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Abstract

Keywords (MeSH terms): Breast neoplasms, breast density,  
breast disease, early detection of cancer, mammography,  
risk assessment, risk factors

Background: Mammographic screening has been shown to reduce 
mortality from breast cancer. Following the recommendations of the 
European Council, European countries have started population-based 
screening programs that offer biennial mammograms to women aged 
between 50 and 69 years. The results of the effectiveness of population-
based screening are controversial in terms of the balance between 
mortality reduction and adverse effects. To improve this balance, current 
evidence supports personalized screening. Modeling studies have shown 
that modifying the screening interval, screening modality, or age range 
of the target population based on women’s individual risk yields a greater 
benefit than conventional standard strategies. Several risk models have 
been designed to estimate women’s individual breast cancer risk based 
on their personal characteristics. However, most of these models have 
not been specifically developed to estimate the risk of women targeted 
for breast cancer screening. There is therefore a need to broaden current 
information on risk factors for breast cancer and the estimation of 
individual risk prediction models through the analysis of large population-
based databases.

Aims: The general objective of the thesis is to deepen the analysis of 
population-based breast cancer screening. Specifically, the aim of this 
thesis is to assess different breast cancer risk factors in order to develop 
and validate an individualized breast cancer risk prediction model. We 
evaluated how breast density affects screening performance indicators in 
a digital mammography context. Then, we assessed differences in breast 
cancer risk across benign breast disease diagnosed at prevalent or incident 
screens. To our knowledge, this is the first time that such an approach has 
been used. We also evaluated the interaction between breast density and 
benign breast disease. Subsequently, we performed a systematic review 
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to update the existing evidence, conduct a critical appraisal and risk of 
bias assessment and summarize the results of the individualized risk 
models that are used to estimate the risk of breast cancer in women in 
the general population. Finally, a breast cancer risk prediction model was 
designed and internally validated, based on information easily accessible 
at screening.

Methods: The study population included all women participating in 
10 breast cancer screening programs of Spain from 1995 to 2015 and 
followed up until 2017. We analyzed 2,853,753 screening mammograms 
from 782,406 women aged 50-69 years. For the specific analysis of breast 
density and the different screening performance indicators, we used 
generalized estimating equations (GEE) models. For the main analysis 
of this thesis, Cox partly conditional models were used, an extension for 
repeated measures of the Cox proportional hazard model in which the 
hazard ratio of a given event is modeled over time. Using these models, we 
assess the difference of the risk factors in the various categories. We also 
designed an individual risk prediction model. The model was internally 
validated with the expected-to-observed ratio and with the area under the 
receiving operating characteristic curve. 

Results: i) Mammogram sensitivity decreased from 89.2% in women 
with BI-RADS 1 to 67.9% for those in BI-RADS 4. Both the positive 
predictive value of recall and of invasive tests decreased from 10.4% to 
5.7% and from 49.8% to 32.4% in women with BI-RADS 1 and BI-RADS 
4, respectively. ii) Compared with women without benign breast disease, 
the risk of breast cancer was significantly higher in women with benign 
breast disease diagnosed in an incident screen (aHR, 2.67; 95%CI: 2.24-
3.19) than in those with benign breast disease diagnosed in a prevalent 
screen (aHR, 1.87; 95%CI: 1.57-2.24). iii) The risk of breast cancer 
independently increased with the presence of benign breast disease and 
with greater breast density (p-value for interaction = 0.84). iv) The quality 
of the different existing breast cancer risk prediction models was moderate 
with some limitations in the discriminative power and data inputs. A 
maximum AUC value of 0.71 was reported in the study conducted in a 
screening context. v) We designed a risk prediction model based on family 
history, previous benign breast disease and previous mammographic 
features. All 3 risk factors were strongly associated with breast cancer risk, 
with the highest risk being found among women with a family history of 
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breast cancer (aHR: 1.67), proliferative benign breast disease (aHR: 3.02) 
and previous calcifications (aHR: 2.52). The model was well calibrated 
overall (expected-to-observed ratio ranging from 0.99 at 2 years to 1.02 at 
20 years) but slightly overestimated the risk in women with proliferative 
benign breast disease. The area under the receiver operating characteristic 
curve ranged from 58.7% to 64.7%, depending on the time  
horizon selected.

Conclusions: i) Performance screening measures are negatively affected 
by breast density, with sensitivity and positive predictive value decreasing 
as breast density increases. ii) The risk of breast cancer conferred by 
benign breast disease differed according to type of screen (prevalent or 
incident). To our knowledge, this is the first study to analyze the impact of 
screening type on the prognosis of benign breast disease. iii) The risk of 
breast cancer independently increased with the presence of benign breast 
disease and with greater breast density and remained elevated for over 15 
years. iv) Individualized risk prediction models are promising tools for 
implementing risk-based screening policies. However, it is a challenge 
to recommend any of them since they need further improvement in 
their quality and discriminatory capacity. v) We designed and internally 
validated a risk prediction model able to estimate short- and long-term 
breast cancer risk using information routinely reported at screening 
participation. The model included age, family history of breast cancer, 
benign breast disease and previous mammographic findings, which were 
found to be related to an increase in breast cancer risk. The model should 
be externally validated and updated with new variables.
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Resumen

Palabras clave: Cáncer de mama, densidad mamaria,  
lesión benigna de mama, cribado de cáncer, mamografía,  
modelos de predicción, factores de riesgo

Introducción: Se ha demostrado que el cribado mamográfico reduce la 
mortalidad por cáncer de mama. Siguiendo las recomendaciones de la 
Comisión Europea, los países europeos han establecido programas pobla-
cionales de cribado que ofrecen mamografías bienales a mujeres de entre 
50 y 69 años de edad. Sin embargo, el cribado de cáncer de mama no está 
libre de controversia ya que existe un debate en cuanto al equilibrio entre 
la reducción de la mortalidad y los efectos adversos. Para mejorar este 
equilibrio, la evidencia científica actual apoya el cribado personalizado. 
Los estudios de modelización han demostrado que modificar el intervalo 
de cribado, la prueba de cribado o el rango de edad de la población obje-
tivo en función del riesgo individual de las mujeres produce un mayor be-
neficio que las estrategias convencionales. Se han diseñado varios modelos 
de riesgo para estimar el riesgo individual de cáncer de mama de las mu-
jeres en función de sus características personales. Sin embargo, la mayoría 
de estos modelos no se han desarrollado específicamente para estimar el 
riesgo de las mujeres participantes en el cribado de cáncer de mama. Por 
lo tanto, es necesario ampliar la información actual sobre los factores de 
riesgo de esta enfermedad y crear modelos de predicción del riesgo indivi-
dual mediante el análisis de grandes bases de datos poblacionales.

Objetivo: El objetivo general de esta tesis es profundizar en el análisis del 
cribado poblacional del cáncer de mama. En concreto, esta tesis pretende 
evaluar diferentes factores de riesgo de cáncer de mama para desarrollar y 
validar un modelo de predicción de riesgo individual de esta enfermedad. 
Se analizó cómo la densidad mamaria afecta a los distintos indicadores de 
cribado en el contexto de la mamografía digital. A continuación, se evalua-
ron las diferencias en el riesgo de cáncer de mama en función de si una  
lesión benigna de mama se diagnosticó en un cribado prevalente o un 
cribado incidente. También se analizó la interacción entre la densidad 
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mamaria y las lesiones benignas en el riesgo de cáncer de mama. 
Posteriormente, se realizó una revisión sistemática para actualizar la evi-
dencia existente, llevar a cabo una valoración crítica y una evaluación del 
riesgo de sesgo y resumir los resultados de los modelos de riesgo indivi-
dualizados que se utilizan para estimar el riesgo de cáncer de mama en las 
mujeres de la población general. Por último, se diseñó un modelo de pre-
dicción individual del riesgo de cáncer de mama y se validó internamente, 
basado en información fácilmente accesible en un episodio de cribado.

Métodos: La población de estudio incluyó a todas las mujeres que parti-
ciparon en 10 programas de cribado de cáncer de mama españoles desde 
1995 hasta 2015 y de las que se hizo seguimiento hasta 2017. Se analizaron 
2,853,753 mamografías de cribado de 782,406 mujeres de entre 50 y 69 
años. Para el análisis específico de la densidad mamaria y los diferentes 
indicadores del cribado se utilizaron modelos de ecuaciones de estimación 
generalizada (GEE). Para el análisis principal de esta tesis, se utilizaron 
modelos parcialmente condicionales de Cox, una extensión para medidas 
repetidas del modelo de riesgos proporcionales de Cox en el que el Hazard 
Ratio de un evento determinado se modela a lo largo del tiempo. Mediante 
estos modelos evaluamos la diferencia de los factores de riesgo en las dis-
tintas categorías de cada factor. También diseñamos un modelo de predic-
ción del riesgo individual. El modelo se validó internamente con el ratio 
esperado-observado y con el área bajo la curva ROC.

Resultados: i) La sensibilidad de la mamografía disminuyó del 89.2% en 
las mujeres con BI-RADS 1 al 67.9% en las de BI-RADS 4. Tanto el valor 
predictivo positivo de la reconvocatoria como el de las pruebas invasi-
vas disminuyeron del 10.4% al 5.7% y del 49.8% al 32.4% en las mujeres 
con BI-RADS 1 y BI-RADS 4, respectivamente. ii) En comparación con 
las mujeres sin un diagnóstico de lesión benigna, el riesgo de cáncer de 
mama fue significativamente mayor en las mujeres con una lesión benigna 
diagnosticada en un cribado incidente (aHR, 2.67; IC95%: 2.24-3.19) que 
en aquellas con una lesión benigna diagnosticada en un cribado preva-
lente (aHR, 1.87; IC95%: 1.57-2.24). iii) El riesgo de cáncer de mama 
aumentó de forma independiente con la presencia de lesión benigna y con 
una mayor densidad mamaria (p-valor para la interacción = 0,84). iv) La 
calidad de los diferentes modelos de predicción de riesgo de cáncer de 
mama existentes fue moderada, con algunas limitaciones en el poder dis-
criminativo y en la forma de recoger los datos. En el estudio realizado en 
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un contexto de cribado se registró un valor máximo del área bajo la curva 
ROC de 0.71. v) Se diseñó un modelo de predicción del riesgo individual 
basado en los antecedentes familiares, los antecedentes de lesión benigna 
previa y la presencia de patrones mamográficos previos. Los 3 factores de 
riesgo se asociaron fuertemente con el riesgo de cáncer de mama, encon-
trándose el mayor riesgo entre las mujeres con antecedentes familiares de 
cáncer de mama (aHR: 1.67), lesión benigna proliferativa (aHR: 3.02) y 
calcificaciones previas (aHR: 2.52). El modelo está, en general, correcta-
mente calibrado (el ratio esperado-observado oscila entre 0.99 a los 2 años 
y 1.02 a los 20 años), pero sobrestima ligeramente el riesgo en las mujeres 
con lesión benigna proliferativa. El área bajo la curva ROC oscila entre el 
58,7% y el 64,7%, dependiendo del horizonte temporal seleccionado.

Conclusiones: i) Los distintos indicadores de cribado se ven afectados 
negativamente por la densidad mamaria, disminuyendo la sensibilidad y el 
valor predictivo positivo de la prueba a medida que aumenta la densidad 
mamaria. ii) El riesgo de cáncer de mama conferido por una lesión benig-
na difiere según el tipo de cribado (prevalente o incidente). Hasta donde 
sabemos, este es el primer estudio que analiza el impacto del tipo de criba-
do en el pronóstico de la lesión benigna. iii) El riesgo de cáncer de mama 
aumenta de forma independiente con la presencia de una lesión benigna y 
con una mayor densidad mamaria y se mantiene elevado durante más de 
15 años. iv) Los modelos de predicción son herramientas prometedoras 
para implementar políticas de cribado basadas en el riesgo individualiza-
do. Sin embargo, es un reto recomendar cualquiera de ellos para la per-
sonalización del cribado ya que necesitan mejorar su calidad y capacidad 
discriminatoria. v) Diseñamos y validamos internamente un modelo de 
predicción de riesgo capaz de estimar el riesgo de cáncer de mama a corto 
y largo plazo utilizando la información recogida de forma rutinaria en el 
cribado mamográfico. El modelo incluye edad, antecedentes familiares de 
cáncer de mama, antecedentes de lesión benigna y patrones mamográficos 
previos, que resultaron estar relacionados con un aumento del riesgo de 
cáncer de mama. El modelo debe ser validado externamente y actualizado 
con nuevas variables.
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Presentation

Breast cancer is the most common tumor worldwide and is also the 
leading cause of cancer-related death in women. Because of its wide scope, 
it is a major public health problem. For this reason, over the last 50 years, 
a huge part of cancer research has focused on understanding the risk 
factors of this disease and on promoting strategies to improve  
its prognosis.

Several clinical trials carried out in the last 3 decades of the past century 
showed that early detection of breast cancer through mammography 
reduces mortality and is cost-effective. Thus, throughout the 1980s 
and 1990s, most European countries launched breast cancer screening 
programs to promote the early detection of this disease. These programs 
offer free mammograms to women in the target age range to detect breast 
cancer as early as possible and, therefore, take advantage of the benefit 
of screening: the mortality reduction and improvement in possible 
treatment. Most of these programs offer biennial mammograms to women 
between the ages of 50 and 69 years. 

However, the risk-benefit balance of breast cancer screening is not free of 
controversy. In recent years, several articles have emerged that criticize 
the low effectiveness of breast cancer screening due to adverse effects, 
especially false positives and overdiagnosis (unnecessary treatment). 
In response to this debate, the current strategy of population-based 
screening has begun to be rethought with proposals adapted to individual 
women’s personal breast cancer risk. This would involve moving from a 
one-size-fits-all strategy, a universal approach with biennial coverage of 
all women aged 50-69 years, to screening where periodicities, age range 
and techniques are defined according to women's individual risk of breast 
cancer. The implementation of personalized strategies, however, poses 
several unresolved challenges. The first is how to effectively identify 
women at higher risk of developing breast cancer in the context of 
population-based screening. In 2019 a statement of the expert meeting 
of the European Conference on Risk-Stratified Prevention and Early 
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Detection of Breast Cancer posited the need to develop breast cancer 
risk prediction models based on data from large screening cohorts and 
including risk factors easily obtainable at screening participation. 

This thesis is part of the ongoing debate on personalizing breast cancer 
screening. Specifically, this thesis arises from the need to evaluate the 
different breast cancer risk factors with large longitudinal screening 
cohorts in order to develop an individualized breast cancer risk  
prediction model.

The first step of the thesis was to develop a retrospective cohort with 
information from the entire breast screening history of the population. 
The resulting database contains information from 10 screening 
programs in the Spanish context and includes over 2,800,000 screening 
mammograms from over 750,000 women, carried out between 1995 and 
2015, with an average of 3 participations per woman. Then, the database 
was used to carry out different analyses to better understand the different 
breast cancer risk factors. To deepen the study, a systematic review of 
existing breast cancer prediction models was carried out to summarize the 
state of the art on the topic, and to identify needs for upcoming models. 
Finally, a breast cancer risk prediction model was designed, based on 
information easily accessible at screening.

This thesis is presented as a compendium of publications and is composed 
of 5 papers aiming to provide specific and unpublished answers to some 
of the questions described. It also attempts to highlight the complexity 
involved in the evaluation of mammographic screening in long-standing 
dynamic populations, as well as the need to use a longitudinal approach 
in order to correctly evaluate this procedure. The works presented were 
carried out at the Epidemiology and Evaluation Department of Hospital 
del Mar-IMIM, under the supervision of Dr. Marta Román and Dr. Xavier 
Castells. These tasks received specific funding from 2 projects of the 
Health Research Fund, FIS-ISCIII (PI15/00098, PI17/00047) and from 
the Alicia Llacer Award to the best research project by a young researcher 
awarded by the Spanish Society of Epidemiology.

I personally led the design, data collection, validation, and analysis of the 
database used in these projects.
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Figure 2. �Estimated age-standardized incidence and mortality rates in 2020, worldwide, female,  
all ages.

Figure 3. Incidence of breast cancer vs Human Development Index by country, in 2020, all ages.
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A brief look at the epidemiology of breast cancer

In recent years, breast cancer has become the most common cancer in the 
world (Figure 1). It is estimated that 2,261,419 new cases of breast cancer 
were diagnosed in 2020 worldwide (1). With 684,996 deaths, it is also the 
leading cause of cancer-related death in women (1) (Figure 2).

Globally, breast cancer incidence varies widely around the world, with 
a clearly higher incidence in developed countries. This is evidenced by 
comparing breast cancer incidence and the Human Development Index 
across countries. This indicator was developed by the United Nations 
Development Program to analyze the average level of each country of the 
fundamental dimensions of human development (health, education and 
standard of living) (Figure 3).

Figure 1. �Most common cancer sites by country, estimated age-standardized incident rates in 2020, 
worldwide, both sexes, all ages.
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Figure 5. Age standardized mortality rates for breast cancer in undeveloped countries.

Source of Figures 1 to 5: World Health Organization International Agency for Research on Cancer 
(IARC). GLOBOCAN 2020: estimated cancer incidence, mortality, and prevalence worldwide (1).

Figure 4. Age-standardized mortality rates for breast cancer in developed countries.
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Globally, breast cancer incidence is increasing. The World Health 
Organization estimates that by 2040 the annual number of cases will 
already exceed 3 million (1).

Despite the growing worldwide trend over the last 4 decades, since the 
1990s most countries with a high per capita income, including Spain, have 
begun to see a decline in breast cancer incidence (1-10). 

Similarly, over the last 2 decades, mortality from this disease has decreased 
substantially in developed countries and breast cancer is now one of the 
cancers with the highest survival rates, standing at over 80% at 5 years  
(1, 2, 11) (Figure 4).

However, due to the more favorable survival of breast cancer in developed 
countries, the range of mortality is much more homogeneous in developed 
regions (Figure 4) than in undeveloped countries (Figure 5).

This improvement in survival is attributed to improved treatment, 
the introduction of cancer functional units in hospitals and the 
implementation of early detection practices.

In Spain, more than 32,000 new breast cancer cases were estimated to be 
diagnosed in 2020 (12). The adjusted incidence rate for 2020 (using the 
world population as reference) was 77.5 new cases per 100,000 women, 
with the average for western European countries being 90.7 new cases per 
100,000 women (1). Although Spain continues to be one of the European 
countries with the lowest incidence of breast cancer (1, 13), this disease is 
the most frequent cause of death from cancer in Spanish women, causing 
an estimated 6,000 deaths or more each year (12). The adjusted mortality 
rate in 2020 (using the world population as a reference) was 10.6 per 
100,000 women, with the average for western European countries being 
15.6 per 100,000 women per year (1).
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Breast cancer screening

The genesis of screening programs

The main objective of early detection or screening is to reduce mortality 
from a disease by detecting it in the early stages. To achieve this aim, broad 
participation is essential. From a population perspective, it is expected 
that the implementation of screening will decrease mortality from the 
disease in the medium to long term. However, at an individual level, not 
all participates will benefit directly from such programs.

The genesis of screening programs dates back to the creation of a test 
for the detection of cervical cancer by the Greek physician Georgios 
Papanicolau in 1923, which was used in Canada in 1949 as the first known 
cancer screening test (14). Since then, numerous clinical trials have been 
conducted to identify the cancers that can be screened and the methods 
to do so. This practice is beginning to spread and currently there are 
screening programs for breast, cervix, prostate, lung, pancreas, mouth and 
colon and rectum cancers in different parts of the world. 

The conditions necessary for the application of early detection tests for a 
disease were described at the end of the 1960s (15). First, the condition 
targeted should be an important health problem. Second, there should 
be an accepted treatment for patients diagnosed with the disease. 
Third, facilities for diagnosis and treatment should be available. Fourth, 
there should be a recognizable latent or early symptomatic stage. Fifth, 
there should be a suitable test or examination. Sixth, the test should be 
acceptable to the population. Seventh, the natural history of the condition, 
including development from latent to overt disease, should be adequately 
understood. Eighth, there should be an agreed policy about who should 
be treated as patients. Ninth, the cost of case-finding (including diagnosis 
and treatment of diagnosed patients) should be economically balanced in 
relation to possible expenditure on medical care as a whole. Finally, case-
finding should be a continuing process and not a "once and for all" project. 
These criteria are considered classic and have been widely referenced. 
Subsequently, these criteria have been reviewed and updated. 
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Natural history of breast cancer

The natural history of breast cancer is not well understood, and there are 
various hypotheses on its origin and development. For many years the 
most widespread theory was the Wellings Jensen model (16, 17), which 
postulates that invasive breast cancer develops from the accumulation of 
multiple genetic alterations in benign breast disease. The various stages 
of this model are shown in Figure 6. However, only a low percentage of 
benign lesions eventually progress to invasive cancer.

On the other hand, there is evidence that not all lesions follow this 
linear pattern. More recent articles (18, 19) suggest that, although in situ 
carcinomas are possible precursors of invasive carcinomas, not all invasive 
carcinomas originate from an in situ carcinoma. It is postulated that some 
subtypes develop from the progression of progenitor cells, which would 
subsequently be affected by different mutations.

Rationale and evidence-base for screening mammography programs

Breast cancer meets all the criteria proposed by Wilson and Jungner 
(15), which favors the deployment of early detection programs through 
mammographic screening. 

Since the early 1980s, several randomized controlled trials have studied 
the effect of mammography screening of breast cancer, assessing different 

Figure 6. Lineal model of cancer progression.
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Figure 7. Main breast cancer screening trials.

screening ages and mammogram frequencies (20-25) (Figure 7).  
The evidence on the effectiveness of mammography screening in reducing 
mortality from the disease is widely accepted (26-39). Although the 
methods employed in some of these studies have been questioned, mainly 
due to the randomization criteria used, overall, the results show a 23% 
reduction in breast cancer mortality in women who have been screened 
(Figure 8).
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Source Figure 6: Adapted from Esserman et al (18).
Source Figure 7: Adapted from The Independent UK Panel on Breast Cancer Screening (20).
Source Figure 8: Adapted from Canelo-Aybar C, et al. (36).

Figure 8. Effect of mammography screening on breast cancer mortality (women aged 50–69).

(a) short case accrual, mean follow-up across studies 17.6 years; (b) longest case accrual, mean 
follow-up across studies 15.5 years. Risk of bias legend: (A) random sequence generation,  
(B) allocation concealment, (C) blinding of participants and personnel, (D) blinding of outcome 
assessment, (E) incomplete outcome data, (F) selective reporting and (G) other bias.
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Breast cancer screening implementation in Europe

Following the publication of the first randomized trials showing favorable 
results (20, 21), in the 1990s, most scientific communities began to 
recommend mammography screening for the early detection of breast 
cancer. Many countries have progressively implemented population-based 
programs. Currently, the European Council recommends population-
based breast cancer screening in women aged 50-69 years (40-42). The 
Council also recommends that programs follow the standards set out 
in the European Guidelines for Quality Assurance in Breast Cancer 
Screening and Diagnosis (42, 43). By 2017, breast cancer screening 
programs had been implemented by all 28 member states of the  
European Union.

All programs use mammography as the screening test, and most countries 
have completely replaced analogic with digital mammography. Overall, 
it is estimated that about 25 million women between the ages of 50 and 
69 years in the European Union are invited to participate in screening 
programs annually, out of an estimated total of 32 million women 
(invitation coverage 79.8%) and 16 million have been screened in these 
programs (participation coverage 49.2%) (41). 

Although all member states follow the recommendations of the European 
Guidelines for Quality Assurance in Breast Cancer Screening and 
Diagnosis (42, 43), which aim to standardize screening practices, there 
are organizational differences between screening programs across Europe. 
The greatest consensus can be found in the frequency of screening, which 
is 2 years in all countries, except in the United Kingdom and Malta, where 
it is 3 years. The age range of the target population is usually 50-69 years, 
but can be smaller (50-59 years, 50- 65 years) or larger (45-69 years, 40-
70 years) in some countries. Most of the differences between programs, 
however, fall under the eligibility criteria and the screening practice 
protocol (41).
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Breast cancer screening implementation in Spain

In Spain, the first population-based breast cancer screening program was 
launched in Navarre in 1990. The program is part of the National Health 
System strategy (44). Subsequently, programs were gradually initiated in 
the rest of the autonomous regions until reaching total coverage of the 
target population in 2006 (45). The organization of the programs falls to 
the health authorities of the various autonomous regions. Although the 
screening programs are independently managed, they are linked through a 
screening program network (46). The entities responsible for the different 
programs meet annually, and share the results of indicators related to 
organization, resources and other elements aimed at ensuring their quality 
based on specific and joint evaluation of the programs.

All programs in Spain have adopted the recommendations of the 
European guidelines for breast cancer screening (42, 43) and use 
biennial mammography as the screening test. The age group of the target 
population is 50-69 years. In addition, 6 autonomous regions also include 
the group aged 45 to 49 years. Data from 2016 indicate that screening 
coverage in Spain (defined as the proportion of the target population 
of the programs and the reference population according to the Spanish 
National Institute of Statistics data) is more than 90%, and that overall 
participation (defined as the number of participating women among the 
total number of women invited) is 75.7% (46).

However, there are substantial differences between programs, especially in 
the method of reading, single or double, and in the case of double reading, 
whether it is done with consensus or arbitration. In addition, regarding the 
type of mammography, since 2000, some programs have chosen to replace 
analogic with digital mammography. By 2017, 13 autonomous regions had 
introduced digital mammography in all or some of their screens (46).

The results of the screening process in Spain show that the overall 
percentage of additional tests in initial and subsequent screening was 
12.3% and 4.1%, respectively, while the total detection rate was 4.1 tumors 
per 1,000 screening examinations (46).
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Benefits and harms of breast cancer screening

Randomized clinical trials have demonstrated a clear effect of 
mammography screening on reducing breast cancer mortality under 
relatively controlled circumstances. The effectiveness of screening is 
expected to have improved since the publication of the first randomized 
trials. Quality assurance, training of specialist staff, and mammographic 
techniques have all improved over time (47), as has therapy through the 
widespread use of specific treatments (48).

In 2001, the Cochrane Collaboration published a meta-analysis of 
the results of the various randomized controlled trials, concluding 
that mammographic screening did not improve survival, and that 
the effects on breast cancer mortality were inconclusive (49, 50). The 
publication of that study was a turning point, sparking a debate about 
the appropriateness of breast cancer screening with current strategies. 
The results of the meta-analysis were disputed (51) and in 2006, the 
Cochrane Collaboration itself qualified its conclusions in a review of 
the article, showing a 15% reduction in breast cancer mortality due to 
mammographic screening (52). 

In 2012, the EUROSCREEN Working Group published a systematic 
review of population-based studies conducted in Europe assessing the 
benefits and adverse effects of screening. The review estimated a 25%-
31% reduction in breast cancer mortality (39). In parallel, a review of the 
benefits and adverse effects of screening by The Independent UK Panel 
on Breast Cancer Screening, based on the initial trials, estimated the 
mortality reduction to be 20% (28). At the end of 2014, the World Health 
Organization report reviewing the evidence on the benefits and adverse 
effects of screening concluded that population-based mammographic 
screening in women aged 50-69 years reduced mortality from this disease 
and was cost-effective in upper-middle income countries (38). However, 
these estimates vary widely from study to study, depending on their 
data and methodology, and other studies have estimated the mortality 
reduction to be 25% (31) or 43% (30). In 2020, a systematic review of 
European articles estimated that the reduction in breast cancer mortality 
in attenders versus non-attenders at screening ranged between 33% and 
43% (northern Europe), 43%-45% (southern Europe) and 12%-58% 
(western Europe) (35). In 2021, a systematic review by the European 
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Figure 9. Risks and benefits of screening mammography.

Commission Initiative on Breast Cancer estimated a 23% reduction in 
breast cancer mortality in women who have been screened (36). 

Like any health intervention, breast cancer screening has adverse effects 
(Figure 9). Their existence has been recognized for many years (54). 
Since mammographic screening is offered to a large, asymptomatic 
population, its adverse effects must be minimized, maintaining an 
acceptable risk-benefit balance. At the individual level, however, not all 
participating women will obtain the same benefits from screening nor 
will they experience the same adverse effects. The main adverse effects 
of screening are false positives, overdiagnosis and interval cancers, each 
with a different scope and consequences (53). False-positives are defined 
as results that incorrectly indicate the presence of cancer. To definitively 
diagnose or rule out malignancy, the patient is recommended to undergo 
further procedures (mammography, ultrasound, magnetic resonance 
imaging, fine needle biopsy, excisional biopsy, and/or surgical biopsy). 
False positive results cause concern and anxiety in affected women, 
as well as additional tests with an associated cost (55-58). In addition, 
several studies have shown that these women have a lower adherence to 
the program in successive calls and are at increased risk of developing 
breast cancer (59-63). At a population level, false-positives are the adverse 
effect with the strongest impact, both because of the number of women 
affected, and because of the resources and the care burden they entail. It is 
estimated that 1 out of every 5 women participating in screening will have 
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a false-positive result over 10 biennial participations in mammographic 
screening of the population aged between 50 and 69 years (64). 

Overdiagnosis can be defined as the detection of histologically-confirmed 
breast cancer in screening that would never have been clinically diagnosed 
during a woman's lifetime (65). Because of the emotional impact 
generated by the diagnosis and treatment, it is considered to be the most 
serious adverse effect of early detection and is that generating the most 
controversy. On an individual level, it is impossible to distinguish which 
tumors have been overdiagnosed and which have been detected early, and 
both are treated equally.

At the population level, however, overdiagnosis involves treatment of a 
larger number of women, which increases costs as well as the number 
of women who will suffer from stress, anxiety, and the possible adverse 
effects of treatment due to the diagnosis of the disease. There are several 
mathematical approaches to estimate overdiagnosis without a standard 
methodology for its calculation. The main problem is to have a comparable 
reference population in the absence of screening. Estimates of overdiagnosis 
by the EUROSCREEN Working Group indicate rates of between 1% and 
10%, with an estimated mean value of 6.5% (39), while the review by The 
Independent UK Panel on Breast Cancer Screening estimates that 19% 
of tumors diagnosed by screening are overdiagnosed (28). In 2021, the 
European Commission Initiative on Breast Cancer review estimated a 
17.3% of overdiagnosis from an individual perspective (36). However, the 
estimates published to date vary widely and are highly susceptible to biased 
interpretation, ranging from 1% to 60% (66) (Figure 10). 

In contrast, interval cancers can be considered a limitation of screening. 
Interval cancers are primary tumors diagnosed after negative screening 
and before the next invitation (42, 43). From a review of screening 
mammograms, they can be classified into true interval cancers (when the 
previous screening mammogram showed no suspicion of malignancy), 
false-negatives (when a retrospective review indicates that there was a 
suspicion of malignancy that was not detected either due to errors in 
radiological interpretation, or because of technical errors in performing 
the mammogram or additional tests), minimal signs (non-specific 
suspicion in the previous screening mammogram) and occult tumors 
(not visible by mammography). The incidence of interval cancers has 
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been estimated to range from 1.8 to 2.9 per 1,000 women screened (67). 
Interval cancers, and specifically false-negative tumors, delay diagnosis 
and are associated with a larger tumor size (68), greater nodal involvement 
(69) and shorter survival, with a 53% higher risk of dying from interval 
cancer compared to screen-detected breast cancer (70), thus reducing 
the effectiveness of screening. In addition, they create a false sense of 
security in women, making them less alert to possible signs of the disease.

Figure 10. Overdiagnosis rates reported in systematic reviews.

(a) randomised controlled trials and (b) observational studies.

Source Figure 9: Armstrong K et al. (50).
Source Figure 10: Mandrik O et al. (63).
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Controversies in breast cancer screening: towards personalized screening

In the aforementioned EUROSCREEN Working Group article (39), 
the authors concluded that, with the current evidence generated 
from observational studies, breast cancer screening continues to be 
recommended and that the benefits of screening outweigh the adverse 
effects. That study estimated that for every 1,000 women screened 
biennially for 20 years between the ages of 50 and 69 years and followed-
up until the age of 79 years, 71 breast cancers are diagnosed, 7-9 deaths are 
prevented, 4 tumors are overdiagnosed, and 200 women experience a false 
positive result. The Independent UK Panel on Breast Cancer Screening 
report concludes that for every 1,000 women aged 50-69 years screened 
for 20 years, and followed-up until the age 79 years, 68 breast cancers are 
diagnosed, 4 deaths are avoided, and 13 tumors are overdiagnosed (28).

The Independent UK Panel report highlights the need to review the 
information given to invited women, to make it as transparent as 
possible and allow informed decision-making. In the USA, the debate 
is ongoing with the publication of 2 articles that found that one in 3 
cancers diagnosed by screening would be overdiagnosed and that, at best, 
screening would only have a small effect on reducing mortality from this 
disease (1, 72). In contrast, another publication argues that calculation 
of overdiagnosis in those articles is probably grossly overestimated (73). 
Because of the methodological limitations in the selection of comparison 
groups, especially the group of unscreened women, and the different 
methodological approaches used, evaluation of the benefits of population-
based breast cancer screening remains a question with heterogeneous and 
inconclusive answers.

The likelihood that a woman will benefit from screening mammography 
depends on her risk of developing clinically significant breast cancer in 
her lifetime. Taking individual risk factors beyond age into account should 
enable the classification of women into groups at varying risks of breast 
cancer. One side of the current debate holds that personalized risk-based 
screening going beyond the current ‘one-size fits all' recommendation 
may increase the effectiveness and benefit-harm balance of breast cancer 
screening (74-77). This approach proposes personalized screening 
strategies depending on the individual risk of each woman. This 
encompasses not only a more exhaustive screening of women at higher 
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risk or with more specific techniques such as ultrasound (78) or magnetic 
resonance imaging (79), but also a less exhaustive screening of women at 
lower risk (80). Thus, it is intended to maximize the benefits of screening 
and reduce the adverse effects. Some clinical trials are currently testing 
the effectiveness of personalization, but still without results (81, 82). 
If screening based on individual risk is accepted as the new screening 
paradigm, there will also be opportunities for primary prevention. 

The implementation of personalized strategies, however, poses several 
unresolved challenges. The first is how to effectively identify women at 
greater risk of developing breast cancer. 

Breast cancer risk factors

There are many characteristics that over the years have been proven to be 
risk factors for breast cancer. Analyzing all of them is beyond the scope 
of this thesis, which focuses on the risk factors relevant to screening 
mammography and useful for the development of personalized  
screening strategies.

Age

Breast cancer incidence and mortality increase proportionally with age. 
Only around 10% of cases are diagnosed in people younger than 45 
years and less than 5% in people younger than 40 years (83) (Figure 11). 
Risk increases from the age of 50-55 years, associated with the onset of 
menopause and indicating the relevance of reproductive and hormonal 
factors in the aetiology of the disease (84) but then remains stable until the 
age of 65-70 years, when it declines.
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Family history

Having a family history of breast cancer plays a significant role in a 
patient’s lifetime breast cancer risk (85-89). A study published in 2001 
by the Collaborative Group on Hormonal Factors in Breast Cancer 
(90) estimated that the risk ratios for breast cancer rose with increasing 
numbers of affected first-degree relatives: compared with women who had 
no affected relatives, the ratios were 1.80 (95% CI: 1.69-1.91), 2.93 (95% 
CI: 2.36-3.64), and 3.90 (95% CI: 2.03-7.49), respectively, for one, 2, and 3 
or more affected first-degree relatives.

Benign breast disease

Benign breast disease is defined as non-malignant breast alterations that 
have also been proven to be associated with an increased risk of breast 
cancer both in the clinical setting (91-93) and in population-based 
screening (94). These lesions are usually classified as non-proliferative 
lesions, proliferative lesions without atypia and proliferative lesions with 
atypia (95, 96). A study by Hartmann in 2005 estimated a breast cancer 
risk ratio of 1.27 (95%CI: 1.15-1.41), 1.88 (95%CI: 1.66-2.12) and 4.24 
(95%CI: 3.26-5.41) for people diagnosed with non-proliferative lesions, 
proliferative lesions without atypia and proliferative lesions with atypia, 
respectively, compared with woman who never had a benign breast 
disease diagnosis (92). 

Suspicious mammographic findings

Despite being less well studied than benign breast disease, suspicious 
findings at mammogram reading such as masses, calcifications, 
distortions, or asymmetric density are also associated with an increased 
risk of subsequent breast cancer. A 2016 study by Castells et al (97) 
estimated the hazard ratio of subsequent breast cancer in women with 
suspicious findings to be 1.59, 2.24, 1.58, 2.09 and 2.73 for masses, 
calcifications, asymmetric density, distortion and calcifications associated 
with mass, respectively.
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Figure 11. Percent of New Cases of Breast Cancer in US 2013-2017 by Age Group.

Breast density

Breast density reflects the amount of fibrous and glandular tissue 
compared with the amount of fatty tissue in a woman's breasts. Levels 
of density are commonly described from less to more dense using a 
results reporting system called the Breast Imaging Reporting and Data 
System (BI-RADS) (98) as: A: almost entirely fatty, B: scattered areas of 
fibroglandular density, C: heterogeneously dense, D: extremely dense. 
Denser breasts have a higher risk of breast cancer (99). A 2015 study 
(100) estimated that women with higher density were between 2.3 and 4.1 
times more likely to develop breast cancer than those with lower density, 
depending on their age.

Breast Cancer Risk prediction models

Breast cancer risk prediction models through history

Estimating women’s individual risk of breast cancer based on their 
personal characteristics is not a recent idea. The first approach emerged 
in the early 1980s with an article that attempted to measure the incidence 
of breast cancer by the age of breast tissue (101). The first model as such 

Source Figure 11: Adapted from National Cancer Institute (79).
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appeared at the end of that decade, when the first version of the model 
currently known as BCRAT (Breast Cancer Risk Assessment Tool) was 
developed, which aimed to estimate the probability of developing cancer 
based on age, family history of breast cancer, age at first birth, age at 
menarche, and previous biopsies to assist in medical counseling (102). 
Over the years, this model has been improved and has been joined by 
other widely used models, such as the BCSC (Breast Cancer Surveillance 
Consortium) model (100, 103), the IBIS (International Breast Cancer 
Intervention Study) model (104), the Rosner & Colditz model (105-108) 
and the BOADICEA model (109). Breast cancer has a large number of 
(possible) risk factors, and the number included in the different models 
varies widely (from 2 to 20). Some of those tested by the different models 
over the years are body mass index, hormone replacement therapy, 
alcohol consumption, physical activity, diet, breast density, benign 
breast disease, family history, parity, a polygenic risk score or hormone 
information, among others.

However, none of these models was developed for women participating 
in mammography screening but were rather created for the general 
population or for specific high-risk groups. Of note, a useful and practical 
risk model for screening populations would require a model that uses 
only variables that are readily and easily available at mammographic 
screening. To date, only one model has been specifically designed to 
predict individual risk among women participating in breast cancer 
screening (110). Although truly relevant, the model was based on short-
term risk estimates, with only 3 years of follow-up, and it did not account 
for relevant characteristics of prospective studies such as internal time-
dependent covariates.

The need to create an updated individualized breast cancer risk  
prediction model

As discussed above, evidence is beginning to emerge in support of the 
introduction of personalized screening based on women’s individual risk 
rather than the current "one size fits all" strategy. In 2019 a statement of the 
European Conference on Risk-Stratified Prevention and Early Detection 
of Breast Cancer experts meeting (111), posed the need to develop breast 
cancer risk prediction models based on data from large screening cohorts 
and including risk factors easily obtainable at screening participation. The 
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power of calibration and discrimination of the model used to assign risk to 
each woman will be key to minimizing the adverse effects of screening.

Methodological challenges of creating an individualized risk model

To be able to build this model, information from a large number of 
women followed over a long period will be needed. Detailed and in-depth 
analysis of women's participation, beyond cross-sectional evaluation of 
the programs themselves, will require individualized information on each 
woman's participation in screening. Therefore, the different risk factors 
that will form part of the model will be needed for each participation, 
as well as long-term follow-up to check whether each woman received 
a breast cancer diagnosis or not. In general terms, this information is 
specific to each screening program and is not uniformly collected  
or coded. 

The need to include a large volume of women in the model is justified 
by the frequency of the different events. The frequency of a breast cancer 
diagnosis in each participation in mammography screening is around 
5.5%0 and the frequency of proliferative benign breast disease, which 
will be one of the risk factors, is around 1%0. This indicates that the 
group of women with proliferative benign breast disease diagnosed in a 
screening participation and a breast cancer diagnosed at any subsequent 
participation is extremely uncommon, and hence, that a large sample size 
is needed to allow performance of the pertinent analyses.

As population programs were deployed during the last 5 years of the 1990s 
and the early 2000s, various studies and approaches have emerged to 
evaluate their effectiveness. The current situation in which most programs 
have been running for almost 2 decades presents an updated scenario 
with the possibility of analyzing longitudinal data on screening practice 
over a long period of time. This scenario begs new questions about how to 
evaluate screening and how to work with this type of cohort.

An appropriate approach to the analysis of these data over the long 
term should consider the correlation between multiple observations of 
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women over the study period (repeat measurements). In addition, certain 
study characteristics, such as the presence of benign breast disease, the 
reading method or the screening technique used (digital or screen-film 
mammography) may change between different observations in the same 
woman, making it desirable to be able to include time changing variables, 
as opposed to assuming fixed information throughout the study period. 

Finally, women in the target population are invited to undergo 
mammography every 2 years, which could substantially restrict our 
observations; however, but with the help of population and hospital 
records, information can be obtained on those cancers that are detected 
between 2 mammograms (known as interval cancers). This last peculiarity 
allowed us to perform the analyses from a continuous time perspective 
and therefore to use survival models such as Cox regression models. 
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Breast cancer screening is one of the most widely evaluated population-based 
interventions. Despite the current debate about the balance between benefits 
and adverse effects of mammographic screening, health authorities at the 
national and European level continue to recommend population-based breast 
cancer screening for women aged 50 to 69 years. The current questioning of 
the effectiveness of screening highlights the need for its improvement, with 
new insights and novel data to evaluate possible alternatives in current early 
detection strategies. Breast cancer screening is offered to millions of women 
worldwide and therefore the impact of enhanced effectiveness of this practice 
could represent a substantial benefit for the whole population.

This thesis is framed within the current screening debate, with special 
emphasis on the evaluation of the different breast cancer risk factors, by 
means of large longitudinal screening cohorts, with the goal of developing 
an individualized breast cancer risk prediction model. The possibility 
of extending the information known to date about risk factors for breast 
cancer and the estimation of individual risk prediction models through the 
analysis of large population-based databases opens a window to a more 
accurate and reliable evaluation of mammographic screening. In particular, 
this thesis is based on 2 projects designed specifically to assess population-
based screening and using longitudinal methodology that allow the analyses 
of the complicated information structures required for the evaluation of 
mammographic screening.

The longitudinal and complex structure of the database designed for the 
projects of this thesis has provided answers to research questions that were 
hitherto unfeasible. Furthermore, due to the potential of the data, it has been 
possible to extend their utility by answering other questions concerning 
breast cancer risk factors. As a complement to the work of this thesis and 
as part of the BEnign LEsion (BELE-2) and the IRIS (Individualized RISk) 
projects on which this thesis is based, other works have been carried out, 
presented as appendices in which the author has collaborated closely with the 
contribution of data and statistical analysis.

The results of this thesis will broaden overall knowledge of the different 
breast cancer risk factors and of how to estimate the breast cancer risk in 
women targeted for screening. Therefore, the results could help to make the 
shift from a one-size-fits all strategy to a risk-based personalized strategy, 
which could, in turn, improve the effectiveness of breast cancer screening. 



Objectives
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General objective

The general objective of the thesis is to deepen the analysis of population-
based breast cancer screening. The aim of this thesis is to assess 
different breast cancer risk factors in order to develop and validate an 
individualized breast cancer risk prediction model.

Specific objectives 

A better understanding of risk factors

•	 To analyze the impact of breast density on breast cancer screening, 
not only in terms of breast cancer risk but also in terms of masking 
negative results.

•	 To analyze the impact of benign breast disease in women  
participating in screening, specifically to assess differences in breast 
cancer risk across benign breast disease diagnosed at prevalent or 
incident screens.

•	 To understand the combined effect of breast density and benign 
 breast disease.

The breast cancer risk prediction model

•	 To carry out a systematic review of the existing breast cancer risk 
models in order to understand them and identify their weak points 
with a view to enhancing the design of a specific screening model. 

•	 To develop and validate an individualized breast cancer risk 
prediction model.



Methodological approach
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Figure 12. Structure of the database.

Source Figure 12 and 13: BEnign LEsion (BELE-2) and IRIS (Individualized RISk) projects.
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Creation of the database

To construct the database used in this project, each of the 10 participating 
screening programs was asked to provide complete information on all 
women participating in the screening program at least once from the 
program launch until December 2015. These programs were Asturias, 
Barcelona- Àrea Metropolitana Sud, Cantabria, Costa de Ponent, Girona, 
Hospital Clínic i Provincial de Barcelona, Hospital de la Santa Creu i Sant 
Pau de Barcelona, Tarragona, Vallès Oriental and Vallès Occidental. All of 
them have independent and program-specific administrative structures to 
collect the information, so a detailed protocol was drawn up to define the 
variables and validate the information from them (see Appendix 3). The 
protocol of variables was developed and agreed upon with the help of the 
persons responsible for all the participating programs. Thus, ambiguity in 
the interpretation of the definitions was avoided, and the codification of 
the variables of interest was homogenized. In addition, information was 
sought on cancers up to December 2017, using hospital databases and 
cancer registries, to take into account possible interval cancers (cancers 
diagnosed after a negative mammogram and before the next call) in the 
population and to have information on the 2 years of follow-up after the 
last mammograms. 

The information was collected in a multidimensional table structure with 
different levels of information (Figure 12). Parallel to data collection, a 
document with different validation rules was created to ensure data quality. 
A professional IT company was contracted to develop a virtual tool to 
apply the validation rules to the different program databases and return 
an error report. I resolved each of these errors with the different programs 
personally and individually until all the databases were validated. Once 
validated, the databases of the different programs were merged into a 
common database, which is that used for the various analyses. 
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Study population 

The participating programs have structured information from at least 6 
consecutive screening rounds, so that the information can be analyzed as a 
retrospective cohort (each woman must be identified by a unique code in 
each program participation). In addition, for each woman's participation, 
information was collected on both the woman's characteristics and 
the result of the mammogram, including additional scans. All women 
participating at least once in any of the programs are included. Women 
with a history of breast cancer or breast implant prior to first screening  
are excluded.

The project study period was from 1995 to December 2015 but the women 
were followed up until December 2017. The retrospective nature of the 
study involved the collection of information from a large volume of 
screening mammograms. The study contained information from 782,406 
women who underwent 2,853,753 screening mammograms. In addition, 
information from 147,448 additional examinations was included to 
confirm or rule out malignancy and 18,573 cases of benign breast disease 
were diagnosed. Of these women, 12,102 were diagnosed with breast 
cancer during the screening process and 3,659 had an interval cancer. 
In our cohort, 78% of the participating women had at least 2 screening 
mammograms (n = 611,110), 61% had at least 3 (n = 483,079), and 
22% had 6 or more (n = 174,068). The screening mammograms were 
performed in 35 different radiological units with an average of 81,535 
mammograms per radiology unit.

Mammograms 2,853,753

Women screened 782,406

Additional explorations 147,448

Benign breast disease 18,573

Tumours detected in screening 12,102

Interval tumours 3,659

Figure 13.  Characteristics of the BELE-2 / IRIS data base.
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Statistical analysis

Model development

The main statistical analysis conducted for the different articles presented 
in this thesis was done using partly conditional Cox proportional 
hazard models. This type of model was chosen because it allowed the 
incorporation of the needs developed by the research team. 

The model had to consider that:

•	 The response variable (breast cancer) is a dichotomous variable.

•	 Time is continuous and is equivalent to the time since a woman's first 
mammogram to the end of follow-up.

•	 It must consider repeated observations of the same woman 
throughout time. 

•	 It must consider and update those variables that change over time 
(age, benign breast disease, etc.).

Partly conditional Cox proportional hazard models are an extension of 
the Cox proportional hazard model in which the hazard ratio of a given 
event over time is modeled (112). These models were developed in depth 
by Y. Zheng and P. J. Heagerty in their article "Partly Conditional Survival 
Models for Longitudinal Data" from 2005 (113). The main difference 
between these models and the Cox proportional hazards model is that the 
former takes into account repeated measurements of different women so 
that the different explanatory variables can be updated over time. 

For example, a woman can start at time 0 without any diagnosis of benign 
breast disease but have a diagnosis at time 4. The model will take this 
information into account and the hazard ratio of having benign breast 
disease will be estimated considering that these women spent 4 units of 
time without benign breast disease.



64

The formulas of the classical (Equation 1) and the extension Cox 
proportional hazards model (Equation 2) are shown below.

Equation 1. Classical Cox proportional hazard model (112).

Where:

             is the baseline hazard.

		       are the predictor variables.

		      are the coefficients of the predictor variables.

Equation 2. Partly Conditional extension of the Cox proportional hazard model (112).

Where:

             is the baseline hazard.

      is the number of time-independent variables.

      is the number of time-dependent variables.

					      are the predictor variables.

		        are the coefficients of the time-independent variables.

		       are the coefficients of the time-dependent variables.

With this model we also can obtain estimators not only at 2 years, but  
also every 2 years (2, 4, 6, 8... up to 20 years) over the time a woman  
is screened.

In addition, for the analysis of breast density and screening performance 
indicators, generalized estimating equation (GEE) for repeated measures 
were used (114).

For the different model coefficient estimators in both Cox partly 
conditional and GEE models, robust standard errors were used to 
compute 95% confidence intervals using the robust Huber-White 
(sandwich) variance estimator (115) (Equation 3).
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Equation 3. Robust Huber-White (sandwich) variance estimator formula (115).

Let    index observations whose values are      . Let              be a           parameter vector.  

Let 	                be a positive density. Let      be independent with density                 .  

Let 		                the likelihood function. The log likelihood function is therefore:

The first and second partial derivatives of     with respect to     are given by:

Where       and       represent the second and first derivate of                             with respect to    .

Then the robust Huber-White (sandwich) variance estimator     is:

Where:

Notice that the square roots of the diagonal elements of     are the robust standard errors,  

also called “Huber-White standard errors”.
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𝑛𝑛

𝑖𝑖=1

𝜃𝜃

𝐿𝐿′(𝜃𝜃) = ∑ 𝑔𝑔𝑖𝑖(𝑌𝑌𝑖𝑖|𝜃𝜃)
𝑛𝑛

𝑖𝑖=1

𝐿𝐿′′(𝜃𝜃)  = ∑  ℎ𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃𝜃)
𝑛𝑛

𝑖𝑖=1

𝑔𝑔𝑖𝑖 ℎ𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃𝜃) 𝜃𝜃.

𝑉̂𝑉

𝑉̂𝑉 = (−𝐴𝐴)−1𝐵𝐵(−𝐴𝐴)−1

𝐴𝐴 = 𝐿𝐿′′(𝜃̂𝜃)

𝐵𝐵 = ∑ 𝑔𝑔𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃̂𝜃0)𝑇𝑇𝑔𝑔𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃̂𝜃0)
𝑛𝑛

𝑖𝑖=1

𝑉̂𝑉
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𝑖𝑖 𝑦𝑦𝑖𝑖 𝜃𝜃𝜃𝜃𝑅𝑅𝑝𝑝  𝑝𝑝𝑝𝑝1 𝑦𝑦 → 𝑓𝑓𝑖𝑖(𝑦𝑦|𝜃𝜃) 
𝑌𝑌𝑖𝑖 𝑓𝑓𝑖𝑖(· |𝜃𝜃) 𝑙𝑙(𝜃𝜃) = ∏ 𝑓𝑓𝑖𝑖(𝑌𝑌𝑖𝑖|𝜃𝜃)𝑛𝑛

𝑖𝑖=1

𝐿𝐿(𝜃̂𝜃)  = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃𝜃)
𝑛𝑛

𝑖𝑖=1

𝜃𝜃

𝐿𝐿′(𝜃𝜃) = ∑ 𝑔𝑔𝑖𝑖(𝑌𝑌𝑖𝑖|𝜃𝜃)
𝑛𝑛

𝑖𝑖=1

𝐿𝐿′′(𝜃𝜃)  = ∑  ℎ𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃𝜃)
𝑛𝑛

𝑖𝑖=1

𝑔𝑔𝑖𝑖 ℎ𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃𝜃) 𝜃𝜃.

𝑉̂𝑉

𝑉̂𝑉 = (−𝐴𝐴)−1𝐵𝐵(−𝐴𝐴)−1

𝐴𝐴 = 𝐿𝐿′′(𝜃̂𝜃)

𝐵𝐵 = ∑ 𝑔𝑔𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃̂𝜃0)𝑇𝑇𝑔𝑔𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃̂𝜃0)
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𝐵𝐵 = ∑ 𝑔𝑔𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃̂𝜃0)𝑇𝑇𝑔𝑔𝑖𝑖 (𝑌𝑌𝑖𝑖|𝜃̂𝜃0)
𝑛𝑛

𝑖𝑖=1

𝑉̂𝑉
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Model validation

We assessed the internal validity of the model by means of its calibration 
and discriminatory accuracy. To perform internal validation, we split our 
cohort into 2 sets, the estimation subcohort, to perform the analysis and 
development of the model and the validation subcohort, to perform the 
internal validation of the model. This technique, known as split validation, 
is common for this type of model (100) but we could also have performed 
cross validation or bootstrapping (116, 117).

To assess calibration, we calculated the ratio between the expected breast 
cancer rate in the validation subcohort versus the observed rate in the 
estimation subcohort. The expected-to-observed (E/O) ratio assessed 
whether the number of women predicted to develop breast cancer by the 
model matched the actual number of cases of breast cancer diagnosed in 
the validation subcohort. 

To account for censoring, the observed rate was estimated using the 
Kaplan-Meier estimator (118) (Equation 4).

Equation 4. Kaplan-Meier estimator of the survival function (118).

Where:

     is a time when at least one event happened.

      the number of events (in this case breast cancer diagnosis).

      the number of individuals known to have survived (in this case without a breast cancer diagnosis)  

up to time     .

4 
 

𝑆̂𝑆(𝑡𝑡) = ∏ (1 − 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)
𝑖𝑖: 𝑡𝑡𝑖𝑖≤𝑡𝑡

𝑡𝑡𝑖𝑖 

𝑑𝑑𝑖𝑖

𝑛𝑛𝑖𝑖

𝑡𝑡𝑖𝑖

4 
 

𝑆̂𝑆(𝑡𝑡) = ∏ (1 − 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)
𝑖𝑖: 𝑡𝑡𝑖𝑖≤𝑡𝑡

𝑡𝑡𝑖𝑖 

𝑑𝑑𝑖𝑖

𝑛𝑛𝑖𝑖

𝑡𝑡𝑖𝑖

4 
 

𝑆̂𝑆(𝑡𝑡) = ∏ (1 − 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)
𝑖𝑖: 𝑡𝑡𝑖𝑖≤𝑡𝑡

𝑡𝑡𝑖𝑖 

𝑑𝑑𝑖𝑖

𝑛𝑛𝑖𝑖

𝑡𝑡𝑖𝑖

4 
 

𝑆̂𝑆(𝑡𝑡) = ∏ (1 − 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)
𝑖𝑖: 𝑡𝑡𝑖𝑖≤𝑡𝑡

𝑡𝑡𝑖𝑖 

𝑑𝑑𝑖𝑖

𝑛𝑛𝑖𝑖

𝑡𝑡𝑖𝑖

4 
 

𝑆̂𝑆(𝑡𝑡) = ∏ (1 − 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)
𝑖𝑖: 𝑡𝑡𝑖𝑖≤𝑡𝑡

𝑡𝑡𝑖𝑖 

𝑑𝑑𝑖𝑖

𝑛𝑛𝑖𝑖

𝑡𝑡𝑖𝑖

The expected breast cancer rate was calculated as the average of the risk 
estimates in the validation subcohort. The expected breast cancer rate in 
a specific risk group was calculated as the average of the risk estimates for 
each woman in that risk group of the validation subcohort. An E/O ratio 
of 1.0 indicates perfect calibration. We calculated the E/O ratio 95% CI 
using the formula of the standardized mortality ratio proposed by Breslow 
and Day (119) (Equation 5).
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Equation 5. Confidence interval for E/O ratio adapted from Breslow and Day (119).

Let              and              be the lower and upper value for the confidence interval of the expected-to-

observed ratio          .

Adapting the formula of the Breslow and Day standardized mortality ratio confidence intervals we 

define             and               as:

Where:

     is the number of events (in this case breast cancer diagnosis).

           denotes the                           percentile of the unit normal distribution.

The discriminatory accuracy of our model was assessed by estimating 
the area under the receiving operating characteristic curve (AUC) for 
each 2-year interval based on the predicted risks for each woman and 
whether she developed breast cancer during the time interval or not (120) 
(Equation 6).

5 
 

𝐸𝐸/𝑂𝑂𝐿𝐿 𝐸𝐸/𝑂𝑂𝑈𝑈

𝐸𝐸/𝑂𝑂

𝐸𝐸/𝑂𝑂𝐿𝐿 𝐸𝐸/𝑂𝑂𝑈𝑈

𝐸𝐸/𝑂𝑂𝐿𝐿  = (𝐸𝐸/𝑂𝑂)[1 + 1
2𝑁𝑁 𝑍𝑍𝛼𝛼/2

2 {1 − (1 + 4𝑁𝑁/𝑍𝑍𝛼𝛼/2
2 )1/2}]

𝐸𝐸/𝑂𝑂𝑈𝑈  = (𝐸𝐸/𝑂𝑂)[1 + 1
2𝑁𝑁 𝑍𝑍𝛼𝛼/2

2 {1 + (1 + 4𝑁𝑁/𝑍𝑍𝛼𝛼/2
2 )1/2}]

𝑁𝑁

𝑍𝑍𝛼𝛼/2 100(1 − 𝛼𝛼
2)

5 
 

𝐸𝐸/𝑂𝑂𝐿𝐿 𝐸𝐸/𝑂𝑂𝑈𝑈
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𝐸𝐸/𝑂𝑂𝑈𝑈  = (𝐸𝐸/𝑂𝑂)[1 + 1
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2𝑁𝑁 𝑍𝑍𝛼𝛼/2
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𝑁𝑁
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Equation 6. Sensitivity, specificity and the AUC (120).

Let      represent the predicted probability of developing the event before time     and let      be  

the event indicator. Let     be the probability density function of      for any cut-off point                       . 

We define: 	

6 
 

𝑋𝑋 𝑇𝑇 𝐷𝐷
𝑓𝑓 𝑋𝑋 𝑢𝑢 ∈ (0,1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 1) =  ∫ 𝑓𝑓(𝐷𝐷 = 1)𝑑𝑑𝑑𝑑
1

𝑢𝑢

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 0) =  ∫ 𝑓𝑓(𝐷𝐷 = 0)𝑑𝑑𝑥𝑥
1

𝑢𝑢

𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆(𝑈𝑈) 𝑣𝑣𝑣𝑣 𝑃𝑃(𝑈𝑈)

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑆𝑆(𝑢𝑢) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃(𝑢𝑢)𝑑𝑑𝑑𝑑

1

0
= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)
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= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)

6 
 

𝑋𝑋 𝑇𝑇 𝐷𝐷
𝑓𝑓 𝑋𝑋 𝑢𝑢 ∈ (0,1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 1) =  ∫ 𝑓𝑓(𝐷𝐷 = 1)𝑑𝑑𝑑𝑑
1

𝑢𝑢

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 0) =  ∫ 𝑓𝑓(𝐷𝐷 = 0)𝑑𝑑𝑥𝑥
1

𝑢𝑢

𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆(𝑈𝑈) 𝑣𝑣𝑣𝑣 𝑃𝑃(𝑈𝑈)

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑆𝑆(𝑢𝑢) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃(𝑢𝑢)𝑑𝑑𝑑𝑑

1

0
= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)

6 
 

𝑋𝑋 𝑇𝑇 𝐷𝐷
𝑓𝑓 𝑋𝑋 𝑢𝑢 ∈ (0,1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 1) =  ∫ 𝑓𝑓(𝐷𝐷 = 1)𝑑𝑑𝑑𝑑
1

𝑢𝑢

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 0) =  ∫ 𝑓𝑓(𝐷𝐷 = 0)𝑑𝑑𝑥𝑥
1

𝑢𝑢

𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆(𝑈𝑈) 𝑣𝑣𝑣𝑣 𝑃𝑃(𝑈𝑈)

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑆𝑆(𝑢𝑢) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃(𝑢𝑢)𝑑𝑑𝑑𝑑

1

0
= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)

6 
 

𝑋𝑋 𝑇𝑇 𝐷𝐷
𝑓𝑓 𝑋𝑋 𝑢𝑢 ∈ (0,1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 1) =  ∫ 𝑓𝑓(𝐷𝐷 = 1)𝑑𝑑𝑑𝑑
1

𝑢𝑢

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 0) =  ∫ 𝑓𝑓(𝐷𝐷 = 0)𝑑𝑑𝑥𝑥
1

𝑢𝑢

𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆(𝑈𝑈) 𝑣𝑣𝑣𝑣 𝑃𝑃(𝑈𝑈)

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑆𝑆(𝑢𝑢) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃(𝑢𝑢)𝑑𝑑𝑑𝑑

1

0
= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)

6 
 

𝑋𝑋 𝑇𝑇 𝐷𝐷
𝑓𝑓 𝑋𝑋 𝑢𝑢 ∈ (0,1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 1) =  ∫ 𝑓𝑓(𝐷𝐷 = 1)𝑑𝑑𝑑𝑑
1

𝑢𝑢

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 0) =  ∫ 𝑓𝑓(𝐷𝐷 = 0)𝑑𝑑𝑥𝑥
1

𝑢𝑢

𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆(𝑈𝑈) 𝑣𝑣𝑣𝑣 𝑃𝑃(𝑈𝑈)

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑆𝑆(𝑢𝑢) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃(𝑢𝑢)𝑑𝑑𝑑𝑑

1

0
= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)

6 
 

𝑋𝑋 𝑇𝑇 𝐷𝐷
𝑓𝑓 𝑋𝑋 𝑢𝑢 ∈ (0,1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 1) =  ∫ 𝑓𝑓(𝐷𝐷 = 1)𝑑𝑑𝑑𝑑
1

𝑢𝑢

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝐷𝐷 = 0) =  ∫ 𝑓𝑓(𝐷𝐷 = 0)𝑑𝑑𝑥𝑥
1

𝑢𝑢

𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆(𝑈𝑈) 𝑣𝑣𝑣𝑣 𝑃𝑃(𝑈𝑈)

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑆𝑆(𝑢𝑢) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃(𝑢𝑢)𝑑𝑑𝑑𝑑

1

0
= 𝑃𝑃(𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑗𝑗 | 𝐷𝐷𝑖𝑖 = 1, 𝐷𝐷𝑗𝑗 = 0)

5 
 

𝐸𝐸/𝑂𝑂𝐿𝐿 𝐸𝐸/𝑂𝑂𝑈𝑈

𝐸𝐸/𝑂𝑂

𝐸𝐸/𝑂𝑂𝐿𝐿 𝐸𝐸/𝑂𝑂𝑈𝑈
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The AUC measured the ability of the model to discriminate between 
women who will develop breast cancer from those who will not. We 
calculated the 95% CI using the approach proposed by Hanley and 
McNeil (121) (Equation 7).

Equation 7. Confidence interval for AUC adapted from Hanley and McNeil (121).

Let                     and                      be the lower and upper value for the confidence interval of the AUC. 

Adapting the formula of the Hanley, we define               and               as:

Where:

       the number of non-events (in this case without breast cancer diagnosis).

       the number of events (in this case breast cancer diagnosis).

           denotes the                             percentile of the unit normal distribution.

All statistical analyses of this thesis were performed using the statistical 
software SPSS version 23.0 (IBM, Armonk, NY, USA) and R version 3.5.0 
(R Core Team, 2014).
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Abstract:

Objectives: To investigate how breast density affects screening 
performance indicators in a digital mammography context.

Methods: We assessed the effect of breast density over the screen-
detected and interval cancers rates, false-positives, specificity, 
sensitivity, recall rate, positive predictive value of recall (PPV-1), and 
PPV of invasive tests (PPV-2). Radiologists classified breast density 
using the BIRADS System. We used generalized estimating equations to 
account for within-woman correlation by means of the robust Huber-
White variance estimator.

Results: We included 177,164 women aged 50–69 years who underwent 
499,251 digital mammograms from 2004 to 2015 in Spain. According 
to the fibroglandular tissue percentage, 24.7% of mammograms were 
classified as BI-RADS 1 (<25% glandular), 54.7% as BI-RADS 2 (25–
50% glandular), 14.0% as BI-RADS 3 (51–75% glandular) and 6.6% as 
BI-RADS 4 (>75% glandular). Overall, women with BI-RADS 3 had the 
highest screen-detected cancer rate (5.9 per 1000) and BI-RADS 4 the 
highest interval cancer rate (2.4 per 1000). Sensitivity decreased from 
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89.2% in women with BI-RADS 1 to 67.9% in BI-RADS 4. Both PPV-
1 and PPV-2 decreased from 10.4% to 5.7% and from 49.8% to 32.4% 
in women with BI-RADS 1 and BI-RADS 4, respectively. Women aged 
60–69 years with BI-RADS 4 had the lowest sensitivity (54.9%) and the 
highest interval cancer rate (3.8 per 1000).

Conclusions: Performance screening measures are negatively affected 
by breast density falling to a lower sensitivity and PPV, and higher 
interval cancer rate as breast density increases. Particularly women 
aged 60–69 years with >75% glandular breasts had the worst results and 
therefore may be candidates for screening using other technologies.



Contents lists available at ScienceDirect

European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejrad

Research article

Mammographic breast density: How it affects performance indicators in
screening programmes?

Margarita Possoa,b, Javier Louroa,b,c, Mar Sánchezd, Marta Romána,b, Carmen Vidale,
María Salaa,b, Marisa Baréb,f, Xavier Castellsa,b,⁎, on behalf of the BELE study group
a Department of Epidemiology and Evaluation, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
b Research Network on Health Services in Chronic Diseases (REDISSEC), Barcelona, Spain
c European Higher Education Area (EHEA), Doctoral Programme in Methodology of Biomedical Research and Public Health in Department of Pediatrics, Obstetrics and
Gynecology, Preventive Medicine and Public Health, Universitat Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
dGeneral Directorate of Public Health, Government of Cantabria, Santander, Spain
e Cancer Prevention and Monitoring Program, Catalan Institute of Oncology, Barcelona, Spain
f Clinical Epidemiology and Cancer Screening, Parc Taulí University Hospital, Sabadell, Spain

A R T I C L E I N F O

Keywords:
Breast neoplasms
Early detection of cancer
Mammography
Breast density

A B S T R A C T

Objectives: To investigate how breast density affects screening performance indicators in a digital mammo-
graphy context.
Methods: We assessed the effect of breast density over the screen-detected and interval cancers rates, false-
positives, specificity, sensitivity, recall rate, positive predictive value of recall (PPV-1), and PPV of invasive tests
(PPV-2). Radiologists classified breast density using the BIRADS System. We used generalized estimating
equations to account for within-woman correlation by means of the robust Huber-White variance estimator.
Results: We included 177,164 women aged 50–69 years who underwent 499,251 digital mammograms from
2004 to 2015 in Spain. According to the fibroglandular tissue percentage, 24.7% of mammograms were classified
as BI-RADS 1 (< 25% glandular), 54.7% as BI-RADS 2 (25–50% glandular), 14.0% as BI-RADS 3 (51–75%
glandular) and 6.6% as BI-RADS 4 (> 75% glandular). Overall, women with BI-RADS 3 had the highest screen-
detected cancer rate (5.9 per 1000) and BI-RADS 4 the highest interval cancer rate (2.4 per 1000). Sensitivity
decreased from 89.2% in women with BI-RADS 1 to 67.9% in BI-RADS 4. Both PPV-1 and PPV-2 decreased from
10.4% to 5.7% and from 49.8% to 32.4% in women with BI-RADS 1 and BI-RADS 4, respectively. Women aged
60–69 years with BI-RADS 4 had the lowest sensitivity (54.9%) and the highest interval cancer rate (3.8 per
1000).
Conclusions: Performance screening measures are negatively affected by breast density falling to a lower sen-
sitivity and PPV, and higher interval cancer rate as breast density increases. Particularly women aged 60–69
years with> 75% glandular breasts had the worst results and therefore may be candidates for screening using
other technologies.

1. Introduction

Radiologists determine breast density based on the amount of
radiopaque breast parenchyma that is visualized on the mammogram.
Radiopaque areas correspond to regions in the breast that are rich in
epithelial and stromal tissue while the non-dense, darker grey areas,
correspond to regions that are predominantly fat [1].

The assessment of breast density in mammography screening has
become relevant because it can limit the screening accuracy [2,3].
Several authors have reported that small breast cancers are likely to be
easily diagnosed in a breast containing substantial fatty tissue. Con-
versely, it would be difficult to detect if the lesions are superimposed on
dense tissue [4,5]. The role of breast density as a contributor to interval
cancers has also been reported [3,6]. Thus, evaluating breast density as
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an influence on accuracy of detection is essential in screening programs.
Compared to film-screen, digital mammography can mitigate the

breast density masking effect and improve cancer detection, especially
in women with extremely dense breasts [7]. However, challenges when
reading digital mammograms of women with dense breasts still exists,
and whether this impact on the performance measures in screening
needs further assessment in the light of modern digital technology.

Breast cancer screening in Spain started using digital mammo-
graphy early in the 2000 decade, and spread rapidly afterwards [8].
Evaluating performance measures across breast dense categories pro-
vides valuable information for mammographic screening that can be
used to guide clinical practice and screening policies. Our purpose was
to assess the effect of breast density on the screening performance
measures in a population-based program that uses digital mammo-
graphy.

2. Materials and methods

2.1. Setting and study population

The Spanish, government funded, Breast Cancer Screening Program
started in 1990 and became nationwide in 2006. All women aged 50–69
years biennially receive an invitation letter to participate in the pro-
gram. The standard procedure for radiological performance is two-view
mammography and double reading with consensus arbitration in case
of disagreement. Mammograms were read by highly experienced radi-
ologists who interpreted at least 1500 screening mammograms per
year. Certified screening radiologists routinely evaluate mammograms.
The BI-RADS® scale or equivalent is used to rate the probability of
cancer. Women with positive mammographic findings, scored as 3;
probably benign finding, 4; suspicious abnormality, 5; highly suspicious
of malignancy, or 0; incomplete, are recalled for further assessments to
confirm or rule out malignancy at the reference hospital of their
screening geographic area.

We assessed information of digital screening exams performed in
three Centres of the Spanish Breast Cancer Screening Program from
July 2004 to December 2015 (Vallès Occidental, Barcelona- Àrea
Metropolitana Sud, and Cantabria). From a total of 522,741 screening
exams, we excluded 23,490 due to lack of information with regards to
mammographic density. Hence, we included 499,251 digital exams
performed on 177,164 women.

We included both screen-detected and interval cancers. Screen-de-
tected cancers were diagnosed at routine screening. An interval breast
cancer was defined as a breast carcinoma diagnosed after a negative
screening test, or after a positive screening test where malignancy is
finally ruled out, either before the next biennial invitation to screening,
or within two years for women who had reached the upper age limit for
screening. Invasive as well as in situ carcinomas (DCIS) were patholo-
gically confirmed. Data on screening mammogram results, additional
diagnostic tests, and pathological confirmation was obtained from the
Breast Screening Centers database whereas we identified interval can-
cers by merging data from population-based cancer registries and
hospital records. Each Ethics Committee at the participating institutions
approved the study and informed consent was waived since we used
anonymised retrospective data.

2.2. Breast density measurement

Breast density was determined per each mammogram by one or two
radiologists using the Fourth Edition of the American College of
Radiology Breast Imaging Reporting and Data System (BI-RADS®) [9]
and therefore all mammograms were categorized according to the
percentage value of fibroglandular breast tissue as 1)< 25% glandular;
2) 25–50% glandular; 3) 51–75% glandular; or 4)> 75% glandular.

2.3. Accuracy measures

We assessed the cancer detection rate (screen-detected and interval
cancers), false-positive rate, specificity, sensitivity, recall rate (fre-
quency and type of additional tests), positive predictive value of recall
(PPV-1), and PPV of invasive tests (PPV-2) according to breast density
classification.

Breast cancer detection rates were defined as the number of cases
per 1000 screening exams. False-positives were cases recalled for ad-
ditional tests without an ultimate diagnosis of cancer. Sensitivity was
defined as the number of screen-detected cancers divided by the
number of screen-detected cancers plus interval cancers. Specificity was
defined as the number of true-negative screening exams divided by the
number of true-negatives tests plus false positives. PPV-1 was defined as
the number of screen detected breast cancers divided by the number of
recalls due to positive mammographic findings regardless of the addi-
tional test invasiveness. PPV-2 was defined as the number of screen
detected breast cancers divided by the number of recalled exams in-
cluding only invasive procedures (fine needle aspiration biopsy, core
needle biopsy, open biopsy). The number of women needed to be re-
called and to undergo an invasive procedure to detect one breast cancer
was estimated by taking the inverse of PPV-1 (1/PPV-1) and PPV-2 (1/
PPV-2), respectively.

2.4. Statistical analysis

The screening mammogram was the unit of analyses. Because
women could have multiple screens during the study period, we used
generalized estimating equations (GEE) to account for within-woman
correlation in the performance indicators by means of the robust Huber-
White (sandwich) variance estimator [10].

Screening accuracy measures were evaluated separately for the four
breast density categories. Estimates of sensitivity and specificity, cancer
detection rates, false-positive rates, PPV-1, and PPV-2 were stratified by
type of screening (first or subsequent), and age at screening (50–59 or
60–69 years of age). Proportions across breast density categories were
compared using the z-test for column proportions. The 95% confidence
intervals (95% CIs) were calculated based on the standard errors ob-
tained from the GEE models. P-values< 0.05 were considered statisti-
cally significant.

3. Results

The study included 499,251 digital mammograms from 177,164
women who underwent screening at age 50 to 69 years between 2004
and 2015. Among the mammograms analyzed, and according to its
breast density, 123,292 (24.7%) were classified as BI-RADS 1, 272,964
(54.7%) as BI-RADS 2, 70,066 (14.0%) as BI-RADS 3, and 32,929
(6.6%) as BI-RADS 4. In terms of age, 280,312 (56.1%) mammograms
were performed to women aged 50–59 years and 218,939 (43.9%) to
woman aged 60–69 years. When classifying by type of screen, 103,308
(20.6%) were first screening examinations and 396.213 (79.4%) were
subsequent screens. Overall, 2047 cancers were screen-detected and
550 were interval cancers.

The screen-detected invasive cancer rate increased from 2.23 per
1000 screening exams in the BI-RADS 1 group to 2.69 in the BI-RADS 2
group and to 3.95 in the BI-RADS 3 group. However, this rate decreased
in the BI-RADS 4 group with a rate of 2.28. The rate of screen-detected
DCIS increased with increasing density, ranging from 0.58 in women
with BI-RADS 1 to 2.76 in those with BI-RADS 4. Regarding interval
cancers, the rate of all malignancies (invasive cancer and DCIS) also
increased with increasing density, from 0.34 to 2.40 per 1000 screening
exams in BI-RADS 1 and BI-RADS 4, respectively. The false positive rate
increased with increasing breast density for both additional imaging
and invasive procedures. The overall proportion was 2.44%, 5.46%,
7.58% and 8.46% in women with BI-RADS 1, 2, 3 and 4, respectively
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(Table 1).
Sensitivity decreased while increasing breast density ranging be-

tween a sensitivity of 89.2% in women with BI-RADS 1 and 67.9% in
those with BI-RADS 4. This decrease was statistically significant except
when comparing BI-RADS groups 2 versus 3 and BI-RADS 3 versus 4.
Specificity significantly decreased with increasing breast density ran-
ging from 97.5% to 91.5% in women with BI-RADS 1 and BI-RADS 4,
respectively. Similarly to sensitivity and specificity, both PPV-1 (posi-
tive predictive value for all recall tests) and PPV-2 (positive predictive
value for invasive procedures) decreased with increasing breast density
but showing differences between the extreme groups. PPV-1 sig-
nificantly decreased from 10.4% in women with BI-RADS 1, to 5.7% in
those with BI-RADS 4. The decrease translates to 9.7 recalls needed for
further workup to detect one breast cancer in women with BI-RADS 1,
and 17.7 in women with BI-RADS 4. Regarding invasive procedures, 2.0
biopsies were required to detect one cancer in women with BI-RADS 1
whereas 3.1 biopsies were needed in those with BI-RADS 4 (Table 2).

Sensitivity decreased with increasing breast density in both women
aged 50–59 and 60–69 years. A significant lower sensitivity in women
aged 60–69 years was found in the extremely dense group compared
with women aged 50–59 years (54.9% vs 73.1%) (Fig. 1). The lower
sensitivity is explained by the high interval cancer rate amongst women
with BI-RADS 4 aged 60 to 69 years (4 per 1000). Without considering
the BI-RADS 4 group, the screen-detected cancer rate increased with

increasing density in women aged 50 to 59 years as well as in those
aged 60 to 69 years. In the younger age group it ranged from 2.1 to 6.0
and in the older age group from 3.5 to 5.8 per 1000 screening exams in
women with BI-RADS 1 and BI-RADS 3, respectively (Fig. 1).

The analyses stratified by type of screening confirmed the lowest
sensitivity in women with BI-RADS 4 (75.7% at first screen and 62.9%
in subsequent screen). Sensitivity was significantly higher in women
with BI-RADS 3 at first screen compared with subsequent screen (83.7%
and 70.8%, respectively). Women with BI-RADS 4 also showed higher
screen-detected cancer rate at first screen compared with subsequent
screen (7.1 and 4.2, respectively)). We did not find differences when
comparing interval cancer rates by type of screening in the different
density groups (Fig. 2).

4. Discussion

Our results showed that the high breast density has a negative effect
on the screening performance measures in a population-based program
that uses digital mammography. We found that both sensitivity and
positive predictive value were remarkably lower in women with BI-
RADS 4. Compared to women with BI-RADS 1, the group with BI-RADS
4 had over a three-fold increased rate of interval cancer and false po-
sitives. Notably, women aged 60–69 years with BI-RADS 4 had the
lowest sensitivity, which implied that one out of two breast cancers in

Table 1
Number and rate of screen-detected, interval cancer and false-positive results in mammographic screening according to breast density.

BI-RADS 1 (< 25%
glandular) (n=123,292)

BI-RADS 2 (25-50%
glandular) (n=272,694)

BI-RADS 3 (50-75%
glandular) (n=70,066)

BI-RADS 4 (> 75%
glandular) (n=32,929)

Total (n=499,251)

Screen detected cancers
All malignant lesions, n (per

1000)
348 (2.82) a,b 1,116 (4.09) a 416 (5.94) a 167 (5.07) b 2,047 (4.10)

Invasive, n (per 1000) 275 (2.23) a,b 733 (2.69) a 277 (3.95) b 75 (2.28) a,b 1,360 (2.72)
DCIS, n (per 1000) 71 (0.58) a,b 379 (1.39) a 139 (1.98) b 91 (2.76) a,b 680 (1.36)
Unknown, n (per 1000) 2 (0.02) 4 (0.01) 0 (0.00) 1 (0.03) 7 (0.01)
Interval cancers
All malignant lesions, n (per

1000)
42 (0.34) c,d 290 (1.06) c,d 139 (1.98) c 79 (2.40) d 550 (1.10)

Invasive, n (per 1000) 31 (0.25) c 239 (0.88) c,d 111 (1.58) c,d 73 (2.22) d 454 (0.91)
DCIS, n (per 1000) 6 (0.05) 31 (0.11) 13 (0.19) 2 (0.06) 52 (0.10)
Unknown, n (per 1000) 5 (0.04) 17 (0.06) 9 (0.13) 3 (0.09) 34 (0.07)
False positives

All, n (per 1000) 3,012 (2.44) e 14,899 (5.46) e 5,314 (7.58) e 2,785 (8.46) e 26,010 (5.21)
Additional imaging, n (per

1000)
2,661 (2.16) e 13,422 (4.92) e 4,807 (6.86) e 2,436 (7.40) e 23,326 (4.67)

Invasive procedures, n (per
1000)

351 (0.28) e 1477 (0.54) e 507 (0.72) e 349 (1.06) e 2,684 (0.54)

DCIS: Ductal carcinoma in situ.
a,b,c,d,e Those values of the same row that share a same superscript are significantly different at p<0.05 in a two-sided test for column proportions (z-test). Tests are
adjusted using the Bonferroni correction for multiple comparison.

Table 2
Sensitivity, specificity, positive predictive value of recalls (PPV-1) and invasive procedures (PPV-2) in mammographic screening according to breast density with the
95% confidence intervals.

BI-RADS 1 (< 25% glandular) %
(95% CI)

BI-RADS 2 (25-50% glandular) %
(95% CI)

BI-RADS 3 (50-75% glandular) %
(95% CI)

BI-RADS 4 (> 75% glandular) %
(95% CI)

Total % (95%
CI)

Sensitivity 89.2 (85.7-91.9) 79.4 (77.2-81.4) 75.0 (71.2-78.4) 67.9 (61.8-73.4) 78.8 (77.2-80.4)
Specificity 97.5 (97.5-97.6) 94.5 (94.4-94.6) 92.4 (92.2-92.6) 91.5 (91.2-91.8) 94.8 (94.7-94.8)
PPV-1 10.4 (9.4-11.4) 7.0 (6.6-7.4) 7.3 (6.6-8.0) 5.7 (4.9-6.6) 7.3 (7.0-7.6)
1/PPV-1 9.7 (8.7-10.7) 14.4 (13.6-15.2) 13.8 (12.6-15.1) 17.7 (15.3-20.5) 13.7 (13.1-14.3)
PPV-2 49.8 (46.1-53.5) 43.0 (41.1-45.0) 45.1 (41.9-48.3) 32.4 (28.5-36.5) 43.3 (41.9-44.7)
1/PPV-2 2.0 (1.9-2.2) 2.3 (2.2-2.4) 2.2 (2.1-2.4) 3.1 (2.7-3.5) 2.3 (2.2-2.4)

CI: Confidence Intervals, PPV-1: Positive predictive value of recall, PPV-2: Positive predictive value of invasive tests, 1/PPV-1: Inverse of the positive predictive value
of recall, 1/PPV-2: Inverse of the positive predictive value of invasive test.
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this group were diagnosed as an interval cancer.
Although sensitivity decreased with increasing breast density, the

cancer detection rate shows an opposite trend. Two main factors can
explain this finding. First, the masking effect of breast density reduces
the likelihood of several tumours to be detected and therefore reduces
the sensitivity. A plausible consequence is the higher interval cancer
rate in women with dense breasts compared to fatty breasts, which is
consistent with our results. Several studies have reported high interval
cancer rates in women with BI-RADS 4, exceeding in some cases the
amount of screen detected cancers [11,12]. Second, breast density acts
as an independent risk factor for breast cancer [13,14] as it was ob-
served in our study where both women with BI-RADS 3 and BI-RADS 4
had a higher rate of screen detected cancer than women with fatty
breasts.

It also should be noticed that in our cohort the rate of DCIS

constantly increased with increasing density whereas for invasive can-
cers this tendency was not conclusive. This can be explained by the fact
that the observed density does not necessary imply histologic ab-
normality at the time of mammography screening. Several studies have
demonstrated a strong relationship between mammographic density
and histological precursors of breast cancer and also with DCIS [15,16].
Whether breast density is related or not to a biological phenotype
promoting faster tumour growth or to a specific histological cancer type
remains to be elucidated. However, our findings could be explained by
the fact that in very dense breasts it is hard to spot small masses,
asymmetries or distortions that are often the mammographic finding of
invasive cancers, thereby leading to a lower incidence of screen-de-
tected invasive cancers in women with BI-RADS 4. DCIS are on the
other hand often associated with calcifications, and calcifications are
almost as easy to spot in a dense breast as in a fatty breast. Thus, one

Fig. 1. Sensitivity, screen-detected cancer rate and interval cancer rate stratified by age group.
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could expect the incidence of DCIS to be higher in women with BI-RADS
4 than in women with more fatty breasts because the extremely dense
women have the highest risk of breast malignancy. This would also lead
to a higher incidence of DCIS relative to invasive cancer in these women
compared to women with less dense breasts. Overall, the increased risk
can be even higher in women with dense breasts and therefore, as well
as other factors [17], it should be considered when offering their
follow-up strategies.

Previous studies conducted with screen-film mammography showed
that sensitivity decreased from approximately 80% in women with BI-
RADS 1 to 50% in women with BI-RADS 4 [18–20]. Digital mammo-
graphy was expected to perform better in women with dense breasts,
with several trials showing between 70% to 80% sensitivity in women
with BI-RADS 3 and BI-RADS 4 in non-organized screening [7,21].
More recently, studies conducted in population-based European

screening programs confirmed a sensitivity of about 70% in these
groups [12,22], which is in agreement with our results. Overall, al-
though the diagnostic accuracy of digital mammography outperforms
conventional screen-film mammography, other techniques such as di-
gital breast tomosynthesis, may improve screening performance mea-
sures among women with dense breasts [14].

Interestingly, we found that women aged 60 to 69 years with BI-
RADS 4 showed the lowest sensitivity (54.9%) and the highest interval
cancer rate (4 per 1000 screening exams). Breast density is expected to
gradually decrease with increasing age after menopause [20,23].
However, there is a small proportion of women who remain at a high
breast density ages 60 to 69 years. The explanation for why the sensi-
tivity is lower in 60–69 years old women with BI-RADS 4 than in
50–59 year old women with BI-RADS 4 has not been established.
However, it could be related to a higher incidence of cancer in older

Fig. 2. Sensitivity, screen-detected cancer rate and interval cancer rate stratified by first and subsequent screening.

M. Posso et al. European Journal of Radiology 110 (2019) 81–87

85



women with dense breasts than in younger women with dense breasts.
From our results, it seems that routine biennial screening in these group
of women may not be as effective as in the average target population.
These women may benefit from personalized screening strategies that
combine new diagnostic tests.

In our study, women with dense breasts were more likely to be re-
called for additional tests, including invasive procedures. Most addi-
tional tests were associated with an increased false positive rate and a
decrease in the predictive value. In agreement with our findings, a
previous study showed that women with dense breasts were more likely
to undergo additional imaging tests [24]. However, they found that
breast density was not significantly associated with biopsy and/or
surgical consultation in women without additional imaging tests. The
authors suggested that having imaging tests, especially ultrasound, was
the factor associated with unnecessary biopsies in women with dense
breasts. The distribution of diagnostic tests performed should be further
evaluated, particularly in women aged 60–69 years and BI-RADS 4
because they showed low positive predictive values.

Almost 21% of mammograms in our cohort and up to 40% in other
cohorts [13,25] were classified as BI-RADS 3 or BI-RADS 4, which re-
present a large proportion of screened women. Thus, to study breast
density is helpful to better planning the screening process and resources
needed, especially for women with dense breasts. Breast density is
particularly relevant in the screening context, since it contributes more
to the population risk than other much stronger but less common risk
factors, such as BRCA mutations. In fact, some authors have proposed
that breast density is the risk factor that increases far more the accuracy
of a breast cancer risk prediction model [26]. Therefore, offering more
accurate diagnostic tests to these women can positively affect the
overall performance of screening programs by increasing sensitivity
and/or decreasing interval cancers.

This study is based on a large cohort of screened women, involving
more than 150,000 women followed for at least 10 years that allowed
us to obtain robust conclusions. However, several limitations should be
considered. First, variability between radiologists can affect the results
since breast density measurements are inherently inaccurate depending
on the subjective observation [25,27,28]. Despite this limitation, our
results are consistent with those published by other European screening
programs. Furthermore, highly trained radiologists performed breast
density classification. Second, the BI-RADS edition that is referred to in
this manuscript is the fourth edition published in 2003 [9] and differs
from the current edition in how breast density is categorized [29],
which focuses more on the qualitative description of breast density. We
do not have data regarding the Fifth edition since it has been im-
plemented since 2015. Although BI-RADS 1 to 4 is similar to BI-RADS a
to d, it should be noticed that some women who, for example, had
mostly fatty breast but with focal dense areas might now be classified as
BI-RADS c, while they were previously classified as BI-RADS 2 [30].
Third, due to lack of information, we could not differentiate true in-
terval cancers from false negatives and therefore we combined both of
them in one category as interval cancers. This fact could lead us to a
slight bias when estimating sensitivity.

5. Conclusions

Performance measures in screening mammography are negatively
affected by breast density, falling to a lower sensitivity, positive pre-
dictive value and higher interval cancer rates. Although digital mam-
mography is expected to have better results in women with dense
breast, it seems that the performance improvements of this technique is
less effective for screening women with BI-RADS 3 or BI-RADS 4.
Women with dense breast may not obtain benefit from screening to the
same extent as women with lower breast density. Particularly, women
aged 60 to 69 years with BI-RADS 4 showed the lower sensitivity and
higher interval cancer rate and therefore they may be more likely to
have benefits from other screening technologies such as digital breast

tomosynthesis.
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Abstract:

Introduction: We aimed to assess differences in breast cancer risk 
across benign breast disease diagnosed at prevalent or incident screens.

Methods:  We conducted a retrospective cohort study with data from 
629,087 women participating in a long-standing population-based 
breast cancer screening program in Spain. Each benign breast disease 
was classified as non-proliferative, proliferative without atypia, or 
proliferative with atypia, and whether it was diagnosed in a prevalent 
or incident screen. We used partly conditional Cox hazard regression to 
estimate the adjusted hazard ratios of the risk of breast cancer.

Results: Compared with women without benign breast disease, the risk 
of breast cancer was significantly higher (p-value = 0.005) in women 
with benign breast disease diagnosed in an incident screen (aHR, 2.67; 
95%CI: 2.24–3.19) than in those with benign breast disease diagnosed 
in a prevalent screen (aHR, 1.87; 95%CI: 1.57–2.24). The highest risk 
was found in women with a proliferative benign breast disease with 
atypia (aHR, 4.35; 95%CI: 2.09–9.08, and 3.35; 95%CI: 1.51–7.40 for 
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those diagnosed at incident and prevalent screens, respectively), while 
the lowest was found in women with non-proliferative benign breast 
disease (aHR, 2.39; 95%CI: 1.95–2.93, and 1.63; 95%CI: 1.32–2.02 for 
those diagnosed at incident and prevalent screens, respectively).

Conclusions: Our study showed that the risk of breast cancer conferred 
by a benign breast disease differed according to type of screen 
(prevalent or incident). To our knowledge, this is the first study to 
analyze the impact of the screening type on benign breast  
disease prognosis.
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a b s t r a c t

Introduction: We aimed to assess differences in breast cancer risk across benign breast disease diagnosed
at prevalent or incident screens.
Materials and methods: We conducted a retrospective cohort study with data from 629,087 women
participating in a long-standing population-based breast cancer screening program in Spain. Each benign
breast disease was classified as non-proliferative, proliferative without atypia, or proliferative with
atypia, and whether it was diagnosed in a prevalent or incident screen. We used partly conditional Cox
hazard regression to estimate the adjusted hazard ratios of the risk of breast cancer.
Results: Compared with womenwithout benign breast disease, the risk of breast cancer was significantly
higher (p-value ¼ 0.005) in women with benign breast disease diagnosed in an incident screen (aHR,
2.67; 95%CI: 2.24e3.19) than in those with benign breast disease diagnosed in a prevalent screen (aHR,
1.87; 95%CI: 1.57e2.24). The highest risk was found in women with a proliferative benign breast disease
with atypia (aHR, 4.35; 95%CI: 2.09e9.08, and 3.35; 95%CI: 1.51e7.40 for those diagnosed at incident and
prevalent screens, respectively), while the lowest was found in women with non-proliferative benign
breast disease (aHR, 2.39; 95%CI: 1.95e2.93, and 1.63; 95%CI: 1.32e2.02 for those diagnosed at incident
and prevalent screens, respectively).
Conclusion: Our study showed that the risk of breast cancer conferred by a benign breast disease differed
according to type of screen (prevalent or incident). To our knowledge, this is the first study to analyse the
impact of the screening type on benign breast disease prognosis.
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1. Introduction

Benign breast disease is associated with an increased risk of
breast cancer both in the clinical setting [1,2] and in population-
based screening [3]. Quantification of the increased risk according
to the characteristics of each lesion is constantly under study.
Benign breast disease lesions are most commonly classified as non-
proliferative lesions, proliferative lesions without atypia, or prolif-
erative lesions with atypia [4e6]. The risk of subsequent breast
cancer is higher in proliferative lesions than in non-proliferative
lesions, while the risk is highest in proliferative lesions with aty-
pia [3,7].

Benign breast disease has been proposed as a key risk factor in
several breast cancer risk prediction models [8e11]. These models
are essential for the development of personalised screening stra-
tegies designed to improve the risk-benefit balance of breast cancer
screening [12,13]. Therefore, it is important to fully understand
differences in breast cancer risk in women diagnosed with benign
breast disease.

In population-based breast cancer screening in Spain, women
are invited to undergo a mammographic examination every 2 years
from the age of 50e69 years. Mammographic examinations can
therefore be classified as prevalent screens, ie, women’s first
participation in screening mammography, and incident screens, ie,
all subsequent screening participations. The results of prevalent
and incident screens differ in several screening outcomes, such as a
higher detection rate and a higher recall rate at prevalent screens
[14], resulting in higher sensitivity and lower specificity [15,16].
However, breast cancer diagnosed at prevalent screens has been
shown to be less aggressive and to have slower growth [17,18]. Even
so, no studies have evaluated the risk of breast cancer associated to
bening breast disease according to type of examination (incident or
prevalent). We hypothesised that benign breast disease diagnosed
in a prevalent screen confer a lower risk of subsequent breast
cancer than that diagnosed in incident screens, regardless of the
benign breast disease subtype.

Using data from a long-standing population-based screening
program in Spain, we aimed to assess differences in the risk of
breast cancer after diagnosis of benign breast disease according to
the screening type and histological subtype of benign breast
disease.

2. Materials and methods

2.1. Study design and participants

The Spanish Breast Cancer Screening Program follows the rec-
ommendations of the European Guidelines for Quality Assurance in
Breast Cancer Diagnosis [19]. At age 50 years, women are invited to
undergo 2-dimensional digital screening mammography. Two
projections (mediolateral-oblique and craniocaudal views) are
interpreted according to the Breast Imaging Reporting and Data
System (BI-RADS) [20] scale by trained breast radiologists. Women
with abnormal mammographic findings are recalled for further
assessments to confirm or rule out malignancy. Women without a
breast cancer diagnosis are invited back for routine screening at 2
years.

We analysed data from seven centres in the Spanish Screening
program, which routinely gathers information on benign breast
disease diagnoses. The study population included 632,299 women
who underwent at least one screening mammogram between 1994
and 2015 and who were followed up until December 2017. Due to
the longitudinal nature of the study, women with breast cancer
diagnosed in their first screen (n ¼ 3,212) were excluded from the
analyses as there was no time for follow-up, leaving left 629,087

women for the analysis.

2.2. Procedures

All women with screening mammograms scored BIRADS 0, 3, 4
or 5 were recalled for further assessments. If cancer could not be
ruled out with non-invasive procedures when women were
attending recall, core-needle or open biopsy was performed. All
biopsies were examined and classified by hospital pathologists in
each screening centre. All biopsies with a non-malignant classifi-
cation were classified as benign breast disease. Following the
criteria of Page et al. and Dupont et al. [4e6], we classified benign
breast diseases as: non-proliferative, proliferative without atypia,
and proliferative with atypia. Only women with asymptomatic
benign breast disease diagnosed at screening were included in the
study.

Both cancers detected at routine screening and interval cancers
(those diagnosed within 24 months after a negative screening
episode and before the next screening invitation) were included in
the study regardless of whether they were invasive or in situ. In-
terval cancers were identified by merging population-based cancer
registries and hospital-based cancer registries with data from
screening participants. Benign breast disease identified at the same
time as cancers were excluded from the benign breast disease
group.

2.3. Analysis

We used the chi-squared test to compare proportions of
different variables among those women without a benign breast
disease diagnosis, those with a diagnosis in a prevalent screen and
those with a diagnosis in an incident screen.

We calculated incident breast cancer rates using person-years at
risk for women with and without a diagnosis of benign breast
disease. Womenwithout benign breast disease contributed person-
years at risk from the date of the first screening mammogram until
breast cancer diagnosis (screen-detected or interval cancer), benign
breast disease diagnosis, or 2 years after the last mammographic
examination, whichever came first. Women with benign breast
disease contributed person-years at risk from the date of benign
breast disease diagnosis until breast cancer diagnosis or 2 years
after last screening examination, whichever occurred first.

We used a partly conditional Cox proportional hazards model to
estimate the adjusted hazard ratios (aHR) and the 95% confidence
intervals (95%CI) for the risk of breast cancer by screening type and
benign breast disease subtype. These models are an extension of
the Cox hazards model for repeated measures, which allowed us to
update the changes in benign breast disease status during the study
period. All analyses were adjusted for age and calendar year. We
adjusted for age because women with benign breast disease diag-
nosed in a prevalent screenwere expected to be younger than those
diagnosed in incident screens. Adjustment by calendar year was
included to capture possible differences in benign breast disease
diagnosis techniques and classification during the study period. An
interaction between screening type and benign breast disease
subtype was tested; the interactionwas found to be non-significant
and was consequently not included in the final models (p for
interaction ¼ 0.83). Robust standard errors were used to estimate
95% confidence intervals. The proportional hazards assumptionwas
assessed by plotting the log-minus-log of the survival function
against log time for each predictive variable. The proportional
hazards assumption was reasonable for all predictors.

We plotted the adjusted cumulative incidence curves by esti-
mating the age- and calendar-year adjusted risk of cancer devel-
opment of the average woman in each category with the partly
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conditional Cox model. Statistical tests were two-sided and all p-
values <0.05 were considered statistically significant. All analyses
were performed using the statistical software R version 3.5.0
(Development Core Team, 2014).

3. Results

We analysed information from 629,087 womenwho underwent
2,327,384mammographic examinations between January 1994 and
December 2015. During the study period, 9431 cases of breast
cancer and 9184 cases of benign breast disease were diagnosed. We
found no differences in the distribution of benign breast disease
subtypes across incident and prevalent screens (p ¼ 0.48) (Table 1).
The proportion of breast cancer cases was significantly lower in
women without benign breast disease than in those with benign
breast disease (1.5% vs 2.7%, p < 0.001). Among women with a
diagnosis of benign breast disease, the proportion of breast cancer
cases was higher inwomen diagnosed in an incident screen than in
those diagnosed in a prevalent screen (3.0% vs 2.4%, p ¼ 0.07).

Women with benign breast disease had a higher risk of breast
cancer than those without benign breast disease, regardless of the
subtype of benign breast disease. The highest risk was found in
women with proliferative benign breast disease with atypia (aHR,
3.82; 95%CI: 2.23e6.56), followed by those with proliferative
benign breast disease without atypia (aHR, 3.19; 95%CI: 2.46e4.13)
and those with non-proliferative benign breast disease (aHR, 1.95;
95%CI: 1.68e2.27) (Fig. 1). In addition, among women with benign
breast disease, risk was higher in those diagnosed in an incident
screen than in those diagnosed in a prevalent screen (aHR, 2.67;
95%CI: 2.24e3.19, and aHR, 1.87; 95%CI: 1.57e2.24, respectively).

The hazard ratios associated within each combination of
screening type and benign breast disease subtype are shown in
Fig. 2. Across benign breast disease subtypes, those diagnosed in an
incident screen conferred a higher risk than those diagnosed in
prevalent screens, although not statistically significant for al sub-
types. Compared with womenwithout a benign breast disease, the
highest risk was found in those women with a proliferative benign
breast disease with atypia (aHR, 4.35; 95%CI: 2.09e9.08, and 3.35;
95%CI: 1.51e7.40 for those diagnosed at incident and prevalent
screens, respectively, p-value for comparison; p ¼ 0.634), followed
by women with proliferative benign breast disease without atypia
(aHR, 3.83; 95%CI: 2.63e5.58, and 2.78; 95%CI: 1.95e3.96 for those
diagnosed at incident and prevalent screens, respectively; p-value
for comparison p ¼ 0.223). The lowest was found in women with

non-proliferative benign breast disease (aHR, 2.39; 95%CI:
1.95e2.93, and 1.63; 95%CI: 1.32e2.02 for those diagnosed at
incident and prevalent screens, respectively, p-value for compari-
son; p ¼ 0.011).

We examined the adjusted cumulative incident curves of breast
cancer across the different classifications of benign breast disease
and screening types. The probability of breast cancer diverged over
time. The average 10-year breast cancer probability of women
without a benign breast disease diagnosis was 1.9%. Among women
with benign breast disease, the probability was higher in women
diagnosed in an incident screen than in those diagnosed in a
prevalent screen (average 10-year probability of breast cancer 4.9%
vs 3.5%). Among benign breast disease subtypes, the highest
probability of cancer was found in women with a proliferative
benign breast disease with atypia followed by those with prolifer-
ative benign breast disease without atypia and those with a non-
proliferative benign breast disease (average 10-year breast cancer
probability 6.9%, 5.8% and 3.6%, respectively) (Fig. 3). The highest
probability was found in women with proliferative benign breast
disease diagnosed in an incident screen, with an average 10-year
probability of breast cancer of 7.8% (Fig. 4).

4. Discussion

In this study of more than 600,000 women with follow-up for
more than 20 years, we found that a diagnosis of benign breast
disease in an incident screen conferred a higher risk of subsequent
breast cancer than diagnosis in a prevalent screen, regardless of the
histological subtype. These findings highlight the importance of
considering the screening type when benign breast disease was
diagnosed in risk of breast cancer estimation. To our knowledge,
this is the first study to include screening type in the assessment of
the impact of benign breast disease on the risk of subsequent breast
cancer.

Over the past decades, multiple studies have assessed the
relationship between benign breast disease and the risk of breast
cancer [2e6]. Particular efforts have been made to assess the as-
sociation of this risk with the various benign breast disease sub-
types [4e6]. As seen in previous reports, our study showed that
women with benign breast disease had an increased risk of breast
cancer [2]. Consistently, we found that the risk of breast cancer was
highest among women with a proliferative benign breast disease
with atypia, while proliferative benign breast disease without
atypia conferred a higher risk than non-proliferative benign breast

Table 1
Characteristics of the study population.

No benign breast disease N ¼ 619,864 Benign breast disease diagnosed
in a prevalent screen N ¼ 5,049

Benign breast disease diagnosed in an
incident screen N ¼ 4,174

Age at first screen
50-54 360,020 (58.1%) 3,420 (67.7%) 2,687 (64.4%)
55-59 123,994 (20.0%) 758 (15.0%) 936 (22.4%)
60-64 100,956 (16.3%) 637 (12.6%) 499 (12.0%)
65-69 34,894 (5.6%) 234 (4.6%) 52 (1.2%)

Year of first screen
<2005 299,173 (48.3%) 2,111 (41.8%) 2,856 (68.4%)
2005e2010 167,747 (27.1%) 1,220 (24.2%) 1,038 (24.9%)
>2010 152,944 (24.7%) 1,718 (34%) 280 (6.7%)

Type of benign breast disease
No benign breast disease 619,864 (100%) 0 (0.0%) 0 (0.0%)
Non-proliferative 0 (0.0%) 3,948 (78.2%) 3,282 (78.6%)
Proliferative without atypia 0 (0.0%) 877 (17.4%) 728 (17.4%)
Proliferative with atypia 0 (0.0%) 224 (4.4%) 164 (3.9%)

Breast Cancer
No 610,680 (98.5%) 4,928 (97.6%) 4,048 (97%)
Si 9,184 (1.5%) 121 (2.4%) 126 (3.0%)
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disease [3]. Although the reduced sample size for some BBD sub-
types led to non-significant differences in some subgroup com-
parisons, we found that the difference in risk across benign breast
disease subtypes remained proportional within prevalent and
incident screens and was systematically higher in those BBD
diagnosed in incident screens. This finding is particularly relevant
since 55% of benign breast diseases are diagnosed in prevalent
screens. Screening type therefore provides key information for risk
prediction in benign breast disease. Unless this information is

included, the risk attributed to benign breast disease diagnosed in
prevalent screens could be overestimated, and that for incident
screens could be underestimated.

Previous studies performed in the last decade have assessed
differences in breast cancer screening outcomes, such as cancer
detection rates and false positive rates, by screening type [14e16].
Moreover, previous authors found differences in breast cancer
characteristics depending on whether the cancers were diagnosed
in a prevalent or incident screen [17,18], suggesting that latent

Fig. 1. Adjusted hazard ratios (aHR) of breast cancer incidence in women with benign breast disease compared with women with negative screening tests.

Fig. 2. Adjusted hazard ratios (aHR) of breast cancer incidence in women with benign breast disease compared with women with negative screening tests testing the combined
effect of type of benign breast disease, and round at benign breast disease diagnosis.

Fig. 3. Adjusted survival curves for breast cancer incidence based on Cox proportional hazards model for women with benign breast disease vs women with negative screening
tests. Fig. 3 a. Solid line represents negative screening test group; dashed line represents benign breast disease diagnosed at prevalent round, dotted line benign breast disease
diagnosed in incident round. Fig. 3 b. Solid line represents negative screening test group; dashed line represents nonproliferative benign breast disease, dashdotted line represent
proliferative benign breast disease without atypia, dotted line represents proliferative benign breast disease with atypia.
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cancers diagnosed in prevalent screens have a slower growth
pattern. The lower risk of breast cancer observed in women with
benign breast disease diagnosed in prevalent screens might be
partially explained by a slower growth pattern in prevalent benign
breast disease. Age may play an important role in this effect, since
women with benign breast disease diagnosed in incident screens
are, on average, older than those diagnosed in a prevalent screen.
However, to control for this potential confounding effect, we
adjusted all analyses by age and calendar year.

The results of this study may have implications for clinical de-
cisions on the follow-up of women with a diagnosis of benign
breast disease, in which distinct follow-up strategies may be rec-
ommended depending on the benign breast disease subtype and
screening type at diagnosis. The findings may also have implica-
tions for individualised risk prediction. The Breast Cancer Surveil-
lance Consortium model [21] is being used in a large international
randomised clinical trial to define the individual risk of the popu-
lation targeted for breast cancer screening with a view to offering
them personalised screening strategies [22]. Our findings reveal
that screening type explained part of the risk associated with
benign breast disease. Taking this variability into account could
help to improve the discriminatory power of breast cancer risk
prediction models, which is commonly moderate [11,23]. In addi-
tion, we found that womenwith proliferative benign breast disease
diagnosed in an incident screen had a 4-fold higher risk of devel-
oping breast cancer than those without. This information, after
further analysis with adjustment for other risk factors such as
breast density [24], family history [25], or a risk score using infor-
mation from single nucleoid polymorphisms [26], may be key to
defining risk groups that could benefit from tailored screening
strategies.

This study has some limitations. First, the number of cancers
detected after proliferative benign breast disease with atypia was
small because this subtype is uncommon, which limited our ca-
pacity to perform some subgroup analyses. Second, there is a
possible bias produced by temporary changes both in the benign
breast disease classification and in biopsy techniques (because fine-
needle aspiration cytology has become practically obsolete). This
bias is partially controlled as we adjusted our analysis by calendar
year. Third, to be able to classify benign breast disease, we restricted
our study to those benign breast diseases with available informa-
tion on their histological subtype. Last, it was not possible to adjust

the statistical analysis on other breast cancer risk factors such as
breast density or familial history of breast cancer.

A strength of this study is that we analysed a large cohort of
more than 600,000 women screened in a well-established popu-
lation-based screening program with a 20-year follow-up. This is
one of the largest cohorts analysing histopathologically confirmed
benign breast disease, with nearly 10,000 diagnoses during follow-
up.

In summary, our study shows that, regardless of the type of
benign breast disease, women with benign breast disease diag-
nosed in an incident screen have a significantly higher subsequent
risk of breast cancer than those with a benign breast disease
diagnosed in a prevalent screen. To our knowledge, this is the first
study to analyse this topic. It is important to consider this risk when
developing risk-based personalised screening strategies.
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Methods: We analyzed individual-level data from 294,943 women aged 
50–69 years with at least one mammographic screening participation 
in any of 4 areas of the Spanish Breast Cancer Screening Program from 
1995 to 2015 and followed up until 2017. We used partly conditional 
Cox models to assess the association between benign breast disease, 
breast density, and the risk of breast cancer.

Results:  During a median follow-up of 8.0 years, 3,697 (1.25%) women 
had a breast cancer diagnosis and 5,941 (2.01%) had a benign breast 
disease. More than half of screened women had scattered fibroglandular 
density (55.0%). The risk of breast cancer independently increased with 
the presence of benign breast disease and with the increase in breast 
density (p for interaction = 0.84). Women with benign breast disease 
and extremely dense breasts had a threefold elevated risk of breast 
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cancer compared with those with scattered fibroglandular density and 
without benign breast disease (hazard ratio [HR] = 3.07; 95%CI = 2.01–
4.68). Heterogeneous density and benign breast disease was associated 
with nearly a 2.5 elevated risk (HR = 2.48; 95%CI = 1.66–3.70). Those 
with extremely dense breast without a benign breast disease had a 2.27 
increased risk (95%CI = 2.07–2.49).

Conclusions: Women with benign breast disease had an elevated risk 
for over 15 years independently of their breast density category. Women 
with benign breast disease and dense breasts are at high risk for future 
breast cancer.
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Abstract
Objectives Assessing the combined effect of mammographic density and benign breast disease is of utmost importance to design
personalized screening strategies.
Methods We analyzed individual-level data from 294,943 women aged 50–69 years with at least one mammographic screening
participation in any of four areas of the Spanish Breast Cancer Screening Program from 1995 to 2015, and followed up until
2017. We used partly conditional Cox models to assess the association between benign breast disease, breast density, and the risk
of breast cancer.
Results During a median follow-up of 8.0 years, 3697 (1.25%) women had a breast cancer diagnosis and 5941 (2.01%) had a
benign breast disease. More than half of screened women had scattered fibroglandular density (55.0%). The risk of breast cancer
independently increased with the presence of benign breast disease and with the increase in breast density (p for interaction =
0.84). Women with benign breast disease and extremely dense breasts had a threefold elevated risk of breast cancer compared
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4.68). Heterogeneous density and benign breast disease was associated with nearly a 2.5 elevated risk (HR = 2.48; 95%CI =
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Abbreviations
BI-RADS Breast Imaging Reporting and Data System
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Introduction

High breast density and benign breast disease are major risk
factors for breast cancer. Women with a high mammographic
density are associated with a two- to fourfold elevated risk
compared with women with fatty breast tissue [1–4], while
the presence of a benign breast disease doubles the risk of
subsequent breast cancer [5]. Even though research has fo-
cused on each of these risk factors separately, little is known
about the combined effect of these two factors, which has
important implications to designing personalized strategies
aimed at improving the effectiveness of breast cancer screen-
ing [6, 7].

A prior study with limited sample size found a significant
interaction between mammographic density and different sub-
types of benign breast disease [8]. This finding is in contrast to
a more recent large study that found no combined effect of
mammographic density and different subtypes of benign
breast disease with the risk of breast cancer [9]. The study
population in the abovementioned studies was limited to
women with benign breast disease only, and they assessed
the effects of different benign breast disease subtypes, but they
did not assess the presence or absence of a benign breast
disease. Women with a benign breast disease and high mam-
mographic density could be at very high risk for breast cancer
and they may benefit from more intense follow-up strategies
or different screening modalities.

Our aim was to evaluate the joint association between be-
nign breast disease and mammographic density with the risk
of breast cancer in the context of population-based breast can-
cer screening by using individual-level data from the long-
standing mammography program in Spain.

Methods

Setting and study population

Mammographic screening in Spain follows the recommenda-
tions of the European Guidelines [10] and is publicly funded.
The program started in 1990 in a single setting and became
nationwide in 2006. Population-based screening in Spain has
been previously described in detail elsewhere [11–13].
Briefly, the program is organized into administrative screen-
ing settings responsible for the local application of screening
in their area. Women aged 50 to 69 years are invited every 2
years for a two-view mammogram (craniocaudal, and

mediolateral oblique). All screening mammograms are
interpreted by 2 trained breast radiologists and classified ac-
cording to the American College of Radiology Breast Imaging
Reporting and Data System (BI-RADS) scale or equivalent
[12]. Prior mammograms are available for comparison at sub-
sequent screens. Women with abnormal findings on mammo-
graphic interpretation are recalled for further assessments, in-
cluding additional imaging, ultrasound, and invasive proce-
dures. If no malignancy is detected, women are referred back
to screening at 2 years, while women diagnosed with breast
cancer are referred for treatment. All breast biopsies are his-
topathologically confirmed by trained pathologists.

Data for this study were obtained from four centers of the
Breast Cancer Screening Program that routinely gather infor-
mation on mammographic density (Costa de Ponent, Vallés
Oriental, Sabadell-Cerdanyola, and Cantabria). Data for the
study comprised information about women screened between
1996 and 2015, with follow-up until December 2017 for in-
terval cancer cases. The centers collect information on screen-
ing mammography examinations, recall, further assessments,
and diagnoses performed in their defined catchment areas.
Approval for data analyses was granted by the review boards
of the institutions providing data. Informed consent was not
required since we used anonymized retrospective data.

Our study population consisted of 295,837 women aged
50–69 years with at least one BI-RADS breast density exam-
ination at screening mammography between January 1996
and December 2015. We excluded 894 women diagnosed
with breast cancer at first screen as they did not have any
follow-up. This left 294,943 women for the analysis.

Definition of study variables

The results of breast biopsies were classified by trained pa-
thologists at each screening center. Women were considered
to have a benign breast disease if, after exclusion of malignan-
cy in a biopsy, the pathology report specified a diagnosis of
benign breast disease. If women hadmore than one biopsy, we
ensured that none of them confirmed malignancy in order to
establish the presence of a benign breast disease. Lobular car-
cinoma in situ on biopsy was considered a benign breast
disease.

Breast cancer cases included all invasive cancers and ductal
carcinoma in situ regardless of whether they were screen-
detected cancers, or interval breast cancers (those diagnosed
within 24 months after a negative screening exam and before
the next screening invitation). Breast cancer cases were iden-
tified from the screening center databases, population-based
cancer registries, the regional Minimum Data Set, and
hospital-based cancer registries.

Breast density was determined by breast radiologists at the
time of screening as part of routine mammogram interpreta-
tion, using the BI-RADS density categories [14]: almost
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entirely fat (A), scattered fibroglandular density (B), hetero-
geneously dense (C), or extremely dense (D). If women had
more than one mammographic density measure during the
study period, we chose the breast density measured at the
earliest screening examination. In case of discordance in
breast density classification between radiologists, we chose
the density classification assigned by the most expert radiolo-
gist. The BI-RADS B category was used as the reference
group for mammographic density because it is the most com-
mon group and women with this category are considered to
have an average risk of breast cancer.

Statistical analysis

Women were considered as the unit of analysis. For each
woman, person-years at risk was calculated from the date of
the first screen. For women with no history of benign breast
disease, follow-up started at the date of the first screening
participation and ended at the date of breast cancer diagnosis
or 2 years after last mammography examination for follow-up
of interval cancer cases, whichever came first. Women with a
benign breast disease contributed person-years at risk to the
“no benign breast disease group” from the date of the first
screen until the date of diagnosis of first benign breast disease.
They contributed person-years to the “benign breast disease
group” from the date of diagnosis of the first benign breast
disease. Similarly to women without a benign breast disease,
follow-up for women with a benign breast disease ended at the
date of breast cancer diagnosis or 2 years after last mammog-
raphy examination for follow-up of interval cancer cases,
whichever came first.

We compared the frequency distributions of various risk
factors for women with and without breast cancer: presence or
absence of a benign breast disease, BI-RADS density category
at the earliest examination, and age at the first screen (in 5-
year age groups). In addition, rates of breast cancer by the
presence or absence of a previous benign breast disease and
BI-RADS density category were calculated as the number of
breast cancer cases divided by the number of women-years at
risk in each group. Confidence intervals for rates were calcu-
lated using exact Poisson distribution.

We used a partly conditional Cox proportional hazards
model to estimate the hazard ratios and 95% confidence inter-
vals of the association between benign breast disease and
mammographic density with the risk of breast cancer [15].
By using a partly conditional Cox model, we included all
screening mammograms in each individual, incorporating be-
nign breast diseases occurring after the first screening partic-
ipation and accounting for within-woman correlation.We test-
ed whether there was an interaction between previous benign
breast disease and breast density with the risk of breast cancer.

To control for possible confounders such as changes in BI-
RADS classification or technical changes over time, all

models were adjusted for age at screen (continuous) and year
of screen (continuous). The proportional hazards assumption
was ascertained by plotting the log-minus-log of the survivor
function against log time for each predictor variable. The tests
found no evidence of violation of the proportional hazards
assumption between the covariates and time.

We performed three sensitivity analyses. First, we limited
the outcome to invasive breast cancer only. Women with
DCIS were censored at the time of diagnosis and they were
not included as breast cancer cases. Second, to test the effect
of repeated breast density measures in the same person over
the study period, we performed the analyses using the latest
mammographic density measure for each woman instead of
the earliest. Third, to test if women at higher risk had a higher
proportion of interval cancer cases than those at lower risk, we
performed an analysis of interval breast cancers as outcome.
Women with screen-detected cancer were censored at the time
of diagnosis and not included as breast cancer cases. All tests
were two-sided with a 5% significance level. Statistical anal-
yses were conducted in R 3.4.2 (R Foundation for Statistical
Computing).

Results

Women in the study population had a median follow-up of 8.0
years. Out of the 294,943 women in the study population,
3697 (1.25%) had a diagnosis of breast cancer and 5941
(2.01%) had benign breast disease. The proportion of previous
benign breast disease was higher among women with breast
cancer than in those without breast cancer (2.6% and 2.0%,
respectively) (Table 1). At baseline examination, BI-RADS
scattered fibroglandular density (B) was the most common
category for women with and without breast cancer (49.5
and 55.1%, respectively). Among women with breast cancer,
there was a higher proportion of women with high mammo-
graphic density (BI-RADS density categories C or D), and a
larger proportion of women aged 55 to 64 years.

The distribution of mammographic density categories by
the presence or absence of benign breast disease is shown in
Table 2. The most frequent mammographic density category
was scattered fibroglandular for women with and without be-
nign breast disease (50.6% and 55.1%, respectively).
Compared with those without benign breast disease, women
with benign breast disease had a higher proportion of extreme-
ly dense breasts (15.6% and 8.9%, in women with and without
a benign breast disease, respectively), and a lower proportion
of entirely fatty breasts (12.4% and 20.8%, respectively).

Table 3 shows the overall rates of breast cancer by the
presence or absence of benign breast disease and by BI-
RADS density categories. Among women with scattered
fibroglandular breasts, the rate of breast cancer per 1000
women-years at risk was 2.43 (95%CI 1.68–3.17) and 1.46
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(95%CI 1.40–1.53) for those with and without benign breast
disease, respectively. For women with extremely dense
breasts, the rates per 1000 women-years were 3.95 (95%CI
2.30–5.60) and 2.97 (95%CI 2.74–3.21) for those with and
without benign breast disease, respectively.

The risks associated with each combination of mammo-
graphic density and benign breast disease are shown in
Table 4. No significant interaction was found between previ-
ous benign breast disease and mammographic density (p for
interaction = 0.84). The risk of breast cancer increased with
increasing mammographic density and with the presence of
benign breast disease. Compared with women with average
breast density (scattered fibroglandular) and no benign breast
disease, women with low breast density and no benign breast
disease had a lower risk of future breast cancer (HR = 0.65;
95%CI = 0.59 to 0.72). In contrast, the risk for those with low
breast density and a benign breast disease was similar to the
average reference group (HR = 1.29; 95%CI = 0.64–2.58).
Women with heterogeneous mammographic density had an
elevated risk of breast cancer, both those with and without
benign breast disease (HR = 2.48, 95%CI = 1.66–3.70; and

HR = 1.58, 95%CI = 1.44–1.72, respectively). Similarly,
women with extremely dense breasts were at the highest risk
of future breast cancer, independently of whether they had
benign breast disease or not (HR = 3.07; 95%CI = 2.01–
4.68; and HR = 2.27, 95%CI = 2.07–2.49, for women with
and without benign breast disease, respectively).

We examined the cumulative incidence curves of breast
cancer for benign breast disease within breast density strata
(Fig. 1). The figure depicts how the occurrence of breast can-
cer cases follows a staggered 2-year pattern given by the bi-
ennial screening participations of women in the programs. The
risk of developing breast cancer diverged over time among
women with and without benign breast disease, independently
of the BI-RADS density strata. The probability of developing
breast cancer 15 years after the index mammography exami-
nation for women without benign breast disease increased as
mammographic density increased, ranging from 1.5%
(95%CI = 1.3–1.7) for women with almost entirely fatty
breasts to 4.8% (95%CI = 4.2–5.4) for those with extremely
dense breasts. For women with a benign breast disease, the
probability of breast cancer 15 years after the index

Table 1 Baseline characteristics
of women in the study population No breast cancer, N = 291,246 Breast cancer, N = 3697 p

Benign breast disease

No 285 400 (98.0%) 3 602 (97.4%) *

Yes 5 846 (2.0%) 95 (2.6%) *

Breast density

Almost entirely fat 60 343 (20.7%) 498 (13.5%) *

Scattered fibroglandular 160 496 (55.1%) 1 831 (49.5%) *

Heterogeneously dense 44 386 (15.2%) 724 (19.6%) *

Extremely dense 26 021 (8.9%) 644 (17.4%) *

Age at first screen

50–54 187 829 (64.5%) 2 181 (59.0%) *

55–59 56 149 (19.3%) 915 (24.7%) *

60–64 35 455 (12.2%) 543 (14.7%) *

65–69 11 813 (4.1%) 58 (1.6%) *

*Different at p < 0.05 in a two-sided test of equality for column proportions (z-test). Tests are adjusted using the
Bonferroni correction for multiple comparison. Using the Breast Imaging Reporting and Data System (BI-RADS)
density categories: A = almost entirely fat; B = scattered fibroglandular densities; C = heterogeneously dense; D =
extremely dense

Table 2 Frequency and
prevalence of breast density
categories by presence or absence
of a benign breast disease

Bi-RADS breast density

Benign breast
disease

Almost entirely
fat

Scattered
fibroglandular

Heterogeneous Extremely
dense

Total

No BBD 60 106 (20.8%) 159 318 (55.1%) 43 842 (15.2%) 25.736 (8.9%) 289 002

BBD 735 (12.4%) 3 009 (50.6%) 1 268 (21.3%) 929 (15.6%) 5 941

BBD benign breast disease
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mammography ranged from 3.4% (95%CI = 1.1–5.7) for those
with almost entirely fat breast to 7.0 (95%CI = 4.1–9.9) for
extremely dense breast.

Sensitivity analyses excludingDCIS and including invasive
breast cancer only as outcome were consistent with the full
model and produced very similar estimates (Supplementary
material, Table 1). In addition, the effect of choosing the latest
rather than the earliest mammographic density measure had
limited impact on the risk estimates (Supplementary material,
Table 2). Lastly, the analyses of interval breast cancers as
outcome had a small number of cases, which limited the sta-
tistical power. However, the analyses showed that the risk for
interval breast cancer was higher in women with benign breast
disease, and the risk increased as breast density increased
(Supplementary material, Tables 3 and 4).

Discussion

In this analysis of data frommore than 290,000 women with a
follow-up of more than 15 years, we examined the combined
contribution of benign breast disease and mammographic

density to the risk of breast cancer. We found that the presence
of benign breast disease and high mammographic density
were independently associated with an increase in the risk of
breast cancer. The risk diverged over the study period for
women with and without benign breast disease across mam-
mographic density categories. The highest risk for breast can-
cer was found in women with benign breast disease and ex-
tremely dense breasts. Few studies have evaluated the com-
bined effect of benign breast disease and breast density on the
risk of breast cancer at mammographic screening. We used
long-term population-based data from women participating in
breast cancer screening to assess how benign breast disease
and breast density affect the risk of breast cancer.

Consistent with most studies, we found that mammograph-
ic density was associated with breast cancer risk [16–18]. We
observed that higher BI-RADS breast density categories were
associated with an increased risk of breast cancer. In addition,
there is consistent evidence that women with a benign breast
disease are at an increased risk of breast cancer [5, 19]. A prior
large study assessed the combined effect of mammographic
breast density and different subtypes of benign breast disease,
in a population of women with the presence of benign breast

Table 3 Overall rates of breast
cancer by presence or absence of
a benign breast disease

Women-years at
risk

Number of
cases

Breast cancer rate (95%CI) per 1000 women-
years (‰)

No benign breast disease

Almost entirely fat 488,452 490 1.00 (0.91–1.09)

Scattered
fibroglandular

1,222,576 1790 1.46 (1.40–1.53)

Heterogeneous 314,808 700 2.22 (2.06–2.39)

Extremely dense 209,134 622 2.97 (2.74–3.21)

Benign breast disease

Almost entirely fat 4188 8 1.91 (0.59–3.23)

Scattered
fibroglandular

16,901 41 2.43 (1.68–3.17)

Heterogeneous 7076 24 3.39 (2.03–4.75)

Extremely dense 5556 22 3.95 (2.30–5.60)

Table 4 Breast cancer risk by
breast density and benign breast
disease

BI-RADS breast density, HR (95%CI)

Benign breast
disease

Almost entirely fat Scattered
fibroglandular

Heterogeneous Extremely dense

No BBD 0.65 (0.59–0.72) ref. 1.58 (1.44–1.72) 2.27 (2.07–2.49)

BBD 1.29 (0.64–2.58) 1.68 (1.24–2.29) 2.48 (1.66–3.70) 3.07 (2.01–4.68)

Hazard ratios relative to women with no benign breast disease and scattered fibroglandular density. Adjusted for
age at first screen, and year of screen

p value for interaction between benign breast disease and breast density = 0.84
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disease [9]. That study also found that mammographic density
and benign breast disease were independent risk factors for
breast cancer. However, the study population in the
abovementioned study consisted solely of women with a be-
nign breast disease, limiting their ability to compare the effect
of the presence or absence of a benign breast disease. Despite
these differences in study population and referent group, the
results of the two studies are consistent.

Previous benign breast disease and mammographic den-
sity are risk factors commonly included in most individu-
alized risk prediction models for breast cancer, including
the Breast Cancer Surveillance Consortium, and Tyrer-
Cuzick models [20, 21]. The finding that both factors are
independent risk factors for breast cancer consolidates
their utility in risk prediction models. However, although
risk prediction models for breast cancer have a high

expected to observed ratio, their discrimination accuracy
is moderate, with potential for improvement [22]. Women
with benign breast disease diagnosed at mammography
represent 2.0% of the study population of women
screened. Among those, half of them had dense breast
(heterogeneous or extremely dense). Although uncommon
(1%), these women could benefit from more intense
screened strategies or different screening techniques as
ultrasound or MRI. On the other hand, 20% of the study
population had almost entirely fat breast density and ab-
sence of a benign breast disease. These women could be
candidates for de-intensified screening strategies with lon-
ger screening intervals (3 or 4 years). Results from ran-
domized controlled trials like MyPeBS or Wisdom studies
will provide evidence on the effectiveness of personalized
strategies [23, 24].
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Fig. 1 Adjusted survival curves for each mammographic density strata
based on Cox proportional hazards model for women with and without
benign breast disease. Models are adjusted for age at the first screen and

the year of screening. The solid line represents women without benign
breast disease; the dashed line represents women with a benign breast
disease diagnosis
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We excluded from the analyses women with a screen-
detected cancer diagnosed at prevalent screen. This was done
because these women did not have any disease-free follow-up,
and they could not contribute time at risk to the estimates.
Because high breast density is associated with younger age,
and there is a known masking effect of breast density, exclud-
ing prevalent cancers detected at mammography could entail
that some cancers might have been missed in women with
dense breast that would later come out as incident cancers.
Thus, our associations may slightly overestimate the true
strength of the associations between denser breast and the risk
of subsequent breast cancer.

This study has several potential limitations. Breast density
was reported by radiologists as part of routine screening prac-
tice, and their results are likely to be less precise than they
would have been if an automated density measure had been
used. The inter-rater agreement of the BI-RADS breast density
classification is moderate in most studies [25, 26], even in our
study population [27]. Despite the moderate inter-rater agree-
ment, our results are consistent with those published by other
studies using BI-RADS breast density [4, 28, 29]. Breast den-
sity was classified by highly trained radiologists with more
than 1000 screening mammograms read per year. Another
limitation of the study is that criteria for density classification
in the BI-RADS Atlas have changed over time and women
who might previously have been classified as BI-RADS den-
sity category B are now defined as BI-RADS C if there is any
dense area that could mask a tumor [30]. Nevertheless, the BI-
RADS classification has been shown to appropriately discrim-
inate women at different risks for breast cancer, with a four-
fold gradient in risk between BI-RADS categories A and D
[31]. Also, there was a transition from film mammography to
digital mammography during the study period. Screen-film
mammography was the default technique at start-up. Full-
field digital mammography was introduced in 2004 and grad-
ually became widespread. In 2015, 59% of mammography
examinations were performed with full-field digital mammog-
raphy. The transition from film to digital mammography
might have had an effect on mammographic density classifi-
cation and the detection rate, although previous studies have
shown that these outcomes were not affected by the introduc-
tion of digital mammography [32, 33]. To offset the effect of
changes in BI-RADS density classification and the transition
from screen-film to digital mammography, our analyses were
adjusted by year of screen, but the effect of the adjustment on
the risk estimates was minimal. Another limitation was that
the number of breast cancer cases after diagnosis of a benign
breast disease was small, particularly those associated with
fatty breast and extremely dense breast, which limited our
ability to perform analyses by subtype of benign breast dis-
ease, or other sub-group analyses. Analyses by subtype of
benign breast disease would have been desirable as previous
studies have shown that breast cancer risk varies by subtype

[5, 9, 19]. Lastly, individual information on risk factors such
as body mass index, hormone therapy use, and menopausal
status were lacking because the screening centers did not col-
lect these information. These factors are known to be associ-
ated with mammographic density and with breast cancer risk.
Adjusting for these and other confounding factors would have
been desirable and could have refined our estimates.

A major strength of this study is that the data were obtained
from a well-established population-based screening program
with an average participation rate of 67% of invited women,
and a re-attendance rate of 91.2% [12]. We analyzed informa-
tion obtained from over 15 years of follow-up, which guaran-
teed sufficient time to provide robust estimates. This is the first
large longitudinal study to examine the effect of previous be-
nign breast disease and mammographic density in population-
based mammography screening.

Conclusion

In summary, we found that benign breast disease and high
mammographic density independently predicted the risk of
breast cancer. The risk of breast cancer was lowest in women
whose breasts were almost entirely fat and highest in women
with benign breast disease and extremely dense breasts. The
risk remained elevated over 15 years. This information could
be used when discussing the potential benefits and harms of
personalized screening strategies.
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Abstract:

Background: Individualized breast cancer risk prediction models may 
be key for planning risk-based screening approaches. Our aim was to 
conduct a systematic review and quality assessment of these models 
addressed to women in the general population.

Methods: We followed the Cochrane Collaboration methods searching 
in Medline, EMBASE and The Cochrane Library databases up to 
February 2018. We included studies reporting a model to estimate the 
individualized risk of breast cancer in women in the general population. 
Study quality was assessed by two independent reviewers. Results are 
narratively summarised.

Results: We included 24 studies out of the 2,976 citations initially 
retrieved. Twenty studies were based on four models, the Breast Cancer 
Risk Assessment Tool (BCRAT), the Breast Cancer Surveillance 
Consortium (BCSC), the Rosner & Colditz model, and the 
International Breast Cancer Intervention Study (IBIS), whereas four 
studies addressed other original models. Four of the studies included 
genetic information. The quality of the studies was moderate with some 
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limitations in the discriminative power and data inputs. A maximum 
AUC value of 0.71 was reported in the study conducted in a  
screening context.

Conclusion: Individualized risk prediction models are promising 
tools for implementing risk-based screening policies. However, it 
is a challenge to recommend any of them since they need further 
improvement in their quality and discriminatory capacity.
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BACKGROUND: Individualised breast cancer risk prediction models may be key for planning risk-based screening approaches. Our
aim was to conduct a systematic review and quality assessment of these models addressed to women in the general population.
METHODS: We followed the Cochrane Collaboration methods searching in Medline, EMBASE and The Cochrane Library databases
up to February 2018. We included studies reporting a model to estimate the individualised risk of breast cancer in women in the
general population. Study quality was assessed by two independent reviewers. Results are narratively summarised.
RESULTS:We included 24 studies out of the 2976 citations initially retrieved. Twenty studies were based on four models, the Breast
Cancer Risk Assessment Tool (BCRAT), the Breast Cancer Surveillance Consortium (BCSC), the Rosner & Colditz model, and the
International Breast Cancer Intervention Study (IBIS), whereas four studies addressed other original models. Four of the studies
included genetic information. The quality of the studies was moderate with some limitations in the discriminative power and data
inputs. A maximum AUROC value of 0.71 was reported in the study conducted in a screening context.
CONCLUSION: Individualised risk prediction models are promising tools for implementing risk-based screening policies. However,
it is a challenge to recommend any of them since they need further improvement in their quality and discriminatory capacity.
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BACKGROUND
Mammography screening has been associated with a reduction in
breast cancer mortality and therefore organised breast cancer
screening programmes using mammography have been well
established worldwide.1–4 Although there is not a single consensus,
current screening programmes generally recommend biennial or
triennial screening in Europe and annual or biennial screening in
the US with variations in the recommended targeted age.2–5 These
recommendations usually consider age as the sole risk factor
leading women to be invited for screening from age 40–50 until
age 70–74, depending on the programmes.
The likelihood that a woman will benefit from screening

mammography depends on her risk for developing clinically
significant breast cancer in her lifetime. Taking individual risk
factors beyond age into account should enable the classification
of women into groups at varying risk of breast cancer.
Personalised risk-based screening going beyond the current
‘one-size fits all' recommendation may increase the effectiveness
and benefit-harm balance of breast cancer screening. Individua-
lised risk prediction models for breast cancer are a key element to
develop risk-based screening approaches since they are designed
to quantify the risk that can predict whether an individual woman
would develop breast cancer in a defined period.6

A number of risk prediction models that include classical
risk factors are commonly used in clinical contexts.7 However,

organised screening programmes do not use these models
routinely. One reason for not including these models in screening
context is the high uncertainty with regards to its applicability in
screening settings. Also, the emergence of new risk prediction
factors such as the expression of single nucleotide polymorphisms
(SNPs) needs to be appropriately summarised before recommend-
ing one of the models into screening practice.
Like any other source of information, risk prediction models

have limitations that should be evaluated before using them. A
rigorous risk of bias assessment of the existing individualised risk
models is needed to clarify the overall quality and applicability of
each model. Therefore, the aim of this systematic review is to
update the existing evidence, conduct a critical appraisal and risk
of bias assessment and summarise the results of the individualised
risk models which are used to estimate the risk of breast cancer in
women in the general population.

METHODS
Data sources and searches
We performed a systematic review of the literature following the
standard Cochrane Collaboration methods8 and adhering to the
PRISMA statement reporting recommendations.9 A predetermined
review protocol was registered (CRD42018089842) in the PROS-
PERO database (date of registration 1 March 2018). The Patient,
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Intervention, Comparison, Outcomes (PICO) question of this
systematic review is the following: Should individualised breast
cancer risk prediction models vs. no risk prediction models be
used to develop risk-based screening approaches for women in
the general population?
We retrieved relevant literature by using a combination of

controlled vocabulary and keyword search terms in the following
databases: (i) Medline (accessed through PubMed); (ii) The
Cochrane Library; and (iii) EMBASE (accessed through Ovid).
Terms related to breast cancer recurrence were excluded in order
to avoid retrieving citations out of the scope of this systematic
review. We adapted the search algorithms to the requirements of
each database and used validated filters to retrieve systematic
reviews and primary studies as needed. We reviewed references of
included studies that could potentially fulfil our eligibility criteria.
The detailed search strategy is reported in Supplementary table 1.
We searched primary studies of individualised breast cancer

risk models searching each database from its inception up to
February 2018.

Study selection
Eligible studies were those published in English that reported a
model to estimate the individualised risk of breast cancer in
women in the general population. We included models that
assessed more than one risk factor and reported the quantitative
characteristics of the risk prediction model. If multiple publications
were based on the same individualised risk model, the most
extensive report of the model in terms of risk factors reported was
chosen. We excluded external validation studies that replicated
previous models without adding any additional information such
as a new design for collecting the inputs data, modifications on
the risk factors or the risk model method.
Articles identified from the search were loaded into EndNote

X7.7.1 for Windows (2008, Version 12.0.4) and duplicates were
removed.

Data extraction and quality assessment
One reviewer screened the search results based on title and
abstract, and a second reviewer performed a quality check of the
study screening by reviewing 20% of the references. Two
reviewers independently confirmed eligibility based on the full
text of the relevant articles. In case of disagreement between
researchers, the inclusion of studies was determined by con-
sensus. We reported the result of this process with a PRISMA
flowchart (Fig. 1).
We used a predefined form to extract the following information

from included studies: author, publication date, country, study
design, the name of the model if available, sample characteristics,
sample size, type of breast cancer, the method of analysis, and
validation of the model. Data abstraction was conducted by one
reviewer and checked by another.
Two reviewers carried out the assessment of the risk of bias

independently and final quality assessment was based on
consensus. We used the ISPOR-AMCP-NPC Questionnaire10 to
assess the relevance and credibility of each risk prediction study
and the following sources of limitations: (i) internal and external
validation; (ii) bias due to the study design for risk estimates; (iii)
limitations in data inputs; (iv) appropriateness of the model
analysis; (v) reporting bias; (vi) interpretation bias; and (vii) conflict
of interest. The risk of bias for each domain was rated as low, high
or unclear. For systematic reviews we used the AMSTAR 2 critical
appraisal tool.11

Data synthesis and analysis
We evaluated the model validation by assessing both the
discriminative power and the calibration accuracy estimated for
the women in the general population. When available in the
included publication, we extracted the area under the receiver

operating characteristic curve (AUROC), the net reclassification
index (NRI) and the expected observed (E/O) ratio. The NRI was
not included in the tables because it was only reported in 2 out of
24 articles. The characteristics of the included models and the risk
prediction outcomes reported preclude the possibility to pool
data across studies. Therefore, a narrative synthesis has been
conducted. Key study characteristics, validation and accuracy of
individual risk models, and methodological quality are described
in tables and summarised in a narrative manner. Results are
presented according to the original model that they reported.

RESULTS
Study inclusion
The database searches for primary studies retrieved 2974 citations,
of which 79 were considered potentially relevant. These 79 studies
were screened in full text. We found a systematic review of
Anothaisintawee et al.,7 which we used as a source of primary
studies. In addition, two studies were included after a manual
inspection of papers’ references.12,13 After the full text was
checked, 24 studies12–35 met the inclusion criteria and were
considered in the evidence synthesis. Details about study
inclusion with reasons for exclusion are described in the flow-
chart (Fig. 1), and a list of references to excluded studies is
provided in Supplementary table 2.

MEDLINE

(N = 2032)

EMBASE

(N = 1718)

Records identified through
database searching

(N = 3966)

Duplicated records
(N = 922)

Excluded records
(N = 2895)

Records screened by title
and abstract (N = 2974)

Full text articles assessed for
eligibility (N = 79)

Full text articles excluded
(N = 57)

Additional records
identified through other

sources (N = 2)

Studies included in the
synthesis (N = 24)

(Did not assess a new risk prediction model, N = 23)
(Secondary publication, N = 18)

(Wrong setting, population, N = 8)
(Not risk prediction model, N = 6)
(Wrong study outcomes, N = 2)

The Cochrane library

(N = 216)

Fig. 1 PRISMA flowchart
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Characteristics of the included studies
The included studies can be grouped according to the risk
model that they reported, the Breast Cancer Risk Assessment
Tool (BCRAT), the Breast Cancer Surveillance Consortium (BCSC),
the Rosner & Colditz model, the International Breast
Cancer Intervention Study (IBIS), and other original models.
The study by Zhang et al.13 is included in two of the
groups (BCRAT and Rosner & Colditz models) because it
provides information of both models and presents its results
separately. A brief summary of the 24 included studies is
presented in Table 1 and the extended characteristics in
Supplementary table 3.

a. Breast Cancer Risk Assessment Tool ‘BCRAT’ model. This
model was first published in the United States in 1989
assessing age, family history of breast cancer, age at first
birth, menarche, and previous biopsies as risk factors for
predicting individualised breast cancer risk.22 After this first
publication, eight studies were identified that were based
on BRCAT model but modified the data collection design,
assessed additional risk factors or changed the statistical
method. In addition to the five risk factors proposed in 1989,
other variables such as body mass index (BMI), weight,
hormone replacement therapy (HRT), alcohol consumption,
physical activity, diet, breast density, atypical hyperplasia,
breast inflammatory disease, parity, a polygenic risk score or
hormones information have been included in updated
versions (Table 1).13,14,16,17,20,23,25,26,30

b. Breast Cancer Surveillance Consortium ‘BCSC’ model. One
relevant variation of the BCRAT model opens the path to
the emergence of the BCSC model first published by Tice
et al. in 2008 in the United States.31 In this study, Tice et al.
used data from a cohort to create an individualised risk
prediction model that combines age, family history,
previous biopsies, breast density, and ethnicity. The BCSC
model has been further evaluated by other authors12,24,29,32

and it currently includes previous benign breast diseases
and polygenetic risk score using SNPs as risk factors
(Table 1).

c. Rosner & Colditz model. Parallel to the BCSC model, another
model based on the ‘Nurses' Health Study’ cohort devel-
oped by Rosner & Colditz in 1996 was also developed in the
United States. This model currently includes 11 risk factors:
age, menarche, menopause, age at first birth, age at
subsequent births, previous benign breast disease, HRT,
family history, weight, BMI, alcohol consumption, and
oestradiol levels.18,19,27,28 In the same way as in the BCRAT,
Zhang et al.13 analysed this model adding breast density, a
polygenic risk score and endogenous hormones as risk
factors.

d. International Breast Cancer Intervention Study ‘IBIS’ model.
The IBIS model33 includes genetic information adding the
BRCA genes and a hypothetical susceptibility gene.

e. Other models. Four studies reporting different models were
also identified.15,21,34,35 Apart from the above-mentioned
risk factors, the models also assessed other variables such as
abortion, breastfeeding, height, and previous mammogra-
phy results. Particularly relevant is the Eriksson model21

since it was the only one targeted to the screening
population. In this study, the authors included risk factors
that were available at mammography screening examina-
tion: age, BMI, HRT, family history, menopause, breast
density, and presence of microcalcifications and/or masses
in the screen-mammogram.

Discriminatory accuracy
Fifteen out of the 24 studies reported the discriminatory accuracy
as the AUROC (Table 1 and Fig. 2).

a. BCRAT model. The first BCRAT model publication did not
report the AUROC, however, later publications of this model
reported a range that varied from 0.56 to 0.68. The three
publications that included the original risk factors, age,
family history of breast cancer, age at first birth, menarche,
and previous biopsies, reported low AUROC values, 0.56 to
0.62.14,20,23 Similarly, the AUROC reported by Boyle et al.16

and Matsuno et al.25 were 0.60 and 0.61, although these
authors added BMI, HRT, alcohol, physical activity and diet,
and ethnicity into the model. Zhang et al.13 with the new
variables reach an AUROC of 0.65 and Tice et al.30 reported
in 2005 a higher AUROC value of 0.68 which was obtained
just adding breast density to the original five risk factors
(Table 1). Zhang et al.13 also reported the NRI to validate
that his model improved the previous ones with a
result of 8%.

b. BCSC model. The published value of the AUROC for the
BCSC model was moderate, ranging from 0.64 to 0.69. Tice
et al. included age, family history, previous biopsies, breast
density reported by the Breast Imaging Reporting and Data
System (BI-RADS), and ethnicity into the model in 2008 and
obtained a value of 0.66 for the AUROC.31 Instead of
BI-RADS, Kerlikowske et al. assessed changes in breast
density obtaining a similar result, 0.64.24 Using previous
benign breast disease, Tice et al. obtained a slightly higher
AUROC value of 0.67 in 2015.32 More recently, in 2015 and
2016, Vachon et al.12 added to the model a polygenic risk
score and Shieh et al.29 a combination between a
polygenic risk score and BMI reporting a value of 0.69
and 0.65 for the AUROC respectively (Table 1). Vachon
et al.12 also demonstrated the improvement of discrimina-
tory accuracy estimating the NRI with a positive result
of 11%.

c. Rosner & Colditz model. The discriminatory accuracy of this
model varied from 0.61 to 0.68. The authors assessed age,
family history, age at first birth, menarche, BMI, benign
breast disease, menopause, HRT, age at subsequent births,
alcohol, and weight. They obtained an AUROC of 0.64 and
0.61 for ER+ /PR+ and ER-/PR- tumours, respectively.19

The addition of oestradiol levels to the model was tested
by Rosner et al. who obtained a 0.65 AUROC value in
2008.28 Finally the addition of a polygenic risk score,
mammographic density and endogenous hormones by
Zhang et al.13 reached a 0.68 AUROC value (Table 1) and
obtained an improvement of the discriminative accuracy
also reflected in a NRI of a 9.5%.

d. IBIS model. The IBIS model original paper33 does not
include any validation and does not present the AUROC.
Nevertheless, it has been externally validated showing an
AUROC of 0.57 which increases to 0.61 when adding
mammographic density.36

e. Other models. Overall, the AUROC values of these models
were not higher than those shown by the above-
mentioned models, varying from 0.62 to 0.64, although
they included a large number of risk factors. However, the
model reported by Eriksson et al.21 did show an AUROC of
0.71 that was the highest AUROC value identified in this
systematic review (Table 1). This model, in addition, is the
only one that estimates a 2-year risk, while the rest of
models estimate the risk at a longer time horizon. This
could explain the difference in AUROC values since it
becomes more difficult to predict risk as the time horizon
increases.

Calibration accuracy
Nine out of the 24 studies reported the calibration accuracy as the
E/O ratio (Table 1).
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a. BCRAT model. Of the 10 studies derived of the
BCRAT model, five reported the calibration accuracy.
Banegas et al.14 presented heterogeneous results depend-
ing on the provenance of the population, reporting an E/O
ratio of 0.93 for US-born and 1.52 for foreign-born women.
Although Matsuno et al.25 added new variables to the
original BCRAT model, the E/O ratio was 0.85, which was
the lowest of the group, whereas the other studies
published E/O ratios that varied from 0.93 to 1.0316,20,23

(Table 1).
b. BCSC model. Tice et al. published in 2008 a value of 1.03

for the E/O ratio when looking at 5-year risk.31 Using
previous benign breast disease, they obtained a similar
result in 2015, with an E/O ratio of 1.04 for 5-year risk
and 1.05 for 10-year risk.32 When Kerlikowske et al.
assessed changes in breast density the ratio decreased
obtaining a 0.98 for 5-year risk and 0.95 for 10-year risk.24

The studies of Vachon et al. and Shieh et al. did not
present validation regarding the calibration accuracy of
the model (Table 1).

c. Rosner & Colditz model. Of the five studies based on the
Rosner & Colditz model,13,18,19,27,28 none of them reported
calibration accuracy statistics of their models for the
women in the general population.

d. IBIS model. The IBIS model original paper33 does not
report any calibration statistic. Nevertheless, other articles
have validated it showing an E/O ratio of 1.67.36

e. Other models. The study Barlow et al.15 was the only one
that reported calibration accuracy and presented the
closest E/O ratio to one of all the studies included in this
review taking values of 1.00 and 1.01 for pre and post-
menopausal status respectively (Table 1).

Quality assessment
The quality of the included studies was moderate due to
some limitations in the discriminative power, study design, and
data inputs. The studies did not show important limitations with
regards to the validation, appropriateness of the model analysis,
reporting or interpretation of the results (Fig. 3). A summary of the
risk of bias assessment per each source of limitation is presented
here and the detailed appraisal and judgements in Supplementary
table 4.

Internal and external validation
Ten studies14–17,20,23,25,26,30,31 validated their models by compar-
ing the results with those published by Gail et al.,22 three
studies24,29,32 compared with Tice et al.,31 one21 compared with
both Gail et al.22 and Tyrer et al.,33 one13 compared with both
Gail et al.22 and the results of a Rosner & Colditz model external
validation37 and three studies did not report the model
validation in the primary articles.19,22,34 Six studies assessed
internal validation with a sample of the population that
generated data for the model,15,16,24,29,31,32 and four with an
external population.14,20,23,25 Despite not having reported the
external validation in the primary articles, the Rosner & Colditz
model18,19,27,28 reported external validation in a subsequent
article mentioned before.37 Nine studies used the expected/
observed event ratio to measure the calibration accuracy of the
model.14–16,20,23–25,29,31

Bias due to the study design
Thirteen studies used a case-control design to obtain breast
cancer risk estimates,12–14,16,17,20–23,25,26,29,34 five studies used
prospective cohorts,15,18,19,27,28 and four models used retro-
spective cohorts.24,30–32 The study of Wang et al.35 and the study
of Tyrer et al.33 used risk estimates obtained from a systematic
review of the literature.Ta
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Limitations of data inputs
Sixteen studies obtained most of the input parameters from self-
reported questionnaires.13–20,22,23,25–28,30,34 The study of Matsuno
et al.25 also imputed ethnicity for women with missing data.

Appropriateness of the model analysis
Thirteen studies12–17,20,22,23,25,26,29,34 used logistic regression to
estimate the risk of having breast cancer according to the
assessed risk factors, five used proportional hazard Cox
models,21,24,30–32 four used Poisson regression models,18,19,27,28

and the other two studies used risk estimates obtained from a
systematic review of the literature.33,35

Reporting bias
Twenty one studies reported all relevant and necessary informa-
tion for the model creation.12–23,25–29,31,33–35 Conversely, a critical
lack of information was found in the other three studies.24,30,32

DISCUSSION
Summary of main results
This systematic review included 24 studies that aimed to estimate
the individual risk of developing breast cancer in women in the
general population. Twenty studies were based on four specific
risk models (the BCRAT, the BCSC, the Rosner & Colditz and the
IBIS model),16–20,22–33 whereas four studies used other original
models.15,21,34,35 The most extensively used were the BCRAT, IBIS
and the BCSC models. The number of risk factors included in the
models ranged from five to 18. Other than age, which was the
only risk factor present in all models, the BCRAT model also
included family history, age at first birth, menarche, and previous

biopsies. Breast density, benign breast disease, and polygenetic
score were predominant in the BCSC model. Although during the
last decade the models have shown improvements in their
discriminatory accuracy, it remains at best moderate with a
maximum AUROC value of 0.71 reported by Eriksson et al.21 The
calibration accuracy was very heterogeneous ranging from 0.85 to
1.52. Furthermore, the quality of the studies was not high due to
limitations in the discriminative accuracy, study design, and data
inputs.

Agreements and disagreements with other reviews
In this systematic review, we found that the number of
individualised breast cancer risk prediction models has increased
steadily over the past three decades. This finding is in agreement
with the narrative overview published by Cintolo-Gonzalez et al. in
2017,38 and it updates the results of a previous systematic review
published by Anothaisintawee et al. in 2012.7 In contrast to these
reviews, however, our aim was to provide innovative information
regarding the quality of the identified prediction models. Thus, we
have identified and rigorously analysed the strengths and
limitations of 24 individualised models in order to adjust our
conclusions to the quality of the evidence.
We have identified two new trends with regards to the use and

development of the models, which are the increased use of the
BCSC model and the inclusion of common genetic variation in the
prediction models. As compared to the information published in
the review of Anothaisintawee et al.,7 we found that in contrast to
the BCRAT and Rosner & Colditz models that were the most
frequently cited models up to 20107 the BCSC model has
concentrated the attention of several authors during the last five
years, although its discriminatory accuracy has not dramatically
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improved. Second, none of the models in the review of
Anothaisintawee et al.7 included genetic information as a risk
factor. By contrast, we have identified four models including
genetic information: the IBIS model33 that includes genetic
phenotype in their updated version, the BCSC model that includes
a polygenetic score in both 201512 and 201629 publications, as
well as the article by Zhang et al. that added a polygenic risk score
to both the BCRAT and the Rosner & Colditz models.13

Most of the included studies reported the AUROC to determine
the probability that a randomly chosen woman with disease

would be correctly categorised as higher risk compared to a
randomly chosen woman without disease. The discriminatory
accuracy estimate does not express whether the model is more or
less accurate in predicting the risk of specific individuals but
measures the capacity of the model to determine which women
are at higher/lower risk for developing breast cancer. Thus, both
calibration accuracy and discriminatory accuracy should be
assessed. Contrary to what is expected, we found that authors
reported the E/O ratio only in less than half of the included
studies. In addition to the AUROC value, the studies of Zhang et al.
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and Vachon et al.12,13 also reported an improvement in the net
reclassification index (NRI) of the BCRAT, and Rosner & Colditz
models, as well as in the BCSC model, respectively.
Overall, the information provided by the AUROC and the E/O

ratio was consistent suggesting that the included models have
moderate discriminatory accuracy and calibration accuracy when
applied to the women in the general population. Nevertheless, it
must be taken into account that despite the great importance of
validation in terms of AUROC and E/O ratio, the presence of low
values of AUROC or clearly different from 1 values of the E/O ratio
does not mean that these models are useless. On the contrary,
models are clinically useful even with moderate AUROC since they
can reclassify individuals at the extremes of risk.39 Thus, the
verdict on risk models should not be based solely on these
estimators. Instead, they need to be prospectively evaluated in
clinical trials. In fact, there are currently two very large randomised
trials assessing risk-based screening strategies. Both of them are
using individualised models. Both the IBIS and the BCSC models
are being tested in the European trial MyPeBS (My Personalised
Breast Screening).40 Also, the BCSC model is being tested in the US
WISDOM trial (Women Informed to Screen Depending On
Measures of risk).41

Applicability and completeness of evidence
The distribution of risk factors in such different populations may
affect the applicability of the models to different contexts. The fact
that different subtypes of breast cancer may have different
genetic markers is widely accepted.42 These differences, the
nature of breast cancer itself and its low incidence may condition
a low discriminatory accuracy of a model. In other words, in the
general population, there is a low probability of having breast
cancer (even in the highest risk group). This low probability may
mean that the discriminatory power of a breast cancer risk model
won’t be as high as a risk model targeted to other common
diseases such as cardiovascular events, for instance. Another
potential limitation in the applicability in the screening context is
the completeness and the number of included risk factors, which
ranged from five to 18. Nevertheless, some potentially relevant
risk factors such as genetic markers have been only included in
few models. Recent studies43,44 have shown that adding genetic
information as a risk factor can increase the discriminative
accuracy of the different models which opens the line for further
evaluation. An evaluation that should first assess the calibration of
these models in prospective cohort studies.
Overall, women are usually screened using mammography.

Particularly in Europe, most programmes invite women for
screening every 2 years.2 The presence of some mammographic
features in these screening mammograms may be related to the
risk of developing breast cancer, as has been recently pointed out
by some authors.21,45 Only one of the 24 models identified in this
systematic review included microcalcifications and masses found
at mammography as risk factors in the model.21 Time-changing
variables such as radiological variables may not be as stable as
personal history. However, in a screening context, this information
is especially relevant because it is easily available from previous
screening examinations.

Quality of the evidence
We found variability in the design of the studies that were used to
obtain the cancer risk estimates. Notably, the study design used in
the BCSC model was a cohort, which is a robust epidemiology
design that allows developing and validating prediction models.
Another frequently used design was the case-control study,
nested or not. Contrary to the cohort study, time-changing
variables may not be well obtained in case-control studies.
Regarding the external validation, the models showed some lim-

itations given that few of them were further evaluated in different
contexts. As far as we know, there are numerous scientific

publications reporting external model validation in different
settings and countries. These studies may help to understand
the performance of a model in a specific context, but this issue
was out of the scope of our review and, therefore, we have not
included external validation studies. As an example of the
relevance of these studies, we can inform that the BCRAT model
has more than 50 articles informing the external validation of
these models in different countries.46 The Rosner-Colditz model
has also been validated in several studies, one of the most
complete validations being the one performed in 2013 by the
authors themselves.37 On the other hand, we found that although
the Eriksson et al.19 model reports the highest AUC (0.71), this
model has not been externally validated, which increases the
uncertainty about its applicability.
Also, there were limitations in data inputs, mostly due to the

fact that in several models the information was provided by self-
reported questionnaires that may affect the accuracy of the
results. Finally, there is a limitation when comparing the AUROC or
E/O ratio across the models given that there is great heterogeneity
amongst them. The models were targeted to different popula-
tions, included different sets of risk factors, and often used
different methodologies. We have taken into account all these
variations and presented the results by model categories.

Potential biases in the review process
This systematic review was limited to studies published in English
and did not involve an active search for grey literature, which is
literature that is not formally published in sources such as books
or journal articles. Therefore, some models may not have been
identified. However, since we have conducted a comprehensive
literature search in Medline, EMBASE and The Cochrane Library,
we estimate that the loss of information due to the study selection
criteria is low. Some key genetically oriented models, such as
BOADICEA47 and BRACAPRO48 were not included in this review
because they are aimed at high risk women and not useful for
women in the general population in the screening context. Full-
text screening and data abstraction process were performed by
two researchers, which increase the quality of the review process.
Moreover, as far as we know, this is the first review assessing the
risk of bias of the identified risk prediction models.

CONCLUSIONS
The development of individualised breast cancer risk prediction
models has increased over the last three decades, but the
improvements in both the discriminatory power and calibration
accuracy are still limited. Despite the time that has passed since
the first model was published and a large number of available
publications, only one model addressed to women attending a
population-based screening programme21 was identified. Cur-
rently, it is still a challenge to recommend any of the models as
the standard for predicting individual risk in screening context.
However, the models have been updated by adding new
variables, such as common genetic variation or radiologic
variables and have shown improvements in their quality as well
as in their discriminative accuracy. These new variables need
further evaluation to confirm its promising impact in the
prediction capacity to propose personalised strategies for breast
cancer screening.
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Abstract

Background

Several studies have proposed personalized strategies based onwomen’s individual breast can-

cer risk to improve the effectiveness of breast cancer screening. We designed and internally vali-

dated an individualized risk prediction model for women eligible for mammography screening.

Methods

Retrospective cohort study of 121,969 women aged 50 to 69 years, screened at the long-

standing population-based screening program in Spain between 1995 and 2015 and fol-

lowed up until 2017. We used partly conditional Cox proportional hazards regression to esti-

mate the adjusted hazard ratios (aHR) and individual risks for age, family history of breast

cancer, previous benign breast disease, and previous mammographic features. We inter-

nally validated our model with the expected-to-observed ratio and the area under the

receiver operating characteristic curve.

Results

During a mean follow-up of 7.5 years, 2,058 women were diagnosed with breast cancer. All

three risk factors were strongly associated with breast cancer risk, with the highest risk
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being found among women with family history of breast cancer (aHR: 1.67), a proliferative

benign breast disease (aHR: 3.02) and previous calcifications (aHR: 2.52). The model was

well calibrated overall (expected-to-observed ratio ranging from 0.99 at 2 years to 1.02 at 20

years) but slightly overestimated the risk in women with proliferative benign breast disease.

The area under the receiver operating characteristic curve ranged from 58.7% to 64.7%,

depending of the time horizon selected.

Conclusions

We developed a risk prediction model to estimate the short- and long-term risk of breast

cancer in women eligible for mammography screening using information routinely reported

at screening participation. The model could help to guiding individualized screening strate-

gies aimed at improving the risk-benefit balance of mammography screening programs.

Introduction

There is ongoing debate on the benefits and harms of breast cancer screening [1–3]. To

improve this balance, current evidence supports personalized screening [4,5]. Modeling stud-

ies have shown that modifying the screening interval, screening modality, or age range of the

target population based on women’s individual risk yielded greater benefit than conventional

standard strategies [5–7]. Several risk models have been designed to estimate women’s individ-

ual breast cancer risk based on their personal characteristics [8–15]. However, most of these

models have not been specifically developed to estimate the risk of women targeted for breast

cancer screening in order to offer them personalized strategies.

A recent consensus statement of the European Conference on Personalized Early Detection

and Prevention of Breast Cancer (ENVISION) [16] stated the need to develop breast cancer

risk prediction models based on data from large screening cohorts and including risk factors

easily obtainable at screening participation, such previous mammographic features and prior

benign breast disease.

To date, only one model has specifically aimed to predict women’s individual risk looking

to personalize breast cancer screening strategies [17]. Although highly valuable, the model was

based on short-term risk estimates and did not account for relevant characteristics of prospec-

tive studies such as internal time-dependent covariates. This model only estimates the two-

year risk, which could lead to bias as one of the aims proposed in breast cancer screening

personalization is to see which women are at a lower risk in order to extend their screening

period to three or four years. Therefore, if new breast cancer risk models are developed with

the aim of analyzing the possibilities offered by personalized screening strategies, it would be

interesting to estimate the biennial risk of each woman, in other words, to obtain estimators

not only at 2 years, but also every two years (2, 4, 6, 8. . . up to 20 years, which is the total time

a woman is screened). This will help to better understand the different possibilities of screen-

ing strategies and will allow to observe the differences in the validation of the model estimators

for the different time horizons. There is therefore a need for breast cancer risk prediction mod-

els, with risk estimates in the short- and long-term, and based on data from large screening

cohorts. These new risk models should include a limited and feasible number of variables for

the proposed objective, for example, detailed information on the type of previous benign
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breast disease or previous mammographic characteristics, which existing risk models tend not

to use.

We aimed to design and validate an individualized risk prediction model to estimate the

biennial risk of breast cancer in women eligible for mammography screening by using data

from the long-standing population-based screening program in Spain.

Materials andmethods

Setting and study population

Breast cancer screening in Spain started in 1990 in a single setting and expanded until it

became nationwide in 2006. This program follows the recommendations of the European

Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis [18]. Women

aged 50 to 69 years are invited to biennial screening mammography by written letter. Screen-

ing mammograms are interpreted according to the Breast Imaging Reporting and Data System

(BI-RADS) scale by trained breast radiologists [19]. Women with an abnormal mammo-

graphic feature are recalled for further assessments to confirm or rule out malignancy.

Women without a breast cancer diagnosis are invited again for routine screening at 2 years.

Overall, breast cancer screening in Spain has a recall rate of 43.0, a detection rate of 4.0, and an

interval cancer rate of 1.1 per 1,000 mammographic examinations [20]. The positive predictive

value is 9.8% for recalls and 38.9% for recalls involving invasive procedures. Overall, 16.8% of

all screen-detected cancers are ductal carcinoma in situ (DCIS). More details of breast cancer

screening in Spain are described elsewhere [21].

We analyzed data from two centers forming part of the Spanish breast cancer screening

program in the Metropolitan Area of Barcelona. These centers routinely gather information

on family history of breast cancer, previous benign breast disease (BBD), and previous mam-

mographic features. The centers collect information on screening mammography examina-

tions, recalls, further assessments, and diagnostic results in their defined catchment areas. The

cohort included all 123,251 women screened at least once between 1995 and 2015 and fol-

lowed-up until December 2017. We excluded 758 women diagnosed with breast cancer at the

first screen, 210 women with missing information on family history, 213 women with missing

information on previous BBD, and 101 women with missing information for both family his-

tory and previous BBD. The study population for the analysis consisted of 121,969 women

who underwent 437,540 screening mammograms during the study period.

Definition of study variables

Information on family history and history of prior breast biopsies was self-reported and col-

lected from face-to-face interviews conducted by trained professionals at the time of mam-

mography screening. This information was consistently collected over the 20 years study

period. A family history of breast cancer was defined as having at least one first-degree relative

with a history of breast cancer.

Breast biopsy results were classified by a community pathologist at each center using

SNOMED codes [22]. Pathological diagnoses were grouped following the benign breast disease

classification proposed by Dupont and Page [23–25] into non-proliferative and proliferative

disease. Proliferative lesions with and without atypia were combined into a single category due

to the small number of subsequent breast cancer cases among those with a proliferative lesion

with atypia. If women reported having had a biopsy before the start of the screening but no

pathology results were available, the biopsy was classified as having a prior biopsy, unknown

diagnosis.
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A community radiologist routinely reported on mammographic features found at mam-

mography screening interpretation. We classified as mammographic features any mass, calcifi-

cation, asymmetry or architectural distortion reported by radiologists at mammographic

interpretation. Findings were assigned to the category of multiple mammographic features if

more than one of the previous mammographic features had been reported simultaneously at

screening interpretation.

We included both invasive breast cancers and DCIS for the analysis.

Model design

We built the risk prediction model using a random sample of 60% of the study population

(estimation subcohort). The remaining 40% was used for an internal validation (validation

subcohort).

We estimated the age-adjusted hazard ratios (aHR) and the 95% confidence intervals (95%CI)

for the breast cancer incidence for each category of family history, previous BBD, and previous

mammographic features with the estimation subcohort. Age was included in the model as a con-

tinuous variable. We used partly conditional Cox proportional hazards regression, an extension of

the standard Cox model, to incorporate changes in these risk factors over time. Robust standard

errors were used to estimate 95% confidence intervals using the Huber sandwich estimator [26].

If a woman has had a diagnosis of cancer, she will contribute women-years at risk from the date

of her first mammogram to the diagnosis of cancer. Since we can identify all interval cancers, a

woman who has not had a diagnosis of cancer at the end of her follow-up will contribute women-

years at risk from the first mammogram to the last mammogram plus 2 years of follow-up.

We tested whether family history, previous BBD, and previous mammographic features

interacted among themselves or with age. The interaction terms were not significant and were

therefore not included in the model. The proportional hazards assumption was assessed by

plotting the log-minus-log of the survivor function against log time for each predictor variable.

The proportional hazards assumption appeared to be reasonable for all predictors.

Model validation

We calculated the absolute breast cancer risk estimates for each 2-year interval over the

20-year lifespan covered by screening (ages 50 to 69 years) for each individual in the validation

subcohort. As proposed by Zheng and Heagerty, we used a general hazard function to predict

the absolute risk of breast cancer diagnosis based on length of follow-up, prediction time, and

women’s risk profile [27].

We conducted an internal validation of the model to evaluate its predictive performance by

assessing its calibration and discrimination. To assess calibration, we calculated the ratio

between the expected breast cancer rate in the validation subcohort versus the observed rate in

the estimation subcohort. To account for censoring, the observed rate was estimated using the

Kaplan-Meier estimator. The expected breast cancer rate was calculated as the average of the

risk estimates in the validation subcohort. The expected breast cancer rate in a specific risk

group was calculated as the average of the risk estimates for each woman in that risk group of

the validation subcohort. The expected-to-observed (E/O) ratio assessed whether the number

of women predicted to develop breast cancer from the model matched the actual number of

breast cancers diagnosed in the validation subcohort. An E/O ratio of 1.0 indicates perfect cali-

bration. We calculated the E/O ratio 95% confidence intervals (95% CI) using the formula of

the standardized mortality ratio proposed by Breslow and Day [28]. The discriminatory accu-

racy of our model was assessed by estimating the area under the receiving operating character-

istic curve (AUC) for each 2-year interval based on the predicted risks for each woman and
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whether she developed breast cancer during the time interval or not [29]. The predicted risks

were calculated using the model coefficient estimates at the baseline mammogram for those

women in the validation cohort who have been followed for a time greater than or equal to the

time horizon being estimated. The AUCmeasured the ability of the model to discriminate

between women who will develop breast cancer from those who will not. We calculated the

95% CI using the approach proposed by Hanley and McNeil [30].

Statistical tests were two-sided and all p-values<0.05 were considered statistically signifi-

cant. All analyses were performed using the statistical software R version 3.4.3 (Development

Core Team, 2014).

The study was approved by the Clinical Research Ethics Committee of Hospital del Mar

Medical Research Institute (2015/6189/I). The review boards of the institutions providing data

granted approval for data analyses. This is an entirely registry-based study that used anon-

ymized retrospective data and hence there was no requirement for written informed consent.

The authors declare that they have no conflicts of interest.

Results

During a mean follow-up of 7.52 years, breast cancer was diagnosed in 2,058 out of the

121,969 women in the study population. The mean follow-up was shorter in women with a

breast cancer diagnosis than in those without (5.8 years vs 7.6 years, p-value< 0.05). Women

with breast cancer were more likely to have a family history of breast cancer (18.32% vs

13.86%), biopsies with unknown diagnosis (23.76% vs 21.72%), non-proliferative and prolifer-

ative BBD (5.59% vs 3.20%, and 1.60% vs 0.45%, respectively), masses (20.51% vs 18.12%), and

calcifications (6.85% vs 2.71%) (Table 1).

Breast cancer was strongly associated with previous benign breast disease, with the highest

risk being found among women with a proliferative BBD (aHR, 3.02; 95% CI: 1.75, 5.21) com-

pared with those without a BBD (Table 2). Family history was also associated with breast can-

cer (aHR, 1.67; 95% CI: 1.41, 1.98). Among women with previous mammographic features,

the highest risks were found in calcifications (aHR, 2.52; 95% CI: 1.93, 3.29) and architectural

distortions (aHR, 2.07; 95% CI: 1.27, 3.38).

Overall calibration of the model was accurate across all 2-year time horizons. The E/O ratio

ranged from 0.99 at 2 years to 1.02 at 20 years and was never significantly different than 1

(Table 3). The AUC was lowest at the 4-year risk estimate (AUC, 58.7%; 95%CI: 55.9%-61.5%)

and highest at the 18-year risk estimate (AUC, 64.7%; 95%CI: 62.5%-66.9%) and were signifi-

cantly higher than 50% for all the time horizons.

Estimates for the 10-year time horizon showed that the model slightly overestimated breast

cancer rates in women with masses (E/O ratio, 1.18; 95%CI: 1.02–1.37) and in women aged

55–59 years (E/O ratio, 1.15; 95%CI: (1.03–1.29) (Table 4). The model also underestimated

breast cancer rates in women aged 50–54 years (E/O ratio, 0.83; 95%CI: 0.75–0.94). Because of

the small number of breast cancer cases, calibration was overestimated among women with

proliferative BBD (E/O ratio, 1.85; 95%CI: 1.00–3.40).

Distribution of the absolute cumulative risk estimates at 2-, 10- and 20-year time horizons

are shown in Fig 1. The 10-year risk was between 1.5% and 2% in 60% of the women and was

higher than 2% in 35%. The 20-year risk was lower than 3% in only 4% of the women, between

5% and 7% in 17% of the women, and was higher than 7% in approximately 9% of the women.

Discussion

We used individual-level data from a large cohort of women regularly screened in Spain to

design and validate a risk prediction model to estimate the biennial risk of breast cancer in
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Table 1. Baseline characteristics of the study population.

No breast cancer (n = 119,911) Breast cancer (n = 2,058) p-value

Mean follow- up 7.6 years 5.8 years <0.001

Age (years)

50–54 63,507 (52.96%) 1,149 (55.83%) 0.010

55–59 25,738 (21.46%) 542 (26.34%) <0.001

60–64 22,796 (19.01%) 325 (15.79%) <0.001

65–69 7,870 (6.56%) 42 (2.04%) <0.001

Family history of breast cancer

No 103,296 (86.14%) 1,681 (81.68%) <0.001

Yes 16,615 (13.86%) 377 (18.32%) <0.001

Benign breast disease

None 89,500 (74.64%) 1,421 (69.05%) <0.001

Prior biopsy, unknown diagnosis 26,042 (21.72%) 489 (23.76%) 0.028

Non-proliferative 3,832 (3.20%) 115 (5.59%) <0.001

Proliferative 537 (0.45%) 33 (1.60%) <0.001

Mammographic features

None 86,326 (71.99%) 1,283 (62.34%) <0.001

Mass 21,728 (18.12%) 422 (20.51%) <0.001

Calcifications 3,246 (2.71%) 141 (6.85%) <0.001

Asymmetry 3,371 (2.81%) 56 (2.72%) 0.858

Architectural distortion 1,249 (1.04%) 29 (1.41%) 0.129

Multiple features 3,991 (3.33%) 127 (6.17%) <0.001

Differences in mean of follow-up were tested by Mann–Whitney U test.

Differences in qualitative variables were tested by two-sided test of equality for column proportions (z-test). Tests adjusted for all pairwise comparisons within each

tumor characteristic using the Bonferroni correction.

https://doi.org/10.1371/journal.pone.0248930.t001

Table 2. Partly conditional Cox proportional hazards model results showing the hazard ratios of the risk factors
on breast cancer.

Women-years Breast cancer cases aHR� (95%CI)

Family history of breast cancer

No 471,552 976 Ref.

Yes 79,471 227 1.67 (1.41–1.98)

Benign breast disease

No 408,883 832 Ref.

Prior biopsy, unknown diagnosis 118,010 286 1.36 (1.16–1.59)

Non-proliferative 21,123 67 1.41 (1.02–1.94)

Proliferative 3,007 18 3.02 (1.75–5.21)

Mammographic features

No 380,314 752 Ref.

Mass 110,597 239 1.32 (1.11–1.57)

Calcifications 17,160 81 2.52 (1.93–3.29)

Asymmetry 17,526 38 1.66 (1.16–2.39)

Architectural distortion 6,287 20 2.07 (1.27–3.38)

Multiple features 19,140 73 1.86 (1.43–2.43)

aHR: Adjusted Hazard Ratio. 95%CI: 95% Confidence Interval.
�Model adjusted by age, family history, previous benign breast disease and previous mammographic features.

https://doi.org/10.1371/journal.pone.0248930.t002

PLOS ONE Developing a breast cancer risk prediction model for women attending breast cancer screening

PLOSONE | https://doi.org/10.1371/journal.pone.0248930 March 23, 2021 6 / 14



women aged 50 to 69 years eligible for mammography screening. We tested a model that uses

only variables easily obtainable at screening participation. The model showed very good cali-

bration but only modest discrimination.

Our model calculates the risk of breast cancer for each 2-year time horizon during a wom-

an’s screening lifespan. Until now, the 5-year risk estimate has been the standard since the

BCRAT model used a 5-year risk time horizon for decision making about chemoprevention.

The BCRAT model was the basis for enrolment into the two major US prevention trials

Table 3. E/O ratio and area under the ROC curve of the model for each time horizon.

Observed events E/O ratio (CI95%) AUC

2-year risk 188 0.99 (0.86–1.14) 63.0 (59.1–66.9)

4-year risk 455 1.01 (0.92–1.11) 58.7 (55.9–61.5)

6-year risk 685 1.00 (0.92–1.07) 59.5 (57.2–61.8)

8-year risk 853 1.02 (0.95–1.09) 61.0 (58.9–63.0)

10-year risk 1,000 1.01 (0.95–1.08) 60.9 (59.0–62.8)

12-year risk 1,092 1.03 (0.97–1.09) 60.5 (58.6–62.4)

14-year risk 1,165 1.01 (0.96–1.07) 62.4 (60.5–64.3)

16-year risk 1,195 1.00 (0.95–1.06) 64.3 (62.4–66.3)

18-year risk 1,201 1.01 (0.96–1.07) 64.7 (62.5–66.9)

20-year risk 1,203 1.02 (0.97–1.08) 63.8 (61.3–66.3)

E/O: Expected observed. 95%CI: 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0248930.t003

Table 4. Calibration of the 10-year estimates from the model in risk factor subgroups.

Observed events E/O ratio (95%CI)

Overall 1,000 1.01 (0.95–1.08)

Family history

No 824 1.00 (0.93–1.07)

Yes 176 1.10 (0.95–1.28)

Benign breast disease

No 709 1.02 (0.95–1.10)

Prior biopsy, unknown diagnosis 238 1.02 (0.90–1.16)

Non-proliferative 43 1.17 (0.87–1.57)

Proliferative 10 1.85 (1.00–3.40)

Mammographic features

No 661 1.03 (0.96–1.11)

Mass 175 1.18 (1.02–1.37)

Calcifications 60 1.07 (0.83–1.38)

Asymmetry 29 1.14 (0.79–1.63)

Architectural distortion 15 1.05 (0.63–1.73)

Multiple features 60 0.90 (0.70–1.16)

Age (years)

50–54 296 0.83 (0.75–0.94)

55–59 296 1.15 (1.03–1.29)

60–64 278 0.96 (0.85–1.08)

65–69 130 1.02 (0.86–1.21)

E/O: Expected observed. 95%CI: 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0248930.t004
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Fig 1. Distribution of the absolute cumulative risk estimates.

https://doi.org/10.1371/journal.pone.0248930.g001
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[31,32]. However, as stated in the statements of the last European Conference on Risk-Strati-

fied Prevention and Early Detection of Breast Cancer, there is a need for risk models specifi-

cally designed for women eligible for breast cancer screening, based on data from large

screening cohorts [16].

A previous model was designed to estimate the risk of breast cancer in women eligible for

mammography screening [17]. The model used the Karma cohort from Sweden and included

information on mammographic features. That study focused solely on estimating the short-

term risk of breast cancer over the next mammographic examination. In addition, it used a

case-control design to establish risk factors, which may bias the estimates of the short-term

association with breast cancer risk. Our model adds to the breast cancer risk prediction models

currently available and can be used to help guide personalized screening strategies by employ-

ing information easily obtained at screening participation. Additional useful information from

our model is estimation of a woman’s risk for breast cancer at 2-yearly intervals.

Our model was further developed by adding the effect of mammographic features, such as

masses, calcifications, asymmetries, and architectural distortions. Previous studies have shown

that mammographic features increase the subsequent risk of breast cancer [33]. In our model,

the strongest influence on risk was conferred by calcifications. The biology behind calcifica-

tions is not well established. It has been suggested that mammary cells may acquire some mes-

enchymal characteristics, being able to contribute to the production of breast calcifications as

a sign of carcinogenic transformation [34].

The role of BBD as a risk factor for breast cancer is well established [9,33,35]. However, its

inclusion in breast cancer risk prediction models is rare, mainly because available information

on BBD in large cohorts of women is uncommon. Only one previous risk model included dif-

ferent estimates for the different categories of the Dupont and Page BBD pathological classifi-

cation [23–25]. The Breast Cancer Surveillance Consortium model was updated to include

BBD, which led to only minimal improvement in discrimination [9]. This lack of significant

improvement could be due to the absence of pathology results for most women who reported

breast biopsies prior to their first screening round, as was also the case in our study. However,

the addition of BBD to the model markedly increased the proportion of women identified as

being at high risk for invasive breast cancer.

We assessed the internal validity of the model by means of its calibration and discrimina-

tory accuracy. To perform internal validation we split our cohort in two sets, the estimation

subcohort, to perform the analysis and development of the model and the validation subco-

hort, to perform the internal validation of the model. This technique known as split validation

is common for this type of models [9] but cross validation or bootstrapping could also have

been performed [36,37]. The model showed accurate calibration, neither overestimating nor

underestimating the overall risk through the different years. In Table 4 we saw the calibration

of the 10-year estimates from the model in risk factor subgroups. We also performed the E/O

ratio estimates in risk factor subgroups for each one of the time horizons proposed. We only

showed the 10-year estimates since showing all of them could be confusing. We showed the

10-year estimates since they have a good balance between the number of events observed (in

the first time horizons some subcategories have a low number of observed events was lower)

and the number of people observed (in the last time horizons we have some lost to follow–up,

as the mean time of follow-up is 7.5 years). Nonetheless, the E/O ratio was overestimated for

women with a proliferative BBD, due to the small number of cases among this subgroup.

The model showed modest discrimination with a maximum AUC of 64.7%. Discriminatory

accuracy in breast cancer risk prediction models is usually low because a substantial propor-

tion of cases are diagnosed in women with no known risk factors and the AUC of the different

models vary between 60 and 70% [14]. This is clearly in contrast with prediction models for
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other diseases, such as cardiovascular disease, which achieve good discrimination [38,39].

However, the model presented in this paper performed as well as other models that include

many other risk factors that were not available in this study. As one of the reasons why the

existing risk models have not been implemented for personalized screening is that it is difficult

to collect all of the necessary risk factors in practice, a simpler model like the one we present

could be useful. We tested other approaches to validate our model, such as the AUC estimation

proposed by Li et al [40]. This estimation uses weights to calculate the contribution in the esti-

mates of those women without a breast cancer diagnosis who were censored before reaching

the time horizon. However, this approach produced no substantial differences in our

validation.

A major strength of our model is that we used individual-level data from more than

120,000 women participating in a large, well-established, population-based screening program

in Spain from 1995 to 2015, with a mean follow-up of more than 7.5 years and a maximum of

20 years. The program has a participation rate of 67% and a re-attendance rate of 91.2% [19].

This study also has some limitations. First, a major weakness is the lack of information on

breast density, which was not systemically collected as part of screening data in the participat-

ing centers. Previous models estimating individual breast cancer risk have shown that the addi-

tion of breast density improved the discriminatory power of the models [9,17,41,42]. Dense

breasts confer women a higher risk of breast cancer and are also associated with a higher risk

of false-positive results, masking, and interval cancers [43]. In addition, we had no information

on common genetic variants, which has been added to other breast cancer risk prediction

models [44,45]. However, the discriminatory accuracy of the models was scarcely improved by

the inclusion of information on single nucleotide polymorphisms (SNPs). This lack of both

variables may be useful for some institutions where these risk factors are not available.

Second, the number of breast cancer cases among women with a proliferative BBD was

small, which reduced our ability to accurately predict the expected number of cases across risk

factor subgroups. Nevertheless, the overall calibration of the model across the time horizons

assessed was highly accurate. Also, as a consequence of the small number of subsequent breast

cancer cases among those women with a proliferative BBD with atypia, we merged prolifer-

ative BBD with and without atypia into a single category which might make the model less

usable in practice.

Third, our model was based on a large set of representative data from the Breast Cancer

Screening Program in Spain, which provides good generalizability. However, external valida-

tion of the results is needed to verify the predictive performance of our risk model.

Another limitation might be the reason for censoring. Over 52% of women in the cohort

had their last mammogram in the last two years of the study follow-up and 17% of women had

their last mammogram at ages 68 or 69 years. Most of the remaining 31% are women who did

not participate in the 2014–2015 round or who have changed health areas and thus are not in

our study population. The screening program does not have an exhaustive record of which

women die and, therefore, we cannot differentiate them from non-participating women.

Finally, we were unable to analyze the association between the laterality of the BBD with the

subsequent risk of breast cancer. In a previous analysis, we found that 40% of incident breast can-

cer cases in women with BBD were contralateral to the prior BBD, suggesting that a large propor-

tion of benign lesions may be risk markers rather than precursors of subsequent cancer [46].

Conclusions

We designed and internally validated a risk prediction model to estimate the short- and long-

term risk of breast cancer in women eligible for mammography screening based on their age,
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family history, previous benign breast disease, and previous mammographic features. The

model showed good calibration and modest discriminatory power, and could be improved by

adding further variables such as breast density and polygenic risk scores. The model can be

used biennially to predict a woman’s breast cancer risk during her screening lifespan (age 50

to 69 years) using information easily obtained at screening participation. Risk prediction mod-

els specifically designed for women eligible for breast cancer screening are key to guide indi-

vidualized screening strategies aiming to improve the risk-benefit balance of mammography

screening programs.
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Lliga per a La Investigació i Prevenció Del Cáncer, Tarragona, Spain: Francina Saladié, Jaume
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Main findings

The results of the 5 articles support the main objective of this thesis, 
deepening understanding of the different breast cancer risk factors 
with large longitudinal screening cohorts and expanding knowledge of 
individual breast cancer risk prediction models. 

In summary, the main findings of this research are:

Apropos of a better understanding of the risk factors

•	 Performance screening measures are negatively affected by  
increasing breast density. Sensitivity decreased from 89.2% in women 
with BI-RADS 1 to 67.9% in those with BI-RADS 4. The positive 
predictive value of both recall and invasive tests decreased from 10.4% 
to 5.7% and from 49.8% to 32.4% in women with BI-RADS 1 and  
BI-RADS 4, respectively. 

•	 Compared with women without benign breast disease, the risk of 
breast cancer was significantly higher in women with benign breast 
disease diagnosed in an incident screen (aHR, 2.67; 95%CI: 2.24-3.19) 
than in those with benign breast disease diagnosed in a prevalent 
screen (aHR, 1.87; 95%CI: 1.57-2.24).

•	 The risk of breast cancer independently increased with the presence of 
benign breast disease and with the increase in breast density (p-value 
for interaction = 0.84) and remained elevated for over 15 years.

Apropos of the breast cancer risk prediction model

•	 Individualized risk prediction models are promising tools for 
implementing risk-based screening policies. However, it is challenging 
to recommend any of them yet, since they need further improvement 
in their quality and discriminatory capacity.
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•	 We developed a risk prediction model based on family history, 
previous benign breast disease and previous mammographic features. 
All 3 risk factors were strongly associated with breast cancer risk, with 
the highest risk being found among women with a family history of 
breast cancer (aHR: 1.67), proliferative benign breast disease (aHR: 
3.02) and previous calcifications (aHR: 2.52). 

•	 The model was well calibrated overall (expected-to-observed 
ratio ranging from 0.99 at 2 years to 1.02 at 20 years) but slightly 
overestimated the risk in women with proliferative benign breast 
disease. The area under the receiver operating characteristic curve 
ranged from 58.7% to 64.7%, depending on the time horizon selected.

Joint discussion of articles

The discussion is articulated in terms of the research questions central to 
this thesis. The specific discussion of each of the articles is presented in the 
articles themselves, where the limitations and strengths of each study are 
also described.

In the systematic review conducted as part of this research, we found that 
there was a large body of literature on breast cancer risk prediction models 
prior to this thesis (102-110). With the exception of one model (110), 
these models were not created specifically to predict the risk of women 
participating in breast cancer screening, but rather to support clinical 
decisions when attending a specific woman. These models have been 
analyzed individually, examining the variables used as well as performing 
a risk of bias assessment in order to grade the quality of the existing 
evidence. Although the models have improved during the last few decades, 
their discriminatory accuracy remains moderate with a maximum AUC 
value of 0.71 reported by the article focused precisely on screening. The 
calibration accuracy was widely heterogeneous ranging from 0.85 to 
1.52. In contrast to the 2 previous systematic reviews about breast cancer 
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risk models (122, 123), the systematic review presented in this thesis 
provides innovative information regarding the quality of the identified 
prediction models. Furthermore, the quality of the studies was not high 
due to limitations in the discriminative accuracy, study design, and data 
inputs, hence, as discussed in the article, it is challenging to recommend 
application of any of the models in breast cancer screening.

The distribution of risk factors in such different populations may also 
affect the applicability of the models to different contexts. It is widely 
accepted that distinct subtypes of breast cancer may have different genetic 
markers (124). These differences, the nature of breast cancer itself and its 
low incidence may lead to a model having low discriminatory accuracy. 
In other words, in the general population, there is a “low” probability of 
having breast cancer, even in the highest risk group. Something similar 
happens with lung cancer, a heavy smoker (with an 80-pack-per-year 
history) is as much as 20-times more likely to develop lung cancer than 
a non-smoker, but the yearly incidence of lung cancer in people who 
have smoked heavily for 30 years, is just 2 to 3 per 1,000 (125). This low 
incidence limits the ability of cancer risk models to correctly discriminate 
who will develop the disease (poor discriminatory power) compared with 
other risk models targeting more incident diseases such as cardiovascular 
events (126), for instance. 

Another potential limitation in the applicability of prediction models for 
breast cancer screening is the completeness and the number of included 
risk factors, which ranged in our review from five to 18. Nevertheless, 
some potentially relevant risk factors have only been included in a few 
models, indicating the need for further evaluation. There is an intense 
debate about which variables are most suitable for inclusion in a risk 
prediction model for breast cancer screening. There is probably no single 
answer to this question. The fewer variables used, the more feasible the 
model, but the more variables used, the greater the discriminatory power, 
as long as these variables truly modify breast cancer risk. In addition, 
the methodology of the model has to be appropriate. Therefore, for the 
proposed objective it is necessary to look for a pragmatic model, which 
has good discriminatory power, but which uses variables easily obtainable 
in a screening context. For this reason, to understand how to create a 
model in the most optimal way possible, we have to accurately analyze and 
assess the risk factors to be used. In the context of this thesis, we analyzed 
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characteristics of 2 variables that are key for risk prediction purposes, 
mammographic density, and benign breast disease, and we also included 
in our model other variables such as mammographic features or family 
history, in addition to age.

The results of the analysis of breast density clearly indicate that high 
breast density not only confers a higher biological risk but also produces 
masking on mammography, resulting in a lower sensitivity and positive 
predictive value. Almost 21% of mammograms in our cohort and up to 
40% in other cohorts (127, 128) were classified as BI-RADS 3 or BI-
RADS 4 density, representing a large proportion of screened women. This 
suggests that women with dense breasts could benefit from tests other than 
mammography and supports personalization. Other authors have already 
analyzed the use of ultrasound (78) or magnetic resonance imaging (79) 
in women with dense breasts as supplemental imaging with positive 
results. This is also in line with current clinical trials such as MyPeBS (My 
Personal Breast Screening) (82), in which women with dense breasts are 
offered magnetic resonance imaging complementary to mammography.

Another risk factor proposed for individual assessment of breast cancer 
risk is the presence of previous benign breast disease. The second article 
of this thesis studied this risk factor from a point of view that, to our 
knowledge, was used for the first time. We analyzed the differences in 
breast cancer risk depending on the type of screening, which reflects 
whether benign breast disease was diagnosed in a woman's first screening, 
called prevalent benign breast disease, or at any subsequent screening, 
called incident benign breast disease. We found that regardless of 
histological classification, women with an incident benign breast disease 
had a 42% higher risk than women with a prevalent one. This finding 
is particularly relevant since, in our population, 45% of benign lesions 
are diagnosed at incident screens. Screening type therefore provides 
key information for risk prediction since these differences in risk are 
not reflected in previous breast cancer risk models and may be used to 
improve the accuracy of predictions. Unless breast cancer risk prediction 
models include this information, the risk attributed to benign breast 
disease diagnosed in prevalent screens could be overestimated, and, 
likewise, the risk attributed to benign breast disease diagnosed in incident 
screens could be underestimated. 
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Moreover, the results of this study may have implications for clinical 
decisions on the follow-up of women with a diagnosis of benign breast 
disease. The recommended follow-up strategy may differ, depending on 
the benign breast disease subtype and screening type at diagnosis. In many 
screening programs, women diagnosed with a benign breast disease that 
confers a high breast cancer risk, such as atypical hyperplasia, are referred 
for close clinical follow-up. Therefore, a non-proliferative benign breast 
disease diagnosed in an incident screening may confer a higher risk than 
a proliferative benign breast disease diagnosed in a prevalent screen, and 
yet, to date, some of these women are screened less comprehensively. The 
evidence provided by this new classification opens the door to a more 
precise analysis of benign breast disease.

To determine how breast density and benign breast disease could be 
included in a breast cancer risk prediction model, the third article of 
this thesis analyses the interaction between them. To correctly model the 
risk, it is necessary to understand not only whether the variables actually 
define risk, but also whether they interact with each other. Otherwise, 
model could be biased and either under- or overestimate the risk of some 
of the variables. We found that the presence of benign breast disease and 
high mammographic density were independently associated with a higher 
risk of breast cancer. The risk diverged over the study period for women 
with and without benign breast disease across mammographic density 
categories. The finding that both factors are independent risk factors for 
breast cancer consolidates their utility in risk prediction models. Few 
studies have evaluated the combined effect of benign breast disease and 
breast density on the risk of breast cancer at mammographic screening. 
A prior large study (129) assessed the combined effect of mammographic 
breast density and different subtypes of benign breast disease. The study 
population in the abovementioned study consisted solely of women with 
a previous benign breast disease diagnosis, hampering comparison of the 
effect of the presence or absence of benign breast disease. Despite these 
differences in study population and reference group, the results of the 2 
studies are consistent. 

Finally, the fifth and last article of this thesis defines a breast cancer risk 
prediction model. In this model, we used benign breast disease, and 3 
variables that have been analyzed as risk factors: age (83), family history 
(90) and suspicious findings at mammographic reading (97). We found 
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that a woman with a family history of breast cancer had a 67% higher 
risk than a woman without a family history. We also found that having a 
previous mammographic finding conferred a higher risk of breast cancer, 
the highest risk being in calcifications, with up to 2.52 times more risk 
than a woman with no previous mammographic finding. The model did 
not use all the evidence found in the articles of this thesis, but illustrated 
an approach to a specific risk model for breast cancer screening that 
allowed us to estimate the short- and long-term risk of breast cancer in 
women targeted for mammography screening. The internal validation of 
the model showed good calibration and modest discriminatory power, not 
far from the usual breast cancer risk prediction models, despite having a 
smaller number of variables, which makes it more affordable. Our model 
adds to the breast cancer risk prediction models currently available and 
can be used to help guide personalized screening strategies by employing 
information easily obtained at screening participation. Additional useful 
information from our model is estimation of a woman’s risk for breast 
cancer at 2-yearly intervals. Nevertheless, this model is not yet able to 
be used for the proposed objective, the personalization of breast cancer 
screening, as it needs to be refined and updated by the addition of  
new variables.

From the articles presented in this thesis, it can be concluded that breast 
cancer risk prediction is an area of knowledge in continuous development 
because of its importance to screening programs. We have demonstrated 
that breast density and benign breast disease are variables that could be 
used for this purpose, as they may explain some of the variability in the 
breast cancer risk in women participating in screening. We have seen 
that family history and previous mammographic features also explain 
part of this variability. We have addressed the problem, but still without 
enough tools to make a model capable of meeting the proposed objective. 
Future lines of research should lead us to update the risk prediction 
model presented in this thesis with information on the type of screening 
at benign breast disease diagnosis, as we have found that it affects breast 
cancer risk regardless of histologic type. This finding may help to obtain 
a higher discriminatory power. In addition, the model should be updated 
with breast density, as dense breasts not only have a higher biological risk, 
but also a higher probability of masking on mammography. 
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There is still no established formula for the most optimal individual 
risk breast cancer prediction model for woman attending screening. A 
model for this purpose would have to include risk factors feasibly and 
easily obtainable at screening participation. Furthermore, the model 
would have to be developed with data from large screening cohorts, since 
the problem is longitudinal in nature. In addition, the model would be 
applied to a cohort that would be evaluated continuously. In other words, 
such a model would need to be not only valid for a baseline assessment, 
but could also re-evaluate the risk of each woman every 2 years, since 
risk can change over the years. The model would have to be validated 
both internally and in an external cohort, and would have to have good 
calibration and discrimination results to ensure that it could identify 
which women have a lower or higher risk of developing breast cancer. 

Once such a model is developed, it will be feasible to calculate the 
individual risk of each woman attending screening. With this estimated 
risk, it would be possible to decide which screening test is best for each 
woman according to her individual characteristics. Moreover, it will be 
possible to leave behind biennial screening as we know it, and perhaps 
screen higher-risk women annually and lower-risk women every 3 years. 
This intervention is not free of controversy either. Like every population-
based intervention, not all individuals will obtain the same benefits from 
personalized screening nor will they experience the same adverse effects. 
At an individual level, there will be women who would be harmed by 
the intervention, such as low-risk women who develop cancer shortly 
after having a mammogram and who may have a worse prognosis if it is 
detected at 3 years instead of 2 years. Nevertheless, these new strategies 
could be feasible in terms of resources and cost-effectiveness as long as we 
minimize harms to screened women and the benefits clearly outweigh the 
risks (74, 75). These new strategies should improve the balance of benefits 
and harms compared to average-risk women receiving biennial screening 
(76, 77). Thus, such a model is key to help decision-making on how to 
make the transition from the current "one size fits all" strategy to a more 
efficient personalized screening.
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Limitations

The main limitations of this thesis are those characteristic of a 
retrospective cohort study. Although these studies provide information on 
a large number of women screened and over long periods of time, they 
are limited by the quality of the information available in the original data 
sources. Information in this thesis was drawn from the original databases 
of the screening programs participating in the BEnign LEsion (BELE-2) 
and the IRIS study projects. As previously mentioned, a detailed protocol 
for definitions and collection of variables was developed to ensure the 
homogeneity of the information collected. However, certain variables 
related to women’s characteristics, such as family history and the presence 
of previous benign lesions, showed a significant volume of missing values, 
which in some cases was 40%. To assess the impact of these variables, 
a rigorous quality control was performed on the source and method of 
information, and various sensitivity analyses were conducted to assess the 
impact of this lack of information on the main study variables. However, 
the possible bias generated by the lack of these variables was controlled by 
simply restricting each of the analyses to the screening programs that had 
good information on these variables. 

A specific limitation of the articles involving breast density is that 
variability among radiologists can affect the results since breast density 
measurements are inherently inaccurate depending on subjective 
observation. Nevertheless, our results are consistent with the previous 
literature, and in our cohort breast density was classified by highly  
trained radiologists. 

Another limitation of the cohort used in this thesis is that the number of 
cancers detected after proliferative benign breast disease with atypia was 
small as it is an uncommon subtype, which limited our ability to perform 
some subgroup analyses. In addition, follow-up of women with diagnoses 
of this type (such as atypical hyperplasia) is shorter as they leave the 
screening by being sent to a more exhaustive clinical pathway.
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In addition, the breast cancer risk prediction model described in the 
thesis was only internally validated and external validation of the results is 
needed to verify its predictive performance.

Lastly, the systematic review was limited to studies published in English 
and did not involve an active search for gray literature, which is literature 
that is not formally published in sources such as books or journal articles. 
Therefore, some models may not have been identified. However, since we 
conducted a comprehensive literature search in Medline, EMBASE and 
The Cochrane Library, we estimate that the loss of information due to the 
study selection criteria is low.

Strengths

As previously mentioned, this thesis is based on the BEnign LEsion 
(BELE-2) and the Individualized RISk (IRIS) projects. These projects 
allowed the availability of a joint database of different screening programs, 
which contains information on a large number of women, followed 
sequentially during their multiple participations in the screening. This 
cohort has individual-level information from more than 780,000 women 
participating in 10 large, well-established, population-based screening 
programs. As mentioned above, this is one of the largest databases with 
individualized information created to date for the assessment of breast 
cancer screening. In addition, information is available for a 20-year 
period, from the launch of the programs in 1995 until 2015. The intense 
work of drafting protocols, homogenization of criteria and data validation 
guarantees a high level of consistency in the information analyzed. 

As discussed in the methods section, the methodology developed for the 
different articles in this thesis represents an advance in the evaluation of 
population-based screening from a longitudinal perspective and provides 
a consistent methodological approach that broadens the perspective on 
the assessment of invidualized risk. 
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All the papers in this thesis explore controversial aspects of population-
based screening evaluation and provide unpublished answers that add 
to the knowledge of breast cancer screening practices, with particular 
emphasis on the evaluation of the different breast cancer risk factors and 
on individual risk prediction. Despite leaving some questions open, the 
articles in this thesis delve into a fundamental aspect of breast cancer 
screening— individual risk—on which all eyes are focused for future use 
in the development of personalized strategies. Other works carried out 
subsequently or simultaneously corroborate or extend the results of these 
works, and take them as a reference, lending credence to the  
findings presented.

To conduct this project, we had the direct participation of people with 
management responsibilities in the various participating programs. This 
allowed a greater translation of the research results into practice, and at 
the same time enables more relevant questions to be raised in the context 
of public health and community programs.

In addition to the analysis of the cohort, we conducted a comprehensive 
literature search of breast cancer risk prediction models following the 
standard Cochrane Collaboration methods and adhering to the PRISMA 
statement reporting recommendations, leading to a consistent systematic 
review. Full-text screening and data abstraction process were performed 
by 2 researchers, increasing the quality of the review process.

Future lines of research

This thesis forms part of the breast cancer screening research line of the 
Epidemiology and Evaluation Group of Hospital del Mar-IMIM. This 
group has been funded for many years by the CIBER of Epidemiology 
and Public Health and is currently funded by the Health Services and 
Chronic Diseases Research Network (REDISSEC), with numerous 
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projects and different initiatives to enhance knowledge of aspects related 
to mammographic screening and aiming to provide continuity to the  
issues presented.

Within this framework, the Individualized RISk (IRIS) study, within 
which this thesis is framed, is still active. The main objective of this 
project is to develop invidualized breast cancer risk prediction models for 
women participating in mammography screening based on their known 
risk factors. Specifically, the aim was to expand the BELE-2 cohort to 
collect information on breast density in those programs where it was not 
available, in order to include this variable in the model. To this end, we 
have worked jointly with the University of Valencia for the validation of 
an automated software capable of retrospectively reading the density of 
digital mammograms. This project has been significantly delayed due 
to the worldwide pandemic caused by the Coronavirus Disease 2019 
(COVID-19) and the procurement process of breast density has not yet 
been completed. The model presented in this thesis will be updated with 
this variable as soon as this project is finished.

In addition, with the experience gained through the BELE-2 and IRIS 
projects, together with the collaborations initiated with other groups and 
the need to work in a broader framework, an international collaboration 
with the BreastScreen Norway group of the Cancer Registry of Norway 
has been formalized. We have been working for several months on a joint 
article that will provide continuity to this thesis. The objective of this 
collaborative work is to reach a better understanding of tumor growth 
in breast cancer cases diagnosed in women targeted for breast cancer 
screening. The article is well advanced and will soon be published. 
These results will serve to improve knowledge of the natural history 
of tumors diagnosed in women participating in screening and may be 
useful in developing more efficient screening strategies based on women's 
individual risk.

As a logical consequence of the worldwide study on breast cancer 
individual risk and breast cancer screening personalization, a clinical 
trial has been launched at the European level to compare a personalized 
risk-based screening strategy (based on the individual women’s risk 
of developing breast cancer) to standard screening. This project, 
called MyPeBS, began in 2017 and it is still under recruitment. It is an 
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international project, funded by the European Union's Horizon 2020 
research and involves 8 countries recruiting 85,000 women to participate 
in the clinical trial. It is expected that the results of this project will 
provide relevant information to eventually move worldwide from the 
current "one size fits all" breast cancer screening to fully personalized 
screening. This project is coordinated by a French group, Unicancer. Our 
group is part of the project as the only recruiting group in Spain and I 
personally will be the project manager of our recruiting center.

The new situation after the COVID-19 pandemic must also be considered 
for future decisions on breast cancer screening. Cancer screening 
programs have been considered as non-essential activities in most 
European countries and have therefore suffered a halt and/or delay in 
their activity. Currently, to reintroduce screening programs as soon as 
possible and at the same time reduce the risk of COVID-19 transmission, 
the programs have had to establish new safety guidelines. All of these 
safety measures reduce the mammographic capacity of the facility due to 
longer disinfection times and longer citation intervals to minimize contact 
among participants. These measures, coupled with the delay caused by 
periods of total disruption, present a challenge in the management of 
screening citations. 

Our group has started a project whose main objective is to analyze the 
impact of the COVID-19 pandemic in the essential quality indicators of 
population-based mammographic breast cancer screening. We believe it is 
important to assess not only the participation and adherence rate, which 
may have been affected by the general fear of the pandemic after those first 
few months, but also the delay in diagnosis, which may lead to a higher 
number of breast cancers diagnosed at an advanced stage.

Hence, the possibility of distinguishing the most at-risk women in the 
population could also relieve the burden of mammograms in healthcare 
in a new reality where COVID-19 does not allow the same number of 
tests to be performed as before. As long as the number of mammograms 
performed remains lower than before the pandemic, it is important to 
prioritize the recall order based on breast cancer risk to try to minimize its 
effect on the various indicators of screening. Breast cancer risk prediction 
models may, therefore, be useful tools for post-pandemic reorganization of 
screening programs.
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Conclusions and implications
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Conclusions

•	 Performance screening measures are negatively affected by  
increasing breast density, which decreases sensitivity and positive 
predictive value.

•	 The risk of breast cancer conferred by benign breast disease is higher 
in women diagnosed in an incident screen than in those diagnosed in 
a prevalent screen, regardless of histological classification.

•	 Women with benign breast disease have an elevated risk for over 15 
years independently of their breast density category.

•	 Individualized risk prediction models are promising tools for 
implementing risk-based screening policies. However, it is difficult to 
recommend a specific model since they all need further improvement 
in their quality and discriminatory capacity.

•	 We developed and validated a breast cancer risk prediction model 
able to estimate the short- and long-term breast cancer risk using 
information routinely reported at screening participation. Our model 
uses age, family history, mammographic findings, and benign breast 
disease.

•	 The model should be externally validated and updated with new 
variables. In the future, the model could help to guide individualized 
screening strategies aimed at improving the risk-benefit balance of 
mammography screening programs.
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Recommendations and implications for public health

The results presented in this thesis improve the existing information 
to evaluate the balance between risk and benefits of mammographic 
screening. The assessment of the different risk factors, and the calculation 
of individual risk, is a substantial contribution to improve the effectiveness 
of population-based screening through personalization.

As discussed above, evidence supports personalization as the future of 
breast cancer screening and, to that end, it is necessary to perform breast 
cancer risk prediction models based on data from large screening cohorts 
and including risk factors easily obtainable at screening participation. The 
results of the various studies comprising this thesis are useful to better 
understand the different breast cancer risk factors and to know how to use 
them for individual risk assessment.

Our analysis showed that an elevated breast density not only confers a 
higher biological risk, but also produces a masking in mammograms, 
reducing their sensitivity and positive predictive value. This means that 
women with denser breasts do not benefit from mammography as much 
as women with fattier breasts and would benefit more from more accurate 
tests such as ultrasound or magnetic resonance imaging.

We have identified a new classification that allows us to better understand 
variability in breast cancer risk after a benign breast disease diagnosis, 
providing an innovative means of understanding these pathologies. 
Those benign breast disease diagnosed at a woman’s first screening, called 
incident benign breast disease, have a higher risk than those diagnosed at 
subsequent screenings, regardless of their histological classification. This 
implies that we have identified another point at which certain women may 
benefit more from more comprehensive screening and the next step in 
screening could be to translate this finding into practice.

The joint analysis we have made of breast density and benign breast disease 
could be especially useful when defining in the future which variables 
should be part of the individualized risk models that will be used for the 
personalization of screening and how to include them in those models.



146

When we first approached a breast cancer risk prediction model, we found 
that women with a family history and previous mammographic findings 
also had a higher risk. 

Hence, this thesis has led us to locate several variables that can be used 
to identify which women are at a higher risk of breast cancer and which 
are at lower risk and to deepen the knowledge of breast cancer risk 
prediction models. More exhaustive screening of high-risk women could 
reduce the number of interval cancers and less exhaustive screening of 
low-risk women could lead to a fewer number of false positives. The 
analysis presented in this thesis, therefore, provides new and useful tools 
to approach the next logical step, which is to update current “one-size-fits-
all” breast cancer screening strategies to risk-based personalized breast 
cancer screening strategies.
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Article 6

Title: Risk of breast cancer two years after a benign biopsy depends on  
the mammographic feature prompting recall

Authors: Vernet-Tomás M, Louro J, Román M, Saladié F, Posso M,  
Prieto M, Vázquez I, Baré M, Peñalva L, Vidal C, Bargalló X, Sánchez M, 
Ferrer J, Espinàs JA, Quintana MJ, Rodriguez-Arana A & Castells X  
on behalf of the BELE Study Group

Journal: Maturitas. 2021 Feb;144:53-59

Impact Factor: 3.63 (Q1 Obstetrics & Gynecology)

DOI: 10.1016/j.maturitas.2020.10.024

Abstract:

Objective: We aimed to explore whether the type of mammographic 
feature prompting a false-positive recall (FPR) during mammography 
screening influences the risk and timing of breast cancer diagnosis, 
particularly if assessed with invasive procedures.

Study design: We included information on women screened and 
recalled for further assessment in Spain between 1994 and 2015, with 
follow-up until 2017, categorizing FPRs by the assessment (noninvasive 
or invasive) and mammographic feature prompting the recall.

Main outcome measures: Breast cancer rates in the first two years after 
FPR (first period) and after two years (second period).

Results: The study included 99,825 women with FPRs. In both periods, 
the breast cancer rate was higher in the invasive assessment group than 
in the noninvasive group (first period 12%0 vs 1.9%0, p < 0.001; second 
period 4.4%0 vs 3.1%0, p < 0.001). During the first period, the invasive 
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assessment group showed diverse breast cancer rates for each type 
of mammographic feature, with a higher rate for asymmetric density 
(31.9%0). When the second period was compared with the first, the 
breast cancer rate decreased in the invasive assessment group (from 
12%0 to 4.4%0, p < 0.001) and increased in the noninvasive assessment 
group (from 1.9%0 to 3.1%0, p < 0.001).

Conclusion: In the context of mammography screening, the risk 
of breast cancer diagnosis during the first two years after FPR 
was particularly high for women undergoing invasive assessment; 
importantly, the risk was modified by type of mammographic feature 
prompting the recall. This information could help to individualize 
follow-up after exclusion of malignancy.
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Article 7

Title: Changes in mammographic density over time and the risk of  
breast cancer: An observational cohort study

Authors: Román M, Sala M, Baré M, Posso M, Vidal C, Louro J,  
Sánchez M, Peñalva L & Castells X on behalf of the BELE Study Group

Journal: Breast. 2019 Aug;46:108-115

Impact Factor: 3.75 (Q1 Obstetrics & Gynecology)

DOI: 10.1016/j.breast.2019.04.007

Abstract:

Background: The effect of changes in mammographic density over 
time on the risk of breast cancer remains inconclusive.

Methods: We used information from four centres of the Breast 
Cancer Screening Program in Spain in the period 1996–2015. We 
analysed individual level data from 117,388 women first screened age 
50–54, with at least two screening examinations. Breast density was 
determined using the BI-RADS classification (A to D in increasing 
order) at earliest and latest screening examination. Adjusted Poisson 
regression models were used to estimate the relative risk (RR) and 95% 
confidence intervals (95%CI) of the association between changes in 
mammographic density and breast cancer risk over time.

Results: During an average 5.8 years of follow-up, 1592 (1.36%) 
women had a breast cancer diagnosis. An increase in density category 
increased breast cancer risk, and a decrease in density decreased the 
risk, compared with women who remained in the same BI-RADS 
category. Women whose density category increased from B to C or B to 
D had a RR of 1.55 (95%CI = 1.24–1.94) and 2.32 (95%CI = 1.48–3.63), 
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respectively. The RR for women whose density increased from C to 
D was 1.51 (95%CI = 1.03–2.22). Changes in BI-RADS density were 
similarly associated with the risk for invasive cancer than for ductal 
carcinoma in situ.

Conclusions: Although a modest proportion of women changed BI-
RADS density category, mammographic density changes modulated 
the risk of breast cancer and identified women at a differential risk. 
Using two longitudinal measures of BI-RADS density could help target 
women for risk-based screening strategies.
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Appendix 2
Communications to congresses derived from  

Louro J, Román M, Vidal C, Baré M, Sánchez M, Peñalva L,  
Sala M & Castells X
Mammographic breast density in population-based screening  
programs in Spain
XXXV Congress of the Spanish Society of Epidemiology
Barcelona (Spain), 6-8 September 2017. Gac Sanit 2017; 31(Espec Congr):110

Louro J, Vidal C, Baré M, Sánchez M, Peñalva L & Sala M
Indicadores de proceso según la densidad mamaria en programas  
poblacionales de detección precoz de cáncer de mama en España
3er Congreso Español de la Mama
Madrid (Spain). 19-21 October 2017

Posso M, Louro J, Sala M, Román M, Domingo L & Castells X
Modelos de predicción de riesgo individual del cáncer de mama:  
Revisión sistemática
XXXVI Congress of the Spanish Society of Epidemiology 
Lisbon (Portugal), 11-14 September 2018. Gac Sanit. 2018;32(Espec Congr): 
120

Louro J, Román M, Quitana MJ, Saladié F, Prieto M, Bargalló X,  
Posso M, Sala M , Castells X
An individualized breast cancer risk prediction model to personalize 
mammography screening
XXXVI Congress of the Spanish Society of Epidemiology 
Lisbon (Portugal), 11-14 September 2018. Gac Sanit. 2018;32(Espec Congr): 
311

the articles of this thesis
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Louro J, Castells X, Quintana MJ, Posso M, Sala M & Román M
An individualized breast cancer risk prediction model to personalize 
mammography screening
International Cancer Screening Conference 
Rotterdam (The Netherlands), 3-5 June 2019

Posso M, Louro J, Román M, Domingo L, Castell X & Sala M
Individualized breast cancer risk prediction models in average-risk  
women: a systematic review and quality assessment
International Cancer Screening Conference 
Rotterdam (The Netherlands), 3-5 June 2019

Louro J, Castells X, Alcántara R, Posso M, Prieto M, L. Peñalva,  
J. del Riego, C. Vidal & Román M
Mammographic density, benign breast disease, and the risk of breast  
cancer over time
XXXVII Congress of the Spanish Society of Epidemiology 
Oviedo (España), 3-6 September 2019

Louro J, Román M, Posso M, Comerma L, Vidal C, Prieto M,  
Saladié F, Baré M, Sánchez M, Quintana MJ, Bargalló X, Ferrer J,  
Peñalva L, Sala M & Castells X
Differences in breast cancer risk after a benign breast disease  
according to the screening type
XII European Breast Cancer Conference. 
Online due to Covid-19 pandemy, 2-3 October 2020
Abstract selected for press release
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Appendix 3
Database protocol (in Spanish)

Contenido

Lesiones benignas de mama, densidad mamaria y asociación  
con el riesgo de cáncer en una cohorte de mujeres cribadas

Protocolo de las variables de estudio

Lesiones benignas de mama, densidad mamaria y asociación  
con el riesgo de cáncer en una cohorte de mujeres cribadas

Programa de control de calidad de la base de datos

Anexo 1
Anexo 2
Anexo 3



Lesiones benignas de mama, densidad mamaria y 
asociación con el riesgo de cáncer en una cohorte 
de mujeres cribadas

Protocolo de las variables de estudio
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Población de estudio

Todas las mujeres participantes en los programas de detección precoz de 
cáncer de mama que participan en el proyecto, con al menos una mamografía 
de cribado realizada desde el inicio de estos hasta el 31 de diciembre del 2015, 
ambos incluidos. 

Los programas disponen de un identificador único por mujer que permite  
enlazar el historial de participaciones de una misma mujer a través de las dis-
tintas invitaciones para participar en el cribado mamográfico (como si de una 
cohorte se tratase). En estas condiciones, para cada mujer y para cada participa-
ción, se dispone de información sobre el resultado de la lectura mamográfica  
de cribado.

Se incluirá en la base de datos a las mujeres dentro de la edad diana de los pro-
gramas de cribado, con al menos 1 cribado desde el inicio del programa hasta 
el 31 de diciembre del 2015 (al menos una vez participante), pudiendo tener su 
primer cribado (cribado inicial) en cualquier ronda del programa.

Se excluyen del estudio las mujeres no participantes en ninguna ronda dentro 
del periodo de estudio y aquellas con historia de cáncer mamario anterior al 
primer cribado.

Definición de cáncer de cribado

Se considerarán tumores detectados en el cribado todos aquellos tumores de 
mama primarios diagnosticados en mujeres participantes en alguno de los pro-
gramas que forman parte del proyecto. Por definición estos tumores se detec-
tan a lo largo del periodo de estudio a través de la realización de una mamogra-
fía de cribado, con sospecha de malignidad y diagnóstico final de cáncer.

Se incluirán todos los tumores malignos primarios de mama, tanto invasivos 
como in situ, de acuerdo con la Clasificación Internacional de Enfermedades 
para Oncología (CIE-O 3ª Edición). 
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Si una mujer presenta simultáneamente más de un tumor, se recogerá única-
mente la información correspondiente al tumor que en el momento del diag-
nóstico presentara un estadio más avanzado (peor pronóstico), independiente-
mente de que los tumores afectaran a una sola o ambas mamas. 

Contexto

Con el fin de mejorar la comprensión de las variables que vamos a recoger para 
el estudio de los “determinantes, evolución y características biológicas del cáncer de 
mama detectado en una cohorte de mujeres cribadas” proponemos el siguiente 

Ejemplo:
Imaginemos un programa de cribado iniciado en 1996, con cinco rondas, y una 
mujer nacida el 15/01/1948 y convocada a partir de la segunda ronda (fecha 
primera convocatoria 01/03/1998) y hasta la quinta. Supongamos que la mujer 
ha participado en la segunda (1998), cuarta (2002) y quinta (2004) ronda de una 
unidad radiológica del programa. Supongamos que su tercera mamografía de 
control en el programa (ronda 5 del programa) se realiza el 23/04/04. El pro-
grama contempla la realización de mamografía con única proyección y lectura 
doble con consenso. Tras la lectura por parte de los radiólogos no es posible 
descartar malignidad, ya que encuentran un patrón distorsionante con calcifica-
ciones, con una clasificación de bi-rads 3 ‘probablemente benigno’.  Además, se 
clasifica la densidad mamaria de la mujer como 3 ‘Densidad heterogénea’ según 
la clasificación bi-rads. En fechas posteriores a la mamografía se le realizan 
consecutivamente las siguientes pruebas: ecografía, paaf y biopsia quirúrgica. 
Finalmente, no se diagnostica cáncer de mama, pero se le recomienda a la 
mujer la realización de una mamografía intermedia a los 6 meses. Pasados los 6 
meses (15/11/04), se le realiza la mamografía y justo después de la mamografía 
(en esa misma fecha), se le realiza una ecografía y una biopsia escisional percu-
tánea, con un resultado definitivo histológico de cáncer de mama.
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Descripción de las variables 
(ver categorías al final del documento)

Nota: Algunos programas aprovecharán la información proporcionada para el 
estudio BELE-1 y únicamente cargarán información parcial en este proyecto (se-
guimiento de las mujeres ya incluidas en la cohorte BELE-1, e información de las 
mujeres que se incorporan al cribado por primera vez en el periodo 2012–2015). 
Ya que todas las variables de este protocolo son comunes con el estudio BELE-
1, se indica como nota a pie de página cuando sea preciso o deseable que las 
codificaciones asignadas coincidan entre la información del estudio BELE-1 y la 
nueva carga de datos..

1. Programas (1 registro por programa) 

•	 Programa_id1

Letras identificativas asignadas a cada uno de los programas participantes  
en el proyecto

•	 AS: Asturias
•	 CT: Cantabria
•	 GI: Girona
•	 IC: ICO
•	 PM: Parc Salut Mar
•	 SB: Sabadell
•	 SP: Sant Pau
•	 TA: Tarragona
•	 HC: Hospital clínic
•	 GR: Vallès Oriental – Granollers 

Ejemplo:
 ‘SP’ (código asignado al programa del ‘Hospital de Sant Pau’)

•	 Nombre del Programa
Descripción (etiqueta) del programa.

Ejemplo:
Sant PaU

1 �Para los programas participantes en el estudio BELE1 la clasificación asignada a la variable “Programa_id”  
será la misma.
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2. Unidad Radiológica de Cribado (1-N registros por programa)

•	 URC_id2:
Código de cada una de las Unidades de Cribado donde se realizan las explora-
ciones. Se entenderá como URCs, unidades organizativas independientes dentro 
de un mismo programa, sean estas fijas o móviles. Las URC se enumerarán de 
la siguiente forma: Letras identificativas del programa de cribado, seguidas de 
un número consecutivo. Se enumerarán las URC de forma sucesiva a partir del 
número 1, sin ningún orden específico En el caso de programas sin estructura 
de URC, bastará con poner las letras identificativas del programa de cribado 
seguidas del número 1 en esta variable.

Ejemplo:
Para la URC 1 de Asturias, tendremos el códico ‘AS1’

•	 Descripción de la URC3

Nombre y/o descripción (etiqueta) de la Unidad de Cribado donde se realizan 
las exploraciones. Los programas sin estructura de URC la etiquetarán con el 
nombre del propio programa. Aquellos programas que no identifiquen las URC, 
las etiquetaran con el nombre del programa seguido del número que le hayan 
asignado en la variable URC_id. 

Ejemplo:
Para la URC 1 del ejemplo anterior (URC de Asturias), la descripción sería 
‘ASTURIAS1’

3. Mujeres (1 registro por mujer)

•	 Mujer_id4

Número identificador, interno de los programas, de la mujer. Para un programa 
no puede haber dos mujeres con el mismo número identificador. Una mujer 
debe mantener durante todo el tiempo del estudio el mismo número, aunque 
cambie de unidad de exploración a lo largo del periodo. 

2 �Para los programas participantes en el estudio BELE-1 la clasificación asignada a la variable “URC_id” será la misma 
que la asignada en el estudio BELE-1.

3 �Para los programas participantes en el estudio BELE-1 la ”descripción de la URC” será la misma que la asignada en 
dicho estudio.

4 �Para los programas participantes en el estudio BELE-1 será preciso que este número identificador coincida con el 
identificador asignado en dicho estudio. 
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•	 Fecha de nacimiento5

Fecha de nacimiento de la mujer. Valor 09/09/9999 si desconocido

Ejemplo:
15/01/1948

•	 Fecha 1ª citación en el programa6

Fecha en la cual la mujer es invitada a participar por primera vez en la URC 
(independientemente de si participa o no, e independientemente si la fecha es 
anterior al 1 de enero del 2000). Valor 09/09/9999 si desconocido

Ejemplo:
01/03/1998

4. Episodios (1-N registros por mujer)

•	 Episodio7

Indica el número ordinal de convocatoria (o invitación) de la mujer. El episodio 
incluye todo el proceso que transcurre desde la primera citación de una mujer 
para realizarse la mamografía rutinaria hasta el resultado final del episodio (cán-
cer, no cáncer, pendiente de exploraciones adicionales, pendiente mamografía 
intermedia, seguimiento incompleto, desconocido). Una mamografía intermedia 
no puede ser un episodio, aunque, dentro de un episodio, puede haber mamo-
grafías intermedias. Solamente se van a registrar episodios de mujeres con 
mamografía realizada (participantes), de manera que los episodios de mujeres 
no participantes (cribado externo o no cribado) no generan registro en la base 
de datos. Por lo tanto, una mujer participante en una ronda de la URC concreta 
genera exactamente un episodio, y para esta misma mujer, la base de datos del 
proyecto actual contendrá tantos episodios como participaciones tenga la mujer 
desde el inicio del programa hasta el 31 de diciembre del 2011. 

5 �Para los programas participantes en el estudio BELE-1 será deseable que esta fecha coincida con la fecha de 
nacimiento asignada en dicho estudio.

6 �Para los programas participantes en el estudio BELE-1 será deseable que esta fecha coincida con la fecha de 1ª 
citación en el programa asignada en dicho estudio.

7 �Para los programas participantes en el estudio BELE-1 será preciso que este identificador de episodios sea 
coherente con el identificador asignado en el BELE-1. Para las mujeres cribadas en el periodo 2012-2015 (nueva 
información a recoger), con participaciones anteriores a 2012, deberá de existir un orden lógico en la numeración 
de los episodios. Este identificador nos permitirá mantener la secuencia temporal entre los distintos estudios 
cuando se añada nueva información específica de este proyecto.
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Se excluirán los episodios derivados de la petición de una mamografía por parte 
de una mujer por síntomas.

Ejemplo:
la base de datos de episodios contendría tres registros para esta mujer que se-
rían rellenados con los números 1, 3 y 4 consecutivamente. El segundo episodio 
no formaría parte de la base de datos, ya que, a pesar de ser invitada, la mujer 
no participó en la 3ª ronda del programa y por lo tanto no generó registro. 

•	 Número de cribado8

Número ordinal que indica el número de exploraciones de cribado que una 
mujer lleva realizadas hasta el episodio objeto de estudio (incluyendo el mismo 
episodio). Este número siempre será menor o igual al número de episodio. 

Ejemplo:
el campo número de cribados sería rellenado con los números 1, 2 y 3 para 
cada uno de los tres episodios que serían recogidos en la base de datos. 

•	 Fecha mamografía de cribado
Fecha de realización de la exploración de cribado (test de cribado)

Ejemplo:
23/04/04 (en el episodio codificado como 4)

•	 Número de estudios intermedios
Número total de estudios con mamografía intermedia (controles avanzados) 
dentro del episodio objeto de estudio, realizados por indicación del programa 
independientemente de cuándo y dónde se realicen. Si dentro del episodio no 
se ha realizado ningún estudio intermedio, el valor de la variable será 0 (cero).

Ejemplo:
1 estudio intermedio (en el episodio codificado como 4)

•	 Resultado inicial de la mamografía de cribado 
Se indicará el resultado inicial de la lectura mamográfica de cribado para ese 
episodio, aunque posteriormente, y durante el mismo episodio, haya otros 

8 �Para los programas participantes en el estudio BELE-1 será preciso que el número de cribado sea coherente con el 
valor asignado en el BELE-1. Para las mujeres cribadas en el periodo 2012-2015 (nueva información a recoger), con 
participaciones anteriores a 2012, deberá de existir un orden lógico en la numeración del cribado.
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resultados y recomendaciones de otros test (mamografías intermedias,  
pruebas de imagen o exploraciones adicionales invasivas). En el caso de re-
petición técnica, se tomará como resultado inicial el que derive de la primera 
mamografía válida.

Se codificará de la siguiente manera:
•	 1: Negativo.
•	 2: Exploraciones adicionales: mujeres a las que se les recomienda la realiza-

ción de alguna prueba o exploración adicional para descartar malignidad 
independientemente de cuándo y dónde se realicen (estas pruebas pueden 
realizarse en la misma fecha de la exploración de cribado o en alguna 
fecha posterior previa reconvocatoria).

•	 3: Mamografía intermedia (Estudios intermedios): mujeres a las que a la vis-
ta del resultado de la mamografía de cribado se les recomienda la realiza-
ción de una nueva mamografía antes de la secuencia que le correspondería 
de forma rutinaria (por ej. a los 3, 6 o 12 meses)

•	 99: Desconocido

Ejemplo:
el campo resultado (inicial) de la mamografía sería rellenado con la etiqueta: 
exploraciones adicionales (en el episodio codificado como 4)

•	 Categoría mamografía de la prueba de cribado. (categórica)
Corresponde a la clasificación BI-RADS de la lectura mamográfica del test de  
cribado, previo a la realización de exploraciones adicionales si fuesen necesa-
rias. Se admite la categoría ‘0’, en su caso. Se informará ‘99’ en caso de  
BI-RADS desconocido.

•	 0: Incierto
•	 1: Normal
•	 2: Benigna
•	 3: Probablemente Benigna
•	 4: Probablemente Maligna
•	 5: Maligna
•	 99: Desconocido

Nota: En el caso de los programas que recogen de manera independiente la clasifica-
ción Bi-Rads para cada mama, se informará aquel de los dos que indique una mayor 
sospecha de malignidad. La sospecha de malignidad de menor a mayor se establece 
del siguiente modo: 1 → 2 → 0 → 3 → 4 → 5
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Ejemplo:
el campo categoría mamográfica de la prueba de cribado sería rellenado con el 
valor 3: probablemente benigno (en el episodio codificado como 4)

•	 Densidad mamaria
Se utilizará la clasificación cualitativa BI-RADS en 4 grupos para clasificar la 
mama según el nivel de tejido fibro-glandular. Se codificará el resultado global 
de ambas mamas. Se informará ‘99’ en caso de densidad mamaria desconocida. 

•	 1: Completamente grasa (BI-RADS type 1)
•	 2: Densidad fibroglandular dispersa (BI-RADS type 2)
•	 3: Densidad heterogénea (BI-RADS type 3)
•	 4: Extremadamente densa (BI-RADS type 4)
•	 99: Desconocido

Ejemplo:
el campo densidad mamaria sería rellenado con el valor 3: densidad heterogé-
nea (en el episodio codificado como 4)

•	 Lateralidad (categórica)
Indica en que mama se encuentra la sospecha radiológica de la lectura mamo-
gráfica. La categoría ‘No pertinente’ se reserva para los casos con lectura ma-
mográfica sin ningún hallazgo, y resultado inicial negativo. Si se han observado 
hallazgos en ambas mamas y se dispone de esta información se marcará la 
categoría ‘Bilateral’. 

•	 0: No pertinente
•	 1: Derecha
•	 2: Izquierda
•	 3: Bilateral
•	 99: Desconocido

Ejemplo:
el campo lateralidad del episodio número 4 sería rellenado con el valor:  
‘2: Izquierda’

•	 Patrones radiológicos de la prueba de cribado (categórica)
Hace referencia a los posibles patrones radiológicos observados durante la lec-
tura mamográfica, sean estos malignos o benignos, e independientemente de si 
la mujer es reconvocada para hacerse exploraciones adicionales. 
Para poder recoger información sobre múltiples patrones en los casos en que 
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se disponga de esta información, la descripción de la mamografía de la prueba 
de cribado se recoge en un bloque de 5 variables para cada mama. De esta ma-
nera se podrán informar diferentes combinaciones de patrones en cada mama.  

Nota: En el caso de que la 'lateralidad' sea desconocida (‘99: Desconocido’), pero se 
conozca el 'patrón radiológico' de la lectura mamográfica, se rellenará esta infor-
mación en la mama derecha únicamente. Esta codificación por defecto indicará que 
a pesar de que la 'lateralidad' es desconocida, el 'patrón radiológico' informado 
corresponde con alguna de las dos mamas, pero desconocemos exactamente a cuál.

Mama derecha

•	 Masa_D
Imagen de Masa en mama derecha

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Distorsión_D
Imagen de Distorsión en mama derecha 

•	 0: No
•	 1: Sí
•	 199: Desconocido

•	 Calcificaciones_D
Imagen de Calcificaciones en mama derecha

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Asimetría_D
Imagen de Asimetría en mama derecha 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Otros_D
Observación en mama derecha de: Alteraciones de la piel / pezón; Prótesis; 
Cuerpos extraños; Cambios post-cirugía; Otros aspectos
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•	 0: No
•	 1: Sí
•	 99: Desconocido

Ejemplo:
las variables ‘masa_d’, ‘distorsión_d’, ‘calcificaciones_d’, ‘asimetría_d’, y ‘otros_d’, 
serían rellenadas todas con el valor ‘0: No’ en el episodio número 4

Mama izquierda

•	 Masa_I
Imagen de Masa en mama izquierda 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Distorsión_I
Imagen de Distorsión en mama izquierda 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Calcificaciones_I
Imagen de Calcificaciones en mama izquierda 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Asimetría_I
Imagen de Asimetría en mama izquierda

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Otros_I
Observación en mama izquierda de: Alteraciones de la piel / pezón; Prótesis; 
Cuerpos extraños; Cambios postcirugía; Otros aspectos

•	 0: No
•	 1: Sí
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•	 99: Desconocido

Ejemplo:
las variabales ‘distorsión_i ‘ y ‘calcificaciones_i’ serían rellenadas con el valor 
‘1: Sí’ en el episodio número 4, y las variables ‘masa_i’, ‘asimetría_I’, y ‘otros_d’ 
serían rellenadas con el valor ‘0: No’ en ese mismo episodio número 4

•	 Resultado final del episodio
El resultado final del episodio es el diagnóstico definitivo del mismo, tenga o no 
tenga exploraciones adicionales, tenga o no tenga mamografías intermedias, 
sea cual sea la casuística durante el episodio. 

Valores posibles del resultado final del episodio y definición:
•	 1: Cáncer: el diagnóstico definitivo (histológico) del episodio es de  

cáncer de mama.
•	 2: No cáncer: el resultado del episodio es de no cáncer de mama y se reco-

mienda a la mujer un control rutinario.
•	 3: Pendiente estudios intermedios: mujeres con episodios incompletos. 

Como se incluirá a todas las mujeres con alguna mamografía realizada 
desde el inicio del programa hasta el 31 de diciembre de 2015 es posible 
que durante el último período haya mujeres que están todavía pendientes 
de la realización de un estudio intermedio y no se pueda establecer un 
resultado final del episodio. 

•	 5: Seguimiento incompleto: mujeres a las que no se puede completar las 
exploraciones recomendadas en el episodio (pruebas adicionales, explora-
ciones intermedias, etc) por ejemplo por rechazo a las mismas por parte de 
la mujer, fallecimiento antes de completar proceso  
diagnóstico etc.

•	 99: Desconocido: corresponden a episodios de cribado pendientes de reso-
lución, de los que se desconoce la información necesaria para asignarles  
un resultado.

Ejemplo:
el campo resultado final del episodio número 4 sería rellenado con la etiqueta: 
‘1: Cáncer’
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5. Exploraciones adicionales (0-N registros por episodio)

•	 N prueba
Es el contador del número de pruebas realizadas a una misma mujer dentro de 
cada episodio. Para cada prueba realizada a la mujer se le asignará el número 
de prueba que le corresponde.  

•	 Prueba_id
Se recogerán todas las pruebas realizadas en cada episodio, aunque sean del 
mismo tipo (Ej: dos PAAF). En el caso de una mujer-episodio con pruebas en 
ambas mamas en la misma fecha, se registrarán todas las pruebas realizadas. 
Se codificará de la siguiente manera:

•	 1. Pruebas no Invasivas 
•	 	 1.1. Otras proyecciones mamográficas 
•	 1.2. Ecografía 
•	 1.3. Resonancia magnética
•	 1.4. Otras pruebas no invasivas
•	 1.9. Prueba no invasiva desconocida
•	 2. Pruebas Invasivas
•	 	 2.1. PAAF
•	 	 2.2. Biopsia aguja gruesa
•	 	 2.3. Biopsia asistida por vacío
•	 	 2.4. Biopsia escisional percutánea
•	 	 2.5. Biopsia quirúrgica
•	 2.6. Otras pruebas invasivas
•	 	 2.9. Prueba invasiva desconocida
•	 99. Desconocido

Ejemplo:
Dentro del episodio número 4 (tercer cribado de la mujer, ronda 5 del progra-
ma), en la base de datos de exploraciones adicionales constarían las siguientes 
5 pruebas: ecografía, paaf, biopsia quirúrgica, ecografía, y biopsia escisional 
percutánea

•	 Fecha_prueba
Fecha de realización de cada una de las Exploraciones adicionales realizadas. Se 
informará el valor 09/09/9999 si la fecha de la prueba es desconocida.
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6. Variables de las mujeres (1 registro por episodio)

El objetivo es obtener información sobre el perfil de la mujer en cada episodio. 

•	 THS (categórica)
Se evaluará el uso del THS en el momento de hacerse la exploración de criba-
do. Se considerará que la mujer usaba THS si lo tomaba en el momento de la 
mamografía de cribado o en los 6 meses anteriores.

•	 1: Sí, en el momento del cribado o en los 6 meses anteriores.
•	 2: No
•	 99: Desconocido

•	 Menopausia (categórica)
Se recogerá el estado menopáusico de la mujer, es decir, si es posmenopáusica 
o en cambio pre- ó peri-menopáusica.

•	 1: Posmenopáusica
•	 2: Premenopáusica o perimenopáusica
•	 99: Desconocido

•	 Antecedentes personales de prueba invasiva con resultado benigno o declara-
ción por parte de la mujer de patología mamaria benigna

Cuando se tenga conocimiento de que la mujer ha sufrido alguna prueba invasi-
va con resultado benigno, fuera del contexto del programa de cribado.

•	 1: Sí
•	 2: No 
•	 99: Desconocido

•	 Antecedentes familiares de cáncer de mama (categórica)
Se considerará que una mujer tiene antecedentes familiares de cáncer de mama 
cuando tiene algún familiar de primer grado afectado (madre, hermanas o hijas) 
con cáncer de mama.

•	 1: Sí
•	 2: No 
•	 99: Desconocido

•	 Edad menopausia (numérica)
Se informará la edad de la mujer en la menopausia cuando se recoja esta 
información. Se informará como ‘9: No pertinente’ cuando la mujer sea 
pre-menopáusica.
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•	 9: No pertinente
•	 99: Desconocido

•	 Edad de la menarquia (numérica)
Se recogerá de manera numérica la edad en que la mujer declara haber tenido 
la menarquia. 

•	 99: Desconocido

Nota: Dado que la información de las variables de la Tabla ‘Variables de las mujeres’ 
se recoge de distinta forma según los programas, se dan las siguientes instrucciones 
de implementación:

•	 Si se recoge la información de la variable para todos los episodios, se 
informará esta variable en cada episodio según la codificación establecida 
en este protocolo. El valor 99 (desconocido) se utilizará en los casos en que 
no se disponga de información.   

•	 Si se recoge la información de la variable en un único campo que se so-
brescribe en las sucesivas visitas de la mujer (siendo por tanto los valores 
previos desconocidos), se informará el valor de esta variable en el último 
episodio de dicha mujer registrado en la base de datos. Los episodios ante-
riores de la mujer para esta variable se codificarán como 99 (desconocido).

•	 Si se recoge la información de la variable únicamente en la primera par-
ticipación de la mujer, se informará el valor de esta variable en el primer 
episodio registrado de dicha mujer. Los episodios posteriores de esta mujer 
se codificarán como 99 (desconocido) para esta variable.  

•	 Si la variable NO se recoge, todos los episodios se informarán como 99 
desconocido). 

7. �Lesiones benignas (1-N registros por mujer,  
máximo un registro por episodio)

Se recogerá en este apartado la información referente a las lesiones (benignas 
o con resultado negativo) identificadas durante el proceso de cribado, clasifica-
das mediante la realización de alguna prueba de carácter invasivo (PAAF, core 
biopsia, biopsia quirúrgica, etc). 

1.	 Los casos registrados en esta tabla serán siempre episodios con resultado 
final distinto de “Cáncer”. Los episodios con resultado final “Cáncer” genera-
rán un registro en la tabla tumores, y no en esta. 
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2.	 Se generará un único registro para todo el conjunto de posibles pruebas 
invasivas que se realicen a la mujer en el episodio.

3.	 Si a una mujer se le realizan pruebas en ambas mamas (PAAF en la mama 
derecha, BAG en la mama izquierda), se recogerá únicamente la lesión de 
peor pronóstico.

4.	 En el caso de una mujer a la que se le realiza más de una prueba invasiva 
en el episodio (una PAAF y una biopsia quirúrgica, por ejemplo), se recogerá 
el resultado histológico de la prueba más fiable, que generalmente será la 
última prueba realizada (biopsia quirúrgica en este caso). 

•	 Histología básica de las citologías (categórica)
Nota: Ya que en general las citologías (PAAF) no permiten una caracterización  
detallada de la histología, pero si una clasificación genérica del tipo de lesión, se 
propone esta primera clasificación genérica para no perder la información de las 
citologías (PAAF). 

•	 0: Negativo células malignas
•	 1: Lesión no proliferativa
•	 2: Lesión proliferativa sin atipia
•	 3: Lesión proliferativa con atipia
•	 9: No pertinente
•	 99: Desconocido

Nota: Se excluye de la clasificación la categoría ‘No concluyente’. En el caso de no 
tener constancia de la realización de más pruebas invasivas un resultado ‘No conclu-
yente’ de la citología será codificado como ‘99: Desconocido’  
Nota: Si en el episodio no se ha realizado ninguna citología (pero sí alguna biopsia), 
la "Histología básica de las citologías" se codificará como “9: No pertinente”.

•	 Histología de la lesión benigna
Esta variable permitirá diferenciar el tipo histológico de las lesiones según la 
Clasificación Internacional de Enfermedades para Oncología CIE-O (3ª edición). 
Ver anexo 1.

•	 99: Desconocido

Nota: Si la única prueba de carácter invasivo realizada en el episodio es una citolo-
gía y se dispone de un resultado (sugerente) de la ‘Histología de las lesiones benignas’ 
para esta prueba, se informará esta variable, informándose como “99: Desconocido” 
cuando no se disponga de esta información. 
Nota: Si en un mismo episodio se ha realizado alguna biopsia además de la 
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citología, se informará la ‘Histología de las lesiones benignas’ con la información de 
la biopsia siempre que sea posible, ya que se considera esta prueba más fiable que  
la citología.  

•	 Lateralidad (categórica)
Indica en que mama se encuentra la lesión sospechosa que ha generado las 
exploraciones adicionales. Se informará como ‘Desconocido’ cuando no se dis-
ponga de información sobre la lateralidad de la lesión. Si se sabe que la mujer 
presentaba lesiones en ambas mamas se marcará la categoría ‘Bilateral’, a pesar 
de que únicamente se recogerán los resultados histológicos de la lesión de peor 
pronóstico. 

•	 1: Derecha
•	 2: Izquierda
•	 3: Bilateral
•	 99: Desconocido

8. ��Variables referentes a los tumores

Se recogerá en este apartado la información referente a los tumores diagnos-
ticados en el proceso de cribado. Tal y como se especifica en las definiciones 
iniciales de este mismo protocolo, si una mujer presenta simultáneamente más 
de un tumor, se recogerá únicamente la información correspondiente al tumor 
que en el momento del diagnóstico presentara un estadio más avanzado (peor 
pronóstico), independientemente de que los tumores afectaran a una sola o 
ambas mamas.

•	 Método de detección
Se informará si el tumor ha sido detectado en el cribado mamográfico o como 
cáncer de intervalo.

•	 1: Cribado
•	 2: Cáncer de Intervalo
•	 3: Fuera de cribado

•	 Histología tumores
Esta variable permitirá diferenciar el tipo histológico de los tumores según la 
Clasificación Internacional de Enfermedades para Oncología CIE-O (3ª edición) 
Ver anexo 2

•	 99: Desconocido
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•	 Comportamiento tumoral
•	 Se informará si es Ductal in situ o Invasivo
•	 1: Ductal in situ
•	 2: Invasivo
•	 99: Desconocido

•	 Lateralidad (categórica)
Indica en que mama se encuentra el tumor diagnosticado. Se informará como 
‘Desconocido’ cuando no se disponga de información sobre la lateralidad de  
la lesión. Si se sabe que la mujer presentaba tumores en ambas mamas se  
marcará la categoría ‘Bilateral’, a pesar de que únicamente se recogerá infor- 
mación del tumor de peor pronóstico en el momento del diagnóstico (estadio  
más avanzado). 

•	 1: Derecha
•	 2: Izquierda
•	 3: Bilateral
•	 99: Desconocido

•	 Tamaño tumor (categórica)
Descripción categórica del tamaño del tumor, de acuerdo con la clasificación 
TNM (ver anexo 3). El código 4 (‘T1’), se utilizará cuando el tamaño del tumor 
sea ≤ 2 cm., pero no pueda determinarse si pertenece a los códigos 5 (‘T1mic’), 
6 (‘T1a’), 7 (‘T1b’), u 8 (‘T1c’). Se informará como ‘Desconocido’ cuando no se dis-
ponga de información sobre el tamaño del tumor.

Nota: Siempre que sea posible se recogerá el TNM patológico (pTNM), y en su defecto 
el TNM clínico cuando éste no esté disponible. 

•	 1: Tx;
•	 2: T0;
•	 3: Tis;
•	 4: T1;
•	 5: T1mic; 
•	 6. T1a; 
•	 7. T1b;
•	 8: T1c;
•	 9: T2;
•	 10: T3;
•	 11: T4; 
•	 12: T4a; 
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•	 13: T4b; 
•	 14: T4c;
•	 15: T4d;
•	 99: Desconocido

•	 Afectación ganglionar (categórica)
Descripción de la afectación ganglionar, de acuerdo con la clasificación TNM  
(ver anexo 3). Se informará como ‘Desconocido’ cuando no se disponga de infor-
mación sobre la afectación ganglionar del tumor.

•	 1: Nx;
•	 2: N0;
•	 3: N1;
•	 4: N2; 
•	 5: N2a; 
•	 6: N2b;
•	 7: N3; 
•	 8: N3a; 
•	 9: N3b; 
•	 10: N3c;
•	 99: Desconocido

•	 Metástasis (categórica)
Se informará de la posible presencia de metástasis, de acuerdo con la clasifica-
ción TNM (ver anexo 3). Se informará como ‘Desconocido’ cuando no se dispon-
ga de información sobre la presencia de metástasis.

•	 1: Mx;
•	 2: M0;
•	 3: M1;
•	 99: Desconocido

•	 Grado de diferenciación (categórica)
Se obtiene al estudiar al microscopio las células tumorales. Por norma general 
los tumores in situ se clasificarán como 0. No aplicable. Se utilizan las siguientes 
categorías en la clasificación: 

•	 0: No aplicable
•	 1: Categoría I, las células más parecidas al tejido mamario normal (bien 

diferenciadas)
•	 2: Categoría II las intermedias
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•	 3: Categoría III las menos parecidas al tejido normal y, por tanto, con peor 
pronóstico (mal diferenciadas)

•	 99. Desconocido

Receptores hormonales 

Los criterios para la interpretación de los análisis inmuno-histoquímicos de 
receptores de estrógenos y progesterona varía entre programas. Por norma 
general, se considera que un porcentaje ≥ al 10% de células teñidas es positi-
vo. En caso de utilizar otro porcentaje como umbral, se especificará el umbral 
utilizado. Si se utiliza un “Score”, se especificará el criterio utilizado. Si se utiliza 
la clasificación “Plus system” (-/+/++/+++), se considera la categoría ‘+’ (o mayor) 
como positiva. 

•	 Receptores de estrógeno (categórica)
La presencia de los receptores determina el tratamiento específico del cáncer 
y, además, son factores pronósticos del cáncer. De acuerdo con los criterios 
estándares para la interpretación de los resultados de los análisis inmuno-histo-
químicos, se clasificará como: 

•	 1: Negativo
•	 2: Positivo
•	 99: Desconocido

•	 Receptores de progesterona (categórica)
En función de la determinación inmunohistoquímica se clasificará en:

•	 1: Negativo
•	 2: Positivo
•	 99: Desconocido



192

Resumen de codificaciones y tablas

Programas (1 registro por programa) Codificación

Programa_id Código asignado a cada programa

Nombre del programa Nombre (etiqueta) de cada programa

URC (1- N registros por programa) Codificación

Programa_id Código asignado a cada Unidad

URC_id Radiológica de Cribado donde se realizan 
las exploraciones

Descripción URC Descripción identificativa de la Unidad 
Radiológica de Cribado

Mujeres (1 registro por mujer) Codificación

Programa_id

Mujer_id Número identificador interno del programa

Fecha de nacimiento 09/09/9999 Desconocido

Fecha 1a citación en el programa 09/09/9999 Desconocido

Episodios (1 registro por cada participación, 1-N 
registros por mujer)

Codificación

Programa_id

Mujer_id

URC_id Código asignado a cada Unidad Radiológica 
de Cribado donde se realizan las 
exploraciones

Episodio 1,2,3,4,…

Número de cribado 1,2,3,4,…

Fecha mamografía de cribado 09/09/9999 Desconocido

Nº de estudios intermedios 0,1,2,3,4,… 

Resultado inicial de la mamografía de cribado 1: Negativo
2: Exploraciones adicionales
3: Mamografía intermedia (Estudios 
intermedios)
99:Desconocido

Categoría mamografía de la prueba de cribado 
(Bi-Rads)

0: Incierto
1: Normal
2: Benigna
3: Probablemente Benigna
4: Probablemente Maligna
5: Maligna
99: Desconocido

Densidad mamaria 1: Completamente grasa
2: Densidad fibroglandular dispersa
3: Densidad heterogénea
4: Extremadamente densa
99: Desconocido
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Lateralidad 0: No pertinente
1: Derecha
2: Izquierda
3: Bilateral
99: Desconocido

Masa_D (Patrones radiológicos mama derecha) 0: No
1: Sí
99: Desconocido

Distorsión_D
(Patrones radiológicos mama derecha)

0: No
1: Sí
99: Desconocido

Calcificaciones_D
(Patrones radiológicos mama derecha)

0: No
1: Sí
99: Desconocido

Asimetría_D
(Patrones radiológicos mama derecha)

0: No
1: Sí
99: Desconocido

Otros_D
(Patrones radiológicos mama derecha)

0: No
1: Sí
99: Desconocido

Masa_I
(Patrones radiológicos mama izquierda)

0: No
1: Sí
99: Desconocido

Distorsión_I
(Patrones radiológicos mama izquierda)

0: No
1: Sí
99: Desconocido

Calcificaciones_I
(Patrones radiológicos mama izquierda)

0: No
1: Sí
99: Desconocido

Asimetría_I
(Patrones radiológicos mama izquierda)

0: No
1: Sí
99: Desconocido

Otros_I
(Patrones radiológicos mama izquierda)

0: No
1: Sí
99: Desconocido

Resultado final del episodio 1: Cáncer
2: No cáncer
3: Pendiente estudios intermedios
5: Seguimiento incompleto
99: Desconocido

Exploraciones adicionales
(0-N registros por episodio)

Codificación

Programa_id

Mujer_id

Episodio 1,2,3,4,…

N_Prueba 1,2,3,4,…
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Prueba_id 1.1. Otras proyecciones mamográficas
1.2. Ecografía
1.3. Resonancia magnética
1.4. Otras pruebas no invasivas
1.9. Prueba no invasiva desconocida
2.1. PAAF
2.2. Biopsia aguja gruesa
2.3. Biopsia asistida por vacío
2.4. Biopsia escisional percutánea
2.5. Biopsia quirúrgica
2.6. Otras pruebas invasivas
2.9. Prueba invasiva desconocida
99. Desconocida prueba

Fecha_prueba 09/09/9999 si desconocido

Variables de las mujeres
(1 registro por episodio)

Codificación

Programa_id

Mujer_id

Episodio 1,2,3,4,…

THS 1: Sí, en el momento del cribado o en los 6 
meses anteriores
2: No
99: Desconocido

Menopausia 1: Posmenopáusica
2: Premenopáusica o perimenopáusica
99: Desconocido

Antecedentes personales de prueba invasiva con 
resultado benigno

1: Sí
2: No
99: Desconocido

Antecedentes familiares de cáncer de mama 1: Sí
2: No
99: Desconocido

Edad menopausia 45, 46, 47, …
9: No pertinente
99: Desconocido

Edad de la menarquia 10, 11, 12, …
99: Desconocido

Lesiones benignas (0-N registros por episodio) Codificación

Programa_id

Mujer_id

Episodio 1, 2, 3, 4, …

Histología básica de las citologías 0: Negativo células malignas
1: Lesión no proliferativa
2: Lesión proliferativa sin atipia
3: Lesión proliferativa con atipia
9: No pertinente
99: Desconocido
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Histología de la lesión benigna Clasificación Internacional de 
Enfermedades para Oncología CIE-O (3ª 
edición) – VER ANEXO 1

Lateralidad 1: Derecha
2: Izquierda
3: Bilateral
99: Desconocido

Tumores (1 registro por tumor) Codificación

Programa_id

Mujer_id

Episodio 1, 2, 3, 4, …

Método de detección 1: Cribado
2: Cáncer de Intervalo
3: Fuera de cribado

Histología tumores Clasificación Internacional de 
Enfermedades para Oncología CIE-O (3ª 
edición) – VER ANEXO 2

Comportamiento tumoral 1: Ductal in situ
2: Invasivo
99: Desconocido

Lateralidad 1: Derecha
2: Izquierda
3: Bilateral
99: Desconocido

Tamaño tumor 1: Tx
2: T0
3: Tis
4: T1
5: T1mic
6. T1a
7. T1b
8: T1c
9: T2
10: T3
11: T4 
12: T4a 
13: T4b 
14: T4c
15: T4d
99: Desconocido

Afectación ganglionar 1: Nx
2: N0
3: N1
4: N2
5: N2a 
6: N2b
7: N3
8: N3a 
9: N3b 
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10: N3c 
99: Desconocido

Metástasis 1: Mx
2: M0
3: M1
99: Desconocido

Grado de diferenciación 0: No aplicable
1: Categoría I 
2: Categoría II 
3: Categoría III
99. Desconocido

Receptores de estrógeno
(Biomarcadores)

1: Negativo
2: Positivo
99: Desconocido

Receptores de progesterona
(Biomarcadores)

1: Negativo
2: Positivo
99: Desconocido
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Anexo 1

Categorías variables ‘Histología lesiones benignas’, según la Clasificación 
Internacional de Enfermedades para Oncología CIE-O (3ª edición):

Descripción Código

Lesión benigna (sin especificar) 00001

Normal 00100

Normal citology 00120

Unsuitable sample 09000

Material unsuitable for diagnostics, no sample taken 09010

Capillary hemoangioma 09131

Malignant tumour tissue not found 09450

Traumatic lesion NOS 10000

Operation wound NOS 14020

Accessory structure NOS 22300

Ectopic mammary tissue 26030

Micro calcifications 30180

Ectasia NOS 32100

Galactocele 33220

Cyst 33400

Epidermoid cyst (atheroma) 33410

Haemorrhage 37000

Blue dome cyst 33710

Inflammation NOS 40000

Acute inflammation 41000

Abscess NOS 41740

Inflammation, chronic 43000

Plasma cell mastitis 43060

Granulomatous inflammation 44000

Reaction to foreign body 44140

Comedomastitis 46460

Fibrosis NOS 49000

Focal fibrosis 49001

Scar 49060

Necrosis SAI 54000

Necrosis in adipose tissue 54110

Calcareous deposit 55400

Atrophy NOS 58000

Lesión columnar con atipia 67020
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Atipia citológica 69700

Atipia, sospechoso malignidad 69760

Involution 70800

Hypertrophy NOS 71000

Intraductal precancerous hyperplasia 71279

Hyperplasia 72000

Papillary hyperplasia 72050

Lobular hyperplasia 72100

Focal lobular hyperplasia 72101

Irregular lobular hyperplasia,uncertain benign/malignant 72105

Intraductal hyperplasia 72170

Ductal atypical hyperplasia 72175

Pseudoangiomatous stromal hyperplasia 72190

Lymphoid hyperplasia NOS 72200

Hiperplasia glandular 72420

Metaplasia 73000

Metaplasia, squamous 73220

Apocrine metaplasia 73310

Dysplasia 74000

Adenosis 74200

Sclerosing adenosis 74220

Adenosis, blunt duct 74240

Adenosis, florid 74260

Enfermedad fibroquística de la mama 74320

Fibrocystic disease, atypical 74325

Hamartoma 75500

Fibromatosis 76100

Proliferation phase 79120

Benign neoplasm 80000

Uncertain benign/malignant 80001

Tumor epitelial benigno 80100

Papilloma NOS 80500

Papillomatosis NOS 80600

Adenoma of the nippel 81400

Tubular adenoma NOS 82110

Atypical intraductal epithelial proliferation 85001

Intraductal papilloma 85030

Intracystic papilloma 85040

Papillomatosis, intraductal 85050

Subareolar, florid papillomatosis 85060

Atypical lobular hyperplasia 85201

Lobular carcinoma NOS in situ 85202
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Fibroma 88110

Lipoma NOS 88500

Pleomorphic adenoma 89400

Fibroadenoma NOS 90100

Intracanalicular fibroadenoma 90110

Phyllodes tumour, benign 90200

Phylloid tumour NOS, uncertain benign/malignant 90201

Granular cell tumour NOS 95800

Malignant residue not found 99903
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Anexo 2

Categorías variables ‘Histología tumores’, según la Clasificación Internacional de 
Enfermedades para Oncología CIE-O (3ª edición):

Descripción Código

8000/3 Tumor maligno 80003

8001/3 Células tumorales malignas 80013

8002/3 Tumor maligno de células pequeñas 80023

8003/3 Tumor maligno de células gigante 80033

8004/3 Tumor maligno de celulas fusiformes 80043

8005/3 Tumor maligno, tipo células claras 80053

8010/2 Carcinoma in situ, SAI 80102

8010/3 Carcinoma SAI 80103

8010/6 Carcinoma, metastásico, SAI 80106

8011/3 Epitelioma maligno 80113

8012/3 Carcinoma de células grandes SAI 80123

8013/3 Carcinoma neuroendocrino de células grandes 80133

8014/3 Carcinoma de células grandes con fenotipo rabdoide 80143

8015/3 Carcinoma de células vidriosas 80153

8020/3 Carcinoma indiferenciado SAI 80203

8021/3 Carcinoma anaplásico SAI 80213

8022/3 Carcinoma pleomórfico 80223

8030/3 Carcinoma gigantocelular y fusocelular 80303

8031/3 Carcinoma de células gigantes 80313

8032/3 Carcinoma fusocelular 80323

8033/3 Carcinoma seudosarcomatoso 80333

8034/3 Carcinoma de células poligonales 80343

8035/3 Carcinoma de células gigantes con osteoclasto semejantes 80353

8041/3 Carcinoma de células pequeñas SAI 80413

8043/3 Carcinoma de células pequeñas tipo fusiforme 80433

8050/2 Carcinoma papilar in situ 80502

8050/3 Carcinoma papilar SAI 80503

8051/3 Papiloma verrugoso 80513

8052/2 Carcinoma papilar de células escamosas, no invasivo 80522

8052/3 Carcinoma papilar de células escamosas 80523

8070/2 Carcinoma in situ de células escamosas SAI 80702

8070/3 Carcinoma de células escamosas SAI 80703

8071/3 Carcinoma de células escamosas, tipo queratinizante SAI 80713

8072/3 Carcinoma de células escamosas, grandes, tipo no queratinizante 80723
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8073/3 Carcinoma de células escamosas, pequeñas, tipo no queratinizante 80733

8074/3 Carcinoma de células escamosas, tipo fusocelular 80743

8075/3 Carcinoma de células escamosas, tipo adenoide 80753

8076/2 Carcinoma de células escamosas in situ con invasión dudosa del estroma 80762

8076/3 Carcinoma de células escamosas, microinvasor 80763

8078/3 Carcinoma de células escamosas con formación en formación de cuerno 80783

8140/2 Adenocarcinoma in situ SAI 81402

8140/3 Adenocarcinoma SAI 81403

8141/3 Adenocarcinoma escirroso (escirro) 81413

8143/3 Adenocarcinoma con diseminación superficial 81433

8147/3 Adenocarcinoma basocelular 81473

8190/3 Adenocarcinoma trabecular 81903

8200/3 Carcinoma adenoide-quístico 82003

8201/2 Carcinoma cribriforme, in situ 82012

8201/3 Carcinoma cribiforme 82013

8211/3 Adenocarcinoma tubular 82113

8230/2 Carcinoma ductal in situ, tipo sólido 82302

8230/3 Carcinoma sólido SAI 82303

8231/3 Carcinoma simple 82313

8240/3 Carcinoid tumor, SAI 82403

8246/3 Carcinoma neuroendocrino 82463

8251/3 Adenocarcinoma alveolar 82513

8255/3 Adenocarcinoma con subtipos mixtos 82553

8260/2 Adenocarcinoma papilar in situ, SAI 82602

8260/3 Adenocarcinoma papilar SAI 82603

8261/2 Adenocarcinoma in situ en adenoma velloso 82612

8261/3 Adenocarcinoma en adenoma velloso 82613

8310/3 Adenocarcinoma de células claras SAI 83103

8314/3 Carcinoma rico en lípidos 83143

8315/3 Carcinoma rico en glucógeno 83153

8320/3 Carcinoma de células granulares 83203

8323/3 Adenocarcinoma de células mixtas 83233

8401/2 Adenocarcinoma apocrino, in situ 84012

8401/3 Adenocarcinoma apocrino 84013

8440/3 Cistadenocarcinoma SAI 84403

8480/3 Adenocarcinoma mucinoso 84803

8481/3 Adenocarcinoma secretante de mucina 84813

8490/3 Carcinoma de células en anillo de sello 84903

8500/2 Carcinoma intracanalicular no infiltrante SAI 85002

8500/3 Carcinoma canalicular infiltrante 85003

8501/2 Comedocarcinoma no infiltrante 85012

8501/3 Comedocarcinoma SAI 85013
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8502/3 Carcinoma juvenil de la mama 85023

8503/2 Adenocarcinoma papilar intracanalicular no infiltrante 85032

8503/3 Adenocarcinoma papilar intracanalicular, con invasión 85033

8504/2 Carcinoma intraquístico no infiltrante 85042

8504/3 Carcinoma intraquístico SAI 85043

8507/2 Carcinoma intraductal micropapilar 85072

8507/3 Carcinoma mixto de mama 85073

8508/3 Carcinoma hipersecretorio quístico 85083

8510/3 Carcinoma medular SAI 85103

8512/3 Carcinoma medular con estroma linfoide 85123

8513/3 Carcinoma medular atípico 85133

8514/3 Carcinoma ductal, típico desmoplástico 85143

8520/2 Carcinoma lobulillar in situ (D05.0) 85202

8520/3 Carcinoma lobulillar SAI (C50.-) 85203

8521/3 Carcinoma canalicular, infiltrante (C50.-) 85213

8522/2 Carcinoma intracanalicular y carcinoma lobulillar in situ (D05.7) 85222

8522/3 Carcinoma canalicular y lobulillar infiltrante (C50.-) 85223

8523/2 Carcinoma ductal infiltrante mixto con otros tipos de carcinoma, in situ 85232

8523/3 Carcinoma ductal infiltrante mixto con otros tipos de carcinoma 85233

8524/3 Carcinoma lobular infiltrante mixto con otros tipos de carcinoma 85243

8525/3 Adenocarcinoma polimorfo de grado bajo 85253

8530/3 Carcinoma inflamatorio (C50.-) 85303

8540/3 Enfermedad de Paget, mamaria (C50.-) 85403

8541/3 Enfermedad de Paget y carcinoma canalicular infiltrante de la mama (C50.-) 85413

8543/2 Enfermedad de Paget in situ y carcinoma intracanalicular de la mama (C50.-) 85432

8543/3 Enfermedad de Paget y carcinoma intracanalicular de la mama (C50.-) 85433

8550/3 Carcinoma de células acinosas 85503

8551/3 Cistadenocarcinoma de células acinosas 85513

8560/3 Carcinoma adenoescamoso 85603

8562/3 Carcinoma epitelial-mioepitelial 85623

8570/3 Adenocarcinoma con metaplasia escamosa 85703

8571/3 Adenocarcinoma con metaplasia ósea y cartilaginosa 85713

8572/3 Adenocarcinoma con metaplasia de células fusiformes 85723

8573/3 Adenocarcinoma con metaplasia apocrina 85733

8574/3 Adenocarcinoma con diferenciación neuroendocrina 85743

8575/3 Carcinoma metaplástico 85753

8800/3 Sarcoma SAI 88003

8801/3 Sarcoma fusocelular 88013

8802/3 Sarcoma de células gigantes 88023

8803/3 Sarcoma de células pequeñas 88033

8804/3 Sarcoma de células epitelioides 88043

8805/3 Sarcoma indiferenciado 88053
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8806/3 Tumor desmoplástico de células redondas pequeñas 88063

8810/3 Fibrosarcoma SAI 88103

8811/3 Fibromixosarcoma 88113

8813/3 Fibrosarcoma fascial 88133

8814/3 Fibrosarcoma infantil 88143

8815/3 Tumor fibroso solitario, maligno 88153

8850/3 Liposarcoma SAI 88503

8851/3 Liposarcoma, bien diferenciado 88513

8852/3 Liposarcoma mixoide 88523

8853/3 Liposarcoma de células redondas 88533

8854/3 Liposarcoma pleomórfico 88543

8855/3 Liposarcoma mixto 88553

8857/3 Liposarcoma fibroplástico 88573

8858/3 Liposarcoma desdiferenciado 88583

8890/3 Leiomiosarcoma SAI 88903

8891/3 Leiomiosarcoma epitelioide 88913

8894/3 Angiomiosarcoma 88943

8895/3 Miosarcoma 88953

8896/3 Leiomiosarcoma mixoide 88963

8935/3 Sarcoma del estroma, SAI 89353

8980/3 Carcinosarcoma SAI 89803

8981/3 Carcinosarcoma, tipo embrionario 89813

8982/3 Mioepitelioma maligno 89823

8990/3 Mesenquimoma maligno 89903

8991/3 Sarcoma embrionario 89913

9020/3 Tumor filoide, maligno 90203

9120/3 Hemangiosarcoma 91203

9130/3 Hemangioendotelioma, maligno 91303

9133/3 Hemangioendotelioma epitelioide, maligno 91333

9580/3 Tumor de células granulares, maligno 95803

9581/3 Sarcoma alveolar de partes blandas 95813

9590/3 Linfoma maligno SAI 95903

9591/3 Linfoma maligno, no Hodgkin SAI 95913

9596/3 Limfoma Hodgkin y no Hodgkin compuesto 95963

9650/3 Enfermedad de Hodgkin SAI 96503

9651/3 Limfoma de Hodgkin, predominio linfocítico-histiocítico 96513

9652/3 Enfermedad de Hodgkin, celularidad mixta SAI 96523

9653/3 Enfermedad de Hodgkin con depleción linfocítica SAI 96533

9654/3 Enfermedad de Hodgkin con depleción linfocítica, tipo fibrosis difusa 96543

9655/3 Enfermedad de Hodgkin con depleción linfocítica, tipo reticular 96553

9659/3 Enfermedad de Hodgkin con predominio linfocítico, nodular 96593

9661/3 Granuloma de Hodgkin 96613
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9662/3 Sarcoma de Hodgkin 96623

9663/3 Enfermedad de Hodgkin, tipo esclerosis nodular SAI 96633

9664/3 Enfermedad de Hodgkin, tipo esclerosis nodular, fase celular 96643

9665/3 Enfermedad de Hodgkin, tipo esclerosis nodular, con predominio linfocítico 96653

9667/3 Enfermedad de Hodgkin, tipo esclerosis nodular, con depleción linfocítica 96673

9670/3 Linfoma maligno, linfocítico de células pequeñas SAI 96703

9671/3 Linfoma maligno linfoplasmocítico 96713

9673/3 Linfoma maligno, linfocítico de diferenciación intermedia, difuso 96733

9675/3 Linfoma maligno mixto, de células pequeñas y grandes, difuso 96753

9680/3 Linfoma maligno, de células grandes, difuso SAI 96803

9684/3 Linfoma maligno, inmunoblástico SAI 96843

9687/3 Linfoma de Burkitt SAI 96873

9690/3 Linfoma maligno, folicular SAI 96903

9691/3 Linfoma maligno mixto, de células pequeñas hendidas y células grandes,  
    folicular

96913

9695/3 Linfoma maligno, de células pequeñas hendidas, folicular 96953

9698/3 Linfoma maligno, de células grandes, folicular SAI 96983

9699/3 Linfoma marginal de la B-célula de la zona de Extranodal del tejido fino  
    linfoide mucosa-asociado, SAI

96993

9701/3 Enfermedad de Sézary 97013

9702/3 Linfoma periférico de células T SAI 97023

9705/3 Linfoma periférico de células T, LAID (linfadenopatía angioinmunoblástica  
    con disproteinemia 

97053

9714/3 Linfoma de células grandes (Ki-1+) 97143

9719/3 Linfoma de la célula de Extranodal NK/T, tipo nasal 97193

9727/3 Precursor cell lymphoblastic lymphoma, NOS 97273

9728/3 Precursor B-cell lymphoblastic lymphoma 97283

9729/3 Precursor T-cell lymphoblastic lymphoma 97293

9731/3 Plasmocitoma SAI 97313

9734/3 Plasmacitoma, extramedular 97343

9740/3 Sarcoma de mastocitos 97403

9741/3 Mastocitosis maligna 97413

9750/3 Malignant histiocytosis 97503

9754/3 Langerhans cell histiocytosis, disseminated 97543

9755/3 Histiocystic sarcoma 97553

9756/3 Langerhans cell sarcoma 97563

9757/3 Interdigitating dendritic cell sarcoma 97573

9758/3 Follicular dendritic cell sarcoma 97583
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Anexo 3

Clasificación Clínica TNM, según la definición de la UICC, 6ª Edición:

Tamaño del tumor primario
•	 Tx: el tumor no se puede evaluar
•	 T0: no hay evidencia de tumor primario
•	 Tis: carcinoma in situ
•	 T1: este código se utilizará cuando el tamaño del tumor sea ≤ 2cm, pero no 

pueda determinarse si pertenece a las categorías ‘1mic’, ‘1a’, ‘1b’ ó ‘1c’
•	 T1mic: Microinvasion ≤0.1 cm de diámetro máximo. La microinvasion 

es la extensión de células cancerígenas a través de la membrana a los 
tejidos adyacentes con un foco no mayor de 0.1 cm. Si hay múltiples 
focos solo se utiliza el de mayor tamaño a efectos de clasificación de 
microinvasión (no utilizar la suma de todos los focos individuales). La 
presencia de múltiples focos de microinvasión debe registrarse, tal 
como se hace con los carcinomas múltiples invasivos

•	 T1a: diámetro máximo >0.1 cm, pero ≤ 0.5 cm
•	 T1b: diámetro máximo >0.5 cm, pero ≤ 1 cm
•	 T1c; diámetro máximo >1 cm, pero ≤ 2cm

•	 T2; Tumor de diámetro máximo >2 cm, pero ≤ 5 cm
•	 T3; Tumor de diámetro máximo >5 cm
•	 T4; Tumor de cualquier tamaño con extensión directa a la pared del tórax 

o la piel solo como se describe en T4a a T4d. La pared torácica incluye las 
costillas, los músculos intercostales y el músculo serrato mayor, pero no los 
músculos pectorales
•	 T4a; Extensión a pared torácica
•	 T4b; Edema (incluyendo piel de naranja) o ulceración de la piel de la 

mama, o presencia de ganglios cutáneos satélites confinados en la 
misma mama

•	 T4c; T4a y T4b conjuntamente
•	 T4d; Carcinoma inflamatorio. El carcinoma inflamatorio se caracteriza 

por una induración cutánea difusa con un borde erisipeloide y, gene-
ralmente no se puede palpar ninguna masa subyacente. Si al realizar 
la clasificación anatomopatológica de un carcinoma inflamatorio 
clínico (T4d), la biopsia de la induración es negativa y no existe cáncer 
primario localizado que se pueda medir, la categoría T es pTx. Las 
categorías T1, T2, T3 pueden coexistir con la presencia de depresiones 
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cutáneas, retracción de pezón o cualquier otra alteración cutánea ex-
ceptuando las descritas en las categorías T4b y T4d, sin que ello afecte 
la clasificación.

Ganglios linfáticos regionales
•	 Nx; Los ganglios linfáticos regionales no se pueden valorar (extirpación 

previa)
•	 N0; No hay evidencia de metástasis ganglionares regionales
•	 N1; Metástasis móviles en ganglios axilares ipsilaterales
•	 N2; Metástasis en ganglios linfáticos axilares fijos o en ganglios de mama 

interna ipsilaterales clínicamente aparentes[ Clínicamente aparentes: detec-
tados por examen clínico o por estudios radiológicos -incluyendo linfoescin-
tografía- o examen anatomopatológico visibles a simple vista] en ausencia 
de metástasis de ganglios linfáticos axilares
•	 N2a; metástasis de ganglios linfáticos axilares fijados entre ellos o a 

otras estructuras
•	 N2b; metástasis solo en ganglios linfáticos mamarios internos clínica-

mente aparentes1 y en ausencia de metástasis de ganglios linfáticos 
axilares clínicamente aparentes1

•	 N3; Metástasis en ganglios linfáticos infraclaviculares ipsilaterales con o sin 
afectación de ganglios axilares, o en ganglios linfáticos mamarios inter-
nos ipsilaterales clínicamente aparentes1 y en presencia de metástasis en 
ganglios linfáticos axilares clínicamente evidente, o metástasis de ganglios 
linfáticos supraclaviculares ipsilaterales con o sin afectación de ganglios 
linfáticos axilares o de mamaria interna.
•	 N3a; metástasis solo en ganglios linfáticos mamarios internos clínica-

mente aparentes1 y en ausencia de metástasis de ganglios linfáticos 
axilares clínicamente aparentes1

•	 N3b; metástasis en ganglios linfáticos mamarios internos y  
axilares ipsilaterales

•	 N3c; metástasis de ganglios linfáticos supraclaviculares ipsilaterales

Metástasis a distancia
•	 Mx; Las metástasis a distancia no se pueden evaluar
•	 N0; No hay evidencia de metástasis a distancia
•	 M1; Metástasis a distancia
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Variables: tipo y rango de valores 

Para cada tabla y campo (variable), se describe ‘tipo’ y ‘rango’ de valores. Los 
campos que, en términos de una base datos relacional, serán claves primarias 
aparecen en color rojo.

Se considera que un valor está fuera de rango, y por lo tanto es un valor imposi-
ble, cuando no está dentro del conjunto de valores predeterminados definidos 
para esa variable.

RESTRICCIÓN GENERAL: Los campos no pueden quedar vacíos, excepto que se 
indique expresamente en esta descripción.

1. Programas 

•	 Programa_id
Campo definido como texto de longitud 2. Para los programas participantes en 
el estudio BELE-1 la clasificación asignada a la variable “Programa_id” será la 
misma. Toma los siguientes valores:

Programa_id		  Nombre Programa
AS			   Asturias
CT			   Cantabria
GI			   Girona
IC			   ICO
PM			   Parc Salut Mar
SB			   Sabadell
SP			   Sant Pau
TA			   Tarragona
HC			   Hospital Clinic
GR			   Vallès Oriental – Granollers

•	 Nombre del programa
Campo definido como texto de longitud 30. Ver equivalencias en la definición de 
la anterior variable.
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2. Unidad Radiológica de Cribado

•	 Programa_id
Ya descrito

•	 URC_id
Campo definido como texto de longitud 4. Se enumerarán de la siguiente 
forma: Letras identificativas del programa de cribado (dos dígitos), seguida de 
un número natural consecutivo, empezando por el 1, 2,…, etc. En el caso de 
programas sin estructura de URC, bastará con poner las letras identificativas del 
programa de cribado, seguidas del número 1 en esta variable. Para los progra-
mas participantes en el estudio BELE-1 la clasificación asignada a la variable 
“URC_id” será la misma que la asignada en dicho estudio.

Ejemplo: ‘IC1’

•	 Descripción de la URC
Campo definido como texto de longitud 50. Nombre y/o descripción (etiqueta) 
de la Unidad de Cribado donde se realizan las exploraciones. Los programas sin 
estructura de URC la etiquetarán con el nombre del propio programa. Aquellos 
programas que no identifiquen las URC con un nombre específico, las etiqueta-
rán con el ‘nombre del programa’ seguido del mismo número que hayan asigna-
do en el código URC_id en la variable anterior (nombre del programa1, nombre 
del programa2,…, nombre del programaN). Para los programas participantes en 
el estudio BELE-1 la clasificación asignada a la variable “Descripción de la URC” 
será la misma que la asignada en dicho estudio.

3. Mujeres

•	 Programa_id
Ya descrito

•	 Mujer_id
Campo definido como texto de longitud 15. Consiste en las dos letras identifica-
tivas del programa, más el número identificador interno del programa utilizado 
para cada mujer. Para los programas participantes en el estudio BELE-1 será 
preciso que este número identificador coincida con el identificador asignado en 
dicho estudio.
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•	 Fecha de nacimiento
Campo definido como texto de longitud 10, con formato 00/00/0000 correspon-
diente a día/mes/año (09/09/9999 si desconocido). No se añaden restricciones 
de valor para esta variable, pero se incluirán como valores poco probables  
los que estén fuera del rango comprendido entre 01/01/1919 y 31/12/1971, 
o bien 09/09/9999 si es desconocida. Para los programas participantes en el 
estudio BELE-1 será deseable que esta fecha coincida con la fecha asignada en 
dicho estudio.

•	 Fecha 1ª citación en el programa
Campo definido como texto de longitud 10, con formato 00/00/0000 correspon-
diente a día/mes/año. No se añaden restricciones de valor para esta variable, 
pero se incluirán como valores poco probables los que estén fuera del rango 
comprendido entre 01/01/1989 y 31/12/2015, o bien 09/09/9999 si es descono-
cido. Para los programas participantes en el estudio BELE-1 será deseable que 
esta fecha coincida con la fecha asignada en dicho estudio.

4. Episodios

•	 Programa_id
Ya descrito

•	 Mujer_id
Ya descrito

•	 URC_id
Ya descrito

•	 Episodio
Campo definido como numérico. Se informará un número natural. La variable 
es ordinal, pero puede tener saltos, y no necesariamente comenzar en el 1. Para 
los programas participantes en el estudio BELE-1 será preciso que este identi-
ficador de episodios sea coherente con el identificador asignado en el BELE-1. 
Para las mujeres cribadas en el periodo 2012-2015 (ampliación de la cohorte 
de estudio), con participaciones anteriores a 2012, deberá de existir un orden 
lógico en la numeración de los episodios. Este identificador permitirá mantener 
la secuencia temporal entre los distintos estudios cuando se añada nueva infor-
mación específica del proyecto.
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•	 Número de cribado
Campo definido como numérico. Se informará un número natural, comenzando 
con el 1. La variable es ordinal y NO puede tener saltos. Cuando se introduce 
un nuevo episodio con mamografía realizada, la variable “Número de cribado” 
incrementa necesariamente en una unidad el contador. Para los programas 
participantes en el estudio BELE-1 será preciso que el número de cribado sea 
coherente con el identificador asignado en el BELE-1. Para las mujeres cribadas 
en el periodo 2012 - 2015 (ampliación de la cohorte de estudio), con participa-
ciones anteriores a 2012, deberá de existir un orden lógico en la numeración  
del cribado.

•	 Fecha mamografía de cribado
Campo definido como texto de longitud 10, con formato 00/00/0000 correspon-
diente a día/mes/año. No se añaden restricciones de valor para esta variable, 
pero se incluirán como valores poco probables los que estén fuera del rango 
comprendido entre 01/01/1989 y 31/12/2015, o bien 09/09/9999  
si es desconocida.

•	 Número de estudios intermedios
Campo definido como numérico. Se informará un número natural entre 0 (cero) 
y 5 (cinco). 

•	 Resultado inicial de la mamografía de cribado
Campo definido como numérico. Ver equivalencias.

•	 1: Negativo
•	 2: Exploraciones adicionales
•	 3: Mamografía intermedia
•	 99: Desconocido

•	 Categoría mamografía de la prueba de cribado (Bi-Rads)
Campo definido como numérico. Ver equivalencias.

•	 0: Incierto
•	 1: Normal
•	 2: Benigna
•	 3: Probablemente Benigna
•	 4: Probablemente Maligna
•	 5: Maligna
•	 99: Desconocido
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•	 Densidad mamaria
Campo definido como numérico. Ver equivalencias.

•	 1: Completamente grasa (BI-RADS type 1)
•	 2: Densidad fibroglandular dispersa (BI-RADS type 2)
•	 3: Densidad heterogénea (BI-RADS type 3)
•	 4: Extremadamente densa (BI-RADS type 4)
•	 99: Desconocido

•	 Lateralidad 
•	 Campo definido como numérico. Ver equivalencias.
•	 0: No pertinente
•	 1: Derecha
•	 2: Izquierda
•	 3: Bilateral
•	 99: Desconocido

•	 Patrones radiológicos de la prueba de cribado (categórica)  
Esta información se recoge en un bloque de 5 variables para cada mama. Cada 
una de estas variables es numérica.   

Mama derecha

•	 Masa_D
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Distorsión_D
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Calcificaciones_D
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido
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•	 Asimetría_D
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Otros_D
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido

Mama izquierda

•	 Masa_I
Campo definido como numérico. Ver equivalencias. 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Distorsión_I
Campo definido como numérico. Ver equivalencias. 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Calcificaciones_I
Campo definido como numérico. Ver equivalencias. 

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Asimetría_I
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido
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•	 Otros_I
Campo definido como numérico. Ver equivalencias.

•	 0: No
•	 1: Sí
•	 99: Desconocido

•	 Resultado final del episodio
Campo definido como numérico. Ver equivalencias

•	 1: Cáncer
•	 2: No cáncer
•	 3: Pendiente estudios intermedios
•	 5: Seguimiento incompleto
•	 99: Desconocido

La codificación ‘3: Pendiente de estudios intermedios’ se reserva únicamente para 
aquellos episodios que por haberse realizado la mamografía de cribado durante 
el año 2015, puedan estar pendientes de la realización de estudios intermedios 
en la fecha de finalización de recogida de información (31/12/2015). Cualquier 
otro resultado final no conocido se informará como ‘5: Seguimiento incompleto’, o 
‘99: Desconocido’.

5. Exploraciones adicionales (0-N registros por episodio)

•	 Programa_id
Ya descrito

•	 Mujer_id
Ya descrito

•	 Episodio
Ya descrito

•	 N prueba
Campo definido como numérico. Se informará un número natural, de manera 
consecutiva, comenzando con el 1.

•	 Prueba_id
•	 Campo definido como numérico. Ver equivalencias:
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•	 11: Otras proyecciones mamográficas 
•	 12: Ecografía 
•	 13: Resonancia magnética
•	 14: Otras pruebas no invasivas
•	 19: Prueba no invasiva desconocida
•	 21: PAAF
•	 22: Biopsia aguja gruesa
•	 23: Biopsia asistida por vacío
•	 24: Biopsia escisional percutánea
•	 25: Biopsia quirúrgica
•	 26: Otras pruebas invasivas
•	 29: Prueba invasiva desconocida
•	 99: Prueba desconocida

•	 Fecha_prueba
Campo definido como texto de longitud 10, con formato 00/00/0000 correspon-
diente a día/mes/año (09/09/9999 si desconocido). No se añaden restricciones 
de valor para esta variable, pero se incluirán como valores poco probables los 
que estén fuera del rango comprendido entre 01/01/1989 y 30/06/2016, o bien 
09/09/9999 si es desconocida. 

Nota: La fecha de realización de pruebas abarca hasta el 30/06/2016 (6 meses 
más que la fecha máxima de realización de la mamografía de cribado). Este marco 
temporal de 6 meses se define para poder obtener información de las exploraciones 
complementarias realizadas para descartar o confirmar malignidad, de aquellas 
mamografías de cribado reconvocadas durante el último periodo de 2015.

6. Variables de las mujeres (1 registro por episodio)

•	 Programa_id
Ya descrito

•	 Mujer_id
Ya descrito

•	 Episodio
Ya descrito
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•	 THS
Campo definido como numérico. Ver equivalencias:

•	 1: Sí, en el momento de la mamografía o en los 6 meses previos
•	 2: No
•	 99: Desconocido

•	 Menopausia
Campo definido como numérico. Ver equivalencias.

•	 1: Posmenopáusica
•	 2: Premenopáusica o perimenopáusica
•	 99: Desconocido

 
•	 Antecedentes personales de prueba invasiva con resultado benigno o declara-

ción por parte de la mujer de patología mamaria benigna
Campo definido como numérico. Ver equivalencias.

•	 1: Sí
•	 2: No
•	 99: Desconocido

•	 Antecedentes familiares de cáncer de mama
Campo definido numérico. Ver equivalencias.

•	 1: Sí;
•	 2: No;
•	 99: Desconocido

•	 Edad menopausia
Campo definido como numérico. Se informará un número natural. Se informará 
el valor ‘9: No pertinente’ cuando la mujer sea pre-menopáusica. No se aña-
den restricciones de valor para esta variable, pero sí se incluirán valores poco 
probables.

•	 9: No pertinente
•	 99: Desconocido

•	 Edad de la menarquia
Campo definido como numérico. Se informará un número natural. No se aña-
den restricciones de valor para esta variable, pero sí se incluirán valores poco 
probables. 

•	 99: Desconocido
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7. �Lesiones benignas (1-N registros por mujer,  
máximo un registro por episodio)

•	 Programa_id
Ya descrito

•	 Mujer_id
Ya descrito

•	 Episodio
Ya descrito

•	 Histología de las citologías
Campo definido como numérico. Ver equivalencias.

•	 0: Negativo células malignas
•	 1: Lesión no proliferativa
•	 2: Lesión proliferativa sin atipia
•	 3: Lesión proliferativa con atipia
•	 9: No pertinente
•	 99: Desconocido

•	 Histología de la lesión benigna
Valor definido como texto de longitud 5 con el formato 00000. Los valores posi-
bles son los del Código CIE-O (3ª Ed.). El valor 99 se empleará cuando la histolo-
gía sea desconocida.

•	 99: Desconocido

•	 Lateralidad
Campo definido como numérico. Ver equivalencias.

•	 1: Derecha
•	 2: Izquierda
•	 3: Bilateral
•	 99: Desconocido

8. Variables referentes a los tumores
 
•	 Programa_id
Ya descrito
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•	 Mujer_id
Ya descrito

•	 Episodio
Ya descrito

•	 Método de detección:
Campo definido como numérico. Ver equivalencias.

•	 1: Cribado
•	 2: Cáncer de Intervalo
•	 3: Fuera de cribado

•	 Histología tumores
Valor definido como texto de longitud 5 con el formato 00000. Los valores posi-
bles son los del Código CIE-O (3ª Ed.). El valor 99 se empleará para designar que 
es desconocido.

•	 99: Desconocido

•	 Comportamiento tumoral
Campo definido como numérico. Ver equivalencias.

•	 1: Ductal in situ
•	 2: Invasivo
•	 99: Desconocido

•	 Lateralidad
Campo definido como numérico. Ver equivalencias:  

•	 1: Derecha
•	 2: Izquierda
•	 3: Bilateral
•	 99: Desconocido

•	 Tamaño tumor
Campo definido como numérico. Ver equivalencias. 

•	 1: Tx
•	 2: T0
•	 3: Tis
•	 4: T1
•	 5: T1mic 
•	 6. T1a 
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•	 7. T1b
•	 8: T1c
•	 9: T2
•	 10: T3
•	 11: T4 
•	 12: T4a 
•	 13: T4b 
•	 14: T4c
•	 15: T4d
•	 99: Desconocido

•	 Afectación ganglionar
Campo definido como numérico. Ver equivalencias.

•	 1: Nx
•	 2: N0
•	 3: N1
•	 4: N2 
•	 5: N2a 
•	 6: N2b
•	 7: N3 
•	 8: N3a 
•	 9: N3b 
•	 10: N3c
•	 99: Desconocido

•	 Metástasis
Campo definido como numérico. Ver equivalencias.

•	 1: Mx
•	 2: M0
•	 3: M1
•	 99: Desconocido

•	 Grado de diferenciación
Campo definido como numérico. Ver equivalencias.

•	 0: No aplicable
•	 1: Categoría I 
•	 2: Categoría II 
•	 3: Categoría III 
•	 99. Desconocido
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•	 Receptores de estrógeno
Campo definido como numérico. Ver equivalencias. 

•	 1: Negativo
•	 2: Positivo
•	 99: Desconocido

•	 Receptores de progesterona
Campo definido como numérico. Ver equivalencias.

•	 1: Negativo
•	 2: Positivo
•	 99: Desconocido
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Rango de valores probables

•	 Las variables categóricas previamente definidas en la primera 
parte de este documento sólo podrán adoptar los valores indi-
cados en su correspondiente descripción de valores posibles. 
Cualquier otro valor fuera de los definidos no será permitido e 
implicará la imposibilidad de cargar los datos. 

•	 Para el resto de variables (no categóricas) se establecen las 
siguientes restricciones en los posibles valores que pueden 
tomar. Los valores fuera de estos rangos que se definen a 
continuación generarán una alerta, pero no incapacitarán la 
carga de los datos.

Tabla mujeres

1.	 La fecha de nacimiento deberá estar comprendida entre 01/01/1919 y 
31/12/1971, o bien 09/09/9999 si es desconocida. 

2.	 La fecha de 1ª citación en el programa deberá estar comprendida entre 
01/01/1989 y 31/12/2015, o bien 09/09/9999 si es desconocida. 

Tabla episodios

3.	 La fecha de mamografía de cribado deberá estar comprendida entre 
01/01/1989 y 31/12/2015 ó bien 09/09/9999 si es desconocida. 

4.	 El número de episodio deberá ser un número natural entre 1 y 15.

5.	 El número de cribado deberá ser un número natural entre 1 y 15.

6.	 El número de estudios intermedios deberá ser un número natural entre 0 y 5 
(ambos inclusive).
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Tabla exploraciones adicionales  

7.	 La fecha de la prueba deberá estar comprendida entre 01/01/1989 y 
30/06/2016, o bien 09/09/9999 si es desconocida. 

8.	 El número de prueba deberá ser un número natural entre 1 y 20. 

a variables de la mujer 

9.	 La edad de la menopausia deberá ser un número natural comprendido en-
tre 35 y 65, o bien 9 si la mujer es pre-menopaúsica, o 99 si es desconocido.

10.	 La edad de la menarquia deberá ser un número natural comprendido entre 
8 y 20, o bien 99 si es desconocido.

Tabla lesiones benignas

11.	 La histología de la lesión benigna deberá tomar un valor según los posibles 
códigos de la clasificación SNOMED, Código CIE-O (3ª Ed.), o el valor 99 si es 
desconocido. Ver anexo 1. 

Tabla de los tumores

12.	 La histología del tumor deberá tomar un valor según los posibles códigos 
de la clasificación SNOMED, Código CIE-O (3ª Ed.), o bien el valor 99 si es 
desconocido. Ver anexo 2. 
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Reglas lógicas de validación

Ningún campo podrá quedar informado como vacío. Todas las variables debe-
rán ser informadas con algún valor. Se contemplan las categorías desconocido 
y/o no pertinente siempre que sea necesario para evitar los registros vacíos.

1.	 No pueden existir dos mujeres o más con el mismo código de “Mujer_id” en 
un mismo programa.

2.	 Para un mismo “Programa_id” y “Mujer_id”, la variable “Episodio” no puede 
tener dos valores iguales (episodio duplicado).

3.	 La variable “Número de cribado” es igual o menor al número de “Episodio”.

4.	 Las variables de Fecha (‘fecha de nacimiento’, ‘fecha de 1ª citación’, ‘fecha de 
mamografía de cribado’ y ‘fecha prueba’) tendrán formato 00/00/0000 en el 
orden día / mes / año y NO mes / día / año.

5.	 Si para una “Mujer_id” en un episodio concreto, se informa de la existencia 
de al menos un estudio intermedio, el “Resultado inicial de la mamografía 
de cribado” para ese mismo episodio debería ser diferente de 1 (Negativo).

6.	 Si para una “Mujer_id” en un episodio concreto se genera registro en la 
tabla EXPLORACIONES ADICIONALES, la variable “Resultado inicial de la 
mamografía de cribado” para ese mismo episodio debería ser diferente de 1 
(Negativo).

7.	 Si el “Resultado final del episodio” para un episodio concreto es igual a 1 
(Cáncer), el “Resultado inicial de la mamografía de cribado” deberá ser dis-
tinto de 1 (Negativo).

8.	 Si para una “Mujer_id” en un episodio concreto se genera registro en la 
tabla TUMORES, la variable “Resultado final del episodio” será codificada 
necesariamente como 1 (Cáncer).

9.	 Para un “Mujer_id” y “Episodio” concreto, si la variable “Resultado final del 
episodio” se codifica como 1 (Cáncer), no puede existir para esa misma 
mujer un episodio posterior. 
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10.	 Si para una “Mujer_id” en un episodio concreto la variable “Categoría ma-
mográfica de la prueba de cribado (Bi-rads)” es 1 (normal), no debería de 
generarse registro en la tabla exploraciones.

11.	 Para una “Mujer_id” en un episodio concreto, si en la tabla EPISODIOS 
la variable “Lateralidad” se clasifica como 99 (Desconocida), los campos 
“Masa_I”, “Distorsión_I”, “Calcificaciones_I”, “Asimetría_I”, y “Otros_I” de la 
variable “Patrones radiológicos de la prueba de cribado” deberán clasifi-
carse como 0 (No). 

12.	 Para una “Mujer_id” en un episodio concreto, si en la tabla EPISODIOS la 
variable “Lateralidad” se clasifica como 1 (Derecha), los campos “Masa_I”, 
“Distorsión_I”, “Calcificaciones_I”, “Asimetría_I”, y “Otros_I” de la variable 
“Patrones radiológicos de la prueba de cribado” deberán clasificarse como 
0 (No). 

13.	 Para una “Mujer_id” en un episodio concreto, si en la tabla EPISODIOS la 
variable “Lateralidad” se clasifica como 2 (Izquierda), los campos “Masa_D”, 
“Distorsión_D”, “Calcificaciones_D”, “Asimetría_D”, y “Otros_D” de la variable 
“Patrones radiológicos de la prueba de cribado” deberán clasificarse  
como 0 (No). 

14.	 Si para una “Mujer_id” en un episodio concreto se genera una “prueba_id” 
del tipo 2.1 (Citología) en la tabla EXPLORACIONES ADICIONALES, y no ge-
nera registro en la tabla TUMORES, debería generar un registro en la tabla 
LESIONES BENIGNAS (aunque sea desconocido) en ese mismo episodio. 

15.	 Si para una “Mujer_id” en un episodio concreto se genera una “prue-
ba_id” del tipo 2.2; 2.3; 2.4; o 2.5; (Biopsia) en la tabla EXPLORACIONES 
ADICIONALES, y no genera registro en la tabla TUMORES, debería generar 
un registro en la tabla LESIONES BENIGNAS (aunque sea desconocido) en 
ese mismo episodio. 

16.	 Si para una “Mujer_id” en un episodio concreto se genera registro en la 
tabla LESIONES BENIGNAS, debería de generar alguna “prueba_id” del tipo 
2.1; 2.2; 2.3; 2.4; 2.5; 2.6; o 2.9, en la tabla EXPLORACIONES ADICIONALES.
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17.	 Si para una “Mujer_id” en un episodio concreto la variable “Histología 
básica de las citologías” es distinta de 9 (no pertinente), deberá de gene-
rar una “prueba_id” del tipo 2.1 (Citología) en la tabla EXPLORACIONES 
ADICIONALES. 

18.	 Si para una “Mujer_id” en un episodio concreto la variable “Histología 
de la lesión benigna” es distinta de 99 (Desconocido), deberá de gene-
rar una “prueba_id” del tipo 2.1; 2.2; 2.3; 2.4; o 2.5; (Biopsia) en la tabla 
EXPLORACIONES ADICIONALES. 

19.	 Si para una “Mujer_id” en un episodio concreto se genera registro en la 
tabla TUMORES, no deberá registro en la tabla LESIONES BENIGNAS en  
ese mismo episodio. 

20.	 La variable “Menopausia” no puede ser codificada como 1 (posmenopáu-
sica) en un episodio y en cualquier otro episodio posterior como 2 (pre o 
perimenopáusica).  

21.	 La variable “Menopausia” si en un episodio se clasifica como 2 (preme-
nopáusica), la variable “Edad de la menopausia” debería ser clasificada 
como 9 (No pertinente) en ese mismo episodio.

22.	 La variable “Menopausia” si en un episodio se clasifica como 1 (posme-
nopáusica), la variable “Edad de la menopausia” no debería ser clasifica-
da como 9 (No pertinente) en ese mismo episodio.

23.	 La variable “Antecedentes personales de prueba invasiva con resultado 
benigno” si en un episodio se clasifica como 1 (Sí), en los subsiguientes no 
puede clasificarse como 2 (No). Debe seguir siendo clasificada como 1.

24.	 La variable “Antecedentes familiares de cáncer de mama” si en un epi-
sodio se clasifica como 1 (Sí), en los subsiguientes no puede clasificarse 
como 2 (No). Debe seguir siendo clasificada como 1.

25.	 La variable “Edad de la menopausia” si en un episodio se clasifica con 
un valor distinto de 9 (No pertinente), o 99 (Desconocido), la variable 
“Menopausia” debería ser distinta de 99 (Desconocido).
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Valores poco probables

Los valores poco probables se definen para que la base de datos dé una señal 
de alerta (warning) indicando que podría haber una incoherencia.

1.	 Número de estudios intermedios ≥ 4.

2.	 N prueba ≥ 8 por episodio.
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