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A B S T R A C T   

The stability of comminuted products plays an important role in the economy of meat industries. Proper 
formulation and the establishment of suitable emulsification conditions can significantly contribute to cooking 
losses control. The purpose of this research was to study the relationship between light backscatter parameters 
and cooking losses and develop prediction models that would allow the optimization of the emulsification 
process in a continuous industrial emulsifier. The optical response of meat emulsions, produced at industrial 
scale, depended drastically on the formulation (with and without starch) and the degree of emulsification. 
Furthermore, formula with starch showed significantly lower cooking losses than formula without starch, but for 
both formulas, several optical parameters correlated with cooking losses. Models for the prediction of cooking 
losses with R2 values > 0.999 were obtained with five or six statistically significant optical predictors depending 
on the formula. These results point out the potential of light backscatter technology as a control tool during 
emulsification.   

1. Introduction 

Meat emulsions are the result of the comminution of water, proteins, 
and fat (Puolanne, 2010). During emulsification, myosin solubilized 
protein covers fat particles to prevent fat separation through thermal 
treatment, while actin solubilized protein immobilizes water. The 
interaction between proteins, fat, and water set up a tridimensional 
emulsion matrix (Barbut, 1995; Feiner, 2006, pp. 239–286). Composi
tion and processing conditions determine emulsions stability which has 
a direct effect on water holding capacity or cooking losses (Sebranek, 
2003). In some cases, starch is used to improve water and protein 
binding, hence increasing yield and profitability. Meat emulsions with 
starch show a compact network where water is better retained due to 
starch swelling ability and the interaction with meat proteins (García-
García & Totosaus, 2008). 

Optimizing the emulsification degree requires avoiding three 
possible processing-related defects: a) less firm unstable product with 
undue fat surface area (over-processing), which enhances water and fat 
separation (Hoogenkamp, 2011); b) product with fat melting problems 

(over-processing), as a result of excessive emulsion temperature (Feiner, 
2006, pp. 239–286; Knipe, 2014); and c) product with visible fat par
ticles (under-processing), having incomplete solubilized proteins and/or 
salts. The stability of pre-cooked emulsions defines gel characteristics. 
During cooking, proteins change their conformational structure pro
moting aggregation. Shrinkage provokes gel deformation and concom
itant cooking losses (Tornberg, 2005) which have been reported 
between 5 and 18% in frankfurters (Grigelmo-Miguel, Abadías-Serós, & 
Martín-Belloso, 1999; Shan et al., 2014), representing 0.38–1.36 
American billion US dollars calculated with the index 0.076 American 
billion US dollars per 1% loss of Álvarez, Castillo, Payne, Cox, and Xiong 
(2010). 

There are few works on emulsion stability control through optical 
sensor technologies based on light backscatter (Álvarez, Castillo, Payne, 
& Xiong, 2009, 2007;Álvarez, Castillo, Payne, et al., 2010; Álvarez, 
Castillo, Xiong, & Payne, 2010; Nieto, Xiong, Payne, & Castillo, 2015, 
2014; Torres, 2016). The implementation of this type of technology 
control could favor monitoring during emulsification, to determine in 
time, the homogenization end-point or speed and prevent cooking 
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losses. In that way, products would not be affected by emulsion break
down improving yield and quality (Nieto, Xiong, Payne, & Castillo, 
2014). The optical device proposed implements correlations of some 
color and optic parameters with water or fat losses to determine the 
exact emulsification end-point in meat emulsions. These studies have 
demonstrated the relation between cooking losses and the optical 
response. All these studies, except for Torres (2016), were manufactured 
under laboratory/pilot plant processing, so the effect of real industrial 
conditions on the optical technology feasibility has not been analyzed 
yet. 

In order to achieve faster comminution and processing, conventional 
cutters are being replaced by continuous emulsifiers with a coarse 
chopping step followed by the emulsification step executed with a 
combination of blades and perforated plates (Morin, Reeve, Tomey, 
Wilke, & Lucke, 2005; Powers, Schack, & Anderson, 1987; Rudibaugh, 
1995). None of the previous studies have used continuous emulsifiers. In 
that view, the present study had the purpose to provide valuable in
formation with the use of industrial meat samples thus going forward 
towards a new in-line control system. The present work aimed to find 
out a relation between some optical parameters (excluding color co
ordinates for practical purposes), and the cooking losses of two different 
meat emulsions (with and without starch) produced through continuous 
emulsification, to establish prediction equations for the losses in both 
types of samples, and, as a consequence, to evaluate the feasibility of 
applying the optical backscatter technology as a control technology for 
the emulsification degree in meat emulsions. 

2. Materials and methods 

2.1. Meat emulsion manufacture and composition 

Two types of meat emulsions (with and without 10% potato starch) 
were produced at industrial scale following standard procedures by a 
large pioneer company in the meat industry. Lean trimmings (pork, 
chicken, and turkey), fat (pork fat trimmings and rind), salt, spices, 
potato starch, and functional additives were purchased from suppliers 
approved by the European Union. Appropriate proportions, not speci
fied by the meat company due to confidentiality on industrial formula
tions, were calculated to obtain a base theoretic formula of 70, 17, and 
13% of moisture, fat, and proteins. All required ingredients were mixed 
using an industrial mixer (Model IM-4500, INOTEC, Reutlingen, Ger
many) to obtain pre-emulsified batters which were introduced into a 

continuous industrial emulsifier (Model I175CDVM-90D, INOTEC, 
Reutlingen, Germany), where the emulsification process occurred. 
Different degrees of emulsification were obtained by means of volu
metric flow adjustment, and monitored through the temperature of the 
product during extrusion: under-processed samples (5.09 ± 0.23 ◦C), 
samples with medium-degree of processing (hereafter referred as to 
medium-processed samples; 7.41 ± 0.70 ◦C), and over-processed sam
ples (9.36 ± 0.48 ◦C). One pre-emulsified sample and the three samples 
with different emulsification degrees constituted one replicate. Proxi
mate composition of emulsions with and without starch, characterized 
with a Food Scan NIR Meat Analyzer (DK-3400, FOSS, Hillerod, 
Denmark), was approximate: 62.82 and 65.92% of moisture, 13.21 and 
17.29% of fat, 11.57 and 13.13% of proteins and 2.12 and 2.10% of salt, 
respectively. All samples were vacuum packaged and delivered refrig
erated. Analyses were performed on the same day of reception at UAB or 
the next day (storage at 4 ± 2 ◦C overnight). 

2.2. Meat emulsion cooking losses 

Cooking losses were measured using a modified method of Bañón, 
Díaz, Nieto, Castillo, and Álvarez (2008) and Nieto et al. (2009), where 
meat emulsions were introduced into a syringe barrel of 100 mL and 
pressed inside a weighted 50 mL corning tube with a plunger, to simu
late casing stuffing. Then, each corning tube was weighted again and 
placed in a water bath (Ovan Inox 27 L Model, Suministros Grupo Esper 
S.L., Barcelona, Spain) at 75 ± 1 ◦C for 45 min. After cooking, all tubes 
were placed inverted on a metal mesh during 1 min to drain the expelled 
liquid and finally weighted. 

Cooking losses were calculated with the formula CL =

(
W0 − Wf

W0

)

⋅100, 

where W0 was initial emulsion weight and Wf final cooked emulsion 
weight. Each trial was performed sixfold. 

2.3. Light backscatter measurement of meat emulsions 

The experiment was carried out on a High-Resolution Fiber Optic 
Spectrometer (Model HR4000, Ocean Optics, Inc., Dunedin, FL, USA) 
fed by a tungsten halogen bulb (300–1100 nm) as light source (LS-1, 
Ocean Optics, Inc.) and communicated with a double-jacketed sample 
holder through two fiber optic cables of ~600 μm diameter each (Ocean 
Optics, Inc.). Both optic fiber ends were attached to a light backscatter 
probe and coupled to the sample holder; the other two ends were 

Fig. 1. Typical optical spectrum and the identification of eight basal predictors.  
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connected to the spectrometer and the light source, respectively. This 
system delivered optical data from the spectrometer to the Spec
traSuite® software (Ocean Optics, Inc.) to obtain light backscatter 
spectra. 

The acquisition time was set to 3 s (i.e., integration time). Each meat 
emulsion was stuffed into the sample holder, the light source blocked 
and the sensor probe placed until the head of the sensor reached the 
emulsion. After that, the options “scope minus dark”, “store dark” and 
“store dark minus” were set, consecutively, in order to subtract the 
background noise. Then, the light source was unblocked and the sample 
spectrum saved when stable. Data from optical spectra were collected at 
least sixfold per sample. In the range of 420–635 nm, eight predictors 
were identified as peaks (maxima on the light backscatter intensity 
spectra) and inflection points (maximum rate of light backscatter in
tensity increase identified as maxima on the first derivative vs. wave
length curve) (Fig. 1). Data was analyzed as intensity and wavelength for 
peaks and inflection points. A non-variable zone in the spectra was 
detected at 450 nm and was used as a normalization factor. To exclude 
the composition influence in the cooking losses observed in other works 
(Allais, Viaud, Pierre, & Dufour, 2004; Bañón et al., 2008) average 

values of pre-emulsified samples, per production, were subtracted from 
the respective data of each type of emulsion (under-, medium- and 
over-processed). From the normalized basal predictors, the ratio of 
peaks, the ratio of inflection points, and their mathematical trans
formations (inverse, square, and cube) were calculated only with in
tensity data. The ratio between the intensity at 450 nm and peaks or 
inflection points were also studied. With this described procedure, a 
total of 190 predictors were obtained and distributed in three blocks 
named “Peaks & inflection points” (wavelength and intensity values of 
peaks and inflection points and their mathematical transformations), 
“Ratios of peaks” (ratios of the intensities of peaks and/or the intensity 
at 450 nm, and their mathematical transformations) and “Ratios of in
flection points” (ratios of the intensities at the inflection points and/or 
the intensity at 450 nm, and their mathematical transformations). Data 
was analyzed in blocks in order to evaluate the accuracy of prediction 
obtained with regard to the readiness of predictors calculation. 

2.4. Statistical analysis 

The whole experiment was repeated on four and three independent 
occasions for formula with and without starch, respectively. Analysis of 
variance (ANOVA) was performed with the Statistical Analysis System 
(SAS) in order to investigate the effect of emulsification degree, the 
process factor, and the emulsion production batch on optical predictors 
and cooking losses, including into the statistical model both factors and 
their interaction. LSD test was used for comparison of sample data, and 
evaluations were based on a significance level of (P < 0.05). Further
more, Pearson’s correlation coefficients between optical predictors and 
cooking losses were determined. Different regression models for pre
dicting cooking losses with the optical predictors were tested using the 
maximum R2 procedure of SAS to obtain the best eight models of 
cooking losses prediction for each of the three different blocks of data as 
well as for all data together. 

Table 2 
Models for the prediction of cooking losses in meat emulsions with starch (ns, not significant P ≥ 0.05).  

Data Model Equation R2 

Peaks & inflection points I** Closs = 3.60 + 1.62P7 0.623 
II*** Closs = 4.38 + 1.36P7 - 2.44P82 0.902 
III*** Closs = 4.98 + 1.11P7 - 1.81P82 - 0.462P2 0.964 
IV*** Closs = 5.82 + 0.888P7 - 0.879P2 - 2.18⋅10− 6P83 - 1.02P8 0.989 
V*** Closs = 5.66 + 0.665P7 - 0.870P2 - 0.754P8 - 9.10⋅10− 9P103 + 0.157P6 0.996 
VI*** Closs = 7.28–1.84P2 - 6⋅10− 8P103 - 0.00179P13 - 0.0880P80 - 0.109P81 + 4.38⋅10− 6P84 >0.999 
VII*** Closs = 6.90–1.75P2 - 6.07⋅10− 8P103 + 0.0859P6 - 0.0684P80 - 0.121P81 + 3.98⋅10− 6P84 - 3.47P68 >0.999 
VIII*** Closs = 6.85–1.74P2 - 6.03⋅10− 8P103 + 0.0890P6 - 0.0678P80 - 0.121P81 + 3.96⋅10− 6P84 - 3.57P68 + 0.0226P61

ns >0.999 

Ratios of peaks I** Closs = 5.08–25.3P18 0.556 
II*** Closs = 6.25–55.2P18 + 4460.7P123 0.820 
III*** Closs = 5.51–185.6P18 - 153.8P17 + 254.7P108 0.900 
IV*** Closs = 5.39–207.7P18 - 178.8P17 + 265.2P108 + 2.01P126

ns 0.913 
V*** Closs = 6.84–170.8P18 - 90.6P17

ns - 16.9P22 + 138.2P122 + 288.1P107 0.968 
VI*** Closs = 7.87–100.8P18 + 486.7P122 + 718.8P107 - 2.30P115 - 718,849P129 + 80P19 0.993 
VII*** Closs = 7.78–100P18 + 564.8P122 + 672.5P107 - 2.34P115 - 904,374P129 + 79.2P19 - 0.184P127

ns 0.996 
VIII*** Closs = 7.49–70.9P18 + 15.4P126 + 530.7P122 - 0.113P115 - 716,421P129 + 74P19 - 0.256P127 + 44.5P112 >0.999 

Ratios of inflection points I** Closs = 5.80 + 56.9P45 0.755 
II*** Closs = 6.50 + 62.2P45 - 40.6P142 0.936 
III*** Closs = 6.35 + 63.9P45 - 32.8P142 + 467.2P180 0.964 
IV*** Closs = 6.37 + 80.7P45 - 30.1P142 + 892.1P180 + 100.3P145

ns 0.977 
V*** Closs = 6.62 + 95.6P45 - 46.1P142 + 167P145 + 8983.3P171 + 9.88P184 0.989 
VI*** Closs = 6.55 + 104.7P45 - 46.8P142 + 336.3P145 + 11,116P171 + 11.5P184 - 167.2P176

ns 0.993 
VII*** Closs = 6.46 + 98.9P45 - 42.7P142 + 352.8P145 + 13,758P171 + 7.20P184 - 248P176 + 2.64P42 0.998 
VIII*** Closs = 6.69 + 96.6P45 - 46.2P142 + 477P145 + 13,334P171 + 13.5P184 - 325.5P176 - 11.0P37 + 38.5P57 >0.999 

All data I** Closs = 5.80 + 56.9P45 0.755 
II*** Closs = 6.50 + 62.2P45 - 40.6P142 0.936 
III*** Closs = 5.59–31.6P142 - 8.54P46 + 0.673P7 0.983 
IV*** Closs = 5.84–32.9P142 - 8.33P46 + 0.589P7 - 5.39⋅10− 4P10 0.997 
V*** Closs = 5.86–34.9P142 - 8.21P46 + 0.613P7 - 5.47⋅10− 4P10 - 12.1P174 0.999 
VI*** Closs = 6.33–43.2P142 - 8.71P46 + 0.671P7 - 5.58⋅10− 4P10 - 21.9P174 - 0.270P61 >0.999 
VII*** Closs = 6.26–43.3P142 - 7.57P46 + 0.677P7 - 5.53⋅10− 4P10 - 22.4P174 - 0.260P61 - 79.3P147 >0.999 
VIII*** Closs = 6.21–42.4P142 - 6.64P46 + 0.656P7 - 5.55⋅10− 4P10 - 19.8P174 - 0.233P61 - 237.9P147 - 1257.4P177 >0.999  

Table 1 
Cooking losses (%) depending on emulsification degree and formula.  

Emulsion Emulsification degree 

Under- 
processed 

Medium- 
processed 

Over- 
processed 

Formula with starch1 3.996 ± 1.580a 3.472 ± 1.568b 4.078 ± 1.793a 

Formula without 
starch2 

4.884 ± 1.711a 5.471 ± 2.363a 4.774 ± 1.151a 

Mean value ± s.d.; 1n = 72; 2n = 54; a, b: values by rows with different super
script letter were significantly different (P < 0.05). 
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3. Results and discussion 

3.1. Meat emulsions composition and cooking losses 

Starch addition could elucidate cooking losses differences observed 
between emulsions with and without starch (Table 1). In fact, Chen, Lee, 
and Crapo (1993) showed that starch embedded in a protein gel matrix 
swelled during cooking and enhanced the formation of strong structures, 
which is represented by a more stable matrix with greater water-binding 
capacity. Other studies have also evidenced the ability of starch to 
entrap water and the consequent reduction in cooking losses when it is 
incorporated like in low-fat bologna sausages, low-fat frankfurters, and 
other pork batters (Bañón et al., 2008; Dexter, Sofos, & Schmidt, 1993; 
Hughes, Mullen, & Troy, 1998). It should be considered that in the 
previous studies, meat emulsions were processed by bowl choppers, 
which differs from the equipment used in this study. Independently of 
the process, the same tendency of losses was found in the present study 
for the case of meat emulsions with starch (Table 1). 

A study in meat emulsions and frankfurters pointed out increases in 
the losses when the chopping time passed from 3 to 7 min at 2000 and 
3000 rpm in a 30 L-Stephan pilot equipment, respectively (Allais et al., 
2004). Similarly, other studies have borne out that an increment in the 
chopping time increased cooking losses in comminuted pork meats 
(Bañón et al., 2008; Álvarez et al., 2007). These findings showed the 
importance of chopping as a factor in the control of meat emulsions 
stability. However, in the present study, no clear tendency was observed 
when analyzing the effect of the emulsification degree on cooking losses. 
For example, in samples with starch, a significant difference was 
observed between the medium-degree of processing and the other two 
degrees, which is also where the lowest cooking loss occurred (3.47%). 
This difference can be attributed to the know-how of the industry, which 
has established medium-processed conditions in starch sausages as the 
optima in quality and cost-effective results. On the contrary, there were 
no significant differences between emulsification degrees for cooking 
losses in emulsions without starch, maybe due to erratic standard de
viations observed in this type of emulsion, which could interfere in the 
visualization of the differences (Table 1). 

3.2. Optical predictors, correlations, and cooking loss prediction 
equations 

3.2.1. Emulsions with starch 
The ANOVA analysis performed with the whole set of optical data 

showed that the emulsification degree could be statistically 

differentiated by some specific predictors. Although none of the pre
dictors could differentiate the three emulsification degrees, a large 
number could identify and set apart one emulsification degree as 
different from the other two (data not shown). Almost all of these pre
dictors were found in the “Peaks & inflection points” block, a fact of 
interest as the majority of predictors that correlated with cooking losses 
were found in this block (predictors 2, 6, 80). As a result, the above- 
mentioned predictors were part of the cooking losses prediction 
equations. 

It was observed that the Pearson correlation values of some of the 
predictors did not correlate significantly (P ≥ 0.05) with the losses (data 
not shown). This fact could be explained by their low contribution, i.e. 
little information, but when included in the model they potentiated the 
results since the R2 values increased significantly. In this way, for the 
“Peaks & inflection points” block, the predictors 7, 82, 2, 83, and 8 
explained the first four models, with R2 of 0.623, 0.902, 0.964, and 
0.989, respectively (Table 2). It can also be noticed that the inclusion of 
just two variables (Model II***) improved notably the determination 
coefficient (R2 = 0.902) when compared to Model I** (R2 = 0.623), 
which suggested that only two predictors could be enough to have a 
representative cooking loss prediction. Similar results were reported in a 
study made on fresh pork meat emulsions formulated with hydrolyzed 
potato protein and different fat levels (15% and 30%) with coefficients 
of determination of 0.77, 0.95, and 0.96 in the first three models when 
color parameters (L* and b*) and the optic parameter peak2 wavelength 
were incorporated in the models (Nieto et al., 2009, 2014). It should be 
noted, though, this model did include color parameters, which are less 
convenient for the point of view of sensor technology as compared to 
static light scatter readings. 

All predictors for blocks “Ratios of peaks” and “Ratios of inflection 
points” were included in their respective cooking losses prediction 
models. On one hand, for the case of “Ratios of peaks”, predictors 108 
and 126 were the only ones that correlated significantly with cooking 
losses (P < 0.05) (Table 2 Supplementary data), but these showed up 
only in Models III*** (R2 = 0.900), IV*** (R2 = 0.913) and VIII*** (R2 >

0.999) (Table 2). On the other hand, for the case of “Ratios of inflection 
points”, there were no predictors that correlated with losses, however, 
the models showed high determination coefficients starting from Model 
II*** with R2 of 0.936 (Table 2). This suggests that some predictors by 
themselves contribute with little information but when included in the 
models cause a notable improvement in the R2 value. 

Finally, the potential estimation of predictors from the three blocks 
together was analyzed. The cooking losses prediction models showed R2 

values of 0.997 for Model IV***, 0.999 for Model V*** and >0.999 for 

Fig. 2. A) Predicted values of cooking losses for meat emulsions with starch by Model VI (P ≤ 0.001) with “Peaks & inflection points” block. B) Predicted values of 
cooking losses for meat emulsions without starch by Model V (P ≤ 0.001) with “All data” block. R2: determination coefficient; SEP: standard error of prediction (%); 
CV: coefficient of variation (%). 
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Models VI***, VII*** and VIII*** (Table 2). 
These results suggest that, regarding meat emulsions with starch, the 

optical information of “Ratios of inflection points” and their trans
formations was valuable when establishing prediction equations with a 
small number of predictors (from 1 to 3; Table 2). However, using only 
the data from this block, 8 predictors were needed to reach a determi
nation coefficient >0.999. In fact, the best model to reach a determi
nation coefficient >0.999 with less number of variables was Model 
VI*** with 6 predictors of the “Peaks & inflection points” block, which is 
represented in Fig. 2A. 

3.2.2. Emulsions without starch 
Concerning emulsions without starch, it was found that at least one 

type of emulsification degree could be differentiated from the rest by 
some of the predictors (data not shown). This trend was widely found in 
the three blocks; however, at the “Peaks & inflection points” block, only 
four predictors (11, 69, 85, and 101) were able to differentiate indi
vidually the three emulsification degrees. These four predictors came 
from the same optical parameter and the corresponding trans
formations. Furthermore, looking at Pearson’s coefficients, although 
these predictors did not correlate with cooking losses, many other pre
dictors in all the three blocks showed significant correlations with 
cooking losses (predictors 100, 105, 19, 108, 110, 28, 40, 47, 173, 150). 

The following cooking losses prediction models and the corre
sponding regression coefficients for “Peaks & inflection points”, “Ratios 
of peaks” and “Ratios of inflection points” (Table 3) showed that for a 
three-variable model the regression coefficients were 0.917 with the 
predictors 105, 100, 4 for the “Peaks & inflection points”, 0.900 with the 
predictors 19, 110, 119 for “Ratios of peaks” and 0.918 with the pre
dictors 156, 161, 47 for “Ratios of inflection points”, respectively. 

The highest determination coefficients were shown in the “Peaks & 
inflection points” and “Ratios of inflection points” blocks. Nevertheless, 
the fact that Pearson’s coefficient of some of the “Ratios of inflection 
points” predictors mentioned above were not significant suggests that 
“Peaks & inflection points” prediction models had more valuable 

information. Indeed, predictors 94, 105, and 100 of “Peaks & inflection 
points” block were included within the Models I**, II** and III** when 
all the blocks were analyzed together (Table 3). 

Particularly, some of the predictors did not show a significant cor
relation value with cooking losses, which could be attributed to their 
little information by themselves; but when included in the models the 
coefficients of determination (R2) improved significantly. 

In addition, it can be noted that Model V*** of “All data” block 
(Table 3) reached the maximum determination coefficient (R2 > 0.999) 
using 5 predictors which suggests that 5 optical predictors could be 
enough to represent, virtually without error, the cooking loss in meat 
emulsions without starch. The representation of predicted vs. experi
mental cooking losses using Model V*** is shown in Fig. 2B. 

3.2.3. With starch vs. without starch emulsions 
As already mentioned, emulsions with and without starch were 

characterized by different types of predictors, which notably tended to 
be less informative in the emulsions with starch when the effect of 
emulsification degree on the optical parameters and their correlations 
with cooking losses was studied. The contrary was found in samples 
without starch were a wide variety of predictors, including one group of 
predictors that differentiated the three emulsification degrees, provided 
strong information about cooking losses and the emulsification degree. 
The reduced number of predictors correlating with the losses in emul
sions with starch could be a consequence of starch incorporation, given 
that it improves notably the stability of the matrix emulsion by pro
moting the interaction between the main components of the batter 
(Dexter et al., 1993). Probably, this made the emulsions more homog
enous providing similar and reliable optical data during the light 
backscatter scanning and overshadowing some strong predictors that in 
the models seemed to be significant to predict the losses. The opposed 
situation may have occurred in emulsions without starch, where a more 
heterogeneous matrix may have been obtained (Lyons, Kerry, Morrissey, 
& Buckley, 1999). So, the effect of the emulsification degree clearly 
found in emulsions without starch may be suppressed when adding it. 

Table 3 
Models for the prediction of cooking losses in meat emulsions without starch (ns, not significant P ≥ 0.05).  

Data Model Equation R2 

Peaks & inflection points I** Closs = 5.48–0.276P94 0.658 
II** Closs = 6.50–0.430P94 - 7.12⋅10− 11P105

ns 0.806 
III** Closs = 5.73–1.03⋅10− 9P105 + 7.32⋅10− 10P100 - 1.32P4 0.917 
IV** Closs = 5.91–1.22⋅10− 9P105 + 8.78⋅10− 10P100 - 1.45P4 - 0.0649P75

ns 0.970 
V*** Closs = 6.32–1.26⋅10− 9P105 + 9.28⋅10− 10P100 - 1.87P4 - 0.0735P75 - 4.93⋅10− 3P12 0.997 
VI*** Closs = 6.11–1.40⋅10− 9P105 + 1.035⋅10− 9P100 - 1.83P4 - 0.0713P75 - 5.22⋅10− 3P12 + 0.138P64 >0.999 
VII*** Closs = 6.09–1.36⋅10− 9P105 + 1.01⋅10− 9P100 - 1.83P4 - 0.0656P75 - 6.25⋅10− 3P12 + 0.118P64 - 0.0648P62

ns >0.999 

Ratios of peaks I* Closs = 6.13 + 14.066P21 0.556 
II* Closs = 6.59 + 50.84P19 + 31.4P110

ns 0.820 
III* Closs = 9.49 + 175.5P19

ns + 131.9P110
ns + 4326.1P119

ns 0.900 
IV* Closs = 8.45 + 210.6P110 - 1911.6P107 + 4568.4P123 + 266.3P28 0.913 
V* Closs = 8.59 + 236.7P110 - 1902.7P107 + 4858.7P123 + 313.6P28 - 303P120

ns 0.968 
VI* Closs = 4.06–3,097P107 + 11,199P123 - 1129.1P120

ns + 619P108
ns + 4764.6P109 - 14,687P118 0.993 

VII* Closs = 3.83–8518.9P119
ns - 3657.5P107 + 11,587P123 - 2283.7P108 + 734.8P108 + 5016.2P109 - 15,588P118 0.996 

Ratios of inflection points I* Closs = 5.91–81.5P150 0.605 
II** Closs = 5.00 + 128.6P156 + 578.1P161 0.871 
III** Closs = 4.27 + 175P156 + 1320.4P161 - 29.5P47

ns 0.918 
IV*** Closs = 4.70–657.5P145 - 1,558P147 + 129.6P148 + 755.1P151 0.996 
V*** Closs = 4.79–631.4P145 - 1491.6P147 + 122.5P148 + 772.6P151 - 816.8P173 0.999 
VI*** Closs = 5.06–653.1P145 - 1457.3P147 + 117.9P148 + 908.8P151 + 3428.1P181 + 0.395P40 >0.999 
VII*** Closs = 5.05–653.7P145 - 1463.9P147 + 118.5P148 + 908.5P151 + 3664.5P181 + 0.389P40 + 0.186P54 >0.999 

All data I** Closs = 5.48–0.276P94 0.658 
II** Closs = 6.50–0.430P94 - 7.12⋅10− 11P105

ns 0.806 
III** Closs = 2.87–1.44⋅10− 9P105 + 1.16⋅10− 9P100 + 237.9P4 0.924 
IV*** Closs = 4.41–3.26⋅10− 9P105 + 2.49⋅10− 9P100 + 2.85P7 + 33.1P31 0.997 
V*** Closs = 4.34–3.25⋅10− 9P105 + 2.49⋅10− 9P100 + 2.75P7 + 32.2P31 - 4.56⋅10− 3P91 >0.999 
VI*** Closs = 4.29–3.19⋅10− 9P105 + 2.44⋅10− 9P100 + 2.74P7 + 36.2P31 - 2.62⋅10− 3P91 + 0.0782P6 >0.999 
VII*** Closs = 4.29–3.18⋅10− 9P105 + 2.44⋅10− 9P100 + 2.73P7 + 36.73P31 - 2.52⋅10− 3P91 + 0.0802P6 + 3.24⋅10− 3P162 >0.999  
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Similar results were found in a previous investigation done in meat 
emulsions with and without starch and light backscatter technology, 
reporting more predictors in the samples without starch which differ
entiate emulsification degree (Torres, 2016). Related findings were 
suggested in Álvarez et al. (2007) with pork emulsions manufactured at 
a laboratory scale with and without starch and at different lean/fat ra
tios. The results showed a clearer response of the studied variable 
(lightness) concerning the chopping time and cooking losses in emul
sions without starch. These outcomes together with those of the present 
study, suggest a better optical response for emulsions without starch 
when different emulsification degrees are applied. However, it is clear 
from the results, that cooking losses can be optically predicted with a 
similar accuracy irrespectively of the presence/absence of starch in the 
formula. 

Among all the models for each type of emulsions, the best cooking 
losses prediction equations were found in the “Peaks & inflection points” 
block for formula with starch and in “All data” for formula without 
starch (Tables 2–3). These models reached the maximum determination 
coefficient (R2 > 0.999) with 5 and 6 predictors for the formula without 
and with starch, respectively. The results showed a noticeable 
improvement in the determination coefficients models proposed by 
Álvarez et al. (2007) (R2 = 0.69, four predictors model) and Nieto et al. 
(2014) (R2 = 0.97, five predictors model). Although none of the afore
mentioned works matched exactly with the present study conditions, it 
should be noted that, in the present study, samples were generated using 
a continuous industrial emulsifier and no color parameters were used as 
predictors. 

For the case of the models proposed by Álvarez et al. (2007), the 
determination coefficients ranged from 0.42 to 0.69 when two different 
types of meat emulsions (starch and no starch) produced at laboratory 
scale were analyzed. The low R2 found gave sight that the predictors 
proposed in their models (chopping time, temperature, and color co
ordinates) were not sensible enough to predict the cooking losses. 

Later on, Nieto et al. (2014) incorporated for the first time optical 
spectra parameters in cooking losses prediction models to describe the 
optimum end-point of emulsification. Meat samples, manufactured at a 
laboratory scale, were formulated with hydrolyzed potato protein and 
analyzed by light backscatter technology. Their results showed an R2 of 
0.97, much lower than the maximum coefficients of determination (R2 

> 0.999) found in the present study. The authors suggested that the dark 
color of the hydrolyzed potato protein may have interfered in the optical 
response of the emulsion. In the present work, such difficulties were not 
found. 

4. Conclusions 

The study of the cooking losses and the optical response of two 
different industrial meat emulsions allowed the identification of some 
optical parameters as potential predictors of the cooking losses. This led 
to the development of statistically significant prediction equations for 
the cooking losses with coefficients of determination, R2 > 0.999, in 
both types of emulsions. These results point out the potential of light 
backscatter technology as a tool to predict cooking losses and suggest 
the implementation of an in-line/on-line optical emulsification control 
technology that would significantly contribute to the selection of an 
optimum emulsification degree. 
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Álvarez, D., Castillo, M., Payne, F. A., & Xiong, Y. L. (2009). A novel fiber optic sensor to 
monitor beef meat emulsion stability using visible light scattering. Meat Science, 81 
(3), 456–466. https://doi.org/10.1016/j.meatsci.2008.09.007 
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