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Abstract
Femoral neck geometry parameters are believed to be as good as bone mineral density as

independent factors in predicting hip fracture risk. This study was conducted to analyze the

roles of genetic and environmental factors in femoral properties measured in a sample of

Spanish families with osteoporotic fractures and extended genealogy. The “Genetic Analy-

sis of Osteoporosis (GAO) Project” involved 11 extended families with a total number of 376

individuals. We studied three categorical phenotypes of particular clinical interest and we

used a Hip structural analysis based on DXA to analyze 17 strength and geometrical pheno-

types of the hip. All the femoral properties had highly significant heritability, ranging from

0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG).

Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic

condition (Affected 3) had the highest number of significant genetic correlations with diverse

femoral properties. In conclusion, our findings suggest that a relatively simple and easy to

use method based on DXA studies can provide useful data on properties of the Hip in clini-

cal practice. Furthermore, our results provide a strong motivation for further studies in order

to improve the understanding of the pathophysiological mechanism underlying bone archi-

tecture and the genetics of osteoporosis.

Introduction
Hip fracture is recognized as the most serious osteoporotic fracture due to its association with
increased morbidity and mortality, and decreased functional capacity with a one-year mortality
of approximately 20% [1, 2]. It is therefore important to quantify the assorted genetic and envi-
ronmental factors that may contribute to osteoporotic fractures in order to help to prevent hip
fracture in particular.
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A standard method of measuring proximal femur strength is bone biopsy. However, because
biopsy is to invasive to be used in routine clinical practice, a series of alternative methods have
been developed. By far, the most common method is measuring bone mineral density (BMD)
at different skeletal parts, as this correlates sufficiently with the risk of developing osteoporotic
fractures [3–6].

Femoral neck geometry parameters (FNGPs) that measure bone structural properties such
as shape and size are believed to be as good independent factors in predicting hip fracture risk
as BMD is [7]. There is abundant evidence suggesting a genetic contribution to several of such
FNGP indices [8, 9], with heritability estimates (h2) ranging from 0.37 to 0.62 [10–12]. In addi-
tion, different loci affecting FNGPs have been identified by diverse linkage [13–19] and
genome-wide association studies (GWAS) [11–12, 18, 20].

The best non-invasive approach to determine FNGPs requires imaging technologies and
computational methods such as using quantitative computed tomography that are prohibitively
expensive or require an unacceptably high radiation dose [21, 22]. In recent years, hip structural
analysis (HSA) based on dual X-ray absorptiometry (DXA) has become available. Although the
analysis is restricted to just two dimensions and the resolution of structural dimensions is admit-
tedly low [23], HSA seems to be an acceptable approach to analyze strength and geometrical
properties of the hip in the clinical setting with the additional advantages of (i) a relatively low
cost and (ii) a small radiation dose compared to quantitative computed tomography [24, 25].

In this study, we aim to analyze the relative importance of genetic and environmental fac-
tors in FNGPs measured by means of DXA-based HSA in a set of extended Spanish families
characterized by osteoporotic fractures. One of the strengths of our study is precisely its
extended design, which provides reliable estimates for the genetic contribution to the studied
phenotypes. Unlike twin studies, family-based designs leverage different degrees of kinship
allowing for a smaller sampling variance. However, at the same time, the inclusion of many
members of the same family makes the separation of genetic from common environmental
effects more challenging from a computational perspective [26].

Materials and Methods
The patients included in the analysis are from the Genetic Analysis of Osteoporosis (GAO)
Project. The GAO Project is a genetic study based on extended pedigrees from Spain and the
selection, recruitment and methodology have been described in detail elsewhere [27, 28]. In
brief, the project recruited 11 extended families from Barcelona, Spain, between March 2009
and March 2012. All families were selected through a proband with osteoporosis and a family
had to have at least ten living individuals distributed in three or more generations. The struc-
ture of the families was verified by use of microsatellite genotyping and control for Mendelian
inconsistencies with FBAT v2.0.3 [29]. The GAO project pedigree sample shown in Fig 1.
Adult subjects gave informed consent for themselves and for their underage family members.
The Ethical committee of Clinical Investigation of Hospital de la Santa Creu i San Pau
approved all recruitment protocols (08/015/281).

A medical history was obtained from all the participants and it included information about
menstrual period, history of all clinical fractures (traumatic and atraumatic) and current medi-
cation with a known negative (e.g. corticoids, heparin, proton pump inhibitors, insulin or thia-
zolidinediones) or positive (e.g. bisphosphonates, calcium, strontium, parathyroid hormone,
thiazide diuretics, vitamin D) effect on bone remodeling. Coffee, alcohol and smoking habits,
dietary calcium intake, sun exposure and physical activity were also recorded.

Spine, femur and whole-body DXA scans were performed on all participants using a Dis-
covery dual energy X-ray absorptiometry (DXA) system with the APEX v2.3 software (Hologic,
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Bedford, MA, USA), following the manufacturer’s recommendations and analyzed by one
expert technician. We used the HSA software to analyze strength and geometrical properties of
the hip [30]. This program uses the distribution of mineral mass in a line of pixels across the
bone to measure geometric properties of cross-sections in cut planes traversing the bone at that
location [31]. Three regions were analyzed: (i) narrow neck (NN), across the narrowest diame-
ter of the femoral neck; (ii) intertrochanteric (IT), along the bisector of the neck-shaft angle;
and (iii) femoral shaft (FS), 2 cm distal to the midpoint of the lesser trochanter (Fig 2). For
each region, the distribution of the bone mass across the bone was extracted and geometric
properties were derived using diverse formulas described elsewhere [31]. The FNGP variables
considered were the following: buckling ratio (BR), an index of bone structural instability indi-
cating the risk of fracture by buckling; cross-sectional area (CSA), an indicator of bone axial
compression strength; cortical thickness (CT), an indicator of mean cortical thickness; cross-
sectional moment of inertia (CSMI), an index of structural rigidity; and section modulus (Z),
an index of bone bending strength indicating the bending resistance of a tube.

Our study focused on 17 structural phenotypes that we considered of high clinical relevance.
Table 1 contains a description of the phenotypes as well as a guide for the abbreviations used.
We also studied three categorical osteoporotic phenotypes of particular interest: “Affected 1”
corresponds to individuals� 21 years-old resenting one or more of the following characteris-
tics: (i) T-score< -2.5 (spine, hip neck or total hip); (ii) at least one osteoporotic (atraumatic)
fracture; (iii) antiresorptive or forming agent treatment; “Affected 2” corresponds to patients
suffering at least one osteoporotic fracture; and “Affected 3” corresponds to a broad category of
low bone mass and osteoporotic patients, i.e. encompassing individuals classified as “Affected
1” as well as individuals with a T-score< -1 (spine, hip neck or total hip). Definitions of cate-
gorical phenotypes were described in detail elsewhere [27].

Statistical analysis was based on a variance component analytical framework in which maxi-
mum likelihood techniques were used to assess h2, as well as genetic and environmental corre-
lations (ρG and ρE) among the studied phenotypes. Any significant correlation� 0.70 was
considered strong and of clinical interest.

In more detail, we used a mixed linear model to determine the contribution of genetic and
individual-specific environmental factors to the variation of the quantitative and the categori-
cal osteoporotic phenotypes. We modeled the measurement of a trait y for individual i (yi) as a

Fig 1. GAO project pedigree sample (Family Nr. 3).

doi:10.1371/journal.pone.0154833.g001
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linear function using the following formula:

yi ¼ mþ
X

bjΧijþ giþ ei

Whereby μ is the trait’s mean, xij is the j
th covariate and βj is its regression coefficient.

Covariates included age, age2, gender, body mass index (BMI), age of menopause for post-
menopausal women, alcohol intake, smoking status and use of osteoporosis-related medica-
tion, as well as interactions of age and age2 with gender. The remaining variables, gi, and ei,

Fig 2. Measurement of the femur geometric parameters. Structural traits: AB is the hip axis length (HAL),
ACD is the femoral neck-shaft angle (NSA), EF is the Narrow Neck, HG is the Intertrochanteric and IJ is the
Femoral Shaft.

doi:10.1371/journal.pone.0154833.g002
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represent the random deviations from μ for individual i that are attributable to additive genetic
and residual non-genetic effects, respectively. The effects of gi, and ei were assumed to be inde-
pendent and normally distributed with mean = 0 and variances σg

2 and σe
2.

The statistical software SOLAR v4.3.1 [32] was used to estimate simultaneously the mean
and variances, as well as the covariate and genetic effects for each trait. We assessed the signifi-
cance of such effects with a likelihood-ratio test. [33, 34] Finally, we estimated the heritability
for each trait as the proportion of the total phenotypic variability attributable to additive
genetic effects. For this particular estimation, we considered only environmental covariates (i.e.
we performed the analysis without BMI or age of menopause for post-menopausal women).

To study the genetic relationships between categorical and quantitative phenotypes, we
used a modified variance component method for mixed discrete/continuous traits [35] incor-
porated in SOLAR. This method allowed for the phenotypic correlations between pairs of traits
to be separated into common genetic and common environmental influences. As above, the
environmental component includes all non-genetic risk factors that may be influencing the
phenotype after excluding covariate effects (sun exposure, diet, habits, medical treatment, sex,
age and BMI).

Results
Summary statistics of interest for the studied pedigrees, as well as a description of the probands
used in the recruitment have been described elsewhere [27]. In brief, the sample included 367
individuals with sample size per family ranging from 15 to 91 (mean = 33; median = 30). Age

Table 1. Description of the phenotypes studied in the GAO Project.

Trait abbreviation Description

Structural traits HAL Hip axis length (mm)

NSA Femoral neck—shaft angle (degrees)

Strength properties FS-CT Average cortical thickness of femoral shaft (cm)

FS-BR Buckling ratio of femoral shaft (cm3)

FS-CSA Cross-sectional area of femoral shaft (cm2)

FS-CSMI Cross-sectional moment of inertia of femoral shaft (cm4)

FS-Z Section modulus of femoral shaft (cm3)

IT-CT Intertrocanteric average cortical thickness (cm)

IT-BR Intertrocanteric buckling ratio (cm3)

IT-CSA Intertrocanteric Cross-sectional area (cm2)

IT-CSMI Intertrocanteric Cross-sectional moment of inertia (cm4)

IT-Z Intertrocanteric section modulus (cm3)

NN-CT Average cortical thickness of narrow neck (cm)

NN-BR Buckling ratio of narrow neck (cm3)

NN-CSA Cross-sectional area of narrow neck (cm2)

NN-CSMI Cross-sectional moment of inertia of narrow neck (cm4)

NN-Z Section modulus of narrow neck (cm3)

HAL (mm): the distance from pelvic rim to outer margin of greater trochanther along neck axis. NSA (degrees): angle between derived axes of neck and

shaft. FS: the femoral shaft, CT (cm): estimate of mean cortical thickness. BR (cm3): Relative thickness of the cortex as an estimate of cortical stability in

buckling. CSA (cm2): equivalent to the amount of (cortical equivalent) bone surface area in the cross-section after excluding all trabecular and soft tissue

spaces. CSMI (cm4): for bending in the image plane from bone mass profile integral. Index of structural rigidity; reflects distribution of mass about the

center of a structural element. Z (cm3): Indicator of bending strength for maximum bending stress in the image plane. IT: Intertrochanteric. NN: Narrow
neck. [30]

doi:10.1371/journal.pone.0154833.t001
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ranged from 5 to 93 (mean = 40.8; median = 41) and male: female ratio of 1.07. Approximately
32.1% of women and 44% of men were smokers, 31.6% of women were postmenopausal and
3.2% of the entire sample was diabetics. The general characteristics of the patients in categorical
phenotypes were described in Table 2. The number of osteoporotic patients (Affected 1) was
70. Twenty-four individuals had osteoporotic fractures (Affected 2 patients) representing the
6.5% of the total sample size. Three probands presented multiple osteoporotic fractures. In
nine out of 11 pedigrees, there were one or two patients with vertebral or femoral non-trau-
matic fractures. Finally, patients with low bone mass, corresponding to Affected 3 group of
patients, were 206.

Heritability of each of the structural phenotypes is shown in Table 3. All the femoral proper-
ties showed statistically significant heritability, ranging from 0.252 (FS-CSA) to 0.586 (NN-BR)
after correcting for covariate effects. The covariates that had a significant effect on femoral
properties (p<0.05) appear in Table 4. From the covariates that were initially included in the
model, smoking, use of osteoporosis-related medication, alcohol consumption, smoking habits,

Table 2. Description of the general characteristics of the patients in each of the three categorical phenotypes.

Categorical
phenotype

N Median
Age

M:F
ratio

Median
BMI

Median Age
menopause

Median T-score

Femoral neck
BMD

Hip
BMD

Total spine
BMD

Affected 1 70 61.5 0.49 25.74 49 -2.2 -1.35 -2.85

Affected 2 24 65 0.41 24.97 50 -1.65 -0.80 -1.60

Affected 3 206 49.5 0.75 24.91 49 -1.50 -0.75 -1.80

Affected 1: osteoporotic patients; Affected 2: patients with osteoporotic fractures; Affected 3: patients with low bone mass; N: number size; M: male; F:

female.

doi:10.1371/journal.pone.0154833.t002

Table 3. Heritability of the phenotypes in the GAO Project.

Trait h2 (h2 s) P value

Structural traits HAL 0.377 (0.081) 2.95 × 10−10

NSA 0.456 (0.110) 3.26 × 10−08

Strength properties FS-CT 0.394 (0.098) 2.5 × 10−06

FS-BR 0.454 (0.090) 1.22 × 10−09

FS-CSA 0.252 (0.094) 8.84 × 10−04

FS-CSMI 0.430 (0.098) 2 × 10−07

FS-Z 0.354 (0.098) 9.6 × 10−06

IT-CT 0.492 (0.096) 1.77 × 10−08

IT-BR 0.493 (0.083) 5.61 × 10−12

IT-CSA 0.353 (0.098) 1.5 × 10−05

IT-CSMI 0.314 (0.098) 5.72 × 10−05

IT-Z 0.328 (0.104) 1.25 × 10−04

NN-CT 0.472 (0.104) 5 × 10−07

NN-BR 0.586 (0.087) 1.46 × 10−12

NN-CSA 0.308 (0.099) 2.44 × 10−04

NN-CSMI 0.386 (0.097) 3.9 × 10−06

NN-Z 0.277 (0.094) 4.6 × 10−04

(h2 s): h2 standard error. See Table 1 for acronym descriptions.

doi:10.1371/journal.pone.0154833.t003
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dietary calcium intake, sun exposure and physical activity did not have any significant effect on
the final phenotypes and, therefore, are not shown. Table 4 also shows the proportion of vari-
ance of femoral properties that is attributable to such covariates, ranging from 7% (for NSA) to
73% (for FS-Z).

Table 5 shows the correlation of each of the 17 structural phenotypes with the three categor-
ical phenotypes of clinical interest on the genetic (ρG) and environmental (ρE) level. The major-
ity of the correlations were negative. This is in accord with the expected negative correlation
between osteoporotic phenotypes and cortical thickness (CT), cross-sectional areas (CSA),
cross-sectional moment of inertia (CSMI) and section modules ((Z). On the contrary, the cor-
relations were in general positive, as expected, between osteoporotic phenotypes and buckling
rations (BR), a measure of cortical instability in buckling. Supporting information contains the
full list of correlations among all combinations of phenotypes on the phenotypic, genetic and
environmental level for the interested reader S1 File.

None of the two structural traits (HAL and NSA) showed strong correlation with any of the
three osteoporotic phenotypes analyzed. Regarding the femoral properties representing inter-
mediate structural phenotypes, the most significant correlations were observed on the genetic
level (ρG). The highest genetic correlations were found between IT-BR and all different osteo-
porotic phenotypes (Affected 1–3), ranging from 0.775 to 1.000. Moreover, IT-CT showed
high and significant genetic correlations (from -0.758 to -0.954) with Affected 1 and 3.
NN-CSMI had also significant genetic correlations, ranging from -0.701 to -0.748, with
Affected 1 and 3. Osteoporotic fracture status (Affected 2) and, particularly, low bone mass
and osteoporotic condition (Affected 3) had the highest genetic number of significant correla-
tions with diverse femoral properties. In the latter, the correlations were significant in eight
over ten femoral traits. Finally, only two significant correlations were observed on the environ-
mental level (ρE), involving Affected 3 and NN-BR (0.847), as well as IT-BR (0.732).

Table 4. Regression coefficients for statistically significant covariate effects.

Trait Age Female gender BMI Menopause age Var. expl.

Structural traits HAL 0.216 -1.5.9 0.558

NSA -1.801 0.052 0.0754

Strength properties FS-CT -0.07 0.009 -0.002 0.3557

FS-BR 0.008 -0.024 0.007 0.196

FS-CSA 0.016 -1.077 0.081 -0.008 0.6889

FS-CSMI 0.027 -1.662 0.1 0.697

FS-Z 0.014 -0.823 0.054 0.7309

IT-CT -0.035 0.004 -0.001 0.2362

IT-BR 0.047 -0.065 0.016 0.2908

IT-CSA 0.01 -1.057 0.074 -0.011 0.4811

IT-CSMI 0.093 -5.499 0.298 0.6109

IT-Z 0.02 -1.328 0.089 0.5594

NN-CT 0 0.002 0 0.199

NN-BR 0.074 -1.141 -0.08 0.2804

NN-CSA -0.533 0.044 -0.006 0.4325

NN-CSMI 0.015 -1.399 0.063 0.5732

NN-Z 0.005 -0.524 0.026 -0.004 0.508

Only significant p values are shown (p<0.05). Empty cells denote a non-significant effect (p � 0.05). Var. expl.: variance explained by adjusted covariates;

see Table 1 for acronym descriptions.

doi:10.1371/journal.pone.0154833.t004
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Discussion
The aim of this study was to provide additional insight into the relative roles of genetic and
environmental factors in a series of continuous femoral neck geometry phenotypes and to
uncover to which extent such femoral characteristics contribute to a series of well-defined, clin-
ically relevant osteoporotic disease phenotypes. One of the most important advantages of our
study is the extent of familial relationships in the sample and the variety of phenotypic traits
analyzed.

Diverse studies in the literature have observed the influence of the FNGPs in predicting hip
fracture risk [7]. For example, Lacroix et al. [36] described a significant association between hip
fracture risk and femur outer diameter (with a 61% of risk) and average buckling ratio (with a
43% of risk). They concluded that hip geometry parameters, particularly intertrochanteric
diameter and buckling ratio, predict incident hip fracture after accounting for clinical risk fac-
tors and conventional bone density.

Our study conformed that all femoral neck structural traits and strength properties that we
studied have a considerable genetic component as manifested by the relatively high h2 values
(Table 3). Heritability was highest for NN-BR (58.6%), IT-BR (49.3%) and FS-BR (45.4%). Our
estimates of h2, nonetheless, were generally lower than those reported elsewhere [37, 38],
which could be explained by the fact that our study was family-based: it is well known that fam-
ily-based designs provide more conservative estimates of heritability compared to studies
based on twins [37, 39–43] or unrelated individuals [43, 44].

An additionally important finding of our study was that most of the geometry factors ana-
lyzed were influenced by age, sex, BMI and age of menopause (Table 4). The most significant
regression models involved sex as the most important covariate in the femoral geometric traits

Table 5. Genetic and environmental correlation of intermediate phenotypes based on femoral geometry parameters with three different osteopo-
rotic phenotypes.

Trait Affected1 n = 70 Affected2 n = 24 Affected3 n = 206

ρG ρE ρG ρE ρG ρE

Structural traits HAL -0.208 0.003 0.234 -0.098 0.010 0.241

NSA -0.122 -0.055 -0.023 -0.302 0.154 -0.267

Strength properties FS-CT -0.543 -0.354 -0.484 -0.139 -0.781* 0.149

FS-BR 0.488 0.460 0.770* -0.011 0.644 0.179

FS-CSA -0.429 -0.082 0.473 -0.230 -0.762* 0.320

FS-CSMI -0.140 0.163 0.896* -0.259 -0.216 0.379

FS-Z -0.167 0.108 0.957* -0.271 -0.281 0.396

IT-CT -0.758* -0.452 -0.515 -0.024 -0.954* -0.107

IT-BR 0.824* 0.509 1.000* -0.027 0.775* 0.732*

IT-CSA -0.641 -0.161 -0.076 -0.122 -0.857* 0.160

IT-CSMI -0.537 0.110 0.395 -0.091 -0.669 0.340

IT-Z -0.634 0.058 0.244 -0.116 -0.751* 0.275

NN-CT -0.497 -0.693 -0.178 -0.390 -0.617 -0.440

NN-BR 0.458 0.656 0.557 0.161 0.505 0.847*

NN-CSA -0.526 -0.360 0.282 -0.372 -0.743* -0.024

NN-CSMI -0.701* 0.022 0.622 -0.180 -0.748* 0.250

NN-Z -0.656 -0.124 0.464 -0.253 -0.694 0.089

*: results with relevant genetic correlations.

ρG: genetic contribution; ρE: environmental contribution. See text for the definition on Affected1 to 3. See Table 1 for acronym descriptions.

doi:10.1371/journal.pone.0154833.t005
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analyzed. As expected, the sign of the coefficients were negative, indicating that female gender
contributes negatively to CT, CSA, CSMI and Z-score. BR, for which a positive regression coef-
ficient should be expected, was not significant in any case.

BMI had an effect opposite to female sex: it was significant and positive for CT, CSA, CSMI
and Z, and negative for BR. This is in agreement with the protective effect of a higher BMI in
osteoporosis [45]. The contribution of age and age of menopause was significant yet small for
many femoral traits. Finally, the poor contribution of age on heritability estimates was in agree-
ment with results obtained for the BMD phenotypes [27].

A third finding worth discussing is the fact that genetic contribution to most FNGPs is
higher than the contribution of environmental parameters and that this is particularly true for
Affected 3 (Table 5). As expected, BR correlates positively with affected status, as the higher is
the BR the more affected are the patients expected to be. On the contrary, the rest of parameters
correlated negatively with affected status.

When Affected 1 was analyzed, the behavior of the correlations tended to be similar,
although the number of relevant correlations was lower. We hypothesize that the decrease in
the number of correlations> 0.70 does not indicate less contribution of genetics to femoral
neck parameters in osteoporosis compared with patients with low bone mass, but a lower
power to detect such correlations due to the much lower number of patients in this group
(n = 66 vs. n = 206 in Affected 3). A similar explanation is plausible for Affected 2 (patients
with an osteoporotic fracture) including as few as 24 subjects.

CT, CSA and CSMI are related with bone axial compression strength and structural rigidity.
The association of low values of such parameters with a higher risk of hip fracture has already
been described previously in the literature [46, 47]. Also, previous GWAS have reported diverse
associations between hip geometry traits and genetic variants [48, 49]. The positive correlation
between BR and hip fracture risk has also been described in diverse studies [11, 48, 50]. A GWAS
identified a significant association between BR and a polymorphism in the RTP3 gene [13].

In relation to the contribution of environmental factors, the correlations were only relevant
for IT-BR and NN-BR in Affected 3 again the group with the highest number of individuals.
From our findings, it seems that environmental factors have, on the whole, much less influence
on FNGPs than genetic factors do.

Our study is inevitably not free from limitations, the most important of which being the
small number of individuals with fragility fractures (Affected 2). These patients provide the
most relevant information for uncovering the factors contributing to osteoporotic fractures.
Even though this number is low, it is legitimate to assume that Affected 3 (low bone mass) and
Affected 1 (osteoporotic) include patients at risk of developing fractures in the future and,
thus, at various stages behind Affected 2.

In our analysis, the mean phenotypic correlation of HAL and NSA with six BMDmeasure-
ments was 0.48 and -0.05, respectively (calculated from S1 File). Given the moderate correla-
tion between HAL and BMD and the lack of correlation between NSA and BMD, it is possible
that more incremental information could be obtained from HAL and NSA for estimating low
trauma fracture risk when compared to BMD. This observation has potential predictive value
beyond the use of BMD in the clinical setting, warranting further investigation in the future.

In conclusion, our findings point out that a relatively easy-to-use DXA-based method can
provide useful insights into the involvement of FNGPs in the clinical and research practice.
Furthermore, we contribute with additional evidence on the heritability of various FNGPs and
that there exists a strong genetic correlation between FNGPs and osteoporotic disease status.
Most importantly, our results provide a strong motivation for further studies using state-of-
the-art and well-defined GWAS in order to improve the understanding of the pathophysiologi-
cal mechanism underlying bone architecture and the genetics of osteoporosis.
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