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ARTICLE

Bipartite network models to design combination
therapies in acute myeloid leukaemia
Mohieddin Jafari 1✉, Mehdi Mirzaie1, Jie Bao1, Farnaz Barneh2, Shuyu Zheng 1, Johanna Eriksson1,

Caroline A. Heckman 3 & Jing Tang1✉

Combination therapy is preferred over single-targeted monotherapies for cancer treatment

due to its efficiency and safety. However, identifying effective drug combinations costs time

and resources. We propose a method for identifying potential drug combinations by bipartite

network modelling of patient-related drug response data, specifically the Beat AML dataset.

The median of cell viability is used as a drug potency measurement to reconstruct a weighted

bipartite network, model drug-biological sample interactions, and find the clusters of nodes

inside two projected networks. Then, the clustering results are leveraged to discover effective

multi-targeted drug combinations, which are also supported by more evidence using GDSC

and ALMANAC databases. The potency and synergy levels of selective drug combinations

are corroborated against monotherapy in three cell lines for acute myeloid leukaemia in vitro.

In this study, we introduce a nominal data mining approach to improving acute myeloid

leukaemia treatment through combinatorial therapy.
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Studies on cases with advanced cancers have shown that less
than 10% of patients have actionable mutations, and the
improvement of outcomes is unobserved in a randomised

trial of precision medicine based on genomic profiles1. The cur-
rent limitation of genomics-centric personalised medicine falls
short of the enormous heterogeneity and lack of actionable and
sustainable treatment options. With a few exceptions, patient
genomic signatures with clinical pathology do not typically pre-
dict drug responses. More precisely, cancer can principally be
considered a signalling disease, not a genetic disease. There is a
wealth of data that has validated this hypothesis, including sig-
nalling behaviours involved in growth factor and nutrient
responses, the process of entering and exiting the cell cycle,
ensuring that chromosomes are segregated in an orderly, efficient
and accurate manner during mitosis, and apoptosis2,3. On the
other hand, the complexity of crosstalk between signalling path-
ways necessitates to modify multiple targets in cancer cells;
otherwise, a lack of complete response, resistance, and relapse will
emerge during the course of treatment.

Despite the fact that large amounts of small molecules or drugs
have been tested on many cell lines or patient-derived samples,
using single drugs as monotherapies to cure cancer might not be a
promising strategy, as it is known that the complex interactions of
various biochemical components can induce drug resistance
during the treatment of cancer4–6. As a matter of fact, mono-
therapy, the slogan of one target one drug, is inefficient in curing
complex diseases, such as cancer7,8. Combination therapy or
polytherapy with synergistic drugs may achieve a more effective
and safer outcome by targeting several targets in the same or
separate pathways of the complex system4,9. To better identify the
synergistic drug combination based on precision medicine, we
need ex vivo drug screening to decipher the functional impact of
cancer genomics at the phenotypic level and to understand their
interactions in the context of biological networks10–12. Therefore,
understanding network biology may provide a unique opportu-
nity to leverage the rich source of drug response data to offer
network-based models for combinatorial therapy. These network
models have shown promise for developing clinical decision
support tools to discriminate functional patient subclasses13,14.
Even though there are networks reconstructed to model biological
mechanisms of diseases and predict drug combination synergies
based on molecular data15–18, network models have not been
systematically applied to patient data, such as the drug response
data of patient-derived samples, to predict patient-customised
drug combinations14. Instead, the ex vivo drug response data are
straightforwardly translated into the clinic for patient treatment
since these individualised experiments represent the efficiency of
some approved drugs on patient-derived primary cultures19,20.

In 2018, the Beat AML programme reported a cohort of 672
tumour specimens collected from 531 patients, analysing the
ex vivo sensitivity for 122 drugs alongside the mutational status
and the gene expression signatures of the samples21. Despite the
dearth of large patient-related drug response datasets, some large
cell line–based datasets, such as genomics of drug sensitivity in
cancer (GDSC) and ALMANAC, can offer a strong source of
supporting evidence for predictions. The GDSC database contains
the responses of 1001 cancer cell lines to 265 anti-cancer drugs,
providing a rich source of information to connect genotypes with
cellular phenotypes and to identify cancer-specific therapeutic
options22. The largest publicly accessible dataset for cancer
combination drugs, such as ALMANAC, was recently published
by the U.S. National Cancer Institute. This data collection con-
tained more than 5,000 combinations of 104 investigational and
licensed drugs, with synergies calculated against 60 cancer cell
lines, resulting in more than 290,000 synergy scores23. Moreover,
DrugComb (https://drugcomb.org/), a web-based portal for

storing and studying drug combination screening datasets, offers
a comprehensive visualisation of drug combination susceptibility
and synergy, which can significantly aid in the understanding of
drug interactions at unique dosage levels. Drugcomb now has
751,498 drug combinations and 717,684 single drug screens from
37 trials, which relate to 2040 cell lines and 216 cancer forms24.

In this work, we develop a network pharmacology approach to
predict potential drug combinations for acute myeloid leukaemia
(AML) based on the Beat AML dataset. We propose a drug
combination strategy using bipartite network modelling of ex vivo
drug screening data. By ex vivo drug response data, we directly
access the individual phenotypes of the patients’ cancer cells, and
by network modelling, we demonstrate the similarity of drugs and
AML patients. Then, we use the community structures within the
drug-based bipartite networks to discover effective multi-targeted
drug combination regimens (Fig. 1). Our predicted drug combi-
nations are only suggested regarding the phenotypic interactions
of the cancer cells or patient samples with the drugs without prior
understanding of the genetic origin or molecular understanding
of the disease.

Results
Defining the edge weight of bipartite networks. In the Beat
AML dataset, a set of 122 inhibitor drugs was used against 531
patient-derived AML samples. The spectra of low to high potency
of drugs were observed across the patient-derived samples.
However, this panel of small molecule inhibitors was selected
according to their activity against the proteins involved in tyr-
osine and non-tyrosine kinase pathways, particularly for AML21.
First, we determined the weight value of the drug–sample inter-
action to be used in the bipartite network reconstruction. This
value should describe the most potent compounds for inhibiting
tumour cells regarding the drug sensitivity analysis. Adding to the
relative and absolute IC50, RI value25, and AUC, we calculated the
median cell viability in the drug response experiments. The dis-
tribution of these measures was evaluated in terms of normality,
skewness, and modality (Fig. 2) to choose the best measure as a
weight in the bipartite network. The relationship of median to
AUC was a high positive value (with the highest r Pearson cor-
relation coefficient ~ 0.94). The distribution of medians was
unimodal in contrast to IC50 distributions, homoscedastic con-
trary to RI distribution, and more symmetric (non-skewed)
compared to AUC distribution. In addition to investigating the
linear relationship, that is, Pearson correlation analysis, we
computed MIC, which measures the relationship strength, and
MEV to check the closeness of the relationship to being a func-
tion. Interestingly, the relationship between median and AUC
displayed higher MAS and MEV (~0.75) compared with the
relationship of RI and AUC, meaning that median has a stronger
association with AUC. Therefore, we have chosen the inverse of
the actual median as the weight of the drug–patient interaction.

Analysis of bipartite networks. Furthermore, the full square
submatrix (with no missing entries) of patient samples and small
molecules was used as the incidence matrix of the bipartite network.
Specifically, we selected the list-wise deletion strategy to remove
missing values, and we used the complete cases of both variables.
The downstream analysis was done on an undirected weighted
bigraph comprising 176 (88+ 88) nodes and 7744 edges (Fig. 3A).
The distribution of the min–max normalised edge weights indicated
positive skewness, indicating that the cells were not highly sensitive
to most drugs. All the performed analyses were also carried out for
the GDSC dataset as proof of concept. The undirected weighted
bigraph of the GDSC dataset comprised 532 (266+ 266) nodes and
70,756 edges (Fig. 3C). The distribution of the min–max normalised
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edge weights showed positive skewness in this dataset as well
(Fig. 3D), again indicating low potency for most of the drugs.
Therefore, exploring the best combination is not straightforward,
and categorising drug–sample interactions seems to be required.
Following the projection of these bigraphs as outlined in Fig. 3, two
projected graphs, the patient similarity network (PSN) and drug
similarity network (DSN), were reconstructed, such that each edge
was obtained by multiplying the weighted incidence matrix. Thus,
the edge weights of the projected graphs indicate the profile simi-
larities of patient samples in PSN and small molecule inhibitors in
DSN. Note that the edge weight values in DSNs and PSNs differ due
to the different matrix multiplications.

The PSN and DSN of the Beat AML dataset contained 88
nodes and 3828 edges (Fig. 4), while in the GDSC projected
similarity networks, there were 266 nodes and 35,378 edges. In
Fig. 4, the larger the node size, the more sensitive patient-derived
samples and the more potent drugs. In this subset of the Beat
AML dataset, without missing data, patient 16–00627 was found
to be the most sensitive and SNS-032 was the most potent
inhibitor (See Supplementary Fig. 1). The community detection
was subsequently done for both similarity networks via
modularity score optimisation, resulting in two communities
for DSN with 50 and 38 small molecules, and two communities
for PSN with 39 and 49 patient samples. Alternatively, we
identified two clusters of patients with distinctive drug response
profiles, suggesting two subcategories of the disease. Also, we
detected two clusters of small molecules, which pointed to
disparate inhibiting patterns on the patient samples. In the
following steps, we presented evidence of the consistency of
cluster members in both networks using prior knowledge.

Intra-cluster homogeneity analysis of similarity networks
Drug similarity network. Focusing on small molecules, we pre-
sumed that inhibitory molecules with correlated effects on cell
survival tended to have similar structures, purposes, and
functions26–29. Therefore, we evaluated the similarity of SMILES
structures, the analogy of protein targets, and the biological
pathways of the detected clusters in the DSNs against random
groupings of molecules. The distribution of the Dice similarity of
the SMILES structures differed significantly between the random
grouping and the clusters based on network topology (Fig. 5A).
The statistical test of the median difference also resulted in the
lowest p-values for both the pairwise two-sample Wilcoxon and
Kruskal–Wallis rank sum test (adjusted p-value < 2e− 16).
Evaluating their target similarities, we explored the protein targets
of the small molecule inhibitors and examined the number of
target intersections of small molecule pairs within the clusters. In
this analysis, DTC and OmniPath were applied to explore the
binding targets of small molecules and second-order node
neighbours (secondary targets) in the signalling network,
respectively. Assuming that proteins usually correspond to mul-
tiple signalling pathways, the KEGG database was used to check
the number of pathway intersections of the protein targets for
each pair of small molecules. The median similarity measures of
the intersections within the network clusters significantly excee-
ded those for a large set of random pairs of small molecules
(Fig. 5B–D) (adjusted p-value < 2.2e− 16, Kruskal–Wallis rank
sum test). Comparable findings were obtained from the analysis
of the GDSC dataset (Fig. 5E–H) (adjusted p-value < 2.2e− 16,
Kruskal–Wallis rank sum test), suggesting that our method is also
reproducible for the analysis of cell line-based datasets.
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Fig. 1 Flowchart of the study. Data collection and pre-processing began with the Beat AML drug response dataset, which was then followed by incidence
matrix extraction, weighted bipartite network reconstruction, network projection, and community detection. The intra-cluster homogeneity analysis was
carried out using the similarity of drug and patient/cell members of all clusters according to available gene expression profiles, drug–target interactions,
protein–protein interactions, and biological pathways using the ChEMBL, Omnipath, DrugTargetCommons, and KEGG databases. A high-throughput drug
screening experiment was then used to investigate the synergistic behaviour of each drug combination that had been suggested. Furthermore, additional
drug response datasets, GDSC and ALMANAC, were used for the intra-cluster homogeneity analysis and inter-cluster drug combination strategy steps,
respectively, in order to examine whether the proposed workflow is dataset independent.
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Patient and cell-line similarity network. Next, we examined the
member consistency of the patient clusters in the PSN using other
available data from patient samples in the Beat AML dataset. The
gene expression data, including the RPKM and CPM of the sam-
ples, were utilised to check the pairwise similarity of the cluster
members. The similarity measures were also computed for a large
set of random pairs of patient samples to compare with our patient
stratification using network clustering. When we compared the
harmonic mean similarities of the RPKM values, the pairwise
similarities of patients within the clusters significantly exceeded
those of the randomly selected patients (adjusted p-value <
2.2e− 16, Kruskal–Wallis rank sum test) (Fig. 5I). For the CPM
dataset, the distributions of Jaccard distance were shown, where the
distances within the clusters were statistically lower than those in
the random group (adjusted p-value = 4.655e− 05, Kruskal–Wallis
rank sum test) (Fig. 5J). For the GDSC dataset, we used the
expression profiles of signature genes provided by the SPEED
platform30. Then, differentially expressed genes were used to pro-
vide gene signatures of perturbed cancer-related pathways. In this

dataset, there were 11 activity scores to represent the activity levels
of 11 well-known pathways for each cell line. Therefore, we com-
pared the distance distributions of the cell line pairs in the clusters
to a set of random pairs of cell lines. Our findings indicated that the
distances within the clusters were much lower than those in the
random grouping (adjusted p-value = 6.94e− 08, Kruskal–Wallis
rank sum test) (Fig. 5K).

The Beat AML study also provided the mutational landscape in
AML. Here, we used a dataset of non-benign gene mutations to
characterise both clusters of patient samples. As shown in Fig. 6,
both clusters of patients demonstrate a distinct profile of gene
mutations regarding the involved genes and the ranks of genes
based on frequency. Previously, Tyner et al. highlighted the
importance of TP53 and ASXL gene mutations, both responsible
for the broad drug resistance patterns21. They further showed that
mutations in certain genes may identify disease subgroups
sensitive to certain inhibitors. For example, they found that
patients with FLT3-ITD and NPM1 mutations were sensitive to
SYK inhibitors. Interestingly, our molecular-independent

Fig. 2 Comparison of different measures for drug response experiments in the Beat AML study. The lower triangle of this pairwise comparison matrix
shows the pairwise scatter plots for ic50_abs (Absolute IC50), ic50_rel (Relative IC50), RI (Relative Inhibition), median (the median of cell viability), and
AUC (Area Under Curve of cell viability fitted line). The corresponding measures in all 10 possible pairwise associations are shown on the x- and y-axis in
each scatter plot. The diagonal panel describes the histogram of each measure independently. The upper triangle represents the Pearson correlation
coefficients of the corresponding pairwise comparisons. Source data are provided as a Source Data file.
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network-based approach to characterise patient samples also
captured the significance of the mutations above. Furthermore,
our findings indicate that TP53, DNMT3A, and NRAS were the
most frequently mutated genes in one of the patient clusters,
while TET2 and NPM1 were the most frequently mutated genes
in the other cluster, along with the FLT3-ITD mutation. These
results suggest that the phenotype-level information in drug
response data can corroborate the genotype-level information to
stratify patients more effectively.

Inter-cluster design strategy for drug combinations. We
assumed that the best drug combination strategy was the selection
of one drug from each cluster to block potential drug resistance
mechanisms and cancer recurrence. A common drug combination
design could be the use of the most effective drugs of each cluster to
inhibit cancer cells more effectively. However, other pharmacologic
evidence can encourage the choice of the best combination of drugs
more specifically. As the focus in drug combination studies also lies
in finding the most synergistic drug combinations, previously

Fig. 3 Bigraphs of cancer datasets. The general overview of the bipartite graphs for the Beat AML (A) and GDSC (B) datasets is represented with the blue
nodes as small molecule inhibitors, and red and orange nodes as patient-derived and cell line samples, respectively. The distributions of edge weight values
are also depicted using violin plots together with scatter plots. From left to right, the lines in the violin plots reflect the 25th percentile, median, and 75th
percentile. The colourful spots on the dim background depict how the original data was distributed. The x-axis represents edge weight, whereas the y-axis
shows relative frequency. Source data are provided as a Source Data file.

Fig. 4 DSN and PSN of the Beat AML dataset. The force-directed layout was selected to depict both networks. The thickness of the edges corresponds to
the edge weight of the original bipartite networks after network projection, considering the weight values. The edge thickness represents the weight value
of similarity between each pair of patient samples or small molecules. The node size is proportional to the strength of each node, which is the sum of the
edge weights of the adjacent edges for each node. Source data are provided as a Source Data file.
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reported studies were used to explore the synergy values (i.e., the
degree of interactions) of drug combinations31–34. First, we checked
if the combinations of the top five drugs (based on the median
values of cell viability) of each cluster in the Beat AML and GDSC
datasets (Table 1) were found in the DrugComb database. However,
there were no reports regarding the 25 possible combinations of
these drugs, so we aimed to compare the average synergistic values
for these 10 drugs in the whole database. Figure 7 shows the dis-
tributions of synergy values in DrugComb, highlighting the mean of
the synergy of the bottom and top five drugs in each network
cluster. This analysis revealed the reasonably high potential of the
combinations of the top five drugs according to the average median
values in both Beat AML and GDSC datasets (p-value = 2.96e− 02
and p-value = 3.56e− 02, Wilcox rank sum test, respectively).

Synergy analysis of the inter-cluster combination of drugs. For
further validation of our strategy for predicting synergistic drug

combinations using network modelling, we focused on the
ALMANAC dataset23, which has 1,892,650 combinations of 103
inhibitors tested on 60 cell lines. The same procedure as described
in Fig. 1 was implemented to extract the drug modules in the
DSN according to the available single drug experiments in this
dataset. The median inhibition values of the single-drug
responses on cell lines were used as weight values in the bipar-
tite drug-cell line network. Using the projection of the weighted
DSN, clusters of drugs with similar effect profiles on cell lines
were extracted.

According to our predefined assumption, the combinations of
drugs from different clusters were used as the positive group and
the combinations of drugs within the clusters as the negative
group. Then, we retrieved the synergy and sensitivity scores of the
combinations for both groups using the DrugComb computed
values, especially the highest single agent (HSA), zero-interaction
potency (ZIP), Bliss, Loewe, combinational sensitivity score
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Fig. 5 Beat AML and GDSC intra-cluster homogeneity analysis. A The distribution of SMILE structure similarities (n = 10,000), B the distribution of
pairwise intersection size of immediate binding protein targets based on the DTC database (n = 814), C secondary targets in the OmniPath database
(n = 1524), and D corresponding KEGG pathways are shown for the DSN clusters compared to random grouping in Beat AML dataset (n = 340,000).
Similarly, for the GDSC dataset, E the distribution of SMILE structure similarities (n = 15,160), F the distribution of pairwise intersection size of immediate
protein targets based on DTC database (n = 1257), G secondary targets in the OmniPath database (n = 4222), and H associated KEGG pathways are
depicted for DSN clusters compared to random grouping (n = 17,300). The intra-cluster homogeneity analysis was performed for PSN based on gene
expression. I The distribution of similarity of patients’ RPKM (n = 542), J the distribution of distances of patients’ CPM in the Beat AML dataset (n = 405),
and K the distribution of distances of pathway-based activity scores in the GDSC dataset are represented (n = 84,485). The coloured dots and the lines in
the centre of the boxplots denote the mean and median, respectively, while the left and right hinges indicate the 25th and 75th percentiles, respectively.
The left and right whiskers represent values that are no more than 1.5 times the interquartile range (IQR). The points outside the whiskers are outlier
predictions. Source data are provided as a Source Data file.
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(CSS), and S synergy. Figure 8A shows that the positive group of
drug combinations exhibited a significantly higher value of drug
synergy than the negative group. This result was evident for all
types of synergy measures, indicating the superiority of the
strategy of using inter-cluster drug combinations. These data also

indicate the efficiency of our proposed network-based modelling
to discern drugs with similar profile effects on biological samples.
Also, our proposed strategy of drug combination using the drugs
of contrary clusters is more likely to acquire higher drug synergy
and potency.

High-throughput drug screening for the proposed drug combina-
tions in AML cell lines. To further demonstrate the ability of our
model in predicting specific and robust drug combinations,
experimental corroboration was conducted on a subset of 45 drug
combinations for 3 AML cell lines, MOLM-16, OCI-AML3, and
NOMO-1. Also, 25 out of 45 drug combinations originated from
the top five drugs of the two clusters as the positive group, where
higher synergy was predicted by our model, while others were the
combinations of the top five drugs within each cluster, which
transformed into 20 combinations as the negative group. The
findings of the experimental validation of 135 drug-drug-cell line
triplets are depicted in Fig. 8B using the ZIP, Bliss, HSA, and
Loewe models to assess the degree of synergy. The drug combi-
nations predicted by our model in the positive group were vali-
dated as more synergistic when considering positive scores as
evidence of synergy degree (Fig. 9 and Supplementary Fig. 2).
These findings were statistically more significant when using Bliss
or HSA measures. These cell lines were chosen based on their
genetic backgrounds and to represent a wide range of genetic
variations in the Beat AML dataset’s ex vivo models. We did
correlation analysis of the ten (top five drugs of two clusters)
selected single drug response between ex vivo model and three
cell lines to illustrate the extrapolation of drug sensitivity studies
in cell lines for our prediction on ex vivo models. The majority of
patient-derived samples were highly correlated with these three
cell lines, according to our findings (Supplementary Fig. 3).
Overall, these results demonstrate the robustness of network-
based predictions across various experimental setups and synergy
scoring models, and the ability of our network-based model to
detect new combinations of treatments.

Discussion
The availability of single-drug response datasets for cancer cell
lines has prompted us to develop methods for predicting and
selecting the most effective combination therapy. Several AI-
based combination prediction approaches have recently been
introduced that combine high-throughput molecular profiling
data with drug response data to improve prediction and valida-
tion. To reflect the relationships between drug combinations,
Narayan et al. used dose-response data from pharmacogenomic
encyclopaedias and represented them as drug atlas32. Combining
with the pathway/gene ontology data, their approach enables the
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Fig. 6 The frequently mutated genes in the clusters of Beat AML
patients. The non-benign mutations with the probability of being damaging
is greater than 0.5 were selected to find the intersection of mutated genes.
The gene names are shown with the relative frequency of mutated genes in
each cluster (e.g., NPM1—0.38 indicates 38% of the patients in cluster 1
have this mutation). The lines between mutated genes highlight the rank
shift in the two clusters. Source data are provided as a Source Data file.

Table 1 Top five small molecules in each cluster of DSNs.

Cluster 1 Cluster 2

Beat AML
dataset

SNS-032
(BMS-387032)

Dovitinib (CHIR-258)

Flavopiridol Nintedanib
Panobinostat Doramapimod (BIRB 796)
AT7519 KI20227
Bortezomib (Velcade) Cabozantinib

GDSC dataset Amuvatinib Sepantronium bromide
(YM-155)

GSK690693 Belinostat
Vinblastine AT-7519
AS605240 CAY10603
HG6-64-1 AR-42
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Fig. 7 Distribution of drug combination synergy scores in the DrugComb database. The median of synergy zip score for the top and bottom five drugs are
represented by dashed lines in Beat AML dataset (A) and the GDSC dataset (B). The y-axis represents the probability density function of synergy zip in the
DrugComb database, whereas the x-axis represents synergy computed using the ZIP method. Source data are provided as a Source Data file.
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prediction of combinatorial therapy, i.e., vulnerability when
attacked by two drugs that can be related to tumour-driving
mutations. They repeated the predicted synergies in several
tumours, including glioblastoma, breast cancer, melanoma, and
leukaemia mouse models, highlighting the cancer-independent
prediction power of drug combination treatment. Ianevski et al.
also showed that bulk viability single-agent screening assays had
unexpectedly large predictability for AML cell subpopulation co-
inhibition effects when combined with scRNA-seq transcriptomic
data20. They developed a machine-learning model by combining
single-cell RNA sequencing with ex vivo single-agent testing for
AML with a different genetic background. They displayed an
accurate prediction of synergistic patient-specific combinations
while avoiding the inhibition of non-malignant cells. However,
while our biomarker-independent approach relies only on the
phenotypic level of information, that is, drug-response data, our
predictions were compatible with the molecular profiling and
biochemical annotations when it came to assessing the intra-
cluster homogeneity of drugs, patients, and cell lines. Based on
drug response in genetically diverse patient populations, Palmer

and Sorger, on the other hand, emphasised the independent drug
action in combinatorial therapy rather than drug additivity or
synergy35. They argued that heterogeneous responses across a
population or patient-to-patient variability have a greater impact
on predicting effective drug combinations. In our model, we also
considered the patient’s level of information when recommending
drug combinations. The reconstruction of the bipartite network
on a large sample of the patient population and the subsequent
clustering of patients and drugs took population heterogeneity
into account for drug combinations, and we also computed sev-
eral synergy measures to track the synergistic behaviour of drugs
rather than drug additivity.

Moreover, a training machine-learning model for predicting
drug combination response, comboFM, was recently introduced
using drug combination screening data as a training dataset31.
comboFM uses a factorisation machine to model cell context-
specific drug interactions through higher-order tensors. Julkunen
et al. demonstrated that comboFM enables leveraging informa-
tion from previous experiments performed on similar drugs and
cells as training data when predicting responses of new
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Fig. 8 Synergy of drug combinations. A The combinational sensitivity (CSS) and synergy scores (S, synergy_bliss, synergy_hsa, synergy_loewe, and
synergy_zip) of drug combinations in the ALMANAC dataset. The top five drugs of cluster 1 (Cabazitaxel, 5-FU, Cytarabine hydrochloride, Methotrexate,
Bleomycin) and cluster 2 (CHEMBL17639, Gefitinib, Ixabepilone, Dexrazoxane, Eloxatin) for inter-cluster and intra-cluster combinations are shown in blue
and red as the positive and negative groups, respectively. Each plot contains a scatter plot, a notch box plot, and mean values for each group (n = 1300).
The coloured dots and lines in the centre of the notched boxplots represent the mean and median, respectively, and the notches on the sides of the box
plots can be interpreted as a comparison interval around the median values. The left and right hinges denote the 25th and 75th percentiles, respectively,
while the left and right whiskers show values that are less than 1.5 times the interquartile range (IQR). Outlier predictions are shown by the points outside
the whiskers, while the colourful spots in the dim background show how the original data was distributed. The p-value represents the one-sided Student’s
t-test significance for each score separately. B The measured synergy of drug combination scores in the experimental validation of selected drugs based on
network modelling of the Beat AML data in three AML cell lines. Four measures of synergy, that is, ZIP, HSA, Bliss, and Loewe, are seen as box plots for the
experimental confirmation of the chosen predictions (n = 14). Inter-cluster drug combinations are shown in blue as the positive group, and the intra-cluster
combinations are shown in red as the negative group. The mean and median are shown by coloured dots and lines in the centre of the boxplots,
respectively. The 25th and 75th percentiles are represented by the left and right hinges, respectively, while the left and right whiskers reflect values smaller
than 1.5 times the interquartile range (IQR). The p-value represents the two-sided Student’s t-test significance for each score separately. All source data
are provided as a Source Data file.
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combinations, insofar as untested cells (testing data). They dis-
played high predictive performance and robust applicability of
comboFM in various prediction scenarios using experimental
validation of a set of previously untested drugs. However, we
expounded that the prediction accuracy of the inter-cluster design
strategy of drug combinations based on multipartite networks can
be achieved independently from the high-quality training dataset.

Strictly speaking, in the present study, we revisited the analysis
of nominal variables, namely drug name and sample identity, in
drug screening results for data mining using graph theory, which
we termed the nominal data mining approach36,37. We first
considered data quality control, such as outlier detection, outlier
treatment, biological and technical replicates. Because of the
discrete explanatory independent variable (i.e., drug doses)38, we
assumed that regression-based measurements might even be
discarded; hence, we demonstrated that median values can
represent an appropriate weight score in comparing drug func-
tionality for network reconstruction. These values were used to
quantify and weight the bipartite network, which reflects the
interaction strength of the drugs and biological samples. Then,
two similarity networks were provided by weighted network
projection to detect the topological structure of the network
communities. We showed that network communities represent a
rationale starting point for proposing a combinational drug
regimen. Our computational and experimental validation steps
amplified the logic of our proposed platform39. Hence, while

training datasets were not required in this method to predict drug
combination, drug response data alone were adequate for the
prediction, without integrating prior knowledge of biochemical
profiling.

Noting that the occurrence of synergistic toxicities, which can
arise from additive toxicities when targets are shared by the
combined drugs, is a major barrier to applying combination
therapy in the clinic40. If drug screening data on healthy cells are
available, we suggest that a similar strategy for predicting toxicity
without losing efficacy is also essential before future translational
experiments. Ianevski et al. previously illustrated the importance
of a desired synergy-efficacy-toxicity balance for predicting
patient-customised drug combinations20. Hence, drug-response
data on healthy cells are demanded to complement synergistic
interactions of drug combinations with toxicity predictions;
where drug synergy and toxicity data are optimally matched for
combinatorial therapy, stronger and longer-lasting outcomes of
drug combinations can be predicted. While we aimed to identify
combinations with maximal synergy, we cannot discount that the
effects, especially at the patient level, could be lack of toxicity
rather than synergistic, and that the efficacy of the combinations
may be limited to specific patient populations.

Considering these possibilities, prospective work will necessi-
tate the provision of further patient-derived experimental vali-
dations. Despite the fact that our prediction depends solely on the
drug sensitivity dataset, our suggested combinations address the
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Fig. 9 The top synergistic drug combinations identified in the positive group. These matrices represent the highest synergistic combination based on
four measures of synergy. HSA and LOEWE methods indicate that the cabozanitinb and AT7519 combination is the highest synergistic combination. The
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common mutational assigned aetiology of AML. This combina-
tion was proposed purely on the grounds of the phenotypic
response of patient samples to the drugs, with no previous
knowledge of the disease’s genetic origin. In this regard, for newly
diagnosed leukaemia, we recommend evaluating top combina-
tions rather than all potential combinations (which is unfeasible)
in an ex vivo drug sensitivity and resistance testing (DSRT)
method reported in41 to allow rapid translational precision
medicine.

Methods
Figure 1 presents the entire workflow of this study. The weighted bipartite network
is constructed using the Beat AML dataset. This dataset is a collaborative research
programme of 11 academic medical centres providing data on AML samples while
offering genomics, clinical, and drug responses. It includes a cohort study of 672
tumour specimens collected from 531 patients and an analysis of 122 drug
responses. To construct a weighted bipartite network, the best response read-out of
drug potency was defined using information-based measures. Then, two unipartite
networks were obtained using network projection on the samples and drugs. Next,
communities of two projected networks were extracted, and intra-cluster homo-
geneity analysis was performed using the similarity of drugs and patients/cell
members based on available gene expression profiles for patients, protein–protein
interaction network, and biological pathways. The drug candidates for drug
combination were selected from two different communities, and a high-throughput
drug screening was used to assess their synergistic effects.

Defining the response read-out for drug screening experiments. Pharmaco-
genomic studies require extensive standardisation to avoid inconsistency of drug
response data for further research and unbiased predictions42,43. Therefore, first,
we controlled the quality of cell viability data to select the potent compounds. To
achieve this, we examined the raw datasets regarding the availability of replicated
data and outlier detection, followed by assessment of distribution, pairwise cor-
relation, and homoscedasticity analyses to select the best response read-out or
measure of drug potency. This analysis was performed using information-based
nonparametric measures available in the Minerva package44 by computing the
maximal information coefficient (MIC), maximum edge value (MEV), and max-
imum asymmetry score (MAS). Furthermore, the relative and absolute IC50 (i.e.,
IC50 measures, which were computed based on the top and bottom plateaus of
the curve or based on the blank and the positive control values, respectively),
relative inhibition (RI) value, area under curve of drug-response fitted line (AUC),
and the median of cell viability in the drug response experiments were assessed to
select the best measurement. The chosen measurement was later used as a weight
value for the edges of the weighted bipartite network reconstruction.

Reconstruction and analysis of the bipartite network model. In our bipartite
network model, one group of nodes contained drugs and the other group contained
cancer cell lines (in GDSC and ALMANAC) or patient samples (in Beat AML).
The edges were defined by incidence matrices derived from the min–max nor-
malised values:

Normalised value ¼ value�minimumðvaluesÞ
maximum valuesð Þ �minimumðvaluesÞ ð1Þ

This normalisation transforms these values, which indicate the potency of small
molecules on cancer cell lines or patient samples, into a decimal between 0 and 1.
Next, we projected the bipartite network into two similarity networks: the drug
similarity network and sample similarity network. In the network projection, two
unipartite graphs were derived from a bipartite graph, resulting in the deduction of
a similar node’s relationships. In this study, we projected similarity networks that
consider the edge weights in the bipartite network. Then, we studied the general
properties of the networks, such as network heterogeneity, centralisation, and
clustering coefficients. The critical step was community detection within the
projected networks to discern functionally similar drugs and cells or patients
regarding drug response. The modularity index was used to determine the best
community detection algorithms, including infomap45, fast greedy46, and
spinglass47. Furthermore, we explored the network modules to propose a strategy
for drug combination design.

Computational corroboration. Multiple computational methods were applied to
validate the predictions of the drug combinations and patient or cell stratification.
The validation of the community structures is like the general cluster quality
assessment method, and we assessed the clustering performance by matching the
clustering structures to prior knowledge. This validation is foundational to possible
drug combination designs. Alternatively, the combination of distinct drugs in terms
of chemical structure, target profile, and implicated biological pathways is likeliest
more efficient than similar drugs7. Therefore, we used the drug–target network,
protein–protein interactions, and signalling networks to justify the similarity of
cluster elements. Thus, Chembl48, drug target commons (DTC)49, KEGG50, and

the OmniPath database51 were used to extract prior annotations about the drugs
and their targets. To compare the chemical structures of the drugs, a simplified
molecular input line entry system (SMILES) of the drug molecules was retrieved
and transformed into an extended connectivity fingerprint (ECFP) to assess the
Dice similarity of the molecules. The Dice similarity is one of the standard metrics
for molecular similarity calculations in which

SA;B ¼ 2c=ðaþ bÞ ð2Þ
where a is the number of ON bits in molecule A, b is the number of ON bits in
molecule B, and c is the number of ON bits in both A and B molecules52. Also, the
corresponding gene expression profiles were used to assess similarity within a
patient or cell line modules in the sample similarity networks. For reads per
kilobase per million (RPKM) with negative values and counts per million (CPM),
we used the Harmonic similarity and Jaccard distance, respectively, as follows:

SP;Q ¼ 2 ´ ∑n
i¼1 Pi ´Qi

� �
= Pi þ Qi

� � ð3Þ

DP;Q ¼ 1�∑n
i¼1 Pi ´Qi

� �
= ∑n

i¼1Pi
2 þ∑n

i¼1Qi
2 þ∑n

i¼1Pi ´Qi

� � ð4Þ
where P ¼ P1; P2; � � � ; Pn

� �
and Q ¼ Q1;Q2; � � � ;Qn

� �
denote the vector of gene

expression values for patients or cell lines, and n is the number of genes. In all
cases, the similarity or distance scores were compared with the random grouping of
small molecules or biological samples to perform statistical testing.

The synergy scores provided by the DrugComb database53 were used to
corroborate synergistic combinations of our network-based predictions, including
HSA, Bliss, Loewe, ZIP, CSS, and S. Let us assume that drug 1 at dose x1 and drug 2
at dose x2 are used to produce the effects of y1 and y2, and yc is the effect of their
combination. Drug effect is usually measured as a percentage of cell death, and a
drug combination is classified as synergistic, antagonistic, or non-interactive54. The
expected effect denoted by ye represents a non-interactive level, and it is quantified
based on a reference model. Several mathematical models have been introduced to
calculate the expected effect by assuming specific principles. The HSA model55

considers the expected combination effect as the maximum of single-drug effects,
that is,

ye ¼ max y1; y2
� � ð5Þ

The Loewe model56 assumes that an individual drug produces ye at a higher
dose than in the combination. In the Bliss model57, ye is the effect of the two drugs
acting independently. The ZIP model54 considers the assumptions of the Loewe
and Bliss models by assuming that, at the reference model, two drugs do not
potentiate each other. CSS determines the sensitivity of a drug pair, and S synergy
is based on the difference between the drug combination and the single drug
dose–response curves25.

Cell culture and reagents. AML cell lines MOLM-16,NOMO-1, and OCL-AML3
were purchased from DSMZ-German Collection of Microorganisms and Cell
Cultures (DSMZ no. ACC 555: MOLM-16, ACC 542: NOMO-1, ACC 582: OCI-
AML3). MOLM-16 and NOMO-1 were cultured in RPMI-1640 medium (Gibco/
Thermo Fisher Scientific, Waltham, MA, USA) and OCI-AML3 in α-MEM (with
nucleosides; Gibco/Thermo Fisher Scientific) supplemented with GlutaMAX
(Gibco CTS/Thermo Fisher Scientific), foetal bovine serum (20% for MOLM-16
and OCI-AML3; 10% for NOMO-1), and antibiotics.

Drug combination testing. The compounds dissolved in dimethyl sulfoxide
(DMSO) were plated using Beckman Coulter Echo 550 Liquid Handler (Beckman
Coulter, Indianapolis, IN, USA) combined with seven concentrations for each
compound in half-log dilution series with 2.5/7.5/25 nl volumes, covering a 1,000-
fold concentration range on black clear-bottom TC-treated 384-well plates
(Corning #3764, Corning, NY, USA). All doses were randomised across the plate to
minimise any plate effects. As positive (total killing) and negative (non-effective)
controls, 100 μM of benzethonium chloride and 0.2% DMSO were used,
respectively.

Cells were plated on pre-administered compound plates in 25 μl (2500, 2000, or
1250 cells per well for MOLM-16, NOMO-1, and OCI-AML3 cell lines,
respectively) using BioTek MultiFlo FX RAD (5 μl cassette) (Biotek, Winooski, VT,
USA) and incubated for 72 h at 37 °C and 5% CO2. Cell viability was then
determined by dispensing 25 μl of Cell Titre Glow 2.0 reagent (Promega, Madison,
WI, USA). Plates were incubated for 5 min and centrifuged for 5 min (173 × g)
before reading luminescence with a PHERAstar FS multimode plate reader (BMG
Labtech, Ortenberg, Germany).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analysed during the current study are publicly available in the
abovementioned repositories, i.e., Beat AML [http://vizome.org/aml/], GDSC [https://
www.cancerrxgene.org/], ALMANAC [https://drugcomb.org/]. Also, the generated data
in this study have been deposited in the Zenodo database under this DOI link [https://
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doi.org/10.5281/zenodo.5789170]. Source data are provided with this paper. The
remaining data are available in the Article and Supplementary Figures.

Code availability
All analyses reported in this study used the statistical software R (v.4.0.0). All related R
files are available in this link; https://doi.org/10.5281/zenodo.5789170.
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