is needed to de-
scribe the heat flux q and the temperature T. We use the energy conservation
equation 75 and the hydrodynamic heat transport Eq. 76.

Appropriate boundary conditions to model the free surfaces and the metal-
semiconductor interface are also required. In both, the heater and the thermome-
ter free surfaces, thermal insulation is imposed (Eq. 77). Moreover, there is a
20nm-thick oxide layer between the metal and the semiconductor. This layer
obeys Fourier's law with conductivity κox = 1 W/mK (the experimental charac-
terization of κox is discussed below). In the metal-oxide interface, continuity of
the heat flux and the temperature is imposed. In the oxide-silicon interface, we
impose three conditions to connect Fourier and hydrodynamic transport. The
first is continuity of the normal component of the heat (Eq. 84). The second is a
temperature jump boundary condition that accounts for the non-equilibrium ef-
fects introduced by the interface (Eq. 92). Derivation of this boundary condition
and the microscopic expression for the appearing coefficients can be found in sec-
tion 3.4, and the required ab initio coefficient values for Silicon can be found in
3.5. In the present experiment, the main contribution to the temperature jump be-
tween the metal and the semiconductor is due to the presence of the oxide layer,
which plays the role of the usual Kapitza interface resistance. Hence, for simplic-
ity, we use R =0 in 92 and we capture all the intrinsic interface resistivity in the
oxide thermal conductivity as explained below. Further reduction of the interface
size W would be required to observe a significant contribution of the non-local
(non-Kapitza) effects predicted by the boundary condition 92. The third inter-
face condition is a slip boundary condition 81 for the tangential component of
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the substrate heat flux with C=1 (diffusive phonon-boundary scattering). More-
over, in the substrate-free surfaces, insulation 77 for the normal component of
the flux and the slip boundary condition 81 for its tangential component are im-
posed. We note that the presence of heat flux boundary layers (see section 4.2)
far away from the heat sources in the substrate top surface has a negligible effect
in the present experimental conditions. Consistently, the value of C does not sig-
nificantly modify the temperature profile predictions. Finally, the temperature of
the substrate base is fixed to the reference ambient temperature.

All the parameters used in the transport equations and boundary conditions
are geometry-independent. However, experimental characterization of the in-
trinsic thermal conductivities of the oxide layer and the silicon substrate are still
required. To quantify those properties, we consider the experimental measure-
ments of the largest geometry, with characteristic size W = 10 µm (>> `), in
which the Laplacian term in Eq. 76 can be neglected, and the Fourier and the
hydrodynamic description of heat conduction in the substrate are equivalent.
Then, we extract the thermal conductivities by fitting the experimental observa-
tion to a Fourier model (see Figure 11). The resulting oxide conductivity is κox

= 1 W/mK, and the silicon bulk conductivity is κSi = 130 W/mK. The value for
the Silicon thermal conductivity is slightly smaller than the one reported in 3.5.
This is due to significant doping in the present samples. Finally, we use the val-
ues for ` and the rest of ab initio parameters reported in 3.5, since no significant
influence of the doping is expected.

Figure 11: Reproduced from [152]. Sample characterization at room temperature: Temper-
ature profile dependence on the substrate thermal conductivity κSi with κox=1 W/mK
(left), and on the oxide layer thermal conductivity κox with κSi= 130W/mK (right), in
the largest circular device W=10 µm according to Fourier's law (which in this case is
equivalent to the hydrodynamic prediction).

In Fig. 12, we compare the experimental data (brown dots) with the hydrody-
namic model predictions (red lines). The predictions using Fourier’s law instead
of Eq. 76 but also using the bulk thermal conductivity (blue lines) are also shown
for illustration of the non-diffusive behavior observed in this experiments. For
the largest widths (W = 10 µm), the Fourier and the hydrodynamic model pre-
dictions coincide and match the experimental data (notice that from this result
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Figure 12: Reproduced from [152]. Temperature-profile comparisons of experimental,
Fourier bulk predictions, and hydrodynamic predictions (with geometry-independent
parameters). Data plotted for wire and circular heater geometries of different sizes: 500
nm, 1 µm, 10 µm at room temperature. The left plots ((c), (e), and (g)) represent the tem-
perature increase with respect to the reference temperature of 295 K in a cross-section
of the wire geometry (a), and the right plots ((d), (f), and (h)) represent the temperature
increase in a cross-section of the circular geometry (b). The dashed lines correspond to
the temperature field predictions. The solid lines correspond to the predictions includ-
ing the optical blurring effects of the experiment, i.e. the convoluted temperature fields
112.
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we characterized the bulk thermal conductivities of silicon and the oxide layer as
shown in Fig. 11). For this reason, in the largest samples (Figs. 11(g) and 11(h)),
we have only represented the Fourier solution. By reducing the width of the
heaters, the Fourier bulk prediction starts to deviate from the experimental data,
whereas the hydrodynamic predictions still reproduce the measurements. Fur-
thermore, the deviations from the bulk Fourier predictions are enhanced in the
circular geometry. Samples with heater sizeW =1 µm are of special interest (Figs.
11(e) and 11(f)) since for the wire device, similar solutions are obtained from
Fourier and the hydrodynamic model, whereas in the circular device, the Fourier
prediction deviates and does not match the experimental data. The heater shape
effects observed in this experiment highlights the need for using a model with
full 3D capabilities such as generalized phonon hydrodynamics. This issue has
a dramatic impact on electronic device design, where parametric models based
on size-dependent thermal conductivities are used, and the effects of the heat
source shape are usually not considered.

Figure 13: Reproduced from [152]. Normalized effective thermal conductivity, κfit/κbulk,
required, in an effective Fourier description of the substrate, to reproduce the experi-
mental temperature profile in the thermometer sensor (yellow) and in the heat source
(purple). Both the wire (squares) and the circular structures (circles) are plotted. Two
substrates are considered at room temperature: InGaAs (solid symbols) and Si (open
symbols). The non-Fourier behavior displayed by this experiment not only depends on
the heater size W , but also on the specific geometry of the metallic regions.

To highlight the non-Fourier behavior observed in this experiment, we show
in Fig. 13 the effective substrate thermal conductivity (κfit) required in Fourier
to fit the experimental temperature profile in the thermometer (yellow) and the
heater (purple), normalized by the bulk value (κbulk). For illustration purposes,
similar results of wire-shaped heaters on an InGaAs substrate (presented in [21])
are shown. The resulting fitted values depend on the size of the heater. For a
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given sample, different values are needed to reproduce the experimental mea-
surements at the heater and at the thermometer. Furthermore, the values re-
quired by the effective Fourier model are different for the circular and the wire
configurations having the same size. This discrepancy is particularly evident if
we compare the fits to the thermometer temperature profile. While for the cir-
cular device the thermal conductivity value needs to be reduced, for the wire
device it needs to be increased.

Figure 14: Reproduced from [152]. Local effective thermal conductivity |q|/|∇T | calculated
from the hydrodynamic stationary solution of the circular device cross-section (top) and
the wire device cross-section (bottom). Below the heat sources, the inhomogeneities of
the heat flux profile cause a viscous reduction of the energy released to the substrate,
resulting in a reduced local thermal conductivity in both geometries. Below the sensor
in the wire-device, the heat flux streamlines are straight so that the heat flux inhomo-
geneities (and viscous effects) are small, and the local thermal conductivity is not re-
duced. In contrast, below the sensor in the circular device, the streamlines are curved by
symmetry, diminishing the heat-spreading efficiency and the local thermal conductivity.
To highlight the effects of the non-homogeneous injection of heat flux to the substrate,
this profile is obtained using C → ∞ in the boundary condition 81, thus avoiding the
emergence of boundary layers on the substrate top surface away from the heaters.

In a region within the average MFP length scale close to the interface, the
lack of resistive collisions favors the conservation of the heat flux initial direc-
tion (cross-plane). This geometric effect is mesoscopically captured through the
Laplacian term in Eq. 76, and the nonlocal length `, and, hence, the hydrody-
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namic model is able to reproduce the experimental data using fixed parameters
values for all geometries and sizes W in contrast to Fourier, as shown in Fig.
12. Note that these results have a direct impact on electronic engineering, where
thermal analysis is usually done using effective Fourier models. The lack of the
characteristic length ` in the Fourier description is the reason behind its break-
down at the nanoscale even in an effective way.

Figure 15: Reproduced from [152]. Heat flux stationary profile normalized by the maxi-
mum heat flux value |q|/|q0| below the heater according to the hydrodynamic (top), and
to Fourier (bottom). In the hydrodynamic case, the reduction of the local thermal con-
ductivity in the regions where the heat flux streamlines are curved causes a larger heat
flux in the downward direction than in the in-plane direction. In contrast, Fourier's law
predicts an isotropic substrate response.

At this point, it is important to indicate some differences that can be observed
when comparing the present results based on silicon with the data for InGaAs
presented in previous work [21]. For similar wire-shaped heaters deposited on
InGaAs substrate, a fixed value of the nonlocal length (`) was used, but, contrary
to silicon, a size-dependent InGaAs thermal conductivity was required to repro-
duce the experiments. A possible explanation could be found in the relative im-
portance of normal (momentum-conserving) and resistive phonon collisions in
both materials. In Si, normal collisions reduce the width of the resistive phonon
MFP spectrum, and the hydrodynamic description based on a single character-
istic length ` can be used. However, in a purely kinetic material like InGaAs, the
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distribution of Resistive phonon MFPs is broader, and hence, thermal transport
is better described by multi-scale models, such as the Lévy flight formalism [30,
100].

The finite elements solutions of the hydrodynamic model offer a way to un-
derstand the differences between the observed thermal response in the wire and
in the circular devices. Two magnitudes are useful for this comparison: the local
effective thermal conductivity |q|/|∇T | and the heat flux streamlines. In Fig. 14
and 15, we provide these two magnitudes, respectively, as obtained from the hy-
drodynamic stationary solutions. In the substrate region, under the heaters, the
effective thermal conductivity is reduced in both geometries. We refer to this re-
gion as hydrodynamic region, and the reason for its appearance lies in the effects
of the Laplacian term in Eq. 76. In the hydrodynamic region where this term is
larger, that is, in the regions where the heat flux streamlines are curved, the effec-
tive thermal conductivity is reduced. On the contrary, out of the hydrodynamic
region where straight streamlines are obtained, the Laplacian is negligible, and
the bulk thermal conductivity value is recovered. By comparison of Eq. 76 with
the standard hydrodynamic equation for fluids, we refer to this phenomenon
as heat viscosity. Consequently, near the heaters, the heat flux is larger in the
downward direction than in the in-plane direction. This prevents the heat from
spreading in the in-plane direction in both the circular and the wire geometries
and explains the apparent reduction in the substrate thermal conductivity when
using the Fourier's law to model the heater thermal response. For illustration, in
Figure 15, we also show the stationary heat flux profile below the heater, accord-
ing to Fourier and to the hydrodynamic model, respectively. As expected, the
Fourier heat flux profile is isotropic, whereas the hydrodynamic model predicts
a larger heat flux in the downward direction.

In the sensor region, the hydrodynamic solutions show essential differences
between wire and circular geometries. In Fig. 14, it can be observed that the
heat flux streamlines under the wire sensor are straight, and, consequently, the
local effective thermal conductivity does not change from the bulk value. How-
ever, the wire sensor is cooler than predicted by Fourier bulk. This apparent
increase of the substrate thermal conductivity to fit the wire sensor temperature
is observed because only a small fraction of energy reaches the sensor due to
the reduced in-plane energy flow. In the circular device, a smaller fraction of
energy is also being released from the heater to the thermometer along the in-
plane direction. However, in this case, the cylindrical symmetry forces the heat
flux streamlines to curve under the sensor to follow the downward direction,
enhancing the viscous effects in that region and reducing the local effective ther-
mal conductivity. Therefore, the energy is retained in the circular sensor, which
leads to the apparent reduction of the substrate thermal conductivity according
to Fourier's law.
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5.3 Low Temperature measurements

Diffraction blurring in our experimental set up has been well characterized at
room temperature as explained in the previous section. This is due to the finite
numerical aperature of the imaging lens. When the sample is introduced in a liq-
uid nitrogen cryostat for variable temperature measurements, there is additional
blurring due the fact that we do imaging through optical window with finite
thickness. Fortunately, it is possible to characterize the cryostat window blurring
effects in each sample by comparing thermoreflectance images with/without
window at room temperature.

Figure 16: Effect of the thermostat window on the measurement of thermoreflectance
profile at 295K. Green dots represent the experimental data without the lid window.
Orange dots the measurements with the window lid in the same conditions as the green
dots. Black line is the hydrodynamic prediction using ab-initio parameters. Red line is
the convoluted profile using Guassian functions with position-dependent variance. The
same transformations are used to study the measurements at lower temperatures.

In Fig. 16, we show the room temperature raw measurements (normalized op-
tical reflectivity) with (orange dots) and without (green dots) the cryostat win-
dow. The Gaussian convolution function 111, which does not depend on ge-
ometry, is applied to reproduce the measurements without the window (black
line). Conversely, the model predictions are convoluted with a Gaussian func-
tion with a position-dependent fitted variance to reproduce the measurements
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with window also at room temperature under the same current intensity (red
line). The Gaussian variance is increased by moving away from the center of the
images (the thermometer), and the the spatial dependency of the required vari-
ance is different for each geometry. Moreover, the weight of the signal coming
from the substrate is almost eliminated to fit the experimental data. The blurring
effects introduced by the cryostat window are not expected to be temperature-
dependent. Therefore, the convolution obtained at room temperature for each
geometry is applied to the model predictions at lower temperatures to compare
with experimental data.

Figure 17: Stationary temperature increase on the surface of the sample obtained by
the TRI setup (orange dots) and the results using Fourier's law (blue line) and eq. 76
(red line) in the substrate. a) Large circular heater (width W=10 µm) at 200 K, b) Small
circular heater (width W=1 µm) at 200 K, c) Large circular heater (width W=10 µm) at
100 K, d) Small linear heater (width W=1 µm) at 200 K. The electrical current imposed in
the heaters is indicated on top of each profile.

In Fig. 17 we provide the same comparison shown in Fig. 12 but at reduced
temperatures. Exactly the same modeling explained in the previous subsection
is used. Since the thermal conductivity strongly depends on the doping, we used
values consistent with a sample displaying the thermal conductivity character-
ized at room temperature (κSi is 180 W/mK and 400 W/mK at 200 K and 100 K,
respectively). The rest of the parameters values at the different temperatures can
be found in section 3.5. At lower temperatures, non-Fourier effects are relevant
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even in the large devices. Recall that, in our experiment, there is a 20 nm thick
oxide layer between metal and substrate. This oxide layer has an extremely high
thermal resistivity of 20 nK·m2/W that hinders the influence of a possible change
in the TBR due to size or temperature variations. Nevertheless, the predictions
using eq. 76 for the Si substrate and a fixed TBR value are found to explain the
full temperature distribution for different device sizes and shapes. Indeed, size
effects are accounted for through the Laplacian term in eq. 76 and, hence, they
are decoupled from the resistive effects arising from the TBR. These results are
consistent with the other experiments studied in this thesis (chapters 6 and 7),
where the same hydrodynamic modeling together with TBR values very close
to the Diffuse Mismatch Model [132] explain other experimental configurations
including metal-semiconductor interfaces in the absence of thick oxide layers.

Finally, in Fig. 18 we show the normalized substrate thermal conductivity
whitin the Fourier framework required to fit the temperature profile in the heater
and in the sensor for the different samples at different temperatures. Note that
the apparent conductivity depends on the region where the temperature profile
is fitted - a signature of non-Fourier transport. In contrast, the hydrodynamic
model captures the measured deviations with respect to the bulk thermal con-
ductivity, which depend on the temperature, the size, and the heater shape. The
only exception is the smaller circular geometry at 100K, where KCM predicts a
temperature lower than the reference one in the sensor. This prediction is not ob-
served in experiments and cannot be fitted using a Fourier's model. More details
about the breakdown of KCM in such extreme situations are provided in section
4.4.

Figure 18: Normalized effective thermal conductivity to fit the temperature profile (a)
in the heater, and (b) in the sensor, for different geometries and ambient temperatures.
Comparison between experiments (squares) and hydrodynamic predictions (lines) is
provided. The hydrodynamic prediction for the temperature in the sensor of the smaller
circular geometry at 100K is lower than the reference temperature, and, hence, this case
cannot be fitted using an effective Fourier model.
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6 Frequency Domain Thermoreflectance
In collaboration with Centre de Recerca Matemàtica (CRM)

As explained in section 2.5 an effective form of Fourier’s law with a reduced
thermal conductivity or a size-dependent thermal boundary resistance has been
widely used to interpret experimental observations of small size or high fre-
quency effects. A paradigmatic example in which this approach has been applied
are time-domain and frequency-domain thermoreflectance (TDTR/FDTR) exper-
iments in which an oscillating laser heats a metal thin film (the transducer) on top
of a semiconductor substrate, and the temperature evolution of the transducer is
obtained by thermoreflectance techniques [22, 89, 158–162]. Specifically, these
measurements have been interpreted as a way to measure the phonon mean free
path spectrum and the cumulative thermal conductivity in the substrate because
of the suppression of the modes with mean free paths larger than the thermal
penetration depth. In this Chapter, we show that this picture is inadequate for
a full description of this kind of experiments, and we propose the use of the hy-
drodynamic approach to successfully model all the experimentally observable
magnitudes in silicon and germanium at different temperatures [134]. Moreover,
we distinguish the role of the TBR between the transducer and the substrate from
the non-Fourier heat conduction effects in the substrate. Consequently, we show
that, in contrast to previous works using spectral or enhanced TBR values, the
hydrodynamic description allows simple modeling of the interfaces with the use
of frequency-independent TBR values very close to the DMM predictions.

6.1 Failure of Effective Fourier Theory in FDTR

We first motivate the use of non-Fourier heat transport models by demonstrat-
ing the inability of an effective Fourier model to reproduce the detailed temporal
information obtained in FDTR experiments [89, 158]. In these experiments, a sil-
icon substrate is heated with a sinusoidal laser pulse with frequency f and spot
radius rs=3.2 µm; the thermal response is measured by a second laser with sim-
ilar spot radius and compared with the original heating wave. To achieve this,
the substrate is covered by a transducer of gold (64 nm in height) that absorbs
the laser power through electron excitation and releases it to the substrate. From
the amplitude of the temperature oscillations ∆T in the transducer and the phase
shift ϕ between the temperature response and the heating function, information
about the TBR between materials and the thermal transport in the substrate can
be obtained. The described experiment is very sensitive to the contact between
the metal and the substrate. Hence, the authors include a thin layer of chromium
between the gold and the silicon to reduce the TBR, thus making the experi-
ment more sensitive to the substrate conduction [89]. To model the experiments,
a Kapitza interface boundary condition with conductance 210 MW m−2K−1 be-
tween the Au/Cr transducer and the Si substrate is assumed in [89]. This value
is significantly smaller than the one expected at room temperature according to
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the DMM. However, to analyze the effective Fourier modeling, we use the same
conductance reported in [89].

In Fig. 19, we show the phase shift ϕ and the temperature amplitude ∆T
measurements compared with the results obtained using Fourier's law in the
substrate with different values of the thermal conductivity. The blue line repre-
sents the results obtained using the bulk value of the thermal conductivity for the
substrate. It can be seen that for very small frequencies the predictions for both
∆T and ϕ agree with the experimental data, but as the frequency increases, both
curves deviate from the data. In [89], this is interpreted in terms of an effective
Fourier's law with a decreasing thermal conductivity with increasing frequency
due to the ballistic suppression of phonon modes with MFP larger than the ther-
mal penetration depth. The thermal penetration depth is defined as the depth at
which the temperature increase due to the external excitation is attenuated by a
factor 1/e, and within the Fourier framework reads LSi =

√
κSi/(cSiπf). In fact,

to fit to the phase shift, the effective thermal conductivity must decrease with in-
creasing frequency of the laser pulse beam, as shown in [89]. However, using this
type of thermal conductivity leads to a poor fit to the temperature amplitude. To
reproduce the reduction of the temperature amplitude ∆T , the effective thermal
conductivity for the substrate must increase with increasing frequency. In this
case, the fit to the phase-shift curve becomes worse. The conclusion to this is
that the use of a frequency-dependent effective thermal conductivity cannot si-
multaneously explain both experimental observables ϕ, ∆T at 311 K. This result
indicates that the ballistic suppression of phonons is not an adequate framework
to interpret the present experiments.

(a) (b) (c)

Figure 19: Reproduced from [134]. (a) Phase shift ϕ and (b) normalized temperature os-
cillation amplitude ∆T as functions of the heating frequency f at 311 K. Curves denote
predictions from effective Fourier models based on bulk and fitted values of the substrate
thermal conductivity, the latter of which are shown in panel (c).
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6.2 Non-Fourier response in Silicon

The hydrodynamic model is an alternative to describe the same experiment. As
discussed in Chapter 5, generalization of the transport equation is only required
to describe substrate conduction, where heat is mainly carried by phonons with
a large mean free path and nonlocal effects are expected. For the transducer
this change is not necessary, since in metals heat is mainly carried by electrons,
which have a significantly shorter mean free path. Then, we use Eq. 76 and
75 for the substrate, and Eq. 1 and 75 including the laser heat source Q =

Q0 sin(2πft) exp
(−2r2

rs

)
in the transducer, where Q0=1 Wm−3, and r is the radial

coordinate. Regarding the boundary conditions, insulation is imposed in the
transducer free surface 77. Moreover, continuity of the normal heat flux 84, the
slip condition 81 for the tangential heat flux in the substrate, and the generalized
temperature jump condition 92 are imposed in the interface. An schematic com-
parison of the transport equations and interface boundary conditions between
the hydrodynamic and the Fourier's models is displayed in Fig. 1. All the pa-
rameters required in the transport equations and the boundary conditions for
the substrate and the transducer, respectively, are provided in section 3.5, with
the exception of the TBR that depends on the sample fabrication and should be
experimentally characterized as explained below.

Figure 20 displays the hydrodynamic (KCM) and Fourier predictions for a
given heating frequency. It shows that the nonlocal term included in the trans-
port equation modifies the system thermal response with respect to Fourier. As
it will be shown, these differences capture most of the phenomena observed in
the FDTR experiment.

In Fig. 21, we show the corresponding hydrodynamic results for the phase
shift ϕ at different temperatures 416, 311, 154, and 81 K compared with the exper-
imental data [89] and the bulk Fourier prediction with the same thermal bound-
ary resistance, R, as in the hydrodynamic description. For illustration, we also
show that the bulk Fourier solutions with an increased TBR fitted to reproduce
high-frequency measurements do not fit the low-frequency measurements. The
normalized temperature oscillation amplitude ∆T is also compared in Fig. 22
at the experimentally available temperature: 311 K. All quantities correspond
to a weighted average across the surface of the transducer, computed using the
Gaussian function of the probe beam as the weight according to the supplemen-
tary material of [158]. As displayed in the figures, the solutions of the model
equations are obtained through two different methods in the present case: Finite
Element methods (see section 11.1) and analytical methods (see section 11.2).

From Figs. 22 and 23 it can be observed that by using frequency-independent
coefficients obtained from ab initio calculations of natural bulk Si (see section
3.5), we obtain good agreement between experiments and the KCM for both ϕ
and ∆T . In previous sections, it was shown that non-Fourier effects emerge in
experiments involving small characteristic lengths comparable to the nonlocal
length `. In the present case, the thermal penetration depth is the limiting length
scale. By increasing the heating frequency, the penetration depth is reduced and
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Figure 20: Reproduced from [134]. Output obtained from the models for f=100 MHz at
311 K. The top plot shows the heating energy density function (blue line) and the tem-
perature evolution of the transducer surface according to bulk Fourier and the hydro-
dynamic (KCM) models, respectively. The right-bottom plot shows the amplitude of the
temperature oscillations along the cross-plane direction.

non-Fourier effects become significant. For illustration, we include in the figures
a blue shading indicating the range of frequencies for which the classical thermal
penetration depth LSi =

√
κSi/(cSiπf) is larger than three times the microscopic

characteristic length (1 + α)`. Across the experimentally accessible range of fre-
quencies, the memory term in the hydrodynamic equation 76 with coefficient τ
and the hydrodynamic corrections in the interface condition 92 only play im-
portant roles at temperature below 200 K and provide small corrections. The
inclusion of the viscous (nonlocal) term with coefficient `2 in the heat transport
equation is the main cause for the non-Fourier corrections. More specifically, the
role of the volume viscosity term (∇∇·q) is dominant in the present experiment,
in front of the shear viscous term (∇× (∇×q)) included in the Laplacian. This is
due to the large value of the heating laser spot radius rs >> `, which cause shear
viscous effects to be attenuated. This contrasts with other experiments where the
size of the heat source is reduced to values similar to ` (sections 7 or 5) and shear
viscosity dominates. In consequence, the dominant term in the FDTR experi-
ment is a purely transient term (note that it is null in steady-state situations like
the ones described in section 4.2 or chapters 5, 8, because the energy conservation
Eq. 75 reads∇ · q = 0).

The non-Fourier behavior predicted by KCM provides a description of the ex-
perimental data with a fixed set of parameters at different temperatures. In con-
trast, the Fourier-based description requires an nonphysically enhanced thermal
boundary resistance R in order to fit the high-frequency measurements of the
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phase shift, which leads to a poor fit at low frequencies, as can be seen in Fig. 21.
In addition, the improved performance of the KCM allows for better modeling
of the semiconductor-transducer TBR. In previous works using Fourier's law, a
TBR that is dependent on the size of the contact has been used to interpret sim-
ilar experimental results [57]. However, the resistance R is an intrinsic property
determined only by the mismatch between the contact materials and the quality
of the contact. Assuming no defects in the contact area of the interface and diffu-
sive phonon reflections, a lower bound for the thermal boundary resistance R in
the interface condition 92 is Rmin = (γ−1 + γ−1

Γ )/2, with γ and γΓ depending only
on the specific heat and group velocities of the phonon modes in each material
(a derivation of this lower bound using the hydrodynamic non-equilibrium dis-
tribution function can be seen in section 3.4). This thermal resistance arises from
the phonon distribution function mismatch between chromium and silicon, and
is in agreement with the diffuse mismatch model (DMM) [132]. Current fabri-
cation processes do not allow perfect contact and hence the thermal resistance
is larger than this lower bound. This is because the metal is sputtered on top
of the substrate, which implies that the interface is not purely crystalline. We
cannot quantitatively predict the value of R because of the lack of knowledge of
the interface defects. However, it is natural to expect that the correction due to
interface imperfections is temperature-independent. Consequently, we fitted a
temperature-independent scaling factor with respect to the lower bound R/Rmin

= 2.71 in order to reproduce the experimental measurements at low frequencies
(which do not depend on hydrodynamic effects, i.e., the bulk Fourier and the
KCM predictions coincide, as can be seen in Fig. 21). This correcting factor is
similar to the one obtained to characterize similarly fabricated samples in the
experiments of Chapter 7. The rest of the terms in the interface boundary con-
dition 92 are higher-order corrections derived from the non-equilibrium phonon
distribution function describing the substrate close to the interface, as shown in
section 3.4. These terms cause only small corrections in the present results.

A comment on the observed discrepancy at high temperatures and high fre-
quencies f > 100 MHz in Fig. 21 is in order. We modeled the Au/Cr transducer
as a single domain with homogeneous properties. However, the presence of an
interface between the 5-nm-thick chromium layer and the rest of the transducer
influences the thermal response of the system at high frequencies, as suggested
in [22]. In Fig. 23 we show alternative modeling results using the bulk Fourier
and the hydrodynamic models considering detailed heat conduction in the trans-
ducer. Specifically, we assume that the energy deposition by the laser is restricted
to the 5-nm-thick chromium layer due to the very weak electron-phonon cou-
pling in Au as suggested in [22]. In addition, an extra Kapitza interface thermal
resistance between the chromium layer and the rest of the transducer is expected.
The thermal conductance value used for the Au-Cr interface is 2 GWm−2K−1,
which is in reasonable agreement with previous work [22]. Therefore, complex
heat transport in the transducer is a possible explanation for the extremely large
phase shift measured at f > 100 MHz. This refinement is only relevant at very
high frequencies and, hence, does not significantly modify the phase-shift predic-
tions at the experimentally accessible range of frequencies at low temperatures.

83



(a) (b)

(c) (d)

Figure 21: Reproduced from [134]. Phase shift ϕ as a function of frequency f at (a) 416
K, (b) 311 K, (c) 154 K, and (d) 81 K. The hydrodynamic (KCM) and Fourier (bulk κSi)
solutions use a corrected TBR (denoted by R), such that R/Rmin=2.71, where Rmin is
the temperature-dependent TBR lower bound for Cr-Si interfaces reported in section 3.5.
The Fourier (bulk κSi, increasedR) solution uses an enhanced TBR chosen to fit the high-
frequency measurements, which leads to a poor fit at low frequencies. The agreement
between the finite elements calculation (section 11.1) and the analytical solutions (section
11.2) is excellent.
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Figure 22: Normalized temperature amplitude ∆T as a function of frequency f at 311 K
using the different models specified in the caption of Fig. 21.

Furthermore, it only causes minor corrections to the obtained amplitude of the
temperature oscillations. In particular, the result presented in Fig. 22 is almost
the same.

The main effect of the nonlocal term of Eq. 76 is the modification of the ther-
mal penetration depth as illustrated in Fig. 20. Analytical solutions to the model
equations in the present case shed light on this previously unreported mech-
anism, and are provided in [134]. Specifically, they reveal that there are two
modes of thermal transport, which are analogous to pressure (P-mode) and shear
(S-mode) waves in viscoelastic media. The P-mode captures longitudinal flux
waves that are irrotational (as in the case of Fourier's law), whereas the S-mode
captures transverse flux waves that are divergence-free (and thus temperature-
conserving). The transverse nature of the S-modes means they can only be a
feature of three-dimensional heat conduction and would not be observed in one-
dimensional models. Based on the analysis, we can define the penetration depths
of the hydrodynamic P-modes and S-modes as LP and LS , respectively (see Fig.
24). Specific expressions for these penetration lengths can be found in [134]. The
penetration depth LS is proportional to the nonlocal length `. At low frequen-
cies (f << κSi/(cSi`

2)), the penetration depth LP is equivalent to LSi, the classical
penetration depth for Si derived from Fourier's law. However, at high frequen-
cies (f > κSi/(cSi`

2)), the penetration depth LP becomes proportional to ` as well,
with LP/LS → (α + 1)−1/2 , indicating that the penetration depth of both modes
can become comparable. The coupling of both modes at high frequencies causes
deviations in the thermal response of the substrate with respect to the classical
description based on Fourier's law. Further analysis of the onset of these hydro-
dynamic heat transport effects can be found in [134].
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Figure 23: Reproduced from [134]. Phase shift ϕ at 311 K as predicted from hydrodynamic
(KCM) and Fourier models that consider the complex heat conduction in the Au/Cr
transducer (purple line). The blue line corresponds to a numerical solution of the hy-
drodynamic model in which the Au/Cr transducer is modeled as a single homogeneous
layer as in Fig. 21b.

(a) (b)

Figure 24: Reproduced from [134]. The thermal penetration depths computed from Fourier
and the hydrodynamic (KCM) models at (a) 311 K and (b) 81 K.
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6.3 Non-Fourier response in Germanium

Sebastián Reparaz from the Institut de Ciències de Materials de Barcelona (ICMAB),
repeated the same experiment in germanium at room temperature using simi-
lar laser spot radius and homogeneous Au transducers with similar height. In
Fig. 25, we show the measured phase lag ϕ in two different samples with two
different interfaces. In one case, the oxide was removed before fabricating the
transducer on top of the germanium substrate, and in the other case the oxide
was maintained.

Figure 25: Phase shift ϕ as a function of frequency f at room temperature. Two sets
of experimental data are shown: with (orange dots) and without (blue dots) an oxide
interfacial layer. The Fourier (dashed lines) and hydrodynamic (solid lines) predictions
using the equation parameters for the Ge substrate and the Au transducer displayed
in section 3.5 are shown. The thermal conductances R−1 used are fitted from the low
frequency range where the hydrodynamic and the Fourier predictions coincide.

The presence of the oxide layer significantly increases the thermal bound-
ary resistance value. Following the same procedure explained in the previous
subsection, we characterize the TBR value in each sample by fitting with a bulk
Fourier model at low frequencies with nominal parameter values for all the do-
mains. In the sample containing interfacial oxide, the Fourier model fits the ex-
perimental data even at the high frequency range. This is due to the extremely
large TBR value dominating the system response, which hinders the non-Fourier
effects emerging in the substrate. In consequence, the hydrodynamic and the
Fourier modeling are almost equivalent in this case as can be seen in Fig. 25.
Conversely, in the sample without oxide, where the TBR value is significantly
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reduced, the Fourier modeling clearly fails to describe the measurements at high
frequencies using the bulk thermal conductivity, as found for Silicon in the previ-
ous subsection. In this case the experimental data is reproduced using the same
hydrodynamic modeling with using the appropriate equation parameter values
for Germanium (see section 3.5). These results demonstrate the general appli-
cability of the hydrodynamic model for kinetic materials like Silicon or Germa-
nium in this kind of experiments, which provides significant corrections at high
frequencies for high quality substrate-transducer interfaces (low R).
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7 1D- and 2D- confined nanostructure cooling in Sil-
icon substrate: EUV-scatterometry technique
In collaboration with Kapteyn-Murnane group (University of Colorado)

In this Chapter we discuss the heat dissipation away from periodic 1D- and 2D-
confined heat sources on a silicon substrate using dynamic EUV-scatterometry
[57, 91, 92] at room temperature. This is the most illustrative example of the
modeling capabilities of the hydrodynamic framework, since a simple analytic
expression for the functional form of the heater temperature evolution is pro-
vided in terms of geometry and intrinsic material properties.

Both the 1D-confined (nanolines) and 2D-confined (nanodots) heaters were
fabricated under identical conditions. As schematically shown in Fig. 26, the
time-resolved measurements use an ultrafast infrared pump laser pulse to rapidly
excite thermal heating and expansion in the metallic structures. The resulting
thermal and elastic surface deformation is monitored by measuring the change in
diffraction efficiency of an ultrashort EUV probe pulse. Using this technique, we
observe the heat dissipation from nanodot arrays in general geometries without
complex fabrication, and of nanoline arrays down to 20nm in size (L) and 80nm
in spacing (P ). It is observed that the relaxation of the nanostructures is slower
for smaller L. Furthermore, closely-spaced nanodots or nanolines on a bulk sil-
icon substrate cool faster than widely-spaced ones. Therefore, interpretation of
this kind of experiments assuming Fourier's law for substrate heat transport re-
quires the addition of phenomenological effective parameters like a geometry-
dependent interfacial TBR [57, 91, 92] or a geometry-dependent substrate ther-
mal conductivity [75]. In contrast, the hydrodynamic model presented in sec-
tions 3.3, 3.4, 3.5 provides predictive modeling of the full set of experimental data
using fixed parameter values [163]. Furthermore, the hydrodynamic model al-
lows identifying the time scales over which two different transport mechanisms
are dominant: one characteristic time dominated by the thermal boundary resis-
tance and another regime that is dominated by hydrodynamic heat transport in
the substrate. As it will be shown here, these two distinct mechanisms at work
during different time windows lead to a double exponential decay of the heater
temperature in some cases. Hence, we are able to identify clear non-Fourier sig-
natures in the present experiment that are fully explained through the inclusion
of non-local heat transport effects (see section 4.1). Finally, we develop a two-box
model, derived from the hydrodynamic equation 76, which provides physical in-
tuition and specific expressions for the double exponential characteristic decay
times and weights.

The sample consists of metallic Ni nanostructure arrays fabricated on the sur-
face of a silicon substrate using an e-beam lithography technique. The nanos-
tructure arrays are 150x150 µm2 areas consisting of both periodic nanolines and
nanodots with linewidths ranging from 1 µm down to 20 nm, periods ranging
from 4µm down to 80nm, and average heights of 11.5 nm. The linewidth and
period of the nanoline/nanodot arrays is independently controlled in order to
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Figure 26: Reproduced from [163]. Schematic of dynamic EUV-scatterometry for probing
non-diffusive hydrodynamic-like heat flow. An ultrafast laser pulse rapidly heats the
nanostructured transducers, which dissipate the thermal energy by transferring heat to
the substrate. The resulting surface deformation of the heated nanostructures and sub-
strate is measured via diffraction of an ultrafast Extreme Ultraviolet (EUV) probe pulse,
after a controlled pump-probe time delay. The EUV pulse scatters from the periodic
nanostructure arrays into a detector. We reduce the recorded scattering pattern into a
single value of diffraction efficiency as a function of time delay between the pump and
probe pulses, which precisely tracks the thermal and elastic dynamics in the sample.

separate the effects of size and spacing. The dimensions of the various arrays
are characterized using atomic force microscopy. To launch dynamics in the
sample, an ultrafast infrared (780 nm wavelength, ∼25 fs pulse duration) pump
beam is incident on the sample with∼20 mJ/cm2 fluence and∼275 µm spot size.
The pump light is preferentially absorbed by the metallic nanostructures which
causes rapid heating followed by impulsive thermal expansion in the nanostruc-
tures. The coherent excitation of the periodic arrays launches acoustics waves
that propagate along the surface of the silicon substrate. As the heated nanos-
tructures cool down by thermal dissipation into the substrate, they relax back to
their original profile. An ultrafast, short wavelength probe beam is generated by
focusing an ultrafast infrared pulse into an Ar filled glass capillary. A quantum
non-linear process called high harmonic generation converts a portion of the in-
frared light into a coherent short wavelength (∼30 nm) ultrashort pulse duration
(∼10 fs) extreme ultraviolet (EUV) beam [164]. The short wavelength of the probe
allows for exquisite picometer sensitivity to the surface displacement and allows
for measurements of 10s nm nanostructures [165]. Moreover, these wavelengths
interact with core electrons far from the Fermi surface which are not affected by
small temperatures changes as the photon energies are far from resonances in
nickel ,[165–167]. The probe beam is scattered from the nanostructure arrays at a
set time delay, controlled by a mechanical delay stage, relative to the pump beam
and captured on an EUV sensitive CCD camera. Images of the EUV scattering
pattern with and without the pump beam are subtracted allowing us to observe
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the change in the diffraction pattern. By subtracting the change in intensity of
the reflected EUV light from the change in intensity of the diffracted EUV light,
we can compute the change in diffraction efficiency. This change in diffraction
efficiency is monitored as a function of time delay between the pump and probe
beams and can be directly related to the surface deformation of the sample.

To model the experiments, the hydrodynamic heat transport equations includ-
ing the thermoelastic coupling along with the elastic equations (see section 3.6)
are used. The temperature and the heat flux are obtained by solving the en-
ergy conservation equation including the thermo-elastic energy exchange term
in each domain 100 along with the heat transport equation (Fourier's law for the
heaters and Eq. 76 for the substrate). In the heaters, a heat sourceQmodeling the
laser pulse is introduced in the energy conservation equation. The slip boundary
condition 81 is imposed in the interfaces and in the silicon free surfaces. In the
free surfaces, thermal insulation 77 is ensured by fixing normal component to
zero. In the interfaces, we impose continuity of the heat flux normal component.
Finally, the generalized boundary condition for the temperature jump 92 is used.
All the thermal parameter values are calculated ab initio and can be found in
section 3.5, except the interfacial boundary resistance R appearing in 92. Using
ab initio calculations, we compute a lower bound Rmin for the thermal boundary
resistance assuming diffusive phonon reflections and perfect contact area (see
section 3.4). However, the nano-gratings fabrication process produces interface
defects that increase the actual boundary resistance value. Therefore, a single
correcting factor for the boundary parameters is required to predict the thermal
decay of all the gratings (1D and 2D). In analogy to the TBR characterization in
Chapter 6, the obtained correcting factor is fitted from the thermal decay of the
largest experimentally available 1D grating (L=1µm), where the hydrodynamic
corrections do not play any role (i.e. we obtain the same boundary resistance cor-
rection using the hydrodynamic or the Fourier model). Specifically, we obtained
a thermal boundary resistance value 3.1 times larger than the lower bound Rmin

(see section 3.4). This factor is similar to the one obtained in other experiments
for a similarly fabricated metal-semiconductor interface.

The thermal equations are coupled with the classical elastic equation 93 to pre-
dict the surface deformation of the system (i.e. the local displacement vector u)
in order to compute the resulting change in diffraction efficiency using numer-
ical Fresnel propagation. The mass density ρ is 8900 kg·m−3 and 2329 kg·m−3

for Niquel and Silicon, respectively. The stress tensor of the nickel and the sili-
con includes a linear thermal expansion term. For heaters, we use the standard
stress tensor 96 and nominal bulk nickel elastic properties: thermal expansion
coefficient αNi= 12.77 ·10−6 K−1, compressibility modulus KNi=175·109 Pa, and
shear modulus µNi=76·109 Pa. For the substrate, we use an anisotropic stress ten-
sor accounting for the structural defects generated during the fabrication of the
nano-gratings on the substrate top surface [136]:

σ = D : [∇u− αSi(T − T0)I] (114)

where T0 = 295K is the reference temperature, αSi=3·10−6 K−1 is the Silicon coef-
ficient of thermal expansion, and D is the anisotropic elasticity matrix. In Voigt
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notation {yy, xx, zz, xz, yz, zx}, the components of D read D11 = 203, D12 =
66.5, D22 = 173, D13 = 36.5, D23 = 66.5, D33 = 203, D14 = 0, D24 = 0, D34 =
0, D44 = 83, D15 = 0, D25 = 0, D35 = 0, D45 = 0, D55 = 53, D16 = 0, D26 = 0, D36 =
0, D46 = 0, D56 = 0, D66 = 83 [GPa] to match the simulated geometry that y is
along [001] and x (interface normal direction) is along [110] in the silicon crystal.
Finally, the Silicon compressibility modulus and shear modulus are KSi=95·109

Pa, aand µSi=52·109 Pa, respectively.

7.1 Non-local Effects and Hydrodynamic Region

As discussed in section 4.4, the applicability of Eq. 76 with ab initio parameters is
restricted to geometries where edge effects produced by two different boundaries
do not overlap, i.e. when boundaries are separated by a distance larger than 2`.
Here, the distance between heaters is P −L (see Fig. 27). Thus, Eq. 76 is expected
to be valid for nanostructure arrays satisfying P − L > 2`. We term experiments
under this condition, where heaters are expected to behave independently, as
effectively isolated heat sources, and those with P − L < 2` as close-packed
heaters.

We first study effectively isolated heat sources for both 1D-confined (nano-
lines) and 2D-confined (nanodots) of different sizes and periodicities. Figure 27
compares the experimental results on nanolines and nanodots with theoretical
hydrodynamic solutions obtained using COMSOL. We compare both inertial so-
lutions, that include elastic waves generated by the impulsive pump laser excita-
tion (i.e. the full elastic equation 93 is solved), and quasi-static solutions without
elastic waves to isolate the effects of the heat flow (i.e. the elastic equation 93 is
simplified to the dynamic equilibrium condition ∇ · σ = 0). The quasi-static so-
lutions capture the deformations just due to thermal expansion and hence can be
used to track the temperature evolution of the system [92]. Note that the initial
peak obtained in the quasi-static simulations is not observed in experiments be-
cause the system needs finite time to expand. To compare the model predictions
and the experiments, the predicted diffraction efficiency is scaled by a factor to
match the first experimental peak. Since the hydrodynamic model is linear, this
is equivalent to scaling the simulated energy density by this factor. The same
scaling is used to normalize the quasi-static simulations. This procedure is also
applied to the effective Fourier simulations in order to compare Fourier and ex-
periments in Fig. 29. The excellent agreement in Figure 27 between experiment
and theory demonstrates a significant advance in modeling - the nanoline ther-
mal decay has already been shown to be highly non-diffusive [57, 92] and the
models employing a suppression function are not easily calculable for nanodot
geometry [75]. The hydrodynamic model - which is based on only a few key
parameters - accurately predicts the thermal transport and elastic waves in both
nanolines and nanodots without any geometry-dependent fit parameters, which
is beyond the current capabilities of microscopic descriptions.

In the close-packed situation, P − L < 2`, nonlocal effects are expected to
yield interaction between heaters, as phonons from a given source are able to
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Figure 27: Reproduced from [163]. Experimental and theoretical normalized change in
diffraction efficiency as a function of delay time for different sizes L and periods P for
(a) effectively isolated, i.e. where (P − L) > 2`, nanolines (1D) and (b) nanodots (2D).
Black lines denote experimental data where the error is represented by the gray bar. Blue
lines indicate the inertial hydrodynamic (KCM) predictions, and red lines denote the hy-
drodynamic (KCM) quasi-static predictions. Theoretical predictions are computed us-
ing the same geometry-independent parameters for all nanostructure sizes and shapes.
The theoretical curves are identically normalized in each case so that the initial energy
released to the heaters matches experiment. Also shown are the experimental and theo-
retical changes in diffraction efficiency for close-packed, i.e. (P − L) < 2`, (c) nanolines
(1D) and (d) nanodots (2D) of different sizes L and periods P . The excellent agreement
between KCM and the experimental data for the highly non-diffusive decay for both
1D- and 2D-confined heat source geometries demonstrates the predictive capability of
this model.
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Figure 28: Reproduced from [163]. Hydrodynamic regions in effectively isolated and close-
packed situations. Effective thermal conductivity profile on silicon,|q|/|∆T |, predicted
by the hydrodynamic model for a nanoheater of width 30 nm at t=0.5 ns for (left) isolated
(P=600 nm) and (right) close-packed (P=120 nm) configurations. Similar to fluids, a
friction-like reduction of thermal transport appears in the regions of the substrate where
heat flux gradients are large. Parameter ` defines the characteristic size of the region
below heaters where these hydrodynamic effects are important (hydrodynamic region).
When sources are separated a distance larger than 2` (effectively isolated lines) one uses
the intrinsic value for `. When this distance is smaller, i.e. (P − L) < 2`, an effective
value `eff = (P − L)/2(< `) is used. The red color indicates regions where the thermal
transport has been reduced (compared to diffusion) while the white color represents
regions of diffusive transport. In close-packed configurations, the interaction between
heaters homogenizes the profile thus reducing viscous effects to a smaller region of size
`eff . As a result, close-packed configurations evacuate heat faster than isolated lines of
the same width. The profiles shown do not appreciably change during the timescale of
experiments. Note that scales are the same in both panels.
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reach neighboring sources before scattering. In this case, one does not expect
Eq. 76 to be applicable since higher order derivatives should be included in the
transport equation [68] (see section 4.4. To keep the model as simple as possible,
we propose that the effects of these higher order terms can be absorbed into a
geometry-defined value `eff, where Eq. 76 is still sufficient to describe the system.
We propose the simplest expression that satisfies limiting cases: `eff = (P−L)/2 <
`. For this expression, when the period P tends to the linewidthL, `eff → 0. In this
limit, the grating tends to a line of infinite linewidth, thus viscous effects should
vanish. In the other limit, if P−L→ 2`, we recover `eff → ` as constructed. Using
this expression for `eff, we compare hydrodynamic predictions with experimental
results for close-packed nanoline (nanodot) heaters in Figure 27c(d). The model
predicts that closely-spaced heat sources cool faster than widely-spaced ones, as
uncovered in previous experiments [57, 92]. We also experimentally demonstrate
that this same counter-intuitive behavior observed in nanoline arrays is universal
and manifests in nanodot arrays, since the L=50 nm with P=200 nm nanodot
signal is relaxed at 800 ps while L=50 nm with P=400 nm is not. The excellent
agreement between the hydrodynamic prediction and experimental results for
the close-packed cases shows that the model can capture this behavior with a
simple expression for `eff (without fitting) while the other parameters used are
the same used in the isolated cases.

In summary, both nanoline and nanodot experiments can be predicted by the
hydrodynamic model using the intrinsic value for ` at room temperature (see
section 3.5) when sources are separated a distance larger than 2` (effectively
isolated sources), and a geometry-defined effective value when distances are
smaller (close-packed sources). This modification of ` for a specific situation al-
lows us to retain both the predictive capability and simplicity of the model.

We interpret now the behavior of the effectively isolated sources from a hydro-
dynamic viewpoint and compare it to the close-packed sources. For effectively
isolated sources, hydrodynamic effects become relevant when linewidth L is on
the same scale as the average phonon mean free paths ∼ `; thus, the non-local
terms in Eq. 76 reduce the heat flux, compared to Fourier's law, in agreement
with experiments [57, 62, 75, 87, 91, 92]. This phenomenon is analogous to a
friction that arises from the large gradients in heat flux that impedes heat flow,
referred to as a viscous resistance [120]. In other words, when linewidth L is on
the same scale as∼ `, there is not enough resistive phonon collisions to scatter the
heat outward in all directions as diffusion assumes. Instead, the thermal energy
is forced straight downward into the substrate over a distance related to ∼ ` be-
fore enough resistive phonon collisions occur to dissipate energy in all directions,
shown schematically in Figure 26. These hydrodynamic-like friction effects re-
sulting from a lack of resistive collisions have been described in other formalisms
albeit with different interpretations (see section 2.5. For example, models using a
phonon suppression function predict heat flow that is less efficient than Fourier's
law when linewidth L is on the same scale as ∼ `, similar to the hydrodynamic
model; however, this phenomenon is interpreted as a reduced number of carriers
due to ballistically traveling phonons [95, 168]. Additionally, models incorporat-
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ing anisotropic behavior of thermal conductivity are parallel to the downward
flux forcing predicted by our hydrodynamic model [22]. The viscous term in Eq.
76 naturally includes both heat flux reduction and apparent anisotropy observed
by experiments. In Figure 28, we visualize these substrate regions where viscous
effects are important (hydrodynamic regions) by converting results to a spatially-
dependent effective thermal conductivity of silicon. Due to their proximity to the
interface, if one tries to apply Fourier's law, hydrodynamic effects might be in-
terpreted either as an increase of the thermal boundary resistance [57] or as a
reduction of the thermal conductivity near the heater [75]. Further details about
the hydrodynamic region and the process of heat release from a nanostructured
heat source towards a semiconductor substrate can be found in section 5. In the
effectively isolated case with L=30 nm and P=600 nm, this region has a size of
order ` ∼ 200 nm, while in the close-packed case (P=120 nm), it is much smaller
and of order `eff ∼50 nm. Therefore, we hypothesize that the interaction of the
nearby heat sources in the close-packed scenario reduces the non-local length,
decreasing viscous effects, allowing the system to cool more efficiently than with
isolated heaters. Future work should address the microscopic description of this
effect.

Figure 29: Reproduced from [163]. Experimental and theoretical quasi-static change in
diffraction efficiency. Comparison of the thermal relaxation for effectively isolated heater
lines ofL=250 nm and P=1000 nm. The black (grey) line denotes experimental data with-
out (with) acoustics, the red line is the hydrodynamic (KCM) prediction using intrinsic
parameters, while the green line is a Fourier model using an effective thermal boundary
resistance value fitted to obtain the best match to data. The Fourier fit overestimates
experimental decay at short times and underestimates it at long times. Experimental
measurements indicate that the thermal decay of heaters cannot be described by just one
characteristic time, like the prediction by Fourier's model; however, the hydrodynamic
model captures the decay for all times.

To demonstrate the advantages of our hydrodynamic model over the tra-
ditional effective Fourier model with a best-fit boundary resistance, we com-
pare the two theoretical predictions to experimental data for the isolated 250 nm
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linewidth case in Figure 29. To emphasize the thermal decay of the system, we
compare only the quasi-static calculations and data where the acoustic waves
have been subtracted using the matrix pencil method [169, 170]. Although an ef-
fective Fourier model can quantify the degree of the non-diffusive nature of the
system, one finds that the Fourier model with a fitted TBR fails to describe data
at all times, as it overestimates the decay at the beginning and underestimates
it at the end. In contrast, the hydrodynamic predictions agree with data at all
times. This plot indicates that the experimental results display two characteris-
tic times: a fast one at short times and a slow one at longer times. These two
different time scales are also apparent in the other nanostructure sizes shown in
Figure 27. Therefore, as diffusive transport in these geometries contains only a
single characteristic time scale, the effective Fourier model cannot capture the
full nanostructure relaxation and misses the underlying physics, even with fitted
intrinsic parameters.

7.2 Thermal Decay Analysis: Diffusion vs Hydrodynamics

Here we compare in detail the thermal evolution of the heater according to the
Fourier and hydrodynamic models. First consider diffusive heat transport both
in the Si substrate and in the Ni heater along with a Kapitza interface boundary
condition with resistance R. We use the bulk thermal properties reported in sec-
tion 3.5 and we denote the thermal diffusivity of Nickel χNi = κNi/cNi=2.2·10−5

m2 s−1 and of silicon χNi = κSi/cSi=9·10−5 m2 s−1. For illustration purposes, we
discuss this benchmark model considering the specific case of heater height h
= 10nm and width L = 20nm, with R = 1·10−9K m2/W. In Figure 30 we show
the corresponding temperature evolution of the heater obtained with COMSOL
Multiphysics.

The time scale of the thermal evolution in the heater is extremely fast h2/χNi=
4.5 ps and hence the temperature in the heater is almost uniform within the time
scale of the experiment. In the substrate, at time t, diffusion has penetrated a
region of size

√
tχSi . We can quantify an effective thermal resistance due to

diffusion r(t) =
√
tχSi/κSi . At early times R > r(t), so the thermal decay is

dominated by the interface. At times larger than R2κSicSi=232 ps, we have r(t) >
R thus the thermal decay is dominated by substrate diffusion:

• For t < R2κSicSi: The heat flux in the interface is |q| = ∆T/R, where ∆T
is the temperature difference between the heater and the substrate across
the interface. Moreover, the heat flux leaving the heater can be estimated
as |q| ∼ cNihR

dT
dt

, and hence ∆T ∼ −cNihR
dT
dt

. Therefore, the temperature
evolution of the heater is an exponential with characteristic time τF = cNihR
= 40ps.

• For t > R2κSicSi: Substrate diffusion has no characteristic time scale (infinite
substrate) and hence the thermal decay follows a power law with an expo-
nent depending on the space dimensionality. The thermal evolution in the
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region below the heater is instantaneous L2/χSi=4.4 ps and hence we can
consider that the heated region is a point and the temperature evolution is
2D (exponent -1).

In summary, the Fourier model predicts an initial exponential thermal de-
cay with characteristic time τF = cNihR = 40ps followed by a power law decay
with exponent -1. The transition between both decays is estimated to be at time
R2κSicSi=232 ps.

Figure 30: Heater temperature evolution for h=10 nm, R=1·10−9K m2/W, L=20 nm and
P=100L according to Fourier model. The initial decay is fitted using an exponential and
the long-time decay is fitted using a power-law.

As shown in Figure 29, the functional form of the thermal decay according
to Fourier's law is not consistent with the experimental decay from EUV scat-
terometry measurements, where a double exponential decay with two distinct
characteristic times is observed. Care must be taken when comparing our results
with those from time-domain thermal reflectance (TDTR) [75], which are two
completely different techniques. One key difference is that visible-based probe
experiments often need to limit the analysis to the region t > 500 ps due to the
challenges separating the contributions of out-of-equilibrium electrons and ther-
mal decay. However, our EUV probe does not suffer from this limitation as we
measure the surface deformation through diffraction, which is not altered by the
presence of nonequilibrium electrons. If we take EUV scatterometry data and
exclude from our analysis the measurements for t < 500 ps, one of the decay
times (∼100 ps) reported in this work cannot be observed. Consequently, a dif-
fusive model could fit the experimental data by excluding the initial timescales,
as done in previous works like [75]. In Figure 31, we show two different fits
using Fourier with an effective TBR and an effective substrate conductivity, re-
spectively, restricted to t > 500 ps. Both approaches can reproduce the tail of the
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Figure 31: Fourier fits to experimental data restricted to t > 500 ps for a heater line of
250 nm. The TBR fit (R = 19·10−9m2K/W) using the intrinsic value for the substrate
conductivity underpredicts the temperature for t < 500ps, whereas the conductivity fit
(κfit= 0.4κSi) using the intrinsic value for the TBR overpredicts it. In both models, the
predicted fraction of energy evacuated from the heater is substantially distorted.

Figure 32: Heater temperature evolution for L = 30nm and P = 400nm according to the
hydrodynamic model (KCM). The thermal decay is fitted with a double exponential.
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decay but fail to reproduce the initial system response. After the first nanosec-
ond, these models are able to reproduce just the last 20% of the signal amplitude
but cannot predict the other 80%, i.e. the largest part of the energy dissipation
from heaters which is also the most important for applications.

We assume now diffusive heat transport in the heater and hydrodynamic heat
transport in the substrate using the hydrodynamic model as explained above.
In figure 32, we show an example of the temperature evolution of the heater
for L=30 nm and P=400 nm obtanied with COMSOL. In contrast to the Fourier
model, the hydrodynamic model predicts a slower thermal decay that can be
fitted using a double exponential within the time scale of the experiment. We
denote as τ1, τ2, a1, a2 the characteristic times and weights of the first and the
second exponentials, respectively.

7.3 Two-Box Model for Heater Thermal Decay

A distinct advantage of the hydrodynamic model (KCM) is that we can gain
deeper insight into the two time scales of thermal relaxation by investigating
the role played by hydrodynamics. To do this, we analytically solve the thermal
equations in the heater and the substrate for the case L < `. In this range, hydro-
dynamic effects are dominant: the q term in Eq. 76 can be neglected compared to
the Laplacian term and the heat flux obeys the (linear) Navier-Stokes equation.
The system of equations obtained is:

C1
dT1

dt
= −T1 − T2

R1

(115)

C2
dT2

dt
= −T2 − T `2

R2

+
T1 − T2

R1

(116)

where T1 is the heater temperature, T2 the average temperature of the substrate
at the interface, and T `2 the average substrate temperature in the outer part of
the hydrodynamic region, i.e. at a depth of order ` below the heater. C1 = cNih
denotes the heat capacity of the heater per unit surface, with h the height of the
heater. C2 = cSiL(1 + α)/B is a heat capacity per unit surface characterizing the
substrate, with L the width of the heater, α the dimensionless coefficient appear-
ing in equation 76, and B is a calculated geometric coefficient that for nanolines
is 3.0. R1 ≡ R is the thermal boundary resistance between the metal and the
substrate, and R2 = B`2

κSiL
is a size-dependent thermal resistance due to viscous

effects. At short times, T `2 is close to T∞2 as heat has not reached this region and
equations 115 and 116 become a linear system with a double-exponential decay:

T1 − T∞2 = a1 exp

(
− t

τ1

)
+ a2 exp

(
− t

τ2

)
(117)

with τi and ai the characteristic times and weights, which are determined by C1,
C2 , R1 and R2. Therefore, the hydrodynamic model provides two characteristic
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times with specific expressions in terms of the physical properties of the system.
Detailed derivation of the previous equation and its coefficients can be found in
the next subsection.

Equation 117 can be interpreted intuitively as a two-box model as seen in Fig-
ure 33. One box represents the heater, while the other box is a region of order
L in the substrate below the heater (referred to as the dam region). The thermal
response of the system begins when the heater is filled with thermal energy from
the laser pulse. At short times after the laser pulse, the heater releases the energy
into the dam region, which retains the energy and rapidly increases in tempera-
ture. The initial rate of this energy transfer is dominated by the intrinsic thermal
boundary resistance between the heater and substrate. At larger times, when
the dam region has equilibrated with the heater, the dissipation of the thermal
energy is dominated by the rate of energy transfer out of the dam region into
the rest of the substrate. Therefore, the substrate plays two roles in the thermal
response of the system: it acts both as an energy reservoir with heat capacity C2

and as a thermal resistance R2. The rate of energy transfer in these later times is
controlled by the viscous resistance, i.e. hydrodynamic effects. The thermal re-
laxation of the heaters can be described by an equivalent circuit (Figure 33a) and
illustrated by a fluid analog (Figure 33c). The predicted temperature evolution
of the system as a function of time and position are shown in Figure 33b.

As shown in the next section, for small isolated sources, we find simple ex-
pressions for the characteristic times, namely τ1 = R1Ceq = R1C1C2/(C1 + C2),
and τ2 = (C1 + C2)R2. For nanolines of L=50 nm, these expressions yield τ1=50
ps and τ2= 1050 ps, thus τ2 is an order of magnitude larger than τ1. In this limit,
τ1 depends on the thermal boundary resistance, while the viscous time scale τ2

does not depend on the thermal boundary resistance, but mainly on the nonlocal
length ` and geometry:

τ2 =
`2cSi

κSi

(
1 + α +B

cNih

cSiL

)
. (118)

Therefore, for small isolated sources, KCM can provide simple analytical ex-
pressions for the two different time scales of the heat transfer, each one associated
with a different resistive mechanism. This allows accurate experimental valida-
tion of the non-local length value for silicon at room temperature. Additionally,
the two-box model Eqs. 115 and 116 can also be applied to close-packed experi-
ments by substituting ` by `eff; however, the simple expression of Eq. 118 cannot
be used in this case (see details in the next section).

Although the two-box model has been derived at small sizes, it also character-
izes the non-Fourier behavior for all experimental sizes. To validate the intuition
provided by the two-box model, we fit a double-exponential decay 117 to each
of our experimental measurements, as shown in Figure 34a. We compare the
fits of experiments to fits of numerical hydrodynamic simulations and the ana-
lytical two-box model in Figure 34b-d. We find that the experimental fit results
agree well with both the hydrodynamic numerical and analytical calculations.
Additionally, we confirm the existence of a short time scale (τ1 ∼ 100 ps) which
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Figure 33: Reproduced from [163]. Two-box model for the thermal decay of heaters for L <
`. (a) The energy released by the heater (with heat capacity per unit surface, C1) crosses
the interface with the substrate at a rate determined by the thermal boundary resistance,
R1 ≡ R. The thermal response of the substrate is determined by a region of size L below
the heater -the dam region- which acts both as a heat reservoir of capacity C2, and as
a thermal resistance R2 due to viscosity from hydrodynamic effects. An analogy to an
equivalent electrical circuit is shown. (b) The temperature as a function of time is shown
for the positions indicated in (a) from KCM solutions for L=30 nm and P=600 nm. At
short times, the dam region retains the energy released by the heater and increases in
temperature with a time scale τ1 dominated by the interface resistance. At larger times,
a slow joint decay of heater and dam temperatures occurs with a characteristic time τ2

determined by the hydrodynamic resistance R2. (c) Cartoon of the two-box model in
analogy with fluids. The two boxes represent the heater and dam with the water level
indicating the temperature. For times less than τ1, the excess energy flows out of the
heater into the dam through the interface resistance until temperatures equilibrate. For
times on scale of τ2, excess energy in heater and dam escapes to the rest of the substrate
at a rate ruled by hydrodynamic effects.

102



is dominated by the intrinsic thermal boundary resistance in Figure 34b and a
longer time scale (τ2 ∼ 1 ns) which is dominated by the hydrodynamic effects
in Figure 34c. Figure 34c also displays the splitting of the decay times between
effectively isolated and close-packed experiments, i.e. the increase in dissipation
efficiency for close-packed heat sources. In Figure 34d, we plot the weight of the
hydrodynamic dominated decay, a2 in 117, which shows a transition from a pri-
marily hydrodynamic decay for small heaters, to a decay ruled by the thermal
boundary resistance at large sizes. This is expected as large sizes should con-
verge to the Fourier prediction, which contains a single time scale. Therefore, the
size-dependent effective boundary resistance extracted by the effective Fourier
model in Refs. [57, 92] can be re-interpreted as capturing the weighted average of
the time-scales (τ1, τ2) generated by a size-independent boundary resistance and
size-dependent localized hydrodynamic effects. Remarkably, the observation of
a second non-Fourier exponential decay with a well-defined characteristic time
is an indication of the manifestation of a single length scale governing the sub-
strate diffusion, in good agreement with the generalized hydrodynamic model.
This contrasts with alternative descriptions like the BTE/RTA approach (see sec-
tion 2.5), which introduce multiple length scales to describe heat transport in
Silicon.

The information condensed in Figure 34 is more easily understandable by
identifying all the double exponential decay coefficients for an specific sam-
ple and analyzing the sensitivity of the decay to changes in the hydrodynamic
(KCM) parameters values. Here we consider two examples that represent two
different situations. On one hand, consider the double exponential decay for iso-
lated small heaters with size L = 30nm and periodicity P = 400nm (τ1 = 68ps,
τ2 = 1470ps, a2 = 1 − a1 =0.7). The thermal evolution for this sample is repre-
sented with blue lines in the two top plots of Figure 35. The influence of modi-
fying the non-local length ` or the boundary resistance value R1 is displayed in
the left and right plots, respectively. Note that the smaller time τ1 is determined
by R1 and the larger one τ2 by `, so each decay is associated to a different mech-
anism. In this case the weight a2 > 0.5 and the hydrodynamic time is larger than
the TBR dominated time (τ2 > τ1). Therefore, the heater thermal evolution is
more sensitive to the ` value than to the interfacial resistance value R1. On the
other hand, consider the decay of large heaters with size L = 1µm (τ1 = 139ps,
τ2 = 1840ps, a2 = 0.09). In this sample the situation is the contrary with re-
spect to the previous case. The hydrodynamic weight is small (a2 < 0.1) and the
timescale τ1 determined by the TBR dominates. In the bottom plots of Figure 35
the decay for this sample is represented in blue, along with the same sensitivity
analysis of the KCM parameters. Notice that the decay is mainly influenced by
R1 while the change of ` does not have much effect. This is expected since for
large heater sizes the decay is well described by Fourier’s law along a Kapitza
interfacial resistance.

Therefore, there is a transition from the thermal relaxation dominated by hy-
drodynamic effects observed for small heater sizes, to the evolution dominated
by the interfacial resistance for large sizes. For intermediate sizes, the two mech-
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Figure 34: Reproduced from [163]. (a) The experimental change in diffraction efficiency,
with oscillations removed, for a heater line of L=250 nm and P=1000 nm (thin line)
can be fitted with a double exponential decay (thick line), from which two character-
istic times are extracted: a short time scale (red line region, τ1) and a long time scale
(blue line region, τ2). (b,c) Characteristic time τ1 and τ2 versus heater linewidths L for
effectively isolated (triangles) and close-packed (circles) experiments. KCM numerical
(analytical) results are denoted by open symbols (lines). The color intensity in the sym-
bols indicates the weight of each characteristic time in the overall decay. The short time
scale τ1 is dominated by the interface resistance, while the long one τ2 is ruled by the
hydrodynamic effects in the substrate. Additionally, the difference between the dissi-
pation of close-packed versus effectively isolated heat sources is demonstrated. (d) The
normalized weight of the hydrodynamic characteristic time in the temperature decay,
a2(= 1 − a1), is displayed versus linewidth for all experiments, showing the transition
from interface- to hydrodynamic- dominated decay as source size decreases.
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anisms are important and a double exponential decay is evident (see Figure 29).
The experimental validation of this transition is displayed in Figure 34d.

Figure 35: Sensitivity of hydrodynamic model parameters. Left Plots: Thermal decay
using the values given by ab initio values from section 3.5 (blue line) in comparison
with the same system using a non-local length multiplied by two (green) and divided by
two (red) times. Right Plots: Analogous comparison is provided but changing the used
value of the resistance R1. Top: Small heater size (L=30 nm and P=400 nm). Bottom:
Large heater size (L=1 µm and P=4 µm). Notice that the boundary resistance controls
the initial decay τ1 and the non-Fourier conduction controls the decay at larger times τ2.
Moreover, the weight of the second exponential with time τ2 increases by decreasing the
line-width.

7.4 Derivation of the Two-Box Model

Here we provide detailed derivation of the analytical expression for the parame-
ters of the double exponential thermal decay 117 predicted by the hydrodynamic
model in the case L < `. We denote x the cross-plane direction towards the sub-
strate and y the in-plane direction. The origin of coordinates is the center of the
interface.

In KCM, the heat flux in the substrate is described through the hydrodynamic
heat transport equation 76 along with the energy conservation equation 75. We
neglect the term τ ∂q

∂t
in 76 because it does not play a significant role in the present
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experimental conditions. We also neglect the thermo-elastic coupling in the en-
ergy conservation for simplicity. We consider the Stokes regime L < ` (heat
transport dominated by viscosity); then one can neglect the term q in (76) close
to the heater since we expect `2∇2q ∼ `2

L2q. It is worth to note that the heat flux
profile saturates after a fast transient and viscosity remains constant during the
rest of the experiment. The heat flux profile saturation time can be estimated as
`2/χSi = 341ps. To illustrate this, in Figure 36 we show the time evolution of the
different terms in equation (76) at x = L and y = 0 with L = 20nm.

Figure 36: Time evolution of the hydrodynamic heat transport equation terms at x = L
and y = 0 with L=20 nm.

We have
κSi

`2
∇T = ∇2q + α∇(∇ · q). (119)

Now we perform integration in the region dominated by viscous effects x < 2`:

κSi

`2

∫ 2`

0

∇Tdx = −κSi

`2
(T2 − T 2`

2 ) =

∫ 2`

0

dx(
∂2qx
∂x2

+
∂2qx
∂y2

) + α

∫ 2`

0

dx
∂∇ · q
∂x

, (120)

where T2 is the substrate temperature at the interface x = 0 and T 2`
2 is the sub-

strate temperature at x = 2`.

At the time scales considered in the experiment T 2`
2 is constant and close to

the initial temperature T∞2 = T0. Moreover, during the experimental time scale,
the heat flux and its derivatives at x = 2` are neglectable in front of the heat flux
and its derivatives at the interface x = 0.

Therefore, we can perform integration of 75 in the hydrodynamic region to
obtain ∫ 2`

0

dx
∂∇ · q
∂x

= cSi
∂T2

∂t
, (121)

or, equivalently,

8

∫ 2`

0

dx
∂2qx
∂x2

= cSi
∂T2

∂t
+
∂qy
∂y

∣∣∣
x=0

. (122)
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Introducing 121,122 in 120, we obtain

κSi

`2
(T2 − T∞2 ) + (1 + α)cSi

∂T2

∂t
= −

∫ 2`

0

dx
∂2qx
∂y2
− ∂qy
∂y

∣∣∣
x=0

. (123)

Now we average equation 123 over all the interface points y ∈ [−L/2, L/2].

κSi

`2
(T̄2 − T∞2 ) + (1 + α)cSi

∂T̄2

∂t
=
B

L
q̄x (124)

where T̄2, q̄x are the average temperature and heat flux in the interface, respec-
tively, and

B = −

∫ 2`

0
dx
∫ L/2
−L/2 dy

∂2qx
∂y2

q̄x
−

2qy

∣∣∣
y=L/2 & x=0

q̄x
(125)

is a geometric parameter related with the average heat flux profile in the hydro-
dynamic region. This parameter saturates because the heat flux profile reach a
stationary situation as can be seen in Figure 36. The saturated value can be esti-
mated from the COMSOL simulations. We obtain a constant value for L < ` in
the 1D geometry: B = 3.

Diffusion in the heater region is extremely fast and hence the temperature of
the heater T1 is uniform within the time scale of the experiment. Therefore, using
the averaged form of a Kapitza interface boundary condition q̄x = T1−T̄2

R1
in (124)

we obtain the following evolution equation

τS
R2

dT̄2

dt
= − T̄2 − T∞2

R2

+
T1 − T̄2

R1

(126)

where

τS =
(1 + α)cSi`

2

κSi

(127)

and

R2 =
B`2

κSiL
(128)

is the viscous resistance.

Consider now the energy conservation in the heater cNi
∂T1
∂t

= −∇ · ~q. By per-
forming volume integration of this equation with using the Kapitza interface
boundary condition and the insulation condition for the other boundaries, we
obtain an independent evolution equation

cNih
dT1

dt
= −T1 − T̄2

R1

. (129)

Notice that, in the derivation of the evolution equations (126,129), a simplified
Kapitza interface condition have been used i.e. the hydrodynamic contributions
to the interface boundary condition (92) have been neglected for simplicity. The
inclusion of the hydrodynamic contributions to the boundary condition (which
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cause only small deviations for extremely small L < 50nm) can be found in the
ending notes of this subsection.

The heater temperature T1 can be obtained from the system of partial differ-
ential equations 126,129:

T1 − T∞2 = a1 exp(−t/τ1) + a2 exp(−t/τ2). (130)

In the case of isolated heaters (R1 < R2), the system 126,129 can be simplified
and we obtain

τ1 = R1
cNihτS/R2

τS/R2 + cNih
≡ R1

C1C2

C1 + C2

≡ R1Ceq (131)

τ2 =
BcNi`

2

κSi

h

L
+
cSi`

2(1 + α)

κSi

= cNihR2 + τS ≡ (C1 + C2)R2 (132)

being C1 = cNih, C2 = τS/R2 the heat capacities of the heater and the dam region,
respectively. With these definitions, the system 126,129 is equivalent to 115,116
in the main text.

In the case considered here (τ1 < τ2 i.e. R1 < R2),

a1 =
τS/R2

cNih+ τS/R2

=
C2

C1 + C2

(133)

a2 =
cNih

cNih+ τS/R2

=
C1

C1 + C2

(134)

If R1 ∼ R2, then the system (126,129) needs to be solved with no approxima-
tions. This is the case of interest for small L and P = 4L (close-packed situation)
in which we use a reduced non-local length `eff (reduced R2). See the ending
notes of this section for details.

For illustration, in Figure 37 we show the comparison between the analytical
prediction 130 for the heater temperature evolution T1(t) with L = 20 nm and
P=800 nm compared with the Finite Elements calculation.

Figure 37: Expression 117 with parameters 131,132,133,134 compared with the simulated
thermal decay of the heater according to KCM obtained using COMSOL Multiphysics
for L=20 nm and P=800 nm.
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Note I: Solutions of the system of partial differential equations 126,129

Here we revisit the solutions of the system of partial differential equations
(126,129). Exponential solutions exp(tw) satisfy

w2 + w(
1

R1Ceq
+

1

τS
) +

1

τSC1R1

= 0 (135)

being w the roots of the system characteristic polynomial. There are always two
real negative roots w1 = −1/τ1 and w2 = −1/τ2. In order to find the expres-
sions (131,132) for the characteristic times we assumed R2 > R1 and hence we
simplified the previous equation to

w2 + w(
1

R1Ceq
) +

1

τSC1R1

= 0 (136)

Regarding the weights of the double exponential, in general we have

a1 =
τ1

C1R1

τ2 − C1R1

τ2 − τ1

(137)

a2 =
τ2

C1R1

C1R1 − τ1

τ2 − τ1

(138)

which in the case τ1 < τ2 simplify to equations (133,134).

Notice that equations (135,137,138) are the general system of equations for the
parameters τ1, τ2, a1, a2. Now consider the two geometrical regimes:

(i) Isolated situation (P − L > 2`): In this case R2 > R1 so that the approxi-
mated equation (136) can be used and the explicit analytical expressions (131,132)
for τ1, τ2 are very close to the exact solutions of the general equation (135).

(ii) Close-packed situation (P = 4L and small L): In this case `eff = (P − L)/2
so that R1 ∼ R2. In this case the use of the approximated equation (136) is not
acceptable and hence we use the exact solutions of the general equation (135) to
compare with experiments. It is easy to show that by reducing L with P = 4L, a2

goes to 1 and a1 goes to 0; τ2 goes to the Fourier decay time τF = cNihR1 and τ1

tends to zero. Therefore, we recover Fourier in this limit and we don’t expect a
clearly observable double exponential decay. In particular, for L < 50nm, P = 4L
we expect a single exponential decay as in the Fourier-based description. This
limit is consistent with experimental observations as shown in Figure 34

Note II: Inclusion of the hydrodynamic contributions to the interface bound-
ary condition (92) in the two box model.

Consider the hydrodynamic interface boundary condition (92) instead of the
simplified Kapitza condition. We average it along the interface with expressing
∇ · q and ∇q as quantities proportional to the interface normal heat flux q̄x (this
is possible because of the saturation of the heat flux profile close to the interface):

(T1 − T̄2) = q̄x[R1 −
1

γSiL
(βb1 − χxxb2 − χyyb3)] (139)
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where

b1 =

∫ L/2
−L/2 dy∇ · q

q̄x
= 1.5 (140)

b2 =

∫ L/2
−L/2 dy

∂qx
∂x

q̄x
= −1 (141)

b3 =

∫ L/2
−L/2 dy

∂qy
∂y

q̄x
= 2.5 (142)

are dimensionless parameters estimated from the corresponding saturated value
in the COMSOL simulations.

Now we can input this averaged boundary condition to the T̄2 evolution equa-
tion (124) and the heater energy conservation equation to obtain the two box
model system of equations. This system is exactly the same as the one previ-
ously obtained (126,129) with a redefined interface boundary resistance R′1:

R′1 = R1 +
1

γSiL
(−βb1 + χxxb2 + χyyb3). (143)

Therefore, by including the hydrodynamic contributions to the boundary con-
dition we obtain a larger thermal resistance which become explicitly geometry
dependent. This correction slightly increase the τ1 value for small sizes reported
in Figure 6 of the main text with respect to the value obtained using the simpli-
fied Kapitza boundary resistance. However, for L > 50nm, we have R1 ∼ R′1.
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8 Bismuth Telluride nanowire networks for thermo-
electric applications
In collaboration with Instituto de Micro y Nanotecnología de Madrid (IMM)

In this Chapter we model the stationary thermal response of a bismuth telluride
complex device designed for thermoelectric applications at room temperature.
Our aims here are to increase the number of studied materials using the hy-
drodynamic model, and to show how the model can be used to envision and
characterize new devices.

In recent years, great efforts have been devoted to enhance the thermoelec-
tric efficiency of different materials through nanostructuration [143, 144]. For
example, the reduction of the effective thermal conductivity observed in systems
of nanowire (NW) arrays has driven much attention to this kind of structures
[171]. One highly efficient way of obtaining a great number of homogeneous
NWs, as far as composition and diameter are concerned, is via electrochemical
deposition inside alumina templates [172]. Nevertheless, these structures present
drawbacks such as difficulties associated with their characterization and imple-
mentation in actual devices, given that the alumina template must be dissolved
in most cases, thus producing the collapse of the NW array.

Here, we consider a three-dimensional arrangement of longitudinal NWs of
55 nm in diameter connected by transversal interconnections, or nanocanals (TnC),
with approximate dimensions of 40 nm in height and 30 nm in width. The spac-
ing P between connections is precisely controlled by the previously tailored 3D
porous alumina (3D AAO) templates, in which the NWs are deposited by elec-
trodeposition [173]. The NWs are highly oriented along the [110], with the exact
Bi2Te3 stoichiometry and high crystallinity. Due to the TnCs, the obtained meta-
material can be made free-standing without destroying its structure (see Fig. 38)
by selectively dissolving the alumina template. Since the electrodeposition al-
lows the fabrication over large areas, and the fabricated templates at lab-scale are
of the size of several cm2, the resulting metamaterial can be measured using con-
ventional thin-film techniques. Furthermore, the 3D-structures exhibit enhanced
thermoelectric properties, which depend on the geometrical parameters of the
nanostructure. Specifically, we have obtained an increase in the thermoelectric
figure of merit, zT (see eq. 107), in 3D Bi2Te3 metamaterials when compared to
Bi2Te3 NWs and films prepared under the same conditions. This increased ef-
ficiency is the result of a reduction in the effective thermal conductivity due to
nonlocal effects, and a two-fold Seebeck coefficient increase when compared to
films and NWs. Importantly, the 3D nanostructuration does not influence the
electrical conductivity, for which the measured values are similar to those ob-
tained in the films. We have an electrical conductivity ρ−1 of 3.0·104 S/m in the
direction of the NWs, and of 6.7·104 S/m in the transversal directions.
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Figure 38: a) Scanning electron microscope (SEM) image of a free-standing bismuth tel-
luride scaffold structure obtained after the dissolution of the AAO template. In this
image, the transverse interconnections are P=220 nm apart. b) A schematic 3D repre-
sentation of the scaffold composed of perpendicular interconnected TnCs in lateral view
(top), similar to what it can be observed by SEM, and top view (down), where the hexag-
onal distribution of the longitudinal NWs and their connections can be seen. c) The SEM
image and the transmission electron backscatter diffraction (t-EBSD) of a set of three con-
nected nanowires, showing a clear orientation of the c-axis perpendicular to the growth
direction in all the structure.

8.1 Effective thermal conductivity of the 3D Bi2Te3 nanowire
networks

The thermal conductivity values for different intercannal distance P are shown
in Figure 39, along with those obtained for a 1D Bi2Te3 NW array. As it can
be seen, by comparing the results of 1D NW arrays of similar diameter inside
the 3D porous alumina (green dashed line in figure 2a) to that of the 3D Bi2Te3
scaffolds also inside the alumina, the measured thermal conductivity is lower
in the metamaterial (red curve). In Fig. 39b, the curve for the free-standing 3D
Bi2Te3 network is shown and compared to one nanowire of similar diameter. As
explained in section 3.7, both the lattice and the electronic contributions to the
thermal conductivity are significant and are accounted for.

The effective lattice thermal conductivity displayed by the structures can be
predicted by solving the hydrodynamic model in a single periodically repeated
geometry cell as shown in Fig. 39. First, consider free-standing Bi2Te3 nanowire
networks without the oxide. The stationary thermal response in the semiconduc-
tor domains is described using conservation of energy 75 and the hydrodynamic
heat transport equation 76 using the bulk thermal conductivity and non-local
length at room temperature indicated in section 3.5. In all the boundaries except
in the nanowires and the TnCs terminals we impose thermal insulation 77 and
the slip boundary condition 81 with C = 1 (diffusive phonon-boundary reflec-
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tions). In the NW terminals, we fix heat flux periodic boundary conditions with
imposing a temperature difference ∆T=1 K. In each pair of opposed TnC termi-
nals we impose periodic boundary conditions for the heat flux and the temper-
ature. From the resulting steady-state solutions, we calculate the effective lattice
thermal conductivity of the free-standing Bi2Te3 structures using expression 108
as done in section 4.2 (see 39b). Since the equations parameter values are intrin-
sic material properties (i.e. geometry-independent), exactly the same modeling
can be used to predict the lattice conductivity of isolated Bi2Te3 NWs (without
the TnCs) reported in [174] (see Fig. 40). Note that here we assumed an isotropic
thermal conductivity κ in Equation 76, corresponding to the largest component
of the bulk anisotropic thermal conductivity tensor. This component corresponds
to the direction of the temperature gradient imposed in experiments, which is the
longitudinal nanowire direction. To improve the accuracy of the predictions, an
anisotropic version of the hydrodynamic heat equation is required. However, we
expect the resulting correction to be small because the heat flux mainly flows in
the nanowires longitudinal direction. Moreover, note that predicting the effective
thermal conductivity in the direction of the TnCs using the presented isotropic
model require the use of the adequate thermal conductivity tensor component.

To compare theory and experiments in Fig. 39a, the semiconductor structure
is embedded in an oxide matrix. The oxide domains fill all the space which is
not occupied by the Bi2Te3 network in each periodically repeated cell. Since
the phonon mean free paths in the oxide are much smaller than the geometry
characteristic sizes, non-local effects are not expected, and Fourier's law 1 can be
used to describe these domains instead of 76. We use nominal thermal conduc-
tivity for the oxide alumina κox = 1.25 W/mK. In the oxide terminals contiguous
to the NW terminals, we impose periodic heat flux boundary conditions along
with the corresponding temperature difference ∆T=1 K. Similarly, in the oxide
faces contiguous to opposed TnC terminals we impose periodic boundary con-
ditions for the heat flux and the temperature. Finally, instead of the insulation
boundary condition, we impose continuity of the heat flux normal component
in the oxide-semiconductor interfaces. It is worth to note that the slip boundary
condition (Equation 81) is still required to model the heat flux tangential compo-
nent in the semiconductor domain. Conversely, this boundary condition is not
required in the oxide side. From the resulting steady-state solutions, we calcu-
late the effective lattice thermal conductivity of the Bi2Te3 structures embedded
in the oxide matrix using expression 108, considering both the area covered by
the NW terminal and by the oxide terminal.

Finally, in Fig. 39a,b we also included the contribution of the electronic ther-
mal conductivity. Using the measured electrical conductivity of the Bi2Te3 NWs
from [175] and the Wiedemann-Franz law 106, one can calculate the electronic
thermal conductivity, κe. Consider the present case of a NW diameter D=55 nm.
The corresponding electrical conductivity is 3·104 S/m [175]. The electrical con-
ductivity of the network in the longitudinal direction of the NW is the same as
in the isolated NW (the TnCs are not expected to influence electronic transport).
Therefore, the electronic thermal conductivity in all the cases under study for
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Figure 39: a) Thermal conductivity predicted by the hydrodynamic heat transport model
considering the lattice and the electronic contributions, as well as the 3D-AAO matrix,
along with the experimentally obtained values. The red line represents the thermal con-
ductivity of the composite obtained by the model, and the red points correspond to the
measured thermal conductivities obtained for different values of P . The orange line rep-
resents the predicted value for a 55 nm diameter Bi2Te3 nanowire array embedded in
the alumina matrix. b) Thermal conductivity predicted by the hydrodynamic heat trans-
port model for the self-supported bismuth telluride metamaterial scaffold, excluding the
matrix (red line). The orange line represents the predicted value for a 55 nm diameter
nanowire without the alumina template. c) Heat flux steady-state profile according to
the hydrodynamic heat transport model for a free-standing 3D network. Two differ-
ent non-local effects reducing the effective thermal conductivity of the structure can be
observed: the inhomogeneous heat flux profile in the nanowire (inset 1) and the cur-
vature of the heat flux streamlines in the regions connected by the TnCs (inset 2). d)
Heat flow in the 3D Bi2Te3/alumina composite taking the values of the bulk material for
the nanowires and comparing the hydrodynamic heat transport model and the classical
Fourier approach.
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Figure 40: Lattice thermal conductivity predicted by the hydrodynamic heat transport
model in free-standing Bi2Te3 NW with varying the diameter D.

the free standing structures is κe=0.22 W/mK. In Fig. 39a, the electronic thermal
conductivity is weighted by the areal density x covered by the NWs with respect
to the full structure including the oxide, so that the contribution of the electronic
thermal conductivity is xκe=0.14 W/mK in the structures embedded in the oxide
alumina.

In these complex 3D structures, we can identify two distinct viscous effects ac-
cording to eq. 76, which contribute to the lattice thermal conductivity reduction
observed in experiments. First, the reduction of the heat flux close to the sys-
tem boundaries as introduced in section 4.2 is also present (see Figure 39c - inset
1). This effect is the responsible of the lattice conductivity reduction in isolated
NWs as shown in Figure 40. However, in the network structures, there is an ad-
ditional and enhanced viscous effect due to the inhomogeneities in the heat flux
profile originated in the regions where the TnCs and the longitudinal NWs are
connected (see Figure 39c - insert 2). This extra viscous effect is responsible for
the further reduction of the thermal conductivity predicted in the network. The
higher the number of interconnections (that is, the lower the P ), the greater the
reduction in thermal conductivity is, as it is shown in Figures 39a,b. Moreover,
if the alumina is not dissolved from the structure (see Figure 39d), the hydrody-
namic effects dramatically modify the Bi2Te3/alumina relative contribution to
the effective thermal conductivity of the composite. According to the hydrody-
namic model, the heat flows preferentially through the alumina, since the ther-
mal conductivity of the 3D network becomes smaller than that of the amorphous
alumina. In contrast, Fourier's law (bulk) predicts exactly the opposite situation.

Finally, note that, for bismuth telluride, the hydrodynamic model is predic-
tive beyond the applicability condition determined for silicon in Chapter 4. In
this case, the non-local length is similar to the NW diameter, and we predict a
radial Poiseuille-like heat flux profile in the NWs (see Figure 39c - inset 1) rather
than the emergence of non-overlapping boundary layers surrounding the system
boundaries as observed in films.
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8.2 Seebeck coefficient of the 3D Bi2Te3 nanowire networks

The other main difference of the Bi2Te3 NW networks versus electrodeposited
thin films or nanowires, is the increase in the measured Seebeck coefficient. Tak-
ing into account that the carrier concentration is similar in films and in 3D nanos-
tructured metamaterial, to understand the origin of the Seebeck coefficient in-
crease in the metamaterial, two competing effects may be considered: the crys-
tallinity and the topological surface states. On the one hand, the crystallinity in
the 3D nanostructured metamaterial and in the nanowires is higher than in the
20 µm-thick films. It has been observed that the increase in crystallinity increases
the Seebeck coefficient. For instance, in Bi2Te3 when the samples are annealed
[176] or have a larger grain size [177], the Seebeck coefficient can increase up to
tenfold. On the other hand, the influence of the topological surface states (SSs)
is known to be detrimental to the Seebeck coefficient. This has been shown in
closely related systems, such as Sb2Te3 thin films [178] or Bi(1− x)Sbx nanowire
arrays [179].

In nanocrystalline, stoichiometric and strongly oriented films grown by the
same pulsed deposition method, a Seebeck coefficient of about -60 µV·K−1 has
been measured. For stoichiometric, one dimensional, 55 nm diameter Bi2Te3
nanowires, the Seebeck values measured in the nanowire direction are of the
same order of magnitude, around -55 ± 3 µV·K−1. These are among the best
values for this nanowire diameter reported in the literature (- 30 µV·K−1, to -57
µV·K−1 [180]). Thus, it appears that in the case of 1D nanowires of 55 nm an
increase should be observed because of the increase in crystallinity versus the
films, but it is not measured because of the influence of the topological surface
states at those diameters, which reduce the effective Seebeck coefficient.

However, in 3D Bi2Te3 metamaterial produced similarly as films and 1D wires,
we have measured Seebeck values in the in-plane direction (i.e. parallel to the
TnCs) which range from -103 ± 5 to -127 ± 6 µV·K−1. These are more than
twice the value found in 1D nanowires or electrodeposited films prepared un-
der similar conditions. It must be stated that no further thermal treatment has
been performed on the 3D scaffoldings in order to be compared to the 1D 55 nm
nanowire template and films. This startling increase in the Seebeck must be at-
tributed again to the presence of the interconnecting nanocanals. A possible rea-
son for the observed increase in the Seebeck may be the increase in crystallinity
versus the films. Another possible reason can be a reduction or disappearance
of the negative influence of the topological surface states in the Seebeck coeffi-
cient, since the diameter of the TnCs is smaller (between 30 to 40 nm depending
on the direction). Indeed, it was experimentally observed that Bi0.85Sb0.15 NWs
raised their Seebeck coefficient a factor of 2 when the diameter was reduced to
41 nm from the minimum-Seebeck corresponding to a diameter of 58 nm [179].
This reduction in the detrimental character of SSs was attributed to SS hybridiza-
tion, where the bulk-extending tails of surface states from opposing boundaries
overlap. This opens a gap in the surface states [181, 182], reducing the carrier
concentration in the SS and increasing the Seebeck coefficient. Another possible
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source of gap opening is that, in a NW configuration, surface states must be an-
tiperiodic when circling the NW perimeter, thus leading to gap formation [183,
184].

To measure the Seebeck, the structure is electrically insulated J · n = 0 and a
temperature difference ∆T is imposed in the direction transversal to the NWs.
All the boundaries except the system terminals are thermally insulated 77. From
the resulting electrical potential difference divided by ∆T , the Seebeck coeffi-
cient of all the structure is obtained. For modeling, the thermal equations should
be coupled with the electric current and field using Eq. 105. It is worth to note
that if we use the hydrodynamic equation 76 instead of Fourier's law for the
Seebeck characterization, the obtained local ∇T in the connections between the
NWs and the TnCs is increased with respect to the Fourier's description. Conse-
quently, the thermoelectric effect is locally enhanced in the connections and the
Seebeck coefficient in these regions influence more the Seebeck in the complete
structure. Moreover, note that the hydrodynamic model predicts a reduced heat
flux through the structure (consistent with the measured reduction of the effec-
tive thermal conductivity). Therefore, the contribution of the phonon drag to the
Seebeck coefficient is further reduced in the nanostructures. Nevertheless, the
phonon drag contribution is expected to be negligible at room temperature even
in bulk situations. Taking into account this remarks, future work should aim to
characterize the Seebeck coefficients in each region of the complex structure, and
quantize the influence of the topological surface states or the crystallinity in this
kind of systems.

Since the Seebeck and the thermal conductivity are measured in different di-
rections, an experimental value for the zT of the network is not accessible. How-
ever, the thermoelectric efficiency of the network operating with thermal gradi-
ents along the direction of the TnCs is promising. On one hand, experiments
demonstrate a strong increase on the Seebeck coefficient when measured in that
direction. On the other hand, according to the hydrodynamic model, the lattice
thermal conductivity reduction observed in the NWs longitudinal direction is
expected to take place, and even to become enhanced, in the TnCs direction.
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9 Second sound in Germanium in a rapidly varying
temperature field
In collaboration with Institut de Ciència de Materials de Barcelona (ICMAB)

In the previous sections we have shown the influence of non-local effects to de-
scribe a variety of experimental observations both in transient and steady-state
conditions. In this section we discuss a distinct non-Fourier phenomena, the
second sound propagation, which is usually hindered by the dominance of non-
local effects but it is included in the generalized hydrodynamic heat transport de-
scription. First, we discuss the emergence of this effect from a theoretical point
of view, and then we demonstrate its existence in germanium using modified
FDTR techniques.

9.1 Memory effects

The spatiotemporal propagation of the temperature field in the form of waves
is known as second sound, a term that was adopted in analogy to first sound
(or simply sound, i.e., mechanical lattice vibrations). Second sound in solids
was first experimentally observed in solid He [114]; later in NaF [115], Bi [185],
and SrTiO3 [116]; and most recently highly oriented pyrolytic graphite [48, 186].
Several theoretical works have also recently addressed its occurrence in low-
dimensional systems [18, 110, 111]. In all these experimental observations of
second sound, the dominance of momentum conserving phonon scattering with
respect to resistive phonon scattering was found to be the key mechanism lead-
ing to its observation. Second sound was thus observed almost exclusively in
the collective regime, i.e. at very low temperatures (T < 5 K), or at higher tem-
peratures (125 K) for samples with low Resistive phonon scattering [48, 186]. A
condition for the experimental detection of second sound, based on these experi-
mental observations [48, 114–116], was found to be τN < texp < tR; i.e., the typical
experimental observation times (texp) must be larger than Normal phonon scat-
tering times (τN ) to allow momentum redistribution but smaller than Resistive
phonon scattering times (τR) to avoid decay of the displaced distribution 22 into
the phonon equilibrium distribution. This interpretation is supported by recent
experimental evidence, where the emergence of second sound was modeled us-
ing the Callaway model (see section 2.2). It is shown that by including the role of
the Normal collisions in numerical BTE solutions, the relaxation of an optically
induced thermal grating displays an oscillating behavior at low temperatures
in graphite, in good agreement with experiments [48]. According to this inter-
pretation, removing the role of the Normal collisions lead to the standard RTA
approach and the initial temperature profile exponentially relax back to equilib-
rium without displaying wave-like behavior. This seems to be consistent with
the experiments since the temperature oscillations are shown to be suppressed
at high temperatures, where Normal collisions do not dominate. An alternative
interpretation of this transition by increasing the temperature is provided below.
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The theoretical foundations of second sound were set in the 1960s by M. Chester,
R. J. Hardy, C. P. Enz, and co-workers [50, 54, 108, 117], who predicted the ex-
istence of Drifting second sound, i.e., a type of wave-like heat transport that is
triggered by the dominance of Normal phonon scattering events. This type of
second sound was experimentally confirmed in the previously introduced works
[48, 114–116]. However, the existence of a Driftless or High-Frequency type, as
well as other types of second sound, was also envisioned. In this case, the dom-
inance of Normal scattering events is not a necessary condition for the existence
of wave-like heat transport. The key general condition for the wave-like heat
transport was shown to be the slow relaxation of the heat flux as compared to
the experimental time scales, and the absence of non-local effects. In this section,
we discuss in detail these two conditions, and we show how the generalized
hydrodynamic model encompasses all the wave-like heat transport processes.

From a mesoscopic perspective, second sound is the transport regime where
the time-derivative of the heat flux in the transport equation 76 is non-negligible.
This general definition was already introduced by Hardy [50] or Chester [117],
and used in many more recent works [187–189]. However, other authors [190],
restricted the existence of Second Sound to situations where a complete temper-
ature oscillation could be obtained. The later defintion is probably more useful
for applications, but in this thesis we use the former definition because we are in-
terested on deviations from purely diffusive transport from a fundamental point
of view.

The first natural requirement is that the external perturbationQ is fast enough
to increase the magnitude of the time-derivative of the heat flux in equation 76,
thus, unlocking memory effects causing deviations from Fourier. In other words,
the characteristic excitation frequency f should satisfy

1 . fτ. (144)

The second condition for the emergence of second sound is more elusive even
though it was already pointed out by Hardy 50 years ago [50]. As introduced
in 2.2, the phonon distribution can be written in terms of the eigenvectors of the
collision operator of the Boltzmann Transport Equation (the so-called relaxons
[15]) . The relaxons are linear combinations of phonons that exponentially relax
to equilibrium due to collisions with a well-defined relaxation time (the inverse
of its associated eigenvalue Ωα). The relaxons do not diagonalize the drift oper-
ator of the BTE, and hence we do not have well-defined velocities for relaxons
as we do have for the phonons. Under the drift operator, the relaxons evolve
into new combinations of relaxons with complicated transitions relating all the
eigenvectors. In the original work by Hardy [50], the second condition for the
emergence of second sound can be found in section VI (expression 6.1):

q2|
〈
θ1|D|θα

〉
|2 < Ω(1)Ω(a) (145)

where q is the spatial frequency of the perturbation, D is the drift operator and
|θ1〉 is the first relaxon. This condition must be satisfied for all relaxon |θα〉 ex-
cept the only one with eigenvalue 0, which generate the local equilibrium part

119



of the phonon distribution (invariant under collisions). The relaxon |θ1〉 is de-
fined using the Normal part of the collision operator. If only normal collisions
are considered, there is an extra eigenvector with eigenvalue 0 different from
the local equilibrium one. This eigenvector generates the displaced distribution
and it is associated with the phonon crystal momentum (invariant under nor-
mal collisions). The relaxon |θ1〉 can be obtained from this eigenvector through
perturbation theory. The square-root of the left-hand side of condition 145 is the
transition rate of a relaxon |θα〉 to relaxon |θ1〉 due to drift within a region of size
L = q−1 . Therefore, this condition imposes that the exponential decay of each
relaxon due to collisions should be faster than the rate of transitions due to drift.
This condition is satisfied in the collective regime, where relaxon |θ1〉 describes
the whole non-equilibrium part of the distribution function (i.e. we have the dis-
placed distribution function) and the other relaxons are not excited. This leads to
the Drifting Second Sound. However, condition 145 can be satisfied in more gen-
eral non-equilibrium situations where the contribution of other relaxons to the
non-equilibrium state is relevant. For example, Hardy postulated the existence
of one specific kind of Second Sound out of the collective regime, the so-called
Driftless Second Sound.

The relaxons can be classified into odd and even. The odd relaxons are the
ones that have non-null contribution to the total heat flux. Consequently, if all
these relaxons decay to equilibrium independently with a well defined charac-
teristic time (no transitions due to drift) the heat flux will decay exponentially,
which is the non-diffusive signature of memory effects as can be described by
eq. 76. In accordance with condition 145, this is satisfied when the drift oper-
ator can be neglected in front of the collision operator i.e. the non-equilibrium
distribution function is spatially homogeneous in a large enough region. In such
conditions, non-local effects in equation 76 can be neglected. In conclusion, the
general conditions for the appearance of thermal waves are a fast enough exter-
nal excitation Q(q, f) that is homogeneous in space i.e. satisfying 144 and 145.

In the absence of non-local effects, the generalized hydrodynamic equation 76
reduces to the Maxwell-Cattaneo equation (along with the energy conservation
equation):

c
dT

dt
= −∇ · q +Q (146)

τ
∂q

∂t
+ q + κ∇T = 0 (147)

These equations were envisioned long time ago to introduce some inertia in the
heat flux, and avoid the causality violation in the establishment of heat fluxes as
obtained by Fourier’s law [51]. If the thermal gradient is negligible in eq. 147, the
main signature of the non-Fourier behavior described by the Maxwell-Cattaneo
equation is the exponential relaxation of the heat flux with a characteristic time
τ . Moreover, this equation describes that a fraction of the thermal energy propa-
gates as waves.

The generalized hydrodynamic model presented in section 3.2, is derived as-
suming a pseudo-equilbrium distribution in terms of the heat flux and its deriva-
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tives, which could in general be written in terms of many different odd relaxons.
The election of pseudo-equilibrium distribution function is adequate to describe
Second Sound phenomena beyond the Drifting or the Driftless cases, and may
resolve an apparent discrepancy between velocities of the different types of Sec-
ond Sound [50]. According to the model, coefficient τ is one order of magnitude
larger than the phonon life-time appearing in the thermal conductivity (see sec-
tion 3.5). Therefore, condition 144 can be satisfied at lower excitation frequencies
than previously expected, as discussed for experimental modeling in the next
sections of this Chapter.

On the other hand, condition 145 seems to indicate that wave-like heat propa-
gation would be difficult to observe in experiments due to the role of non-locality,
which is ubiquitous in many different nanoscale experiments. Interestingly, this
interplay between different non-Fourier effects is naturally obtained if using the
complete transport equation 76. For example, in Chapter 7, non-local effects
dominate the substrate conduction and the memory term proportional to τ is
negligible. This indicates that when non-local effects emerge, second sound is
suppressed, as predicted by condition 145. A simple demonstration that this
phenomenology is naturally displayed by equation 76 is shown in Figure 41.
Consider the 1D spreading of a Gaussian temperature distribution of size L. In
Figure 41 we show the temperature profile at different times t. At t > τ , Fourier
transport is recovered and the heat pulse dissipates diffusely. If t ∼ τ and L > `,
we obtain thermal wave propagation (second sound). However, if L < `, no
pulse propagation is observed regardless the observation time t. Conversely, at
early times the initial conditions seems to persist during some transient before
diffusion take place. This phenomenology is consistent with the conditions144
and 145 for the observation of thermal waves. On one hand, condition 144 is only
satisfied when the characteristic time scale of the experiment (in this case the ob-
servation time) approach τ . On the other hand, second sound is only observed
for homogenous perturbations

`2

L2
< 1 (148)

as imposed by 145.

Indeed, using the microscopic defintion of ` in the collective regime (normal
dominant collisions) or in the kinetic regime (Resistive dominant collisions) in
the framework of the Kinetic Collective Model (see section 3.2), one can rewrite
the condition 145 as 148:

Collective regime: If normal collisions dominate, the eigenvector spectrum of
the collision operator can be obtained neglecting the Resistive collisions. There-
fore, the relaxon |θ1〉 can be accurately identified with the crystal momentum
carried by the phonon distribution. The momentum is relaxed only due to Resis-
tive collisions at the collective (mode-independent) relaxation time Ω(1) = 1

τC
=

1
<τ−1

R >−1 introduced by Guyer and Krumhansl [6] (see section 2.2), where τR is the
Resistive scattering time and <> stands for the average over the phonon modes.
Moreover, the rest of the distribution (and in particular the higher order relax-
ons) can be relaxed through normal and Resistive collisions. Therefore, in the
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Figure 41: Evolution of the initial Gaussian temperature distribution with size L at dif-
ferent times t according to equation 76. Second sound i.e. thermal wave propagation is
only observed for t ∼ τ and L > `.

collective regime Ω(α) = 1
<τN>

+ 1
<τR>

≈ 1
<τN>

for α > 1 (τN is the normal scat-
tering time). Now using the non-local length for the collective regime derived
in the original Guyer and Krumhansl work [6] `2

C = 1
5
< v2τN >< τ−1

R >−1 (see
section 2.2) in condition 145, we obtain 148.

Kinetic regime: If Resistive collisions dominate, the eigenvector spectrum of
the collision operator do not correspond to the one of its Normal part and hence
the relaxon |θ1〉 can not be associated with the distribution crystal momentum.
Therefore, all relaxons evolve through Resistive and Normal collisions so that
Ω(α) = 1

<τR>
+ 1

<τN>
≈ 1

<τR>
for α > 0. Now using the first order approximation

presented in section 3.2 for the non-local length in the kinetic regime `2 = 1
5
<

v2τR >< τR > in condition 145, we obtain 148.

At this point, it is worth to recall that an effectively reduced non-local length
`ef is required for the description of the nanostructure cooling experiment 7 when
the distance between heat sources is reduced beyond the applicability condition.
Therefore, this kind of geometric constraint in the experimental conditions seems
to provide an alternative way to fulfill condition 148 by reducing `. At the mo-
ment, a validated model for the effective reduction of ` is unavailable. However,
the reduction of this parameter due to very abrupt spatial perturbations was pre-
viously envisioned in terms of the role of higher order moments of the distribu-
tion function [68] (which are not considered in the ab initio derivation of 76). Fur-
thermore, this effect may be used to reinterpret the transition from non-local ef-
fects (reduced conductivity) at high temperatures to memory effects (heat waves)
at low temperatures in thermal grating relaxation experiments in graphite [48].
In that particular experiment, the non-local length may be smaller than the grat-
ing period at high temperatures and non-local effects manifest, whereas it may
be effectively reduced at low temperatures due to the increase on the MFPs to
sizes much larger than the grating period, thus unlocking second sound. Fur-
ther understanding and validation of this alternative way to satisfy condition
145 could be key to manipulate second sound for applications.

In the following sections, we consider a Frequency Domain Thermoreflectance
experiment with directly heating the semiconductor sample (i.e. without using
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a metallic transducer). We first discard the existence of non-local effects in such
conditions due to the excited region being one order of magnitude smaller than
the intrinsic ` (the optical penetration of the laser is extremely small). Hence,
we simultaneously satisfy in experiments conditions 144 and 145, which allow
measuring memory effects in Germanium even at room temperature.

9.2 Frequency Domain Thermoreflectance in the absence of metal-
lic transducers

As discussed in the previous section, wave-like heat transport in the presence
of a volumetric heat source Q is described by the combination of the Maxwell-
Cattaneo heat equation 147 and the energy conservation equation 146. The model
equations can be compactly written as the hyperbolic heat equation (HHE):

τ
∂2T

∂t2
+
∂T

∂t
− κ

c
∇2T =

1

c

(
Q+ τ

∂Q

∂t

)
. (149)

The HHE describes the propagation of a temperature wave with a damping
term given by ∂T

∂t
and a propagation velocity vSS =

√
κ
cτ

. The solutions of this
equation lead to different heat transport regimes, depending on the temporal and
spatial length scales under investigation. The usual thermal diffusion (parabolic)
equation is obtained by neglecting the terms proportional to τ .

Now, we proceed to show that it is possible to observe a type of high-frequency
second sound as described using Eq. 149 in natural bulk Ge by driving the
system out of equilibrium with a rapidly varying temperature field [191]. Our
concept is based on taking advantage of the second-order time derivative in the
HHE, Eq. 149, in a frequency-domain experiment. As the driving frequency in-
creases toward the hundreds of megahertz range, the relative weight of this term
with respect to the damping term (first-order time derivative) increases propor-
tionally to the frequency upon a harmonic excitation, hence enhancing the non-
Fourier memory effect and satisfying the first condition for the observation of
second sound 144 discussed in section 9.1. We show that this approach is robust
enough to expose second sound independently, to a certain extent, of the phonon
scattering rates of the studied material, as well as of temperature. Note that this
indicates that it is possible to observe second sound in the high-frequency limit
beyond the collective regime (see section 3.1), since heat transport in Ge is dom-
inated by Resistive phonon scattering processes.

Our experiments are based on a frequency-domain optical reflectance pump-
and-probe approach based on two lasers with different wavelengths (λpump=405
nm and λprobe=532 nm) focused onto the surface of a Ge sample to a spot size
with radius Rspot=5.5 µm. The studied samples are pieces of a substrate of nat-
ural Ge. The experiment is similar to the one discussed in section 6, but instead
of using a metallic transducer, the semiconductor substrate is directly heated us-
ing the laser excitation and the thermoreflectance signal is originated in the Ge
surface. The pump laser is modulated between 30 kHz and 200 MHz with a
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sinusoidal power output waveform, leading to a dynamic modulation of the op-
tical reflectivity of the surface of the sample, which is also well described by a
harmonic waveform. A frequency-dependent phase lag gradually develops, de-
fined as a phase difference between the harmonic thermal excitation, Q, and the
response of the sample, T , which can be modeled using Eq. 147 in the present
experimental conditions. The choice of Ge as a candidate for the observation
of second sound is not arbitrary, and it is mostly based on the large optical ab-
sorption coefficient of this material for the wavelengths used in this experiment.
The optical penetration depth of the pump and probe lasers is δpump=15 nm and
δprobe= 17 nm, respectively. These particular conditions make Ge an ideal mate-
rial for this study, because the small penetration depth of both lasers ensures that
the measured phase lag is local and, thus, accurately describes the oscillations of
the thermal waves. The penetration depth of the pump and probe lasers should
be compared with the thermal wavelength vSS/f . At room temperature and the
highest excitation frequency considered, vSS/f=840 nm, thus considerably larger
than the optical penetration depth.

It is worth to remark that we neglect nonlocal effects (i.e. the Laplacian term
in Eq. 76) in the hyperbolic heat equation 149 to model the present measure-
ments. Instead, we assume the Maxwell-Cattaneo heat equation 147 which only
adds a memory term (i.e the time derivative of the heat flux term) to Fourier's
law. The full hydrodynamic equation 76 can not be applied in this experiment
due to the non-local length of Ge being much larger than the length scale of the
perturbed region (δpump < `). In fact, the experimental measurements can not
be reproduced using Eq. 76 due to the large influence of nonlocal effects even
at small heating frequencies, where the experimental data can be reproduced
with Fourier's law. Therefore, similarly to the experiments presented in section
7 for close-packed heaters, the non-local length is reduced to very small effective
values in the present non-equilibrium conditions (more details about the appli-
cability of the hydrodynamic model can be found in section 4.4). Importantly, the
reduction of the non-local length to negligible values allows satisfying the sec-
ond condition for the observation of second sound 145 discussed in section 9.1.
Future work should address the attenuation of nonlocal effects under the present
conditions and its influence in the propagation of thermal waves. Indeed, accord-
ing to the hydrodynamic model, controlling the conditions to suppress non-local
effects is key to unlock memory effects (i.e. second sound propagation) as im-
posed by condition 145 (see Fig. 41 in section 9.1).

9.3 Thermoreflectance Signal Analysis

In the experiments discussed in section 6, which are also based in the frequency
domain thermoreflectance technique, the thermoreflectance signal comes from
the metallic transducer and only depends on the temperature. However, in the
present experiments without transducer, the changes ∆R of the optical reflec-
tivity of the Ge surface upon the pump laser excitation are also depending on
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the modulation ∆n of the carrier concentration in the conduction band. The re-
sulting ∆R at the energy corresponding to the probe wavelength is provided by
the first-order expansion ∆R = ∂R

∂T
∆T + ∂R

∂n
∆n [192]. Interestingly enough, the

contribution provided by the variation of the carrier concentration is expected to
dominate the way the reflectivity is affected in experiments, like the present ones,
involving pulsed laser sources, i.e., for high electronic excitation densities [193,
194]. However, in our excitation conditions, the electronic contribution to the
optical reflectivity can be neglected; hence, the optical reflectivity is dominated
by the temperature of the lattice ∆T for all excitation frequencies as in section 6.
We demonstrate this by studying the relative magnitude of ∂R

∂T
∆T and ∂R

∂n
∆n. In

particular, we take advantage of the fact that for bulk Ge, ∂R
∂T
' 0 at 220 K for 532

nm of probe wavelength (see Figure 42), whereas ∂R
∂n

is expected to be tempera-
ture almost independent between 220 K and room temperature. Furthermore, ∂R

∂T

exhibits a sign inversion at this temperature, which is reflected in a change of the
phase lag by an angle of π. Figure 42 displays the temperature dependence of
∆R/R, as well as the phase lag for low (30 kHz) and high (100 MHz) modulation
frequencies f , and for a constant pump power of∼10 mW. The reflectivity signal
exhibits a minimum around∼220 K, followed by a slow signal recovery at lower
temperatures. In the lower temperature range (T < 100 K), the lattice and elec-
tronic contributions to the phase lag have opposite signs. Hence, the measured
phase lag at high frequency in this range cannot be explained with the electronic
contribution to the reflectivity. Moreover, the optical reflectivity extracted from
ellipsometry experiments corresponding to ∆T=1 K is also shown for relative
comparison. A similar behavior is observed independently of the excitation fre-
quency, which resembles the ellipsometry data for which ∆n = 0, thus indicating
that the measured phase lag has a purely thermal origin at room temperature or
below 100 K.

To fully confirm that the electronic contribution to the thermoreflectance sig-
nal can be neglected in the present experiments, we estimated the electronic con-
tribution to the photoreflectance signal at room temperature as a function of the
excitation frequency (see inset of Fig. 42). To calculate the electronic contribution
we consider the 3D electron diffusion-recombination equation

∂n

∂t
= De∇2n− 1

τe
n− g2n

2 − g3n
3 +Qe (150)

where De is the electron diffusivity, τe is the linear electron recombination life-
time, g2 is the quadratic recombination coefficient (usually associated to band-
to-band radiative recombination), and g3 is Auger (cubic) recombination coeffi-
cient. Finally, Qe is the excited electron density introduced in the sample, which
has the shape of the pump laser weighted by the amount of absorbed photons
per unit time at a given laser power. In order to provide a conservative estima-
tion of the electron density obtained in experiments, we neglected the non-linear
terms in the electron diffusion equation, which in fact amplify the reduction of
the amount of excited electrons at high densities. In fact, we have observed that
our experimental measurements are independent of the excitation laser power at
room temperature, suggesting that the non-linear terms in Eq. 150 are not rele-
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Figure 42: Reproduced from [191]. Left: Optical reflectivity change as a function of
temperature for 30 kHz (red dots) and 100 MHz (blue dots). The black dots are the
results obtained from ellipsometry measurements to a temperature rise of 1 K (full
symbols→ ∂R/∂T <0, open symbols → ∂R/∂T >0). The lower panel displays the
phase lag of the signal with respect to the pump excitation. Note that the phase lag is
directly obtained from measurements i.e. without taking into account the sign of ∂R/∂T .
This phase lag must be corrected by ±π to compare to Fig. 43 and 45. The inset displays
calculation accounting for the thermal and electronic contributions to the reflectivity at
room temperature. Right: Thermoreflectance coefficient and reflectivity at 532 nm for a
Ge substrate, under normal incidence conditions.
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vant to compute the total reflectance signal. We assume an electron diffusivity
De=25 cm2/s and a linear recombination time τe=1 µs [195], which are conser-
vative values at the average excited densities consistent with our experimental
conditions. In the inset of Fig. 42 we show the predicted amplitude of the elec-
tronic contribution ∂R

∂n
∆n and the temperature contribution ∂R

∂T
∆T according to

the 3D electron recombination-diffusion equation 150 and the hyperbolic equa-
tion 149, respectively, at a given laser power (i.e. the energy introduced in both
simulations is equivalent). Both ∆n and ∆T are obtained by convolution with the
superficial laser probe beam. The thermoreflectance coefficient at room temper-
ature is 1

R
∂R
∂T

=-1.8·10−4 K−1 as shown in 42. Moreover, the electronic reflectance
coefficient is expected to be temperature independent and is solely determined
by the probe wavelength used, and can be estimated from experiments by vary-
ing the excitation power or the frequency at 220 K, where the thermal contri-
bution is suppressed. We obtained 1

R
∂R
∂n

=-2·10−29 m3. Thus, the resulting ratio
between the thermal and electronic contributions are in good agreement with
the measured signals at 220 K (isolated electronic signal) and at 300 K (electronic
and thermal signals combined), as displayed in the inset of Fig.42. Whereas the
lattice contribution to the optical reflectivity is at least 20-fold larger than the
electronic component at the higher frequencies, for lower frequencies, this ratio
is substantially increased.

As indicated above, we used a conservative value of the electron diffusivity
De. By increasing the diffusivity, the electron density in the surface is further
reduced along with its contribution to the reflectance signal. In contrast, the
electron reflectance signal is independent of the recombination time τe. This im-
plies that electron diffusion is the key mechanism reducing the electron density
at the observation region, i.e. the surface of the specimens, which cause the corre-
sponding contribution to reflectance to be negligible. Therefore, the higher elec-
tron diffusivity with respect to thermal diffusivity in Ge is the main reason why
the experimental signal is thermally dominated even at the highest frequencies
considered here, which are significantly larger than the electron recombination
rates. In conclusion, modelling the temperature evolution of the sample is suf-
ficient to explain the measured thermoreflectance signal at room temperature or
below 100 K, and no need of introducing the free electron dynamics is required.

9.4 Experimental Signatures of Wave-like Heat Transport

The 3D hyperbolic heat equation 149 is solved using Finite Element Methods to
calculate the phase lag between the harmonic laser excitation and the tempera-
ture response of the system. We impose the insulation condition for the normal
component of the heat flux in the boundaries. The laser energy source Q is re-
stricted to a region defined by the Gaussian function of the pump beam in the
radial direction (Rspot=5.5 µm), and an exponential decay in the cross-plane di-
rection with the characteristic length of the optical penetration (δpump=14 nm).
The temperature oscillations correspond to a weighted average across the sur-
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face of the sample computed using the Gaussian function of the probe beam as
the weight.

Figure 43: Reproduced from [191]. Phase lag versus frequency for the higher frequency
range as a function of temperature with the corresponding fits to the data point using
the 3D-HHE. In dashed lines we display the prediction based on Fourier’s law at each
temperature.

Figure 43 displays the experimental phase lag as a function of frequency be-
tween 30 kHz and 200 MHz at different temperatures. The complex thermal
response of the specimen was, at first, computed numerically within Fourier's
model, solving the parabolic approximation to the three-dimensional (3D) hyper-
bolic equation 149 (diffusive case). At low frequencies, the agreement between
Fourier's solution and the experimental data is good. For high frequencies, the
difference between the experimental phase lag and Fourier's predictions is evi-
dent. For the higher-frequency range, the experimental data show that the phase
lag (absolute value) decreases with increasing frequency. This trend cannot even
be qualitatively reproduced by Fourier's model, which predicts that as frequency
increases, the phase lag approaches−π/4 and even lower values. The full 3D so-
lution of Eq. 149 was used to fit τ and κ/c to the experimental data through the
entire frequency range, and it is shown in Fig. 43. The observed large reduction
of the phase lag with respect to the Fourier prediction indicates the emergence
of a more efficient heat transport mechanism as compared to diffusion at high
frequencies. We note that the ballistic suppression of phonons [75, 89] discussed
in section 2.5 cannot be invoked to rationalize the experimentally observed de-
pendence of the phase lag with frequency. As discussed previously in Chapter
6, a reduction of the thermal conductivity at high frequency would lead to an
increase in the phase lag (see fig. 50), rather than a decrease (absolute value),
as we observe. Conversely, the observed frequency-dependent phase lag is well
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reproduced by the hyperbolic equation 149, i.e., considering the contribution of
wave-like heat transport.

Figure 44: Reproduced from [191]. Frequency dependent thermal penetration depth cal-
culated using the solution of the HHE, the diffusive case, and the penetration depth
obtained in the high frequency limit from Eq. 149 at room temperature. The high fre-
quency experimental phase lag is shown for comparison. The crossover between both
curves defines the characteristic frequency, fc, where Ldif = LSS.

The frequency window where second sound is expected can be estimated
comparing the thermal penetration depth of the diffusive and wave-like regimes.
Figure 44 displays the penetration depth, LHHE, as well as the diffusive and wave-
like limits, Ldif =

√
κ
cπf

and LSS = 2
√

κτ
c

, respectively. A characteristic frequency

fc is obtained when LSS = Ldif, thus providing an estimation of the frequency
for which the diffusive and wave-like contributions to heat transport are sim-
ilar. As temperature decreases, the ratio between the penetration depth of the
wave-like and diffusive contributions is LSS/Ldif =

√
4πτ , which implies that

lower temperatures favor the spatial propagation of the thermal waves because
larger τ is expected and indeed experimentally observed for lower temperatures.
Wave-like effects are already present below fc, as can be observed comparing the
experimental data with the corresponding fits using Eq. 149 to the Fourier pre-
dictions, as shown in Fig. 42. The onset of wave-like effects is also evidenced by
the deviations between Ldif and LHHE as shown in Fig. 44.

The spatial dependence of the temperature field in the parabolic (diffusive)
and the hyperbolic (wave-like) cases was simulated in the direction perpendic-
ular to the surface of the sample at an arbitrary time. Figure 45 displays the
normalized temperature profiles for 15, 100, and 300 K at the highest experimen-
tal excitation frequency of ∼300 MHz. As expected, the wave-like behavior of
the temperature field exhibits a strong temperature dependence.

The complete set of fits using the HHE to the experimental phase lag is shown
in Fig. 46, and the resulting temperature-dependent fitted values using the hy-
perbolic equation 149 for τ and vSS are shown in Fig. 47. The predicted param-
eter values according to the generalized hydrodynamic model (see section 3.5)
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Figure 45: Reproduced from [191]. Finite element simulations of the spatial distribution
of the temperature field as a function of temperature in the direction perpendicular to
the surface of the sample at the highest excitation frequency of ∼300 MHz for an arbi-
trary time. The parabolic and hyperbolic solutions are shown in dashed and full lines,
respectively.

are also shown for comparison purposes. The agreement of the predicted values
with those obtained from the experiments is remarkable for T >100 K. Hence, at
high temperatures, the hydrodynamic model quantitatively captures memory ef-
fects if neglecting non-local effects. Microscopic derivation of the HHE from the
BTE within the same generalized hydrodynamic framework (section 3.2) lead-
ing to the same values for τ can be found in [191]. We note that the mesoscopic
modeling based in Eq. 149 is expected to be valid for |∆T | << T , where |∆T |
is the amplitude of the laser-induced thermal oscillations and T is the absolute
temperature as set by the cryostat. In our experiments, |∆T |max <20 K; thus, the
observed deviations between the theoretical predictions and the measured val-
ues at very low temperatures are expected. Finally, some comments about the
applicability of the HHE 149 are in order. Some problems have been raised in
the literature [196] against the physical plausibility of using the HHE to describe
the temperature field, such as the possibility of negative entropy production,
energy or temperature. These criticisms, however, are solved in the context of
Extended Irreversible Thermodynamics (EIT) (see section 2.4). In Classical Ir-
reversible Thermodynamics, the entropy is the local-equilibrium entropy, and
entropy production for a heat flux obeying the Maxwell-Cattaneo equation can
yield negative values. However, the generalized entropy of EIT always yields
positive definite entropy production. On the other hand, by just looking at the
mathematical form of the HHE, negative temperatures might be possible. How-
ever, this is avoided when introducing realistic physical constrains such as, e.g,
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Figure 46: Reproduced from [191]. (a-e) Phase lag as a function vs. frequency for different
temperatures. The black lines correspond to fits to the data point using the hyperbolic
heat equation 149, where the relaxation time and the thermal diffusivity have been fitted
simultaneously, minimizing the error of the fitting procedure. The red curves correspond
to the diffusive solution, as given by the prediction based on Fourier's law, using the
thermal diffusivity as obtained from the hyperbolic fits. (f) The thermal diffusivity as
a function of temperature extracted from the fits to the data using the hyperbolic heat
equation.
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Figure 47: Reproduced from [191]. The experimental relaxation times τ , as well as the
propagation velocity vSS are shown as a function of temperature. The dashed lines are
guides to the eye. The full lines are the ab initio calculated parameter values shown in
section 3.5.

the existence of a maximum heat flux |q|max ∼ cv̄T (with v being the average
phonon velocity), which would correspond to the limit situation where all the
thermal energy flows in one direction.

9.5 Diffusion of Hot Electrons and Influence of the Pump and
Probe Penetration Depths

It is worth addressing the heat generation process in Ge which, in the present ex-
periments, takes place through optical excitation of the electronic system. Upon
optical excitation with the pump laser at E=3.06 eV vertical transitions are in-
duced from the valence to the conduction band. We recall that the momentum
carried by photons is much smaller than the typical momentum of electrons in
semiconductors and, thus, the optical excitation must occur with |∆k|= 0. In Ge,
the principal optical bandgaps (|∆k|) in high symmetry points with high absorp-
tion at 3.06 eV correspond to the transition L3′ → L3 with an energy band gap
of 2 eV. Thus, only electron-hole pairs with ∆E < 3.06 eV can be excited, with
local densities in k-space which depend on the joint density of states between
the conduction and valence bands. In fact, for E=3.06 eV excitation, the joint
density of states is maximum for states at the L point [197]. Although electron-
hole pairs can also be excited at the Γ point, the joint density of excited states
at this point is much lower as compared to the L point [198], which is also evi-
denced by the onset of the absorption spectra in Ge at E ∼2 eV [199]. After the
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initial optical excitation process with E=3.06 eV, the hot electrons at the Z point
are scattered to the conduction band minimum, which is located at the same Z
point. The mechanism which leads to the relaxation of the initially excited elec-
trons is electron-electron scattering, with typical time constants of 100 fs [200].
On the other hand, the comparatively low amount of electrons excited at the Γ
point relax towards the Z minimum through inter-valley scattering processes in
a few hundreds of femtoseconds [201–203]. The two previous processes, i.e. (i)
initial scattering to local minima and (ii) inter-valley scattering towards the Z
point, involve the emission of optical and acoustic phonons, hence leading to the
production of heat. Note that substantial amount of energy, (3.06 eV - 0.66 eV) =
2.4 eV per absorbed photon, is transferred to the lattice before the electrons reach
local equilibrium at the Z point. After they reach the minimum of the conduction
band at the Z point, electrons are already thermalized in the sense that they do
not produce the emission of thermal phonons. Their relative energy is reduced
to E=0.66 eV, compared to the initial E=3.04 eV. Eventually, after several tens of
ps to hundreds of µs, depending on the temperature of the lattice, these electrons
relax, e.g. through the emission of photons and the absorption (anti-Stokes) or
emission (Stokes) of a phonon (required for momentum conservation), Auger
processes, defects, etc. We remark that the later recombination processes do not
produce heat, since the electrons involved are already thermalized. These elec-
trons populate the lowest energy states in the conduction band minimum at the
L point. Hence, the probability of electron-phonon scattering events, which is
the main heat generation mechanism, largely decreases since no lower energy
electronic states are available. This implies that almost not heat is created in the
electron-hole final recombination process, independently on its radiative or non-
radiative nature. Using the previous values of the relaxation time of the excited
electrons, we can estimate an upper limit for the propagation length of the hot
electrons, e.g. using the maximum drift velocity in Ge which at 300 K is 6.5·104

m/s [204]. Hence, the maximum estimated diffusion length for the hot elec-
trons is 6.5 nm. Analogous arguments leading to similar results are also valid for
holes. The estimated propagation length of the hot electrons/holes can slightly
alter the laser penetration depth as estimated from the optical penetration depth
of δpump ∼15 nm.

Therefore, we study the effect of increasing the penetration depth of the pump
and probe lasers on the phase lag response. In Figure 48, we show that if hypo-
thetically considering a larger effective pump penetration depth, the phase lag
curves would exhibit a correspondingly larger Fourier behavior in thermal trans-
port, i.e. the phase lag approaches −π/4 and even lower values. In other words,
a larger effective pump penetration depth would mask, and not fictitiously am-
plify a second sound signature. Indeed, we show that the observation of second
sound is not evident when the penetration depth of the heating region exceeds
∼100 nm. We have performed finite element calculations using the HHE varying
the penetration depth of the heated region (pump) and considering as superfi-
cial the detection region (probe), as well as varying the penetration depth of the
detection region (probe) and considering a 14 nm heating region (pump). Note
that the pump region cannot be set to be too superficial due to the energy con-
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servation considerations. Figure 48 displays the results from these calculations.

Figure 48: Reproduced from [191]. Phase lag response vs excitation frequency simulated
using the hyperbolic heat equation (HHE). (a) Influence of different penetration depths
of the heating region in the phase lag response studied for the case of surface detection.
(b) Influence of increasing the probe region on the phase lag response for heat source
with 14 nm penetration depth.

9.6 1D-Limit of the HHE and Influence of the Spot Size

As shown in Figure 44, the thermal penetration in the sample LHHE is reduced by
increasing the excitation frequency. At room temperature and the highest exper-
imentally available frequencies, the thermal penetration is significantly smaller
than the pump laser spot radius Rspot. Therefore, thermal transport is restricted
to the cross-plane direction and the system thermal response is 1D. Exploiting
this, in this subsection we derive the analytical 1D hyperbolic equation 149 so-
lutions and hence we provide a simple expression for the phase lag at high fre-
quencies and temperatures.

Consider the 1D version of the Maxwell-Cattaneo equation 147 and the energy
conservation equation 146 including the heat source induced by the pump laser
with characteristic length Lpump=14 nm:

c
∂T

∂t
+
∂q

∂x
=

Q0

Lpump
exp

(
−x
Lpump

iwt

)
, (151)

q + τ
∂q

∂t
+ κ∇T = 0, (152)
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where x is the cross-plane coordinate, Q0=1 W and w is the angular heating fre-
quency. We look for stationary solutions of the form

cT (x, t) = F (x) exp(iwt), (153)

q(x, t) = G(x) exp(iwt). (154)

Figure 49: Reproduced from [191]. Phase lag curves calculated using different heat trans-
port models: (i) 3-dimensional hyperbolic heat equation (3D-HHE), (ii) 3-dimensional
parabolic heat equation (3D-PHE, diffusive), (iii) 1-dimensional hyperbolic heat equa-
tion (1D-HHE), and (iv) 1-dimensional parabolic heat equation (1D-PHE, diffusive).

According to equations 151,152, the functions F (x) and G(x) satisfy

iwF +G′ =
Q0

Lpump
exp

(
−x
Lpump

)
, (155)

(1 + iwτ)G = −κ
c
F ′, (156)

where superindex ’ denote the time-derivative. By defining

γ2(w) =
iw − τw2

κ/c
(157)

and combining equations 155 and 156, we obtain the following second order
nonhomogeneous differential equation:

γ2G−G′′ = Q0

L2
pump

exp

(
−x
Lpump

)
. (158)
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The general solution of 158 is the combination of the homogeneous solution with
negative exponent (heat flux vanish far away from the semiconductor surface at
x = 0) and a particular solution

G(x) = A exp(−γx) +G0 exp

(
−x
Lpump

)
, (159)

whereG0 = Q0

(γLpump)2−1
andA is a constant depending on the boundary condition.

We impose the insulation boundary condition 0 = q(x = 0, t) = G(x = 0) =
A+G0 and we obtain

G(x) = G0

(
exp

(
−x
Lpump

)
− exp(−γx)

)
. (160)

Therefore, from 155,

F (x) =
1

iw

(
G0

(
exp(−x/Lpump)

Lpump
− γ exp(−γx)

)
+

Q0

Lpump
exp

(
−x
Lpump

))
, (161)

and the solution for the temperature reads

cT (x, t) =
Q0

iw

((
G0

Q0

+ 1

)
exp(−x/Lpump)

Lpump
− γG0

Q0

exp(−γx)

)
exp(iwt). (162)

The thermal penetration depth of the perturbation is then LHHE = 1/R(γ). At low

frequencies wτ <<1, we recover the classical penetration depth Ldif =
√

2κ
cw

. By
increasing the frequency, the penetration depth deviates from the classical pre-
diction and, in the limitwτ >>1, it becomes frequency-independent LSS = 2

√
κτ
c

.
These thermal penetration lengths are shown in Fig 44. Moreover, the wave-
length of the thermal oscillations is λHHE = 2π

I(γ)
. Note that at high frequencies we

obtain the limit λSS = vSS/f as expected. These characteristic lengths obtained
from the 1D-HHE properly characterize the full 3D problem as confirmed by the
Finite Elements calculations.

At the surface

cT (x = 0, t) =
Q0

iwLpump

(
G0

Q0

(1− γLpump) + 1

)
exp(iwt). (163)

The resulting phase lag between the laser and the temperature oscillation is

arg[T (x = 0, t)] = −π
2

+ arctan

(
sin θ

cos θ + Lpump|γ|

)
, (164)

where θ = arg[γ]. From 164, it can be seen that by increasing the heating fre-
quency to values close to τ−1, the wave-like thermal behavior emerges leading to
a non-monotonous behavior of the phase lag. In Figure 49 we show the 1D-HHE
solution and the 1D Fourier solution (τ=0) at room temperature compared with
the corresponding 3D solutions from both models using FEMs. It can be seen
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that the 1D solutions match the 3D numerical solutions for f >30 MHz. In fact,
in this frequency range and at room temperature the thermal penetration depth
LHHE is one order of magnitude smaller than the laser spot diameter and, thus,
the system response is effectively restricted to 1D as expected. Conversely, at
lower temperatures the thermal penetration depths are larger and the transition
to the 1D behavior is not obtained within the studied frequency range.

Now, we address the influence of the spot size and its relation to the minimum
of the phase lag response curve, which, in general, is not observed at the char-
acteristic frequency fc. As temperature decreases, fc gradually approaches the
minimum of the phase lag curve as observed in Figure 43 and 46. However, at
room temperature fc is not well represented by the minimum. The origin of this
effect is the 3D→1D heat flow transition that the system experiences as frequency
increases at room temperature. The reduction of the dimensionality causes a shift
of the phase lag minimum curve to frequencies smaller than fc. Note that this ef-
fect is only observed at high temperatures in the present experimental conditions
since, for higher frequencies (f > 10 MHz), the penetration depth (LHHE < 1 µm)
is much smaller than the diameter of the pump laser spot (∼11 µm) and, thus,
heat transport become 1D. In contrast, this effect is gradually suppressed as tem-
perature decreases since the thermal penetration depth increases, thus, leading
to 3D heat transport within all the considered frequency range. In such condi-
tions, the minimum of the phase lag curve is uniquely related to the unlocking
of wave-like effects, hence fc and the frequency of the minimum coincide. In
Figure 50 we show calculations of the phase lag using the HHE in 3D and its 1D
limit, and for different spot sizes of the heating region at room temperature. At
high frequencies the 3D and 1D solutions of the HHE are equivalent, thus, show-
ing that the system undergoes the mentioned 3D→1D transition. Consistently,
at low frequencies the 1D limit of the HHE is not a good approximation to our
experiments due to the finite size of the heating spot. However, as the spot size
increases the solution at lower frequencies gradually approaches -π/4.

The frequency position of the minimum is dependent on three parameters:
the thermal diffusivity of the sample (κ/c), the heat flux relaxation time (τ ), and
the size of the heating spot (Rspot). Figure 50 displays simulations for different di-
ameters of the heat source, and using the room temperature values of κ/c=3·10−5

m2/s and τ= 500 ps. As discussed above, by reducing the spot size the 3D→1D
transition is shifted to higher frequencies and, hence, the position of the mini-
mum becomes closer to fc. On the other hand, the influence of κ/c and τ on the
position of the minimum is rather easier to qualitatively address. Exploiting the
3D→1D transition, we explain in a simple fashion how the minimum depends on
each parameter using the 3D Fourier and the 1D-HHE for the lower and higher
frequency range, respectively. Figure 50 displays calculations of the 3D diffusive
response (3D-PHE) for different values of κ/c. In addition, we also show the 1D
limit of the HHE for different values of τ . All calculations were done for a fixed
spot size, 2Rspot=10 µm. Larger values of κ/c imply larger values of the ther-
mal penetration depth, which cause a shift to higher frequencies of the 3D→1D
transition and, consequently, the minimum of the phase lag curve is obtained at
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Figure 50: Reproduced from [191]. (Upper-Left): Numerical simulations on the influence
of different spot sizes diameter at room temperature. The dashed line corresponds to
the 1D-HHE. (Upper-Right): Calculations on the influence of increasing the thermal
diffusivity and the heat flux relaxation time on the minimum of the phase lag curve for
Rspot = 5µm. The approximate position of the minimum is given by the intersection
of the 3D-PHE with the 1D-HHE. (Lower): Experimental measurements showing the
influence of the spot size on the phase lag response.
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higher frequencies. Conversely, by increasing the value of τ the wave-like effects
(i.e. a reduction of the phase lag) are obtained at lower frequencies, which shift
the minimum to lower

9.7 Influence of Metallic Transducers

Here we compare the present experiments in bare Ge with the data obtained in-
cluding a thermal interface through the deposition of a gold metallic transducer,
which is analyzed in Chapter 6. Figure 51 displays the frequency dependent
phase lag at room temperature for the two different interfaces, Ge/oxide/Au
and Ge/Au, studied in section 6.3.

Figure 51: Reproduced from [191]. Influence of the presence of a thermal interface on the
frequency-dependent phase lag at room temperature.

It can be seen that the presence of the thermal interface between the Au trans-
ducer and the Ge substrate, as well as the Au transducer itself, dominate the
system response in the frequency range where wave-like effects are expected. In
particular, this becomes the dominant contribution over 100 MHz and the second
sound signature (i.e. the non-monotonous trend of the phase lag) is not observed.
Recall that the extremely small size of the heated region in bare Ge (smaller than
`) is what suppress non-local effects, thus unlocking memory effects as predicted
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by condition 145 (see section 9.1). However, if a transducer is used, the heat is in-
jected through the boundary and no external volumetric heat source is imposed
in the semiconductor domain, which cause interfacial and non-local transport ef-
fects to play a role as shown in Chapter 6. More work is required to understand
the attenuation of nonlocal effects and its interplay with memory effects.
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10 Computational Experiments

The generalized phonon hydrodynamic framework is capable of predicting the
thermal behavior of semiconductor samples under a variety of non-equilibrium
situations. This theory describes the evolution of macroscopic quantities like the
heat flux and the temperature, which allow easy and direct application to the
thermodynamic modeling of complex devices. However, neither the mechanical
evolution of the crystal lattice nor the phonon dynamics are directly accessible
from the model solutions. In consequence, understanding the fundamental mi-
croscopic mechanisms governing the thermal transport at the nanoscale requires
the use of alternative approaches. In this Chapter we explore the connections
between microscopic models and the hydrodynamic model presented in section
3.2. In particular, we consider a Monte Carlo solver of the BTE [32, 205] and Non-
equilibrium Molecular Dynamics simulations of the crystal dynamics [206, 207].
Such comparisons provide deeper understanding of the emergence of phonon
hydrodynamic phenomena, and also provide insight to push the limits of appli-
cability of the hydrodynamic model to smaller length and time scales.

10.1 Deviational energy Monte Carlo BTE simulations

Provided complete knowledge of the collision operator, it is widely accepted that
solving the BTE is the most reliable way to model phonon transport. As ex-
plained in section 2.1, significant progress on characterizing the phonon-phonon
scattering mechanisms has been achieved with the implementation of Density
Functional theory. However, the high computational cost and the introduction
of nanoscale energy sources or complex system boundaries has impeded the use
of the BTE for direct thermal modeling of electronic devices for long years. Nev-
ertheless, several numerical schemes have been developed to optimize the cal-
culations and to incorporate the influence of the external perturbations. Usually,
such models use simplified collision operators based in the RTA or the Callaway
approximation (see section 2.2). These numerical methods mainly include the
Monte Carlo scheme [32–35, 39], the Lattice Boltzmann Method [36], the Discrete-
Ordinate-Method scheme [45, 46], the Finite Volume Method [37],and the Dis-
crete Unified Gas Kinetic Scheme [38]. Due to the use of approximated collision
operators, energy conservation should be imposed [30, 32]. Other works aimed
to solve the full (non-diagonal) collision operator characterized with DFT using
similar numerical schemes [40–42]. Even though the use of the full (and exact)
collision operator would guarantee the energy and momentum conservation, nu-
merical uncertainty also forces these solvers to include Lagrange multipliers or
similar methods to accurately impose the conservation laws.

The main purpose here is to provide microscopic insight about the phenomenol-
ogy predicted by the hydrodynamic model and to determine which are the fun-
damental microscopic constraints required to reproduce the hydrodynamic model
predictions. To do so, we implement an energy-based, deviational Monte Carlo
solver of the BTE (MC-BTE) [32]. In order to provide an equal footing compari-
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son with the hydrodynamic model, we use a single averaged mean free path Λ
for all our deviational energy particles. In good agreement with the ab initio ex-
pression for the non-local length 72 if considering a single relaxation time, here
we assume that Λ =

√
5`. Note that Λ is significantly larger than the usual aver-

aged phonon mean free path weighted by the specific heat [208], as required for
experimental modeling (see Chapter 4). Within the Monte Carlo BTE framework,
energy conservation is strictly imposed, but the conservation of momentum is
not guaranteed during the scattering processes since the out-going particles after
scattering have random direction. In contrast, other refined Monte Carlo solvers
of the BTE carefully include the role of the Normal collisions and incorporate
the interplay between different phonon modes with a variety of MFP [40, 41].
These refined solvers predict the emergence of hydrodynamic heat flux profiles
in specific non-equilibrium conditions in 2D materials like graphene [41]. Here,
we deliberately neglect the role of Normal collisions in order to demonstrate that
the dominance of this kind of collisions is not required to observe hydrodynamic
behavior as described by eq. 76.

Similar comparison between eq. 76 and energy-based deviational Monte Carlo
simulations of the BTE with a single mean free path and with neglecting the Nor-
mal collisions have evidenced good agreement in some specific non-equilibrium
situations [16]. Specifically, the thermal conductivity in thin films and the ther-
mal response under frequency-modulated external excitations have been con-
trasted. Here we focus in a different non-equilibrium situation in which the
hydrodynamic equation has shown to successfully predict the experimental ob-
servations in section 5 and 7. We consider the process of heat release from a
nanoscale heater towards a Silicon substrate at room temperature in steady-state
conditions (see schematic of the simulation domain in Fig. 52). In such situa-
tion, the heat flux is non-homogeneously injected and the thermal response away
from the heater within the average phonon MFP length scale deviate from the
diffusive prediction. Our main objective is to demonstrate that the conservation
of momentum in this length scale due to the lack of phonon-phonon Resistive
collisions cause the heat flux initial direction to persist in the downward direc-
tion, and the resulting thermal perturbations are non-locally connected, leading
to the appearance of heat vorticity [46] in perfect agreement with eq. 76 predic-
tions.

Monte Carlo solver

An energy-based deviational Monte Carlo method is used to simulate the
Boltzmann Transport Equation [32]. The following implementation and the cor-
responding simulations were obtained in collaboration with the graduate stu-
dent Marc Gutiérrez.

While traditional MC methods are meant to obtain the phonon distribution f
by solving the phonon BTE under the RTA

∂f

∂t
+ v∇f =

f eq(T0)− f
τ

, (165)
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Figure 52: The stationary heat flux and temperature profiles are obtained according to
Fourier's, the hydrodynamic model, and the MC-BTE. The solutions presented in Fig-
ures 53, 54, 55, and 56, are represented along the indicated horizontal and vertical cross-
sections.

the energy-based formulation solves the energy projection of the BTE

∂e

∂t
+ v∇e = −e− e

eq(T0)

τ
, (166)

being v the phonon group velocity, τ = Λ/|v| the phonon mode relaxation time,
and T0 a reference temperature. Super-index "eq" denotes the Bose-Einstein equi-
librium phonon distribution and its corresponding energy, respectively. The un-
known variable is then the energy e = ~ωf , with ω denoting the phonon fre-
quency.

To increase the efficiency of the MC simulations and to accurately compute the
resulting local thermodynamic outputs like the heat flux, only the small energy
fraction transported by the deviational phonons with respect to the equilibrium
at T0 is simulated. Defining the deviational energy ed = e− eeq(T0), the transport
equation for ed reads

∂ed

∂t
+ v∇ed = −e

d

τ
. (167)

By discretizing the deviational energy in particles with fixed energy, equa-
tion (167) can be simulated in our specific experiment with strictly imposing
the conservation of energy. For comparison purposes with the hydrodynamic
heat transport equation, here we use a gray-model approximation by choosing a
mode-independent value for τ and |v|. The local temperature differences in our
numerical experiments is extremely small, so we can use fixed average properties
for Silicon at the reference temperature T0 = 300K.

First, we impose the 3D relation between the non-local length calculated for
Silicon at room temperature `=196nm (see section 3.5) and the mean free path
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Λ = τ |v| =
√

5` = 439 nm [16, 19]. Moreover, the kinetic definition of the thermal
conductivity 13 must be satisfied. In agreement with the single mode RTA: κ =
1
3
|v|Λc = 141 W/mK, where c = 1.63 · 106 J/m3K is the specific heat. Therefore,

the velocity modulus of our deviational energy particles is |v| = 591 m/s.

Note that the mean free path Λ (the velocity |v|) is significantly larger (smaller)
than the usual averaged values from the phonon population weighting by the
specific heat of each mode [208]. We are not simulating the phonon popula-
tion dynamics here, but the transport of deviational energy, which is properly
described with some specific averages that can be derived from the full BTE as
discussed in section 3.2. Furthermore, it can be shown that the resulting scatter-
ing time for our particles τ = Λ/v is the characteristic decay time of the heat flux
appearing in the hydrodynamic equation 76, as obtained from the first moment
projection of the BTE [19].

In the MC-BTE simulation, the computational domain shown in Figure 52 is
homogeneously divided into rectangular cells. Initially, an arbitrary temperature
distribution is assumed in the system. We study the evolution of the deviational
energy with respect to the equilibrium energy at the reference temperature T0 =
300K. Assuming local equilibrium, this deviational energy for a given cell at a
certain temperature T can be calculated as

∆E =
∑
p

∫
ω

~ωD(ω, p)

 1

exp
(

~ω
kBT

)
− 1
− 1

exp
(

~ω
kBT0

)
− 1

 dω, (168)

where p denotes the phonon branch, and D(ω, p) is the density of states.

The deviational energy is discretized in particles with fixed energy εd, so the
initial number of particles in a given cell is N± = ∆E/εd. The energy of each
particle εd is determined based on a trade-off between variance-reduction and
computational cost. Note that depending on the sign of ∆E, the particles repre-
sent positive or negative energy deviations.

Once the system is initialized imposing random initial direction for all the par-
ticles, in a time step of duration ∆t the particles are allowed to drift with velocity
v as indicated by Eq. 167. The ∆t(<< τ) must be chosen such that the particles
can not traverse an entire cell in one time step. After drift, the temperature of a
given cell is sampled from its deviational energy

∆E = εd
(
N+ −N−

)
(169)

by numerically inverting Eq. (168). N+
j and N−j refer to the number of posi-

tive and negative particles within the cell, respectively. Once the particles are
advected, the heat flux inside a given cell can be computed as

q =
εd

V

∑
i

s(i)v(i) (170)

where V is the cell volume, and we sum over all the particles i in the cell, with
s(i) the particles energy sign and v(i) the velocities.
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Before finishing each time step, we determine the particles that suffered scat-
tering using the scattering probability

P = 1− exp

(
∆t

τ

)
(171)

as indicated by Eq. (167).

The scattered particles are removed from the system. Then, the minimum
amount of particles in each cell to conserve energy is generated; that is, if in one
time step N+ positive particles and N− negative particles have scattered in one
cell, |N+−N−| particles in the same cell (positive ifN+ > N− and negative other-
wise) are introduced. The position and direction of the new particles are chosen
randomly inside the cell. Therefore, the energy is locally conserved in each cell
during scattering, but the momentum of the particles is destroyed (only Resistive
collisions are simulated). Furthermore, note that this process tends to reduce the
number of particles as the system approaches the steady-state situation. Thus,
the method tends to locally reduce the thermodynamic fluctuations, which is in
agreement with the notion of optimum local entropy production [5].

As shown in Figure 52, all the system boundaries except the cold isothermal
boundary in the bottom are modeled as diffusive boundaries. The incident par-
ticles to this boundaries are randomly reoriented towards the system. This kind
of boundary is mesoscopically described in the hydrodynamic model by the slip
boundary condition 81 with C = 1 and the insulation one 77 as discussed in
section 3.4. In the out-of-plane direction, periodic boundary conditions are used.

To model the nanoscale heat source in Figures 53, 54 and 55 below, in each
time step a fixed number of positive particles N is homogeneously introduced
with random direction in the nanoscale structure (width L and height L/4) dis-
played in Figure 52. Hence, the power density introduced is Q = 4εdN

L2∆t
. In the

hydrodynamic model, the power density introduced in the heater using the en-
ergy conservation equation 75 is exactly Q. In the Fourier solutions, the power
density must be increased by a different factor depending on the Knudsen num-
ber to fit the heater temperature obtained in the MC-BTE simulations, which is
another indication of the breakdown of the diffusive description.

The isothermal boundary absorb all the incident particles and generate a fixed
number of deviational energy particles in each time step with random direction,
depending on the imposed temperature Tiso according to expression (168). This
boundary condition is mimicking an interfacial boundary condition contacting
the system and a thermal bath at the mesoscopic level of description. Accord-
ingly, a Kapitza boundary condition contacting the system with a thermal bath
at fixed temperature Tiso is used:

T − Tiso = −Rbathq · n, (172)

where the resistance Rbath = 1
4c|v|=2·10−9 m2K/W, being |v|=591 m/s the veloc-

ity of the deviational energy particles used in the MC-BTE simulations, and n
the boundary normal vector. This is a particular case of the interfacial boundary
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Figure 53: The temperature profile (top), the heat flux (low) obtained from the different
models along the cross-sections indicated in Figure 52 is compared for Kn = 0.1. Position
is normalized by the non-local length `.

condition 92 derived in section 3.4 with neglecting the non-Kapitza (non-local)
terms. Such corrections are shown to have very small impact at room temper-
ature in Silicon and, hence, we neglect it here for simplicity. Note that in Fig.
56 we use this boundary condition to model the nanoscale hot source of size L
instead of introducing a power density to the heater.

Results

In Figure 53 we show comparison of the temperature and the heat flux profiles
as predicted by the hydrodynamic model (eq. 76) and the MC-BTE, when the
heater sizeL is much larger than the Monte Carlo MFP Λ (Kn = Λ

L
=
√

5`
L
< 1). For

illustration, the Fourier’s law prediction (obtained by neglecting the Laplacian
term in Eq. 76) is also shown. As expected, diffusive transport is obtained and,
hence, both the MC-BTE and the hydrodynamic predictions coincide with the
Fourier results.

In Figure 54 and 55, we show the corresponding results when the heater size is

146



comparable to the phonon MFP (Kn = 1, 2, respectively) . In such quasi-ballistic
situations, the hydrodynamic predictions deviate from the diffusive solution and
matches the MC-BTE simulations. Note that, according to the Fourier model in
such stationary situation for a given temperature of the heater, substrate heat
conduction is described by the equation ∇2T=0, which is independent of the
thermal conductivity value. Therefore, the MC-BTE temperature profiles can not
be reproduced by diffusion even with the use of an effective value of the thermal
conductivity. For larger values of the Knudsen number (Kn > 2), the hydrody-
namic prediction start to deviate from the MC-BTE simulations, showing that
the models are not completely equivalent in extremely ballistic situations. This
might be attributed to the unavoidable limitations of a mesoscopic description
based in continuous variables to describe the stochastic energy particles dynam-
ics with finite mean free path Λ. However, from figures 54 and 55, it is clear that
the mechanisms leading to the emergence of non-Fourier transport phenomena
at the nanoscale are consistently captured at the two levels of description.

In order to further compare the different models, in Figure 54 and 55 we also
compare the heat flux curl |∇×q| profile, and the local effective thermal conduc-
tivity |∇q|/|∇T |. The boundary conditions both in the hydrodynamic descrip-
tion and in the Monte Carlo simulations generate heat flux vorticity due to the
non-homogeneous energy injection to the system. In contrast, the Fourier solu-
tions are irrotational, regardless the boundary conditions used. Furthermore, it
can be seen that the existence of a non-null curl of the heat flux in the MC-BTE
simulations is quantitatively correlated in space with the reduction of the heat
flux (or the local thermal conductivity), in perfect agreement with eq. 76. Con-
sequently, the emergence of heat vorticity and the non-diffusive transport pre-
dicted by the present MC-BTE simulations is successfully captured at the meso-
scopic level of description by the hydrodynamic model.

The scarcity of Resistive collisions close to the boundaries is thus the neces-
sary condition for this non-Fourier effect to be observed. In other words, what
determines the existence of these kind of hydrodynamic-like heat transport in
stationary situations is the heater size and the observation region, rather than the
existence of intrinsic Normal collisions, which is a compatible but unnecessary
condition. Nevertheless, the Normal collisions can reduce the broadness of the
MFP spectrum of the phonons that mostly contribute to the energy conduction
due to the emergence of collective modes [55]. The presence of such collisions
may be then crucial to allow a heat transport description based in a single length
scale (i.e. the mean free path and the non-local length in the MC-BTE and the hy-
drodynamic descriptions, respectively) in materials like Silicon (see section 4.1
for an extended discussion).

At this point, it is worth to note that previous mesoscopic modeling of the
MC-BTE simulations [205] demonstrated that the Fourier predictions can be sig-
nificantly improved by using isothermal nanoscale boundaries instead of intro-
ducing a constant power density in nanoscale heaters as considered previously.
In Figure 56, we show the MC-BTE simulations with assuming a hot isothermal
nanoboundary of size L instead of the heater, and the corresponding Fourier
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Figure 54: The temperature profile (top), the heat flux (mid), the heat flux curl (down-
left), and the effective thermal conductivity (down-right), obtained from Fourier, the
hydrodynamic model, and the MC-BTE is compared along the cross sections indicated
in Figure 52, for Kn = 1. Position is normalized by the non-local length `.
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Figure 55: The temperature profile (top), the heat flux (mid), the heat flux curl (down-
left), and the effective thermal conductivity (down-right), obtained from Fourier, the
hydrodynamic model, and the MC-BTE is compared along the cross sections indicated
in Figure 52, for Kn = 2. Position is normalized by the non-local length `.
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Figure 56: The temperature profile (top), the heat flux profiles (mid), the rotational
(down-left) and the effective thermal conductivity (down-right) obtained from the dif-
ferent models is compared along the cross sections indicated in Figure 52 for Kn=1, with
using a hot isothermal boundary condition of size L instead of introducing a fixed power
density in the heater. Position is normalized by the non-local length `.
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and hydrodynamic predictions using the isothermal 172 boundary condition. It
can be seen that the Fourier predictions are significantly improved if using this
alternative way to model the experiment. In contrast to the more physical mod-
ellization of the heater used in Figures 54 and 55, in this case the injected heat
flux is homogeneous in all the hot nanoboundary, which attenuate the vorticity.
However, the hydrodynamic prediction is still more accurate than the diffusive
one, and the emergence of a non-null heat flux curl, which is a signature of non-
Fourier behavior, is still present in the simulations. Therefore, the requirement
of refined mesoscopic transport equations is demonstrated, which also allows
more flexibility when imposing the boundary conditions to reproduce an specific
experimental set up. Nevertheless, as demonstrated in [205], the use of refined
mesoscopic boundary conditions is crucial to reproduce the MC-BTE simulations
in specific non-equilibrium conditions. In particular, using a nanoscale isother-
mal boundary source to mimic the fixed energy density on the heater allows to
introduce an extra boundary condition that improves the mesoscopic modeling
even with maintaining Fourier’s law to describe the substrate thermal response.

In conclusion, the dominance of momentum-conserving collisions is not re-
quired to observe non-local or hydrodynamic phenomena as predicted by Eq.
76. The lack of collisions within the phonon MFP length scales in the boundary
regions also guarantee the momentum conservation required to unlock the non-
diffusive behavior in nanoscale heater experiments (i.e. heat vorticity and re-
duced effective thermal conductivity), which is mesoscopically described through
the inclusion of a Laplacian term in the hydrodynamic transport equation. These
results are consistent with alternative numerical solvers of the BTE [46], and
provide further theoretical justification to the applicability of hydrodynamic-like
transport models to standard materials like Silicon at room temperature.

Future work should aim to compare the hydrodynamic model and more re-
fined BTE solvers including more than one characteristic phonon mean free path.
Taking into account the hydrodynamic signatures characterized by a single length
scale (`) in experiments (Chapter 4), such multiscale models should also predict
transport phenomena characterized by the emergence of a single scale (like char-
acteristic hydrodynamic decay times in Chapter 7). However, this is not what is
obtained by state-of-the-art solvers based in multiscale RTA-BTE [75], in which
phonon mean free paths much longer than the non-local length ` manifest (see
section 4.1). Similar to the energy conservation restriction (i.e. the zero order BTE
projection) that should be imposed to these solvers [30], it may be hypothesized
that proper inclusion of higher-order BTE projections would be required to refine
this multiscale microscopic models.
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10.2 Non-equilibrium Molecular Dynamics
In collaboration with the National Institute of Applied Sciences of Lyon

(University of Lyon)

It is also possible to directly simulate the lattice dynamics at the atomic structure
level through Molecular Dynamics (MD) simulations. The trajectories and the
interaction forces of the atoms are explicitly calculated, and hence the BTE and
the complexity associated to the phonon collisions is completely avoided. From
the atomic evolution, the temperature can be defined in terms of the kinetic en-
ergy of the atoms and the heat flux via its velocity and stress [209, 210]. The
bulk thermal conductivity can be quantified in equilibrium using the fluctua-
tion dissipation theorem [211], or by simulating a thermal gradient and comput-
ing the resulting heat flux [212]. The mechanic equations of motion are classical
and, hence, the results are only valid above the Debye temperature, where quan-
tum corrections can be neglected. Remarkably, the thermal properties of bulk
Si have been characterized through this method [207], and signatures of non-
Fourier transport have been reported [213]. It is important to note that the inter-
atomic potential is approximated since the electron dynamics and interactions
are not explicitly simulated. This potential is adjusted so that the bulk thermal
conductivity measured experimentally under homogeneous thermal gradients
is obtained, but characterization of other transport parameters relevant for more
complex non-equilibrium situations, like the non-local length or the heat flux
relaxation time, have been received much less attention.

The main aim of the present section is to explore the emergence of non-Fourier
phenomena in Silicon by comparing non-equilibrium MD simulations and the
generalized hydrodynamic transport model. Specifically, we study the station-
ary heat flux profile established in nanowires and the emergence of thermal
waves under extremely localized pulsed perturbations. These computational
experiments are analyzed using effective parameters for the mesoscopic trans-
port equations since the accessible characteristic sizes and times in MD are far
beyond the applicability of the ab initio model (section 4.4). Nevertheless, it will
be shown that the signatures of non-Fourier transport at these extremely small
length scales can be still modeled using the hydrodynamic transport equations.

Heat flux profile in Silicon nanowires

Silicon nanowires are a paradigmatic case of study of non-equilibrium MD
due to its technological relevance. Current fabrication techniques have made
possible the reduction of its diameter to the tens of nanometers, for which ex-
tremely low thermal conductivities have been measured [72]. Such nanosystems
are beyond the applicability of the hydrodynamic heat transport model (see sec-
tion 4.4). However, it is still possible to explore the phenomenology arising in
these systems with the use of the hydrodynamic equation 76 with effective pa-
rameters.

The goal here is to simulate and interpret the heat flux radial profile estab-
lished in the steady-state in Silicon nanowires. In MD, the thermal gradient is
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generated by using hot (at 320 K) and cold (at 280 K) thermostats in the two ter-
minals of the nanowire [214]. The trajectories of the atoms are computed using
Verlet integration scheme, implemented in LAMMPS [215], and the interatomic
potentials from Ref. [216] are used. The simulated NWs have a length of 500 Å,
and two different radius are considered (R = 37.5 Å and R = 50 Å).

In MD, the heat flux in a volume V is defined as [209]:

q =
1

V
(
∑
i

Eivi + σi · vi), (173)

with Ei,vi, σi being the total energy, the velocity, and the stress of atom i, re-
spectively. The sum runs over all the atoms inside the considered volume V .
The virial contribution σi ·vi takes into account all the non-negligible interatomic
forces acting on atom i, as discussed in Ref. [217]. The heat flux 173 can be
calculated locally and averaged at each radial position.

In Figure 57, the heat flux obtained in MD is shown for two different NW ra-
dius, and the profile is fitted using the hydrodynamic transport equations (75 and
76) along with the slip boundary conditions (77 and 81) using effective parame-
ters κ, `, C. The obtained fitted values can be found in Table 3 for H=0 (no amor-
phous layer). The two different NWs with different radius have exactly the same
free-surface quality, so the same fraction of specular phonon-boundary reflec-
tions is expected. Consistently, parameter C does not depend on the radius (see
eq. 82). However, the fitted values ofC are smaller than 1, which is not consistent
with the interpretation of this coefficient provided in section 3.4. Probably, this
indicates that the assumption of thermalization for the phonons undergoing dif-
fusive scattering at the boundary is not precise enough at the extremely reduced
length scales simulated here. Moreover, both the thermal conductivity and non-
local length are reduced by reducing the nanowire radius, which is expected due
to the reduction of the phonon mean free paths in such confined system. Even
though the parameter values are well below the ab initio calculated values at
room temperature, the heat flux reduction close to the system boundaries can be
well reproduced with eq. 76. In other words, the heat flux boundary layers in-
troduced in section 4.2 to explain the thermal conductivity of films are observed
in MD. This indicates that, beyond the applicability of the hydrodynamic model,
non-local effects are still apparent and can be used to provide phenomenological
descriptions.

Influence of Amorphous Layers

In silicon samples exposed to oxygen, a thin amorphous layer surrounding
the system boundaries is naturally formed. The typical width H of these lay-
ers is a few nanometers. For system sizes comparable to ` (>> H), like the thin
films considered in section 4.2, the in-plane effective thermal conductivity is not
significantly influenced by these layers. However, at the reduced length scales
accessible with Molecular Dynamics simulations, one can explore the influence
of these amorphous regions by explicitly including disordered regions [218] sur-
rounding the system contours along with the corresponding crystal-amorphous
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Figure 57: Heat flux obtained in MD simulations (dots) at different radial positions for
NWs of radius R = 37.5 Å (orange) and R = 50 Å (green). The profiles are reproduced
using the hydrodynamic model (lines) with effective parameter values shown in Table 3.
In both cases, a heat flux boundary layer is observed close to the system boundaries.

interface [219, 220]. The amorphous shell thickness assumed here is H = 10 Å.

Since the phonon mean free paths are extremely small in the amorphous shell,
heat transport can be described using Fourier law in these domains (non-local ef-
fects are negligible). The thermal conductivity for the amorphous is κamorph = 1.5
W/mK as characterized from MD simulations [221]. The amorphous shell free
surfaces are insulated 77. Regarding the crystalline-amorphous interface, the slip
condition 81 is only required for the crystalline side where hydrodynamic trans-
port is expected, and continuity of the heat flux 84 is used instead of insulation.
In Figure 58 we compare the heat flux profile with and without the shell for a
crystalline radius of R =37.5 Å. The heat flux at the interface and the size of the
boundary layer is unmodified, so we obtain the same C and ` fitted values (see
table 3). However, the heat flux saturation value in the center of the nanowire
is reduced due to the presence of the shell, so the fitted thermal conductivity κ
value is reduced. The profile is unmodified by considering larger amorphous
shell thickness H .

In consequence, the amorphous layer does not modify the boundary effects
which would reflect in a modification of C or `, but modifies the intrinsic mate-
rial properties in the crystalline region since κ is affected. The dispersion rela-
tions, density of states and phonon group velocities can be characterized from
MD [206], and no influence of the amorphous shell is obtained in the present
simulations. Therefore, from the microscopic expression of κ 13, it can be con-
cluded that the presence of the amorphous shell reduce the phonon relaxation
times in the nanowires. In principle, such modification would also reduce the
non-local length according to its microscopic expression 72. However, the mode-
dependent weights of the relaxation times in the microscopic expressions for `
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Figure 58: Heat flux obtained in MD simulations (dots) at different radial positions for
NWs of radius R = 37.5 Åwithout shell (orange) and with a shell of thickness H=10
Å(blue). The profiles are reproduced using the hydrodynamic model (lines) with effec-
tive parameter values shown in Table 3. The heat flux saturation value in the centre of
the NW is reduced due to the presence of the amorphous shell, which is translated to a
reduction of parameter κ.

Table 3: Hydrodynamic parameter values fitted to the MD heat flux radial profiles for
different NW radius R and amorphous shell thickness H .

R [Å] H [Å] κ [W/mK] ` [Å] C
37.5 0 12.5 5 0.3
37.5 10 10.7 5 0.3
50 0 14 8 0.3
50 10 12.3 8 0.3

and κ are not equivalent (see section 3.5. In other words, a reduction of the re-
laxation time of a specific mode does not necessarily has the same influence on
the two different parameters. Then, the obtained fits could be explained by a
reduction of the relaxation times of the modes that mostly influence κ (interme-
diate frequencies) with leaving unaffected the modes that mainly determine `
(low frequency modes). Future work should aim verification of this hypothe-
sis by characterizing the mode-dependent phonon relaxation time in MD [222]
with/without the shell. Finally, it is known that the presence of the shell modifies
the strain in the nanowire, which can influence the thermal conductivity [223].
Hence, future work should also aim to quantitatively explore the influence of the
mechanic stress due to the shell.

Thermal wave propagation in Silicon

In Chapter 9, it is shown that kinetic materials like Germanium (where Nor-
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mal collisions are not dominant) can hold wave-like heat transport. Therefore,
contrary to common belief, the intrinsic material properties (i.e. the intrinsic
phonon-phonon collisions in the bulk) at a given temperature do not univo-
quely determine the kind of non-Fourier behavior expected. Contrarily, the non-
equilibrium situation mainly determine the emerging phenomena. In other words,
wave-like heat transport is obtained if the excitation and observation times are
reduced enough to the scales of the phonon collision times. To further demon-
strate this claim, here we show that in MD one can obtain heat pulse propaga-
tion in Silicon due to sufficiently fast and localized external perturbations in an
infinite crystal (periodic boundary conditions). Furthermore, we show that the
local kinetic energy evolution obtained in MD can be modeled using the hydro-
dynamic equations with effective parameters. In contrast to Chapter 9, where
non-local effects are neglected to model second sound, here both memory and
non-local effects are shown to be necessary for a proper mesoscopic modeling.

The numerical scheme used for the MD simulations in nanowires in the previ-
ous subsections is used here to perform the following computational experiment.
We consider an infinite Silicon crystal at equilibrium at 10 K with the use of peri-
odic boundary conditions. This temperature is below the Debye temperature, but
analogous results would be obtained at higher temperatures where MD simula-
tions are reliable. Here we use such a low temperature to reduce the background
kinetic energy that complicates the identification and tracking of the energy in-
troduced by an external perturbation. A very thin slice of 0.2 Å is perturbed us-
ing a force with arbitrary modulus that has a different random direction for each
atom in the slice. The perturbation is performed during an initial time window
of 0.36ps. The forces exerted on the atoms are weighted by a sinusoidal function
with a frequency of 12 THz. Consequently, only a characteristic propagating nor-
mal mode is excited. In other words, only one non-equilibrium phonon mode is
excited before collisions start to cause transitions to other phonon modes at larger
time scales. In consequence, the heat flux relaxation time τ would be determined
by a single mode, and the relation between mechanical sound vms and second
sound vss become the usual relation vms =

√
3vss according to the microscopic

expression 73.

In Figure 59, the local kinetic energy obtained in MD is compared with the
hydrodynamic heat transport model (equations 75 and 76). Mesoscopically, the
external perturbation is simulated as a heat source Q restricted to the excited
slice and time window used in MD. In both models, a fraction of the introduced
energy propagates as a pulse. The amount of energy transported by the wave
(height of the pulses) can be fitted through modifying the heat flux relaxation
time, and we obtained τ=3ps (for τ=0 no heat pulse is obtained). In MD, the pulse
velocity is vMD ∼ 2800 m/s. Hence, the group velocity of the traveling phonons
along random directions is vg =

√
3vMD, and the resulting thermal conductivity

κ = cv2
gτ/3=1.53·10−5 W/mK. Finally, the width of the pulses is controlled by the

non-local length (see Figure 60), and we obtained `=3nm. Since this non-local
effect neither modifies the fraction of evacuated energy by the waves nor the
waves velocity, it is not required to model a global observable like the phase lag
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Figure 59: Local kinetic energy obtained in MD simulation (left) at different times un-
der the localized external excitation in crystalline Silicon. The profiles are reproduced
using the hydrodynamic model (right) with effective parameter values. In both cases, a
propagating thermal pulse is obtained.

Figure 60: The thermal wave propagation according to the hydrodynamic model is
shown for three different values fo the non-local length `. This parameter determines
the width of the propagation pulses, without modifying the velocity or the amount of
transported energy by the pulse.

in frequency-domain thermoreflectance experiments (Chapter 9). However, it is
necessary to accurately model the shape of the pulses obtained in MD, which are
clearly not well described by only considering memory effects as shown in Figure
60. This is the only case where both memory and non-local effects are simulta-
neously observed within this thesis. Given the crucial relevance of the interplay
between these two phenomena on the conditions to unlock second sound (see
section 9.1), future work should aim to perform similar experiments using MD
and extend the present analysis.

It is also worth to mention that, if a longitudinal excitation is used instead of a
random one (i.e. if the direction of the external force is fixed for all atoms in the
slice), the external kinetic energy does not thermalize but completely propagates
as a mechanical wave. Remarkably, the obtained relation between mechanical
and second sound vms =

√
3vss is fullfilled in the present MD simulations. Since

we restrict the analysis to an initial time window of 7 ps, no significant transfer
between mechanical and thermal energy is observed. The propagation of the
mechanical waves due to longitudinal excitations can be successfully modeled
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Figure 61: Local kinetic energy obtained in MD simulations (left) at different times under
the localized external excitation in amorphous Silicon. The profiles are reproduced using
the Fourier model (right) with effective parameter values. In both cases, a diffusive
relaxation (no heat pulses) are obtained.

using the elastic equations explained in section 3.6.

The same computational experiment using the random excitation can be also
performed in an amorphous material. In such situation, Fourier transport is ex-
pected due to the drastic reduction of the phonon relaxation times. Consistently,
the MD simulations display a diffusive relaxation (no heat pulses) that can be
properly fitted using Fourier's law (` = τ = 0) as shown in Figure 61.
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11 Mathematical Methods

11.1 Finite Elements

This section shows the Galerkin Method implementation [224] to obtain numer-
ical solutions of equation 75 and 76 with the boundary conditions presented in
section 3.4. The resulting weak form of the model equations are implemented
using COMSOL Multiphysics (see Figure 62).

Figure 62: COMSOL interface to solve the hydrodynamic heat transport model in arbi-
trary complex geometries and temperatures.

First step is to obtain the weak form of equation 75 by multiplying by a linear
test function T̂ of the temperature and integrating over the volume Ω.∫

Ω

T̂ (c
T

dt
+∇ · q−Q)dΩ = 0 (174)

In order to obtain the weak form of the hydrodynamic heat transfer equation
(76), we define the following tensor σ:

σ = `2∇q + α`2∇ · qI− κT I (175)

where I is the identity matrix.

Consider equation (76) in the form

q + τ
∂q

∂t
= ∇ · σ (176)
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Now we multiply by a quadratic test function q̂ of the heat flux and we integrate
over the volume by parts∫

Ω

q̂(q + τ
∂q

∂t
)dΩ =

∫
Ω

∇ · (q̂ · σ)dΩ−
∫

Ω

∇q̂ : σdΩ (177)

The first term in the right-hand side of previous expression can be expressed as
a surface integral using the Divergence Theorem∫

Ω

q̂(q + τ
∂q

∂t
)dΩ =

∮
Γ

q̂ · (n · σ)dΓ−
∫

Ω

∇q̂ : σdΩ (178)

where Γ is the boundary surface surrounding Ω, and n is the boundary normal
vector.

When approximating T and q by a linear combination of functions in (174)
and (178), for each test function in the same Hilbert space we obtain an indepen-
dent equation. To obtain an approximated solution, the resulting linear system
of equations is solved numerically to obtain the coefficients of the linear com-
binations. The surface integral in (178) is manipulated to impose the boundary
conditions (77) and (81) through the Discontinuous Galerkin method [225].

Insulation and Slip boundary condition

From (178), we identify the Lagrange multiplier λ = σ · n. We want to impose
different conditions for the different components of the heat flux. Hence, the
surface integral of λ is included as a weak contribution by testing only with the
heat flux boundary normal component (q̂ · n)n∮

Γ

(q̂ · n)n · λdΓ. (179)

Considering λ as a new variable that is also approximated in the boundary by
a linear combination of functions, we are able to impose Eq. 77 using the test
function of λ in another weak contribution∮

Γ

(q · n)n · λ̂dΓ = 0. (180)

Consider now the tangential component of the heat flux qt = q − (q · n)n. By
including only (179) and (180), q = qt in the boundary and the surface integral
of λ tested by the tangential component of the heat flux also appearing in (178) is
implicetely fixed to zero. Hence, to impose the boundary condition 81 we simply
need to include the tangential heat flux as another weak contribution:

−
∮

Γ

`

C
q̂t · qtdΓ, (181)

thus imposing

−
∮

Γ

`

C
q̂t · qtdΓ =

∮
Γ

q̂t · λdΓ =

∮
Γ

`2q̂t · (∇q · n)dΓ, (182)

160



where we used that q̂t · n = 0.

For the sake of clarity, let us show that equation (182) is indeed the integral
form of the boundary condition (81):

− `

C
q̂t · qt = − `

C
|q̂t||qt| = `2|q̂t|t · (∇q · n) = `2|q̂t|(

∂q

∂xn
· t) (183)

where t is the tangential normal vector and xn, xt are the normal and tangential
directions, respectively. Now, consider that q = |qt|t + |qn|n. Then,

− `

C
|q̂t||qt| = `2|q̂t|(

∂|qt|
∂xn

t + |qt|
∂t

∂xn
+
∂|qn|
∂xn

n + |qn|
∂n

∂xn
) · t (184)

Recall now that with (180) we imposed qn = 0 and hence ∂|qn|
∂xt

= 0. Moreover,
t · n = 0 and ∂t

∂xn
· t = 0. Therefore,

|qt| = −C`(
∂|qt|
∂xn

) (185)

Stabilization

A weak contribution for stabilization (Penalty Method) is required [225]:

−
∮

Γ

`2O[m](q̂ · n)(q · n)dΓ = 0 (186)

where O[m] is a coefficient depending on the discretization element surface to
volume ratio.

Periodic Boundary Conditions

In many of the studied experimental configurations, periodic heat flux condi-
tions are required to reproduce the whole geometry by simulating only a periodi-
cally repeated unit. The procedure is the same as for imposing (77) but averaging
between boundaries the Lagrange multiplier and averaging all the components
of q and q̂. Let us denote as 1 and 2 the boundaries in which the periodic condi-
tion is imposed. Then the average normal component of σ is

λav =
1

2
(λ1 + λ2) =

1

2
(n1 · σ1 + n2 · σ2) (187)

where n1 and n2 are the boundary normal vectors (n1 = −n2). A temperature
jump between boundaries 1 and 2 can be imposed by mapping the temperature
appearing in σ1 and σ2 with imposing a difference ∆T . Half of the required weak
contributions including the stabilization one are imposed in each boundary. For
i=1,2: ∮

Γi

λav ·
1

2
q̂idΓi +

∮
Γi

λ̂i ·
1

2
(q1 − q2)dΓi

−
∮

Γi

`2O[m](q1 − q2) · q̂idΓi

(188)
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Isothermal boundary condition

To fix an homogeneous temperature in a boundary (T = T0), the surface inte-
gral appearing in 178 should be imposed as a weak contribution with replacing
T by T0.

Interfacial boundary conditions

The boundary conditions for an interface between a metal and a semiconduc-
tor connecting Fourier transport and hydrodynamic transport (eqs. 92, 81, 84) are
imposed as a constraint instead of using a weak contribution. Hence, an explicit
Lagrange multiplier is not required, but implicit Lagrange multipliers are elim-
inated by the solvers, together with the degrees of freedom being constrained
[224].

Generalized Slip boundary condition

To implement the generalized boundary condition 83 for curved surfaces in-
troduced in 3.4, the tensor σ should be redefined as

σ′ = `2∇q + `2∇qT + (α− 1)`2∇ · qI− κT I. (189)

Notice that equation 76 is also recovered using σ′ in 176. However, it can be easily
demonstrated that insulation 77 and the generalized slip boundary condition 83
including an extra term are imposed if using exactly the same weak contributions
179,180,181 with replacing σ by σ′.

11.2 Analytical solutions and validation

The generalized hydrodynamic model equations can be analytically solved in
some simple situations. In this section we use some of these analytic solutions to
validate the Finite Element implementation presented in the previous section.

Stationary conditions: Heat conduction in wires

First, we validate the implementation of the non-local term in steady-state
conditions (i.e. the Laplacian term in eq. 76) in a simple geometry like a wire with
radius R and length much larger than the radius. Similar to the analysis in thin
films in section 4.2, a temperature difference is imposed between the terminals
of the wire and the slip boundary condition is used for the wire contours. We
use the analytical solutions derived from the model equations for this situation
in [226]. Specifically, we use the effective thermal conductivity 108 normalized
by the bulk conductivity reported in expression (16) of [226], that we reproduce
here:

κef

κ
= 1− 2KnI1(1/Kn)

I0(1/Kn) + CI1(1/Kn)
, (190)

where Kn = `/R, and Iν is the modified Bessel function of the first kind of order
ν. In Fig. 63 we show the normalized conductivity according to the Finite Ele-
ment solutions and the analytical expression 190 forR << `. The reduction of the
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effective thermal conductivity with respect to the bulk value is a measure of the
predicted non-Fourier response due to non-local effects. Hence, the consistent
large reduction of the conductivity obtained in this case through the numerical
and analytical calculation methods validates the Finite Element implementation
of the Laplacian term in 76 and the slip boundary condition 81.

Figure 63: Comparison between the normalized conductivity according to the analytical
expression 190 and the Finite Element calculations using COMSOL for a given radius R
such that Kn << 1. In the left-plot, the ab initio non-local length ` value is varied from
300 K to 100 K for Silicon with C = 1.4. In the left-plot, the slip length C` is varied with
maintaining the non-local length ` value at 150 K.

Transient conditions: Frequency Domain Thermoreflectance experiments

FDTR experiments (chapters 6 and 9) allow simultaneous measurement of
the phase lag and the amplitude of the temperature oscillation. Since these ob-
servables are very sensitive to the thermal transport mechanisms at work, these
experimental configurations are excellent to accurately validate the non-Fourier
behavior displayed by the Finite Element numerical solutions.

The analytical solutions of the model equations in the presence of a metal-
lic transducer and the corresponding interface (see Chapter 6) can be found in
Appendix D of [134]. Comparison between the analytical solutions and the Fi-
nite Element solutions for the phase lag and the thermal oscillations amplitude
at different temperatures can be found in Fig. 21 and Fig. 22, respectively. As
explained in Chapter 6, this kind of experiments are dominated by non-local ef-
fects in the presence of an interface, so this validation confirms the appropriated
Finite Element implementation of the second order spatial derivative terms in
eq. 76 along with the interfacial boundary condition 92 in transient situations.

In the case of FDTR experiments with directly heating the semiconductor sub-
strate (i.e. without the presence of a transducer), the 1D solutions neglecting
non-local effects (` = 0) are provided in section 9.6. These solutions are useful to
study the high frequency regime, where the thermal penetration depth is signifi-
cantly smaller than the spot radius, and the thermal transport is restricted to the
cross-plane direction (effective 1D transport). Consistently, in Fig. 49, the phase
lag at high frequencies calculated from the 3D Finite Element solutions collapses
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to the analytical 1D solutions (expression 164). This validation confirms the ap-
propriated Finite Element implementation of the heat flux time-derivative term,
which dominate the high frequency response in this specific experimental condi-
tions as discussed in Chapter 9.

164



12 Conclusions

The main conclusion of this thesis is that the generalized phonon hydrodynamic
framework, based in a mesoscopic description of heat transport including non-
local and memory effects, predicts a variety of experimental observations in Sil-
icon and similar materials. Within a well defined applicability regime of char-
acteristic system sizes and time scales, the model can be used with ab initio
calculated parameters in complex non-equilibrium situations including metal-
semiconductor interfaces in a wide range of conditions. Specifically, for silicon,
the ab initio model is predictive if and only if the distance between two discon-
nected boundaries or the size of a volumetric heat source is larger than twice the
non-local length. The model captures significant deviations from thermal diffu-
sion, and it is demonstrated to be a valuable tool for engineering next-generation
electronic devices. Moreover, the model is shown to provide new interpretations
of nanoscale thermal transport, that can be used to analyze other models at other
levels of description like Molecular Dynamics simulations.

At odds with current conventional understanding, the present results demon-
strate that phonon hydrodynamic phenomena, like the second sound propaga-
tion or the Poiseuille heat flux profile, are not restricted to the low temperature
regime for some exotic materials where momentum-preserving phonon colli-
sions dominate. Conversely, this kind of phenomena is unlocked in the appro-
priate non-equilibrium conditions in arbitrary materials and temperatures. Con-
sequently, the hydrodynamic description unifies a variety of experimental obser-
vations in materials like silicon or germanium. This conclusion is also supported
by the good agreement between the hydrodynamic description and Monte Carlo
simulations of the BTE using a single relaxation time and neglecting the role of
the Normal collisions.

The same experiments have been traditionally interpreted from a very differ-
ent perspective, in terms of the ballistic and independent behavior of phonon
modes along with the notions of mean free path spectroscopy and spectral ther-
mal conductivity. Hence, special care has been taken here to contrast the hydro-
dynamic and purely ballistic points of view, which have two main characteristic
differences. On one hand, the hydrodynamic model makes use of a single length
scale (the non-local length), whereas the independent behavior and suppression
of phonons is inherently a multiscale model. On the other hand, phonon hydro-
dynamics is based in a generalized transport equation at the mesoscopic level of
description including memory and non-local effects, whereas the ballistic sup-
pression of phonons rely on an effective form of Fourier's law with a modified
thermal conductivity. These differences, in light of the analyzed experiments,
allows concluding that Silicon behaves hydrodynamically, and the kinetic de-
scription breaks down even at high temperatures:

First, Silicon samples with sizes smaller than a significant fraction of mean free
paths are shown to display nearly the bulk thermal conductivity in experiments.
This is inconsistent with the suppression of those long MFP phonons, and per-
fectly consistent with the hydrodynamic model, which predicts the emergence
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of boundary effects at significantly smaller sizes (comparable to the non-local
length). Second, Fourier's law fails to simultaneously describe all the observ-
ables in experiments, even in its effective form. For instance, in Chapter 6, we
show that a different effective thermal conductivity is required to describe the
amplitude of the thermal oscillations and the phase lag between the external
power and the temperature in FDTR experiments; In Chapter 5, we show that a
different effective thermal conductivity is required to fit the temperature profile
in a nanoscale heater releasing energy to a Silicon substrate, with respect to the
conductivity required to fit the temperature in a thermometer close to the heat
source. Furthermore, the fitted conductivities not only depend on the heater
size but also on its shape. Remarkably, all these inconsistencies are shown to
be compactly resolved by the hydrodynamic model with intrinsic parameters.
Third, in Chapter 7, we show the emergence of two distinct characteristic decay
times during the temperature evolution of a nanoscale heater relaxing towards
equilibrium by releasing heat to a Silicon substrate, whereas the effective Fourier
framework only predicts the existence of a single characteristic decay time associ-
ated to the TBR. The hydrodynamic model explains the emergence of this second
time-scale in terms of the geometry-dependent viscous effects in the substrate.
Finally, it is worth mentioning that the breakdown of the effective Fourier ap-
proach is also supported by other experiments not considered here, like the one
reported in [22], where an anisotropic thermal conductivity tensor is required
to describe Time Domain Thermoreflectance experiments in an isotropic mate-
rial like Silicon. As a consequence of these multiple evidences, the independent
evolution of the phonon modes with its own mean free path seems to be non-
physical for Si and similar materials at the nanoscale. Therefore, the numerical
methods directly solving the BTE under the RTA in complex non-equilibrium
situations should be revised. The failure of this picture has also implications on
alternative approaches beyond RTA [52] which also predicts a Fourier-like trans-
port equation with a reduced thermal conductivity resembling the one predicted
by the ballistic suppression of phonons.

The key advantage of the hydrodynamic model is the use of intrinsic (geometry-
independent) parameter values for the transport equation along with appropri-
ate boundary conditions. This is possible due to the achieved consistency be-
tween the non-equilibrium distribution function, the transport equations and the
boundary conditions, which are all related through the BTE. In consequence, the
model can be compactly described as shown in sections 3.3, 3.4, 3.5, and may
be directly applied by engineers to optimize the thermal response of microelec-
tronic devices, or to envision new devices enabling controlled thermal transport
to carry or process information [227]. Furthermore, the model has other advan-
tages, like the simplified modeling of metal-semiconductor interfaces, which are
ubiquitous in applications. Specifically, all the experiments are described with
the use of intrinsic thermal boundary resistance values very close to the widely
accepted DMM, with only introducing small correcting factors to account for
unavoidable fabrication defects. The apparently larger and geometry-dependent
TBR values used in previous work are thus reinterpreted as a combined effect
between the intrinsic TBR and viscous effects close to the interface. This sim-
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plicity is a strong point of the phonon hydrodynamic model, which contrasts
with alternative modeling of the same experiments requiring orders of magni-
tude larger TBR values [89]. Moreover, it is worth to note that the present simple
modeling of the interface does not seem to be easily conciliated with other mod-
els using spectral (phonon mode dependent) interfacial resistances to interpret
experimental data [228], so more work is still required.

Beyond the applicability regime, the model has shown to phenomenologi-
cally capture the thermal response in experiments by using reduced and effective
values for the non-local length. For example, a geometrically-defined non-local
length explains the enhanced cooling efficiency observed in close-packed sys-
tems of heaters with respect to isolated heaters in Chapter 7. Moreover, an ex-
tremely small heating region in FDTR experiments without transducer is shown
to eliminate the influence of non-local effects in Chapter 9. Most importantly, we
have shown that the vanishing of non-local effects in such conditions is the key
to unlock wave-like or memory thermal effects in an unexpected material like
germanium.

Nevertheless, this thesis raises more questions than it solves. To mention a
few examples, the apparent breakdown of the hydrodynamic model with ab ini-
tio parameters for alloys like SiGe or InGaAs has not been explored, and the fun-
damental aspects distinguishing these materials and semiconductors like Silicon
have not been clarified. Moreover, the microscopic mechanisms leading to the
apparent reduction of the non-local length in experimental conditions beyond
the applicability of the ab initio model have not been identified. Related to this,
a clear picture of the interplay between memory and non-local effects, which
is key to manipulate thermal wave-like transport for applications, remains pen-
dant work. Furthermore, establishing stronger connections between mesoscopic
interpretations like hydrodynamics and other microscopic perspectives like the
Lévy flights is also required. As a final goal, future studies should pave the way
to refine the hydrodynamic description of heat transport with ab initio calculated
parameters and extend the applicability of the model to even smaller length and
time scales.
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