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Abstract

In most cases, protein aggregation stems from the establish-
ment of non-native intermolecular contacts. The formation of
insoluble protein aggregates is associated with many human
diseases and is a major bottleneck for the industrial production
of protein-based therapeutics. Strikingly, fibrillar aggregates
are naturally exploited for structural scaffolding or to generate
molecular switches and can be artificially engineered to build
up multi-functional nanomaterials. Thus, there is a high interest
in rationalizing and forecasting protein aggregation. Here, we
review the available computational toolbox to predict protein
aggregation propensities, identify sequential or structural
aggregation-prone regions, evaluate the impact of mutations
on aggregation or recognize prion-like domains. We discuss
the strengths and limitations of these algorithms and how they
can evolve in the next future.
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Introduction

Proteins are the most abundant biomolecules in living
systems playing a pivotal role in most biological pro-
cesses. The establishment of functional native intra-
and interchain interactions is a fundamental aspect of
protein biology, governing protein folding, binding, and
activity. In the crowded environment of living cells,
proteins transit through different conformational states
in the search for a free energy minimum, which can
correspond to a monomeric state or a wide variety of
assemblies [1], depending on the polypeptide and
cellular conditions.

Intracellular assemblies present different natures
ranging from biomolecular condensates, which are
multi-component, dynamic, and reversible assemblages,
often formed via liquid—liquid phase separation, to
irreversible protein aggregates, like amyloids [2]. During
protein assembly, native contacts might preserve the
surface conformation that interacts to drive the supra-
molecular structure, in a process known as agglomera-
tion [3,4]; however, more often, protomers undergo
partial or global unfolding, and native contacts are
replaced by non-native intermolecular interactions
leading to the formation of non-structured amorphous
aggregates or highly ordered amyloid fibrils, character-
ized by a cross-P conformation formed by the repetitive
stacking of B-strand monomers perpendicularly to the
fibril axis [5].

The formation of insoluble aggregates is often associ-
ated with a loss of protein activity and/or a gain in
toxicity, and is intimately related to a broad array of
diseases and aging, including neurodegenerative disor-
ders, such as Alzheimer’s and Parkinson’s [6], and non-
neuronal localized or systemic diseases [7].

Protein aggregation constitutes a major bottleneck in
producing protein-based therapeutics and biotechnolog-
ical products. During manufacturing, proteins are exposed
to unnatural stresses and formulated at concentrations far
from their physiological abundance, which exacerbate
their aggregation potential. Aggregation directly reduces
production yields, final product activities and might trig-
gerunpredictable immune responses in patients [8].

Although amyloids are best known for their deleterious
effects, they have also evolved to play a pivotal role in
biological functions that cannot be attained by globular
proteins, from bacteria to humans [9—12]. These ac-
tivities, associated with their common cross-f architec-
ture, have become a source of inspiration for designing
amyloid-based materials with a broad range of applica-
tions in nanotechnology [13—15].

Extensive research has been devoted to understanding
the molecular determinants behind uncontrolled and
aberrant protein oligomerization. However, empirical
methods are costly, time-consuming, and limited by the
availability of proper protein models. In this context,
computational methods have emerged as powerful
complementary tools for studying aggregation at the
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individual protein and proteome scales [16]. Under-
standing and anticipating protein aggregation has a
translational impact in five main areas: pathology, evo-
lution, protein manufacturing, development of novel
nanomaterials, and unveiling the physiological role
played by functional amyloids.

Here, we provide a compendium of computational
methods available to predict aggregation propensity,
identify aggregation-prone regions, evaluate the impact
of mutations on aggregation and solubility, and for prion-
like proteins identification. We also discuss how the
incorporation of yet unattended parameters might
improve such predictions.

Prediction of aggregation propensities in
protein sequences

Intrinsic determinants behind protein aggregation
Many of the molecular determinants governing protein
aggregation are naturally imprinted in the primary
sequence and depend on intrinsic properties of the
polypeptide chain, including the amino acid composi-
tion or residues patterning. Hydrophobicity is a major
driving force in the establishment of intrachain and
interchain contacts leading to aggregation, whereas the
protein local and net charges often play an opposing role,
promoting electrostatic repulsion between individual
residues or molecules. Most amyloid aggregates adopt a
cross-PB fold, implying that aggregation is favoured by
amino acids with high B-sheet propensity and counter-
acted by B-sheet breaking residues, such as Pro and Gly.
However, the aggregation propensity of a protein is not
equally distributed along the sequence and tends to
concentrate in short linear stretches, known as hot spots
or aggregation-prone regions (APRs). These regions are
sufficient and necessary to nucleate protein aggregation.
They are often enriched in hydrophobic residues and, in
globular proteins, they generally map at the hydrophobic
core. However, exposed APRs involved in catalysis and
binding have also been described. The presence of APRs
is a requirement for protein stability and it seems that
positive selection for an amyloid structure might be
behind the emergence of globular folds [17], their po-
tency being modulated by the presence of adjacent
residues of low aggregation propensity, known as gate-
keepers. In addition, aggregation propensities are
balanced by extrinsic factors, such as pH, ionic strength,
temperature, or even gravity [18]. This dependence on
the environment is often behind the frequently
observed amyloid polymorphism [19,20].

Our increasing understanding of the intrinsic and
extrinsic factors governing protein aggregation and their
interplay has crystallized in the development of  siico
methods to predict this phenomenon departing both
from sequences and structures.

Exploiting sequential features to predict protein
aggregation

Protein sequences encode the information for folding
into native globular states but also to remain partially or
fully unstructured in the case of intrinsically disordered
proteins (IDPs). This linear code overlaps with the one
accounting for the formation of the cross-f fold common
to amyloids and thus first-generation aggregation pre-
dictors were aimed to read aggregation propensities
from the primary sequence.

"To date, more than 20 prediction algorithms exist for the
recognition of linear APRs in polypeptides using sundry
metrics to derive aggregation propensity, solubility, and
thermodynamic stability. All of them use protein se-
quences as an input, but they differ on the strategies
employed for APRs identification and quantification,
relying on either phenomenologically or theoretically
derived parameters. A first set of algorithms exploits scales
of aggregation propensity for amino acids determined
experimentally, exemplified by AGGRESCAN [21] or
Zyggregator [22]. A second set of methods combines
different key features of APRs, such as specific physico-
chemical properties of amino acids, their distribution
along the sequence or the feasibility to adopt a B-sheet
conformation, employing particular functions to weigh
each of these parameters. They include Waltz [23],
SALSA [24], PAGE [25], Tango [26], FoldAmyloid [27]
and PASTA [28], among others. For a description of first-
generation methods see Table 1.

Given the intricacy of protein aggregation reactions,
averaging the predictions provided by algorithms relying
on distinct strategies seems reasonable. This is the
concept behind AmylPred2, which combines the out-
puts of eleven different algorithms, identifying an APR
when the stretch is predicted by at least n/2 of the
methods [29]. In METAMYL,, scores are weighted using
a logistic regression model arising from the combination
of four predictive methods [30] (Table 1).

Artificial intelligence to evaluate sequential
aggregation propensity

The need to train and perfect linear predictors boosted
the generation of datasets and databases compiling
experimentally validated aggregating regions in peptides
and proteins [31,32]. Most of these repositories provide
a binary classification regarding the capacity of the
proteins or segments to assemble or not into amyloid
fibrils. Thus, they constitute the perfect substrate for
machine learning classifiers, which can automatically
uncover unrelated features of polypeptide chains. The
effectiveness of these algorithms heavily depends on the
accurate annotation of the reference training data,
although a certain degree of misannotated instances still
allows robust predictions, which suggests that, indeed,
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Table 1

Computational methods to predict protein aggregation.

Algorithm

Characteristics

URL and Ref

Sequence-based methods

AGGRESCAN

Zyggregator

Waltz

SALSA

PAGE

TANGO

FoldAmyloid

PASTA 2.0

SecStr

ArchCandy

BetaSerpentine

BETASCAN

AmyloidMutants

STITCHER

GAP (Aggregation

Intracellular aggregation propensity scale for each of the 20
amino acids derived after introducing single point mutations
on AB42 peptide

Relative propensities for aggregation based on hydrophobicity,
secondary structure propensity, hydrophobic/hydrophilic
patterning, net charge, the presence of gatekeepers and the
influence of structural protection

Statistical method that exploits Position-Specific Substitution
Matrices (PSSM) obtained from amyloidogenic hexapeptides,
combined with physicochemical properties of f-amyloids and
conformational features of amyloid backbone structures

B-strand propensity is calculated from a -strand contiguity
score based on Chou and Fasman’s secondary structure
propensity scale and applied using a sliding window

Prediction of parallel or anti-parallel B-sheet organization in
fibrils and aggregation rates based on physicochemical
properties and computational design of -aggregating peptide
sequences

Statistical mechanics-based method that calculates the partition
function of the phase-space considering conformational
states and energy terms, together with physico-chemical and
protein stability parameters

Predicts amyloidogenic regions according to the expected
probability of formation of backbone—backbone hydrogen
bonds and the expected packing
Density

Estimation of B-strand inter-molecular pairing probability
between polypeptide segments, based on experimentally-
resolved B-sheets structures, and a statistical energy function
to determine fibril formation

Combines the prediction of amyloidogenic regions with the
identification of ‘conformational switches’

Detection of amyloidogenic regions based on the propensity to
form parallel in register stacking of f-arches (B-strand-loop-f3-
strand motif)

Reconstruction and ranking of B-serpentine arrangements of
adjacent B-arches predicted by ArchCandy

Prediction of B-strands and strand pairs in a sequence based on
pairwise probabilities for each pair of residues to form
hydrogen bonds in amphiphilic B-sheets

Quantifies the energetic effects of sequence mutation on fibril
conformation and stability using a potential energy scoring
function derived from the frequency of specific residue/
residue interactions in PDB protein structures

Predicts the formation of strand-pairs into complete B-sheets
based on a free-energy model accounting for amino acid
sidechain stacking contributions, entropic estimation, and
steric restrictions for amyloidal parallel -sheet formation. A
dynamic program returns the top scored structures

Evaluation of residue pair propensities to occur at adjacent or

http://bioinf.uab.es/aggrescan [21]

[22]

https://waltz.switchlab.org/ [23]

http://amypdb.genouest.org/e107_
plugins/amypdb_aggregation/db__
prediction_salsa.php [24]

[25]

http://tango.crg.es [26]

(http://bioinfo.protres.ru/fold-amyloid/ [27]

http://protein.bio.unipd.it/pasta2/ [28]

http://biophysics.biol.uoa.gr [82]

https://bioinfo.crbom.cnrs.fr/index.php?
route=tools&tool=7 [83]

github.com/stanislavspbgu/
BetaSerpentine [84]
http://betascan.csail.mit.edu [85]

http://amyloid.csail.mit.edu/ [86]

http://stitcher.csail.mit.edu [87]

http://www.iitm.ac.in/bioinfo/GAP/ [88]

Proneness) alternate positions in globular proteins, and calculation of
thermodynamic energy potentials. This tool can predict
whether APRs would form amorphous B-aggregates or
amyloid fibrils.
3D Profile Profile generated by mutating the side chains in the cross-f www.rosettacommons.org [89]

spine of NNQQNY crystal structure and employing
ROSETTADESIGN to evaluate the sequence energetic fit

Machine-learning methods

ANuPP (Aggregation
Nucleation Predictionin
Peptides and Proteins)

Ensemble-classifier that identifies potential aggregation-
nucleating regions trained on an experimental dataset of
amyloidogenic and nonamyloidogenic hexapeptides

https://web.iitm.ac.in/bioinfo2/ANuPP/ [34]

(continued on next page)
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Table 1 (continued)

Algorithm

Characteristics

URL and Ref

PATH (Prediction of
Amyloidogenicity by
Threading)

NetCSSP

FiSH amyloid

RF Amyloid

Budapest

CORDAX

AgMata

Pre-Amyl-MLP

AbAmyloid

Pafig (Prediction of
amyloid fibril-forming
segments)

APPNN
(Amyloidogeniciy
Propensity Prediction
Neural Network)

Amylogram

Consensus methods
Amylpred 2

MetAmyl

The input sequence is threated into templates of different
structural amyloid classes and the model with the lowest
energy value score according to PyRosetta is used as an
input for machine learning classifiers

Detects non-native secondary structure propensities based on
the calculation of contact-dependent secondary structure
propensity (CSSP), and the search for chameleon sub-
sequences using a PDB structures collection

Machine learning method trained to recognise and classify
amyloidogenic segments based on position-specific amino
acid co-occurrence patterns in protein sequences

A random forest protein classifier based on composition and
physicochemical features from protein sequences

Linear Support Vector Machine (SVM)-based predictor for
hexapeptides trained and tested with the experimental
hexapeptide Waltz dataset.

Logistic regression approach that detects APRs and predicts the
structural topology and architecture of the fibril core. It exploits
a curated amyloid template structural database generated
from the WALTZ-DB 2.0 repository

Machine learning-based classifier not trained on aggregation
data. It uses manually selected parameters accounting for
predicted secondary structure propensities, side-chain and
backbone dynamics, and a -pairing energy function

Machine learning-based prediction using a multilayer
perceptron-based classification that exploit a selected
combination of amyloid associated features

Random Forest classifier adopted to evaluate amino acid
composition, dipeptide composition and physicochemical
properties

Identification of amyloid fibril-prone hexapeptides with a scale
derived from machine supervised learning of >500
physicochemical properties. Suitable for large-scale analysis

Machine learning approach that analyses features correlated
with self-assembly of peptides and proteins into amyloids:
frequency of B-sheet, isoelectric point, atom-based
hydrophobic moment, helix termination parameters and AG°
values for peptides extrapolated in 0 M urea

N-grams and random forest machine learning classifiers that
recognise sequential patterns in the amyloids considering
hydrophobicity, tendency to form B-sheets, and low flexibility
of amino acid residues

It combines 11 individual methods (Aggrescan,
AmyloidMutants, Amyloidogenic, Pattern, Average Packing
Density, Beta-strand contiguity, Hexapeptide Conformational
Energy, NetCSSP, Pafig, SecStr, Tango and Waltz) to identify
amyloid-forming regions. Consensus between the output from
at least n/2 of n selected algorithms

Uses a logistic regression model after combining and weighting
the output of 4 popular predictors (SALSA, PAFIG, Waltz and
FoldAmyloid). It can handle large sequence datasets

3D structure-based methods

Solubis

Aggscore

Identifies mutations that reduce protein aggregation employing
the statistical thermodynamics algorithm TANGO to evaluate
the sequence intrinsic aggregation propensity. This is
projected onto high-resolution 3D structures, and the
thermodynamic stability of the variant assessed using FoldX

Trained on a dataset of 31 adnectin proteins with varying
aggregation propensities. It uses the distribution of
hydrophobic and electrostatic patches on the surface together
with their intensity and orientation to implement and
aggregation propensity scoring function

Scripts available: https://github.com/
KubaWojciechowski/PATH [35]

http://cssp2.sookmyung.ac.kr/ [36]

http://www.comprec.pwr.wroc.pl/
COMPREC_home_page.html [37]

http://server.malab.cn/RFAmyloid/ [38]

https://pitgroup.org/bap/ [39]

https://cordax.switchlab.org [40]

https://bitbucket.org/bio2byte/agmata [90]

http://106.12.83.135:8080/amyWeb_
Release/index.jsp [91]
http://iclab.life.nctu.edu.tw/abamyloid [92]

[93]

http://cran.r-project.org/web/packages/
appnn/index.html) [94]

http://smorfland.uni.wroc.pl/shiny/
AmyloGram/ [95]

http://aias.biol.uoa.gr/AMYLPRED2/ [29]

http://metamyl.genouest.org/ [30]

http://solubis.switchlab.org [55]

Schrédinger’s BioLuminate Suite as of
software release 2018—1 [56]
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Algorithm Characteristics URL and Ref
SAP (Spatial Based on full antibody atomistic simulations, it measures the [57]

aggregation effective dynamically exposed hydrophobicity of a certain

propensity) patch on the protein surface to identify aggregation prone

regions. Itimplements a mutation option on predicted regions.
SAP has been applied either in high-throughput developability
screening of therapeutic protein candidates or to enhance

stability at later stages of manufacturing
The method integrates the 3D-structural information of PDBs
and evaluates the contribution of solvent-exposed APRs

AGGRESCANS3D 2.0

http://biocomp.chem.uw.edu.pl/A3D2/
[58,59]

using the amino acid aggregation scale from Aggrescan
method. Predictions can be run in static and dynamic modes.
An extended option allows the evaluation of stable mutations

using FoldX method
Camsol

Aimed to design protein variants with enhanced solubility by the
calculation of the intrinsic solubility profile with a structural

http://www-vendruscolo.ch.cam.ac.uk/
camsolmethod.html [60]

correction accounting for the residues’ structural environment
and for their solvent exposure. The structurally corrected
solubility profile is used to identify the most suitable

solubilizing mutations

these programs can be used to evaluate the quality of
the experimental data [33].

Several protein aggregation predictors employ machine
learning classifiers to recognise sequence-specific fea-
tures and position-specific patterns, or they use energy
functions of cross-P pairings; they include ANuPP [34],
Amylogram [35], netCSSP [36], FISH amyloid [37], RF
amyloid [38], and Budapest [39] (Table 1). The most
recently developed PATH [35] and CORDAX [40] al-
gorithms exploit crystallographic structures of amyloid
steric zippers [41] to combine threading and machine
learning approaches, providing insights into the forces
that govern the formation of amyloid assemblies by short
peptides (Table 1). This class of algorithms has
succeeded in protein redesign [42], solubility fore-
casting [43], or ranking aggregation rates [44]. Further
improvements would require connecting their outputs
with understandable physical, chemical, or structural
parameters to feedback the predictive model.

Prion-like proteins can be identified from their
sequences

Prions and prion-like proteins are a particular subset of
amyloids that can interconvert between a soluble
conformer and a cross- structure. Both states can be
functional, and the conversion to the amyloid state can
either switch off the initial function or switch on a new
activity. The aggregated state is often transmissible,
templating homologous polypeptides conversion. They
differ from classical amyloids since, in most cases, this
activity is located in disordered regions of low sequence
complexity enriched in polar residues, like glutamine
and asparagine, and depleted in hydrophobic amino

acids, which are known as prion or prion-like domains
(PrDs, PrLLDs). Their enrichment in hydrophilic resi-
dues contrasts with the eminent hydrophobic nature of
classical APRs and precludes identifying these aggre-
gating regions with pre-existent algorithms. Thus, the
development of new tools was required ("Table 2). A first
class of methods compares target proteins’ amino acid
composition with the one of PrDs of similar length in
bona fide yeast prions using different metrics and
scanning procedures. They include DIANA [45], LPS
[46], PAPA [47], PLAAC [48], PrionScan [49], and the
machine learning method pRANK [50]. All these
methods consider that the transition towards the
aggregated state is mediated by a large number of weak
interactions distributed along the PrD, according to the
view that the PrD composition and not its specific
sequence is relevant for prion conversion. A second class
of algorithms, like pWALTZ [51] and PrionW [52], relies
on identifying and ranking soft-amyloid cores within
PrD, defined as short linear stretches of low complexity
with a moderate but significant amyloid propensity that
nucleates the aggregation reaction. The predictions of
the two kinds of methods are complementary, and their
joint application has allowed the identification of thou-
sands of new prion-like candidates in protecomes
belonging to all kingdoms of life [53].

Prediction of aggregation propensities in
globular protein structures

Overall, linear algorithms have demonstrated to be fast
and cost-effective tools to predict sequences aggrega-
tion propensities, with a remarkable overlay between
predicted and experimentally validated APRs [54].
They are of particular interest when dealing with short
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Table 2

Computational methods to identify proteins bearing prion domains.

Method Description

URL and Ref

Composition-based predictors
DIANA (Defined Interval Amino
acid Numerating Algorithm)

Inspired by the length and composition of Sup35p and
Ure2p yeast prions and the length of pathogenic polyQ
expansions. The algorithm searches for consecutive
80 residue-long sequence and retrieves the most Q/N-
rich stretch containing at least 30 Q and/or N residues

Identifies compositional-biased regions by defining the
lowest-probability sub-sequences (LPSs) for a given
amino acid composition in a defined proteomic context

Combination of analysis of disordered regions using
Foldindex and calculation of the prion propensity of
each amino acid using a scale obtained experimentally
from a randomly mutated Sup35p segment

Implements a Hidden Markov model derived from 28
characterised yeast prion proteins. The program
employs the HMM-derived residue log-likelihood for
every position, and calculates the probability of each
amino acid to be part of a PrLD, considering the
background frequencies in the selected proteome

Bimodal method incorporating an open-source database
of prion predictions for all the proteins in UniProt KB
and a sequence analysis tool to test prionogenicity of
user’s protein sequences, relying on the amino acid
frequencies of validated prion and non-prion of similar
composition

Employs supervised multiple-instance learning to solve
the problem of inaccurately annotated data. Trained on
top of 22 known Q/N-rich yeast prions against the rest
of the yeast proteome, it ranks and classifies prion
sequences

Soft Amyloid Core-based predictors

pWaltz Employs the amyloid propensity scoring matrix of the
Waltz linear predictor and scans for soft-amyloid cores
(SACs) by implementing a 21-residue window and
calculating its average amyloid load. It identifies SACs
as the highest scoring stretches above a calibrated
threshold

Intrinsically disordered segments of at least 80 residues
are identified with Foldindex and their Q/N content
computed. Q/N enriched sequences are then scored
using pWaltz. The Q/N and pWaltz identification
thresholds can be adjusted for each specific protein
dataset.

LPS (Lowest-Probability
Subsequences)

PAPA (Prion Aggregation
Prediction Algorithm)

PLAAC (Prion-like amino acid

composition)

PrionScan

pRank

PrionW

[45]

http://libaio.biol.mcgill.ca/lps-annotate.
html [46]

http://combi.cs.colostate.edu/
supplements/papa/ [47]

http://plaac.wi.mit.edu/ [48]

http://webapps.bifi.es/prionscan [49]

http://faculty.pieas.edu.pk/fayyaz/prank.

html [50]

http://bioinf.uab.es/pWALTZ/ [23,51]

http://bioinf.uab.cat/prionw/ [52]

peptides, IDPs, or fluctuating protein regions, where
APRs are permanently or transiently exposed to solvent.
However, they mistakenly overestimate the aggregation
propensity of globular proteins, and native oligomers, for
which the structural context strongly modulates the
contribution of sequential determinants. Over-
prediction occurs because, in native states, APRs are
usually embedded within the hydrophobic core, being
sheltered from the solvent and thus not contributing
significantly to the aggregation propensity. On the con-
trary, the clustering of sequentially distant hydrophobic
residues at protein surfaces may generate structural
aggregation-prone regions (STAP) in the native state, to
which linear predictors remain blind.

The above-described limitations, together with the ev-
idence that many of the biotechnologically relevant
proteins are globular (e.g., antibodies or enzymes for
industrial and therapeutic applications), have prompted
the development of a generation of structure-based
prediction methods to address the location of solvent-
accessible aggregation hot-spots, like Solubis [55] and
Aggscore [56], or the identification of spatially close
aggregation-prone  regions, such as SAP [57],
AGGRESCAN3D 2.0 [58,59], and CamSol [60]
(Table 1). Globular proteins are flexible in solution, and
this impacts the degree of exposure of their STAPs.
Accordingly, molecular dynamics have been incorpo-
rated in SAP and AGGRESCAN3D 2.0 predictions to
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simulate structural fluctuations under native conditions
[58,59], using full atomistic calculations and the coarse-
grained CABS-flex approach [61], respectively. Note-
worthy, several of these tools allow for predicting
structural aggregation propensity and thermodynamic
stability upon automatically introducing multiple mu-
tations, which is extremely useful for selecting and
producing highly soluble and stable protein vari-
ants [62].

The predictions of structure-based algorithms are ac-
curate when a high-resolution experimental structure is
available, being less precise when working with molec-
ular models, and this has restricted their use to the
subset of structures deposited in the protein data bank.
However, the apparition of programs like AlphaFold2
[63] and RoseTTaFold [64] providing high fidelity
structural models for natural or mutated sequences
should bypass this limitation. We foresee a future in
which structure and aggregation prediction algorithms
would be sequentially implemented in protein produc-
tion pipelines, making it fast and economically afford-
able to redesign therapeutic products with increased
solubility [65].

Finally, later advances in solid-state NMR (ssNMR)
[66] and cryo-EM [67] are providing an increasing
repertoire of fibrillar structures of pathological and
functional amyloids, which can be wused to train
structure-based methods in order to assist the redesign
of amyloid-like structures for therapeutic and nano-
technology applications [65].

Table 3
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Conclusions and perspectives

In silico aggregation predictors have contributed to guide
and assist experimental endeavours in elucidating the
molecular mechanisms underlying protein aggregation-
related diseases [68]. They have also boosted the
design of engineered protein variants with improved
solubility and stability [69,70], saving time and costs in
therapeutic proteins production pipelines. Each of the
discussed approaches has its own pros and cons
(Table 3), and users should bear in mind the specific
problem they want to address. This is because they
capture different aspects of protein aggregation, that
might or might not be relevant for the application
of interest.

Protein aggregation reactions are complex processes in
which, besides the primary sequence, multiple param-
eters might impact the stability, structure, cooperativity,
solubility, kinetics, and dynamics of polypeptides. Thus,
the binary classification into aggregating and non-
aggregating proteins or protein regions provided by
predictors might be accurate only in conditions close to
those in which the initial experiments or calculations
that feed the training data sets were performed.

The influence of factors intrinsic to the sequence is
evident because we need different programs to predict
archetypical amyloids and prion-like proteins. Indeed,
two recent works [40,71] indicate that the amyloid
sequence space is much larger than previously thought,
including highly soluble sequences with low aliphatic
content and/or high net charge. At the core of most of

Pros and cons of the different classes of computational methods to predict protein aggregation.

Method Pros Cons
Sequence Based - Low computational demand - Dismiss the 3D-structural context
- User-friendly - Disregard the impact of mutations on protein stability

- Many webservers available

- Fast analysis of complete proteomes

- Perform well on small peptides and IDPs
- Consensus methods available

Machine learning - Produce outputs from apparently unrelated protein

sequence features

Attain high accuracy

Implemented in webservers

Suitable for fast and wide-range analyses

Structure Based

Consider the quaternary structure

philic patches
Incorporate protein dynamics calculations

variants

Predict on the native, functional state of proteins
Analyse surface-exposed hydrophobic and hydro-
Accurate in predicting globular proteins solubility

Consider the impact of mutations on protein stability
Allow automated design of more soluble protein

- Do not account for protein micro-environment

Accurate annotation of the reference experimental
training data is required

Do not calculate full-length proteins average
propensities

Disconnection  between the output and
understandable physicochemical interpretations
Dependence on  high-resolution  structures
availability

Not suitable for IDPs

High computational cost

Difficulty to perform proteome-wide analysis
Protein chemistry/engineering knowledge required
Do not account for protein micro-environment
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the discussed algorithms is the concept that low solu-
bility and aggregation propensity are interchangeably
properties, and this should be revisited to fish se-
quences in this uncharted amyloid territory. In addition,
it should not be overlooked that aggregation is not
uniquely dependent on APRs since flexible segments
often located remote from these stretches may act as
conformational switches, masking APRs and thus
modulating the fibrillation propensity [72]. Moreover,
even if we often assume that APRs are exposed to sol-
vent during the process of protein folding and accord-
ingly that sequence-based predictions are accurate at
this stage, these sequences are usually protected by
chaperones and self-chaperoning # vivo, not contrib-
uting to fibrillation [73]. Finally, most existing programs
do not consider post-translational modifications, even
though they can dramatically alter aggregation pro-
pensities [74]. Thus, it is apparent that despite current
progress, we are addressing a complex process with
rather simplistic approaches. Because we have in our
hands accurate tools to predict conformational switches,
posttranslational modifications, and interactions with
chaperones, co-factors, or other non-proteinaceous
molecules, we should make an effort to integrate these
parameters in present programs to provide accurate
predictions in biological relevant scenarios.

Regarding extrinsic factors, viscosity, temperature, pH,
ionic concentration, protein concentration, solvent
identity, and the interaction with other molecules are all
known to influence intrinsic aggregation propensities
[75]. Subtle variations in these factors are behind the
formation of structurally different amyloid polymorphs
[76], leading to distinct pathological phenotypes in
neurodegenerative disorders [77]. Despite this evi-
dence, scarce efforts have been made to include them in
the predictions, and only recently the effect of the pH
has been accurately parametrized [78] and incorporated
into a webserver [79], although only for disordered
proteins. The main limitation to developing methods
that can mimic the protein microenvironment in their
predictions is the lack of systematic experimental data
covering all possible variables combinations for a set of
structurally and sequentially unrelated proteins. Gath-
ering these data is often seen as a “low regard” objective,
but we have all witnessed how artificial intelligence (Al)
has revolutionized structural biology, which would not
have been possible without the previous existence of an
extensive collection of protein structures.

Our opinion is that building up algorithms that can
effectively predict aggregation in the specific conditions
occurring at the neuronal synapsis or allow stable for-
mulations of antibodies for immunotherapies, just to
mention a couple of applications, is indeed a “high
reward” objective. 2021 has witnessed the development
of impressive advances that should help in attaining
these challenging objectives, like the obtention of high-

resolution cryo-EM structures of amyloid fibrils extrac-
ted from the organs of patients [80] and Al-assisted
elucidation of thousands of human protein structures
[81]. Third-generation algorithms and databases are just
around the corner.
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