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ABSTRACT 30 

The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments 31 

but their global diversity and biogeography remain poorly characterized. Here, we analyzed 32 

AAP communities across 113 globally-distributed surface ocean stations sampled during the 33 

Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing 34 

of the pufM gene, the genetic marker for this functional group, we show that AAP communities 35 

along the surface ocean were mainly composed of members of the Halieaceae 36 

(Gammaproteobacteria), which were adapted to a large range of environmental conditions, and 37 

of different clades of the Alphaproteobacteria, that seemed to dominate under particular 38 

circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each 39 

of the studied oceans, with communities from adjacent stations sharing more taxonomic 40 

similarities. AAP communities were composed of a large pool of rare members and several 41 

habitat-specialists. When compared to the surface ocean prokaryotic and picoeukaryotic 42 

communities, it appears that AAP communities display an idiosyncratic global biogeographical 43 

pattern, dominated by selection processes and less influenced by dispersal limitation. Our study 44 

contributes to the understanding on how AAP communities are distributed in the horizontal 45 

dimension and the mechanisms underlying their distribution across the global surface ocean. 46 



INTRODUCTION 47 

The discovery of marine aerobic photoheterotrophs (i.e., aerobic anoxygenic phototrophic 48 

(AAP) bacteria and proteorhodopsin-containing bacteria) (Béjà et al., 2000; Kolber et al., 2000) 49 

challenged the classic view of bacterioplankton being composed of photoautotrophic 50 

microorganisms as primary producers and of chemoheterotrophs as consumers. Since then, 51 

many studies have investigated their abundance, diversity, and distribution in the ocean, and 52 

ultimately tried to understand their role in the marine ecosystem (DeLong and Béjà, 2010; 53 

Kirchman and Hanson, 2013; Koblížek, 2015; Pinhassi et al., 2016). AAP bacteria are 54 

photoheterotrophs that use dissolved organic matter but that harvest solar energy using 55 

bacteriochlorophyll a (Bchla) to supplement their metabolism. In the marine environment, these 56 

organisms can typically constitute up to 10% of total prokaryotes (Schwalbach and Fuhrman, 57 

2005; Sieracki et al., 2006; Jiao et al., 2007; Hojerová et al., 2011) and are an active part of the 58 

community because they consist of large cells that display higher growth rates and receive 59 

higher grazing pressure than most bacteria (Sieracki et al., 2006; Koblížek et al., 2007; Ferrera 60 

et al., 2011, 2017). It has thus been hypothesized that this functional group plays a remarkably 61 

important role in the processing of organic matter, and as a consequence, in the global carbon 62 

cycle (see review by Koblížek, 2015). 63 

Phylogenetically, marine AAP bacteria belong mainly to the Alpha- and Gammaproteobacteria 64 

classes. The pufM gene, involved in the synthesis of Bchla, is commonly used to screen the 65 

diversity of AAPs in environmental samples and to describe their distribution patterns. The first 66 

studies showed AAP communities as being mainly affiliated to the alphaproteobacterial 67 

Roseobacter-like clade (Béjà et al., 2002; Oz et al., 2005) but the Global Ocean Sampling 68 

(GOS), based on metagenomic data, unveiled that an important fraction of marine AAP bacteria 69 

were associated to phylogroups without cultured representatives (Yutin et al., 2007). The later 70 

study also showed that, while the Roseobacter-like AAPs were the most ubiquitous clade, 71 

unidentified uncultured groups dominated in open ocean areas, while Gammaproteobacteria 72 

dominated in coastal sites (Yutin et al., 2007). Later investigations showed that 73 



Gammaproteobacteria have in fact a widespread distribution and can constitute an important 74 

fraction of AAP communities in diverse sites of contrasting trophic status (Mašín et al., 2006; 75 

Lehours et al., 2010; Ferrera et al., 2014; Lehours and Jeanthon, 2015; Auladell et al., 2019). In 76 

contrast, AAPs from the Betaproteobacteria clade are rarely prevalent in marine environments 77 

and they seem to prefer low-salinity waters (Waidner and Kirchman, 2008; Cottrell and 78 

Kirchman, 2009; Boeuf et al., 2013).  79 

Although most AAP diversity studies have been restricted to particular areas of the world’s 80 

ocean, a few studies have already compared communities across different oceanic regions. The 81 

pioneering metagenomic study by Yutin et al., (2007), which covered a transect between 45°N 82 

in the Atlantic Ocean and 15°S in the Pacific Ocean, showed that the composition of AAP 83 

communities varied between different biogeographical regions. By constructing clone libraries 84 

in a limited number of samples (N=10) from the Pacific, Atlantic and Indian oceans, Jiao et al., 85 

(2007) reported diversity patterns linked to the trophic regime of the oceanic region. Later, 86 

another study compared clone libraries of different seas encompassing a very large 87 

environmental variability (Mediterranean Sea, North Pacific Ocean, Western Beaufort Sea, 88 

Barents Sea and Norwegian Sea), and found that deterministic processes largely influenced the 89 

structuring of AAP assemblages (Lehours et al., 2018). This study further concluded that 90 

diverse AAP lineages showed some habitat preference, suggesting the existence of a certain 91 

degree of ecological cohesiveness for AAP clades, at least when comparing contrasting biomes. 92 

Besides, a study applying high-throughput sequencing to coastal Australian waters concluded 93 

that AAP communities exhibited niche partitioning whereas others shared their preferred niches 94 

(Bibiloni-Isaksson et al., 2016). Altogether, these results indicate that AAP assemblages –and 95 

the taxa within them– display complex spatial patterns (Jiao et al., 2007; Yutin et al., 2007; 96 

Lehours et al., 2010; Jeanthon et al., 2011; Boeuf et al., 2013; Lehours and Jeanthon, 2015; 97 

Bibiloni-Isaksson et al., 2016), probably driven by environmental selection (Lehours et al., 98 

2018). Nevertheless, these conclusions are drawn from studies performed at different scales, 99 



using various methodologies and biased towards particular –and often coastal– ocean regions, 100 

so a coherent global assessment is still lacking. 101 

The exploration of the worldwide distribution of marine microorganisms, and thus, the 102 

definition of global biogeographical patterns, has become feasible in the last decade thanks to 103 

contemporary global oceanographic circumnavigations like the Malaspina Circumnavigation 104 

Expedition (Duarte 2015) or the Tara Oceans Expedition (Karsenti et al., 2011), that used 105 

standardized procedures in a large collection of samples, coupled with recent advances in 106 

sequencing methodologies. Large scale surveys have also been key in the definition of the 107 

underlying ecological mechanisms in bulk prokaryotic and small eukaryotic communities (de 108 

Vargas et al., 2015; Salazar et al., 2015; Sunagawa et al., 2015; Ruiz-González et al., 2019; 109 

Logares et al., 2020; Obiol et al., 2020). Data generated from large sequencing initiatives have 110 

also been used to retrieve new diversity (Tully et al., 2018; Nayfach et al., 2020), including that 111 

within the AAPs (from the Tara Oceans expedition, Graham et al., 2018). Hence, a 112 

comprehensive study defining the global ocean biogeography of AAP assemblages and the 113 

mechanisms underlying their patterns is now feasible, but yet to be performed. 114 

Here, we present a global assessment of AAP bacteria communities across the global tropical 115 

and subtropical ocean based on the Malaspina Circumnavigation Expedition. In particular, we 116 

studied the diversity and biogeography of AAP communities at a fine scale in the surface ocean 117 

using amplicon sequence variants (ASVs) of the pufM gene. Our objectives were three-fold: 1) 118 

to describe the diversity and biogeography of the surface AAP assemblages along the global 119 

tropical and subtropical ocean, 2) to disentangle the factors driving global patterns of AAP 120 

communities, and 3) to compare the trends observed in the AAP communities with those of the 121 

broader surface ocean microbiota (i.e., whole prokaryotic and picoeukaryotic communities). For 122 

this purpose, we analyzed the composition of AAP communities based on the dominance or 123 

rarity of each individual taxa in an approach based on the spatial abundance distribution of each 124 

ASV. Further, we estimated the role of different ecological processes shaping the structure of 125 

AAP communities. Since AAP bacteria, as a whole, display ecological traits that differentiate 126 



them from the rest of the bacterioplankton (i.e., photoheterotrophy, high growth rates, and 127 

higher susceptibility to predation than other prokaryotes), we hypothesize that their ecological 128 

patterns may deviate from those of the bulk communities. 129 

 130 

RESULTS AND DISCUSSION 131 

Oceanographic context 132 

The 113 studied stations were representative of the tropical and subtropical regions of the three 133 

major oceans, the Pacific, the Atlantic and the Indian Ocean (Table 1, Fig. S1). The cruise track 134 

spanned across all five subtropical oceanic gyres, characterized by their oligotrophic conditions, 135 

as well as over relatively more productive areas such as the Equatorial Pacific, the Caribbean 136 

Sea, the Benguela coastal province or the South Subtropical convergence current, in the South 137 

Australian Bight (Estrada et al., 2016). Across this route, temperatures ranged between 15.8 and 138 

29.3ºC (mean 24.5ºC), with the coldest waters found in the South Australian Bight and the 139 

warmest temperatures in samples located along the Equatorial Pacific and Atlantic Oceans (Fig. 140 

S2). Salinity ranged from 33.15 to 37.65 PSU, being the highest in stations from the Atlantic 141 

Ocean and lowest in certain stations from the Indian and Pacific oceans. Chlorophyll a (Chla) 142 

ranged between 0.034 (Station 38 in the South Atlantic) and 0.647 mg·m-3 (Station 45 in the 143 

Benguela current coast) with a mean value of 0.155 mg·m-3. Phosphate, nitrate, and silicate had 144 

higher concentrations in the Equatorial Pacific, in the South African stations and in the South of 145 

Australia (Fig. S2).  Water mass properties and productivity regimes for the stations sampled in 146 

the Malaspina Circumnavigation Expedition have been previously described in detail (e.g. 147 

Estrada et al 2016, Teira et al 2019, Regaudie-de-Gioux et al 2019, and Villamaña et al 2019). 148 

 149 

Contrasting patterns of alpha diversity in distinct biogeographical provinces 150 

Our survey of the pufM gene allowed us to generate the largest dataset of amplicon sequence 151 

variants of the pufM gene thus far available. Partial sequencing of this marker resulted in 1119 152 



distinct ASVs that clustered into 229 OTUs (94% similarity). Rarefaction curves reached a 153 

plateau for all samples (Fig. S3A), indicating that we obtained a fair representation of the 154 

AAPs’ surface ocean diversity for each individual sample, while the global sample-based 155 

rarefaction curve (Fig. S3B) suggested that the number of ASVs would rise had more stations 156 

been sampled. We observed a large variability in the richness estimates (Chao1 index) per 157 

community (Fig. 1), which varied between 14 and 132 ASVs (mean 61) while the Shannon 158 

diversity index ranged between 0.9 and 3.9 (mean 2.9). Overall, richness values were within the 159 

same range than those previously reported from the Mediterranean Sea or Australian coastal 160 

waters using similar methodologies (Bibiloni-Isaksson et al., 2016; Auladell et al., 2019). 161 

Richness and diversity of AAP communities were highest in the North Atlantic (mean richness 162 

81, mean Shannon diversity 3.1) compared to other regions (Tukey test, p<0.001, Fig. 1). 163 

Taxonomic richness and diversity varied between and within some Longhurst provinces. In 164 

general, AAP bacteria diversity was lower in eutrophic areas (correlation between Shannon and 165 

Chla concentration, N=113, R=−0.33, p<0.001 and primary production, N=96, R=−0.38, 166 

p<0.001), consistent with previous observations (Jiao et al., 2007; Jeanthon et al., 2011). In 167 

contrast, AAP communities having higher richness values were associated with low 168 

concentrations of phosphate (N=89, R=−0.48, p<0.0001) and nitrate (N=89, R=−0.34, 169 

p=0.001), and correlated positively with temperature and salinity (N=113, R=0.24, p=0.011; 170 

R=0.29 p=0.002, respectively, see Table S1). Temperature and salinity had been shown to 171 

influence AAP bacterial richness at local scales (Lehours and Jeanthon, 2015; Bibiloni-Isaksson 172 

et al., 2016). Our results demonstrate that temperature, salinity, and trophic status govern 173 

patterns of AAP bacterial alpha diversity at the global scale. 174 

We also explored whether the patterns of AAP diversity were similar to the trends observed for 175 

other picoplanktonic groups. To this end, we compared the Shannon diversity of prokaryotes 176 

and picoeukaryotes (previously determined in the same sample set, Ruiz-González et al., 2019; 177 

Logares et al., 2020) with the values obtained for AAP bacteria. We observed a significant 178 

negative correlation between the Shannon diversity index of AAP communities and that of total 179 



prokaryotes (N=104, R=−0.32, p=0.001, Fig. S4), while no significant correlation was found 180 

with the picoeukaryotic community values. However, the low diversity values observed for 181 

AAP bacteria in some eutrophic regions (PEQD, PNEC and SSTC provinces, cf. Table 1 for 182 

complete names) were not observed in the whole prokaryotic dataset, suggesting that trophic 183 

status may exert a strongest role in shaping the diversity of the AAP subcommunity than of the 184 

bulk prokaryotic assemblage. 185 

Spatially structured communities dominated by distinct taxonomic groups 186 

We classified all the ASVs into 7 broad taxonomic groups based on their placement in a 187 

reference phylogenetic tree (Fig. S5). One group contained sequences assigned to the family 188 

Halieaceae of the Gammaproteobacteria (here-after ‘Gamma-Halieaceae’ group), while the 189 

‘Betaproteobacteria’ group included sequences from the Burkholderiales order. Members of the 190 

Alphaproteobacteria were distinguished into four subgroups: ‘Methylobacteriaceae’ (sequences 191 

from order Rhizobiales, family Methylobacteriaceae), ‘Rhodobacterales’ (order 192 

Rhodobacterales), ‘Sphingomondales' (order Sphingomonadales), and ‘Alpha-Others’, which 193 

grouped other members of the Alphaproteobacteria that could not be further assigned. Finally, 194 

sequences that did not belong to any of these groups were classified as ‘Others’. 195 

Most of the studied communities (75 out of 113 sampled stations, Fig. 2 and Fig. S6) were 196 

dominated by Gamma-Halieaceae, followed by 24 stations dominated by Alpha-197 

Rhodobacterales. The overall dominance of these groups is in agreement with previous studies 198 

from the Mediterranean Sea (Lehours et al., 2010; Jeanthon et al., 2011; Ferrera et al., 2014; 199 

Auladell et al., 2019), the Baltic Sea (Mašín et al., 2006), the Arctic Ocean (Lehours and 200 

Jeanthon, 2015), and Australian waters (Bibiloni-Isaksson et al., 2016).  201 

The large dominance of gammaproteobacterial clades in marine AAP communities has been a 202 

matter of debate and it has been argued that it could be due to possible primer biases in 203 

amplicon-based studies (Lehours et al., 2010; Ferrera et al., 2014). In fact, PCR-based 204 

approaches can suffer from amplification biases that could result in misrepresentation of the 205 

relative abundances of various taxa as well as in low phylogenetic coverage. Nevertheless, a 206 



recent comparison of AAP assemblages in the Mediterranean Sea using metagenomics and 207 

pufM amplicon sequencing showed that, despite there were some discrepancies in the relative 208 

abundance of certain taxa, Gammaproteobacteria were abundant in both the amplicon and 209 

metagenomic datasets, which showed comparable patterns of diversity and community structure 210 

(Auladell et al., 2019). This study also showed that despite that the amplicon approach –211 

identical to the one used here– missed some phylogenetic groups, it allowed the identification of 212 

other groups that were overlooked by metagenomics because they were present in low 213 

abundances, as well as the retrieval of more variants, enabling the definition of distinct ecotypes 214 

among very similar sequences (Auladell et al., 2019). Metagenomics is often considered the 215 

least biased approach for functional gene analysis, but it is limited in its capacity to retrieve the 216 

least abundant members of the communities, and AAP taxa are generally present at relatively 217 

low abundances in natural samples (often below 10%). Although technically possible, the cost 218 

of conducting a high-resolution global ecological study based on a specific functional gene 219 

using metagenomics would be prohibitive and unfeasible for most researchers because, among 220 

other reasons, metagenomes retrieve less copies of specific marker genes for a given sequencing 221 

investment. Given that the goal of this work was to establish the global ecological patterns of 222 

AAP communities, and to understand how these are assembled at the fine-scale, we consider 223 

that the pufM amplicon sequencing, despite not free of biases, was the most suitable approach to 224 

address our questions. 225 

 226 

 227 

 228 

 229 

Interestingly, Gamma-Halieaceae and Alpha-Rhodobacterales-dominated communities were not 230 

randomly distributed but appeared to be spatially structured, with a marked succession of 231 

samples dominated by either one or the other group (see Fig. 2A). Gamma-Halieaceae 232 



contributed between 0.1% and 99.7% of total community pufM sequences (median or mean??). 233 

In locations where they were not abundant, the contribution of Alpha-Rhodobacterales was 234 

high, suggesting a replacement of the dominant taxonomic group across space (Fig. 2). Both 235 

groups also showed high intragroup diversity across samples (see Fig. 2), yet we observed that 236 

in some stations in the North Pacific region (Stations 114, 115, 118 and 119) this intragroup 237 

diversity decreased, and one single sequence assigned to the Gamma-Halieaceae (ASV217) 238 

represented abundances over 50% coinciding with a decrease in salinity. The relative 239 

contribution of Alpha-Rhodobacterales increased toward ultraoligotrophic gyre waters, 240 

characterized by low Chla concentrations (N=107, R=−0.42, p<0.001) and deeper chlorophyll 241 

maxima (N=113, R=0.42, p<0.001). While the negative correlation between the contribution of 242 

Gamma-Halieaceae and Alpha-Rhodobacterales was observed before (Ferrera et al., 2014; 243 

Bibiloni-Isaksson et al., 2016; Auladell et al., 2019), in those cases, higher relative abundances 244 

of Alpha-Rhodobacterales were linked to higher concentrations of Chla and, in general, to 245 

higher nutrient levels. While those studies were conducted in coastal stations, the Malaspina 246 

Expedition occupied open-ocean stations, yet covered contrasting regions, from some relatively 247 

eutrophic areas (such as the Equator, South African provinces or the South Australian Bight) to 248 

the oligotrophic open ocean gyres. Just like seasonal ecotypes have been defined within the 249 

Alpha-Rhodobacterales based on 16S rRNA gene sequencing (Mena et al., 2020), one possible 250 

explanation for the observed contrasting results is that closely related, but ecologically different 251 

Alpha-Rhodobacterales could be divided into an ecotype with a preference for productive 252 

regions such as coastal areas and an ecotype dominant in oligotrophic environments like the 253 

oceanic gyres.  254 

Representatives from the Alpha-Sphingomonadales and ‘Other Alpha’ were scarce across the 255 

surface ocean with some localized exceptions (see Fig. 2B). The relative abundances of Alpha-256 

Sphingomonadales-like members correlated positively with prokaryotic heterotrophic 257 

production (N=113, R=0.44; p<0.005), prokaryotic cell volume and total biomass (N=113, 258 

R=0.52; p<0.001 and R=0.46; p<0.005 respectively). Interestingly, in stations where 259 



Sphingomonadales dominated, this dominance was due to a single ASV (ASV512), which 260 

contributed up to 50% of the total AAP community reads. This ASV is related to an uncultured 261 

bacterial sequence (96% of identity in the pufM nucleotide sequence) detected in the Beaufort 262 

Sea (Boeuf et al., 2013) but does not resemble any cultured AAP bacteria. Thus, information on 263 

the physiology of the organism behind this sequence is missing. In any case, its widespread 264 

distribution from the Arctic to the tropical oceans and its ability to dominate communities under 265 

different conditions are remarkable. Other ASVs that could only be assigned to the Alpha-266 

Proteobacteria level (and were thus grouped as “Alpha-Others”) dominated communities in 267 

some stations across the whole transect (Fig. 2), such as one in the Pacific Ocean (Station 93), 268 

one in the Atlantic Ocean (Station 1, adjacent to the Strait of Gibraltar) and several stations in 269 

the South Australian Bight (Stations 72, 72 and 75), coinciding with the South Subtropical 270 

Convergence zone (SSTC Longhurst province). In these stations, two ASVs were dominant, 271 

ASV860 in the Atlantic Ocean and ASV1102 in the Pacific and in the South of Australia. 272 

Although we could not classify them further and they do not have close cultured representatives, 273 

they are very similar to sequences from previous studies. In particular, ASV860 is very similar 274 

(99.5% identity) to a sequence retrieved from the Atlantic Ocean (OTU SPIT34 in (Lehours and 275 

Jeanthon, 2015), accession number KM654597) and ASV1102 is identical to an uncultured 276 

bacterium found in the East coast of Tasmania (Bibiloni-Isaksson et al., 2016). This ASV 277 

appears to be associated to low water temperature (correlation with temperature, N=113, R 278 

=−0.40, p<0.001) and higher concentrations of nitrate (N=89, NO3
-, R=0.47, p<0.001). Finally, 279 

Betaproteobacteria representatives were scarce along the dataset (only 11 sequences with very 280 

low abundances) as expected, since this group is mostly absent in the marine environment 281 

(Ferrera et al., 2014; Bibiloni-Isaksson et al., 2016; Lehours et al., 2018; Auladell et al., 2019). 282 

The taxonomic composition hitherto described here is based on the relative abundances of 283 

ASVs. In order to obtain data on the absolute abundance of AAP bacteria, we quantified them 284 

by epifluorescence microscopy. Unfortunately, we were not able to quantify AAP abundance 285 

along the entire transect, but only in a subset of 21 stations (samples for other stations were 286 



either not available or of insufficient quality). Yet, the stations for which the abundance was 287 

quantified, AAPs were uniformly distributed along the transect (except for the Indian Ocean for 288 

which samples were not available) and should provide a good representation of the abundance 289 

variation along the tropical and subtropical oceans. Abundances ranged between 5.52·102 and 290 

6.2·104 cells/mL and the percentage of AAP bacteria within the prokaryotic community varied 291 

between 0.1 and 10% (Fig. S7). Although we estimated AAP abundances for a subgroup of 292 

samples, their absolute and relative cell abundance are in line with the abundances reported in 293 

previous studies using the same methodology (see data reviewed in Koblížek, 2015). We 294 

observed higher AAP bacteria concentrations at lower latitudes (correlation between latitude 295 

and %AAP, N=21, R=0.50, p=0.024, Fig. S7), and interestingly, we did not find any 296 

relationship between the abundance of AAP bacteria and the taxonomic composition of the 297 

AAP communities (see Fig. S7). This observation indicates that despite several communities 298 

were dominated by different ASVs, there was not a single dominant taxonomic group associated 299 

to the increase in absolute AAP bacterial abundances.  300 

ASVs displaying bimodal and lognormal Spatial Abundance Distributions (SpADs) dominate 301 

AAP assemblages 302 

We explored the spatial patterns of AAPs and found that most of the individual taxa (64%) were 303 

only found in one oceanic region, and these sequences represented only around 10% of the total 304 

number of reads. On the contrary, very few sequences (30 ASVs) appeared in all sampled areas, 305 

and they represented almost 50% of the total number of reads. Within this group of prevalent 306 

sequences, we found representatives of all the taxonomic groups defined above (data not 307 

shown), and thus dominance or rarity of individual sequences does not seem to be linked to 308 

taxonomy. For this reason, to better understand the ecological behavior of AAP taxa we went 309 

beyond their taxonomy affiliations by analyzing the Spatial Abundance Distribution (SpADs) of 310 

the individual taxa, an approach that has proven as a useful tool for identifying groups of 311 

bacteria sharing similar spatial patterns regardless of their identity (Niño-García et al., 2016; 312 

Ruiz-González et al., 2020). In particular, the SpADs analysis classifies individual taxa into 313 



different categories according to the shape of their abundance distribution (see Experimental 314 

Procedures). The different shapes can be interpreted as ecological traits because the abundance 315 

distribution of a given taxon will be the result of the combination of its physiological capacities, 316 

environmental tolerances or ability to persist under unfavorable conditions, but also of the 317 

external factors controlling its abundance. This approach has been previously used to explore 318 

the mechanisms behind the ubiquity or rarity of taxa within aquatic prokaryotic or 319 

picoeukaryotic communities (Niño-García et al., 2016; Mangot et al., 2018; Ruiz-González et 320 

al., 2019; LaBrie et al., 2021), but to our knowledge this is the first time that it is restrictively 321 

applied to a functional group.  322 

We only found 2 ASVs displaying normal-like distributions presenting high abundances and 323 

broad environmental tolerances (Fig. S8A,C); the bimodal category (N=15 ASVs) included 324 

ASVs with lower average abundances and occurrence, likely representing less generalist taxa 325 

whose presence is restricted to specific areas, while lognormal (N=228) and logistic (N= 872) 326 

distributions, which represented the majority of cases, were characteristic of globally rare and 327 

endemic AAPs (Fig. S8). AAP assemblages in the surface ocean were dominated by bimodal 328 

and lognormal ASVs (Fig. 3C), mostly associated to Gamma-Halieaceae, Alpha-329 

Rhodobacterales and Alpha-Sphingomonadales groups (Fig. S8), and only few communities 330 

were dominated by either normal-like or logistic taxa. The two normal-like ASVs were 331 

Sphingomonadales-like (Fig. S8), suggesting large environmental tolerances for this category, 332 

regardless of its relatively low contribution in most stations (Fig. 2B).  333 

Communities dominated by logistic ASVs in our study appeared spatially clustered and 334 

coincided with productive regions such as the Benguela coastal province in the South Atlantic, 335 

the Caribbean Sea, the Equatorial Pacific and the station nearest to the Strait of Gibraltar (Fig. 336 

3C). In fact, the relative abundances of logistic ASVs showed a significant positive correlation 337 

with the mean chlorophyll a concentration across stations (N=107, R=0.43, p<0.0001), pointing 338 

to local selection of globally-rare opportunistic AAP bacteria in nutrient-rich areas, as shown for 339 

prokaryotic and picoeukaryotic bloomers (Ruiz-González et al., 2019; Logares et al., 2020). 340 



Yet, the overall distribution of SpADs in our study differs from that reported by Ruiz-González 341 

et al. (2019) for the whole prokaryotic communities from the same Malaspina Expedition 342 

surface samples. Whereas bimodal and lognormal ASVs were prevalent in AAP communities, 343 

bulk prokaryotic assemblages were dominated by a few cosmopolitan normal-like OTUs 344 

(operational taxonomic units). For the bulk community, bimodal and logistic OTUs increased in 345 

stations with anomalies in temperature and productivity with respect to the average values. This 346 

different distribution suggests that AAP bacteria are less homogeneously distributed than the 347 

bulk bacterioplankton (or at least than their dominant members) and that changes in the 348 

environment have a large effect on the AAP communities, promoting larger compositional shifts 349 

across environmental gradients and the increase of habitat specialists within this functional 350 

group. 351 

Environmental setting drives marked differences in community structure among oceanic 352 

regions  353 

We further analyzed the AAP community structure along the Malaspina transect using Bray-354 

Curtis dissimilarity metrics. The overall Bray-Curtis dissimilarity (mean 0.85 ± 0.15) was 355 

significantly higher than that described for prokaryotic and picoeukaryotic assemblages in the 356 

same transect (prokaryotes mean = 0.61 ± 0.19; picoeukaryotes mean = 0.74 ± 0.08, Logares et 357 

al., 2020), meaning that changes in the species composition and abundance distributions across 358 

AAP communities are larger than across bulk microbial groups. The higher beta diversity 359 

observed is consistent with these results, showing that AAP communities are mainly composed 360 

of habitat specialists (ASVs with a bimodal distribution) and rare taxa (lognormal distribution), 361 

while bulk prokaryotic communities were dominated by few abundant and ubiquitous species 362 

(Ruiz-González et al., 2019). 363 

Moreover, we explored which abiotic or biotic variables influenced AAP community structure 364 

across the global ocean through PERMANOVA (p<0.001), and temperature, salinity and Chla 365 

emerged as the most important variables (Table S2). When we pulled all samples together in a 366 

distance-based redundancy analysis (dbRDA, Fig. S9), the first two axis explained only 16% of 367 



the variation, and there was no obvious clustering of communities based on region or province, 368 

even though simple analyses of variance showed statistical differences (p=0.001, Table S3). 369 

Thus, we further analyzed the samples for each ocean separately (Fig. 4). Higher percentages of 370 

variation were explained by the two first axis (28.9%, Pacific Ocean, 29.1%, Atlantic Ocean and 371 

40.2% Indian Ocean), and the main variables associated were temperature (with 1st axis) and 372 

salinity (with 2nd axis) (Fig. 4 and Fig. S10). Stations from the same Longhurst province 373 

clustered together in most cases and, in general, we observed that communities from adjacent 374 

locations where more similar to each other than communities from distant stations, pointing to 375 

gradual changes in community structure along areas of the surface ocean (Fig. 4). Previous 376 

studies restricted to specific areas of different ocean basins observed that the composition of 377 

AAP bacteria varied with the trophic conditions (Jiao et al., 2007; Yutin et al., 2007), while 378 

studies from the Arctic Sea showed that the hydrological context of the water masses were also 379 

relevant (Boeuf et al., 2013; Lehours and Jeanthon, 2015). Our results indicate that temperature, 380 

salinity and the general environmental context (as defined by the Longhurst provinces) largely 381 

structure AAP surface communities in the global tropical and subtropical ocean.  382 

Community dissimilarity increases with increasing geographic distance 383 

To visualize the turnover of AAP communities along the Malaspina track we plotted taxonomic 384 

community dissimilarities versus geographic distance (Fig. 3A) –considering only pairwise 385 

comparisons within the same ocean– which unveiled a strong pattern of biogeography, that is, a 386 

remarkable increase of community dissimilarity with increasing distance within each ocean. To 387 

further explore community turnover at a fine scale, we explored the sequential changes of beta 388 

diversity across the whole sampling transect and found 17 stations displaying Bray-Curtis (BC) 389 

dissimilarity values > 0.75 which can be interpreted as sites of abrupt changes in community 390 

structure (Fig. 3B). In general, the pattern of sequential beta diversity followed the changes 391 

shown through the SpAD analysis (see Fig. 3B and C). Stations showing the highest 392 

dissimilarity values (BC > 0.9) were located in the South African Atlantic Coast (BENG and 393 

EARF) and the Costa Rica Dome (PNEC), where some sequences –belonging to logistic ASVs– 394 



presented remarkably high relative abundances, associated to an increase in Chla concentration 395 

(see above). Other sites (BC values 0.75−0.9) were in the borders of several Longhurst 396 

provinces, such as the South Subtropical Convergence (SSTC), the Pacific Equatorial 397 

Divergence (PEQD), the North Atlantic tropical gyre (NATR) or provinces in the South 398 

Atlantic (SATL, BENG and EARF) (see Fig. 3B). The partition of the surface ocean into 399 

biogeographical provinces was proposed by Longhurst (1998) based on changes in 400 

environmental oceanic variables and their annual dynamics. This subdivision has been 401 

extensively used in several studies analyzing the surface ocean microbiota and has been proven 402 

to explain their biogeographic structure (see for example Friedline et al., 2012; Frank et al., 403 

2016; Milici et al., 2016; Logares et al., 2020; Ruiz-González et al., 2020). We indeed observed 404 

that different Longhurst provinces harbored distinct AAP communities but it should also be 405 

considered that the borders between these provinces are dynamic and change seasonally 406 

(Reygondeau et al., 2013). For example, during the boreal summer, the Northwest Atlantic 407 

subtropical gyral (NASW, not included in this sampling) and North Atlantic tropical gyre 408 

(NATR) provinces tend to become mixed and an infiltration from the NASW province into the 409 

NATR province has clearly been observed (see Fig. 4 in Reygondeau et al., 2013). In this same 410 

area (NATR province) and timing (during June and July) we observed two samples (Stations 411 

133 and 135) that differed largely from the rest, as seen by their different taxonomic 412 

composition (see Leg 7 in Fig. 2) and high BC sequential dissimilarities (Fig. 3B). This 413 

difference could not be attributed to any measured environmental variable. Although this is 414 

speculative, the infiltration of water from a different province or some other physical 415 

oceanographic feature (Baltar et al., 2010, 2016, Bagnaro et al., 2020), could explain the abrupt 416 

changes seen in the North Atlantic in our study. Overall, we observed that AAP communities 417 

displayed strong biogeographic patterns, with large dissimilarities across the surface ocean 418 

which surpassed in magnitude those described for the bulk surface ocean microbiota. 419 

Selection has a prominent role in structuring AAP communities 420 



Our analyses of AAP community turnover clearly showed a biogeography pattern across the 421 

surface ocean. The different patterns of diversity and species composition across spatial scales 422 

result from the combination of different ecological processes, such as selection, dispersal, or 423 

drift (Vellend, 2010). Changes in microbial species composition across space could be related to 424 

selection processes driven by changes in environmental variables (Fig. 4). Nevertheless, we 425 

observed that environmental conditions at adjacent stations were generally comparable, so these 426 

changes could also arise from dispersal limitation imposed by physical oceanographic features 427 

(Baltar et al., 2010, 2016, Bagnaro et al., 2020). In fact, previous studies have shown that 428 

oceanic features such as boundaries between different ocean regions can act as strong barriers 429 

and delimit the distribution of microbes in the ocean (Baltar et al., 2016, Raes et al. 2018). 430 

Whether the pattern observed is the result of environmental selection and/or dispersal limitation 431 

cannot be determined based on our previous analysis (see also Hanson et al., 2012). Thus, to 432 

further investigate the ecological processes shaping AAP communities across the global surface 433 

ocean, we applied the approach proposed by Stegen et al. (2013), which quantitatively estimates 434 

the influence of selection, dispersal and drift based on the phylogenetic turnover of 435 

communities. Since this method relies solely on the phylogeny of the pufM gene and on null 436 

models (randomization), it avoids the problem of unmeasured environmental variables that can 437 

potentially be associated with selection or dispersal (Stegen et al., 2013). The influence of 438 

selection was estimated using the β-nearest taxon index (βNTI), which is the difference between 439 

the observed phylogenetic turnover for a given pair of communities and the null model after 999 440 

randomizations (see Experimental Procedures). The values of βNTI were calculated for the all 441 

the pairwise community comparisons possible in the dataset. We found that ~23% of the 442 

pairwise comparisons had values of βNTI < −2, which implies that there is a shorter 443 

phylogenetic distance within these pairs of communities, than expected by chance (Stegen et al., 444 

2012). Lower turnover between communities is expected when environmental conditions are 445 

very similar and there is a –homogeneous– selection of closely related taxa in these 446 

communities. Likewise, ~27% of the pairwise comparisons had βNTI > 2, which is associated 447 

with a greater phylogenetic distance than the expected under a null model and can be interpreted 448 



as different environmental conditions –heterogeneously– selecting distantly related taxa (Stegen 449 

et al., 2012). Overall, ~50% of the observed turnover could be explained by selection, with 450 

homogeneous and heterogeneous selection being almost equally important at a global scale (Fig. 451 

5). Within samples located in the same Longhurst province, homogeneous selection had an 452 

important role, as the main ecological process in most provinces (see Fig. S11). In turn, 453 

heterogeneous selection had a modest role within Longhurst provinces, and only operated in 454 

some provinces. Based on βNTI values of comparisons between adjacent stations, 455 

heterogeneous selection was high in areas were logistic ASVs dominated (data not shown), 456 

pointing towards the selection of rare taxa in productive areas. These results are in line with 457 

previous studies that already pointed to selection as a major ecological process structuring AAP 458 

communities in both spatial (Lehours et al., 2018) and temporal studies (Auladell et al., 2019). 459 

 460 

For the remaining pairwise comparisons, the value of Bray–Curtis-based Raup–Crick (RCbray) 461 

characterized the magnitude of deviation between the observed BC and the null BC. RCbray 462 

distribution varied between −1 and 1, and only values |RCbray| > 0.95 were considered as 463 

significant departures from drift (see Experimental Procedures and Fig. 5).  464 

Dispersal limitation explained ~20% of the community turnover (RCbray > 0.95) while 465 

homogenizing dispersal was observed only for 18 pairwise comparisons (0.7%). The limited 466 

role of dispersal limitation structuring AAP communities could be expected, since distant 467 

microbial communities are known to be connected on a global scale, under what has been 468 

described as the “Microbial Conveyor Belt” (Mestre and Höfer, 2021). Finally, almost ~30% of 469 

the community turnover was explained by drift (stochastic processes), as the differences 470 

between the null and the observed beta diversity were not significant. Stochastic processes are 471 

difficult to predict and to distinguish from other ecological processes (Zhou and Ning, 2017), 472 

however, they play an important role in microbial community assembly (Evans et al,. 2017, 473 

Graham and Stegen, 2017) and their importance increases under high selection and low 474 



dispersal (Fodelianakis et al., 2020), as it happens in AAP communities across the surface 475 

ocean. 476 

Remarkably, the observed pattern is different from that reported for whole prokaryotic 477 

communities along the same transect (Logares et al., 2020), which appeared to be structured to a 478 

similar extent by both selection and dispersal (representing each process ~25% of the 479 

community turnover). In contrast, dispersal limitation had a much more important role in 480 

structuring picoeukaryotic communities (~65%), likely due to their larger cell sizes and lower 481 

abundances (Logares et al., 2020). The relatively higher importance of selection mechanisms in 482 

AAP communities suggests that AAP bacteria are more affected by small changes in the 483 

environmental conditions than the prokaryotic community as a whole. As we have shown 484 

above, the community turnover measured as Bray-Curtis dissimilarity is higher in this 485 

functional group than in the bulk picoplankton, pointing to higher changes in the composition 486 

and structure of AAP communities over short distances. Besides, while prokaryotic assemblages 487 

are dominated by few cosmopolitan and very abundant taxa, AAP assemblages are mainly 488 

composed by taxa classified as rare or habitat specialists, with more restricted environmental 489 

tolerances.  490 

Concluding remarks 491 

In this study we described the global diversity and community structure patterns of marine AAP 492 

bacteria in the tropical and subtropical oceans. Alpha diversity varied across biogeographical 493 

provinces mainly related to temperature, salinity and trophic status and showed remarkably low 494 

values in the more productive Longhurst provinces. AAP communities along the surface ocean 495 

were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were 496 

adapted to a large range of environmental conditions, and by different clades of the 497 

Alphaproteobacteria, that seemed to dominate under particular circumstances, such as in the 498 

oligotrophic gyres. These taxa were not randomly distributed but appeared to be spatially 499 

structured, with a marked succession of samples dominated by either one or the other class. 500 

Communities from adjacent stations shared more taxonomic similarities, that is, community 501 



dissimilarity increased with increasing distance, which resulted in a remarkable biogeographical 502 

pattern. However, this pattern was to a large extent the result of –homogeneous and 503 

heterogeneous– selection of individual taxa, while dispersal and drift had less of a role in 504 

shaping the structure of AAP bacterial communities. While the seasonal patterns of AAPs have 505 

been shown to be notably comparable to those of the bulk bacterioplankton, at a large-scale, 506 

AAP communities seem to have their own spatial patterns that do not mimic those of the bulk 507 

picoplankton. Of the measured environmental variables, temperature, salinity and Chla were 508 

found to influence AAP community structure. Small changes in environmental conditions 509 

translated into significant changes in AAP communities, and therefore, several habitat 510 

specialists and many rare species dominated their communities. The photoheterotrophic 511 

metabolism, high growth rates and high predation pressure on AAP bacteria, among other 512 

attributable traits to this functional group, could explain the stronger role of selection in this 513 

group compared to the bulk surface ocean microbiota. Overall, our results represent the most 514 

comprehensive study investigating the global biogeography of AAP communities and shows 515 

how different ecological processes explain these patterns.  516 

 517 

EXPERIMENTAL PROCEDURES 518 

Sample collection 519 

The Malaspina 2010 Expedition took place between December 2010 and July 2011 (Duarte, 520 

2015). Samples were collected in 113 stations across the tropical and subtropical waters of the 521 

Pacific, Atlantic and Indian oceans. At each station, about 12 L of surface seawater (3 m depth) 522 

were collected with a large (30 L) oceanographic bottle. Simultaneously, a CTD profiler was 523 

used to profile temperature, salinity, conductivity, fluorescence and dissolved oxygen. Seawater 524 

was prefiltered through a 20 μm nylon mesh and a 3 μm filter onto a 0.2 μm Millipore 525 

polycarbonate filter. Samples were conserved at −80ºC until further processing. Samples for 526 

enumerating AAP cells were pre-filtered through a 200 µm mesh and filtered onto 0.2 µm 527 

polycarbonate filters. Cells were enumerated by infra-red epifluorescence microscopy in 21 528 



stations as described in (Ferrera et al., 2014). The environmental biotic and abiotic parameters 529 

used in this study were determined as reported in Estrada et al., (2016) and Ruiz-González et 530 

al., (2019). 531 

DNA extraction, pufM amplification, sequencing and ASV generation 532 

DNA was extracted from the 0.2 µm filter using the phenol-chloroform protocol as described in 533 

(Massana et al., 1997). Partial amplification of the pufM gene (~245 bp fragments) was done in 534 

50 μl reactions using primers pufM forward (5′-TACGGSAACCTGTWCTAC-3′, (Béjà et al., 535 

2002)) and puf_WAW reverse (5′-AYNGCRAACCACCANGCCCA- 3′, (Yutin et al., 2005)) 536 

as described in Auladell et al. (2019). DNA was sequenced in an Illumina MiSeq sequencer 537 

(2×250 bp, Research and Testing Laboratory; http://rtlgenomics.com/). After sequencing, we 538 

used cutadapt v1.16 (Martin, 2013) to remove primers and DADA2 v1.10 (Callahan et al., 539 

2016) to infer amplicon sequence variants (ASV) with the following parameters: maxEE = 540 

c(2,6) and trunclen = c(210,150). After filtering chimeras and spurious sequences, we kept 82% 541 

of the initial number of reads (mean 24173, min. 4503, max. 79968). To be able to compare our 542 

data with previous studies that used OTUs (Operational Taxonomic Units), we clustered the 543 

ASVs with UCLUST v10.0 (Edgar, 2010) at 94% similarity, the threshold usually employed for 544 

the pufM gene (Zeng et al., 2007). 545 

Phylogenetic classification 546 

We used phylogenetic placement for predicting the taxonomic assignment of the pufM gene 547 

short sequences. Due to the lack of comprehensive public databases for AAP bacteria, we built a 548 

custom made pufM database retrieving more than 750 sequences longer than 600 bp from the 549 

Genome Taxonomy Database (GTDB) and GenBank, as well as from metagenomic datasets 550 

from the Tara Oceans Expedition (Sunagawa et al., 2015), the Malaspina Expedition 551 

(unpublished), the Global Ocean Survey (GOS) (Yutin et al., 2007; Cuadrat et al., 2016), and 552 

the Blanes Bay Microbial Observatory (Auladell et al., 2019). Alignment was done using the 553 

Decipher R package (Wright, 2016) and MAFFT v.7 (Katoh and Standley, 2013). After a 554 

manual curation using AliView v1.26 (Larsson, 2014), we kept 673 sequences. A phylogenetic 555 

http://rtlgenomics.com/


tree was constructed using RAxML v8.2 (Stamakis 2014) (GTRGAMMA model, 100 556 

bootstraps), and visualised using iTOL (Letunic and Bork, 2011), see Fig. S5. Finally, to infer 557 

the phylogeny of the amplicon sequence variants, we applied the Evolutionary Placement 558 

Algorithm v0.3.5 (Barbera et al., 2019). 559 

Data analyses 560 

All statistical analyses were performed using R v3.6.3 (R Core Team 2020). The ASV table was 561 

rarefied down to 4500 reads per sample using the vegan package. Alpha diversity was estimated 562 

using Chao1 and Shannon diversity indices (Chao and Lee, 1992), with the phyloseq package. 563 

Post-Hoc Tukey tests were employed to see if there were statistically significant differences 564 

between the diversity of different regions. To test whether diversity was influenced by 565 

environmental conditions, we performed Pearson correlations between a selection of 566 

environmental variables and the diversity indices. We also compared the diversity of AAP 567 

bacteria with those of the bulk prokaryotic communities using the 16S rRNA data presented in 568 

Ruiz-González et al. (2019) and the picoeukaryotic community data presented in Logares et al. 569 

(2020), both from the same samples taken during the Malaspina Expedition. Community 570 

composition was analyzed and described using the phyloseq package in R.  571 

In order to explore the spatial patterns of individual AAP bacteria across space, we analyzed the 572 

abundance distribution of each pufM sequence across all samples. We used the rarefied table of 573 

counts (log10(x + 1) transformed) to select the statistical distribution that best fitted the spatial 574 

abundance distribution (SpAD) of each ASV, as described in Niño-García et al. (2016) and 575 

Ruiz-González et al. (2019). We could classify all ASVs into four SpAD categories: “normal-576 

like” ASVs showed a normal statistical distribution, which has previously been associated with 577 

globally abundant and widespread taxa, and which might represent habitat generalists (Niño-578 

García et al. 2016, Ruiz-González et al. 2019). The distribution of "Bimodal” ASVs is 579 

characterized by two density peaks, with the first one commonly corresponding to zero cases, 580 

and could be considered less generalists because they are detected in certain regions only and 581 

their average abundances are also lower. Finally, ASVs classified as “logistic” and “lognormal” 582 



present a distribution with a zero-abundance mode, and they have been shown to comprise 583 

mostly rare sequences (for more details on the analysis see Niño-García et al. 2016 and Ruiz-584 

González et al. 2019).  For each category, we calculated the mean abundance and occurrence of 585 

ASVs. We also estimated the individual environmental breath as the range of temperature, 586 

salinity, Chla, and dissolved oxygen concentration in which each of the ASVs within the 587 

different categories were detected. 588 

The exploration of the main environmental drivers explaining the structure of AAP 589 

communities was done using a Bray-Curtis dissimilarity matrix, built with the vegdist() function 590 

from the vegan package and visualized in a distance-base redundancy analysis (dbRDA), with a 591 

previous selection of significant environmental variables (PERMANOVA p <0.01). Permutation 592 

tests (adonis() function from vegan package) were employed to examine community differences 593 

among the six oceanic regions (South Pacific, North Pacific, North Atlantic, South Atlantic, 594 

Indian and South Australian Bight) and Longhurst oceanographic provinces (Longhurst, 1998). 595 

We used Mantel tests (1000 permutations) to compare the changes in the structure of AAP 596 

communities between stations with differences in temperature, salinity and Chla. Additionally, 597 

we performed partial mantel tests to compare the community structures of AAP, prokaryotes 598 

and picoeukaryotes, removing the effect of temperature, salinity and Chla. The Bray-Curtis 599 

dissimilarity matrix was also used to analyze the spatial community structure turnover, and to 600 

explore sequential changes along the Malaspina transect, by comparing each sample with the 601 

one sampled immediately before. 602 

Finally, to quantify the relative importance of selection, dispersal and drift as processes 603 

structuring the communities of AAP bacteria, we followed the framework developed by Stegen 604 

et al. (2013). This approach assumes that there is a phylogenetic signal (Cavender-Bares et al. 605 

2009) in the ASVs optimal habitat conditions (i.e., the habitat preferences of closely related taxa 606 

are more similar than the preferences of distantly related taxa). To confirm this assumption, we 607 

firstly compared ASVs niche distances (using temperature, salinity and Chla) and ASVs 608 

phylogenetic distances using a Mantel correlogram test. We detected phylogenetic signal in the 609 



pufM gene marker over relatively short phylogenetic distances (Fig. S12), as previously shown 610 

with other marker genes (e.g.: Stegen et al., 2013; Dini-Andreote et al., 2015; Huber et al., 611 

2020; Logares et al., 2020). 612 

Then, to analyze the influence of selection we calculated the β-mean nearest taxon distance 613 

(βMNT) metric, which quantifies the mean phylogenetic distances between two communities, 614 

and compared them to a random expectation (999 randomizations). The difference between the 615 

observed phylogenetic turnover (or βMNT) and the values obtained with the null model are 616 

denoted as β-nearest taxon index (βNTI). Absolute βNTI values above 2 (|βNTI| > 2) indicate 617 

that coexisting taxa are more closely related than expected by chance, thus pointing to the action 618 

of selection. Afterwards, to differentiate whether drift or dispersal were the main structuring 619 

processes, we calculated the Raup-Crick metric (Chase et al., 2011) using Bray-Curtis 620 

dissimilarities (RCbray) (Chase et al., 2011; Stegen et al., 2013). RCbray compares the measured 621 

beta diversity to the beta diversity obtained by the null model (999 randomizations) that would 622 

be obtained under random community assembly (drift). RCbray values between −0.95 and +0.95 623 

point to a community assembly governed by drift. On the contrary, RCbray values ≥ 0.95 or ≤ 624 

0.95 indicate that community turnover is driven by dispersal limitation or homogenizing 625 

dispersal, respectively (Stegen et al., 2013). For this analysis, raw ASV sequences were aligned 626 

with AliView v1.26 (Larsson, 2014), aligned sequences were visually curated with Seaview 627 

(Gouy et al. 2010) and the phylogenic tree was constructed using FastTree v2.1.9 (Price et al. 628 

2009).  The βMNTD and βNTI metrics were calculated using the R package Picante (Kembel et 629 

al., 2010) and the RCbray was calculated with the raup_crick_abundance function following 630 

Stegen et al., (2013). These analyses were performed in R v3.6.3 (R Core Team 2020) and 631 

codes are available in Github (https://gitlab.com/crgazulla/malaspina_aaps). Sequence data have 632 

been deposited in the NCBI Sequence Read Archive (SRA) under BioProject ID 633 

PRJNA736051.  634 
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FIGURES 935 

 936 

 937 

Figure 1. AAP alpha diversity measured as richness (Chao1 index) and Shannon diversity index 938 
within each oceanic region (top panels) and each Longhurst province (bottom panels) sampled 939 
during the Malaspina Expedition. The complete names of the Longhurst provinces are listed in 940 
Table 1 and Fig S1. *Asterisks indicate regions or provinces that are statistically different from 941 
the others, after a post-hoc Tukey test (p<0.001).  942 

943 
Figure 2. A) Dominant AAP taxonomic groups across the global tropical and subtropical 944 
surface ocean. Each station is colour-coded by the most abundant taxonomic group in the 945 
sample (see taxonomy legend in panel B), and the size of the dot is proportional to the relative 946 



abundance of the dominant taxon. The Malaspina Expedition legs are indicated to help visualize 947 
the cruise track. B) Community composition at each station, expressed as the relative 948 
contribution of each pufM sequence colour-coded by its taxonomic affiliation. Samples are 949 
ordered following the cruise path as in panel A.  950 

 951 

 952 

Figure 3. A) Changes in community dissimilarity between AAP assemblages, measured as 953 
Bray-Curtis (BC) dissimilarity with regard to the geographical distance among samples.  All 954 
comparisons are represented by grey dots while black dots indicate the median value of 955 
dissimilarity at each distance. We only considered pairwise comparisons between samples 956 
located in the same ocean. B) Sequential change in community composition across space 957 
(sequential beta diversity). Bars represent BC dissimilarity between each community and the 958 
one sampled immediately before (e.g., first bar represents BC dissimilarity between stations 113 959 
and 1, second bar represents BC dissimilarity between stations 1 and 2, and so on, up to stations 960 
112 and 113). Samples are ordered following the cruise path as in Figure 2 for comparison. 961 
Alternating light and dark colour represent a change in Longhurst provinces along the transect 962 
and the provinces are indicated according to Longhurst (1998) abbreviations. C) Relative 963 
contribution in each community of the four Spatial Abundance Distribution (SpAD) categories 964 
of ASVs throughout the surface ocean, displayed using the same sample order as in panel B.  965 



 966 

Figure 4. Distance-based redundancy analysis (dbRDA) performed separately for the Pacific, 967 
Atlantic and Indian Ocean stations. Samples are color-coded according to the Longhurst 968 
provinces to which they belong. Temperature, salinity, and chlorophyll a were the three 969 
variables that explained the largest fraction of community variance, and they are represented by 970 
arrows, where “Temp” is temperature, “Sal” is salinity, and “Chl” is chlorophyll a 971 
concentration. 972 
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Figure 5. A) Percentage of the AAP bacterial community turnover associated to each ecological 974 
process in the tropical and subtropical surface ocean. B) Distribution of βNTI estimates for the 975 
total number of comparisons between all samples in the dataset. Absolute values of βNTI above 976 
2 are considered as significant departures from random phylogenetic turnover and are associated 977 
to homogeneous and heterogeneous selection (blue areas). The grey area represents the fraction 978 
of nonsignificant βNTI values. To disentangle whether drift or dispersal are the main ecological 979 
processes shaping the turnover between these communities, Bray–Curtis-based Raup–Crick 980 
(RCbray) was calculated. C) Distribution of RCbray for the pairwise community comparisons that 981 
are not structured by selection. RCbray values between −0.95 and +0.95 point to a community 982 
assembly governed by drift (yellow area). On the contrary, RCbray values > +0.95 or < −0.95 983 
indicate that community turnover is driven by dispersal limitation or homogenizing dispersal 984 
respectively (orange areas).   985 

TABLES 986 

 987 

Table 1. Provinces covered during the 2010 Malaspina Expedition and values (average 988 

± standard deviation, minimum to maximum) of temperature, salinity and Chlorophyll a 989 

concentration measured in each province. Names and abbreviations according to 990 

Longhurst (1998). N = number of stations visited in each Longhurst province.  991 

 992 

 993 

Provinces 
Province 

abbreviations 
N 

Temperature  

(ºC) 

Salinity 

(PSU) 

Chlorophyll a 

(mg·m-3) 

East Australian Coastal AUSE 2 
21.39 ± 0.35 

(21.14 to 21.64) 

35.52 ± 0.08 

(35.47 to 35.58) 

0.34 ± 0.02 

(0.32 to 0.36) 

Australia-Indonesia Coastal AUSW 4 
23.05 ± 1.41 

(21.36 to 24.8) 

35.48 ± 0.09 

(35.34 to 35.54) 

0.13 ± 0.03 

(0.1 to 0.16) 

Benguela Current Coastal BENG 2 
20.55 ± 0.16 

(20.44 to 20.66) 

35.52 ± 0.06 

(35.48 to 35.56) 

0.14 ± 0.11 

(0.06 to 0.22) 

Caribbean CARB 4 
28.73 ± 0.29 

(28.38 to 29.09) 

35.6 ± 0.08 

(35.54 to 35.71) 

0.14 ± 0.04 

(0.09 to 0.19) 

East Africa Coastal EAFR 3 
23.94 ± 1.82 

(22.56 to 26) 

35.41 ± 0.12 

(35.31 to 35.54) 

0.3 ± 0.3 

(0.09 to 0.65) 

Indian South Subtropical Gyre ISSG 14 
23.57 ± 1.36 

(21.74 to 25.92) 

35.65 ± 0.25 

(35.23 to 36.14) 

0.07 ± 0.03 

(0.04 to 0.14) 

Northeast Atlantic Subtropical Gyre  NASE 10 
21.35 ± 1.88 

(18.45 to 24.31) 

37.03 ± 0.39 

(36.43 to 37.65) 

0.1 ± 0.07 

(0.04 to 0.25) 

North Atlantic Tropical Gyre NATR 11 
26.82 ± 1.32 

(24.83 to 28.85) 

36.68 ± 0.67 

(35.53 to 37.57) 

0.14 ± 0.1 

(0.05 to 0.31) 

North Pacific Tropical Gyre NPTG 13 
23.86 ± 1.49 

(21.65 to 26.35) 

34.66 ± 0.2 

(34.2 to 34.94) 

0.17 ± 0.09 

(0.08 to 0.44) 

Pacific Equatorial Divergence PEQD 3 
27.5 ± 0.62 

(26.89 to 28.13) 

35.21 ± 0.31 

(34.85 to 35.39) 

0.24 ± 0.05 

(0.19 to 0.29) 

North Pacific Equatorial  

Countercurrent 
PNEC 8 

28.37 ± 0.58 

(27.61 to 29.28) 

33.84 ± 0.4 

(33.15 to 34.28) 

0.34 ± 0.11 

(0.18 to 0.52) 

South Atlantic Gyral province SATL 19 
24.7 ± 2.26 

(20.9 to 27.33) 

36.49 ± 0.45 

(35.79 to 37.25) 

0.07 ± 0.03 

(0.03 to 0.12) 

South Pacific Subtropical Gyre SPSG 7 
28 ± 2 

(23.99 to 29.31) 

35.04 ± 0.41 

(34.43 to 35.59) 

0.11 ± 0.05 

(0.06 to 0.18) 

South Subtropical Convergence 

Province 
SSTC 7 

17.29 ± 1.35 

(15.75 to 19.55) 

35.3 ± 0.2 

(34.99 to 35.61) 

0.25 ± 0.14 

(0.1 to 0.52) 

Western Tropical Atlantic Province WTRA 6 
27.6 ± 0.29 

(27.27 to 28.05) 

35.77 ± 0.38 

(35.42 to 36.33) 

0.23 ± 0.11 

(0.11 to 0.44) 


