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Urinary proteome was analyzed and quantified by tandem mass tag (TMT) labeling followed by bioinformatics analysis to study
diabetic nephropathy (DN) pathophysiology and to identify biomarkers of a clinical outcome. We included type 2 diabetic
normotensive non-obese males with (n=9) and without (n=11) incipient DN (microalbuminuria). Sample collection included
blood and urine at baseline (control and DN basal) and, in DN patients, after 3 months of losartan treatment (DN treated).
Urinary proteome analysis identified 166 differentially abundant proteins between controls and DN patients, 27 comparing
DN-treated and DN-basal patients, and 182 between DN-treated patients and controls. The mathematical modeling analysis
predicted 80 key proteins involved in DN pathophysiology and 15 in losartan effect, a total of 95 proteins. Out of these 95, 7 are
involved in both processes. VCAM-1 and neprilysin stand out of these 7 for being differentially expressed in the urinary
proteome. We observed an increase of VCAM-1 urine levels in DN-basal patients compared to diabetic controls and an increase
of urinary neprilysin in DN-treated patients with persistent albuminuria; the latter was confirmed by ELISA. Our results point
to neprilysin and VCAM-1 as potential candidates in DN pathology and treatment.

1. Introduction

Diabetic nephropathy (DN) is the leading cause of end stage
renal disease (ESRD) [1]. Incipient DN is characterized by
the appearance of microalbuminuria that increases as the dis-
ease progresses and may lead to macroalbuminuria and renal
failure. It is known that renin-angiotensin system (RAS)
blockers, particularly angiotensin II (Ang II) antagonists
such as losartan, can slow down the progression of ESRD [2].

Urine proteomics consists of a large-scale study in a
single analysis to identify thousands of proteins and peptides.
Urine proteomic investigations in DN identified potential
biomarkers allowing an early detection of DN as well as
prediction of normoalbuminuric diabetic patients prone to
develop DN [3, 4]. Ziirbig et al. also demonstrated the
predictive value of urine proteomics for detection of pro-
gression to macroalbuminura [5]. Besides, the usefulness
of urine proteomics to reveal potential biomarkers was
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evidenced by a multiple proteomic comparison researches
in which several proteins differently abundant in patients
with DN were identified. This was an important step forward
to improve accurate diagnosis and understanding of the
disease mechanisms [6, 7].

Despite this new progress, there is not yet an appropriate
therapy to prevent DN. Moreover, it is common to find other
clinical factors such as overweight, dyslipidemia, and hyper-
tension in DN patients contributing to renal damage. In
this work, we have studied incipient DN male patients
before and after losartan treatment, and, in contrast with
other studies, we have selected non-obese patients with a
good blood pressure and lipid control, with the aim of
improving the identification of factors closely related to
the pathogenesis of DN.

2. Subjects and Methods

2.1. Patients. Twenty-one type 2 diabetic patients were
enrolled in the study: 12 without DN (control patients) and
9 with incipient DN (DN basal). The inclusion criteria
were (1) males>35 years old; (2) controlled hypertension
by 24h ambulatory blood pressure monitoring (ABPM)
(241 systolic BP (SBP) <130 mmHg and 24h diastolic BP
(DBP) < 80 mmHg) [8]; and (3) absence (control cohort) or
presence (DN patients) of persistent microalbuminuria: albu-
min/creatinine ratio from 2.26 mg/mmol to 22.6 mg/mmol at
least in two out of three urine morning samples. The exclu-
sion criteria were (1) estimated glomerular filtration rate
(CKD-EPI) < 60 ml/min/1.73 m% (2) having taken a RAS
inhibitor < six months prior to inclusion; (3) any cardiovas-
cular event during the past year; (4) serum potas-
sium > 5.0 mmol/l; (5) serum LDL cholesterol > 3.0 mmol/l,
triglyceride > 1.7 mmol/l, or glycated hemoglobin HbAlc >
7.5% (>58 mmol/mol); (6) body mass index (BMI) >35kg/
mm?; (7) documented renal artery stenosis; (8) any condition
that may alter the absorption, distribution, metabolism, or
excretion of RAS inhibitor drugs; (9) history of malignancy
in the last 5 years; (10) history or evidence of drug or alcohol
abuse during the past year; (11) history of hypersensitivity to
any RAS inhibitor; and (12) history of noncompliance with
medical regimens.

The theoretical sample size necessary for obtaining statis-
tically significant differences was calculated based on the
standard deviation of the inclusion/exclusion criteria analyt-
ical parameters. Given the homogeneity of the subjects and
the specificity of inclusion/exclusion criteria that made it
difficult to find patients matching them, sample size was
established at the lower limit of the interval obtained through
the equation.

2.2. Blood Pressure, Blood, and Urine Analysis. SBP, DBP,
mean BP (MBP), and heart rate over day, night, and 24h
were measured by 24h ABPM (Diasys Integra II; Novacor,
Paris, France). Office BP was recorded following the
European guidelines [9].

Serum electrolytes (sodium and potassium) were ana-
lyzed by selective ion electrodes; serum urea, creatinine,
lipidic profile, glycemic profile, and urine albumin and
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creatinine levels were determined by kinetic, colorimetric,
or immunoturbidimetric assays, in the Roche Cobas® 6000
analyzer, following the manufacturer’s instructions.

2.3. Urine Collection. First morning urine void was collected,
centrifuged, and stored at —80°C until proteomic analysis.

2.4. Quantitative Liquid Chromatography Tandem Mass
Spectrometry (LC-MSn) Analysis. Four biological replicates
from each condition (control, basal, and treated) were
processed. Each replicate was a pool of three or four different
patients as appropriate.

2.4.1. Sample Preparation. Samples (14-28 ml) were thawed
and centrifuged (4000g, 4°C, 20 min), filtered (Steriflip PVDF
0.22 ym pore, Millipore, Watford, UK), and concentrated
using Amicon® centrifugal filters (Amicon Ultra 15ml,
Millipore) up to about 250yl final volume. Samples were
evaporated in a SpeedVac (Thermo Electron, Waltham,
MA, USA) to a final volume of about 50 4l and albumin/
IgG depleted using the PROTIA Proteoprep Immunoaffinity
kit (Sigma-Aldrich, St Louis, MO, USA).

Each sample was immunodepleted separately. Pools of
3-4 different patients were prepared for further processing
combining volumes of eluate containing equimolar amounts
of protein (26.7 ug each). A total of 12 pools were prepared
(4 controls, 4 diabetic basal, and 4 diabetic treated).

2.4.2. Protein Digestion and Peptide Labeling. Pooled immu-
nodepleted samples (80 ug of protein) were digested as previ-
ously described. Each tryptic peptide mixture was labeled
with the corresponding tandem mass tags (TMT) (Thermo
Fisher Scientific, Rockford, IL, USA). The TMT labeling kits
used provide 6 different molecular labels. Thus, only 6 sam-
ples can be analyzed together per LC-MS experiment. So,
the 12 pools available were analyzed in two independent
experiments each containing 2 replicates (pools) of each
class. In each experiment, the six differentially TMT-labeled
samples were combined in a low-bind 1.5mL Eppendorf
tube, evaporated, and desalted using a C18 SPE cartridge
(3mL, 15mg, Agilent Technologies, Waldbronn, Germany).
The SPE eluates were evaporated and resuspended in 200 pl
of 30% ACN (0.1% formic acid).

2.4.3. Sample Fractionation by Strong Cation Exchange
Chromatography. SCX fractionation of the TMT-labelled
peptide mixtures was performed on an Agilent 1100 HPLC
system (Agilent Technologies) using a Polysulfoethyl A™,
50 x 2.1 mm, 5um, and 200A column at a flow rate of
200 pul/min. A linear NH,CIl gradient from 0 to 25% B in
38 min and then to 100% B in 20 min was used (buffer A:
30% ACN, 0.1% formic acid; buffer B: 30% ACN, 0.1% formic
acid, 0.5 M NH,CI). Six fractions were collected from minute
10 to 52.

2.4.4. LC-MSn Analysis. One-fifth of each collected SCX frac-
tion was analyzed by LC-MSn using an Agilent 1200 nano
pump (Agilent Technologies) connected to a LTQ-Orbitrap
XL instrument (Thermo Fisher Scientific) equipped with a
nanoESI source (Proxeon, Odense, Denmark). Separations
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FI1GURE 1: Mathematical model generation process. It includes the creation of a Biological Effector Database (BED), the construction of a
biological map, and, finally, the achievement of the mathematical model.

were carried out using a C18 preconcentration cartridge
(Agilent Technologies) connected to a 15cm-long 100 um
id. C18 column (Nikkyo Technos Co., Japan). Separations
were done at 0.4 yl/min using a linear ACN gradient from 0
to 40% in 120 min (solvent A: 0.1% formic acid, solvent B:
ACN 0.1% formic acid). The spectrometric analysis was
performed in an automatic data-dependent mode. A full
scan followed by 1 HCD and 1 CID MS/MS scans for the 5
most abundant signals was acquired (dynamic exclusion:
1, time window: 30s).

2.4.5. Database Search. Thermo RAW files were processed
using the EasierMgf software. Database search was done
using Proteome Discoverer v1.4 (Thermo-Instruments) with
a 1% false discovery rate (FDR) and the UniProt 2014-10
database restricted to Homo sapiens. Search parameters
were parent tolerance, 20 ppm; fragment tolerance, 0.8 Da;
enzyme, trypsin; missed cleavages, 1; fixed modifications,
TMTsixplex (N-terminal, K), carbamidomethyl (C); and
variable modifications, oxidation (M).

2.5. Bioinformatic Analysis of Proteomic Data. Based on
artificial intelligence and pattern recognition techniques,
Therapeutic Performance Mapping System (TPMS, Anaxo-
mics Biotech) [10, 11] creates mathematical models that
integrate all the available biological, pharmacological, and
medical knowledge to simulate human physiology in silico.
TPMS technology includes two different and complementary
strategies to solve mathematical models:

(i) Artificial neural networks (ANNs): this strategy is
able to identify relationships among regions of the
network (generalization). These provide a predictive
value that infers the probability of the existence of a
specific relationship between two or more sets of
proteins (in this case, each protein and DN), based

on a validation of the predictive capacity of the model
towards what is described in databases.

Sampling methods: this second strategy allows to
trace back observed effects to molecules and is
normally applied once a key region of the map has
been identified (using an ANN or as suggested by
experimental work). Once a response is identified to
a specific stimulus (e.g., a drug target, as identified
with an ANN), it is possible to analyze mechanisms
of action using the sampling methods strategy.

Mathematical models are able to suggest mechanistic
hypotheses that are consistent with actual biological pro-
cesses. Finally, the comparative analysis of healthy and
DN mathematical models revealed functional properties
and mechanistic insights specific of the pathological state
of interest.

The process comprises four steps (Figure 1): (1) collec-
tion of scientific knowledge based on hand-curated databases
that relate biological processes to their molecular effectors
(BED) (including a specific DN, type 2 diabetes, and RAS
pathway characterizations); (2) preparation of a human bio-
logical network focused on DN based on data retrieved from
both public and private external databases such as KEGG,
BioGRID, IntAct, REACTOME, and MINT; (3) subsequent
generation of mathematical model, whereby the biological
map is transformed into a mathematical model capable of
both reproducing existing knowledge and predicting new
data. To do this, the mathematical models were previously
trained using a collection of known input-output physio-
logical signals (e.g., a drug indication relationship), these
being obtained from the literature mining and a compen-
dium of databases that accumulate biological and clinical
data [12-17], namely:

(i) Model inputs: for example, information about drugs
provided by DrugBank [18], since they inhibit or



activate one or more nodes of the model (their
targets) triggering a perturbation through the system,

(ii) Model outputs: for example, experimental microar-
ray data (upregulated or downregulated proteins,
after the treatment). The collection of known input-
output physiological signals generates a list of physi-
ological rules or principles found to apply to all
humans, or to particular pathophysiological condi-
tions, that act as mathematical restrictions. These sets
of rules are collected to form a Truth Table, a collec-
tion of mathematical restrictions that include the
available biological knowledge on the constructed
networks, together with knowledge derived from
DrugBank, and the statistically significant differen-
tially expressed proteins from transcriptomic data.
Furthermore, models able to simulate the physiolog-
ical behavior of diabetic patients suffering DN were
generated including the differentially expressed pro-
teins extracted from the different group comparison,

and (4) extraction of biological and clinical conclusions. To
extract conclusions, the pairs of mathematical models of
interest were compared with the aim of identifying the key
proteins involved in the pathophysiology of the DN and in
the efficacy of losartan:

(i) Identification of the key proteins and mechanism of
action associated with DN pathophysiology:

(a) Model of diabetic patient suffering DN versus
healthy model

(ii) Identification of the key proteins and mechanism of
action associated with losartan effect:

(a) Model of diabetic patients suffering DN and
treated with losartan versus model of diabetic
patients suffering DN

(b) Model of diabetic patients suffering DN and
treated with losartan versus model of diabetic
patients

Sampling methods were used to describe with high
capability all plausible relationships between nodes of the
mathematical models. As the number of restrictions is always
smaller than the number of parameters required by the
algorithm, any process modeled by TPMS considers a popu-
lation of different solutions, currently set around 10°-10°
since this interval is estimated to faithfully portray nature.
Subsequently, TPMS traces the most probable pathways (in
biological and mathematical terms) among all the possible
pathways leading from the stimulus to the response through
the biological network.

Mathematical models should be able to weigh the relative
value of each protein ratio (node). In the mathematical
algorithm, each parameter corresponds to the relative weight
of a link connecting nodes (genes/proteins) in a graph
(protein map). Using the sampling methods, we generated
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populations of solutions that comply with the biological
restrictions of the Truth Table. This approach allows tracing
back the biological effects on molecules or triggering effectors
by analyzing the different populations of solutions. Thus, the
population of solutions accounts for the variety of physiolog-
ical responses that may occur in human populations. The
mathematical model is challenged with the stimulus and
the response, and we traced the most probable path (in bio-
logical and mathematical terms) that leads from the stimulus
to the response through the biological network. Thus, it
identifies the most probable MoA that achieves a physiolog-
ical response when the system is stimulated. For the analysis,
we used those solutions that comply with the general knowl-
edge collated in the Truth Table (high accuracy values). That
is, only MoAs that are plausible from the standpoint of cur-
rently accepted scientific understandings and the restrictions
applied were considered in the analysis.

2.6. Urinary Neprilysin and VCAM-1 ELISA. Their abun-
dance was tested in urinary samples from patients and
controls using a specific enzyme-linked immunosorbent
assay (ELISA). Urine neprilysin (MyBioSource, San Diego,
California, USA) and human vascular cell adhesion molecule-
1 (VCAM-1) ELISA (Sigma-Aldrich, St. Louis, Missouri, USA)
were performed following the manufacturer’s instructions.

2.7. Presentation of Data and Statistical Analyses. Patient
clinical data: quantitative data are presented as the mean+
standard deviation (SD). Statistical comparisons were per-
formed by t-test (unpaired or paired as appropriate using
SPSS 17.0).

Proteomic data analysis: DanteR [19] was used for
relative quantification. Only unique peptides were consid-
ered for the analysis. Tandem mass tag (TMT) reporter
intensity data were normalized using the Loess method
followed by adjustment with central tendency. ANOVA
was performed and adjusted by false discovery rate (FDR)
correction. Two different comparisons were carried out:
(1) basal and treated versus control and (2) treated versus
basal. Differential proteins were selected using an adjusted
p value cutoft of 0.05 and a ratio < 0.7 (down) or >1.3 (up).

Bioinformatic analysis: mathematical models allowed the
identification of key proteins associated with DN pathology
and treatment efficacy; p-values used to select these key
proteins were <0.005 and <0.05, respectively.

3. Results

3.1. Patients. Clinical and demographic characteristics of
the study population are shown in Table 1. All patients
included in the study were over 60 years old. Control
and DN basal groups were balanced regarding baseline
characteristics except for albuminuria levels. None of the
patients had diabetic retinopathy. The 9 DN patients were
treated with losartan during three months. After this
period, there were no differences in terms of albuminuria,
HbAlc, eGFR, cholesterol, and triglycerides levels. Figure 2
shows albumin/creatinine ratio in the three groups studied.
Losartan treatment in DN patients maintained office BP
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TasLE 1: Clinical and demographic characteristics of the study population.

Controls DN basal DN treated Statistics (student ¢-test)

N (gender) 12 (males) 9 (males) N/A
Nonsmokers/smokers/ex-smokers 4/2/6 0/5/4 N/A
Age (years) 69.6+£9.6 71.0+7.0 0.714
BMI 28.1+5.2 27.0+2.3 0.572
Time of type 2 DM (years) 13.8+7.9 12.2+45 0.591
HbAlc (%) (mmol/mol) 68408 (51+9.0) 7.0+07(53+7.6)  7.0+0.7 (52.4+7.4) 0.467
Cholesterol total (mmol/1) 4.1+0.7 4.2+0.8 43+0.6 0.773
Cholesterol LDL (mmol/l) 2.1+0.6 2.1+0.6 2.3+0.5 0.884
Triglycerides (mmol/L) 1.1+04 1.3+04 1.7+£0.8 0.196
eGFR (CKD-EPI) (ml/min/1.73 m?) 80.4+10.9 89.1+16.8 85.4+19.0 0.1662
Urine albumin/creatinine (mg/mmol) 0.68+1.0 13.6+12.2 12.5+4.8 p <0.0001
ABPM

24h SBP (mmHg) 119.4+11.8 121.4+114 n.d. 0.869

24 h DBP (mmHg) 70.8+5.0 69.2+7.5 n.d. 0.509
Antidiabetic drugs

Insulin (N) 1 1 N/A

Metformin (N) 8 9 N/A

Sulfonylureas (N) 6 1 N/A

Other oral drugs (N) 2 1 N/A

Data are expressed as the mean + SD; the statistics column refers to the comparison between control patients and DN patients before losartan treatment (basal).
All comparisons between basal and treated DN patients were nonsignificant. ABPM: ambulatory blood pressure monitoring; BMI: body mass index;
DM: diabetes mellitus; DN: diabetic nephropathy; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HbAlc: glycated
hemoglobin; n.d.: not determined; SD: standard deviation; SBP: systolic blood pressure; N/A: not applicable.
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FI1GURE 2: Box-and-whisker plots of urine albumin/creatinine ratios
in mg/mmol in the three studied groups. Each value was calculated
from three successive measurements. N control=11, N basal=9,
and N treated = 9; statistical test: Student’s ¢-test.

(SBP 144.0 +17.7 versus 140.0 + 24.8 mmHg; DBP 73.6 £ 6.6
versus 75.3 + 6.8 mmHg, basal versus treatment, resp.). Anti-
diabetic drugs are specified in Table 1. Ten patients from the
control group and 4 from the DN group took statins. Five
patients from the control group and 4 from the DN group
took antiplatelet agents, being aspirin the most used.

3.2. Protein Identification and Relative Quantification. 10780
spectra corresponding to 2520 nonredundant peptides were
identified through database search (1% FDR). For quantita-
tive analysis, only peptides identified as unique (i.e., peptide
sequences belonging to one single protein in the database)
were considered. Overall, a total of 688 proteins could be
quantified from 2191 nonredundant unique peptides. The
mass spectrometry proteomic data have been deposited to
the ProteomeXchange consortium via the PRIDE [20]
partner repository with the dataset identifier PXD009303.
This information is also available in the Supplementary data
(available here).

3.3. Proteomic Data Processing and Enrichment Analysis of
Differentially Abundant Proteins. We identified 166 differen-
tially abundant proteins in basal versus control comparison,
27 between treated and basal cohorts, and 182 in treated
versus control comparison (Table 2). Detailed information
is provided in the supplementary data. We predicted 138
and 13 proteins as direct effectors of DN and RAS efficacy,
respectively, according to its molecular characterization in
the Biological Effector Database (BED) [21]. Furthermore,
we found 14 differential proteins common to the three
evaluated cohorts considering both upregulated and down-
regulated proteins. One of them, osteopontin, a bone matrix
protein and proinflammatory cytokine, was also predicted as
a direct effector of DN according to its BED molecular
characterization (Figure 3).
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TaBLE 2: Summary of differentially abundant proteins identified for each evaluated cohort comparison that are also direct effectors of DN
according to its molecular characterization in the Biological Effector Database (BED).

Number of differentially expressed proteins
Downregulated proteins

Total Upregulated proteins

Number of DN effectors
Total Upregulated proteins Downregulated proteins

Basal versus control 166 23 143 3 0 3
Treated versus basal 27 14 13 2 1 1
Treated versus control 182 26 156 3 3 0
DN: diabetic nephropathy.
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Ficure 3: Differentially abundant proteins among the three cohorts. Data presented as a relative change from the control cohort.

The enrichment analysis of the differential proteins
between basal and control cohorts revealed 344 enriched
pathways, 263 between treated and basal cohorts, and 352
between treated and control cohorts. Interestingly, some of
them are related to DN and RAS according to an artificial
neural network (ANN) [22] analysis. This analysis identifies
associations among different regions of the network, such
as potential relationships between the enriched protein sets
and DN and RAS. Specifically, the vasoactive hormone
pathway is enriched in the treated versus basal cohorts’
comparison. The inflammation associated with DN is an
enriched pathway in the comparisons between treated
versus basal and basal versus control cohorts.

3.4. Clustering Analysis. Results of hierarchical clustering,
according to mathematical models, are represented in
Figure 4 as a dendrogram to show distances in terms of
protein expression between groups.

3.5. Key Proteins Involved in DN and RAS Efficacy. Compar-
ative analyses among the generated mathematical models
predicted 80 proteins with an important role in DN (key pro-
teins) (supplementary data): (1) 14 of them are measurable in
urine; (2) 20 have been previously considered effectors of
DN; (3) 2 have also been identified as differentially abundant
proteins from the cohort comparisons of proteomic data; and
(4) 45 of the key proteins are directly linked to some of the
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mechanisms of action defined by the models in duplicate.

differentially present proteins identified from the cohort
comparisons of proteomic data.

Regarding losartan effect, comparative analysis from
mathematical models predicted 15 key proteins (supple-
mentary data): (1) 7 are measurable in urine; (2) none
are RAS eflicacy key proteins according to the molecular
characterization in our BED; (3) 4 have been also identi-
fied in the differential presence analysis of proteomic
data; and (4) 9 are directly linked to one or several of
the differentially present proteins identified from the
cohort comparisons of proteomic data.

An effector protein is defined as an essential protein in
the disease pathology according to its molecular characteri-
zation in BED and published literature, whereas a key protein
is predicted through the analysis of mathematical models.
Key proteins can also be effector proteins or new potential
candidates (in the disease pathology or in the treatment effi-
cacy), the role of which has not been described before. In this
work, we detected 5 DN effector proteins differentially
abundant among the three cohorts: osteopontin, neprilysin,
fibronectin, kininogen-1, and VCAM-1 (Table 3(a)). Nepri-
lysin and VCAM-1, however, are the only ones that are also
DN disease key proteins. Additionally, we predicted 4
losartan effect key proteins differentially abundant among
the three cohorts: neprilysin, VCAM-1, kininogen-1, and
alpha-2-macroglobulin. Only alpha-2-macroglobulin is not
a losartan effector protein (Table 3(b)).

Finally, we predicted 7 key proteins in both DN patho-
physiology and losartan effect (Table 4). VCAM-1 and
neprilysin stand out from the others because they are
differentially abundant in the urine proteome.

3.6. Urinary Neprilysin and VCAM-1 ELISA. We were only
able to detect VCAM-1 in one of the urine samples among
the three cohorts through ELISA analysis. Regarding neprily-
sin, urine levels were higher in DN losartan-treated patients
than in the untreated patients (p=0.0255) (Figure 5),
reinforcing the results obtained in the proteomic analysis.

4. Discussion

Albuminuria is not specific for DN and is highly variable
[23]. In order to identify alternative biomarkers, we per-
formed urinary proteomic analysis in diabetic and incipient
DN patients, the latter before and after losartan treatment.
Several publications support that profiling of the urinary
proteome can be useful to diagnose DN and identify novel
biomarkers [6, 7, 24, 25]. In our study, patients’ selection
criteria were strict, avoiding confounder factors such obesity,
uncontrolled BP, or dyslipidemia, which are commonly asso-
ciated comorbidities that also induce albuminuria. Therefore,
differences in urinary proteome would correspond to the dis-
ease itself and not to associated secondary problems.

In contrast to other proteomic studies, our results were
further analyzed by bioinformatic tools including mathemat-
ical models and several databases in order to reach more
specific and distilled information. Thus, we predicted 5 pro-
teins known to be involved in DN pathophysiology and 4
associated with losartan treatment. Two of them, VCAM-1
and neprilysin, are effector proteins of both disease and
treatment efficacy, making them the most relevant proteins
at this early stage of the disease. Levels of VCAM-1, a candi-
date biomarker of renal pathology [26], correlate with
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TaBLE 3: (a) DN effector proteins differentially abundant in the cohort comparisons and (b) losartan treatment key proteins differentially

abundant in the cohort comparisons.

(a)

Protein name Basal* versus control

Treated* versus basal Treated” versus control

Upregulated Downregulated
Downregulated —

— Downregulated

— Downregulated

(b)

Osteopontin Downregulated
Neprilysin —
Fibronectin Downregulated
Kininogen-1 —
VCAM-1 Downregulated
Protein name Basal® versus control
Neprilysin —
VCAM-1 Downregulated
Kininogen-1 —
Alpha-2-M —

Treated* versus basal Treated* versus control
Downregulated —
— Downregulated
— Upregulated

*Cohort used as reference group. VCAM-1: vascular cell adhesion protein 1; Alpha-2-M: alpha-2-macroglobulin; —: no changes observed.

TaBLE 4: Summary of the key proteins in both DN pathophysiology and losartan effect. The table indicates whether (1) the protein is a DN
effector and for positive instances the process with which the protein is associated, (2) the protein is also differentially abundant from the
cohort comparison (d = 0) or it is directly linked to one of them (d = 1), and (3) if the protein is easily measurable in urine according to

bibliography review.
Protein DN effector Presence in proFeomic data Urine presence
Yes/no Process d=0 Comparison d=1 Yes/no

Neprilysin Yes Vasoactive hormones Yes  Treated versus basal ~ Yes Yes
Kallikrein No No NA Yes Yes
Angiopoietin-2 Yes Activation of angiogenesis No NA No Yes
tsrlil:irtiﬁrilsglll-c:lz)izjibzf:vator of Yes JAK/STAT pathway alterations ~ No NA No No
MAD homolog 7 Yes Inflammation No NA Yes Yes
VCAM-1 Yes Inflammation Yes  Basal versus control ~ No Yes
NADPH oxidase No No NA Yes No

DN: diabetic nephropathy; N/A: not applicable; MAD homolog 7: mothers against decapentaplegic homolog 7; VCAM-1: vascular cell adhesion protein 1;
NADPH oxidase: nicotinamide adenine dinucleotide phosphate hydrogen oxidase; JAK/STAT: Janus kinase/signal transducer and activator of transcription.

albuminuria in diabetic hypertensive patients [27] and with
the number of infiltrating immune cells [28]. Its expression
is increased in the kidneys from DN patients [29], probably
because Ang II upregulates VCAM-1 [30]. In accordance
with these results, we observed that VCAM-1 urine levels
were increased in basal albuminuric DN patients compared
to diabetic controls without renal damage, supporting its role
in this process. In fact, there are preclinical studies describing
the blockade of adhesion molecules as a potential therapeutic
target [31].

Urine proteome also showed changes in neprilysin
abundance that were also confirmed by ELISA. Neprilysin
is a metalloprotease that inactivates several peptides includ-
ing natriuretic peptides, bradykinin, and endothelins. It is
particularly abundant in the kidney where it is bound to
plasma membrane, but it is also present in a soluble form
in urine and blood. The urine form appears to reflect the

activity of the enzyme in the kidney [32, 33]. Our proteomic
results indicate an increase of urinary neprilysin after losartan
treatment in DN patients showing persistent albuminuria. To
our knowledge, this is the first study that observes changes in
urine neprilysin after losartan treatment in incipient DN
patients. The increase of Ang II, by losartan, may favor the
activity and/or expression of neprilysin through the alterna-
tive RAS activation towards the formation of Ang (1-7), with-
out neglecting the contribution of angiotensin-converting
enzyme 2 (ACE2). Indeed, the selective neprilysin inhibitor
SCH39370 abolished the formation of Ang (1-7) [34].
Several studies demonstrate a potential role of neprilysin
in renal damage [35]. A DN animal model showed greater
attenuation of albuminuria when treated with a neprilysin
inhibitor compared to a RAS blocker [36]. Vasodilatation is
associated with natriuretic peptides and may result in reduc-
tions of intraglomerular pressure and proteinuria [37, 38].
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FiGure 5: Quantification of urinary neprilysin (NEP) by ELISA
showed an increased presence of this protein in losartan-treated
patients compared to basal cohort. N control=11, N basal =9, and
N treated = 9; statistical test: Student’s t-test.

Neprilysin inhibition could increase these effects and can also
impair breakdown of Ang II. Beneficial effects of neprilysin
inhibition are enhanced when combined with a RAS inhibi-
tor, which has led to the development of dual inhibition.
Additionally, there is an ongoing clinical trial testing the
nephroprotection effects of this double inhibition [35, 39].

Neprilysin metabolizes Ang I to Ang (1-7) and inacti-
vates bradykinin, whereas angiotensin I-converting enzyme
(ACE) catalyzes the conversion of Ang I to Ang II and it is
able to inactivate bradykinin. Accordingly, changes in RAS
are accompanied by changes in kallikrein-kinin system,
seeming necessary to control both systems in the treatment
and monitoring of DN [40]. Our results also show differences
regarding kallikrein-kinin system proteins such as urine
kininogen-1 and kallikrein-1. These proteins should be
studied in a larger cohort to confirm their role in this
disease and in RAS system pathway.

Proteomic results also show differences in extracellular
matrix proteins such as fibronectin and osteopontin. Osteo-
pontin is a glycoprotein that blocks apoptosis of macro-
phages and T-cells as well as fibroblasts and endothelial
cells exposed to harmful stimuli. It has been suggested to
have a role in albuminuria and mesangial expansion in DN
[41]. There are contradictory results regarding urine osteo-
pontin as a DN progression biomarker [42, 43]. Our results
show increased levels of osteopontin in DN patients com-
pared to diabetic controls. These results are in accordance
to previous studies that demonstrated that increased Ang II
stimulates the production of osteopontin in the glomerulus
in DN [44]. Nevertheless, DN patients treated with losartan
show lower osteopontin than basal without changes in
albumin excretion. This may be explained because Ang II
mediates osteopontin synthesis [45, 46] and blockade of
AT1 receptors could prevent its effects.

Fibronectin is another extracellular matrix glycoprotein
important in fibrosis. Our results show increased levels of
fibronectin in DN patients compared to diabetic controls.
Murine diabetic models develop nephropathy and increase
glomerular expression and accumulation of type IV collagen
and fibronectin [47-50]. Furthermore, AT1 receptor blocking

by losartan did not influence urinary fibronectin [51, 52]. Our
results confirm that high urinary fibronectin in DN patients
is not affected by losartan treatment, suggesting an ATI
receptor-independent pathway.

Progression of DN includes inflammation of glomeruli
and tubulointerstitial regions accompanied by expression of
adhesion molecules and chemokines, resulting in macro-
phage infiltration into renal tissues [53]. Vasoactive hor-
mones are known to be key mediators of renal injury [54].
Our urine proteomic results show proteins related to inflam-
mation and vasoactive pathways, such as osteopontin,
VCAM, neprylisin, and kininogen, that are differentially
expressed in the cohorts studied. Although our patients are
in an initial stage of the disease, the enrichment results
already show alterations of these pathways, suggesting an
early involvement in incipient DN.

In our DN patients, factors associated with albuminuria
are closely controlled and this could explain partially the lack
of clinic response to losartan treatment. Although activation
of RAS is related to albuminuria, there are other critical fac-
tors associated with its development that probably will be
more relevant in non-obese DN patients with good blood
pressure, lipid, and glycemic control. There are also other
reasons that could explain the lack of therapeutic responses
to RAS inhibition including incomplete inhibition of RAS,
lack of effects on structural hallmarks of DN, and reversibility
of established renal lesions on these patients [55, 56]. Evi-
dences suggested that microalbuminuria may not be the ideal
marker of DN progression [57, 58]. Moreover, our proteomic
approach pointed out some possible candidates involved in
DN and losartan treatment since differences were statistically
significant among the three studied groups. A validation
study, on a greater cohort and during a longer period, would
be necessary.

In conclusion, our results point to neprilysin and
VCAM-1 as possible candidates involved in incipient DN
pathology and RAS inhibition treatment in elderly males. If
ongoing clinical trials with double inhibition of RAS and
neprilysin are satisfactory, they could help in the clinical
management of the disease. Moreover, urine detection of
these proteins could serve as potential new tools as DN
progression biomarkers.

Ethical Approval

All procedures performed were in accordance with the
ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki Declaration and its
later amendments or comparable ethical standards.

Consent

It was obtained from all participants.

Conflicts of Interest

The authors declare that they have no conflict of interest.



10

Authors’ Contributions

Patricia Ferndndez-Llama and Mark A. Knepper did the
research idea and study design; Silvia Ferrer, Carlos Brotons,
and Francesca Calero did the patient selection; Beatriz
Bardaji-de-Quixano, Montserrat Carrascal, Joaquin Abian,
and Elena Guillén-Goémez did the proteomic and laboratory
analysis; José M. Mas did the mathematical models/statistics;
Patricia Fernandez-Llama, Beatriz Bardaji-de-Quixano, José
M. Mas, Montserrat Carrascal, Joaquin Abian, Elena
Guillén-Gémez, and Mark A. Knepper did the data
interpretation; Patricia Ferndndez-Llama, José A. Ballarin,
and Mark A. Knepper did the supervision; Elena Guillén-
Gomez and Beatriz Bardaji-de-Quixano contributed equally
to this work.

Acknowledgments

The authors thank all patients who agreed to participate.
The authors thank Olga Sancho for her valuable technical
assistance. The research group belongs to a Consolidated
Research Group (AGAUR 2009/SGR-1116) and to REDIN-
REN (Spanish Renal Network for Research, RETICS,
Instituto de Investigacion Carlos III). Funding was granted
by Fondo de Investigacion Sanitaria, Ministerio de Sanidad
(PI10/01261) to Patricia Ferndndez-Llama) and ISCIII
RETIC REDINREN FEDER Funds (RD12/0021/0033). The
proteomics laboratory CSIC/UAB is a member of Proteored,
PRB2-ISCIII and is supported by grant PT13/0001, of the PE
I+D+i 2013-2016, funded by ISCIII and FEDER.

Supplementary Materials

Supplementary Tables: the excel file includes (1) peptides
identified by urine proteomics with intensities and identifica-
tion scores: all peptides and protein groups (tab “All_data”)
and unambiguous peptides pointing to a single protein that
were used for statistical analysis (tab “Unique”); (2) differen-
tially expressed proteins identified for each evaluated cohort
comparison and which are direct effectors of DN, as well as
the DN motives associated; (3) DN (tab “Key proteins
DN”) and losartan (tab “Key proteins losartan”) key protein
data containing the following columns: activation (sign of
activation); DN effector (indicates whether it is a DN effector
and the associated motive); presence in cohort comparisons
in our proteomic data (the protein is also differentially abun-
dant from the cohort comparison (d=0) or it is directly
linked to one of them (d = 1); urine presence (if the protein
is easily measurable in urine according to bibliography
review). Data added as an additional file through Manuscript
Tracking System. (Supplementary Materials)

References

[1] J. Floege, R.]J. Johnson, and J. Feehally, Comprehensive Clinical
Nephrology, Saunders/Elsevier, St. Louis, MO, USA, 2010.

[2] G. Remuzzi, A. Schieppati, and P. Ruggenenti, “Nephropathy
in patients with type 2 diabetes,” The New England Journal of
Medicine, vol. 346, no. 15, pp. 1145-1151, 2002.

Journal of Diabetes Research

[3] N.M. Bhensdadia, K. J. Hunt, M. F. Lopes-Virella et al., “Urine
haptoglobin levels predict early renal functional decline in
patients with type 2 diabetes,” Kidney International, vol. 83,
no. 6, pp. 1136-1143, 2013.

[4] M. L. Merchant, B. A. Perkins, G. M. Boratyn et al., “Urinary
peptidome may predict renal function decline in type 1 diabe-
tes and microalbuminuria,” Journal of the American Society of
Nephrology, vol. 20, no. 9, pp. 2065-2074, 2009.

[5] P.Ziirbig, G. Jerums, P. Hovind et al., “Urinary proteomics for
early diagnosis in diabetic nephropathy,” Diabetes, vol. 61,
no. 12, pp. 3304-3313, 2012.

[6] P.V.Rao,X.Lu, M. Standley et al., “Proteomic identification of
urinary biomarkers of diabetic nephropathy,” Diabetes Care,
vol. 30, no. 3, pp. 629-637, 2007.

[7] J. A. D. van, J. W. Scholey, and A. Konvalinka, “Insights into
diabetic kidney disease using urinary proteomics and bioinfor-
matics,” Journal of the American Society of Nephrology, vol. 28,
no. 4, pp. 1050-1061, 2017.

[8] G. Mancia, R. Fagard, K. Narkiewicz et al., “2013 ESH/ESC
guidelines for the management of arterial hypertension: the
task force for the management of arterial hypertension of the
European Society of Hypertension (ESH) and of the European
Society of Cardiology (ESC),” Journal of Hypertension, vol. 31,
no. 7, pp. 1281-1357, 2013.

[9] G. Mancia, G. de Backer, A. Dominiczak et al., “2007 guide-
lines for the management of arterial hypertension: the task
force for the management of arterial hypertension of the Euro-
pean society of hypertension (ESH) and of the European soci-
ety of cardiology (ESC),” Journal of Hypertension, vol. 25,
no. 6, pp. 1105-1187, 2007.

[10] A. F. M. Altelaar, J. Munoz, and A. J. R. Heck, “Next-
generation proteomics: towards an integrative view of
proteome dynamics,” Nature Reviews Genetics, vol. 14, no. 1,
pp. 35-48, 2013.

[11] P. Navarro, M. Trevisan-Herraz, E. Bonzon-Kulichenko et al.,
“General statistical framework for quantitative proteomics
by stable isotope labeling,” Journal of Proteome Research,
vol. 13, no. 3, pp. 1234-1247, 2014.

[12] M. Kanehisa, S. Goto, M. Hattori et al., “From genomics to
chemical genomics: new developments in KEGG,” Nucleic
Acids Research, vol. 34, no. 90001, pp. D354-D357, 2006.

[13] D. Croft, A. F. Mundo, R. Haw et al., “The reactome pathway
knowledgebase,” Nucleic Acids Research, vol. 42, no. DI,
pp. D472-D477, 2014.

[14] S. Kerrien, B. Aranda, L. Breuza et al., “The IntAct molecular
interaction database in 2012,” Nucleic Acids Research, vol. 40,
no. D1, pp. D841-D846, 2012.

[15] R.Oughtred, A. Chatr-aryamontri, B. J. Breitkreutz et al., “Use
of the BioGRID database for analysis of yeast protein and
genetic interactions,” Cold Spring Harbor Protocols, vol. 2016,
no. 1, 2016.

[16] L. Licata, L. Briganti, D. Peluso et al., “MINT, the molecular
interaction database: 2012 update,” Nucleic Acids Research,
vol. 40, no. D1, pp. D857-D861, 2012.

[17] D. S. Wishart, C. Knox, A. C. Guo et al, “DrugBank: a
comprehensive resource for in silico drug discovery and
exploration,” Nucleic Acids Research, vol. 34, no. 90001,
pp. D668-D672, 2006.

[18] A. Pujol, R. Mosca, J. Farrés, and P. Aloy, “Unveiling the role
of network and systems biology in drug discovery,” Trends in
Pharmacological Sciences, vol. 31, no. 3, pp. 115-123, 2010.


http://downloads.hindawi.com/journals/jdr/2018/6165303.f1.xlsx

Journal of Diabetes Research

(19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

T. Taverner, Y. V. Karpievitch, A. D. Polpitiya et al., “DanteR:
an extensible R-based tool for quantitative analysis of -omics
data,” Bioinformatics, vol. 28, no. 18, pp. 2404-2406, 2012.

J. A. Vizcaino, A. Csordas, N. del-Toro et al., “2016 update of
the PRIDE database and its related tools,” Nucleic Acids
Research, vol. 44, no. D1, pp. D447-D456, 2016.

M. Goémez-Serrano, E. Camafeita, E. Garcia-Santos et al.,
“Proteome-wide alterations on adipose tissue from obese
patients as age-, diabetes- and gender-specific hallmarks,”
Scientific Reports, vol. 6, no. 1, article 25756, 2016.

C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, NY, USA, 2006.

R. J. Macisaac and G. Jerums, “Diabetic kidney disease with
and without albuminuria,” Current Opinion in Nephrology
and Hypertension, vol. 20, no. 3, pp. 246-257, 2011.

K. Rossing, H. Mischak, M. Dakna et al., “Urinary proteomics
in diabetes and CKD,” Journal of the American Society of
Nephrology, vol. 19, no. 7, pp. 1283-1290, 2008.

A. Alkhalaf, P. Ziirbig, S. J. L. Bakker et al., “Multicentric
validation of proteomic biomarkers in urine specific for
diabetic nephropathy,” PLoS One, vol. 5, no. 10, article
el3421, 2010.

S. Singh, T. Wu, C. Xie et al., “Urine VCAM-1 as a marker of
renal pathology activity index in lupus nephritis,” Arthritis
Research & Therapy, vol. 14, no. 4, article R164, 2012.

A.F. Rubio-Guerra, H. Vargas-Robles, J. J. Lozano Nuevo, and
B. A. Escalante-Acosta, “Correlation between circulating
adhesion molecule levels and albuminuria in type-2 diabetic
hypertensive patients,” Kidney ¢ Blood Pressure Research,
vol. 32, no. 2, pp. 106-109, 2009.

A. F. Rubio-Guerra, L. J. Cabrera-Miranda, H. Vargas-Robles,
A. Maceda-Serrano, J. J. Lozano-Nuevo, and B. A. Escalante-
Acosta, “Correlation between levels of circulating adipokines
and adiponectin/resistin index with carotid intima-media
thickness in hypertensive type 2 diabetic patients,” Cardiology,
vol. 125, no. 3, pp. 150-153, 2013.

D. Seron, J. S. Cameron, and D. O. Haskard, “Expression of
VCAM-1 in the normal and diseased kidney,” Nephrology
Dialysis Transplantation, vol. 6, no. 12, pp. 917-922, 1991.

O. Soehnlein, A. Schmeisser, I. Cicha et al., “ACE inhibition
lowers angiotensin-II-induced monocyte adhesion to HUVEC
by reduction of p65 translocation and AT1 expression,” Jour-
nal of Vascular Research, vol. 42, no. 5, pp. 399-407, 2005.

B. Fernandez-Fernandez, A. Ortiz, C. Gomez-Guerrero, and
J. Egido, “Therapeutic approaches to diabetic nephropathy—
beyond the RAS,” Nature Reviews Nephrology, vol. 10, no. 6,
pp. 325-346, 2014.

R. Aviv, K. Gurbanov, A. Hoffman, S. Blumberg, and
J. Winaver, “Urinary neutral endopeptidase 24.11 activity:
modulation by chronic salt loading,” Kidney International,
vol. 47, no. 3, pp. 855-860, 1995.

O. Domenig, A. Manzel, N. Grobe et al., “8D.05: the role of
neprilysin in angiotensin 1-7 formation in the kidney,” Journal
of Hypertension, vol. 33, Supplement 1, pp. el14-el15, 2015.

B. M. Westwood and M. C. Chappell, “Divergent pathways for
the angiotensin-(1-12) metabolism in the rat circulation and
kidney,” Peptides, vol. 35, no. 2, pp. 190-195, 2012.

P. Judge, R. Haynes, M. J. Landray, and C. Baigent, “Neprilysin
inhibition in chronic kidney disease,” Nephrology Dialysis
Transplantation, vol. 30, no. 5, pp. 738-743, 2015.

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

11

B. J. Davis, C. I. Johnston, L. M. Burrell et al., “Renoprotective
effects of vasopeptidase inhibition in an experimental model of
diabetic nephropathy,” Diabetologia, vol. 46, no. 7, pp. 961-
971, 2003.

7Z. Cao, L. M. Burrell, I. Tikkanen, F. Bonnet, M. E.
Cooper, and R. E. Gilbert, “Vasopeptidase inhibition
attenuates the progression of renal injury in subtotal
nephrectomized rats,” Kidney International, vol. 60, no. 2,
pp. 715-721, 2001.

M. W. Taal, V. D. Nenov, W. Wong et al., “Vasopeptidase
inhibition affords greater renoprotection than angiotensin-
converting enzyme inhibition alone,” Journal of the American
Society of Nephrology, vol. 12, no. 10, pp. 2051-2059, 2001.

UK HARP-III Collaborative Group, “Randomized multicentre
pilot study of sacubitril/valsartan versus irbesartan in patients
with chronic kidney disease: United Kingdom Heart and Renal
Protection (HARP)- III—rationale, trial design and baseline
data,” Nephrology Dialysis Transplantation, vol. 32, no. 12,
pp. 2043-2051, 2016.

J. B. Su, “Different cross-talk sites between the renin-
angiotensin and the kallikrein-kinin systems,” Journal of
the Renin-Angiotensin-Aldosterone System, vol. 15, no. 4,
pp. 319-328, 2014.

S. B. Nicholas, J. Liu, J. Kim et al., “Critical role for osteopontin
in diabetic nephropathy,” Kidney International, vol. 77, no. 7,
pp. 588600, 2010.

H. Yamaguchi, M. Igarashi, A. Hirata et al., “Progression of
diabetic nephropathy enhances the plasma osteopontin level
in type 2 diabetic patients,” Endocrine Journal, vol. 51, no. 5,
pp. 499-504, 2004.

A. L. Al-Malki, “Assessment of urinary osteopontin in associ-
ation with podocyte for early predication of nephropathy in
diabetic patients,” Disease Markers, vol. 2014, Article ID
493736, 5 pages, 2014.

J. Lorenzen, R. Shah, A. Biser et al., “The role of osteopontin in
the development of albuminuria,” Journal of the American
Society of Nephrology, vol. 19, no. 5, pp. 884-890, 2008.
Z.Xie, D. R. Pimental, S. Lohan et al., “Regulation of angioten-
sin II-stimulated osteopontin expression in cardiac microvas-
cular endothelial cells: role of p42/44 mitogen-activated
protein kinase and reactive oxygen species,” Journal of Cellular
Physiology, vol. 188, no. 1, pp. 132-138, 2001.

C. M. Giachelli, R. Pichler, D. Lombardi et al., “Osteopontin
expression in angiotensin II-induced tubulointerstitial nephri-
tis,” Kidney International, vol. 45, no. 2, pp. 515-524, 1994.

J. van den Born, A. A. van Kraats, M. A. H. Bakker et al.,,
“Selective proteinuria in diabetic nephropathy in the rat is
associated with a relative decrease in glomerular basement
membrane heparan sulphate,” Diabetologia, vol. 38, no. 2,
pp. 161-172, 1995.

I. S. Park, H. Kiyomoto, S. L. Abboud, and H. E. Abboud,
“Expression of transforming growth factor-f and type IV col-
lagen in early streptozotocin-induced diabetes,” Diabetes,
vol. 46, no. 3, pp. 473-480, 1997.

D. Koya, M. Haneda, H. Nakagawa et al., “Amelioration of
accelerated diabetic mesangial expansion by treatment with a
PKC S inhibitor in diabetic db/db mice, a rodent model for
type 2 diabetes,” The FASEB Journal, vol. 14, no. 3, pp. 439-
447, 2000.

F. N. Ziyadeh, B. B. Hoffman, D. C. Han et al., “Long-term
prevention of renal insufficiency, excess matrix gene



12

(51]

(52]

(53]

(54]

[55]

(56]

(57]

(58]

expression, and glomerular mesangial matrix expansion by
treatment with monoclonal antitransforming growth factor-f3
antibody in db/db diabetic mice,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 97,
no. 14, pp. 8015-8020, 2000.

D. Yavuz, N. Aksoy, Y. Taga, and S. Akalin, “P-385: effects of
enalapril and losartan on urinary fibronectin excretion in
hypertensive type 2 diabetic patients,” American Journal of
Hypertension, vol. 15, no. S3, article 170A, 2002.

V. Woo, L. S. Ni, D. Hak et al., “Effects of losartan on urinary
secretion of extracellular matrix and their modulators in type 2
diabetes mellitus patients with microalbuminuria,” Clinical
and Investigative Medicine, vol. 29, no. 6, pp. 365-372, 2006.

J. F. Navarro-Gonzélez, C. Mora-Ferndndez, M. M. de Fuentes,
and J. Garcia-Pérez, “Inflammatory molecules and pathways in
the pathogenesis of diabetic nephropathy,” Nature Reviews
Nephrology, vol. 7, no. 6, pp. 327-340, 2011.

S. S. Roscioni, H. J. L. Heerspink, and D. de Zeeuw, “The
effect of RAAS blockade on the progression of diabetic
nephropathy,” Nature Reviews Nephrology, vol. 10, no. 2,
pp. 77-87, 2014

S. Anderson and R. Komers, “Inhibition of the renin-
angiotensin system: is more better?,” Kidney International,
vol. 75, no. 1, pp. 12-14, 2009.

C. Zoja, D. Corna, E. Gagliardini et al., “Adding a statin to
a combination of ACE inhibitor and ARB normalizes pro-
teinuria in experimental diabetes, which translates into full
renoprotection,” American Journal of Physiology-Renal Phys-
iology, vol. 299, no. 5, pp. F1203-F1211, 2010.

H. H. Parving, B. Oxenbgll, P. A. Svendsen, J. S. Christiansen,
and A. R. Andersen, “Early detection of patients at risk of
developing diabetic nephropathy. A longitudinal study of
urinary albumin excretion,” Acta Endocrinologica, vol. 100,
no. 4, pp. 550-555, 1982.

C. E. Mogensen, “Microalbuminuria predicts clinical protein-
uria and early mortality in maturity-onset diabetes,” The
New England Journal of Medicine, vol. 310, no. 6, pp. 356-
360, 1984.

Journal of Diabetes Research



	Urinary Proteome Analysis Identified Neprilysin and VCAM as Proteins Involved in Diabetic Nephropathy
	1. Introduction
	2. Subjects and Methods
	2.1. Patients
	2.2. Blood Pressure, Blood, and Urine Analysis
	2.3. Urine Collection
	2.4. Quantitative Liquid Chromatography Tandem Mass Spectrometry (LC-MSn) Analysis
	2.4.1. Sample Preparation
	2.4.2. Protein Digestion and Peptide Labeling
	2.4.3. Sample Fractionation by Strong Cation Exchange Chromatography
	2.4.4. LC-MSn Analysis
	2.4.5. Database Search

	2.5. Bioinformatic Analysis of Proteomic Data
	2.6. Urinary Neprilysin and VCAM-1 ELISA
	2.7. Presentation of Data and Statistical Analyses

	3. Results
	3.1. Patients
	3.2. Protein Identification and Relative Quantification
	3.3. Proteomic Data Processing and Enrichment Analysis of Differentially Abundant Proteins
	3.4. Clustering Analysis
	3.5. Key Proteins Involved in DN and RAS Efficacy
	3.6. Urinary Neprilysin and VCAM-1 ELISA

	4. Discussion
	Ethical Approval
	Consent
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

