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Abstract

We consider a map F of class Cr with a fixed point of parabolic type whose differ-
ential is not diagonalizable and we study the existence and regularity of the invariant
manifolds associated with the fixed point using the parameterization method. Con-
cretely, we show that under suitable conditions on the coefficients of F , there exist
invariant curves of class Cr away from the fixed point, and that they are analytic when
F is analytic. The differentiability result is obtained as an application of the fiber
contraction theorem. We also provide an algorithm to compute an approximation of a
parameterization of the invariant curves and a normal form of the restricted dynamics
of F on them.
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1 Introduction

Invariant manifolds play a central role in the study of dynamical systems. There is a huge
amount of literature devoted to study them in many different settings. In this paper we deal
with the invariant manifolds of a type of parabolic fixed points in dimension two.
Parabolic points appear generically in two-parameter families of planar maps or in one-
parameter ones in the case of area-preserving maps. In particular they appear when a family
of maps undergoes a Bogdanov-Takens bifurcation [6, 27].
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In some problems in Celestial Mechanics it is useful to consider parabolic points or parabolic
orbits at infinity in order to use their invariant manifolds (provided they exist) to study
features of the dynamics in the finite phase space. The local study in a neighborhood of
such points is done by means of a change of variables which sends the infinity to a finite part
of the space [22]. Also, the periodic orbits become fixed points of appropriate (families of)
Poincaré maps. In such cases the fixed points are parabolic for all values of the parameters
of the family and may have invariant manifolds. These manifolds have been used to prove
the existence of oscillatory motions in the Sitnikov problem [25, 23] and the restricted planar
three-body problem [21, 16, 17] using the transversal intersection of invariant manifolds of
parabolic points and symbolic dynamics. Parabolic manifolds also appear in the Manev
problem [11].
Parabolic periodic orbits at infinity have been found in Hamiltonian systems related to the
study of the scattering of He atoms off Cu surfaces with some corrugation [15]. These
manifolds also play a significant role in the study of certain systems [20, 14].
In this paper we consider two-dimensional maps having a parabolic fixed point whose linear-
ization does not diagonalize, concretly we assume it has a double eigenvalue equal to 1. By
simple changes such maps can be brought to the form

F (x, y) =

x+ cy + f1(x, y)

y + f2(x, y)


 , (1.1)

with c > 0, f1(0, 0) = f2(0, 0) = 0 and Df1(0, 0) = Df2(0, 0) = 0. The origin has a center
manifold of dimension two, however, inside this manifold there may exist curves that behave
topologically as stable or unstable curves.
This class of maps was considered in [12] and the existence of analytic curves was proved.
Concretely the (local) sets considered there and the ones we deal with are

W s+
ρ = {(x, y) | F n(x, y) ∈ (0, ρ)× (−ρ, ρ), ∀n ≥ 0, lim

n→∞F
n(x, y) = 0}

and
W u+
ρ = {(x, y) | F−n(x, y) ∈ (0, ρ)× (−ρ, ρ), ∀n ≥ 0, lim

n→∞F
−n(x, y) = 0}.

The main result of [12] concerns analytic stable invariant curves in the domain {(x, y) ∈
R2 | x ≥ 0, y ≤ 0} under some appropriate conditions on the higher order terms. Then, the
existence of both stable and unstable curves in neighborhoods of the origin are deduced from
the main result by using the symmetries (x, y) 7→ (−x, y), (x, y) 7→ (x,−y) and (x, y) 7→
(−x,−y) and the inverse map F−1. Moreover, a detailed study of the local dynamics provide
the uniqueness of such curves in the category of Ck maps where k is the minimum regularity
for having a Taylor expansion providing the relevant nonlinear terms [12].
In this paper we study the existence and regularity of stable curves in the domain {(x, y) ∈
R2 | x ≥ 0, y ≤ 0} using the parameterization method. In the analytic case we recover the
existence results of [12] but we also provide approximations of the curves up to an arbitrarily
high order. We consider three cases of maps of the form (1.1), already introduced in [12],
which depend in some sense on the dominant part of the nonlinear terms. The study depends
on each case. Moreover, we consider the differentiable case with the same method and we
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obtain that the invariant manifolds of F are of the same regularity as F provided some
minimum regularity holds. Contrary to other works we do not use the Poincaré normal form
for the map, but a simple and easy-to-compute reduced form.
This class of maps, assuming the fixed point is not isolated, was studied in [10] motivated by
the study of collisions in two-body problems with central force potential satisfying certain
asympotic properties at the origin. A special case of this family not previously covered is
studied in [19]. These papers use an adapted form of the method of McGehee for parabolic
points without nilpotent part [22]. McGehee’s method consists of looking for a sector-like
domain S, with the fixed point in the vertex, such that the points whose positive iterates
remain on S form a graph of some function ϕ. To prove analyticity, it considers the com-
plexified map and uses Rouché’s theorem to obtain the uniqueness of ϕ(x) in terms of x, for
x in a complex extension S of S, so that then one can apply the implicit function theorem
to obtain the analyticity of ϕ(x) for x ∈ S.
Again for maps of the form (1.1), using different tools, some regularity results are obtained
in [29]. In that paper, the authors deal with what we denote by case 1 for C∞ maps and
obtain the existence of a stable manifold W s+

ρ as the graph of some function ϕ by solving
a fixed point equation equivalent to the invariance of the graph of ϕ. This equation is
considered for functions ϕ in a suitable subset of the space of functions of class C [(k+1)/2],
where [·] denotes integer part, and it is solved applying the Schauder fixed point theorem.
Hence, they obtain invariant manifolds of class C [(k+1)/2]. Instead, in this paper, we use the
parameterization method (see Section 2.2) and we obtain, away from the fixed point, analytic
invariant manifolds for analytic maps and Cr invariant manifolds for Cr maps, provided r is
larger than some quantity that depends on the nonlinear terms of the map.
One-dimensional manifolds of fixed points with linear part equal to the identity are studied in
[2] using the parameterization method. Higher-dimensional manifolds in the same setting are
considered in [1] using a generalized version of the method of McGehee, and in [4, 5] using the
parameterization method, where applications to Celestial Mechanics are given. The Gevrey
character of one-dimensional manifolds is studied in [3].
The main results of this paper are Theorems 2.1 and 2.3, concerning the existence of analytic
invariant curves of a map F of the form (1.1), and Theorems 2.7 and 2.10, concerning the
existence of differentiable invariant curves. In Section 2 we present the parameterization
method and the main results of the paper. The results are stated for the stable curves.
In Section 2.4 we show that completely analogous results hold true for the unstable ones.
In Section 3 we provide an algorithm to obtain parameterizations of approximations of the
invariant curves of F , and we provide the existence of such curves in Sections 4, for the
analytic case, and in Section 5, for the differentiable case. The proofs of the technical results
used along the paper are deferred to Section 6. The paper finishes with a conclusions section
where we summarize the results of the paper.
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2 Statement of the main results

2.1 Reduction of the maps to a simple form

In this paper we consider Cr, r ≥ 3, or analytic maps F : U ⊂ R2 → R2, where U is a
neighborhood of (0, 0), of the form

F (x, y) =

x+ c y + f1(x, y)

y + f2(x, y)


 , (2.1)

with c > 0 and with f1(x, y), f2(x, y) = O(‖(x, y)‖2). Via the Cr change of variables given
by x̃ = x, ỹ = y + 1

c
f1(x, y), F can be written in the form

F (x, y) =

 x+ c y

y + f(x, y)


 ,

with f(x, y) = O(‖(x, y)‖2) having the same regularity as F . In the Cr case we denote by
P (x, y) the Taylor polynomial of degree r of f(x, y). We write P (x, y) in the form

P (x, y) = p(x) + yq(x) + u(x, y),

where we have collected all the terms independent of y in p(x), the terms that are linear in
y in yq(x) and all remaining terms in u(x, y). Note that all terms in u(x, y) have the factor
y2. More precisely, we write p(x) = xk(ak + · · ·+ arx

r−k) and q(x) = xl−1(bl + · · ·+ brx
r−l),

with 2 ≤ k, l ≤ r. Therefore we have f(x, y) = P (x, y) + g(x, y) with g(x, y) = o(‖(x, y)‖)r.
Also, note that one can always assume that c > 0. If this is not the case, then it can be
attained via the linear transformation given by L(x, y) = (x,−y), taking the conjugate map
F̃ = L−1 ◦F ◦L. Notice however that L sends the lower semi plane to the upper one. Hence,
any map F of the form (2.1) can be written in the form

F̄ (x, y) =

 x+ c y

y + p(x) + yq(x) + u(x, y) + g(x, y)


 , (2.2)

with c > 0. In the analytic case we have the same form with g(x, y) analytic. In general we
will not write the dependence of p, q, u and g on r. Throughout the paper we will refer to
(2.2) as the reduced form of F and we will use the same notation F .
We will deal with maps of the form (2.2). We remark that in contrast with other references
[12, 29] in which they work with normal forms of F à la Poincaré, we work with the reduced
form obtained with a simple change of variables. This is an important advantage when one
has to perform effective computations.
Following [12], we shall consider three cases depending on the indices k and l:

• Case 1: k < 2l − 1 and ak 6= 0,

• Case 2: k = 2l − 1 and ak, bl 6= 0,
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• Case 3: k > 2l − 1 and bl 6= 0.

In order to deal, whenever possible, with several cases at the same time we associate to F
the integers N and s: N = k in case 1 and N = l in cases 2 and 3; s = 2r in case 1 and s = r
in cases 2, 3. Notice that the generic case is case 1 with k = 2.
Next we make a comment concerning notation. The superindices x and y on the symbol of a
function or an operator that takes values in R2 will denote the first and second components of
its image, respectively. In R2 and C2 we will use the norm given by ‖(x, y)‖ = max {|x|, |y|}.
Throughout the paper, M and ρ0 will denote positive constants, and they do not take neces-
sarily the same value at different places.

2.2 The parameterization method

To study the stable curves of F we will use the parameterization method (see [7], [8], [9],
[18]). It consists in looking for the curves as images of parameterizations, K, together with
a representation of the dynamics of the map restricted to them, R, satisfying the invariance
equation,

F ◦K = K ◦R. (2.3)
This is a functional equation that has to be adapted to the setting of the problem at hand.
Clearly, we need the range of R to be contained in the domain of K. It follows immediately
from (2.3) that the range of K is invariant. Essentially, K is a (semi)conjugation of the map
restricted to the range of K to R. Equation (2.3) has to be solved in a suitable space of
functions. Usually it is convenient to have good approximations of K and R and look for a
(small) correction of K, in some sense, while maintaining R fixed. Assuming differentiability
and taking derivatives in (2.3) we get DF ◦ K · DK = DK ◦ R · DR which says that the
range of DK has to be invariant by DF .
In our setting we look for K = (Kx, Ky) : [0, ρ) → R2 such that K(0) = (0, 0) and DK(t)
satisfies DKy(t)/DKx(t) → 0 as t → 0. We already know that in the parabolic case, in
general, there is a loss of regularity of the invariant curves at the origin with respect to the
regularity of the map [12], [4], [5]. Then we can not assume a priori a Taylor expansion of
high degree of the curve at t = 0. However, we can obtain formal polynomial approximations,
Kn and Rn, of K and R, satisfying (2.3) up to a certain order that depends on the degree
of differentiability of F . Our results will then provide that these expressions are indeed
approximations of true invariant curves, whose existence is rigorously established.
On the other hand we can suppose that we have approximations, obtained in some way, that
satisfy some conditions and obtain that there are true invariant curves closeby.

2.3 Main results

First we state the main results concerning the existence of analytic stable invariant manifolds
of analytic maps of the form (2.2). Since an analytic map of the form (2.1) is analytically
conjugated to a map of the form (2.2), the results of the next theorems provide invariant
manifolds for (2.1).

5



Theorem 2.1. Let F : U ⊂ R2 → R2 be an analytic map in a neighborhood U of (0, 0) of
the form (2.2). Assume the following hypotheses according to the different cases:

(case 1) ak > 0, (case 2) ak > 0, bl 6= 0, (case 3) bl < 0.

Then, there exists a C1 map K : [0, ρ)→ R2, analytic in (0, ρ), such that

K(t) =




(t2, Ky
k+1t

k+1) + (O(t3), O(tk+2)) case 1,
(t,Ky

l t
l) + (O(t2), O(tl+1)) cases 2, 3,

(2.4)

with Ky
k+1 = −

√
2ak

c(k+1) for case 1, Ky
l = bl−

√
b2
l
+4 c ak l

2 c l for case 2 and Ky
l = bl

cl
for case 3, and

a polynomial R of the form R(t) = t+RN t
N +R2N−1t

2N−1, with Rk = c
2K

y
k+1 for case 1 and

Rl = cKy
l for cases 2, 3, such that

F (K(t)) = K(R(t)), t ∈ [0, ρ).

Remark 2.2. This theorem provides a local stable manifold parameterized by K : [0, ρ)→
R2 with ρ small. The proof does not give an explicit estimate for the value of ρ. However,
we can extend the domain of K by using the formula

K(t) = F−jK(Rj(t)), j ≥ 1,

while the iterates of the inverse map F−1 exist (note that R is a weak contraction). In
particular, if the map F−1 is globally defined, as it happens for example for the Hénon map,
one can extend the domain ofK to [0,∞). This observation also applies for the next theorems
2.3, 2.7 and 2.10. In the analytic case the domain of K can be extended to an open domain
of C that contains (0, ρ).

Next theorem is an a posteriori version of Theorem 2.1 which, given an analytic approxima-
tion, in a certain sense, of the solutions K and R of the conjugation equation F ◦K = K ◦R,
provides exact solutions of the equation, close to the approximations.

Theorem 2.3. Let F : U ⊂ R2 → R2 be as in Theorem 2.1 and let K̂ : (−ρ, ρ) → R2 and
R̂ = (−ρ, ρ)→ R be analytic maps satisfying

K̂(t) =




(t2, K̂y
k+1t

k+1) + (O(t3), O(tk+2)) case 1,
(t, K̂y

l t
l) + (O(t2), O(tl+1)) cases 2, 3,

and R̂(t) = t+ R̂N t
N +O(tN+1), R̂N < 0, such that

F (K̂(t))− K̂(R̂(t)) = (O(tn+N), O(tn+2N−1)), (2.5)

for some n ≥ 2 in case 1 or n ≥ 1 in cases 2, 3.
Then, there exists a C1 map K : [0, ρ) → R2, analytic in (0, ρ), and an analytic map
R : (−ρ, ρ)→ R such that

F (K(t)) = K(R(t)), t ∈ [0, ρ)
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and
K(t)− K̂(t) = (O(tn+1), O(tn+N)),

R(t)− R̂(t) =



O(t2k−1) if n ≤ k

0 if n > k
case 1,

R(t)− R̂(t) =



O(t2l−1) if n ≤ l − 1
0 if n > l − 1

cases 2, 3.

Remark 2.4. In case 1, condition (2.5) with n = 2 implies the following relations

K̂y
k+1 = ±

√
2ak

c(k + 1) , R̂k = c

2K̂
y
k+1.

In cases 2 and 3 the condition (2.5) with n = 1 implies

R̂l = cK̂y
k+1,




ak + blK̂

y
l = lR̂lK̂

y
l case 2,

bl = lR̂l case 3.

Remark 2.5. Theorem 2.3 provides the existence of a stable manifold assuming it has been
previously approximated but the theorem is independent of the way such an approximation
has been obtained. Propositions 3.1, 3.4 and 3.5 (in Section 3) provide an algorithm to obtain
polynomial maps Kn and Rn that satisfy condition (2.5) of Theorem 2.3 for any n.

Remark 2.6. The form of the map R given in the statement of Theorem 2.1 is the normal
form of the dynamics of a one-dimensional system in a neighborhood of a parabolic point
(see [26, 28]).

The following are the main results concerning the existence and regularity of stable invariant
manifolds of Cr maps of the form (2.2). As in the analytic case, the results provide also the
existence of invariant manifolds for maps of the form (2.1).

Theorem 2.7. Let F : U ⊂ R2 → R2 be a Cr map in a neighborhood U of (0, 0) of the form
(2.2) with r ≥ 3.
Assume the following hypotheses according to the different cases:

• (case 1) ak > 0 and r ≥ 3
2 k,

• (case 2) ak > 0, bl 6= 0, r > k and

max
{

β

(r − 2l + 2)(r − l + 1)
(
2l(l − 1) + c k ak

b2
l

β
)
,

2l β
r − l + 1

}
< 1,

where β = 2l |bl|
|bl−
√
b2
l
+4 c ak l|

.

• (case 3) bl < 0, r > 2l − 1 and l(l−1)
(r−2l+2)(r−l+1) < 1.
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Then, there exists a C1 map H : [0, ρ)→ R2, H ∈ Cr(0, ρ), of the form (2.4), with Hy
k+1 =

−
√

2ak
c(k+1) for case 1, Hy

l = bl−
√
b2
l
+4 c ak l

2 c l for case 2 and Hy
l = bl

cl
for case 3, and a polynomial

R of the form R(t) = t + RN t
N + R2N−1t

2N−1, with Rk = c
2H

y
k+1 for case 1 and Rl = cHy

l

for cases 2, 3, such that
F (H(t)) = H(R(t)), t ∈ [0, ρ).

If the map F is C∞ then the parameterization H is C∞ in (0, ρ).

Remark 2.8. The assumptions ak > 0 and k ≤ r for cases 1 and 2 and bl < 0 and l ≤ r for
case 3 are necessary conditions for the existence of a formal, locally unique stable invariant
curve of F asymptotic to (0, 0). The other hypotheses of the theorem are nondegeneracy
conditions on the reduced form of F , sufficient to ensure the existence of a stable invariant
curve of class Cr asymptotic to (0, 0). We do not claim that these conditions on r are sharp.

Remark 2.9. For case 2, the condition on the coefficients of F is always satisfied provided
that r is sufficiently larger than l. Another sufficient condition for it to be satisfied is that β
is small enough. The smallness of the coefficient β is a measure of how fast the dynamics on
the associated invariant manifold is. For case 3, a sufficient nondegeneracy condition for the
stable manifold to exist is given by r ≥ 4

3(2l − 1). Notice that the assumption r ≥ 2l − 1 is
necessary for the constructions we will do.

We also provide an a posteriori version of Theorem 2.7.

Theorem 2.10. Let F : U ⊂ R2 → R2 be a map satisfying the hypotheses of Theorem 2.7
and let K̂ : (−ρ, ρ)→ R2 and R̂ = (−ρ, ρ)→ R be analytic maps satisfying

K̂(t) =




(t2, K̂y
k+1t

k+1) + (O(t3), O(tk+2)) case 1,
(t, K̂y

l t
l) + (O(t2), O(tl+1)) cases 2, 3,

and R̂(t) = t+ R̂N t
N +O(tN+1), R̂N < 0, such that

F (K̂(t))− K̂(R̂(t)) = (O(tn+N), O(tn+2N−1)),

for some n ≥ 2 in case 1 or n ≥ 1 in cases 2, 3.
Then, there exists a C1 map H : [0, ρ) → R2, H ∈ Cr(0, ρ), and an analytic map R :
(−ρ, ρ)→ R such that

F (H(t)) = H(R(t)), t ∈ [0, ρ)
and

H(t)− K̂(t) = (O(tm), O(tm+N−1)),
where m = min {n + 1, 2r − 2k + 2} (case 1) and m = min {n + 1, r − 2l + 2} (cases 2, 3),
and

R(t)− R̂(t) =



O(t2k−1) if n ≤ k

0 if n > k
case 1,

R(t)− R̂(t) =



O(t2l−1) if n ≤ l − 1
0 if n > l − 1

cases 2, 3.
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The structure of the proof is analogous to the one of Theorem 2.3 and uses the constructions
of the approximations in the proofs of Theorems 2.1 and 2.7. It will be omitted.
As mentioned, using the conjugations (x, y) 7→ (±x,±y) and F−1 we can obtain the local
phase portraits and the location of the local invariant manifolds of F depending on the
studied cases (see [12]).
Remark 2.11. The invariant manifolds obtained in Theorems 2.1, 2.3, 2.7 and 2.10 are
unique. For that we refer to Theorem 4.1 of [12], where it is proved that if the map F is Ck,
in all the considered cases the local stable set W s+

ρ is a graph and therefore is unique. This
is proved by checking that both the iterates of the points that are above and the ones that
are below the invariant curve cannot converge to the fixed point by a detailed study of the
behaviour of the iterates. However, the parameterizations are not unique because if K and
and R satisfy F ◦K = K ◦R, then for any invertible map β : [0, ρ]→ R, the maps K̃ = K ◦β
and R̃ = β−1 ◦R ◦ β satisfy F ◦ K̃ = K̃ ◦ R̃.

2.4 Unstable manifolds

Assuming F satisfies the hypotheses of Theorem 2.1 if F is analytic, or the ones of Theorem
2.7 if F is differentiable, in cases 1 and 2, the results for the unstable manifolds are obtained
from the stated theorems without having to compute the inverse map F−1. Only in case 2
for differentiable maps one has to check a technical condition as explained below. For case
3, if one assumes bl > 0 instead, then an analogous result is obtained for the existence of an
unstable manifold of F .
Next, we show that the expansions of the parameterizations of the unstable curves obtained
in Section 3 are approximations of true invariant curves, as it happens for the stable ones.
Assume we have a map of the form (2.2). Then, by Propositions 3.1, 3.4 or 3.5 we have
approximations Kn and Rn such that

Gn(t) = F (Kn(t))−Kn(Rn(t)) = (O(tn+N), O(tn+2N−1)), (2.6)
with Rn(t) = t + RN t

N + O(tN+1) and RN > 0, which means that 0 is a repellor for Rn.
Also, Rn is invertible and we have

R−1
n (t) = t−RN t

N +O(tN+1),
and

F−1


x
y


 =


x− cy + cak(x− cy)k + cbly(x− cy)l−1 +O(xk+1) +O(yxl)

y − ak(x− cy)k − bly(x− cy)l−1 +O(xk+1) +O(yxl)


 .

Then, composing by F−1 and R−1
n in (2.6) we obtain

F−1(Kn(t))−Kn(R−1
n (t)) = (O(tn+N), O(tn+2N−1)).

Moreover, there exists a change of variables of the form C(x, y) = (x,−y) + O(‖(x, y)‖N)
that transforms F−1 into its reduced form G := C−1 ◦ F−1 ◦ C, and then G reads

G


x
y


 =


 x+ cy

y + akx
k − blyxl−1 +O(xk+1) +O(yxl)


 .
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We also have

G(C−1(Kn(t)))− C−1(Kn(R−1
n (t))) = (O(tn+N), O(tn+2N−1)).

Thus, if F is in case 1 with ak > 0 then G is also in case 1 with the same coefficient ak
positive. Also, if F is in case 2 with ak > 0 and bl 6= 0 then G is also in case 2 with the
corresponding coefficients ak positive and bl different from 0. If F is in case 3 with bl > 0
then G is also in case 3 and the coefficient of yxl−1 is given by −bl. Therefore, by Theorem
2.3 there exist a map K : [0, ρ)→ R2, analytic in (0, ρ) and an analytic map R : (−ρ, ρ)→ R
such that G ◦K = K ◦R, with

K(t)− C−1Kn(t) = (O(tn+1), O(tn+N)), (2.7)

R(t)−R−1
n (t) =




O(t2k−1) if n ≤ k

0 if n > k
case 1,

R(t)−R−1
n (t) =




O(t2l−1) if n ≤ l − 1
0 if n > l − 1

cases 2, 3.

Hence, we have F−1 ◦ C ◦K = C ◦K ◦R, which means that C ◦K is a parameterization of
an unstable manifold of F . Moreover, from (2.7) and the form of C, we have

C(K(t))−Kn(t) = (O(tn+1), O(tn+N)),

and therefore Kn is an approximation of a parameterization of such unstable manifold.
In the Cr case one has to apply Theorem 2.10. If F satisfies the conditions of case 1, G also
does. The same happens for case 3 if we assume bl > 0 instead of bl < 0. If F satisfies the
conditions of case 2, since the coefficient bl of F becomes −bl for G, one has to check the
condition involving the maximum taking now β as β = 2l |bl|

|−bl−
√
b2
l
+4 c ak l|

. Then, for cases 1 and
3 or for case 2 when that condition holds, we conclude as we have explained for the analytic
case.

3 Formal polynomial approximation of the parameter-
izations of the curves

In this section we consider Cr maps F of the form (2.2) and we provide algorithms, depending
on the case, to obtain two polynomial maps, Kn and Rn, that are approximations of solutions
K and R of the invariance equation

F ◦K = K ◦R. (3.1)

Because of the nature of the problem, the two components of Kn will have a different order
and different degrees. The index n has to be seen as an induction index. Higher values of n
mean better approximation.
The obtained approximations correspond to formal invariant curves. They correspond to
stable curves when the coefficient Rk (case 1) or Rl (cases 2, 3) of Rn are negative (see
below). When those coefficients are positive they correspond to unstable curves.
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Proposition 3.1 (Case 1). Let F be a Cr map of the form (2.2) with 2 ≤ k ≤ r. Assume
that k < 2l − 1 and ak > 0. Then, for all 2 ≤ n ≤ 2(r − k + 1), there exist two pairs of
polynomial maps, Kn and Rn, of the form

Kn(t) =

 t2 + · · ·+Kx

nt
n

Ky
k+1t

k+1 + · · ·+Ky
n+k−1t

n+k−1




and

Rn(t) =



t+Rkt

k if 2 ≤ n ≤ k,

t+Rkt
k +R2k−1t

2k−1 if n ≥ k + 1,

such that
Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+k), O(tn+2k−1)). (3.2)

For the first pair we have

Ky
k+1 = −

√
2 ak

c (k + 1) , Rk = −
√

c ak
2(k + 1) = c

2K
y
k+1,

and for the second one

Ky
k+1 =

√
2 ak

c (k + 1) , Rk =
√

c ak
2(k + 1) = c

2K
y
k+1.

If F is C∞ or analytic, one can compute the polynomial approximation Kn up to any order.

Remark 3.2. The algorithm described in the proof of this (and the next) propositions can
be implemented in a computer program to calculate R and the expansion of Kn.

Notation 3.3. Along the proof, given a Cr one-variable map f , we will denote [f ]n, 0 ≤
n ≤ r, the coefficient of the term of order n of the jet of f at 0.

Proof. We will see that we can determine Kn and Rn iteratively.
For n = 2, we claim that there exist polynomial maps K2(t) = (t2, Ky

k+1t
k+1) and R2(t) =

t+Rkt
k, such that G2(t) = F (K2(t))−K2(R2(t)) = (O(tk+2), O(t2k+1)).

Indeed, from the expansion of G2 we have

G2(t) =

 t2 + cKy

k+1t
k+1 − t2 − 2Rkt

k+1 +O(t2k)
Ky
k+1t

k+1 + akt
2k −Ky

k+1t
k+1 − (k + 1)Ky

k+1Rkt
2k +O(t2k+1)


 ,

so, if the conditions

cKy
k+1 − 2Rk = 0, ak − (k + 1)Ky

k+1Rk = 0,

are satisfied, then we clearly have G2(t) = (O(t2+k), O(t2k+1)), and we obtain the values of
Ky
k+1 and Rk given in the statement.

11



Now we assume that we have already obtained maps Kn and Rn, 2 ≤ n < 2(r − k + 1) such
that (3.2) holds true, and we look for

Kn+1(t) = Kn(t) +

K

x
n+1 t

n+1

Ky
n+k t

n+k


 , Rn+1(t) = Rn(t) +Rn+k−1 t

n+k−1,

such that Gn+1(t) = (O(tn+k+1), O(tn+2k)).
Using Taylor’s theorem, we write

Gn+1(t) = F (Kn(t) + (Kx
n+1 t

n+1, Ky
n+k t

n+k))
− (Kn(t) + (Kx

n+1 t
n+1, Ky

n+k t
n+k)) ◦ (Rn(t) +Rn+k−1 t

n+k−1)
= Gn(t) +DF (Kn(t)) · (Kx

n+1t
n+1, Ky

n+kt
n+k)

− (Kx
n+1t

n+1, Ky
n+k t

n+k) ◦ (Rn(t) +Rn+k−1 t
n+k−1)

+
∫ 1

0
(1− s)D2F (Kn(t) + s(Kx

n+1t
n+1, Ky

n+kt
n+k)) ds (Kx

n+1t
n+1, Ky

n+kt
n+k)⊗2

−DKn(Rn(t))Rn+k−1 t
n+k−1

−
∫ 1

0
(1− s)D2Kn(Rn(t) + sRn+k−1 t

n+k−1) ds (Rn+k−1 t
n+k−1)2.

Performing the computations in the previous expression we have

Gn+1(t) = Gn(t)

+

 [cKy

n+k − (n+ 1)RkK
x
n+1 − 2Rn+k−1] tn+k +O(tn+k+1)

[k akKx
n+1 − (n+ k)RkK

y
n+k − (k + 1)Ky

k+1Rn+k−1] tn+2k−1 +O(tn+2k)


 .

(3.3)

Since, by the induction hypothesis, Gn(t) = (O(tn+k), O(tn+2k−1)), to complete the induction
step we need to make [Gxn+1]n+k and [Gyn+1]n+2k−1 vanish.
From (3.3) we have

[Gxn+1]n+k = [Gxn]n+k + cKy
n+k − (n+ 1)RkK

x
n+1 − 2Rn+k−1,

[Gyn+1]n+2k−1 = [Gyn]n+2k−1 + k akK
x
n+1 − (n+ k)RkK

y
n+k − (k + 1)Ky

k+1Rn+k−1.

Thus, the conditions [Gxn+1]n+k = [Gyn+1]n+2k−1 = 0 are equivalent to

−(n+ 1)Rk c

k ak −(n+ k)Rk




K

x
n+1

Ky
n+k


 =


 −[Gxn]n+k + 2Rn+k−1

−[Gyn]n+2k−1 + (k + 1)Ky
k+1Rn+k−1


 . (3.4)

If n 6= k the matrix in the left hand side of (3.4) is invertible, so we can take Rn+k−1 = 0 and
then obtain Kx

n+1 and Ky
n+k in a unique way. When n = k, the determinant of the matrix is

zero. Then, choosing
R2k−1 = 2k Rk [Gxn]2k + c [Gyn]3k−2

2 (3k + 1)Rk

,

system (3.4) has solutions. In this case, however, Kx
k+1 and Ky

2k are not uniquely determined.
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Proposition 3.4 (Case 2). Let F be a Cr map of the form (2.2), with r ≥ k ≥ 2. We
assume k = 2l − 1, ak 6= 0, bl 6= 0 and ak > − b2

l

4cl . If ak < 0 we assume also ak 6= −2l+1
3l−1 b

2
l .

Then, for all 1 ≤ n ≤ r − 2l + 2 = r − k + 1, there exists two pairs of polynomial functions
Kn and Rn of the form

Kn(t) =

 t+ · · ·+Kx

nt
n

Ky
l t
l + · · ·+Ky

n+l−1t
n+l−1


 (3.5)

and

Rn(t) =



t+Rlt

l if 1 ≤ n ≤ l − 1,
t+Rlt

l +R2l−1t
2l−1 if n ≥ l,

(3.6)

such that
Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+l), O(tn+2l−1)).

For the first pair we have

Ky
l =

bl −
√
b2
l + 4 c ak l
2 c l , Rl =

bl −
√
b2
l + 4 c ak l
2l = cKy

l ,

and for the second one

Ky
l =

bl +
√
b2
l + 4 c ak l
2 c l , Rl =

bl +
√
b2
l + 4 c ak l
2l = cKy

l .

If ak = −2l+1
3l−1 b

2
l and bl < 0 we can compute the first pair up to n = l − 1 and the second

pair for any n ≤ r − 2l + 2. If ak = −2l+1
3l−1 b

2
l and bl > 0 we can compute the first pair up to

n ≤ r − 2l + 2 and the second pair up to n = l − 1.
If F is C∞ or analytic, one can compute the polynomial approximations Kn up to any order,
except when ak = −2l+1

3l−1 b
2
l .

Proposition 3.5 (Case 3). Let F be a Cr map of the form (2.2), with r ≥ l ≥ 2. Assume
k > 2l− 1, bl 6= 0 Then, for all 1 ≤ n ≤ r− 2l+ 2, there exist a pair of polynomial functions
Kn and Rn of the form (3.5) and (3.6) respectively, such that

Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+l), O(tn+2l−1)).

We have
Ky
l = bl

c l
, Rl = bl

l
= cKy

l .

If we further assume that k ≤ r and ak 6= 0, then for 1 ≤ n ≤ r− (k− l)l− 2l+ 1 there exists
another pair Kn and Rn with

Kn(t) =

 t+ · · ·+Kx

nt
n

Ky
k−l+1t

k−l+1 + · · ·+Ky
n+k−lt

n+k−l




13



and

Rn(t) =



t+Rk−l+1t

k−l+1 if 2 ≤ n ≤ k − l,
t+Rk−l+1t

k−l+1 +R2(k−l)+1t
2(k−l)+1 if n ≥ k − l + 1,

such that
Gn(t) := F (Kn(t))−Kn(Rn(t)) = (O(tn+k−l+1), O(tn+k)).

We have
Ky
k−l+1 = −ak

bl
, Rk−l+1 = cKy

k−l+1.

If F is C∞ or analytic, one can compute the polynomial approximations Kn up to any order.

The proofs are analogous to the one of Proposition 3.1.

4 The analytic case

This section is devoted to prove Theorems 2.1 and 2.3. Following the parameterization
method, given a map F of the form (2.2), first we consider polynomial approximations
Kn : R → R2 and Rn : R → R of solutions of equation (3.1) obtained in Section 3 up
to a high enough order, to be determined in the proof. Then, keeping R = Rn fixed, we look
for a correction ∆ : [0, ρ)→ R2, for some ρ > 0, of Kn, analytic on (0, ρ), such that the pair
K = Kn + ∆, R = Rn satisfies the invariance condition

F ◦ (Kn + ∆)− (Kn + ∆) ◦R = 0. (4.1)

The proof of Theorem 2.1 is organized as follows. First, taking into account the structure
of F we rewrite equation (4.1) to separate the dominant linear part with respect to ∆ and
the remaining terms. This motivates the introduction of two families of operators, Sn,R and
Nn, F , and the spaces where these operators will act on. We provide the properties of these
operators in Lemmas 4.6 and 4.7.
Finally, we rewrite the equation for ∆ as the fixed point equation

∆ = Tn, F (∆), where Tn, F = S−1
n,R ◦ Nn, F

and we apply the Banach fixed point theorem to get the solution. The properties of the
operators Tn,F are deduced in Lemma 4.10. At the end of the section we prove Theorem 2.3.

4.1 The functional equation

Let F : U ⊂ R2 → R2 be an analytic map in a neighborhood U of (0, 0), satisfying the
hypotheses of Theorem 2.1,

F (x, y) =

x+ c y

y


+


 0
p(x) + y q(x) + u(x, y) + g(x, y)


 ,
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where c > 0, p, q and u are the polynomials introduced in Section 2.1 and g(x, y) is an
analytic function. We take p, q and u of degree at least k in case 1 and degree at least 2l− 1
in cases 2 and 3. Then we have g(x, y) = O(‖(x, y)‖k+1) for case 1 and g(x, y) = O(‖(x, y)‖2l)
for cases 2 and 3. We denote v(x, y) = u(x, y) + g(x, y).
From Propositions 3.1, 3.4 and 3.5 we take n, with n ≥ k + 1 in case 1 and n ≥ l is cases 2
and 3, and we have that there exist polynomials Kn and R = Rn such that

En(t) = (O(tn+N), O(tn+2N−1)), (4.2)

where En = F ◦ Kn − Kn ◦ R. Since we are looking for the stable manifold we will take the
approximations corresponding to R = Rn with the coefficient RN < 0.
Hence, we look for ρ > 0 and a map K = Kn + ∆ : [0, ρ)→ R2, analytic on (0, ρ) satisfying
(4.1), where Kn and R are the mentioned maps that satisfy (4.2). Moreover, we will ask ∆
to satisfy ∆ = (∆x,∆y) = (O(tn), O(tn+N−1)).
Using (4.2) we can rewrite (4.1) as

∆x ◦R−∆x = c∆y + Exn ,
∆y ◦R−∆y = p ◦ (Kxn + ∆x)− p ◦ Kxn +Kyn · (q ◦ (Kxn + ∆x)− q ◦ Kxn)

+ ∆y · q ◦ (Kxn + ∆x) + v ◦ (Kn + ∆)− v ◦ Kn + Eyn.
(4.3)

4.2 Function spaces, the operators Sn, N and Nn, N and their prop-
erties

Next we introduce notation, suitable function spaces, and some operators.

Definition 4.1. Given β, ρ > 0 such that ρ < 1 and β < π, let S be the sector

S = S(β, ρ) =
{
z ∈ C | | arg(z)| < β

2 , 0 < |z| < ρ
}
.

Given a sector S = S(β, ρ) let Xn, for n ∈ N, be the Banach space given by

Xn = {f : S → C | f ∈ Hol(S), f((0, ρ)) ⊂ R, ‖f‖n := sup
z∈S

|f(z)|
|z|n <∞},

where Hol(S) denotes the space of holomorphic functions on S.

Note that when n ≥ 1 the functions f in Xn can be continuously extended to z = 0 with
f(0) = 0 and, if moreover, n ≥ 2, the derivative of f can be continuously extended to z = 0
with f ′(0) = 0.
Note also that Xn+1 ⊂ Xn, for all n ∈ N, and that if f ∈ Xn+1, then ‖f‖n ≤ ‖f‖n+1. Moreover
if f ∈ Xm, g ∈ Xn, then fg ∈ Xm+n and ‖fg‖m+n ≤ ‖f‖m ‖g‖n.
Given n, m ∈ N we denote Xm,n := Xm ×Xn the product spaces, endowed with the product
norm

‖f‖m,n = max {‖fx‖m, ‖f y‖n}, f = (fx, f y) ∈ Xm,n.
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Given n ≥ 1, N ≥ 2, we define the space

Σn,N = Xn, n+N−1,

endowed with the product norm. Also, given α > 0, we define the closed ball

Σα
n,N = {f ∈ Σn,N | ‖f‖Σn,N ≤ α}.

For the sake of simplicity, we will omit the parameters ρ and β in the notation of the spaces
Σn,N and the balls Σα

n,N .
Now let F be as in Theorem 2.1, and Kn and R = Rn be the polynomials provided in Section
3 satisfying (4.2) with n ≥ k + 1 in case 1 and n ≥ l in cases 2, 3.
Since F is analytic in U , it has a holomorphic extension to some neighborhood W of (0, 0) in
C2. Let d > 0 be the radius of a ball in C2 contained in the domain where F is holomorphic.
Also, Kn and R are defined on any complex sector S(β, ρ). Then it is possible to set equation
(4.3) in a space of holomorphic functions defined in a sector S(β, ρ), and look for ∆ being
an analytic function of a complex variable that takes real values when restricted to the real
line.
To solve equation (4.3), we will consider n big enough and we will look for a solution, ∆, in
a closed ball of the space Σn,N . In order for the compositions in (4.3) to make sense we need
to ensure the range of Kn + ∆ to be contained in the domain where F is analytic. We take

α = min
{

1
2 ,

d
2

}
.

In this way, since Kn(0) = (0, 0), taking ρK ∈ (0, 1) such that supz∈S(β, ρK) ‖Kn(z)‖
< d/2 and ρ ≤ ρK , if ∆ : S(β, ρ) → C2 belongs to the ball of radius α of Xn,m, with
n, m ≥ 0, we have

sup
z∈S(β, ρ)

‖∆(z)‖ = sup
z∈S(β, ρ)

max{ |∆x(z)|, |∆y(z)|} ≤ max {d2 ρn, d2 ρm} <
d

2 .

Therefore, under the previous conditions, if ρ ≤ ρK and ∆ ∈ Σα
n,N then ‖Kn(z) + ∆(z)‖ < d

and the composition F ◦ (Kn + ∆) is well defined.
Next we introduce two families of operators that will be used to deal with (4.3). The definition
of such operators is motivated by the equation itself.
First, we state the following auxiliary result (see [3]),

Lemma 4.2. Let R : S(β, ρ) → C be a holomorphic function of the form R(z) = z +
RNz

N + O(|z|N+1), with RN < 0. Assume that 0 < β < π
N−1 . Then, for any ν ∈ (0, (N −

1)|RN | cosλ), with λ = β N−1
2 , there exists ρ > 0 small enough such that

|Rj(z)| ≤ |z|
(1 + j ν |z|N−1)1/N−1 , ∀ j ∈ N, ∀ z ∈ S(β, ρ),

where Rj refers to the j-th iterate of the map R. In addition, R maps S(β, ρ) into itself.
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Then, if f is defined in S(β, ρ), with suitable values of the parameters β, ρ, and R satisfies
the conditions of the lemma, the composition f ◦R is well defined.

Definition 4.3. Given n ≥ 1, N ≥ 2 and a polynomial R(z) = z + RNz
N + O(|z|N+1)

satisfying the hypotheses of Lemma 4.2, let Sn,R : Σn,N → Σn,N be the linear operator
defined component-wise as Sn,R = (Sxn,R, Syn,R), with

Sxn,R f = Syn,R f = f ◦R− f.

Remark 4.4. Notice that although both components of Sn,R are formally identical they act
on spaces of holomorphic functions of different orders.

Definition 4.5. Let F be the holomorphic extension of an analytic map of the form (2.2)
satisfying the hypotheses of Theorem 2.1. For n ∈ N, we introduce Nn, F = (N x

n, F ,N y
n, F ) :

Σα
n,N → Xn+N−1, n+2N−2, by

N x
n, F (f) = c f y + Exn ,
N y
n, F (f) = p ◦ (Kxn + fx)− p ◦ Kxn +Kyn · (q ◦ (Kxn + fx)− q ◦ Kxn)

+ f y · q ◦ (Kxn + fx) + v ◦ (Kn + f)− v ◦ Kn + Eyn.

By the properties of R and the choice of α, the operators Sn,R and Nn, F are well defined and
Sn,R is linear and bounded.
Using these operators, equations (4.3) can be written as

Sn,R ∆ = Nn, F (∆).

The following lemma states that the operators Sn,R have a bounded right inverse and provide
a bound for the norm ‖S−1

n,R‖.

Lemma 4.6. Given N ≥ 2 and n ≥ 1, the operator Sn,R : Σn,N → Σn,N , has a bounded
right inverse

S−1
n,R : Xn+N−1, n+2N−2 → Σn,N = Xn, n+N−1,

given by
S−1
n,R η = −

∞∑

j=0
η ◦Rj, η ∈ Xn+N−1, n+2N−2. (4.4)

Moreover, for any fixed ν ∈ (0, (N − 1)|RN |), there exists ρ > 0 such that, taking S(β, ρ)
with β < π

N−1 as the domain of the functions of Xn+N−1, n+2N−2, we have the operator norm
bounds

‖(Sxn,R)−1‖ ≤ ρN−1 + 1
ν
N−1
n
, ‖(Syn,R)−1‖ ≤ ρN−1 + 1

ν
N−1

n+N−1 .

The operators Nn, F are Lipschitz and we provide bounds for their Lipschitz constants.

Lemma 4.7. For each n ≥ 3, there exists a constant, Mn > 0, for which the operator Nn, F
satisfies

Lip N x
n, F = c,
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and

Lip N y
n, F ≤ k |ak|+Mnρ, (case 1),

Lip N y
n, F ≤ max{((l − 1) |Ky

l bl|+ k |ak|) +Mnρ, |bl|+Mnρ}, (case 2),
Lip N y

n, F ≤ max{(l − 1) |Ky
l bl|+Mnρ, |bl|+Mnρ}, (case 3),

where ρ is the radius of the sector S(β, ρ) where the functions of Σα
n,N are defined.

Now, we define the third family of operators, Tn, F .

Definition 4.8. Let F be the holomorphic extension of an analytic map of the form (2.2)
satisfying the hypotheses of Theorem 2.1. Given n ≥ 3 we define Tn, F : Σα

n,N → Σn,N by

Tn, F = S−1
n,R ◦ Nn, F .

Remark 4.9. Note that given a map F , to define the previous operators we always take
together the associated triple (F, Kn, R) satisfying F ◦Kn−Kn◦R = En. Then, the operators
Sn,R, Nn, F and Tn, F are associated not only with the map F itself but to the approximation
of a particular invariant manifold of F .

Lemma 4.10. Given an analytic map F satisfying the hypotheses of Theorem 2.1, there exist
n0 > 0 and ρ0 > 0 such that if ρ < ρ0, then, for every n ≥ n0, we have Tn, F (Σα

n,N) ⊆ Σα
n,N

and Tn, F is a contraction operator in that ball.

The proofs of the previous three lemmas are deferred to Section 6.

4.3 Proofs of Theorems 2.1 and 2.3

Now we are ready to give the proofs of Theorems 2.1 and 2.3.

Proof of Theorem 2.1. First we consider the holomorphic extension of F to a neighborhood
of the origin which contains a ball of radius d > 0 in C2 and let α = min {1/2, d/2}. Let Kn
and R(t) = Rn(t) = t + RN t

N + R2N−1t
2N−1 be the polynomials given by Propositions 3.1,

3.4 or 3.5 , with n ≥ k + 1 or n ≥ l respectively, satisfying

En(t) = F ◦ Kn(t)−Kn ◦ Rn(t) = (O(tn+N), O(tn+2N−1)).

We also assume that n > n0, where n0 is the integer provided by Lemma 4.10. We rewrite

F ◦ (Kn + ∆)− (Kn + ∆) ◦R = 0

in the form (4.3), or using the previously defined operators,

Sn,R ∆ = Nn, F (∆).

By Lemma 4.6, if ρ is small, Sn,R has a right inverse and we can rewrite the equation as

∆ = Tn, F (∆).
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By Lemma 4.10 we have that Tn, F maps Σα
n,N into itself and is a contraction. Then it has a

unique fixed point, ∆∞ ∈ Σα
n,N . Note that this solution is unique once Kn is fixed. Finally

K = Kn + ∆∞ satisfies the conditions in the statement.
The C1 character of K at the origin follows from the order condition of K at 0.

Proof of Theorem 2.3. We write the proof for case 1, the other cases being almost identical
except for some adjustments in the indices of the coefficients of Rn. Let n0 be the integer
provided by Lemma 4.10. If the value of n given in the statement is such that n < n0,
first we look for a better approximation Kn0 of the form Kn0(t) = K̂(t) +∑n0

j=n+1 K̂
j(t) with

K̂j(t) = (K̂x
j t
j, K̂y

j+k−1t
j+k−1) and

Rn0(t) =



R̂(t) if n ≥ k + 1,
R̂(t) + R̂2k−1t

2k−1 if n ≤ k.

The coefficients K̂x
j , K̂

y
j+k−1 and R̂2k−1 are obtained imposing the condition

F ◦ Kn0(t)−Kn0 ◦ Rn0(t) = (O(tn0+k), O(tn0+2k−1)).

Proceeding as in Proposition 3.1, we obtain K̂j iteratively. We denote Kj(t) = K̂(t) +
∑j
m=n+1 K̂

m(t) and Rj(t) = R̂(t) + R̃j(t), where R̃j(t) = δj,k+1R̂2k−1t
2k−1. In the iterative

step we have
F ◦ Kj(t)−Kj ◦ Rj(t) = (O(tj+k), O(tj+2k−1)).

Then,

F (Kj(t) + K̂j+1(t))−(Kj + K̂j+1) ◦ (R̂(t) + R̃j(t))
=F (Kj(t))−Kj(R̂(t))

+DF (Kj(t))K̂j+1(t)− K̂j+1(R̂(t) + R̃j(t))

+
∫ 1

0
(1− s)D2F (Kj(t) + sK̂j+1(t))(K̂j+1(t))⊗2 ds

−DKj(R̂(t))R̃j(t)

−
∫ 1

0
(1− s)D2Kj(R̂(t) + sR̃j(t))(R̃j(t))2 ds.

The condition
F ◦ Kj+1(t)−Kj+1 ◦ Rj+1(t) = (O(tj+k+1), O(tj+2k))

leads to the same equation (3.4) as in Proposition 3.1 which we solve in the same way. From
this point we can proceed as in the proof of Theorem 2.1 and look for ∆ ∈ Xn0, n0+k−1 such
that the pair K = Kn0 + ∆, R = Rn0 satisfies F ◦K = K ◦R. We have that

K(t)− K̂(t) = Kn0(t)− K̂(t) + ∆(t) = (O(tn+1), O(tn+k)) + (O(tn0), O(tn0+k−1)),

with n < n0.
If n ≥ n0 we look for K∗(t) = K̂(t) + K̂n+1(t) with

K̂n+1(t) = (K̂x
n+1t

n+1, K̂y
n+kt

n+k)
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and

R∗n(t) =



R̂(t) if n ≥ k + 1,
R̂(t) + R̂2k−1t

2k−1 if n ≤ k.

We determine K̂x
n+1, K̂

y
n+k so that F ◦ K∗(t)− K∗ ◦ R∗(t) = (O(tn+k+1), O(tn+2k)) as in the

previous case and we look for ∆ ∈ Xn+1, n+k such that the pair K = K∗+ ∆, R = R∗ satisfies
F ◦ K = K ◦ R. As before we obtain K(t) − K̂(t) = (O(tn+1), O(tn+k)). Again, the C1

character of K at 0 follows form the order condition of K.

5 The differentiable case

This section is devoted to prove Theorem 2.7 for

F (x, y) =

x+ c y

y


+


 0
p(x) + y q(x) + u(x, y) + g(x, y)


 .

As in Section 4 we use the parameterization method. To get the initial approximation we
first consider the Taylor polynomial of F or degree r which we denote by F≤ and reads

F≤(x, y) =

x+ c y

y


+


 0
p(x) + y q(x) + u(x, y)


 .

Since F≤ is analytic, Theorem 2.1 provides a C1 map K : [0, ρ)→ R, analytic on (0, ρ) and
a polynomial, R, such that

F≤ ◦K −K ◦R = 0 on [0, ρ). (5.1)

Then, we look for ρ > 0 and a Cr function, H = K + ∆ : (0, ρ)→ R2, such that

F ◦ (K + ∆)− (K + ∆) ◦R = 0, (5.2)

In Section 5.1, we establish a functional equation for ∆ obtained from (5.2) which will be the
object of our study. In Section 5.2 we describe the function spaces where we will set such an
equation and the operators SL,R and NL,F together with their properties (Lemmas 5.6 and
5.7). Notice that although the notation of the operators is similar to the one of the operators
in Section 4, both pair of families of operators are different.
In Section 5.3 we recall the fiber contraction theorem and we also introduce the family of
operators TL,F given by TL,F = S−1

L,R◦NL,F and we describe its properties in Lemmas 5.9 and
5.10. Finally, in Section 5.4 we prove the existence of a solution of the functional equation
and we conclude the proof of Theorem 2.7.
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5.1 The functional equation

Let F : U ⊂ R2 → R2 be a Cr map of the form (2.2) satisfying the hypotheses of Theorem
2.7. Along the section, once having taken a Cr map F of the form (2.2), the maps K and
R will always refer to the analytic solutions of F≤ ◦K −K ◦ R = 0, on some interval [0, ρ)
given by Theorem 2.1.
Using (5.1) and the previous notation, condition (5.2) can be rewritten as

∆x ◦R−∆x = c∆y,

∆y ◦R−∆y = p ◦ (Kx + ∆x)− p ◦Kx +Ky · (q ◦ (Kx + ∆x)− q ◦Kx)
+ ∆y · q ◦ (Kx + ∆x) + u ◦ (K + ∆)− u ◦K + g ◦ (K + ∆).

(5.3)

Clearly, a continuous function ∆ satisfies (5.2) if and only if it satisfies (5.3). Since we want
to prove differentiablity of ∆, next we derive r equations for the derivatives of ∆ by formally
differentiating equation (5.3). In our approach we will look for continuous solutions of these
equations.
After having differentiated (5.3) L times, 1 ≤ L ≤ r, we obtain

DL∆x ◦R (DR)L −DL∆x = cDL∆y + J x
L,N(∆, . . . , DL−1∆),

DL∆y ◦R (DR)L −DL∆y

= p′ ◦ (Kx + ∆x)DL∆x + (Ky + ∆y) q′ ◦ (Kx + ∆x)DL∆x

+ q ◦ (Kx + ∆x)DL∆y + (Du+Dg) ◦ (K + ∆) ·DL∆
+ J y

L,N(∆, . . . , DL−1∆),

(5.4)

where J x
L, F and J y

L, F are given by

J x
L, F (f0, . . . fL−1) = Λx

L,R(fx0 , . . . fxL−1),
J y
L, F (f0, . . . fL−1) = Λy

L,R(f y0 , . . . f yL−1) + ΩL,F (f0, . . . , fL−1),
(5.5)

and Λi
L,R, i = x, y, by

Λi
1, R(f i0) = 0,

Λi
2, R(f i0, f i1) = −f i1 ◦RD2R,

Λi
L,R(f i0, . . . , f iL−1) = D[Λi

L−1, R(f i0, . . . , f iL−2)]
− (L− 1) f iL−1 ◦R (DR)L−2D2R, L ∈ {3, . . . , r},

(5.6)

where in the expansion of the derivative D[Λi
L−1, R(f i0, . . . , f iL−2)] we substitute Dfi by fi+1.

Note that Λi
L,R does not depend on f0. Moreover, ΩL,F is given by

Ω1, F (f0) = DKx (p′ ◦ (Kx + fx0 )− p′ ◦Kx) +DKy · (q ◦ (Kx + fx0 )− q ◦Kx)
+Ky ·DKx (q′ ◦ (Kx + fx0 )− q′ ◦Kx) + f y0 ·DKx q′ ◦ (Kx + fx0 )
+ (Du ◦ (K + f0)−Du ◦K)DK +Dg ◦ (K + f0)DK,

ΩL,F (f0, . . . , fL−1) = D[ΩL−1, F (f0, . . . , fL−2)] +D[p′ ◦ (Kx + fx0 )]fxL−1

+D[(Ky + f y0 )q′ ◦ (Kx + fx0 )]fxL +D[q ◦ (Kx + fx0 )]f yL−1

+D[(Du+Dg) ◦ (K + f0)] · fL−1, L ∈ {2, . . . , r}.

(5.7)
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Note that ΛL,R(f0, . . . , fL−1) comes from the differentiation on the left hand side of (5.3)
and ΩL,F (f0, . . . , fL−1) comes from the differentiation on the right hand side of the second
equation of (5.3). Expanding the derivatives in (5.6) and (5.7) and changing Dfi by fi+1
we obtain expressions that have to be understood as operators acting on (f0, . . . , fL−1),
considering the fj’s as independent variables.
It is important to note that Λi

L,R and Ωi
L,F , i = x, y, depend in a polynomial way on fj for

j ≥ 1, but not on f0.

5.2 Function spaces, the operators SL, R and NL, F and their prop-
erties

We introduce next the notation and the function spaces that we will use to study the func-
tional equations (5.3) and (5.4).

Definition 5.1. Given 0 < ρ < 1, let Yn, for n ∈ Z, be the Banach space given by

Yn = {f : (0, ρ)→ R | f ∈ C0(0, ρ), ‖f‖n := sup
(0, ρ)

|f(t)|
|t|n <∞},

where C0(0, ρ) denotes the space of continuous functions on (0, ρ).

Note that when n ≥ 1 the functions f in Yn can be continuously extended to t = 0 with
f(0) = 0 and, if moreover, n ≥ 2, the derivative of f can be continuously extended to t = 0
with f ′(0) = 0. For n < 0 the functions contained in Yn may be unbounded in a neighborhood
of 0.
Note also that Yn+1 ⊂ Yn, for all n ∈ Z. If f ∈ Ym, g ∈ Yn, then fg ∈ Ym+n and
‖fg‖m+n ≤ ‖f‖m ‖g‖n. If f ∈ Yn+1, then ‖f‖n ≤ ‖f‖n+1.
Given n, m ∈ Z we denote Ym,n := Ym × Yn the product space, endowed with the product
norm

‖f‖m,n = max {‖fx‖m, ‖f y‖n}, f = (fx, f y) ∈ Ym × Yn.

Given s, r, N positive integer numbers and L ∈ {0, . . . , r}, we define the spaces

ΣL,N =
L∏

j=0
(Ys−2N+2−j, s−N+1−j), 0 ≤ L ≤ r

and
DΣL−1, N = Ys−2N+2−L, s−N+1−L, 1 ≤ L ≤ r

both endowed with the product norm. Clearly, we have ΣL,N = ΣL−1, N × DΣL−1, N , and
ΣL,N = Σ0, N ×

∏L
i=1DΣi−1, N , for 1 ≤ L ≤ r.

For notational convenience we also write DΣ−1, N = Σ0, N .

Also, let αi > 0, 1 ≤ i ≤ r. Given L we write α = (α0, . . . , αL). We define the closed balls

Σα0
0, N = {f ∈ Σ0, N | ‖f‖Σ0, N ≤ α0},

DΣαi
i−1, N = {f ∈ DΣi−1, N | ‖f‖DΣi−1, N ≤ αi}, i ∈ {1, . . . , r},
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and the products of balls

Σα
L,N = Σα0

0, N ×
L∏

i=1
DΣαi

i−1, N , L ∈ {1, . . . , r},

For notational convenience we will write Σα
0, N = Σα0

0, N .
An element of ΣL,N will be denoted by (f0, . . . , fL), with f0 = (fx0 , f

y
0 ) ∈ Σ0, N , and fi =

(fxi , f
y
i ) ∈ DΣi−1, N , for i = 1, . . . , L.

For the sake of simplicity we do not write the dependence with respect to r, s and ρ in the
notation of the previous objects.
To solve the functional equation (5.2), we look for a solution, f0, of (5.3) contained in a
closed ball Σα0

0, N , and for a solution, (f1, . . . , fL), of (5.4) in a product Σα
L,N , for each L ∈

{1, . . . , r}. In order for the compositions in (5.4) to be meaningful we have to deal with f0 in
a ball of sufficiently small radius. Arguing as in the analytic case we take α0 = min

{
1
2 ,

d
2

}
,

where d is the radius of a ball contained in the domain where F is Cr. The values of the
radii αi, 1 ≤ i ≤ r, will be determined later (see proof of Lemma 5.10).
In the differentiable case we consider analogous operators as in the analytical case but now
we need a family of them, depending on L, to deal with the equations (5.4) for the derivatives
of ∆. Their definitions are determined by the structure of such equations.
First, we state two auxiliary results about the iterates of R and their derivatives.
Lemma 5.2. Let R : [0, ρ) → R be a differentiable map of the form R(t) = t + RN t

N +
O(|t|N+1), with RN < 0. Then, for any ν, µ such that 0 < ν < (N − 1)|RN | < µ, there exists
ρ > 0 such that

t

(1 + j µ tN−1)1/N−1 < Rj(t) < t

(1 + j ν tN−1)1/N−1 , ∀ j ≥ 1, ∀ t ∈ (0, ρ). (5.8)

As a consequence, R maps (0, ρ) into itself.

If R were a polynomial the upper bound in Lemma 5.2 would be an immediate corollary of
Lemma 4.2.

Proof. Let λ > 0 and ϕλ(t) = t
(1+λ tN−1)1/N−1 for t ≥ 0. A computation shows that d

dt
ϕλ(t) =

1
(1+λ tN−1)N/N−1 > 0 and hence ϕλ is increasing. We prove (5.8) by induction. When j = 1, it
is easy to see that there exists ρ > 0 such that

ϕµ(t) = t

(1 + µ tN−1)1/N−1 < R(t) < t

(1 + ν tN−1)1/N−1 = ϕν(t), ∀ t ∈ (0, ρ).

Assuming (5.8) for j ≥ 1,

Rj+1(t) = R(Rj(t)) < ϕν(Rj(t)) < ϕν

(
t

(1 + j ν tN−1)1/N−1

)

= t

(1 + (j + 1) ν tN−1)1/N−1

in the same interval (0, ρ). The lower bound is obtained in a completely analogous way using
ϕµ.
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Lemma 5.3. Let R : [0, ρ) → R be a differentiable map of the form R(t) = t + RN t
N +

O(|t|N+1), with RN < 0, such that DR(t) = 1 +NRN t
N−1 +O(|t|N). For any ν, µ such that

0 < ν < (N − 1)|RN | < µ, let κ = ν/µ. Then, there exists ρ > 0 such that

DRj(t) ≤ 1
(1 + j µ tN−1)κN/N−1 , ∀ j ∈ N, ∀ t ∈ (0, ρ). (5.9)

Proof. Since N |RN | > ν N
N−1 , by the form of the derivative DR, there exists ρ > 0 such that

0 < DR(t) < 1− νN

N − 1t
N−1, ∀ t ∈ (0, ρ).

Using the chain rule DRj(t) = Πj−1
m=0DR(Rm(t)) and the lower bound in (5.8) we can write

DRj(t) = exp
j−1∑

m=0
logDR(Rm(t)) ≤ exp

j−1∑

m=0
log

(
1− νN

N − 1(Rm(t))N−1
)

≤ exp

 −νN
N − 1

j−1∑

m=0
(Rm(t))N−1


 ≤ exp


 −νN
N − 1

j−1∑

m=0

tN−1

(1 +mµtN−1)




≤ exp
(
−νN
N − 1

∫ j

0

tN−1

(1 + sµtN−1) ds
)

= exp
(
−νN

µ(N − 1)

∫ jµtN−1

0

1
1 + ξ

dξ

)

= exp
( −κN
N − 1 log(1 + jµtN−1)

)
= 1

(1 + jµtN−1)κN/N−1 .

From now on we assume R is as in the previous lemmas and ρ satisfies the conclusions of
them, in particular, R(0, ρ) ⊂ (0, ρ).
Definition 5.4. Given L ∈ {0, . . . , r}, let SL,R : DΣL−1,N → DΣL−1,N be the linear operator
defined component-wise as SL,R = (SxL,R, SyL,R), with

SxL,R f = SyL,R f = f ◦R (DR)L − f.

Notice that although both components are formally identical, they act on different domains.
Definition 5.5. Given a map F of class Cr satisfying the hypotheses of Theorem 2.7, let
N0, F : Σα

0, N → Ys−N+1, s be the operator given by

N x
0,F (f0) = c f y0 ,

N y
0,F (f0) = p ◦ (Kx + fx0 )− p ◦Kx +Ky · [q ◦ (Kx + fx0 )− q ◦Kx]

+ f y0 · q ◦ (Kx + fx0 ) + u ◦ (K + f0)− u ◦K + g ◦ (K + f0),

and let NL,F : Σα
L,N → Ys−N+1−L, s−L, L ∈ {1, . . . , r}, be the operator given by

N x
L,F (f0, . . . , fL) = c f yL + J x

L,N(f0, . . . , fL−1),
N y
L,F (f0, . . . , fL) = p′ ◦ (Kx + fx0 ) · fxL + (Ky + f y0 ) · q′ ◦ (Kx + fx0 ) fxL

+ q ◦ (Kx + fx0 ) · f yL + (Du+Dg) ◦ (K + f0) · fL
+ J y

L,N(f0, . . . , fL−1),

where JL,N are already introduced in (5.5), (5.6) and (5.7).
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From the definition of the operators SL,R and NL,F , the recursive expressions of ΛL,R and
ΩL,F obtained in (5.6) and (5.7) and the choice of α0 it is clear that the operators SL,R and
NL,F are well defined and that SL,R is linear and bounded.
Note that with the operators introduced above, equations (5.3) and (5.4) can be written now
as

SL,RDL∆ = NL,F (∆, . . . , DL∆), (∆, . . . , DL∆) ∈ Σα
L,N ,

for each L ∈ {0, . . . , r} and α0 as fixed previously and some αi > 0, 1 ≤ i ≤ L.
In the following lemmas we prove that each of the operators SL,R has a bounded right inverse
and we provide a bound for the norm ‖S−1

L,R‖. We also show that each of the operators NL,F
is Lipschitz with respect to the last variable and we provide a uniform bound for the Lipschitz
constant for the family NL,F , L ∈ {0, . . . , r}. For the proofs of Lemmas 5.6 and 5.7, see
Section 6.

Lemma 5.6. Let 0 ≤ L ≤ r. Assume r > k in case 1 and r > 2l−1 in cases 2 and 3. Then,
given 0 < ν < (N−1)|RN | < µ such that κ = ν/µ satisfies κ > 1/N , there exists ρ > 0 small
enough such that, taking (0, ρ) as the domain of the functions of Ys−N+1−L, s−L, the operator
SL,R : DΣL−1, N → DΣL−1, N has a bounded right inverse,

S−1
L,R : Ys−N+1−L, s−L → DΣL−1, N = Ys−2N+2−L, s−N+1−L,

given by
S−1
L,R η = −

∞∑

j=0
η ◦Rj (DRj)L, η ∈ Ys−N+1−L, s−L, (5.10)

and we have the operator norm bound

‖(SxL,R)−1‖ ≤ ρN−1 + 1
ν

N−1
s−2N+2+L(κN−1) ,

‖(SyL,R)−1‖ ≤ ρN−1 + 1
ν

N−1
s−N+1+L(κN−1) .

Lemma 5.7. Let 0 ≤ L ≤ r. Assume r > k in case 1 and r > 2l − 1 in cases 2 and 3.
There exists a constant, M > 0, for which the family of operators NL,F satisfy, for each
L ∈ {0, . . . , r},

Lip N x
L, F (f0, . . . , fL−1, ·) = c,

and

Lip N y
L, F (f0, . . . , fL−1, ·) ≤ k |ak|+Mρ, (case 1),

Lip N y
L, F (f0, . . . , fL−1, ·)
≤ max{((l − 1) |Ky

l bl|+ k |ak|) +Mρ, |bl|+Mρ}, (case 2),
Lip N y

L, F (f0, . . . , fL−1, ·) ≤ max{(l − 1) |Ky
l bl|+Mρ, |bl|+Mρ}, (case 3),

where (0, ρ) is the domain of the functions of Σα
L,N .

Note that the bound we have found for Lip NL,F (f0, . . . , fL−1, ·) does not depend on L, and
the obtained bounds for ‖(Sx0, R)−1‖ and ‖(Sy0, R)−1‖ do not depend on κ.
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5.3 Main lemmas and the fiber contraction theorem

From SL,R and NL,F introduced in Section 5.2, we can define the operators TL,F and T ×L,F .

Definition 5.8. Given a map F of class Cr satisfying the hypotheses of Theorem 2.7, let
TL,F : Σα

L,N → DΣL−1, N be the operator given by

TL,F = S−1
L,R ◦ NL,F , L ∈ {0, . . . , r},

and let T ×L,F : Σα
L,N −→ ΣL,N be the operator given by

T ×L,F = (T0, F , . . . , TL,F ), L ∈ {1, . . . , r}.

In the following results we show that, under appropriate conditions, the operators TL,F have
some properties strongly related to the hypotheses of the fiber contraction theorem.

Lemma 5.9. Let F be a Cr map satisfying the hypotheses of Theorem 2.7, αi > 0, 1 ≤ i ≤ r,
and α = (α0, . . . , αL), 0 ≤ L ≤ r. Then, for every L ∈ {0, . . . , r − 1}, the operator
TL,F : Σα

L,N → DΣL−1, N is Lipschitz on Σα
L,N with respect to (f0, . . . , fL−1), with Lipschitz

constant independent of fL.
Moreover, the operator Tr, F : Σα

r,N → DΣr−1, N can be decomposed as T (1)
r, F + T (2)

r, F , where T (1)
r, F

is Lipschitz on Σα
r,N with respect to (f0, . . . , fr−1), with Lipschitz constant independent of fr

and
T (2)
r, F =

(
0, (Syr,R)−1 ◦ (Drg ◦ (K + f0)(DK + f1)r)

)
,

which is continuous with respect to (f0, f1).

Next we introduce a convenient rescaling. Given γ > 0, let

Tγ(x, y) = (x, γ y). (5.11)

We define F̃ = T−1
γ ◦ F ◦ Tγ. If K and R are analytic maps associated to F , then the

corresponding analytic maps associated to F̃ will be given by K̃ = T−1
γ ◦ K and R̃ = R.

Concretely, the parameterizations of F̃ and K̃ with respect to the coefficients of F and K
will be given by

F̃ (x, y) =

x+ γcy

y


+


 0
γ−1 ak x

k + bl y x
l−1 + · · ·


 ,

and

K̃(t) =

 t2 + · · ·
γ−1Ky

k+1 t
k+1 + · · ·


 , for case 1,

K̃(t) =

 t+ · · ·
γ−1Ky

l t
l + · · ·


 , for cases 2 and 3.
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Lemma 5.10. Given a Cr map F satisfying the hypotheses of Theorem 2.7, there exist
ρ0 > 0 and a linear transformation Tγ as in (5.11) such that if ρ < ρ0, then the operator
TL, F̃ : Σα

L,N → DΣL−1, N associated to F̃ = T−1
γ ◦F◦Tγ, for L ∈ {0, . . . , r}, is contractive with

respect to the variable fL ∈ DΣα
L−1, N . Moreover, for a proper choice of α = (α0, . . . , αL),

TL, F̃ maps Σα
L,N into DΣαL

L−1, N , for each L ∈ {0, . . . r}.

For the proofs of Lemmas 5.9 and 5.10, see Section 6.

Remark 5.11. The value α0 denoting the radius of the ball Σα0
0, N , obtained previously, is

forced by the definition ofN0, F (and thus, of T0, N). Indeed, since we will look for the invariant
curves of F as parameterizations of Σα0

0, N , their image must be contained in the domain where
F is Cr. This is not the case for the derivatives of the invariant curves, for which we do not
need to put a bound on them to have the operators well defined. Also, the definition of TL,F ,
for L ∈ {1, . . . , r} does not force any restriction to the size of the arguments f1, . . . , fL
since the dependence with respect to these variables is polynomial. The values α1, . . . , αr
obtained in Lemma 5.10 provide then upper bounds for the norms of the derivatives of the
invariant curves of F .

Finally, for the convenience of the reader, we recall the fiber contraction theorem [24] which
will be used in the proof of Theorem 2.7. We use a version of it stated in [13].

Theorem 5.12 (Fiber contraction theorem). Let Σ and DΣ be metric spaces, DΣ complete,
and Γ : Σ×DΣ→ Σ×DΣ a map of the form Γ(γ, ϕ) = (G(γ), H(γ, ϕ)). Assume that

(a) G has an attracting fixed point, γ∞ ∈ Σ,

(b) H is contractive with respect to the second variable, ie, for all γ ∈ Σ, LipH(γ, ·)
< 1.

Let ϕ∞ ∈ DΣ be the fixed point of H(γ∞, ·).

(c) H is continuous with respect to γ at (γ∞, ϕ∞).

Then, (γ∞, ϕ∞) is an attracting fixed point of Γ.

5.4 Proof of Theorem 2.7.

We give next the proof of Theorem 2.7, where we use the setting and the results obtained
along the previous sections.

Proof of Theorem 2.7. Let F be as in the statement and Tγ, γ > 0, be defined by (5.11). It
is clear that given maps H and R, the triple (F, H, R) satisfies F ◦H = H ◦ R if and only
if (F̃ , H̃, R̃) satisfies F̃ ◦ H̃ = H̃ ◦ R̃, where F̃ = T−1

γ ◦ F ◦ Tγ, H̃ = T−1
γ ◦ H and R̃ = R.

Clearly F and F̃ belong to the same case 1, 2 or 3 of the reduced form (2.2).
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To prove the theorem, we shall look for ρ > 0 and a function H : (0, ρ)→ R2, with H(0) = 0
and H ∈ Cr(0, ρ), and a map of the form R(t) = t+RN t

N +R2N−1t
2N−1, with RN < 0, such

that
F ◦H = H ◦R, (5.12)

with N = k for case 1 of (2.2) and N = l for cases 2 and 3.
We take the value γ > 0 associated with F provided in Lemma 5.10, and we set F̃ =
T−1
γ ◦ F ◦ Tγ. Let F̃≤ be the Taylor polynomial of F̃ of degree r at the origin. Then it is a

polynomial of the form

F̃≤(x, y) =

x+ γ c y

y


+


 0
γ−1 ak x

k + bl y x
l−1 + h.o.t.


 .

Since we assumed ak > 0 for cases 1 and 2 and bl < 0 for case 3, then by Theorem 2.1,
there exists, for each case, an analytic map K̃ and a polynomial R of the form R(t) =
t+RN t

N +R2N−1 t
2N−1, with RN < 0, satisfying F̃≤ ◦ K̃ − K̃ ◦R = 0.

Given such maps K̃ and R, we look for ρ > 0 and a function ∆ : (0, ρ)→ R2, ∆ ∈ Cr(0, ρ),
such that

F̃ ◦ (K̃ + ∆)− (K̃ + ∆) ◦R = 0. (5.13)

To do so, we consider the set of r equations described in (5.3) and (5.4). We take α =
(α0, . . . , αr) with α0 = min

{
1
2 ,

d
2

}
, where d is the radius of a centered ball in R2 contained

in the domain where F̃ is of class Cr, and α1, . . . , αr given in Lemma 5.10. We also take the
value ρ > 0 associated to F̃ provided in Lemma 5.10.
Given such values of ρ and α, we take the function spaces Σα

L,N , for L ∈ {0, . . . , r}, with
domain (0, ρ) ⊂ R.
With the operators introduced in Definition 5.8, equation (5.3) can be written as

f0 = T0, F̃ (f0), f0 ∈ Σα
0, N , (5.14)

and each of the equations (5.4) can be written as

fL = TL, F̃ (f0, . . . , fL), (f0, . . . , fL) ∈ Σα
L,N ,

for L ∈ {1, . . . , L}, or equivalently, all of them together as a unique equation,

(f0, . . . , fr) = T ×
r, F̃

(f0, . . . , fr), (f0, . . . , fr) ∈ Σα
r,N . (5.15)

By Lemma 5.10 and the Banach fixed point theorem, T0, F̃ has an unique attracting fixed
point, f∞0 ∈ Σα

0,N , which is a solution of equation (5.14) and which ensures that there exists
a continuous solution, ∆∞, of (5.13). We will see next that in fact the solution f∞0 of (5.14)
is a function of class Cr.
We will proceed by induction. First we prove that f∞0 is C1.
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Let us pick a C1 function f 0
0 ∈ Σα0

0, N such that f 0
1 := Df 0

0 belongs to DΣα1
0, N . For simplicity

we take f 0
0 = 0. Then we take the sequence (f j0 , f j1 ) = (T ×1, F̃ )j(f 0

0 , f
0
1 ). From the definition

of the operator T1, F̃ , we have

D(T0, F̃ (f 0
0 )) = T1, F̃ (f 0

0 , f
0
1 ). (5.16)

Applying (5.16) inductively we have that f j1 = Df j0 , for all j. Also, since f 0
0 is C1 and

f 0
1 = Df 0

0 , all the iterates f j0 = (T0, F̃ )j(f 0
0 ) are C1, and as we have said the sequence

converges in Σα0
0, N to f∞0 .

Again, by Lemma 5.10, the operator T1, F̃ : Σα
0,N × DΣα1

0,N → DΣα1
0, N is contractive with

respect to the variable f1 ∈ DΣα
0, N . Thus, T1, F̃ (f∞0 , ·) has a unique attracting fixed point,

f∞1 ∈ DΣα
0,N .

Moreover, by Lemma 5.9, T1, F̃ is continuous with respect to f0 at any point (f0, f1) ∈ Σα
1, N .

Hence, by the fiber contraction theorem, (f∞0 , f∞1 ) ∈ Σα
1, N is an attracting fixed point of

T ×1, F̃ , which means that the sequence f i1 = Df j0 converges in DΣ0, N . That is, f i1 converges
uniformly in C0(0, ρ) and therefore we have f∞1 = Df∞0 and thus, f∞0 ∈ C1(0, ρ).
Now, for every L ∈ {2, . . . , r}, we assume that there exists a unique attracting fixed point
of T ×

L−1, F̃ , given by (f∞0 , . . . , f∞L−1) ∈ Σα
L−1, N , such that f∞0 ∈ CL−1(0, ρ) and

f∞1 = Df∞0 , . . . , f∞L−1 = DL−1f∞0 .

We will see next that in fact f∞0 is of class CL.
Let us pick again the function f 0

0 = 0 ∈ CL(0, ρ), and let us take also f 0
1 := Df 0

0 , . . . , f
0
L :=

DLf 0
0 . Then we have (f 0

0 , . . . f
0
L−1) ∈ Σα

L−1, N and f 0
L ∈ DΣαL

L−1, N .
From the definition of the operator TL, F̃ , we have

D(TL−1, F̃ (f 0
0 , . . . , f

0
L−1)) = TL, F̃ (f 0

0 , . . . , f
0
L). (5.17)

Then let (f j0 , . . . , f jL) = (T ×
L,F̃

)j(f 0
0 , . . . , f

0
L). Applying (5.17) inductively we have f j1 =

Df j0 , . . . , f
j
L = DLf j0 , for all j, and then the iterates (f j0 , . . . , f jL−1) = (T ×L−1, N)j(f 0

0 , . . . , f
0
L−1)

are such that f jm ∈ CL−m, for m ∈ {0, . . . , L−1}. By the induction hypothesis, the sequence
(f j0 , . . . , f jL−1) converges in ΣL−1, N to the solution (f∞0 , . . . , f∞L−1) and

f∞1 = Df∞0 , . . . , f∞L−1 = DL−1f∞0 .

Also, applying Lemmas 5.9 and 5.10 and the fiber contraction theorem, the sequence f jL =
DLf j0 converges in DΣL−1, N . That is, f jL converges uniformly in C0(0, ρ) and therefore we
have f∞L = DLf∞0 and thus, f∞0 ∈ CL(0, ρ). In conclusion f∞0 ∈ Cr(0, ρ).
Finally, the Cr map H̃ = K̃ + ∆ with ∆ = f∞0 parameterizes the stable manifold of F̃ and
therefore it is Cr.
When F is C∞, to see that the stable manifold is C∞ we take r1 satisfying the hypotheses
of the theorem and r2 > r1. The previous proof provides H1 = Kr1 + ∆1 and H2 = Kr2 + ∆2
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defined in (0, ρ1) and (0, ρ2) and of class Cr1 and Cr2 respectively that parameterize stable
manifolds W1 and W2. Theorem 4.1 of [12], which is proved by geometric methods, provides
the uniqueness of the stable manifold in this setting. If ρ2 < ρ1, since we deal with stable
manifolds we can extend W2 iterating by F−1 to recover W1. Then W1 is Cr2 for all r2 >
r1.

6 Proofs of the technical results

We will give detailed proofs for Lemmas 5.6, 5.7, 5.9 and 5.10, which correspond to the
differentiable case. Lemmas 4.6, 4.7 and 4.10 are simplified complex versions of Lemmas 5.6,
5.7 and 5.10 respectively.

6.1 Properties of the operators SL, R and NL, F

Proof of Lemma 5.6. A simple computation shows that the expression (5.10) of SL,R formally
satisfies SL,R ◦ (SL,R)−1 η = η, for η ∈ Ys−N+1−L, s−L.
We give the details of the proof for the second component SyL,R : Ys−N+1−L → Ys−N+1−L of
the operator SL,R, the details for SxL,R : Ys−2N+2−L → Ys−2N+2−L being completely analog-
ous. The results for SL,R follow immediately because the components of the operator are
uncoupled.
We take κ > 1/N and µ, ν such that 0 < ν < (N − 1)|RN | < µ and ν/µ = κ. By Lemmas
5.2 and 5.3 there exists ρ > 0 such that R maps the interval (0, ρ) into itself and the bounds
(5.8) and (5.9) hold. Then, given η ∈ Ys−L

|(η ◦Rj(DRj)L)(t)| ≤ ‖η‖s−L |Rj(t)|s−L |DRj(t)|L

≤ ‖η‖s−L
ts−L

(1 + j ν tN−1)
s−L
N−1

1

(1 + j µ tN−1)
κNL
N−1

≤ M ‖η‖s−L
1

j
s+L(κN−1)

N−1
, ∀ t ∈ (0, ρ),

hence, since s ≥ r ≥ N > N − 1, (5.10) converges uniformly on (0, ρ) by the Weierstrass
M -test. Thus, (SyL,R)−1 η = −∑∞j=0 η ◦Rj(DRj)L is continuous on (0, ρ).
Now, we prove that (SyL,R)−1 is a bounded operator from Ys−L to Ys−N+1−L and we obtain
a bound for its norm. Again, having chosen κ = ν/µ, from Lemmas 5.2 and 5.3 one has,

‖(SyL,R)−1 η‖s−N+1−L ≤ sup
t∈(0,ρ)

1
ts−N+1−L

∞∑

j=0
|η(Rj(t))(DRj(t))L|

≤ ‖η‖s−L sup
t∈(0,ρ)

1
ts−N+1−L

∞∑

j=0

ts−L

(1 + jνtN−1)
s−L
N−1

1

(1 + jµtN−1)
κNL
N−1

,
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and, bounding the sum by an appropriate integral, we obtain the bound
1

ts−N+1−L

∞∑

j=0

ts−L

(1 + jνtN−1)
s−L
N−1

1

(1 + jµtN−1)
κNL
N−1

≤ tN−1
(

1 +
∫ ∞

0

1
(1 + xνtN−1)

s−L+κNL
N−1

dx

)

= tN−1 + 1
ν

N − 1
s−N + 1 + L(κN − 1) .

Therefore, we get

‖(SyL,R)−1 η‖s−N+1−L

≤ ‖η‖s−L sup
t∈(0,ρ)

(
tN−1 + 1

ν

N − 1
s−N + 1 + L(κN − 1)

)
, η ∈ Xs−L,

which shows that (SyL,R)−1 : Ys−L → Ys−N+1−L is bounded and

‖(SyL,R)−1‖ ≤ ρN−1 + 1
ν

N − 1
s−N + 1 + L(κN − 1) .

In the same way, (SxL,R)−1 : Ys−N+1−L → Ys−2N+2−L is bounded and

‖(SxL,R)−1‖ ≤ ρN−1 + 1
ν

N − 1
s− 2N + 2 + L(κN − 1) .

Proof of Lemma 4.6. The operators Syn,R do not contain the term (DR)L so that the proof
is similar to the one of Lemma 5.6 with L = 0. However, the domain of the functions in the
spaces Xn is the complex sector S(β, ρ), and therefore in this case we have to apply Lemma
4.2. Notice that in this case we do not need lower bounds for Rj(z).

Proof of Lemma 5.7. To distinguish the roles of the variables (f0, . . . , fL−1) and fL we will
denote the latter by hL. The statement concerning the component N x

L,F is clear by the
definition of NL,F .
For N y

L,N we first deal with the case L = 0.
Since g(x, y) = o(‖(x, y)‖r) and g ∈ Cr we have Dig(x, y) = o(‖(x, y)‖r−1), i = 1, 2.
For every h0, h̃0 ∈ Σα

0,N , from the definition of the operator N y
0,F , one can write

N y
0, F (h0)−N y

0, F (h̃0)

=
( ∫ 1

0
p′ ◦ (Kx + h̃x0 + s(hx0 − h̃x0)) ds

+ (Ky + hy0)
∫ 1

0
q′ ◦ (Kx + h̃x0 + s(hx0 − h̃x0)) ds

+
∫ 1

0
(D1u+D1g) ◦ (K + h̃0 + s(h0 − h̃0)) ds

)
(hx0 − h̃x0)

+
(
q ◦ (Kx + h̃x0) +

∫ 1

0
(D2u+D2g) ◦ (K + h̃0 + s(h0 − h̃0)) ds

)
(hy0 − h̃y0).
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Let us denote, for s ∈ [0, 1]

ξs = ξs(h0, h̃0) = K + h̃0 + s(h0 − h̃0),

ϕ = ϕ(h0, h̃0) =
∫ 1

0
p′ ◦ ξxs ds+ (Ky + hy0)

∫ 1

0
q′ ◦ ξxs ds+

∫ 1

0
(D1u+D1g) ◦ ξs ds,

ψ = ψ(h0, h̃0) = q ◦ (Kx + h̃x0) +
∫ 1

0
(D2u+D2g) ◦ ξs ds,

so that we have

‖N y
0,F (h0)−N y

0,F (h̃0)‖s ≤ ‖ϕ(h0, h̃0)(hx0 − h̃x0)‖s + ‖ψ(h0, h̃0)(hy0 − h̃y0)‖s. (6.1)

For case 1 we have K ∈ Y2, k+1 and, since s = 2r and r > k, then for every h0, h̃0 ∈ Σα
0, k we

have (h0, h̃0) ∈ Y4, k+2. Thus we can bound the norm

‖ξxs ‖2 = sup
t∈(0,ρ)

1
t2
|Kx(t) + h̃x0(t) + s(hx0(t)− h̃x0(t))| ≤ 1 +Mρ,

for all s ∈ [0, 1].
Moreover, checking the orders of ϕ and ψ, taking into account the properties of p, q, u and
g, we have

ϕ ∈ Y2k−2, ψ ∈ Yk ⊂ Yk−1, ∀ h0, h̃0 ∈ Σα
0, k.

More precisely, we can bound

‖ϕ‖2k−2 ≤ sup
s∈[0,1]

(‖p′ ◦ ξxs ‖2k−2 + ‖(Ky + hy0) q′ ◦ ξxs +D1g ◦ ξs +D1u ◦ ξs‖2k−2)

≤ sup
s∈[0,1]

sup
t∈(0,ρ)

1
t2k−2 (k |ak||ξxs (t)|k−1 +M t2k−1)

≤ k|ak|+Mρ,

(6.2)

‖ψ‖k−1 ≤Mρ, (6.3)

for all h0, h̃0 ∈ Σα0
0,k.

Then, from (6.1) we have

‖N y
0,F (h0)−N y

0,F (h̃0)‖s ≤‖ϕ‖2k−2 ‖hx0 − h̃x0‖s−2k+2 + ‖ψ‖k−1 ‖hy0 − h̃y0‖s−k+1

≤(k|ak|+Mρ)‖hx0 − h̃x0‖s−2k+2 + ρM ‖hy0 − h̃y0‖s−k+1,

which proves that Lip N y
0,F ≤ k |ak|+Mρ, for case 1.

For cases 2 and 3 the bounds for Lip N y
0, F are obtained in an analogous way. In these cases

we have K ∈ Y1, l and we obtain ξs ∈ Y2, l+1. Take h0, h̃0 ∈ Σα
0,l. Since r > 2l − 1,

ϕ ∈ Y2l−2, ψ ∈ Yl−1,

with the following bounds for their norms,

‖ϕ‖2l−2 ≤ k |ak|+ (l − 1)|Ky
l bl|+Mρ, ‖ψ‖l−1 ≤ |bl|+Mρ, (6.4)
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in case 2 and
‖ϕ‖2l−2 ≤ (l − 1)|Ky

l bl|+Mρ, ‖ψ‖l−1 ≤ |bl|+Mρ, (6.5)
in case 3.
The proof for L ≥ 1 is similar. Given f0, . . . , fL−1 and hL, h̃L ∈ DΣL−1, N , from the definition
of N y

L,N , we have

N y
L, F (f0, . . . , fL−1, hL)−N y

L, F (f0, . . . , fL−1, h̃L)
=
(
p′ ◦ (Kx + fx0 ) + (Ky + f y0 ) q′ ◦ (Kx + fx0 )

+ (D1u+D1g) ◦ (K + f0)
)
(hxL − h̃xL)

+
(
q ◦ (Kx + fx0 ) + (D2u+D2g) ◦ (K + f0)

)
(hyL − h̃yL).

Given f0 ∈ Σα
0,N , we denote

ϕ̃ = ϕ̃(f0) = p′ ◦ (Kx + fx0 ) + (Ky + f y0 ) q′ ◦ (Kx + fx0 ) + (D1u+D1g) ◦ (K + f0),
ψ̃ = ψ̃(f0) = q ◦ (Kx + fx0 ) + (D2u+D2g) ◦ (K + f0),

so that we can write

‖N y
L,F (f0, . . . , fL−1, hL)−N y

L,F (f0, . . . , fL−1, h̃L)‖s
≤ ‖ϕ̃(f0)(hxL − h̃xL)‖s + ‖ψ̃(f0)(hyL − h̃yL)‖s.

The orders of ϕ̃ and ψ̃ are the same as the ones of the corresponding ϕ and ψ when L = 0,
respectively, for each of the cases 1, 2 and 3. That is,

ϕ̃ ∈ Y2k−2, ψ̃ ∈ Yk ⊂ Yk−1,

for case 1 and
ϕ̃ ∈ Y2l−2, ψ̃ ∈ Yl−1,

for cases 2 and 3. As in the case L = 0, for each f0 ∈ Σα0
0,N , the order of K + f0 is the same

as the one of K. Therefore we get the same bounds for the norms of ϕ̃ and ψ̃, namely those
obtained in (6.2) - (6.5), and finally the bounds in the statement.

Proof of Lemma 4.7. The proof is completely analogous to the proof of Lemma 5.7 in the
case L = 0, the only difference being that here the functions in the spaces Xn are defined in
sectors S(β, ρ) instead of the interval (0, ρ).

6.2 Proofs of Lemmas 5.9 and 5.10

Proof of Lemma 5.9. As before, to distinguish the roles of the variables fL and (f0, . . . , fL−1)
we will denote the former by hL. Since TL,F = S−1

L,R ◦ NL,F and S−1
L,R is linear and bounded,

along the proof we will deal only with NL,F .
Given a function hL ∈ DΣαL

L−1,N we decompose

NL,F (f0, . . . , fL−1, hL) = AhL, F (f0) + JL,F (f0, . . . , fL−1),
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where AhL, F := (AxhL, F ,A
y
hL, F

) : Σα
0,N → Ys−N+1−L,s−L is the auxiliary operator

AxhL, F (f0) = c hyL,

AxhL, F (f0) = p′ ◦ (Kx + fx0 ) · hxL + (Ky + f y0 ) · q′ ◦ (Kx + fx0 )hxL
+ q ◦ (Kx + fx0 ) · hyL + (Du+Dg) ◦ (K + f0) · hL,

and we will work on AhL, F and JL,F separately.
Clearly AxhL, F is uniformly Lipschitz on Σα

0, N . To deal with AyhL, F , let f0, f̃0 ∈ Σα
0, N . Then

AyhL, F (f0)−AyhL, F (f̃0) = ϕhL(f0, f̃0)(fx0 − f̃x0 ) + ψhL(f0, f̃0)(f y0 − f̃ y0 )
+ θ(f0, f̃0)(f0 − f̃0) · hL,

with

ϕhL = ϕhL(f0, f̃0) = hxL

∫ 1

0
p′′ ◦ (Kx + f̃x0 + s(fx0 − f̃x0 )) ds

+ hyL

∫ 1

0
q′ ◦ (Kx + f̃x0 + s(fx0 − f̃x0 )) ds

+ hxL (Ky + f y0 )
∫ 1

0
q′′ ◦ (Kx + f̃x0 + s(fx0 − f̃x0 )) ds,

ψhL = ψhL(f0, f̃0) = hxL q
′ ◦ (Kx + f̃x0 ),

θ = θ(f0, f̃0) =
∫ 1

0
(D2u+D2g) ◦ (K + f̃0 + s(f0 − f̃0)) ds.

First we deal with case 1. By similar arguments as in Lemma 5.7 we have ϕhL(f0, f̃0)
∈ Y2r−2−L ⊆ Y2k−2−L, ψhL(f0, f̃0) ∈ Yr−1−L ⊆ Yk−1−L. All the entries of the matrix θ(f0, f̃0)
belong to Y0. Also, it is clear that the quantities ‖ϕhL (f0, f̃0)‖2k−2−L, ‖ψ (f0, f̃0)‖k−1−L and
the ‖ · ‖Y0-norm of the entries of θ (f0, f̃0) are uniformly bounded for f0, f̃0 ∈ Σα

0,N , the norm
depending on α0 in the form ρmα0 for some m > 0 and depending linearly on αL.
Then, since hL is fixed, we get

‖AyhL, F (f0)−AyhL, F (f̃0)‖2r−L ≤ ‖ϕhL (f0, f̃0)‖2k−2−L ‖fx0 − f̃x0 ‖2r−2k+2

+ ‖ψhL (f0, f̃0)‖k−1−L ‖f y0 − f̃ y0 ‖2r−k+1

+M‖hL‖DΣL−1,k ‖f0 − f̃0‖Σ0,k

≤M αL‖f0 − f̃0‖Σ0,k .

Similarly we also obtain ‖AyhL, F (f0) − AyhL, F (f̃0)‖2r−L ≤ M αL‖f0 − f̃0‖Σ0,k for cases 2 and
3, where in these cases we have ϕhL ∈ Yr−L−1, ψhL ∈ Yr−l−L and the entries of θ belong to
Y0. This proves that AhL, F is uniformly Lipschitz on Σα

0, N .
Next we deal with JL,F . Recall that we have, for every L ∈ {1, . . . , r},

J x
L, F (f0, . . . , fL−1) = Λx

L,R(fx0 , . . . , fxL−1),
J y
L,F (f0, . . . , fL−1) = Λy

L,R(f y0 , . . . , f yL−1) + ΩL,F (f0, . . . , fL−1),
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where Λx
L,R and Λy

L,R are given recursively in (5.6) and ΩL,F is given recursively in (5.7).
From (5.6), Λi

1,R = 0 and, for L ≥ 2, one can check by induction that

Λi
L,R(f i1, . . . , f iL−1) =

L−1∑

j=1
PL, j f

i
j ◦R, i = x, y, (6.6)

where each function PL, j is a polynomial on the variable t.
Indeed, P2, 1(t) = −D2R(t) ∈ YN−2. Assuming (6.6) and applying the recurrence (5.6) we
have

Λi
L+1, R =

L−1∑

j=1
P ′L, j f

i
j ◦R +

L−1∑

j=1
PL, j f

i
j+1 ◦RDR− Lf iL ◦R (DR)L−1D2R

= P ′L, 1 f
i
1 ◦R +

L−1∑

j=2

(
P ′L, j + PL, j−1DR

)
f ij ◦R

+
(
PL,L−1DR− L(DR)L−1D2R

)
f iL ◦R.

We also have the recurrences

PL+1, 1(t) = P ′L, 1(t),
PL+1, j(t) = P ′L, j + PL, j−1DR, 2 ≤ j ≤ L− 1,
PL+1, L(t) = PL,L−1DR− L(DR)L−1D2R,

and then we also deduce by induction that PL, j = YN+j−1−L.
From this, it is clear that ΛL,R = (Λx

L,R, Λy
L,R) : Σα

L−1,N → Ys−N+1−L,s−L is linear and
bounded, so it is uniformly Lipschitz in Σα

L−1, N .
Also, from (5.7), one can see that ΩL,F is a polynomial operator on the variables f1, . . . , fL−1
having coefficients depending on f0.
When L = 1,

Ω1, F (f0)− Ω1, F (f̃0)

=DKx
∫ 1

0
(p′′ ◦ (Kx + f̃x0 + s(fx0 − f̃x0 )) ds (fx0 − f̃x0 )

+DKy
∫ 1

0
(q′ ◦ (Kx + f̃x0 + s(fx0 − f̃x0 )) ds (fx0 − f̃x0 )

+ (Ky + f̃ y0 )DKx
∫ 1

0
q′′ ◦ (Kx + f̃x0 + s(fx0 − f̃x0 )) ds (fx0 − f̃x0 )

+ (f y0 − f̃ y0 )DKx q′ ◦ (Kx + fx0 )

+DKx
∫ 1

0
(D2u+D2g) ◦ (K + f̃0 + s(f0 − f̃0)) ds (f0 − f̃0)

and hence there exists M > 0 depending on F and α0 such that

‖Ω1, F (f0)− Ω1, F (f0)‖s−1 ≤M‖f0 − f̃0‖Σ0,N .
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For L > 1, we decompose ΩL,F = Ω(1)
L,F + Ω(2)

L,F , where

Ω(2)
L,F = Ω(2)

L,F (f0, f1) = DLg ◦ (K + f0)(DK + f1)L,

and Ω(1)
L,F = ΩL,F − Ω(2)

L,F . The difference Ω(1)
L,F (f0, . . . , fL−1) − Ω(1)

L,F (f̃0, . . . , f̃L−1) is a sum
of terms of the form cL(f0, f̃0)Π, where Π is a product of factors among fx,yj , f̃x,yj and
fx,yj − f̃x,yj and such that cL(f0, f̃0)Π ∈ Ys−L. From (5.7) we estimate Ω(1)

L,F (f0, . . . , fL−1) −
Ω(1)
L,F (f̃0, . . . , f̃L−1) iteratively, where a part of it comes from

D[Ω(1)
L−1, F (f0, . . . , fL−2)− Ω(1)

L−1, F (f̃0, . . . , f̃L−2)].

When one differenciates formally the terms cL−1(f0)Π, the new terms cL−1(f0, f̃0)′Π and
cL−1(f0, f̃0)Π′ appear.
The factors of each function cL(f0, f̃0) are derivatives of Ki, f ij , f̃ ij ,

∫ 1
0 (Q1(Ki + f̃ i0 + s(f i0 −

f̃ i0)) ds (fx0 − f̃x0 ) and (Q2(Ki + f i0), where Q1, Q2 are polynomials (derivatives of p, q or u),
and the derivative of

∫ 1

0
Dmg ◦ (K + f̃0 + s(f0 − f̃0)) ds (f0 − f̃0), m ≤ L− 1. (6.7)

When taking a derivative, each term generates several terms, each one having bigger order,
the same order or the same order minus one unit. The term Ω(2)

L,F is Lipschitz when L < r.
When L = r, it is continuous (in the given topology) since Drg isuniformly continuous in
closed balls.
On the other hand, when taking a derivative to Π we obtain terms which have the same
factors except one which is transformed to its derivative, that is, fx,yj is transformed to fx,yj+1
or fx,yj − f̃x,yj is transformed to fx,yj+1 − f̃x,yj+1. In any case the order decreases by one unit so
we have that their ‖ ·‖s−L-norm is bounded by ML‖(f0, . . . , fL−1)− (f̃0, . . . f̃L−1)‖ΣL,N , where
the constant ML depends on α0, . . . , αL and F but not on the (f ij)′s.

Proof of Lemma 5.10. By its definition, the operator TL,F satisfies

Lip TL,F (f0, . . . , fl−1, ·) ≤ max{‖(SxL,R)−1‖Lip N x
L, F (f0, . . . , fL−1, ·),

‖(SyL,R)−1‖Lip N y
L,F (f0, . . . , fL−1, ·)}.

(6.8)

From the estimates obtained in Lemmas 5.6 and 5.7 we have that the bounds of Lip NL,F
(f0, . . . , fL−1, ·) do not depend on L, and taking κ < 1 close to 1 the obtained bounds for
‖S−1

L,R‖ decrease as L increases, so that it holds

Lip TL,F (f0, . . . , fL−1, ·) ≤ Lip T0,F (f0, . . . , fL−1, ·), ∀ L ∈ {0, . . . , r}.

Actually, this inequality is for the obtained bounds for the Lipschitz constants of the family
{TL,F}L. Note also that Lip T0, F (f0, . . . , fL−1, ·) does not depend on κ.
To prove the first part of the lemma we will find an appropriate map Tγ given in (5.11) (that
is, an appropriate value for γ) such that if the coefficients of F satisfy the hypotheses of
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Theorem 2.7, then the corresponding operator TL, F̃ associated to F̃ = T−1
γ ◦ F ◦ Tγ satisfies

Lip TL, F̃ (f0, . . . , fL−1, ·) < 1.
We start by considering case 1. From (6.8) and the estimates obtained in Lemmas 5.6 and
5.7, given ν ∈ (0, (k − 1)|Rk|) there is ρ̃0 such that for ρ < ρ̃0 we have the bound

Lip TL, F̃ (f0, . . . , fL−1, ·) ≤ max
{(
ρk−1 + 1

ν

k − 1
2r − 2k + 2

)
γ |c|,

(
ρk−1 + 1

ν

k − 1
2r − k + 1

)
(γ−1 k ak +M ρ)

}
.

Clearly, the condition

max
{
γ
|c|
|Rk|

1
2r − 2k + 2 , γ

−1 k ak
|Rk|

1
2r − k + 1

}
< 1, (6.9)

is sufficient to ensure that there exists 0 < ρ0 < ρ̃0 such that Lip TL,F̃ (f0, . . . , fl−1, ·)
< 1 for ρ < ρ0, since keeping κ fixed one can choose a value for ν close enough to (k−1)|Rk|.
Then, taking γ =

√
k ak
c

2r−2k+2
2r−k+1 , condition (6.9) is given by

2k(k + 1)
(2r − 2k + 2)(2r − k + 1) < 1,

which holds for any k ≥ 2 and r ≥ 3
2 k. Hence, if r ≥ 3

2 k, the operator TL, F̃ associated to
F̃ = T−1

γ ◦ F ◦ Tγ for the chosen value of γ satisfies Lip TL, F̃ (f0, . . . , fL−1, ·) < 1, for every
L ∈ {0, . . . , r}, provided that ρ < ρ0.
For cases 2 and 3 of the reduced form of F the result follows in a similar way choosing an
appropriate value for the parameter γ.
For case 2 we have, from (6.8) and the estimates obtained in Lemmas 5.6 and 5.7, that the
condition

max
{
γ
|c|
|Rl|

1
r − 2l + 2 , γ

−1 (l − 1) |Ky
l bl|+ k ak
|Rl|

1
r − l + 1 ,

|bl|
|Rl|

1
r − l + 1

}
< 1, (6.10)

is sufficient to ensure that there exists ρ0 > 0 such that Lip TL,F (f0, . . . , fl−1, ·) < 1 for
ρ < ρ0.

Then, taking γ =
√

(l−1) |Ky
l
bl|+k ak
c

r−2l+2
r−l+1 , condition (6.10) is given by

max
{ β

(r − 2l + 2)(r − l + 1)
(
(l − 1) + c k ak

b2
l

β
)
,

β

r − l + 1
}
< 1,

where β = 2l |bl|
|bl−
√
b2
l
+4 c ak l|

, which is the condition for F assumed for case 2.

For case 3 we have, again from (6.8) and the estimates obtained in Lemmas 5.6 and 5.7, that
the condition

max
{
γ
|c|
|Rl|

1
r − 2l + 2 , γ

−1 (l − 1) |Ky
l bl|

|Rl|
1

r − l + 1 ,
|bl|
|Rl|

1
r − l + 1

}
< 1, (6.11)
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is sufficient to ensure that there exists ρ0 > 0 such that Lip TL,F (f0, . . . , fl−1, ·) < 1 for
ρ < ρ0.

Taking γ = |bl|
|c|

√
(l−1)(r−2l+2)
l(r−l+1) , condition (6.11) is given by

max
{ l(l − 1)

(r − 2l + 2)(r − l + 1) ,
l

r − l + 1
}
< 1,

that is,
l(l − 1)

(r − 2l + 2)(r − l + 1) < 1,

which is the condition for F assumed for case 3.
Finally we prove that given a map F satisfying the hypotheses of Theorem 2.7 such that the
associated operators TL,F satisfy Lip TL,F (f0, . . . , fL−1, ·) < 1 for ρ < ρ0, one can find a new
ρ0, maybe smaller than the previous one, and a choice for the values α1, . . . , αr such that, if
ρ < ρ0, then TL,F maps Σα

L,N into DΣαL
L−1, N , for every L ∈ {0, . . . , r}.

For later use, we estimate ‖TL,F (0, . . . , 0)‖DΣL−1, N . From Definition 5.5 of NL,F and the
definition of JL,F in (5.5) we have

NL,F (0, . . . , 0) = JL,F (0, . . . , 0) = (0, DL(g ◦K)).

Moreover DL(g ◦K)(t) = o(|t|s−L). Therefore, for every ε > 0, there is ρ0 > 0 such that if
ρ < ρ0, then

‖TL,F (0, . . . , 0)‖DΣL−1,N ≤ ‖(SyL,R)−1‖ ‖N y
L, F (0, . . . , 0)‖s−N+1−L, s−L

≤ ‖(SyL,R)−1‖ sup
t∈(0, ρ)

|DL(g ◦K)(t)|
ts−L

≤ ‖(SyL,R)−1‖ ε. (6.12)

Next we proceed by induction. For L = 0, we have, for all f0 ∈ Σα0
0,N ,

‖T0, F (f0)‖Σ0, N ≤ ‖T0, F (f0)− T0,F (0)‖Σ0, N + ‖T0, F (0)‖Σ0, N

≤ α0 Lip T0, F + ‖T0, F (0)‖Σ0, N .

We need to see then that there exists ρ0 > 0 such that ‖T0, F (f0)‖Σ0, N ≤ α0 provided that
ρ < ρ0. Clearly this holds from the estimate obtained in (6.12) since we have Lip T0, F < 1,
and then one can take ρ0 such that α0 Lip T0, F + ‖T0,F (0)‖Σ0, N ≤ α0 for ρ < ρ0. Hence we
have T0, F (Σα0

0, N) ⊆ Σα0
0, N .

Now, we take ρ1 < ρ0 and we denote by εL the quantity

εL = ‖TL,F (0, . . . , 0)‖DΣL−1, N , L ∈ {1, . . . , r},
taking as the domain of the functions of Σα

L,N the interval (0, ρ1).
Continuing with the induction procedure, for each L ∈ {1, . . . , r}, we decompose

‖TL,F (f0, . . . , fL)‖DΣL−1,N ≤ ‖TL,F (f0, . . . , fL)− TL,F (f0, . . . , fL−1, 0)‖DΣL−1,N

+ ‖TL,F (f0, . . . , fL−1, 0)− TL,F (0, . . . , 0)‖DΣL−1,N

+ ‖TL,F (0, . . . , 0)‖DΣL−1,N .

(6.13)
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Also, from the definitions of TL,F and NL,F we have

TL,F (f0, . . . , fL−1, 0) = S−1
L,R ◦ NL,F (f0, . . . , fL−1, 0) = S−1

L,R ◦ JL,F (f0, . . . , fL−1).

Now we have to consider separately the cases L < r and L = r. For L < r we have, from
Lemma 5.9, that TL,F (f0, . . . , fL) is uniformly Lipschitz with respect to (f0, . . . , fL−1) in
Σα
L,N , and in particular,

Lip TL,F (·, 0) = Lip (S−1
L,R ◦ JL,F ).

Therefore, from (6.13) we have

‖TL,F (f0, . . . , fL)‖DΣL−1, N ≤ Lip TL,F (f0, . . . , fL−1, ·) ‖fL‖DΣL−1, N

+ Lip (S−1
L,R ◦ JL,F ) ‖(f0, . . . , fL−1)‖ΣL−1, N + ‖TL,F (0, . . . , 0)‖DΣL−1, N

≤ αL Lip TL,F (f0, . . . , fL−1, ·) + max {α0, . . . , αL−1}Lip (S−1
L,R ◦ JL,F ) + εL.

(6.14)

Then we can choose a value for the radius αL of DΣαL
L−1, N to ensure that TL,F maps Σα

L,N

into DΣαL
L−1, N . Since we have Lip TL,F (f0, . . . , fL−1, ·) < 1, then taking

αL =
εL + Lip (S−1

L,R ◦ JL,F ) max {α0, . . . , αL−1}
1− Lip TL,F (f0, . . . , fL−1, ·)

,

we have, applying (6.14),

‖TL,F (f0, . . . , fL)‖DΣL−1, N ≤ αL,

for each (f0, . . . , fL) ∈ Σα
L,N , as we wanted to see.

For L = r we proceed in an analogous way, except for the fact that we use the decompos-
ition T (1)

r, F + T (2)
r, F given in Lemma 5.9. Since T (1)

r, F is Lipschitz with respect to (f0, . . . , fr),
its contribution is as in the cases L < r. As we also have Tr, F (f0, . . . , fL−1, 0) = S−1

r,R ◦
Jr, F (f0, . . . , fr−1) and S−1

r,R is linear, we can denote T (i)
r, F (f0, . . . , fr−1, 0) = S−1

r,R◦J (i)
r,F (f0, . . . , fr−1),

for i = 1, 2, with J (2)
r, F (f0, . . . , fr−1) = (0, Drg ◦ (K + f0)(DK + f1)r).

We proceed as in (6.13), but now for the second term of the sum we have, applying Lemma
5.9,

‖Tr, F (f0, . . . , fr−1, 0)−Tr, F (0, . . . , 0)‖DΣr−1, N

≤ Lip (S−1
r,R ◦ J (1)

r, F ) ‖(f0, . . . , fr−1)‖Σr−1, N

+ ‖(Syr,R)−1‖‖Drg ◦ (K + f0)(DK + f1)r‖s−r.

To bound the quantity ‖Drg ◦ (K + f0)(DK + f1)r‖s−r, note that we have Drg(x, y)
= o(‖(x, y)‖0).
For case 1 of the reduced form of F we have (DK+ f1)r ∈ Yr and thus, for every ε > 0 there
is ρ0 such that if ρ < ρ0, then

‖Drg ◦ (K + f0)(DK + f1)r‖r = sup
t∈(0,ρ)

1
tr
|Drg ◦ (K + f0)(t)(DK + f1)r(t)| < ε.
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Similarly, for cases 2 and 3 we have (DK + f1)r ∈ Y0 and

‖Drg ◦ (K + f0)(DK + f1)r‖0 = sup
t∈(0,ρ)

|Drg ◦ (K + f0)(t)(DK + f1)r(t)| < ε.

Then, for the chosen radius ρ1 we denote ε̂ = ‖Drg ◦ (K + f0)(DK + f1)r‖s−r and similarly
as in (6.14) we have

‖Tr, F (f0, . . . , fr)‖DΣr−1, N

≤ αr Lip Tr, F (f0, . . . , fr−1, ·) + max {α0, . . . , αr−1}Lip (Sr,R ◦ J (1)
r, F ) + εr + ε̂,

and therefore the statement of the lemma follows choosing

αr =
ε̂+ εr + Lip (S−1

r,R ◦ J (1)
r,F ) max {α0, . . . , αr−1}

1− Lip Tr, F (f0, . . . , fr−1, ·)
.

Proof of Lemma 4.10. The proof is a simplified version of the one of Lemma 5.10, here the
functions in the spaces Xn being defined in sectors S(β, ρ) instead of the interval (0, ρ). To
prove that Tn,N is contractive for n > n0 we proceed as in Lemma 5.10 for L = 0, but here
the index n appears in the denominator of the bound obtained for Lip Tn,N , proving that the
operator is contractive for n large enough. The second part of the lemma if proved also as in
Lemma 5.10 for L = 0. In this case we have Tn,N(0) = S−1

n,N En, and thus ‖Tn,N(0)‖Σn,N < ε
for ρ sufficiently small.

7 Conclusions

In this paper, we have considered two-dimensional maps with a parabolic fixed point with non-
diagonalizable linear part in both the analytic and differentiable cases. We have considered
three different cases depending on the nonlinear terms (the generic maps are contained in
case 1).
In the analytic case, we have proved the existence of an analytic one-dimensional invariant
manifold (away from the fixed point) under suitable conditions on some of the coefficients
of the nonlinear terms of the map. The existence of an analytic manifold in such case was
already proved in [12] using a variation of McGehee’s method. However, here we have used
the parameterization method, which provides approximations of the manifolds up to any
order, and we have also presented an a posteriori result.
In the Cr case, first we have used our results for analytic maps applied to the Taylor poly-
nomial of degree r of the map. In this way we have obtained an analytic invariant manifold
which is used as an approximation to apply the parameterization method to the original
map. Moreover, we have applied the fiber contraction theorem to obtain the differentiability
result. Concretely, we have proved that if the regularity of the map is bigger than some
(easily computable) value, then there exists an invariant manifold of the same regularity,
away from the fixed point.
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This is in contrast with the results in [29], where in our case 1, it is proved that the manifolds
are of class C [(k+1)/2], where k is as in Section 2.1, even if they use the Poincaré normal form
instead of our reduced form. In that case, the obtained regularity also holds at the fixed
point.
Throughout the paper, the results are stated for stable curves. However, we showed that the
same results hold true for unstable curves and that they can be obtained directly from the
stated results, without having to invert explicitly the given map.
As in the analytic case, for the Cr case we provided approximations of the invariant manifolds
up to an order that depends on the regularity of the map.
We remark that, from the computational point of view, since the dynamics on the invariant
manifold close to the fixed point is extremely slow, it is important to have good approxim-
ations of the manifold in a not so small neighborhood of the fixed point in order to be able
to globalize the local manifold with a reasonably small number of iterations.
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