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ABSTRACT
We consider the four-dimensional hyperchaotic system ẋ = a(y − x), ẏ = bx + u − y − xz, ż = xy − cz, and u̇ = −du − jx + exz, where a, b, c,
d, j, and e are real parameters. This system extends the famous Lorenz system to four dimensions and was introduced in Zhou et al., Int.
J. Bifurcation Chaos Appl. Sci. Eng. 27, 1750021 (2017). We characterize the values of the parameters for which their equilibrium points
are zero-Hopf points. Using the averaging theory, we obtain sufficient conditions for the existence of periodic orbits bifurcating from these
zero-Hopf equilibria and give some examples to illustrate the conclusions. Moreover, the stability conditions of these periodic orbits are given
using the Routh–Hurwitz criterion.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023155

I. INTRODUCTION
The chaos phenomenon is a complex dynamic behavior in a nonlinear dynamical system, which appears widely in nature. In 1963,

meteorologist Lorenz1 was the first to introduce the mathematical and physical chaotic model in R3, which is known as the Lorenz system.
The Lorenz system planted the seed in chaos science. This system plays an important role in other areas such as in the modeling of lasers2

and dynamos.3 As one of the simplest models presenting chaos, the Lorenz system exhibits a rich range of dynamical properties, and it has
been researched from different points of view, such as positive invariant,4 integrability,5–7 global dynamics,8–10 and bifurcation.11,12 After the
Lorenz system, mathematicians and physicists from a physical or purely abstract mathematical point of view proposed various polynomial
differential systems in R3, whose trajectories exhibit chaotic dynamics of the Lorenz system type. For example, one can refer to the Rikitake
system,13 Sprott A system,14 Shimizu–Morioka system.15

Nowadays, three-dimensional nonlinear systems cannot provide adequate description of many phenomena in neural networks, social
sciences, and engineering. To better describe the real world, we often necessitate to introduce high-dimensional (at least four dimensions)
nonlinear systems. Recently, the hyperchaotic system has become a focus of research (see Refs. 16–23 and the references therein). The con-
cept of hyperchaos was given by Rössler in Ref. 24. The precise definition of hyperchaotic system is as follows: (i) at least a four-dimensional
autonomous differential system, (ii) a dissipative structure, and (iii) at least two unstable directions, of which at least one direction is non-
linear.18 The hyperchaotic systems are very useful in secure communication due to the fact that the dynamic information of such systems is
difficult to characterize and predict (see Ref. 25).

In this work, we use the classical averaging theory to investigate the zero-Hopf bifurcation of a hyperchaotic system. A zero-Hopf equi-
librium is an equilibrium point of a four-dimensional autonomous differential system, which has a double zero eigenvalue and a pair of purely
imaginary eigenvalues. There are rich works on three-dimensional zero-Hopf bifurcation (see Refs. 26–30). The zero-Hopf bifurcation of the
hyperchaotic Lorenz system (i.e., four-dimensional) can be found in Refs. 17, 18, and 31. Actually, there are few results on the n-dimensional
zero-Hopf bifurcation with n > 3.
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In Ref. 32, Zhou et al. presented the following four-dimensional hyperchaotic system:

ẋ = a(y − x),
ẏ = bx + u − y − xz,
ż = xy − cz,
u̇ = −du − jx + exz,

(1)

where a, b, c, d, j, and e are real parameters. The hyperchaotic system (1) extends the Lorenz system to four dimensions and is invariant under
the symmetry with respect to the z-axis, i.e., under the symmetry τ(x, y, z, u) = (−x,−y, z,−u). For the zero-Hopf bifurcation of system (1) at
the origin, partial results are given by Yang et al. in Ref. 33. The objective of this paper is to study all the zero-Hopf bifurcations of system (1).

The equilibria and zero-Hopf equilibria of system (1) are described in the next two results.

Proposition 1. Let Δ = c(bd − d − j)/(d − e), with d ≠ e. The hyperchaotic system (1) has the following equilibria:

(i) If c = 0, system (1) has a straight line of equilibria (0, 0, z, 0).
(ii) If Δ ≤ 0 and c ≠ 0, system (1) has an unique equilibrium point E0 = (0, 0, 0, 0).

(iii) If Δ > 0 and c ≠ 0, system (1) has three equilibria E0 = (0, 0, 0, 0),

E1 = (
√

Δ,
√

Δ,
bd − d − j

d − e
,−
(e + j − be)

√
Δ

(d − e)
),

and

E2 = (−
√

Δ,−
√

Δ,
bd − d − j

d − e
,
(e + j − be)

√
Δ

d − e
).

Proposition 1 follows easily by direct computations.

Theorem 2. For the hyperchaotic system (1), the following statements hold:

(i) There is a two-parameter family of systems (1) for which the origin of coordinates is a zero-Hopf equilibrium point. Specifically, c = 0,
d = −a − 1, b = −(1 + a + a2

+ ω2
)/a, and j = ((1 + a)3

+ (1 + a)ω2
)/a.

(ii) There is a three-parameter family of systems (1) for which the equilibria E1,2 are zero-Hopf equilibrium points. Specifically, a = 0,
j = bd, c = −d − 1, and (d2e + de + e − d3

)(d − e) > 0.
(iii) When c = 0, there is a three-parameter family of system (1) for which the equilibria (0, 0, z0, 0) are zero-Hopf equilibrium points.

Specifically, a = −1 − d, j = (b − 1)d + z0(e − d), and (b − d − z0)(d + 1) > 1.

Theorem 2 is proved in Sec. III.
In the following theorem, we characterize the periodic orbits bifurcating from the zero-Hopf equilibrium E0 of system (1).

Theorem 3. Let

b = −
a2
+ a + 1 + ω2

a
+ εb1,

c = εc1,
d = −a − 1 + εd1,

j =
(a + 1)3

+ (a + 1)ω2

a
+ εj1,

with ω > 0 and ε > 0 being sufficiently small parameters. If η = (a + 1)2d1 + a(a + 1)b1 + aj1, d1 ≠ 0, c1ηa(a + e + 1) > 0, and
c1(ω2d1 + η)a(a + e + 1) > 0, then for ε > 0 sufficiently small, the hyperchaotic system (1) has a zero-Hopf bifurcation at the equilibrium
point located at E0, and at most four periodic orbits can bifurcate from this equilibrium when ε = 0 and two of them are stable if either
c1 < 0, d1 < 0, η < 0, or η > 0, c1 < 0, − η

ω2 < d1 < 0. Moreover, there are systems (1) for which this zero-Hopf bifurcation exhibits the four periodic
orbits [see Example 1].

The proofs of Theorem 3 and Example 1 are given in Sec. IV and use the averaging theory of first order (see Subsection II A).

Example 1. The hyperchaotic system,
ẋ = x − y, ẏ = 2x + u − y − xz, ż = xy, u̇ = −xz, (2)

has four small periodic orbits bifurcating from the equilibrium point (0, 0, 0, 0) and two of them are stable.
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After the proof of Example 1, we show that the averaging theory of first order described in Sec. II does not provide any information about
the possible periodic orbits, which can bifurcate from the zero-Hopf equilibria of the family of statement (ii) of Theorem 2.

In Sec. II, we present some basic results that we shall need for proving our theorems.

II. PRELIMINARIES
A. Averaging theory

In this subsection, we present the results on averaging theory that we need for proving our results. Consider the following differential
equation:

ẋ = εF(t, x) + ε2G(t, x, ε), (t, x, ε) ∈ [0,∞) ×Ω × (0, ε0], (3)

where Ω is an open subset of Rn and F(t, x) and G(t, x, ε) are T-periodic in t. We introduce the averaged function

F(x) = 1
T∫

T

0
F(t, x)dt. (4)

Theorem 4. Assume that F, its Jacobian ∂F/∂x, and its Hessian ∂2F/∂x2; G, its Jacobian ∂G/∂x are defined, continuous and bounded by
a constant independent of ε in [0,∞) ×Ω × (0, ε0] and that the period T is a constant independent of ε. Then, the following statements hold:

(i) If p is the zero of the averaged function F(x) such that the Jacobian

det (
∂F
∂x
)∣

x=p
≠ 0, (5)

then there exists a T-periodic solution x(t, ε) of Eq. (3) such that x(0, ε)→ p as ε→ 0.
(ii) The stability of the periodic solution x(t, ε) is determined by the eigenvalues of the Jacobian matrix (∂F/∂x)∣x=p.

For more details about the Proof of Theorem 4, see Ref. 34.
We consider the problem of the bifurcation of T-periodic solutions from differential systems of the form

ẋ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (6)

with ε = 0 to ε ≠ 0 being sufficiently small. Here, the functions F0, F1 : R ×Ω→ Rn and F2 : R ×Ω × (−ε0, ε0)→ Rn are C2 functions,
T-periodic in the first variable, and Ω is an open subset of Rn. The main assumption is that the unperturbed system,

ẋ = F0(t, x), (7)

has a submanifold of periodic solutions. A solution of this problem is given using the averaging theory.
Let x(t, z, ε) be the solution of system (7) such that x(0, z, ε) = z. We write the linearization of the unperturbed system along a periodic

solution x(t, z, 0) as
ẏ = DxF0(t, x(t, z, 0))y. (8)

In the following, we denote by Mz(t) some fundamental matrix of the linear differential system (8) and by ξ : Rk
×Rn−k

→ Rk the projection
of Rn onto its first k coordinates, i.e., ξ(x1, . . . , xn) = (x1, . . . , xk).

We assume that there exists a k-dimensional submanifold Z of Ω filled with T-periodic solutions of (7). Then, an answer to the problem
of bifurcation of T-periodic solutions from the periodic solutions contained in Z for system (6) is given in the following result.

Theorem 5. Let W be an open and bounded subset of Rk, and let β : Cl(W)→ Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β(α)), α ∈ Cl(W)} ⊂ Ω and that for each zα ∈ Z, the solution x(t, zα) of (7) is T-periodic;
(ii) for each zα ∈ Z, there is a fundamental matrix Mzα(t) of (8) such that the matrix M−1

zα (0) −M−1
zα (T) has in the upper right corner the

k × (n − k) zero matrix and in the lower right corner a (n − k) × (n − k)matrix Δα, with det(Δα) ≠ 0.

We consider the function F : Cl(W)→ Rk,

F(α) = ξ(
1
T∫

T

0
M−1

zα (t)F1(t, x(t, zα))dt). (9)

If there exists a ∈W with F(a) = 0 and det((dF/dα)(a)) ≠ 0, then there is a T-periodic solution φ(t, ε) of system (6) such that φ(0, ε)→ za as
ε→ 0.

Theorem 5 goes back to the works of Malkin35 and Roseau36 (for a shorter proof, see Ref. 37).
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B. Roots of cubic equation
The Routh–Hurwitz criterion gives necessary and sufficient conditions in order that all the roots of a polynomial p(x) ∈ R[x] have

negative real parts (for more details, see page 231 of Ref. 38).

Theorem 6 (Routh–Hurwitz criterion). All roots of the real polynomial p(x) = b0xn
+ b1xn−1

+ ⋅ ⋅ ⋅ + bn−1x + bn (b0 > 0) have negative
real parts if and only if

Δ1 > 0, Δ2 > 0, . . . , Δn > 0,

where

Δi = det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1 b3 b5 ⋅ ⋅ ⋅

b0 b2 b4 ⋅ ⋅ ⋅

0 b1 b3 ⋅ ⋅ ⋅

0 b0 b2 b4

⋮ ⋮ ⋮ ⋮
. . .

bi

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(bk = 0 if k > n)

is the Hurwitz determinant of order i (i = 1, 2, . . . , n).

Corollary 7. All the roots of the real polynomial b0x3
+ b1x2

+ b2x + b3(b0 > 0) have negative real parts if and only if

Δ1 = b1 > 0, Δ2 = b1b2 − b3b0 > 0, b3 > 0.

III. PROOF OF THEOREM 2
(i) The characteristic polynomial p(λ) of the linearization of system (1) at the origin is

p(λ) = λ4
+ (a + c + d + 1)λ3

+ (a(1 − b + c + d) + cd + c + d)λ2

+ (a(c(1 − b + d) − bd + d + j) + cd)λ + ac(j − bd + d).

Since the origin of the hyperchaotic system (1) is a zero-Hopf equilibrium, p(λ)must be of the form p(λ) = λ2
(λ2
+ ω2
), with ω ∈ R+.

Then, we obtain

c = 0, d = −a − 1, b = −
a2
+ a + 1 + ω2

a
, j =

(a + 1)3
+ (a + 1)ω2

a
.

(ii) Let Δ = c(bd − d − j)/(d − e). Then, c = Δ(d − e)/(bd − d − j). The characteristic polynomial of the linear part of system (1) at E1 is
given by

p(λ) = λ4
+ (a −

Δ(d − e)
j − bd + d

+ d + 1)λ3
+

Δ(d(a + b + d) − e(a + d) − e − j)
bd − d − j

λ2

+
a(b − 1)e + (a + 1)d2

− (a + 1)de − aj
d − e

λ2

+
Δ(a(d(2b − e − 2) + (b − 1)e + d2

− 3j) + (d − e)(bd − j))
bd − d − j

λ + 2aΔ(d − e).

If the equilibrium E1 is a zero-Hopf equilibrium, then p(λ) must be of the form p(λ) = λ2
(λ2
+ ω2
), with ω ∈ R+. Hence, we get that

the parameters must satisfy

either a = −1 − d, c = 0, and j =
d3
+ (b − 1)e + (b − 1 − d)de + (d − e)ω2

1 + d

or a = 0, j = bd, Δ = d2
+ d + ω2

+ 1, and e =
d(d2

+ ω2
)

d2 + d + ω2 + 1
.

Clearly, Δ > 0; otherwise, the equilibrium E1 does not exist.
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(iii) The characteristic polynomial at the equilibrium point (0, 0, z0, 0) is

p(λ) = λ4
+ (a + d + 1)λ3

+ (a(d + 1 − b) + az0 + d)λ2
+ a(z0(d − e) + d + j − bd)λ.

Since the (0, 0, z0, 0) is a zero-Hopf equilibrium, the parameters must be satisfied,

a = −1 − d, b =
d2
+ d + ω2

+ 1
d + 1

+ z0, j =
d(d2

+ ω2
)

d + 1
+ ez0,

where ω ∈ R+. This completes the Proof of Theorem 2.

IV. PROOF OF THEOREM 3
Let

(b, c, d, j) = (−
a2
+ a + 1 + ω2

a
+ εb1, εc1,−a − 1 + εd1,

(a + 1)3
+ (a + 1)ω2

a
+ εj1),

where ω > 0 and ε > 0 are sufficiently small parameters. Then, the hyperchaotic system (1) becomes

ẋ = a(y − x),

ẏ = u − xz − y + (−
a2
+ a + 1 + ω2

a
+ b1ε)x,

ż = xy − εc1z,

u̇ = exz − u(−a − 1 + εd1) − (
(a + 1)ω2

+ (a + 1)3

a
+ εj1)x.

(10)

Performing the rescaling of variables

(x, y, z, u)↦ (εx, εy, εz, εu), (11)

system (10) can be written as

ẋ = a(y − x),

ẏ = u − y −
a2
+ a + 1 + ω2

a
x + εx(b1 − z),

ż = ε(xy − c1z),

u̇ = u + au −
(a + 1)3

+ (a + 1)ω2

a
x + ε(exz − d1u − j1x).

(12)

After the linear change in variables (x, y, z, u)↦ (X, Y , Z, U),

x =
aωY + Z

ω2 , y =
aωY − ω2X + Z

ω2 ,

z = U, u =
ωa(a + 1)(aY − ωX + Y) + ((a + 1)2

+ ω2
)Z

aω2 ,
(13)

the linear part at the origin of system (12) for ε = 0 can be transformed into its real Jordan normal form,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ω 0 0

−ω 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)
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Under the change in variable (13), system (12) can be written as

ẋ = ωy +
ε(u − b1)(aωy + z)

ω2 ,

ẏ = −ωx +
ε(aωy + z)A

aω2 ,

ż = d1ε(a(a + 1)x − z) −
ε(aωy + z)A

ω
,

u̇ = ε(
(aωy + z)(ω(ay − ωx) + z)

ω4 − c1u),

(15)

where we have written (x, y, z, u) instead of (X, Y , Z, U) and

A =
ab1(a + 1) + d1(a + 1)2

+ (j 1 − (a + e + 1)u)a
ω

. (16)

Performing the cylindrical change of variables,

(x, y, z, u)↦ (r cos θ, r sin θ, z, u), (17)

system (15) becomes
dr
dθ
= ε(

sin θ(a2
(b1 − u)r cos θ + d1(a(a + 1)r cos θ − z))

aω2

+
(b1 − u)z cos θ

ω3 −
A(aωr sin θ + z) sin θ

aω3 ) +O(ε2
)

= εF1(θ, r, z, u) +O(ε2
),

dz
dθ
= ε(

d1(z − a(a + 1)r cos θ)
ω

+
A(aωr sin θ + z)

ω2 ) +O(ε2
)

= εF2(θ, r, z, u) +O(ε2
),

du
dθ
=

ε(c1ω4u − (aωr sin θ + z)(ω(a sin θ − ω cos θ)r + z))
ω5 +O(ε2

)

= εF3(θ, r, z, u) +O(ε2
).

(18)

System (18) is written in the normal form (3) for applying the averaging theory and satisfies all the assumptions of Theorem 4. Then,
using the notations of the averaging theory described in Theorem 4, we have t = θ, T = 2π, x = (r, z, u),

F(θ, r, z, u) =

⎛
⎜
⎜
⎜
⎜
⎝

F1(θ, r, z, u)

F2(θ, r, z, u)

F3(θ, r, z, u)

⎞
⎟
⎟
⎟
⎟
⎠

, and F(r, z, u) =

⎛
⎜
⎜
⎜
⎜
⎝

F1(r, z, u)

F2(r, z, u)

F3(r, z, u)

⎞
⎟
⎟
⎟
⎟
⎠

,

where

F1(r, z, u) =
1

2π∫
2π

0
F1(θ, r, z, u)dθ = −

rA
2ω2 ,

F2(r, z, u) =
1

2π∫
2π

0
F2(θ, r, z, u)dθ =

(ωd1 + A)z
ω2 ,

F3(r, z, u) =
1

2π∫
2π

0
F3(θ, r, z, u)dθ = −

a2ω2r2
− 2c1ω4u + 2z2

2ω5 .

The system F1(r, z, u) = F2(r, z, u) = F3(r, z, u) = 0 has the following five solutions:

s0 = (0, 0, 0),

s1,2 = (∓
ω
a

√
2c1η

a(a + e + 1)
, 0,

η
a(a + e + 1)

),
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s3,4 =
⎛
⎜
⎝

0,∓ω2

¿
Á
ÁÀ c1(ω2d1 + η)

a(a + e + 1)
,

ω2d1 + η
a(a + e + 1)

⎞
⎟
⎠

,

where η = (a + 1)2d1 + a(a + 1)b1 + aj1. The first solution s0 corresponds to the equilibrium at the origin, so it is not a good solution. For
other four solutions, we get

det(
∂F
∂x
(s1)) = det(

∂F
∂x
(s2)) =

c1d1η
ω5 ,

det(
∂F
∂x
(s3)) = det(

∂F
∂x
(s4)) = −

c1d1(ω2d1 + η)
ω5 .

Since by assumptions d1 ≠ 0, c1ηa(a + e + 1) > 0, and c1(ω2d1 + η)a(a + e + 1) > 0, the solutions si exist and det(∂F(si)/∂x) ≠ 0 for
i = 1, 2, 3, 4. From Theorem 4, it follows that system (18) for ε > 0 sufficiently small has four 2π-periodic orbits, γi = (ri(θ, ε), zi(θ, ε), ui(θ, ε)),
such that (ri(0, ε), zi(0, ε), ui(0, ε))→ si as ε→ 0, with i = 1, 2, 3, 4.

The Jacobian matrices ∂F(s1)/∂x and ∂F(s2)/∂x have the same characteristic equation,

λ3
−

c1 + d1

ω
λ2
+

c1(η + ω2d1)

ω4 λ −
c1d1η

ω5 = 0. (19)

By Corollary 7, all the roots of Eq. (19) have negative real parts if

−
c1 + d1

ω
> 0, −

c1(c1η + d1(c1 + d1)ω2
)

ω5 > 0, −
c1d1η

ω5 > 0

or, equivalently, if c1 < 0, d1 < 0, η < 0. Thus, the periodic orbits γ1 and γ2 are stable if c1 < 0, d1 < 0, η < 0.

The Jacobian matrices ∂F(s3)/∂x and ∂F(s4)/∂x have the same characteristic equation,

λ3
−

2c1 + d1

2ω
λ2
−

c1(4η + 3ω2d1)

2ω4 λ +
c1d1(η + ω2d1)

ω5 = 0. (20)

Using Corollary 7, all the roots of Eq. (20) have negative real parts if

−
2c1 + d1

2ω
> 0,

c1(8c1(η + d1ω2
) − (2c1 + d1)d1ω2

)

4ω5 > 0,
c1d1(η + ω2d1)

ω5 > 0

or, equivalently, η > 0, c1 < 0, − η
ω2 < d1 < 0. This implies that the periodic orbits γ3 and γ4 are stable if one of the three previous conditions

holds. This completes the Proof of Theorem 3.
We can apply the averaging theory for studying the zero-Hopf bifurcation at the equilibria (0, 0, z0, 0) for all z0 ∈ R, after writing it in the

normal form (3) and doing similar changes in variables to the ones of the Proof of Theorem 3. However, the determinant (5) evaluated at the
zeros of the averaged function becomes zero, so the averaging theory of Theorem 4 does not provide any information on the periodic orbits
that could exist in the zero-Hopf bifurcation at the equilibria (0, 0, z0, 0).

Proof of Example 1. Taking a = e = −1, b = 2, and c = d = j = 0, system (1) becomes system (2). Since the origin of system (2) has a double
zero eigenvalue and a pair of purely imaginary eigenvalues ±i, the origin is a zero-Hopf equilibrium point. Let c1 = d1 = j1 = −1 and ω = 1.
Consider the perturbation of Theorem 3, that is, b = 2 + εb1, j = ε, and c = d = −ε in system (2), with ε > 0 being a sufficiently small parameter.

By the steps of averaging theory, we have the following functions:

F1(r, z, u) =
r(u + 1)

2
, F2(r, z, u) = −(u + 2)z, F3(r, z, u) = −

r2

2
− u − z2. (21)

System (21) has five solutions s0 = (0, 0, 0), s1,2 = (0,±
√

2,−2), and s3,4 = (±
√

2, 0,−1). Since the determinants

det
⎛

⎝

∂(F1,F2,F3)

∂(r, z, u)
∣

s1,2

⎞

⎠
= 2 and det

⎛

⎝

∂(F1,F2,F3)

∂(r, z, u)
∣

s3,4

⎞

⎠
= −1,

four periodic orbits can bifurcate from the zero-Hopf equilibrium at the origin. The eigenvalues of s3,4 are −1 and (−1 ± i
√

3)/2. For the
solutions s1,2, the associated eigenvalues are −1/2 and (−1 ±

√
17)/2. Therefore, two of the four periodic orbits are stable. ◻
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In order to study the zero-Hopf bifurcation at the equilibria E1 and E2, it is sufficient to study it for the equilibrium point E1 due to the
symmetry exhibited by system (1).

For the family of statement (ii) of Theorem 2, we translate the equilibrium E1 at the origin of coordinates. After that, we take the values

j = bd + ε2j1, a = εa1, c = −1 − d + ε2c1.

Thus, when ε = 0, we have at the origin the zero-Hopf equilibrium of statement (ii) of Theorem 2. Now, we perform the linear change in
variables,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x

y

z

u

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= A

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

Y

Z

U

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
1
2

1
−d + e + 1

(d − e)3/2

(d − e − 1)
√

e + d(e + d(e − d))
d(d + 1)(d − e)

d3 − (d2 + d + 1)e
d(db + b + d + 2) − (b + (b − 1)d)e

2d3 − 2(d2 + d + 1)e
√

1 + 1
d

√
d − e

−d + e + 1

√

1 + 1
d(d

2
− (d + 1)e)

(d − e − 1)
√

e + d(e + d(e − d))

√

1 + 1
d d2√d − e

d3 − (d2 + d + 1)e

√

1 + 1
d d(d(b + d + 2) − (b + d + 1)e)

2
√

d − e(d3 − (d2 + d + 1)e)
e

d − e − 1

√
d − ee

(−d + e + 1)
√

e + d(e + d(e − d))
d(d + 1)e

e + d(e + d(e − d))
−

d(bd(d − e) + 2 de + e)
2d3 − 2(d2 + d + 1)e

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This linear change in variables writes the linear part of the differential system at the origin in its real Jordan normal form,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
√
(d2 + d + 1)e − d3
√

d − e
0 0

−

√
(d2 + d + 1)e − d3
√

d − e
0 0 0

0 0 0 1

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the differential system obtained similar to system (15), we do the change to cylindrical variables (17). After that, we write the new
differential system obtained, taking the variable θ as an independent variable, and we obtain a system similar to system (18). This differential
system is written in the normal form (6), but when we try to apply to that differential system the averaging theory described in Theorem 4, we
note that the condition (ii) of that theorem is not satisfied. Hence, the averaging theory does not provide any information about the possible
periodic orbits that can bifurcate from the zero-Hopf equilibrium point of the second family of statement (ii) of Theorem 2.
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