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ORBITALLY SYMMETRIC SYSTEMS WITH APPLICATIONS TO
PLANAR CENTERS

JEFFERSON L. R. BASTOS, CLAUDIO A. BUZZI, AND JOAN TORREGROSA

ABSTRACT. We present a generalization of the most usual symmetries in differential
equations known as the time-reversibility and the equivariance ones. We check that the
typical properties are also valid for the new definition that unifies both. With it, we are
able to present new families of planar polynomial vector fields having equilibrium points
of center type. Moreover, we provide the highest lower bound for the local cyclicity of
an equilibrium point of polynomial vector fields of degree 6, M (6) > 48.

1. INTRODUCTION

One of the fundamental properties studied in natural science is the existence of symme-
tries. They appear usually in many physical models describing classical mechanics. The
most important studied symmetry is known as the time-reversible one, being Birkhoff
one of the first who used it. See, for example, his works on the restricted three-body
problem studied in 1915 ([6]) or the billiard ball problem published in 1927 ([7]). There
exists an extensive bibliography on symmetries and their properties in all areas of dy-
namical systems. See for example the nice survey of Lamb & Roberts published in 1998
([24]). In particular, they describe how this time-symmetry is useful in mathematics and
physics for understanding a big list of phenomena: symmetric periodic orbits, local bifur-
cations, homoclinic and heteroclinic orbits,. .. They appear also in other research branches
as thermodynamics and quantum mechanics.

We recall the well-known definitions of two important symmetries for smooth vector
fields: the reversible and the equivariant. Let U C R™ be an open set, ¢ : U — U be
an involution of class C', and X : U — R" a vector field of class C". We say that X is
p-reversible or time-reversible with respect to o if

Dp-X=—-Xogp (1)
and X is p-equivariant if
Dp-X =Xop. (2)
In both cases the phase portrait is symmetric with respect to the fixed points set
Fixp={x e U CR": p(x) = z}.

After Birkhoff we can quote the work of Devaney [15] where this definition is also used
restricted to manifolds of even dimension 2n being n the dimension of the set Fix ¢. Some
years later, Arnol’d and Sevryuk allow that the ‘symmetry’ ¢ not to be necessarily an
involution, see [3, 4].

The aim of this work is to extend the above definitions not only to treat them in a
unified way but also to obtain new symmetric vector fields. We say that X is orbitally
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w-symmetric or simply orbitally symmetric if there exist F': U — R a continuous function
and an involution ¢ : U — U such that

Dp-X=FXoo. (3)

It is clear that the classical definitions (1) and (2) are included in (3) when F' is constant,
ie. F' = F1. As we will see in Theorem 1.2, this constant value will be required only
at the equilibrium point. But it will be proved that it is satisfied also on Fix . Also
in the classical context, there are other extensions using symmetries and time-reversal
symmetries from a compact Lie group. See for example [25, 27, 36]. We remark that in
the above definition the set U is almost the full space, because we remove only the set of
points where the involution is not well-defined.

The condition (3) says that the factor F' can be directly computed from the vector field
X and the involution ¢. As we will see in Lemma 2.3, if X satisfies (3) and p € Fix¢
then F(p) = 1 or F(p) = —1. This property provides a natural decomposition of the
fixed points set of the involution ¢ with respect to the vector field X in two disjoint
sets. Hence, we split Fixp = R} U EY, where R} = {p € Fixp : F(p) = —1} and
EY ={peFixp: F(p) =1}.

With the last observation we can update the reversible and equivariant symmetries. We
say that a vector field X = X (x) is orbitally p-reversible (resp. orbitally p-equivariant) if
there exist a diffeomorphism y = ¢(z) and a reparametrization of time dt/ds = h(x) such
that the change (z,t) — (¢(x),t/h(z)) transforms X to Y = Y(y) and ) is ¢-reversible
(resp. -equivariant).

When we particularize these definitions to planar vector fields, the most usual involu-
tions are ¢q(z,y) = (—xz,y) and po(x,y) = (—z, —y). The first gives a symmetry with
respect to the straight line x = 0 and the second a symmetry with respect to the origin.
In particular, a vector field satisfying (1) for ; writes as

(@) = (Gi(2?, ), 2Ga(2?,y)) (4)
and it is invariant with respect to the change of variables (x,y,t) — (—z,y, —t). In this
case, we say that (4) is time-reversible with respect to x = 0. For simplicity, we have not
considered another classical involution @3 = 1 0 @5 for which a vector field will be time-
reversible with respect to y = 0. Moreover, when a vector field has an equilibrium point of
center-focus type a usual sufficient condition to be a center is the above time-reversibility
property. Therefore, in this case there exists an affine change of variables such that (4)
writes as

(@) = (—y + 912", y), 2 + xga(a?, ).
The notion of orbital reversibility for centers was presented previously by Giné & Maza
in [19] and recently by Algaba, Garcia & Giné in [2], but only for the classical time-
reversibility. They use the Montgomery—Bochner theorem, see [29]. This notion can
only be extended in the period annulus of the center. Our goal is to consider not only
this particular orbital symmetric property for an arbitrary involution but also to give a
unified treatment for both symmetries (reversibility and equivariance) and to obtain a

global result, obviously, in the full domain where the involution and the vector field are
well defined.

Theorem 1.1. X is orbitally @-symmetric if, and only if, X is orbitally p-reversible or
X is orbitally p-equivariant.

We remark that there are systems exhibiting both classical symmetries simultaneously,
but the involutions ¢ in (1) and (2) are different. Usually up to an affine change of
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variables they are 1 and ¢. Our approach will provide vector fields being simultaneously
orbitally op-reversible and orbitally ¢-equivariant with respect to the same involution ¢.
Clearly, the symmetries will be with respect to two different sets, the aforementioned Rj:
and 7.

Next result generalizes, among others, the existence of a sufficient condition to have a
center at an equilibrium point.

Theorem 1.2. Let X be an orbitally symmetric planar vector field with respect to an
involution ¢ defined in an open set U C R%. When Fixo N U is a smooth manifold of
dimension 1 and p € Fix o NU is an equilibrium point, the next properties hold:

(i) If p € R} and det(DX(p)) > 0(< 0), then p is a center (saddle) of X.
(it) If p € EY, then ES NU is invariant under the flow of X.

Clearly, from the first conclusion of the last result we can say that the equilibria on the
reversible curve Rf are @-reversible.

Although it is important to think about the new symmetry (3) as a global property,
we will also study how it varies with a change of coordinates later on. But following
this idea, commonly the classical time-reversible property is used locally for classifying
equilibria where the involution ¢ in (1) is taken as the one that changes sign in some of
the coordinates. Hence, up to a local change of coordinates, the set Fix ¢ is a hyperplane.
This strategy is used for example in [32, 33]. In the plane, this is equivalent to say
that locally all time-reversible vector fields write as (4). In fact our definition works
for polynomial vector fields and any change of variables that moves (3) to (1) or (2)
goes out from this class and any classification in terms of the degree makes no sense.
This is the aim of the initial work of Zoladek [40], later updated in [41], where he uses
rational transformations for proving that some cubic polynomial vector fields have center.
This rational reversibility is based on taking the pull-back of a vector field V' induced
by a noninvertible rational map ® : R? — R? but multiplied by a factor G. That is
X = G Adg-1,V, where Adg,V = (DU X) o U1, The vector field V is tangent at some
point to the line ®(C), where C' = {det D® = 0} is a line of critical points, and the
transformed X’ has a center point. This notion of pullback of a differential equation has
been recently used in [37, 38] in the context of foliations described by its associated 1-
form. But this approach does not take into account how the orbits are traveled. Zol@dek’s
first paper was much more ambitious because he tried to classify all the cubic vector
fields having a center but without detailing how his work was exhaustive. This was the
main reason for writing, two years later, the second work in which two classes of cubic
vector field are considered: The rationally reversible class and the Darbouz integrable
one. Although in the first work he consider other integrability classes as the Darboux—
Schwartz—Christoffel or Darboux-hyperelliptic classes, in the second one he presents 52
families of cubic polynomial vector fields having a center but all of them belonging only to
the first two. In fact the rationally reversibility property was generalized by Christopher
& Schlomiuk in [12]. We recall that a polynomial vector field is Darboux integrable if it
has a rational first integral. For more details in Darboux or Liouvillian integrability we
refer the reader to [16, 28] or the recent book [39]. As we will see also here, some of the
families in the rational reversible class are also Darboux integrable vector fields. We have
not checked if all the families in [41] or the ones presented here are in the Darboux class.
Because, if they are, they could have invariant algebraic curves with a very high degree.
Which would make them very difficult to find. Even so, in some of them, the existence of
such first integral has been necessary to be found for proving that the equilibrium point
is of center type because it is not on the fixed points curve.



4 J. BASTOS, C. BUZZI, AND J. TORREGROSA

The main difference between Zotadek’s works and this paper is the fact that here we use
the reversibility property directly to the vector field while he uses rational transformations
near some special vector fields having a fold type point with respect to a curve, which
will be, after the transformation, the symmetry line. Consequently, using the pull-back
approach, (3) writes as Ad,. X = FX, being ¢ is the associated involution instead of
the noninvertible fold transformation ® as above. In both works all the properties are
considered in a global sense. Recently, Detchenia, Sadovski & Shcheglova have recovered
this kind of center studies in [13, 14]. A final remark is the von Bothmer work ([35]) that,
with heuristic methods, studied the center components of cubic planar polynomial vector
fields giving new evidence for the explained Zotadek’s conjecture about the existence of
only the aforementioned two type of centers.

This work is not part of a research line dedicated to the classification of centers for a
given family, but we think that it provides a new mechanism to check when a vector field
has a center. Moreover, it has allowed us to give new families of polynomial vector fields
with a center that until now were unknown. Although it was not the initial objective of
the work, we have dedicated part of it to studying the number of limit cycles of small
amplitude that can bifurcate from an equilibrium of monodromic type. When we are in
the class of polynomial vector fields of degree n we will denote by M (n) the maximum
number of them. The study of the existence of such M (n) is still an open problem. In
fact only for the quadratic family, M (2) = 3, it is completely solved (see [5]). In [17] it is
conjectured that M(n) = n?+ 3n — 7. Recently, in [18], this conjecture should be updated
in one, M(n) = n? + 3n — 6, because it is false, at least for n = 3. In the recent work
[21] the local cyclicity of some Darboux cubic centers in [41], the ones with the highest
codimension, is studied. The embryo of this idea appears in two relatively old works of
Chicone & Jacobs [8, 9] but better developed in [10]. Next main result provides, up to
our knowledge, the highest lower bound for the local cyclicity for degree n = 6 vector
fields that reinforces the new conjecture. In this problem, the natural number of free
parameters is n% + 3n — 4 and to get explicit polynomial systems exhibiting this maximal
value of limit cycles of small amplitude is quite hard. Before this paper the conjecture
was broken only for cubic family. The difficulties are related with the fact that we are
almost using the total number of essential free parameters. For small degrees n, the best
lower bound values for M(n) can be found in [18, 21].

Theorem 1.3. The local cyclicity of a monodromic equilibrium point for polynomial sys-
tems of degree siz is at least 48. That is, M(6) > 48.

For more details about centers, local cyclicity, and other related problems on bifurcation
of limit cycles in planar polynomial vector fields we refer the reader to the books of
Roussarie ([31]), Christopher & Li ([11]), and Romanovskii & Shafer ([30]). Or the more
recent monographies of Han ([22]) and Han & Yu ([23]).

This paper is structured as follows. In Section 2 we introduce some general properties
about how the orbital p-symmetry property acts over the solution curves of a differential
equation, proving the first two main results, Theorems 1.1 and 1.2. In particular about
the sufficient conditions for a vector field to have a center or a saddle on the fixed points
set of its corresponding involution . Among others, the involutions associated to the
folded rational transformations introduced by Zotadek in [40], to classify cubic centers,
are detailed in Section 3. In Section 4, together with other details, we show polynomial
vector fields that are orbitally p-symmetric having centers out of the fixed points set of the
involution ¢. More concretely, they are out of the domain of definition of (. In Sections 5
and 6 we check that vector fields having the rational reversibility property introduced in
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[40] also satisfy our definition, providing which are the respective involutions. We show the
existence of equilibrium points of center and saddle type for such systems. In some cases
the involutions are explicit and in some others are implicit. New families of vector fields
exhibiting centers satisfying the orbital ¢-reversibility property are also given. Finally, in
Section 7 we study lower bounds for the local cyclicity for some of the presented systems
when we perturb them inside the class of polynomial vector fields maintaining the degree.
We finish proving our third main result, Theorem 1.3, providing a polynomial system of
degree six that unfolds, in the class of polynomial vector fields of degree six, 48 limit
cycles of small amplitude.

2. GENERAL PROPERTIES

This section is devoted to present interesting properties that generalize some of the usual
ones for time-reversible vector fields as appeared in [15, 24|. They will be very useful for
the proofs of our results. Proposition 2.1 is just a simple version of Montgomery-Bochner
Theorem given in [29, page 206]. Lemma 2.4 provides the sufficient condition for a solution
to be periodic. The situation of symmetric equilibria with respect to Fix ¢ is given in
Lemma 2.5 and their stabilities in Lemma 2.7. Lemma 2.8 shows how the definition of
p-symmetry and the factor F' behaves with a change of variables. We finish proving
Theorems 1.1 and 1.2.

Consider C" differential systems of the form

¥ = X(z), zeUCR",

where r € NU{o0o,w}, the prime symbol denotes derivative with respect to the independent
variable ¢t and U is an open set. For our purposes, the natural number r will be taken big
enough. Throughout this paper we are working with C"-involutions ¢ : U — U and all
the properties are satisfied on the domain U. In particular, p?> = o =TI in U.

Proposition 2.1. Fach involution ¢ can be linearized in a neighborhood of a fized point
p, w(p) = p. In other words there exist neighborhoods U, of p and Wy of 0, and a dif-
feomorphism g, : U, — Wy such that the transformed involution @ : Wy — Wy is linear,

being@:gpowoggl.

Proposition 2.2. Let ¢ : R® — R" be a linear involution. There exists a basis of R"
such that ¢ is expressed as () = (T1,...,Ts, —Tsi1,. .., —Tp), where s = dim Fix .

Proof. Tt is easy to see that all z € R™ can be written as r = (H‘Qp(x)) + (mfg(z)). So R"
can be decomposed as the direct sum Fix ¢ @ Fix(—¢). It is enough to choose a linear

basis on each subspace. [l

Lemma 2.3. Let X be an orbitally symmetric vector field. If p satisfies p(p) = p and
X(p) # 0, then F(p) =1 or F(p) = —1. In particular, if Fix ¢ is a connected set, then
the restriction of F' to Fix ¢ s identically 1 or identically —1.

Proof. First of all we observe that if ¢ is an involution and p € Fix ¢, then the linear
transformation D¢, : R" — R" is also an involution. We have only to do the derivative
of the expression ¢ o ¢ = I being evaluated at the fixed point p. Applying the definition
of p-symmetric systems at the point p and taking into account that ¢(p) = p we obtain

Dy - X(p) = F(p) X(p).
The hypothesis that X (p) # 0 implies that X (p) is an eigenvector of the linear involution
Dy, associated to the eigenvalue F'(p). From Proposition 2.2 we have that F'(p) = 1 or
F(p) = —1. The fact that F' is of class C" implies that on each connected component of
the set Fix ¢ we have that F' is identically 1 or —1. 0
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In the literature it is easy to find planar vector fields that are equivariant with respect
to the involution ¢;(z,y) = (—x,—y) and reversible with respect to another involution
wa(x,y) = (—x,y). We remark that we show (see for example Propositions 5.1, 5.2, and
6.1) the existence of planar vector fields which are simultaneously orbitally ¢-reversible
and orbitally (p-equivariant with the same involution (. In these cases, both components,
R and E7 , of Fix ¢ are non empty. For example, the vector field (', y') = ((6—5z)(22°+
), 2y (42 + 2y* + 62 + 9y)) is orbitally p-symmetric taking o(z,y) = (x, —2%y/(2* + y))
as its corresponding involution and being the factor F(z,y) = (2% + y)/2?. In this case,
E’j; is the straight line y = 0 and Rf is the parabola 222 + y = 0. The straight line x = 0
and the parabola 22+ = 0 should be removed because they are outside of the domains of
definition of the involution and the factor. Clearly, by Theorem 1.2, y = 0 is an invariant
straight line and the three equilibria {(1,—2), (1/2,—-1/2), (—3/2,—9/2)}, that are on the
parabola 222 + y = 0, are p-reversible centers (the first) or saddles (the other two).

Lemma 2.4. Let X be an orbitally p-symmetric vector field such Fix p = Rf;. If a(t) is
a solution, defined in U, of the differential system z' = X (x) that connects two different
fized points of ¢ and F(a(t)) # 0 for all t, then «(t) is periodic.

Proof. The first step of the proof is to find a function h(t) of class C" that satisfies
R (t)F(a(h(t))) = 1. Taking into account that F' and « are of class C", we consider
G(y) = [) F(a(t))dt a primitive of F(a(y)). Using the hypothesis F(a(t)) # 0 for all
t € R we obtain G'(y) # 0 for all y € R. By the Inverse Function Theorem, G is a C"
diffeomorphism from R to an open interval J C R. Let h be the inverse of G. It is easy to
see that differentiating the identity G/(h(t)) = t with respect to ¢ we obtain the expression
R (t)F(a(h(t))) =1 for all t € J.
Next step is consider B(t) = p(a(h(t))) for t € J. Differentiating with respect to ¢ we
get
B'(t) =Dp(l'(t) o' (h(t))) = b'(t) D - X (a(h(t)))
—H () F(a(h(t)) X(p(a(h(t) = X(3(1)).
So, f is a solution of 2’ = X(z). Denoting by p = «(0) and ¢ = «(T) the two different
fixed points of ¢, we observe that 3(0) = ¢(a(h(0))) = ¢(a(0)) = ¢(p) = p = «(0). By
the Existence and Uniqueness Theorem for solutions of ordinary differential equations we

get that a(t) = B(t), for all ¢ in the maximal interval of existence. Evaluating at ¢t = T
we obtain

q=a(T) = B(T) = e(a(h(T))). (5)
Using that ¢ € Fixy and (5) we conclude that «(7T) = «a(h(T)). So, the solution « is
periodic with period h(T) — T. It is easy to see that h(T) # T, because the hypotheses

F(p) = F(q) = —1 and the fact F(«(t)) # 0 for all ¢ imply that A'(¢) < 0 for all ¢. As a
consequence, 0 is the unique fixed point of h. O

Lemma 2.5. Let X be an orbitally p-symmetric vector field. If p € U is an equilibrium
of X that is neither fized by ¢ nor vanishes F, then ¢(p) is also an equilibrium.

Proof. From the hypotheses, X(p) = 0 and ¢(p) = p, we have that (3) allow us to write
F(p) X(¢(p)) = Dy - X(p) = Dy - 0= 0.
As F(p) # 0 we can conclude that X(p(p)) = 0 and the statement follows. O

Lemma 2.6. Let X be an orbitally p-symmetric vector field. Assume that v C U 1is an
orbit of X that F is negative on it and p € U is an equilibrium point of X (p). If p is in
the w-limit set of 7y, then @(p) is in the a-limit set of 7.
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Proof. Let a(t), with t € R, be a time-parametrization of the solution . Assume that
a(0) € Fix p. According to the proof of Lemma 2.4 there exists a function h : J C R — R,
with A/(t) < 0 for all ¢t € J, such that a(t) = ¢(«a(h(t))) for all t € J. By hypothesis
there exists § > 0 such that the restriction F|, < —§ < 0 implies that J = R, because
the inverse function of k is given by h™*(y) = [/ F(a(t))dt and it tends to Foo as y
tends to +00. The hypothesis that p is in the w-limit set of v implies the existence of a
sequence {t,} such that ¢, tends to +oo and «(t,) tends to p as n tends to infinity. For
each t,, there exists s, € R such that h(s,) = t,. The sequence {s,} tends to —oco. Thus
a(s,) = p(alh(s,))) = w(a(t,)) tends to ¢(p) as n tends to infinity. It implies that ¢(p)
is in the a-limit set of 7. U

We remark that the converse is also true. Moreover, the equilibrium point p can be
substituted by a limit cycle and the result also holds.

Lemma 2.7. Let X be an orbitally p-symmetric vector field having an equilibrium point
at p € U with F(p) # 0. If X is an eigenvalue of the Jacobian matriz of X at p, DX (p),
then A/ F(p) is an eigenvalue of the Jacobian matriz of X at ¢(p). In particular, when
p & Fixp and F(p) < 0, we have that if p is an attracting (repelling) hyperbolic equilibrium
point, then o(p) is a repelling (attracting) hyperbolic equilibrium point. Moreover, when
p € Fixp and F(p) = =1, if X is an eigenvalue of DX (p), then —\ is also an eigenvalue.

Proof. Let us call L = Dy(p), A = DX(p), and B = DX (p(p)). Differentiating the
expression (3) at the point p we obtain L+ A = F(p)B - L. Consider an eigenvector v # 0
of eigenvalue A of the matrix A, Av = Av. Thus we have

B-L-’U:LL-A-U:LL'AU:LL"U

F(p) F(p) F(p)
and the proof follows, being L - v an eigenvector of eigenvalue A/F(p) of the matrix B.
We notice that when p € Fix ¢ we have A = B. 0

We observe that if X' is a p-symmetric vector field and p € Fix ¢ is such that X(p) =0
and F'(p) = 1 it does not imply that the trace of DX (p) is zero. Consider the simple
linear vector field X (x,y) = (z,y), ¢(z,y) = (z,—y), and F(z,y) = 1. We have that (3)
is satisfied, X'(0,0) = (0,0), and the trace of the differential matrix DX'(0,0) is equal to
two.

Lemma 2.8. Let X be an orbitally p-symmetric vector field. If 1 is a change of coor-
dinates, then the transformed vector field X = D - X o4p~L is an orbitally @-symmetric
vector field, being @ = v opo™ and F=Fo =1 the respective transformed involution
and factor.

Proof. The proof follows just doing some simple computations. From @ = 1) o p o1~ we
obtain D@ = D - Dy - Dip~1. Thus, at every point p,

D@ X(p) =Dy -Dyp- Dyt Dy - X(¢7 (p)) =
Dy - Dy - X (¢ (p)) = DY(F(y(p)) - X (e~ (p)))) =
F™'(p)) Dy - (X o™ oo o ™) (p) = F(p) (X o 3)(p).

Observe that we have used the hypothesis that X" is an orbitally ¢-symmetric vector field
on the above third equality. 0

Lemma 2.9. Let X be an orbitally p-symmetric vector field. Assume that p € Fixp =
R} UEY and X(p) # 0. If p € R}, then X(p) & T, Fixp and if p € EY, then X(p) €
T, Fix ¢, where T,M denotes the tangent space of a manifold M at p.
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Proof. First of all we observe that if ¢ is an involution and ¢(p) = p, then the differential
L = Dp(p) is a linear involution. In fact, differentiating the expression (¢ o p)(z) = x at
the point = = p we obtain Dp(p(p)) - De(p) = I. Thus, we have L - L = I. Accordingly
to Proposition 2.2 we can decompose the total space R" = Fix L @ Fix(—L). The sets
Fix L and Fix(—L) are the eigenspaces associated to the eigenvalues 1 and —1 of L,
respectively. Observe that Fix L = T, Fix¢ and so, Fix(—L) M T, Fix¢. As usual M
denotes the transversal intersection of two manifolds. As the vector field X is orbitally
p-symmetric (i.e. Dy(p) - X(p) = F(p) X(2(p))), when p € Ry, that is F(p) = —1,
we have L - X(p) = —X(p). It implies that X' (p) € Fix(—L) and so X(p) &€ T, Fix .
Additionally, when p € EZ, that is F(p) = 1, we have L - X(p) = X(p) and X(p) €
Fix(L) = T, Fix ¢. O

We end this section with the proofs of our first two main results.

Proof of Theorem 1.1. Assume that X is orbitally symmetric. So, there exist a continuous
function F' and an involution ¢ that satisfy (3). From the property Dy, - Dy, = I we
have that X (2) = D) Do X(2) = Dy - F(x) - Xop(x) = F(x) Doy Xop(x) =
F(z)-Foyp(x)- X(x), consequently F(x)- F(p(x)) =1 for all z and F never vanishes. In
a connected component where F' > 0 we take the reparametrization of time dt/ds = h(x)
where h(z) = 2/(F(z) 4+ 1). We have that Y(x) = h(z) - X(x) is p-equivariant. In fact,

D, Y(a) = D, - h(w) - X(z) = s - D X(a) =
2F (z) B 2 _ B
F)+1 X op(r) = Flo@) +1 X o p(x) = hip(z)) - X(p(r)) = Vo p(z).

Analogously, in a connected component where F' < 0 we take the reparametrization of
time dt/ds = h(x) where h(xz) = 2/(F(z) — 1). We have that Y(z) = h(z) - X(x) is
@-reversible.

Conversely, assume that X is orbitally p-equivariant. So, there exist a diffeomor-
phism y = ¢(x) and a reparametrization of time dt/ds = h(z) such that the change
(x,t) = (¢(z),t/h(z)) transforms X to Y = Y(y) and Y is p-equivariant. We consider
the involution 1) = ¢ 'opo¢ and the continuous function F = (ho)/h. We will see that
Diy- X = F-X o). First of all we observe that Y(y) = ho¢ ' (y) - Doy-1(,) - X 0 ¢~ (y).
Now we use the fact that Dy, - Y(y) = Y o ¢(y) we have that

Dy, - (ho¢ ' (y) - Dog-1(y) - X 0™ (y)) = hod (oY) - Dog-1(p(yy) - (X 007 (0(y))),

SO

ho -1o
Dy - D11y - X 0 ¢~ (y) = h%—lé()w

Now we change y = ¢(z) and obtain

_ ho¢™'oypog(x)
h(z)

. D¢¢*1(<p(y)) X o gb_l((p(y))

Dy(a) - Doy - X () - Dg1(p((a))) - X © ¢~ 0 p o ¢(x),

that implies

_ ho¢p=toywog(x)
h(zx)

Do lggay - Do) - Déu - X () X og¢ opod(x),

Now we change ¢! o ¢ 0 ¢ to 1 and we obtain
ho
D, - X(x) = %@-A’ow(m) =F-Xouy(x).
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The same idea works for the case that X is orbitally ¢-reversible just considering F' =
—ho/h. U

Proof of Theorem 1.2. (i) From Lemma 2.7 we have trace(DX(p)) = 0. It is clear that if
p is an equilibrium point of X’ satisfying trace(DX (p)) = 0 and det(DX (p)) > 0, then p
is an equilibrium point of center-focus type. Considering Fix ¢ as a cross section we have
that, in a neighborhood of p, for each ¢ € Fix¢ the orbit v, that passes to ¢ intersects
Fix ¢ in another point ¢ € Fix . According to Lemma 2.4 we have that 7, is a periodic
orbit. So, p is a center of X'. The case F'(p) = —1 and det(DX(p)) < 0 is easier because
Lemma 2.7 ensures that trace(DX(p)) = 0, and so p is a saddle of X.

(ii) For the case F'(p) = 1 consider G : R? — R? given by G(z) = ¢(z) — z. Then
Fix p = G7(0). The tangent space of Fix¢ at p is the set of all vectors of R? such that
DG, -v = 0. For each p € Fixy we have that Dy, - X(p) = F(p) X(¢(p)) = X(p). So,
DG, - X(p) = 0 and it implies X (p) € T, Fix¢. Thus, Fix ¢ is invariant under the flow of
X. O

3. INVOLUTIONS

In this section we list some involutions that are necessary for the studies developed
in this paper. The simple cases are given by reflexions with respect to a straight line.
For example the reflexion with respect to the line y = 0 is ¢1(x,y) = (2, —y), and with
respect to the line y = x is pa(x,y) = (y,x). In [26] there is a classification of all

rational involutions of degree one. Two examples of them are p3(z,y) = (m

asr—aq ? y)
_ (a1yt+az2 aqx—as
and 904(%’ y> o (a3y+a4’ —azztay )

As we have commented in the previous section, in [40], Zo}@dek defines Rationally
Reversible Systems and describes a classification mechanism of reversible cubic systems.
But in [41] he clarifies that his methodology does not provide a complete classification.
In the second paper he provides two lists of different cubic systems, some of them having
equilibrium points exhibiting real centers. First, some reversible are listed, after a long
collection of interesting new cubic systems with rational first integrals are presented.

The classification, in [40], is based on the existence of pairs (®,)) where ®(z,y) =
(X,Y) is a rational map and V is a vector field. In one of these pairs, we have ®(z,y) =
(2, y) and the cubic systems belonging to this class are reversible, in a classic sense, with
the involution ¢(z,y) = (—z,y). We can see that, in this case

(p(z,y)) = @(z,y). (6)

Using this idea we have found some other involutions associated to all rational maps ®
presented in Zoladek. In Table 1 we present the involutions ¢ corresponding to each
transformation ® given in [40], satisfying (6). We notice that not all of them are explicit,
some are implicitly defined by a given polynomial. As we will see in the next sections,
the explicit involutions are better to be used with our reversibility property, but also the
implicit involutions can be useful. We have worked with both concepts to provide new
interesting center families.
The functions appearing in Table 1 are

Ti=x+y+ec, To=ar*+bry+cy’+dv+ey+1, (7)
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CRY O (z,y) p(x,y)
CRY" (2%, y) (—z,y)
CRLY (,4?/(h(z) + ) (z, —h(z)y/(h(z) + y))
CR;" (x, ry + axgi— b + 1) (a:, c;cyé(ix;x—i_f;:y—i_—l—l)l)

CR® cRr®

Tix, T —c—x,—xy/(x+c
CRg) CRgg) (Th 1/Y) ( y/( )
cRMY cR{Y (Tyx, T2 /y) (a, z(o + ¢+ z)/a)

CRY (T, T} Jy) (8, — (B2 + fe — cx — a2 — xy) /)
CRy} CRY{) Tz, T, 2

11 12 ( 1T, l/y) (C /m,yc/x)
CRY CRY) (T}/. T} /y) (Sopertthenpetucana 00 gy )

CR (T2, TE ) (V?z, vy)

(5) o Y
T,/z. T
ORIG ( 2/I7 Q/y) <CLI’2 + bl’y + cyQ? an + b._'['y + cyz)

x3 x?
Yy zy—ay?+22+2(1+a)y+l—a

CRY (6z,8%)

TABLE 1. Functions ® and ¢ corresponding to the reversible families C R ),
form =1,...,17,in [40]. The functions T}, T» are defined in (7) and «, (3,7,
and ¢ in (8)

and the functions «, 3,7, and § are implicitly defined respectively by
o+ (v +c)a—ay =0,
°B% — ((x +y)* + 2cx)B + ¢ =0,
2y + w(x +2y)7* + ((z +y)* + 2cx)y — ¢ =0,
ay?6® + ay*§* — y(r — ay)8® —y(x —ay +2a +2)6° + 2z —a+1)§ —a+1=0.

(8)

We recall that the classical Mobius involutions are rational functions of degree one. See
more details for example in [26]. Just as a sample of how this involutions can be used to
get new reversible systems with our definition, we present the three families C'R1g, C' Ry,
and CRy in the following sections. They are obtained using the rational involutions
indicated in Table 2.
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CR,, o(x,y)

CRig CRyg (r,2r+y—1/(y—1))

CRy | (z,(2® —xy+2z —y)/(z+1))

TABLE 2. Rational involutions ¢ corresponding to new reversible families
CR,,, for m = 18,19, 20

Finally, we can also have involutions ¢ obtained by composition of a simple involution
¢ with a diffe