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SARS-CoV-2 interaction with Siglec-1 mediates trans-infection
by dendritic cells
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Antigen-presenting cells (APCs) may be resistant to SARS-CoV-2
infection but still contribute to viral pathogenesis. Lectins such as
sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169) mediate the
attachment of viruses to APCs. Here, we show that APCs effectively
capture SARS-CoV-2 within compartments via recognition of Siglec-1.
This receptor interacts with sialylated gangliosides on membranes of
SARS-CoV-2 variants, as previously shown for retroviruses or
filoviruses [1]. Blockage of Siglec-1 on monocyte-derived dendritic
cells (MDDCs) decreased SARS-CoV-2 viral transfer or trans-infection
to bystander target cells. However, monocyte-derived macrophages
(MDMs) capturing SARS-CoV-2 via Siglec-1 did not transmit infectious
particles. The presence of pulmonary APCs co-expressing Siglec-1
and SARS-CoV-2 corroborated these findings in vivo.
We used the methodology described in the Supplementary

Methods to dissect the contribution of Siglec-1 to SARS-CoV-2
pathogenesis. Siglec-1 expression is induced on APCs upon IFN-α
or LPS exposure and increased in myeloid cells of COVID-19
patients [2]. Here, we tested whether this lectin could bind SARS-
CoV-2 via recognition of sialylated gangliosides on viral mem-
branes. APCs captured incoming SARS-CoV-2 in cellular compart-
ments, eventually leading to viral degradation (Supplementary
Fig. 1,2). Raji B cell lines transfected with different lectins
(Supplementary Fig. 3A) were pulsed with SARS-CoV-2, washed
and assessed by ELISA to measure cell-associated viral nucleo-
capsid content (Fig. 1A). While Raji cells trasnfected with wild-type
Siglec-1 captured SARS-CoV-2, cells transfected with DC-SIGN,
Siglec-5, Siglec-7 or devoid of these lectins did not (Fig. 1A). Viral
uptake via Siglec-1 relied on the recognition of sialylated ligands,
as observed with Raji cells transfected with the Siglec-1 mutant
R116A, which lacks sialic acid recognition capacity and did not
trap SARS-CoV-2 (Fig. 1A). Raji cells pretreated with the α-Siglec-1

monoclonal antibody (mAb) 7-239 reduced SARS-CoV-2 uptake
(Supplementary Fig. 3B). SARS-CoV-2 variants were equally
trapped via Siglec-1 but not by the mutated Siglec-1 R116A,
indicating that sialic acid recognition is critical (Fig. 1B). Super-
resolution microscopy of SARS-CoV-2 confirmed that GM1, one of
the sialyllactose-containing gangliosides interacting with Siglec-1
[1], was detectable on 74% of virus particles (Fig. 1C). MDMs and
MDDCs treated with IFN-α to induce Siglec-1 expression displayed
higher SARS-CoV-2 uptake than nonactivated cells (Fig. 1D), and
uptake was blocked by the α-Siglec-1 mAb 7-239 (Fig. 1E). These
complementary approaches identified Siglec-1 as a central
molecule mediating SARS-CoV-2 uptake via sialic acid recognition.
Once Siglec-1 binds to HIV-1 or Ebola viruses, receptors polarize

and engulf particles within viral-containing compartments (VCCs)
that are continuous with the plasma membrane and connected to
the extracellular space [1]. To elucidate whether Siglec-1 also
recruits SARS-CoV-2 to VCCs, we used confocal and electron
microscopy and found Siglec-1-positive VCCs containing viral
particles on activated MDDCs (Fig. 1F, G and Movie 1). Siglec-1 has
a dual role in enhancing infectivity, either facilitating fusion on
APCs, as is the case for the Ebola virus, or mediating transmission
to other target cells in trans, as is the case for retroviruses [1].
Since SARS-CoV-2 fusion on APCs is limited (Supplementary
Fig. 1B), we explored the relevance of viral trans-infection. Raji cells
were exposed to SARS-CoV-2, washed and cocultured with targets
expressing or not expressing ACE2 (Fig. 1H). Raji Siglec-1 cells
cocultured with ACE2-expressing cells released higher amounts of
SARS-CoV-2 than cells expressing the R116A mutant (Fig. 1H). A
minimal viral amount was detected in cocultures with cells lacking
ACE2, excluding SARS-CoV-2 replication on Raji cells or the release of
initially trapped viruses (Fig. 1H). IFN-α-treated MDDCs cocultured
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with ACE2- and TMPRSS2-expressing target cells released higher
amounts of SARS-CoV-2 than MDMs (Fig. 1I). Experiments with
nonreplicative HIV-1 pseudotyped with SARS-CoV-2 spike confirmed
Siglec-1 transmission of SARS-CoV-2 via ACE2-dependent fusion on
target cells (Supplementary Fig. 4). Hence, SARS-CoV-2 retention on
MDDCs via Siglec-1 allows trans-infection.
Lung immunohistochemistry analysis from a SARS-CoV-2-

infected rhesus macaque used in a previous study [3] confirmed
the codetection of Siglec-1 and viral nucleocapsid in cells with
myeloid morphology (Fig. 1J). Single-cell RNA sequencing data
previously collected in African green monkeys (AGMs) allowed us
to focus on pulmonary APCs (Supplementary Fig. 5), where SARS-
CoV-2 infection upregulated SIGLEC1 expression 3 days post-
inoculation (dpi) (Supplementary Fig. 6A). Viral RNA was detected
in high numbers at 3 dpi, but the levels decreased at 10 dpi
(Supplementary Fig. 6B), consistent with the resolution of infection
in this mild COVID-19 model. When we compared the expression
of SIGLEC1 on APCs without or with associated viral RNA, only
alveolar and interstitial macrophages containing viral RNA
significantly increased SIGLEC1 expression (Fig. 1K). Thus, infection
triggers SIGLEC1 expression on all APCs, but this phenomenon is
not linked to the detection of cell-associated viral RNA. We next
analyzed the most detailed single-cell atlas [4] of human lungs of
COVID-19 patients with advanced disease and controls (Supple-
mentary Fig. 7A-B). Here, APCs were enriched for viral RNA but
lacked ACE2 and TMPRSS2 viral entry receptors (Supplementary
Fig. 7C). Pulmonary myeloid cells were enriched in COVID-19
patients as compared to those in controls (Fig. 1L; Supplementary
Fig. 8A–E), and SIGLEC1-expressing APCs were also enriched
(Fig. 1M; Supplementary Fig. 8F). Twenty percent of pulmonary
APCs expressing viral RNA also coexpressed SIGLEC1, whereas
none coexpressed other lectins or viral receptors (Fig. 1N). These
results corroborated the presence of the Siglec-1 receptor or
transcripts on APCs containing SARS-CoV-2 in vivo. Targeting
Siglec-1 or trans-infection [5] could offer cross-protection against
SARS-CoV-2 and other enveloped viruses that exploit APCs for viral
dissemination and lead to the development of new broad-
spectrum antivirals for future outbreaks.
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