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A B S T R A C T   

Nitrous oxide (N2O) is a greenhouse gas (GHG) emitted during biological nitrogen removal from wastewater 
treatment plants (WWTPs). Some modelling tools have been proposed to predict N2O emissions during the design 
and operation of WWTPs. In this study, the novel ASM2d-N2O model, which accounts for the production of N2O 
in nutrient removal WWTPs, was used to study the associated emissions from a full-scale WWTP with two in
dependent lines. Firstly, the hydraulics of the WWTP was characterized by a residence time distribution test, 
showing the flow was equally divided into the two treatment lines (49.3 vs. 50.7%), that each reactor worked as 
an ideal continuous stirred tank reactor and the secondary settler model flux was similar to a plug-flow reactor. 
The ASM2d-N2O model was then calibrated using experimental data obtained under dynamic conditions. A 
global sensitivity analysis was used to select, among 59 model parameters, five candidates that resulted to be 
related to nitrifying organisms. Different parameter subsets up to four parameters were evaluated, being the 
subset [µNOB, qAOB_AMO, KO2_NOB, KNO2_NOB] the best, achieving 53.3% reduction of the calibration cost function. 
The model fit obtained provided a reasonably description of nutrients and N2O emission trends, considering the 
inherent operational variability suffered in full-scale WWTPs. Finally, a simulation-based study showed that, for 
the given WWTP and operational conditions, an unbalanced distribution of flow-rate between the two treatment 
lines did not result in a significant increase on N2O emissions. The results obtained show that this model can be a 
suitable tool for predicting N2O emissions in full-scale WWTPs, and can therefore be used to find operational 
conditions that help to minimise these emissions.   

Abbreviations: AER, Aerobic reactor; ANA, Anaerobic reactor; ANX, Anoxic reactor; AOB, Ammonia Oxidizing Bacteria; AS, Activated Sludge; ASM, Activated 
Sludge Model; ASM2, Activated Sludge Model number 2; ASMN, Activated Sludge Model for Nitrogen; BNR, Biological Nitrogen Removal; Br− , Bromide; C, Carbon; 
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1. Introduction 

Over the past years, concerns regarding the sustainability of waste
water treatment plants (WWTPs) have increased, with particular 
emphasis on the carbon (C) footprint. Nitrous oxide (N2O) is a green
house gas (GHG) that is emitted during biological nitrogen removal 
(BNR) in WWTPs. Due to its high global warming potential, 265 times 
higher than that of carbon dioxide (CO2) [1], the C footprint of WWTPs 
are highly sensitive to N2O emissions [2]. In addition, N2O is an ozone 
layer depletion gas [3]. Measurement campaigns on full scale WWTPs 
have shown high variability on the measured N2O emissions, with a N2O 
emission factor (N2O-EF, defined as the fraction of influent nitrogen load 
emitted as N2O) ranging between 0.01% and 1.8%, and in some cases 
even higher than 10% [4–6]. 

The biological pathways for N2O production during BNR are related 
to nitrification and denitrification processes [4], being the first one the 
major contributor to N2O emissions in full–scale plants. Nitrification 
consists of two coupled processes: i) ammonium (NH4

+) oxidation to 
hydroxylamine (NH2OH), nitric oxide (NO) and nitrite (NO2

–) by 
ammonia oxidizing bacteria (AOB) [7] through the nitritation process 
and ii) nitrite (NO2

–) oxidation to nitrate (NO3
–) by nitrite oxidizing 

bacteria (NOB) through the nitratation process. AOB are responsible of 
N2O production during BNR by two possible pathways. On the one hand, 
N2O can be produced through the biological NO reduction due to 
incomplete NH2OH oxidation: the NH2OH incomplete oxidation 
pathway (NN pathway) [4]. On the other hand, AOB can produce N2O 
by the sequential reduction of NO2

– to NO and N2O: the nitrifier deni
trification pathway (ND pathway). There exists a third biological N2O 
production pathway during the denitrification process (HD pathway). 
N2O is formed as an obligate intermediate of the four step reduction 
reactions of NO3

– to NO2
– and then to NO, N2O and finally dinitrogen gas 

(N2) [4,8,9]. 
Mathematical models have been widely applied to the prediction of 

nitrogen (N) and phosphorus (P) removal in WWTPs since the devel
opment of the activated sludge models (ASM) by the International Water 
Association (IWA) [10]. Over the past years, modelling BNR has gained 
more attention in view of a better understanding of N2O production, 
accumulation and emission. The ability to predict N2O emissions serves 
as a method for verifying hypothesis related to fundamental mechanisms 
for N2O production, and it can be used to anticipate N2O emissions in the 
design and operation of WWTPs, as well as in the design of potential 
mitigation strategies [6,11,12]. 

Different models have been developed aiming at predicting lab-scale 
or full-scale N2O emissions [6,12–16]. These models are based on 
different assumptions, incorporating one, two or three of the biological 
pathways for N2O production (ND, NN or HD). Regarding nitrification, it 
was seen that the models only including a single N2O production 
pathway could not explain all the experimental data in the literature. 
Therefore, it was formulated that both NN and ND can occur at the same 
time depending on the operating conditions [14]. Among the different 
published N2O models, the ASM2d-N2O model developed by Massara 
et al. [16] is an ASM type model that: includes N, P and organic matter 
removal; integrates all the microbial pathways for N2O production and 
consumption; contains N2O stripping modelling and estimates the N2O- 
EF under a wide range of operating conditions. Therefore, the ASM2d- 
N2O model is a promising tool for developing N2O mitigation strategies 
during full-scale WWTP. However, although the different sub-models of 
the whole ASM2d-N2O were calibrated separately, the prediction 
capability of the ASM2d-N2O model has not been proved during full- 
scale treatment. 

With regard to the modelling of full-scale WWTPs, the variability of 
the operational parameters or the hydraulic conditions of the reactor 
itself is often not considered, and simplifications of ideality end up being 
used, modelling the reactors as continuous stirred tank reactor (CSTR) 
with perfectly known inlet and outlet flow rates. However, hydraulics 
should be considered to obtain more realistic model predictions. 

Hydraulics is considered relevant from two perspectives that affect the 
performance of the plant: pollutant degradation depends on the flow 
rate and the control of the process is based on concentrations measured 
in specific points in the reactor [17]. Classical tools as residence time 
distribution (RTD) techniques with tracer experiments have been 
applied to investigate the behaviour of full-scale WWTPs, in order to 
detect hydraulic problems such as plug-flow behaviour [18], unopti
mized inlet flow distribution ratio [19], short-circuiting flows and dead 
zones [20,21]. Studies in full-scale WWTPs have demonstrated that 
these hydrodynamic anomalies can reduce pollutant removal and in
crease management costs [21]. Moreover, biased sampling strategies not 
considering hydraulic RTD and daily flow variations and concentrations 
can also lead to erroneous conclusions [22]. In the present study, where 
the plant consists of two parallel lines, there was concern about the 
possible effect on N2O emissions if there was an imbalance between the 
flows treated in both lines. Plant overloading or changes in plant load 
have been one of the operating conditions believed to have a significant 
impact on N2O emissions [16], and hence, a maldistribution of flow 
rates between the lines could cause an overloaded line significantly 
increasing its N2O emissions. 

Therefore, the main objective of this study was to comprehensively 
calibrate the ASM2d-N2O model using dynamic data from a full-scale 
municipal WWTP. Firstly, an RTD experiment was performed to cali
brate WWTP hydraulics, as an essential initial step to obtain accurate 
predictions of the N-species and N2O emissions. Then, an experimental 
campaign was carried out during three days in different zones of the 
WWTP to capture its N2O emission dynamics. The parameter subset 
selection to calibrate the ASM2d-N2O model was obtained through a 
global sensitivity analysis (GSA) method, to capture the interactions 
between the parameters and to select the parameter subset indepen
dently from the initial parameter value. The identifiability of the 
parameter subsets was evaluated using the Fisher information matrix 
(FIM) methodology. Finally, a simulation-based study was carried out to 
assess the possible effect that an incorrect flow distribution between 
treatment lines had on the N2O emissions from the WWTP due to 
possible treatment line overloading and changes in treatment plant 
loads. 

2. Materials and methods 

2.1. Girona WWTP description 

The full-scale urban WWTP is located in Girona (Catalonia, Spain) 
with a design capacity of 206250 population equivalent and 55000 m3 

d− 1. A schematic overview of the WWTP process layout is shown in 
Fig. 1. After the pre-treatment (grit and gross removal), the influent is 
distributed in three rectangular lamella-plate primary clarifiers. The 
biological section has a 5-stage Bardenpho configuration. It consists of 
two main treatment lines with seven separated reactors in each line. The 
wastewater flows through an anaerobic reactor (ANA1, 1335 m3), an 
anoxic reactor (ANX1, 4554 m3), three aerobic reactors with the same 
volume (AER1 to AER3, 1929 m3), a second anoxic reactor (ANX2, 1276 
m3) and finally a fourth aerobic reactor (AER4, 1409 m3). The internal 
recycle (IR) flows from the third aerobic reactor (AER3) to the first 
anoxic reactor (ANX1) and it is independent in each line (Fig. 1). In 
addition, sodium aluminate is injected into each IR stream to favour 
chemical P precipitation. The flow is mixed again at the outlet of the last 
aerobic zone and divided into three parallel secondary clarifiers (5332 
m3 each settler) where the biomass is separated from the treated 
effluent. The concentrated outflows from each secondary clarifier are 
mixed and, after extracting the purge flow, recycled to the influent of the 
biological reactors. Aeration is supplied by blowers in the aerobic zones. 
Each line has a blower whose air is sparged through diffusers. 
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2.2. Hydraulic characterization procedure 

Tracer experiments to characterize the hydraulics of the secondary 
treatment of the WWTP (i.e. biological reactors and secondary clarifiers) 
were carried out with potassium bromide (KBr). The objectives of the 
hydraulic characterization were: 1) to determine the flow distribution 
between both treatment lines in the biological reactor, as the plant op
erators suspected that it was not equally distributed in each treatment 
line and 2) to understand the hydraulics of each reactor to identify 
possible dead-zones. An amount of 24.9 kg of KBr (16.7 kg of Br− ) was 
added to the influent of the primary clarifiers. During the experiment, 
samples were taken from different zones of the two treatment lines of the 
biological reactor and in the effluent. The locations of the tracer pulse 
and the different tracer samples zones are indicated in Figure S1 in 
section S1 of the Supplementary Information (SI). 

The model structure used to determine the RTD of the activated 
sludge (AS) system of the Girona WWTP was the n-tanks in series [23], a 
widely used method in the calibration of full-scale WWTPs [18,24,25]. 
The pulse was added in the influent of the primary clarifiers but, for 
simulation purposes, the data at the effluent of the primary clarifiers 
were used as the input simulation because modelling of the complex 
hydraulic lamella-plates clarifiers of the primary settler was out of the 
scope of this work and was not needed for the WWTP calibration. As an 
initial approach, each vessel was considered to be an ideal CSTR and the 
influent flow was equally divided into each treatment line. Hence, each 
line of the secondary treatment was initially simulated as 8 tanks in 
series (7 reactors plus the secondary settler also simulated as a single 
tank). The mass balance of the tracer concentration in each tank is 
described by Equation (1): 

Vi⋅
dCi

dt
= Qi⋅

(
Cin,i − Ci

)
(1)  

Where: Vi is the volume of reactor “i”; Qi is the volumetric flowrate in 
reactor “i”, Cin,i is the inlet tracer concentration and Ci the tracer con
centration in reactor “i”. 

The calibration cost function of the hydraulic experiment to be 
minimized was named HCCF (Equation (2)): 

HCCF =
∑N

i=1

max|CANA1− L1|

max|Ci|
⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Ci,exp − Ci,model

)2
√

(2)  

Where: “i” refers to each reactor; Ci,exp is the experimental concentra
tion; Ci,model is the model prediction and max|CANA1− L1|/max|Ci| is a 
weight factor to normalize the concentrations of each reactor to those of 
ANA1 from the biological treatment line one. Thus, each of the experi
mental inputs has the same influence on the HCCF. 

2.3. Experimental data campaign 

A three-day data sampling campaign was carried out from 18 to 20 
July 2017 to calibrate the ASM2d-N2O model at the Girona WWTP 
under dynamic conditions. Figure S1 in the supplementary information 
(SI) shows a scheme of the WWTP with the locations and data collected 
during the experimental data campaign. Only one biological treatment 
line was sampled (Line 1, Fig. 1). The data collected are summarized 
below:  

- Chemical analysis: Grab samples were collected to analyse NH4
+, 

NO2
–, NO3

– and PO4
3− by ion chromatography (ICS5000, DIONEX) 

at different locations and intervals. The rationale of the sampling 
frequency was to be able to relate N2O emissions to N-species. 
Therefore, the sampling frequency was increased in the reactors were 
N2O emissions were monitored. Grab samples were taken 5 times a 
day at 3 h intervals (from 9:00 to 18:00) plus midnight for 3 days at 
reactors ANX1, AER1, AER3 and AER4. At reactors ANA1 and ANX2, 
the grab samples were taken less frequently, only 3 times a day. In 
addition, two refrigerated automatic samplers also took samples 
every 3 h during the 3 days of the data campaign (8 times per day) at 
the influent of the biological reactors and in AER2 reactor. Br− was 
measured using a Dionex DX-500 ion chromatograph (Dionex Corp., 
Sunnyvale, CA, USA). The method detection limit (MDL) was 0.045 
µg/l for Br− . The practical limit of quantification (LOQ = 5 MDL) was 
0.23 mg/l for Br− .  

- Online sensors: NH4
+, COD, pH and temperature at the bioreactor 

inlet were continuously monitored utilizing two on-line ion-selective 
electrodes (ammo::lyserTM) coupled to a monitoring station (S::CAN 
Messtechnik GmbH, Austria). In addition, three Dissolved Oxygen 
(DO) probes (oxi::lyserTM) were installed in AER1, AER2 and AER3 
coupled to the same S::CAN monitoring station.  

- Gas emission measurements: N2O emissions were measured in reactors 
AER1, AER2 and AER3 using a system with three gas collection 
hoods. The gas collected in the hoods was coupled with a monitoring 
unit to log gas temperature, pressure and flowrate. Part of the gas 
was pumped to a conditioning unit (M&C Tech group) to remove 
humidity and particles and finally the gas was conducted to an online 
analyser (Horiba VA3000). N2O concentration (in ppmv), pressure, 
gas flowrate and temperature were logged at 15 s intervals. The 
analyser measured only one hood at a time in 20-minute intervals 
between each reactor. A detailed methodology for the gas emission 
measurement system can be found in Ribera-Guardia et al. [26].  

- Data from the WWTP SCADA system: data of the hydraulics (biological 
influent, internal and external recirculation and wastage flowrates) 
and DO of the aerobic reactors were collected from the SCADA sys
tem of the WWTP. 

Fig. 1. Plant layout of the Girona WWTP (PC = Primary Clarifier, SC = Secondary Clarifier, ANA = Anaerobic reactor, ANX = Anoxic reactor and AER = Aero
bic reactor. 
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2.4. ASM2d-N2O structure 

The ASM2d-N2O kinetic model [16] was calibrated to describe the 
Girona WWTP. The ASM2d-N2O model is able to predict COD, N and P 
removal and N2O production. The model structure is based on the 
ASM2d model developed by Henze et al. [10], and extended to account 
for N2O production with the 2–pathway model for N2O emissions by 
AOB, developed by Pocquet et al. [14] and the denitrification processes 
with the activated sludge model for nitrogen (ASMN) developed by Hiatt 
and Grady [27]. The temperature dependence of the biological reactions 
was implemented following the guidelines of the activated sludge model 
No. 2 (ASM2) [10] to describe the different seasonal patterns. The subset 

of all parameters involved in ASM2d-N2O, with calibrated parameters, 
stoichiometric matrix and kinetics rates can be found in section S9 of the 
SI. In addition, proportional controllers were modelled in each aerobic 
reactor to maintain the DO concentration at the measured DO in the 
WWTP. The manipulated variable of each proportional controller was 
the mass transfer coefficient for oxygen (kLaO2) in each aerobic reactor. 

2.5. Global sensitivity analysis (GSA) 

A GSA was performed to identify the input factors (i.e. parameters) 
that most affected the model outputs and, therefore, the parameters that 
should be calibrated preferentially. The selected model output was the 

Table 1 
Symbols, description, default values at 20 ◦C, units and variation range of the ASM2d–N2O parameters included in the GSA.  

Parameter Description Default value at 20 ◦C Units Min/max range 

KH Hydrolysis rate constant 3 d− 1 1.5 / 4.5 
KO2_H Saturation/inhibition coefficient for O2 0.2 g O2 m− 3 0.1 / 0.3 
Kx_H Saturation coefficient for particulate COD 0.1 g XS (g XH) − 1 0.05 / 0.15 
nNO3_H Anoxic hydrolysis reduction factor 0.6 – 0.3 / 0.9 
nNO2_H Anoxic hydrolysis reduction factor 0.6 – 0.3 / 0.9 
KNO3_H Saturation/inhibition coefficient for NO3

– 0.5 g N m− 3 0.25 / 0.75 
KNO2_H Saturation/inhibition coefficient for NO2

– 0.5 g N m− 3 0.25 / 0.75 
nfe_H Anaerobic hydrolysis reduction factor 0.4 – 0.2 / 0.6 
µH Maximum growth rate on substrate 6 g XS (g XH) − 1d− 1 3 / 9 
KO2 Saturation/inhibition coefficient for O2 0.1 g O2 m− 3 0.05 / 0.15 
KF Saturation coefficient for growth on SF 20 g COD m− 3 10 / 30 
KNH4 Saturation coefficient for NН4

+ (nutrient) 0.05 g N m− 3 0.025 / 0.075 
KP Saturation coefficient for PO4

3− (nutrient) 0.01 g P m− 3 0.005 / 0.015 
KALK Saturation coefficient for alkalinity (HCO3

–) 0.1 mole HCO3
– m− 3 0.05 / 0.15 

KA Saturation coefficient for growth on acetate SA 20 g COD m− 3 10 / 30 
KNO3 Saturation/inhibition coefficient for NO3

– 0.5 g N m− 3 0.25 / 0.75 
KNO2 Saturation/inhibition coefficient for NO2

– 0.5 g N m− 3 0.25 / 0.75 
nNO3_D Reduction factor for denitrification 0.28 – 0.14 / 0.42 
qfe Maximum rate for fermentation 3 g SF (g XH) − 1d− 1 1.5 / 4.5 
Kfe_H Saturation coefficient for fermentation of SF 4 g COD m− 3 2 / 6 
bH Rate constant for lysis and decay 0.4 d− 1 0.2 / 0.6 
nG3 Anoxic growth factor (NO2

–→NO) 0.16 – 0.08 / 0.24 
nG4 Anoxic growth factor (NO → N2O) 0.35 – 0.175 / 0.525 
nG5 Anoxic growth factor (N2O → N2) 0.35 – 0.175 / 0.525 
KS3 Half-saturation coefficient for substrate 20 g COD m− 3 10 / 30 
KS4 Half-saturation coefficient for substrate 20 g COD m− 3 10 / 30 
KS5 Half-saturation coefficient for substrate 40 g COD m− 3 20 / 60 
KNO2_Den Half-saturation coefficient for NO2

– 0.2 g N m− 3 0.1 / 0.3 
KOH4 Half-saturation coefficient for O2 0.1 g O2 m− 3 0.05 / 0.15 
KN2O_Den Half-saturation coefficient for N2O 0.05 g N m− 3 0.025 / 0.075 
KOH3 Half-saturation coefficient for O2 0.1 g O2 m− 3 0.05 / 0.15 
KNO_Den Half-saturation coefficient for NO 0.05 g N m− 3 0.025 / 0.075 
KOH5 Half-saturation coefficient for O2 0.1 g O2 m− 3 0.05 / 0.15 
KI3NO NO inhibition coefficient (NO2

–→NO) 0.5 g N m− 3 0.25 / 0.75 
KI4NO NO inhibition coefficient (NO → N2O) 0.3 g N m− 3 0.15 / 0.45 
KI5NO NO inhibition coefficient (N2O → N2) 0.075 g N m− 3 0.038 / 0.112 
µAOB_HAO Maximum AOB growth rate 0.78 d− 1 0.39 / 1.17 
qAOB_AMO Maximum rate for the AMO reaction 5.2 g N (g COD) − 1 d1 2.6 / 7.8 
KO2_AOB1 AOB affinity constant for O2 (AMO reaction) 1 g O2 m− 3 0.5 / 1.5 
KNH4_AOB AOB affinity constant for NH4

+ 0.2 g N m− 3 0.1 / 0.3 
KO2_AOB2 AOB affinity constant for O2 (HAO reaction) 0.6 g O2 m− 3 0.3 / 0.9 
KNH2OH_AOB AOB affinity constant for NH2OH 0.3 g N m− 3 0.15 / 0.45 
qAOB_HAO Maximum rate for HAO reaction 5.2 g N (g COD) − 1 d− 1 2.6 / 7.8 
KNO_AOB_HAO AOB affinity constant for NO (from HAO) 0.0003 g N m− 3 0.00015 / 0.00045 
qAOB_N2O_NN Maximum N2O production rate by NN pathway 0.0078 g N (g COD) − 1 d− 1 0.004 / 0.012 
KNO_AOB_NN AOB affinity constant for NO (from NirK) 0.008 g N m− 3 0.004 / 0.012 
KO2_AOB_ND AOB constant for O2 effect on the ND pathway 0.5 g O2 m− 3 0.25 / 0.75 
KI_O2_AOB N2O constant for production inhibition by O2 0.8 g O2 m− 3 0.4 / 1.2 
KHNO2_AOB AOB affinity constant for HNO2 0.004 g N m− 3 0.002 / 0.006 
qAOB_N2O_ND Maximum N2O production rate by the ND pathway 1.3 g N (g COD) − 1 d− 1 0.65 / 1.95 
KALK_AOB Saturation coefficient for alkalinity (HCO3

–) 0.1 mole HCO3
– m− 3 0.05 / 0.15 

KP_AOB Saturation coefficient for PO4
3− (nutrient) 0.01 g P m− 3 0.005 / 0.015 

µNOB Maximum NOB growth rate 0.78 d− 1 0.39 / 1.17 
KO2_NOB Half-saturation coefficient for O2 1.2 g O2 m− 3 0.6 / 1.8 
KALK_NOB Saturation coefficient for alkalinity (HCO3

–) 0.1 mole HCO3
– m− 3 0.05 / 0.15 

KNO2_NOB Saturation coefficient for NO2
– 0.5 g N m− 3 0.25 / 0.75 

KP_NOB Saturation coefficient for PO4
3− (nutrient) 0.01 g P m− 3 0.005 / 0.015 

bAOB Decay rate of AOB 0.096 d− 1 0.048 / 0.144 
bNOB Decay rate of NOB 0.096 d− 1 0.048 / 0.144  

B. Solís et al.                                                                                                                                                                                                                                     



Chemical Engineering Journal 435 (2022) 134733

5

calibration cost function (CCF), which is the sum of the squared differ
ences between experimental data and dynamic model output (see sec
tion 2.6). 

Among the different GSA methods, the Monte Carlo (MC) filtering or 
regional sensitivity analysis (RSA) was a suitable method to select the 
parameters that were not only more sensitive to CCF but also reduced it 
[28,29]. RSA is based on mapping the input factors space according to 
whether the associated output, i.e. the CCF, is below (i.e. “behavioural” 
samples) or above (i.e. “non-behavioural” samples) a predefined 
threshold [30,31]. The workflow used to apply the RSA method was 
[29]: 1) a range was defined for the input factor space and a MC 
experiment was performed. 2) The model outputs were classified as 
behavioural (B) or non-behavioural (B) according to the specified 
threshold of the CCF and associated to the input factors values. 3) A set 
of binary elements was defined, distinguishing between two subsets for 
each parameter (Xi): the behavioural subset (Xi|B) and the non- 
behavioural subset (Xi|B). 4) The Smirnov test (equation (3)) was per
formed for each input factor and used as a measure of the Sensitivity 
index (Si) [29]; The parameters were ranked in order of influential on 
CCF reduction by Si. 

Si = max|F(Xi|B) − F(Xi|B) | (3)  

Where F(Xi|B) and F(Xi|B) are the empirical cumulative distribution 
functions of the parameter (Xi) when considering the input samples 
associated with the behavioural and non-behavioural outputs, 
respectively. 

A total of 59 parameters were included in the GSA study. The 
included parameters and their uncertainty ranges are shown in Table 1. 
The parameters were assumed to be uniformly distributed and the un
certainty ranges were set according as proposed by Brun et al. [32]. All 
parameters included in the GSA study were kinetic parameters of 
ASM2d-N2O. The hydraulic WWTP parameters were not considered 
because they were calculated during the hydraulic characterization. The 
influent characterization parameters were neither included, as they 
were measured during the experimental data campaign. Moreover, the 
stoichiometric parameters of ASM2d–N2O were assumed to be accu
rately known parameters and were not included in the GSA. Finally, as 
the Girona WWTP removes P by chemical precipitation with sodium 
aluminate dosage, the parameters related to Polyphosphate Accumu
lating Organisms (PAO) were not included. 

2.6. Calibration procedure 

The ASM2d-N2O model was calibrated once the hydraulics of the 
Girona WWTP had been identified and the influent of the experimental 
data campaign had been characterized. The overall procedure followed 
to calibrate the model is summarized below: 

1) a preliminary calibration was performed, aiming to fit the P 
chemical removal by sodium aluminate addition. This calibration was 
performed under pseudo-steady state conditions to decrease the 
computational cost. Thus, the experimental values collected during the 
experimental campaign were averaged. 2) The CCF was built with the 
dynamic data of nutrients and GHG emissions collected during the 
experimental data campaign. 3) The GSA was performed with the kinetic 
parameters of the ASM2d-N2O model as input factors and the CCF as 
output. 4) The top five ranked parameters of the GSA were selected to 
build different subsets of parameters. To minimise the potential problem 
of model overfitting, the parameter subset size to be calibrated was set to 
a maximum of four parameters. 5) All the subsets were calibrated under 
dynamic conditions. The subset of the optimized parameters that most 
reduced the CCF was selected. The identifiability of each subset and the 
confidence interval for its parameters were evaluated based on the FIM 
methodology. 

The aim of the preliminary calibration was to fit the sodium alumi
nate addition to describe the phosphate concentration in the biological 

reactors. During the preliminary calibration, the influent and opera
tional dynamic data from the experimental campaign were averaged and 
used as model inputs (constants inputs). The phosphate concentration in 
the reactors were also averaged and used as output variables. The so
dium aluminate addition to the IR stream was calibrated using the 
XMeOH state variable of ASM2d-N2O, which stands for ferric-hydroxide. 
Equation (4) was used as the preliminary calibration cost function 
(PCCF): 

PCCF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑7

i=1

(
yexp,i − ymodel,i

)2

√
√
√
√ (4)  

Where: “i” is related to each sample in the biological reactor, yexp is the 
averaged experimental phosphate concentration and ymodel is the steady 
state phosphate concentration obtained after a simulation of 300 days. 

Equation (5) was used to calculate the individual calibration cost 
function defined for each monitored variable (CCFi) and Equation (6) 
was used to calculate the overall CCF: 

CCFi =
∑7

r=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
yexpi,j − ymodeli,j

)2

√
√
√
√ (5)  

CCF =
∑4

i=1
CCFi = CCFNH4 + CCFNO2 + CCFNO3 + CCFN2O (6)  

Where: “i” is related to the output variable of interest (NH4
+, NO2

–, NO3
– 

or N2O); “j” is related to each experimental data point (n measures); “r” 
is related to each sample zone and yexp and ymodel are related to exper
imental data and model output, respectively. The phosphorus related 
variables were not added in the CCF for the reasons discussed in section 
2.5. 

Each dynamic simulation started with a 300-day steady-state (SS) 
simulation (constant inputs). Then, a 3-day dynamic simulation was 
performed using the SS simulation results as the initial point and the CCF 
was calculated using the operational data sampled during the experi
mental campaign. Each parameter subset was calibrated by minimising 
the CCF through a global searching minimization method using the 
Matlab function patternsearch. The identifiability of the subsets was 
evaluated using the FIM methodology [33,34], which was applied to 
calculate the confidence interval for each parameter, D criteria (CritD), 
modified E criteria (CritModE), normalized D criteria (NormD) and the 
ratio between NormD and CritModE (RDE), as detailed in Section S6 of 
the SI. 

The goodness of the model fit for N2O emissions was quantitatively 
assessed with the performance metrics detailed in equations (7) to (10) 
[35], where yi, y, ŷi and n refer to the experimental values, their 
average, the model prediction and the number of measurements, 
respectively. 

R2 =

∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(8)  

MAE =
1
n
∑n

i=1
|yi − ŷi| (9)  

Bias =
1
n

∑n

i=1
(yi − ŷi) (10) 

The experimental campaign lasted three days. In addition, the gas 
collection system could only analyse one aerobic zone at a time and, 
unfortunately, the system failed during one night due to the gas mea
surement computer was powered off. Therefore, in the absence of a large 
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dynamic data set, all available data from this experimental campaign 
were used for the calibration process. The validation was performed 
with data selected from a previous N2O measuring campaign in the same 
WWTP [21]. Specifically, the data used for model validation were the 
N2O emissions and the ammonium profiles measured in the AER2 
compartment of the WWTP during 15–21 November 2016 and reported 
in a previous experimental work [21]. The validation procedure and 
results are detailed in section S8 of the SI. 

3. Results and discussion 

3.1. Experimental data and plant performance 

The NH4
+, NO2

–, NO3
– and PO4

3− profiles in the influent and in each 
compartment are shown in Figures S2 to S5 in section S2 of the SI. The 
influent temperature and pH were approximately constant during the 
experimental campaign at 24.4 ± 0.5 ◦C and 7.44 ± 0.09, respectively. 
Good plant performance was achieved, obtaining a COD removal of 96% 
and higher than 99% for total Kjeldahl nitrogen (TKN) and P. Mean DO 
values were 1.8, 1.5, 1.2 and 2.0 g O2 m− 3 in AER1 to AER4 compart
ments, respectively. Nitrite concentrations were below 0.25 g N m− 3 in 
all compartments, with averaged ammonium and nitrate concentrations 
in the last compartment of 0.1 g N m− 3 and 3.3 g N m− 3, respectively, 
showing high AOB and NOB activity. Figure S5 shows that the PO4

3−

concentration only increased on average by 2.5 g P m− 3 in the anaerobic 
reactor (ANA1), compared to the PO4

3− concentration in the influent, 
showing a low PAO activity. Hence, the addition of chemical P precip
itant probably limited the PAO activity. 

The COD fractionation characterization (i.e. the calculation of the 
COD model state variables from the measured variables) was performed 
on the basis of the effluent filtered COD (CODfil,eff) and three different 
influent COD measurements: total COD (CODtot), filtered COD at 1.2 µm 
(CODfil) and flocculated-filtered COD at 0.45 µm (CODsol). More details 
on this procedure, the list of all determined model influent state vari
ables and the COD influent profiles can be found in section S3 of the SI. 
The influent fractionation was assumed constant during the dynamic 
calibration. 

Fig. 2 shows the N2O emissions from the first three aerated zones 
(AER1 to AER3) together with the ammonium concentration profile 
obtained from analytical tests and from an online sensor in AER2. The 
grey area in Fig. 2 indicates that N2O data was not available due to a 
technical failure. Similar peak profiles of N2O emissions were observed 
for the other three aerobic reactors monitored. However, the amount of 
N2O emitted was different, with AER1 being the compartment with 
highest emissions and AER3 with the lowest. This could be related to the 
fact that higher ammonium concentrations were present in AER1, that 
led to higher ammonium oxidation rates. Furthermore, Fig. 2 shows that 
N2O emissions were related to ammonium concentration and thus 
emissions decreased to negligible levels when ammonium was depleted. 
The same pattern of N2O peak emissions were reported in other studies 
in full-scale WWTPs or in lab experiments with nitrifying-enriched 
sludge [26,36]. The peak is attributed to the sudden increase of 
ammonium, which produces a transient between low-activity to high- 
activity of nitrifying biomass [4,9,26]. During the experimental 
campaign, the averaged N2O emission factor (N2O-EF) (calculated as the 
percentage of the influent TKN load emitted as N2O-N), of AER1 to AER3 
reactors was 0.41%, which is in the low range of the N2O-EF reported for 
full-scale WWTPs [4,9,12,26]. However, the calculated N2O-EF was 
slightly higher than the N2O-EF calculated during a large monitoring 
campaign at the same WWTP, N2O-EF of 0–0.13% [26]. The increase in 
N2O-EF can be due to the multiple factors that can be found in an urban 
WWTP, such as operational parameters (e.g. temperature, DO, pH and 
recycling flows) and changes in wastewater flow and composition (e.g. 
nitrogen concentration, COD concentration and fractionation, and in
crease in the fraction of industrial wastewater) [12]. 

3.2. Hydraulic characterization 

The pulse response at the influent of biological reactors and the 
flowrates measured during the RTD experiment are shown in Fig. 3. The 
influent tracer concentration, the flowrates and the dimensional data of 
the Girona WWTP were used as model inputs to characterize the hy
draulics of the plant. 

Fig. 4 shows the experimental bromide concentrations measured 
during the tracer test. The concentration of Br− before the KBr pulse was 
not negligible. Therefore, a constant inlet bromide concentration of 
0.0627 g m− 3 was considered during the experiment. A tracer mass 
balance over the secondary treatment after 78 h showed that a 79% of 
the total tracer introduced was detected at the output and that 3.5 kg of 
the injected Br− remained in the reactor when the experiment was 
stopped. 

The initial assumption that each reactor operated as an ideal CSTR 
was correct, as the trends of the model predictions agreed with the 
experimental values. However, the assumption that the secondary 
settler flow pattern was also a CSTR was false and therefore the model 
was revised. The parameters to be estimated were the number of N 
tanks-in-series of the secondary settler and the percentage distribution 
of the influent flow between each biological line (i.e. fQ1 and fQ2, where 
fQ1 and fQ2 are the percentage of the influent flow going to the first and 
second biological treatment lines, respectively, and fQ1 + fQ2 = 1). 

Fig. 2. Measured N2O emissions and NH4
+ concentration in compartments 

AER1, AER2 and AER3. The grey area represents a technical failure in the N2O 
gas measurement system. The dashed line at the N2O and NH4

+ analytical data 
points is an aid for better visualization of the experimental profiles. 
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Fig. 4 shows the results obtained during the hydraulic calibration. 
The model accurately described the trends of the experimental data. The 
optimized parameters for the secondary settler flow pattern were N = 5 
tanks and hence the secondary settler flow pattern was closer to a plug 
flow reactor flux model than to a CSTR. The flowrate was distributed 
approximately equally between the two lines, with 49.33% of the 
influent flowrate going to the first biological treatment line and 50.67% 
to the second treatment line. These results contradicted the initial 
thinking of the plant operators that the distribution was not 
symmetrical. 

3.3. Preliminary calibration 

The next step after the identification of the WWTP hydraulics was the 
calibration of the kinetic model ASM2d-N2O. As the flow distribution 
between both biological treatment lines was approximately the same, 
only one biological treatment line was considered in the kinetic cali
bration and in the GSA studies. The preliminary calibration (see section 
2.6) aimed to reduce structural discrepancies between the model and the 
experimental variables [37], particularly for those related to P, before 
performing the GSA and the subsequent dynamic calibration. 

Fig. 3. Pulse response concentration measured in the effluent of the primary clarifier (influent of the biological reactors) and flowrates measured during the 
tracer experiment. 

Fig. 4. Tracer experiment results and model results in each measured compartment and in the effluent.  
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The XMeOH addition that minimized the PCCF was 184 kg Fe(OH)3 
d− 1. The PCCF obtained was 2.7, achieving a reduction of 74% 
compared to the PCCF before the preliminary calibration. The fits ob
tained on the average phosphate concentration are shown in Figure S7 of 
section S4 of the SI. With this addition of XMeOH, the model was found to 
predict that the percentage of P biologically removed by PAO was 24%. 
The calibrated XMeOH addition value was maintained constant during all 
dynamic simulations. Moreover, as phosphate concentrations were 
calibrated by chemical precipitation, PAO-related parameters were not 
considered during the ASM2d–N2O calibration and phosphate concen
trations were not considered in the CCF, i.e. the PAO-related parameters 
were maintained at their default values in all dynamic simulations. 

3.4. Development of the calibration cost function (CCF) 

The data obtained during the experimental campaign were used to 
dynamically calibrate the ASM2d-N2O model to the Girona WWTP. In 
total, four variables were included in the cost function and considered as 
the output variables of interest: ammonium, nitrite and nitrate in the 
biological reactors and N2O emissions from AER1 to AER3. Therefore, 
the CCF was divided into four different cost functions (CCFi) for each 
output variable of interest (i.e. CCFNH4, CCFNO2, CCFNO3, CCFN2O). The 
overall CCF (Equation (6)) was calculated as the sum of each individual 
output variable CCFi (Equation (5)). As all the CCFi were of the same 
order of magnitude, no weighting factors were included in the CCF 
calculation. 

3.5. Global sensitivity analysis 

A number of N = 2000 simulations was selected for the MC experi
ment. The CCF and each CCFi for each simulation were then evaluated 
and discretized into two populations, B and B (see section 2.5). The 
threshold fixed to discretize the CCF (and the associated input param
eters) was the maximum reduction on the CCF that can be achieved with 
a number of simulations of the behavioural group of at least NB = 100, 
representing 5% of all simulations. The maximum reduction in CCF that 
satisfied the requirement of NB = 100, and therefore, the threshold 
selected for GSA evaluation was 40%, compared to the CCF calculated 
with the default parameter values of ASM2d-N2O. For this selected 
threshold, the top ranked GSA indices are shown in Table 2. Table S2 in 
section S5 of the SI shows the full rank of parameters evaluated. 

Among the CCFi-related results, a high reduction threshold of around 
80% was found for nitrite and nitrous oxide CCFs. On the other hand, the 
thresholds found for the ammonium and nitrate CCFs were around 10%. 
These results showed that the maximum reduction in the overall CCF 
that could be achieved was related to the reduction in the nitrite and 
nitrous oxide CCFs. The initial simulations agreed with this observation, 
as the predicted ammonium and nitrate concentrations trends agreed 
with the experimental values. In addition, Table 2 shows that the five 
top ranked parameters were related to nitrification processes, more 
specifically to the nitratation process, as four of the five top ranked 
parameters were related to NOB (µNOB, bNOB, KNO2_NOB and KO2_NOB) and 
the other parameter was related to AOB bacteria (qAOB_AMO). Therefore, 
the GSA results showed that the ASM2d-N2O model calibration for the 
Girona WWTP should focus on the calibration of the nitrifying bacteria 
parameters, which is not surprising. However, in view of good modelling 
practices, a systematic methodology to understand the parameter 
sensitivity should always be incorporated, particularly when there are a 
high number of parameters. In this case, i.e. for this model, specific 
WWTP operational conditions and available experimental data, these 
results allowed to detect the most sensitive parameter among all those 
related to the biological nitrogen removal process and confirmed that 
any unexpected parameter had a high sensitivity on N2O measurements. 

3.6. Dynamic calibration 

The dynamic calibration was conducted after identifying the ASM2d- 
N2O parameters most likely to reduce the CCF. Different parameter 
subsets were defined with all the possible combinations of the five top 
ranked parameters from the GSA (Table 2). The size of parameter subsets 
ranged from one to four parameters, resulting in a total of 30 parameter 
subsets to be calibrated (Table S3 in SI). The parameter subset and 
calibrated values that most reduced the CCF were µNOB = 0.674 ±
0.019 d–1, qAOB_AMO = 5.517 ± 0.058 gN (gCOD)–1 d–1, KO2_NOB = 0.126 
± 0.029 gO2 m− 3 and KNO2_NOB = 0.126 ± 0.030 gN m− 3. The CCF was 
reduced by 53.3% with this parameter subset, compared to the CCF after 
preliminary calibration, mainly due to the reduction of the CCF of NO2

– 

and N2O (87.7 and 86.5%, respectively). The fit between experimental 
data and model predictions for N-species is shown in Fig. 5 and those for 
N2O emissions are shown in Fig. 6. 

The calibration results for each subset of parameters can be found in 
Table S3 of the SI. The selected subset shows low confidence interval 
values for all parameters and a parameter confidence interval norm of 
33.6%, which is the lowest of all subsets with four parameters. It also 
provides a high NormD = 9.8 1017, a low CritModE = 809 and the 
highest RDE = 1.22⋅1015. These values, compared to those of the other 
subsets, indicate that the selected subset has a good identifiability linked 
to the ability to provide a low CCF. In contrast, the subset µNOB, bNOB, 
qAOB_AMO, KO2_NOB also provides a very similar CCF, but it has an 
extremely high parameter confidence interval for bNOB (1211%), i.e. 
bNOB = 0.0008 ± 0.0095 d–1, which shows the low identifiability of this 
parameter. The problem of a much higher confidence interval than the 
parameter value with bNOB also appears in all subsets where very low 
bNOB values are obtained during the optimization. This indicates that, 
with the experimental information available in this study, it would not 
be advisable to use bNOB for model fitting. In fact, this is the only 
parameter of the initial five that is not included in the chosen subset. 

Regarding the predictions obtained, the model reasonably predicts 
the concentration trends of the different N-species in the reactor. The 
ASM2d-N2O was able to explain the low nitrite concentrations measured 
during the experimental campaign, by reducing the NOB oxygen and 
nitrite affinity constants with respect to the default values [16]. Exper
imental nitrate data and model fits showed a discrepancy in nitrification 
capacity, as measured nitrate showed smaller increases among aerobic 
reactors (AER1 to AER3) compared to model predictions. The model 
could not predict such a high degree of simultaneous nitrification and 
denitrification occurring in AER2 and AER3. This was due to the low DO 
levels in AER2 and AER3 (1.5 and 1.2 g O2 m− 3, respectively) in addition 

Table 2 
Ranking of the first twenty parameters obtained in the GSA.  

Position Parameter Description 

1 µNOB Maximum NOB growth rate 
2 bNOB Decay rate of NOB 
3 KNO2_NOB Saturation coefficient for NO2

– 

4 qAOB_AMO Maximum rate for the AMO reaction 
5 KO2_NOB Half-saturation coefficient for O2 

6 nG5 Anoxic growth factor (N2O → N2) 
7 KOH5 Half-saturation coefficient for O2 

8 qAOB_HAO Maximum rate for HAO reaction 
9 qAOB_N2O_ND Maximum N2O production rate by the ND pathway 
10 KNO2 Saturation/inhibition coefficient for NO2

– 

11 KI5NO NO inhibition coefficient (N2O → N2) 
12 KI_O2_AOB N2O constant for production inhibition by O2 

13 KO2_AOB1 AOB affinity constant for O2 (AMO reaction) 
14 nG3 Anoxic growth factor (NO2

–→NO) 
15 KS5 Half-saturation coefficient for substrate 
16 KNO2_Den Half-saturation coefficient for NO2

– 

17 KI4NO NO inhibition coefficient (NO → N2O) 
18 KALK Saturation coefficient for alkalinity (HCO3

–) 
19 KHNO2_AOB AOB affinity constant for HNO2 

20 KNO3_H Saturation/inhibition coefficient for NO3
–  
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to the inherent instability of the DO control system in the plant, which 
caused significant noise in the DO concentration and favoured denitri
fication processes when the DO concentration was low. 

On the other hand, the goodness of the ASM2d-N2O fit for N2O 
experimental data was evaluated in more detail. Statistical model fit 
criteria were calculated for each reactor (Table 3) as detailed in section 
2.6. The coefficient of determination was low in the three reactors (R2 =

0.107, 0.518 and 0.533), indicating that the model could only partially 
describe the experimental results. The highest RMSE value resulted in 
AER1, but when comparing the RMSE with the average experimental 
value (y), the error was 85%, 79% and 139% for reactors AER1, AER2 
and AER3 respectively. The MAE results were similar to those of RMSE, 
obtaining the highest value for AER1. Finally, the model bias was 
negative for all three reactors (Bias = 0.114, -0.285 and -0.120), indi
cating a slight model underestimation of N2O emissions. Despite the 
statistical values discussed above, the model was able to reasonably 
capture the dynamics and range of N2O emissions in AER2 and AER3 
(Fig. 6), except for the period 1.0–1.5 d, where unexpectedly low N2O 
values were registered by the online measuring system in all three re
actors. These reasonable predictions were obtained even considering 
that only one parameter related to biomass producing N2O was modified 
(qAOB_AMO) and also taking into account the intrinsic operational vari
ability observed in full-scale WWTPs. 

Going into more detail with respect to the discrepancy of N2O 
emissions in the period 1.0–1.5d, the model predicted a peak of 
ammonium during this period that was not experimentally detected 
(Fig. 5). The model predictions of N2O emissions during this second 
daily peak of ammonium were mostly related to the ND pathway, since, 
as a result of the ammonium accumulation, the model also predicted a 
slight accumulation of hydroxylamine up to 0.9 g N m− 3 (three times the 
affinity constant of AOB), which is the electron acceptor substrate for the 
ND pathway. Moreover, the model predicted the highest nitrite 

concentration in AER1, obtaining an average value of 0.17 g N m− 3 

during the three days of dynamic simulation. This a priori low nitrite 
concentration was high enough to support the ND pathway in this 
reactor, thus causing the overestimation of N2O emissions. 

ND is the biological N2O production pathway responsible for most of 
emissions during wastewater treatment [9,12,16,38]. In fact, the 
average contribution of the ND pathway to the total N2O production in 
AER1 was 82% and decreased to 78% and 48% in AER2 and AER3, 
respectively (see Figure S8 in SI). These values are in agreement with 
literature ranges for aerobic reactors [38]. The NN pathway contributed 
6% to the total N2O production and the HD pathway contributed mostly 
in AER3 with 45% (Figure S8 in SI), where the DO was the lowest of the 
aerobic zones (1.2 g O2 m− 3). The higher contribution of the HD 
pathway in AER3 shows that simultaneous nitrification and denitrifi
cation occurred in this reactor due to the low DO coupled with low NH4

+

and high NO3
– concentrations. The predicted N2O-EF, only considering 

AER1 to AER3 zones, was 0.55% which is very similar to the measured 
one (0.41%). 

Although the model predictions are in line with previous work in the 
literature, it should be noted that biological N2O production are complex 
processes with several metabolic pathways with challenging in
teractions that have probably not been fully revealed. There is a lack of a 
consensus model describing all the scenarios and, thus, the biological 
model used may not be capable to describe all the particular cases. The 
ASM2d-N2O model contains several assumptions and short-cuts in order 
to describe full-scale N2O emissions in a simple way. For instance, the 
ASM2d-N2O model assumes that the AOB-driven nitrite reduction to 
N2O is a one-step process to avoid a NO loop [16] based on the original 
structure [14] that was only focused on AOB metabolism. Likewise, the 
quantity and quality dataset used for calibration corresponds to a rela
tively short-term period and, as such, we missed rain-events or periods 
with changing temperature or variable flow. Therefore, these 

Fig. 5. Concentrations of ammonium, nitrite and nitrate measured during the experimental campaign and fit obtained during the dynamic calibration of 
ASM2d-N2O. 
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considerations, i.e. the model structure and the quantity/quality of the 
calibration dataset, may have a strong influence on the parameter subset 
selection, parameter estimates and model predictions, and should be 
taken into account when analysing the results obtained, considering also 
the possible model limitations when it is to be applied to other scenarios. 

4. Model exploitation 

Once the dynamic calibration and the model validation (Section S8 
in SI) were done, two scenarios were simulated to investigate the effect 
on N2O emissions and N2O-EF of varying the flowrate distribution be
tween both treatment lines (Fig. 1). In the first case, an equal flow 

distribution was simulated, i.e. 50% of the influent flowrate was fed to 
each line, according to the tracer experiments results (section 3.2). The 
second case was modelled assuming that 40% of the influent flowrate 
went to the first treatment line and the remaining 60% to the second 
one. This study was performed to assess the possible effect than an 
incorrect flow distribution between treatment lines had on the N2O 
emissions due to possible treatment line overloading and changes in 
treatment plant loads. Each simulation was done following the same 
methodology as in the dynamic calibration (section 2.6) and with the 
same model inputs. In addition, it was assumed that the aeration system 
was able to maintain the same DO concentration despite the increase of 
N load. 

Fig. 7 shows the predicted N2O emissions in each treatment line and 
the total N2O emissions and N2O-EF for each case. Fig. 7A shows that the 
predicted N2O emissions from the treatment lines increased with 
increasing influent flowrate. The average N2O emission rate obtained for 
an influent flowrate distribution of 40, 50 and 60% were 2.5, 3.2 and 
3.8 kg N2O-N d− 1 respectively. The same ammonium was obtained in the 
effluent for all three influent distribution simulations, however, nitrite 
and nitrate in the effluent increased with increasing influent flowrate 
due to the increase on the TKN influent load. Fig. 7A reveals that the 
same total N2O emissions were predicted for both cases (6.3 kg N2O-N 
d− 1). This is because the N2O emissions increased linearly with 
increasing influent flowrate and therefore the total N2O emissions for 
both cases were the same. Fig. 7B also shows that the predicted N2O-EF 
for both lines was the same for each case because the N2O emissions 
increased with the same slope as the TKN removed. Therefore, these 
simulations show that if one of the two lines was overloaded, emissions 
would increase in that line, but these higher emissions would be 
compensated to the same extent by the lower emissions in the under
loaded line. Thus, the plant, would not suffer an increase in total N2O 
emissions even if the flow distribution was not entirely correct, as long 

Fig. 6. N2O emissions measured during the experimental campaign and fits 
obtained during the dynamic calibration of ASM2d-N2O. In the grey area no 
experimental N2O emission data were available due to a technical failure. 

Table 3 
Performance criteria to assess the goodness of fit for N2O predictions.   

n R2 y  RMSE MAE Bias 

AER1 reactor 37  0.107  1.339  1.141  1.014  − 0.114 
AER2 reactor 37  0.518  0.763  0.603  0.514  − 0.285 
AER3 reactor 38  0.533  0.289  0.401  0.310  − 0.120  

Fig. 7. Predicted N2O emissions in two different flowrate scenarios: Case 1 
(equal influent flowrate distribution in both treatment lines) and Case 2 
(40–60% influent flowrate distribution). (A) N2O emissions in each treatment 
line for 40%-50%-60% flowrate and total N2O emissions. (B) Predicted N2O-EF 
for both cases. 
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as it can be ensured that the aeration system is capable of providing 
sufficient oxygen to maintain the DO around the setpoint. For scenarios 
where there is no oxygen control and constant aeration is used, an in
crease in ammonium loading may decrease the DO concentration, 
moving the operating point to one with higher N2O production, which 
would increase emissions as previously studied [16]. 

5. Conclusions 

This work is a comprehensive calibration of the ASM2d-N2O model 
to a full-scale WWTP including hydraulics with the following main 
findings:  

- Modelling the flow patterns in the plant is very interesting in view of 
its calibration. The tracer experiment showed that all reactors of the 
two treatment lines had a correct hydraulic behaviour, as no dead 
volumes, flux recycling or by-passes were found. Furthermore, it was 
demonstrated that an equal flow was flowing to each line.  

- A GSA method (RSA) was successfully applied to rank the parameters 
most likely to reduce the CCF. The sensitivity analysis revealed that 
the top ranked parameters were related to nitrifying organisms.  

- The dynamic kinetic calibration of ASM2d-N2O correctly captures 
the trends of N-species in the reactors, only by modifying four kinetic 
parameters. 

- The N2O-EF predicted was very similar to that measured experi
mentally and the emission profiles trends were in general in agree
ment with the experimental data. 

- The simulations revealed that, under current plant operating condi
tions, an increase in flow in one of the treatment lines would increase 
N2O emissions in that overloaded line, but would be offset by a 
decrease in the underloaded line, so that total emissions would not 
vary significantly, provided the control system was able to maintain 
the operating DO. 
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