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Abstract

Emerging vector-borne infectious diseases
pose one of the most significant global threats
to human health. The outbreaks and burden of
vector-borne infectious diseases are estimated
to rise in the face of climate warming. Many
emerging infectious diseases, such as COVID-19
and Ebola virus disease, are zoonoses; diseas-
es caused by an agent transmitted between ani-
mals and humans, but these diseases are also
followed by human-to-human transmission. In
this thesis, we consider arthropod-borne infec-
tious diseases, which are also zoonoses but in
which humans are most commonly infected as
dead-end hosts. Mosquitoes and ticks are vec-
tors for numerous pathogens causing infectious
diseases and are globally responsible for millions
of human deaths each year. Most vector-borne
diseases emerge in the subtropics and tropics,
but endemic diseases are present also in northern
latitudes. Due to climate warming, numbers of
disease cases, and disease severity and also vari-
ety are expected to increase especially in North-
ern Hemisphere which become more suitable
for vectors to spread. To avoid costs from the
loss of human lives or money, there is a strong
need to assess impacts on vector species and
their habitats. It is a global responsibility to fo-
cus on improving vector control strategies, and
disease prevention, first, to “ensure healthy lives
and promote well-being for all at all ages” (The
United Nations’ Sustainable Development Goal
3), but also to understand that human health is
closely connected to animal health and environ-
ment (One Health- approach). As such, it is vital

to produce new information on vectors’ and vector-
borne disease’ (VBD) distributions and the influ-
ential factors on their emergence, particularly, in
understudied regions.

In this thesis, environmentally suitable areas
for the mosquito and tick species of medical im-
portance in boreal and tropical landscapes, and the
risk areas for two endemic VBDs in Finland were
identified for the first time. We utilized climate,
vegetation, host and vector data known to affect
emergence of these vectors and VBDs at varying
spatial scales. To our knowledge, this is the first
species distribution modelling (SDM) study on
vector species which uses good quality host data,
and there are only a handful of earlier studies which
included suitability data of vectors to predict VBD
occurrence. We used SDM approach with a suite
of predictive modelling techniques in two different
platforms to explore correlations in species-host-
disease-environment relationships and to predict
spatial patterns of vector distributions and VBD
risk in Finland, and in Kenya. Although SDM ap-
proaches are widely used by international and na-
tional health agencies such as European Centre for
Disease Prevention and Control (ECDC), Centers
for Disease Control and Prevention (CDC) and
World Health Organization (WHO) in their vector
control strategy and disease prevention programs,
it is a new study approach in Finland with no ear-
lier research. In tropical regions, including Kenya,
where the need for vector control and disease pre-
vention is highest, rural regions, particularly, re-
main understudied.
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Using data on mosquito collections in the Ta-
ita Hills region in Kenya, we found that Stegomy-
ia (St., Aedes) and Culex (Cx.) genera, of which
species are vectors of many significant patho-
gens in the tropics, are widely distributed across
the region, both in villages and rural areas with
rich and sparse vegetation. In Finland, we iden-
tified high-risk areas for tick-borne-encephalitis
(TBE), one of the most severe endemic infectious
disease in the country, based on environmental
and host data, and under current and future cli-
mate. Future climate forecasts indicated a wider
geographical extent of TBE risk especially in
southern and western coast, and southern Lap-
land. We also identified environmentally suitable
areas for the potential SINV vectors Aedes (4e.
) cinereus/geminus, Cx. pipiens/torrentium and
Culiseta (Cs.) morsitans in Finland, and estimat-
ed the risk areas for SINV infections on envi-
ronmental, host and produced habitat suitability
data on vectors. Municipalities with an increased
risk for SINV infections were characterized by
high environmental suitability for Ae. cinereus/
geminus, high densities of black grouse, caper-
caillie and hazel grouse, a high proportion of
mixed forest in peatlands, and a high number
of lakes. The risk of transmission was predict-
ed to be greatest in eastern and central Finland,
along the western coast up to southern Lapland
in latitudes between 61-64°N. Two tick species;
Ixodes (1) ricinus and Ixodes (1.) persulcatus are
responsible of transmitting TBE virus (TBEV) in
Finland, and we estimated their distributions uti-
lizing historical data, and newly collected ticks,
of which we also screened pathogens TBEV and
Borrelia burgdorferi sensu lato (b.s.l.). In these
ticks, we found none positive for TBEV, but =~
47 % of the tick pools were positive for Borrel-
ia b.s.l. High suitability areas for 1. ricinus oc-
curred throughout southern and central Finland
up to Central Ostrobothnia (64°N), excluding the
narrow areas in Ostrobothnia and Pirkanmaa. For

L persulcatus, the regions northwards from Os-
trobothnia along the northern coast up to south-
ern Lapland (66°N), Kainuu, North Savo, North
Karelia, and areas in Pirkanmaa and Paijat-Hame
were estimated to be suitable areas. Based on the
predictions, locations with higher air temperature,
higher relative humidity, higher precipitation sum
and middle infrared reflectance (MIR) levels, and
higher densities of white-tailed deer, European hare
and red fox were suitable for /. ricinus. For I. per-
sulcatus, higher mean precipitation, higher densi-
ties of white-tailed deer, roe deer and mountain
hare indicated higher probability of occurrence.

Together, these results have implications for
improving knowledge on disease prevention, ap-
plying geographic information systems (GIS) and
SDM approaches for identifying risk areas and
environmental determinants, optimizing the use
of limited resources for mitigation strategies, and
improving public health outcomes. This data is
vital for better understanding of the current and
future threats, and will help to find facts which as-
sist the authorities in decision-making on correct
and effective actions. The results can be applied
to other regions located in similar environmen-
tal conditions to study regions. Within this work,
we also created a framework in which multidisci-
plinary and multi-organizational data were com-
bined to the same database. With the produced
data, we researchers can prioritize the research
topics and funding to correct targets and actions
in future studies.

During the ongoing and following decades,
further actions and research are needed to com-
bat new emergences of vectors and VBDs. Vector
surveillance, vector distribution studies in space
and time, and mapping risks of VBDs under cur-
rent and future climate, are essential to gain deeper
insights into the spatial nature of recent and future
global threats for which we have a shared respon-
sibility to combat.



Abstract in Finnish

Uhkaavat vektorivilitteiset tartuntataudit
ovat yksi suurimmista globaaleista uhkaku-
vista ihmisen terveydelle. Vektorivilitteisten
tartuntatautien aiheuttaman taakan odotetaan
lisddntyvan voimakkaasti ilmastonmuutoksen
seurauksena. Monet uhkaavat tartuntataudit,
kuten COVID-19 ja ebola, ovat alkujaan eléi-
mistd ihmisiin tarttuvia tauteja, zoonooseja, jotka
kykenevit edelleen siirtyméaén ihmisestd toiseen.
Téssa tyossa kasitelladn niveljalkaisvalitteisid in-
fektiotauteja, jotka ovat myds zoonooseja, mutta
joissa ihminen on useimmiten taudinaiheuttajan
levidgmisen kannalta umpikuja. Hyttyset ja puuti-
aiset ovat vélittjid monille taudinaiheuttajille ja
ovat vastuussa miljoonien ihmisten kuolemista
vuosittain. Useimmat vektorivilitteiset tartun-
tataudit ilmaantuvat subtrooppisilla ja troop-
pisilla alueilla, mutta endeemisid tartuntataut-
eja on aina esiintynyt myds pohjoisilla levey-
sasteilla. Tartuntatautilukujen ja vakavien tar-
tuntatautien odotetaan lisdéntyvédn ilmaston
laimpenemisen vaikutuksesta my0s pohjoisel-
la pallonpuoliskolla, jossa alueet tulevat suo-
tuisimmiksi monien vektorilajien levidmiselle.
Jotta ihmisten ja talouden menetyksistd mak-
settava hinta olisi minimoitavissa, tulee meidan
arvioida nykytilannetta ja tulevia ilmaston 1&m-
penemisestd johtuvia vaikutuksia vektorilajeihin
ja niiden elinympéristdihin. Meilld on globaali
vastuu keskittyé tartuntatauteja vélittivien lajien
ohjaus- ja lieventdmisstrategioiden kehittdmis-
een sekd tartuntatautien ehkaisyyn, ei vain jot-
ta “’kaikenikéisille taataan terveellinen eldmai ja
hyvinvointi” (YK:n kestéivén kehityksen tavoite
3), mutta my6s ymmartadksemme, ettd ihmisen
terveys on ldheisesti yhteydessé eldinten tervey-
teen ja ympéristoon (One Health- ndkdkulma).
Siksi on tirked4 tuottaa uutta tietoa vektorilajien
ja vektorivélitteisten tautien levinneisyydesta ja
néiden ilmaantumiseen vaikuttavista tekijoisté

erityisesti alueilla, joissa aiempi tutkimus on
véhdisti.

Téssé tyossd lddketieteellisesti merkittivien hyt-
tys- ja puutiaislajien ympéristollisesti soveltuvia al-
ueita boreaalisella ja trooppisella alueella seké kah-
den endeemisen vektorivilitteisen tartuntataudin
riskialueita Suomessa arvioitiin ensimmaisti kertaa.
Hy6dynsimme ilmasto-, kasvillisuus-, iséntaeldin-
ja vektorilajiaineistoa, joiden tiedetddn vaikutta-
neen kyseisten vektorilajien ja vektorivilitteisten
infektiotautien ilmaantumiseen eri spatiaalisilla
mittakaavoilla. Tietddksemme tdmé ty6 on ensim-
madinen vektorilajilevinneisyyteen liittyva tutkimus,
jossa hyddynnetéddn korkealaatuista isdntéeldinain-
eistoa. Liséksi vain muutama aiempi tutkimus on
siséllyttéanyt vektorilajilevinneisyyden yhtend muut-
tujana vektorivalitteisen taudin riskimallinnuksessa.
Kaytimme lajilevinneisyysmallinnusmenetelméa
ja useaa ennustemallinnustekniikkaa kahdella eri
mallinnusalustalla vektori-isanta-tauti-ymparisto-
vilisten suhteiden tutkimiseen. Vaikka kansain-
viliset ja kansalliset terveysjérjestot, kuten Euroo-
pan tautienehkdisy- ja -valvontakeskus (ECDC),
Yhdysvaltain tautikeskus (CDC) sekd Maailman
terveysjarjestd (WHO) kayttavit laajasti lajilevin-
neisyysmallinnusta vektorivalvonta- ja tartuntatau-
tien ehkédisemisohjelmissaan, lajilevinneisyysmal-
linnuksen ja terveyskysymysten yhdistiminen on
uusi ldhestymistapa Suomessa ilman aiempaa tut-
kimusta. Trooppisilla alueilla, kuten Keniassa, jossa
tarve vektorivalvontaan ja tautien ehkéisemiseen on
suurin, erityisesti kaukaisimmat maaseutualueet py-
syvat tutkimattomina.

Taita Hills- alueella Keniassa kerddmdamme
hyttysaineistoa hyodyntden havaitsimme, etté Stego-
myia- (St., Aedes) ja Culex- hyttyssuvut, joiden lajit
ovat vektoreita monille merkittaville taudinaiheutt-
ajille tropiikissa, ovat laajasti levittédytyneet biodi-
versiteetiltdin monipuolisen Taita Hillsin alueelle.
Stegomyia- ja Culex-hyttysten arvioitiin esiintyvan
niin vuoristoisilla maaseutualueilla kuin alangon
kylissé runsaan ja harvan kasvillisuuden peittdmil-
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14 alueilla. Téssa tyossa tunnistimme myos puu-
tiaisaivokuumetulehduksen, yhden vakavimman
Suomessa esiintyvén infektiotaudin, riskialueita
ympdristo- ja isdntélajiaineistoon sekd nykyisen
ja tulevaisuuden ilmastoaineistoon pohjautuen.
Tulevaisuuden ilmastoon pohjautuvat riskimal-
linnukset osoittivat maantieteellisesti laajemman
puutiaisaivokuumetulehdusriskin esiintyvén eri-
tyisesti eteld- ja lansirannikolla seké Eteld-Lapis-
sa. Tunnistimme myds ympériston kannalta sov-
eltuvia alueita mahdollisille Sindbis- viruksen
vilittdjind toimiville hyttyslajeille Aedes (4e. )
cinereus/geminukselle, Culex (Cx.) pipiens/tor-
rentiumille sekd Culiseta (Cs.) morsitansille,
seké arvioimme sindbis-virusinfektion riskial-
ueita. Korkea elinympériston soveltuvuus Ae.
cinereus/geminus-hyttyslajille, korkeat teeri-,
metso- ja pyytiheydet, korkea sekametsien osu-
us sekd jarvien korkea lukumaéré kunnissa olivat
yhteydessi korkeaan Sindbis-viruksen aiheutta-
maan infektioriskiin. Tartuntariskin ennustettiin
olevan suurin Iti- ja Keski-Suomessa, seka lan-
sirannikolla ulottuen eteldiseen Lappiin saakka
61-64°N leveysasteille asti. Arvioimme myds
kahden, muun muassa puutiaisaivokuumetule-
hdusta levittdvan Ixodes (I.) ricinus- ja I. per-
sulcatus- puutiaislajin levinneisyyttd Suomes-
sa hyodyntden historiallista aineistoa ja uut-
ta, vuoden 2021 kesélld kerddmddmme puuti-
aisaineistoa, josta myds seuloimme TBEV- ja
Borrelia burgdorferi sensu lato- taudinaiheutta-
jia. Kerétyisté puutiaisista ei 16ytynyt TBE- vi-
rusta, mutta n. 47 % puutiaispooleista seulot-
tiin Borrelia b.s.1.-positiivisiksi. Alueet, joissa
elinympaéristdjen soveltuvuus 1. ricinus -lajille
arvioitiin olevan suuri, sijaitsivat Eteld- ja Keski-
Suomessa ulottuen Keski-Pohjanmaan maakun-
taan saakka (64°N). Ennusteiden mukaan korkea
ilmalémpétila, korkea suhteellinen ilmankosteus
ja sademadrdn summa, kasvillisuuden runsaut-
ta kuvaava keski-infrapunaséteily sekd korkeat
valkohéntipeura-, rusakko- ja kettutiheydet si-

jainneissa osoittivat korkeaa soveltuvuutta /.
ricinus- lajille. Ixodes persulcatukselle sen si-
jaan alueet Pohjanmaalta rannikkoa pitkin Etela-
Lappiin saakka (66°N), Kainuun, Pohjois-Savon
ja Pohjois-Karjalan maakunnat, sekd kapeam-
mat kaistaleet Pirkanmaalla ja Paijat-Hameessa
arveltiin soveltuvan lajille elinympéristoiltadn.
Korkeampi sademééra . persulcatuksen akti-
ivisena aikana, sekd korkeammat valkohénta-
peura-, metsdkauris- ja metséjénistiheydet viit-
tasivat lajin korkeampaan esiintymistodennakai-
syyteen.

Témaén tyon tulokset kehittdvét tietoa vek-
torivélitteisten tartuntatautien ehkaisya varten,
auttavat optimoimaan lieventdmisstrategioihin
kéytettyja rajoitettuja resursseja ja parantamaan
siten kansanterveydellisid tuloksia. Tuotettu ai-
neisto on tirked, jotta ymméarrdimme nykyhet-
ken ja tulevaisuuden terveyteemme kohdistuneet
uhat. Se auttaa kansanterveysviranomaisia ja as-
iantuntijoita padtoksenteossa kohdistamaan toi-
mintoja ja valvontatoimenpiteité oikein ja tehok-
kaasti. Tyon tuloksia voidaan my6s soveltaa mui-
hin ympéristoolosuhteiltaan tutkimusalueita vas-
taaviin maailman alueisiin. Ty6ssa tuotettu tieto
auttaa meitd tutkijoita priorisoimaan tutkimusai-
heita ja kohdistamaan rahoitusta oikeisiin tavoit-
teisiin ja toimiin tulevissa tutkimuksissa.

Meneillddn olevan vuosikymmenen ja tu-
levien vuosikymmenten aikana tarvitsemme
lisdd tutkimusta ja konkreettisia tekoja, jotta
voimme taistella uusia vektorilajeja ja voimak-
kaasti lisdéntyvid vektorivilitteisid infektiotaut-
eja vastaan. Vektorilajien valvonta, niiden levin-
neisyyden tutkiminen tilassa ja ajassa seké vekto-
rivilitteisten tautien kartoitus nyky- ja tulevaisu-
uden ilmastossa ovat oleellisia toimia, jotta vo-
imme saavuttaa syvempid oivalluksia nykyhet-
ken ja tulevaisuuden globaaleista uhkakuvista,
joista meilld on yhteinen vastuu.
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1 Introduction

1.1 Motivation

During the past two years we have faced the
most severe global health crisis during the twen-
ty-first century when COVID-19 pandemic hit
across the globe causing over 6,000,000 deaths
(by March 2022, WHO, 2022a) and global eco-
nomic and societal crises. Before the COVID-19
pandemic - with a likely bat origin - similar health
crises of zoonotic origin have occurred at small-
er scale, such as the outbreaks of Ebola virus
disease in West Africa in 20142016 (WHO,
2022b), mosquito-transmitted West Nile fever
in the United States in 2002 (CDC 2002; Peal-
er et al., 2003; O’Leary et al., 2004) and Zika
virus disease outbreak in Brazil in 2015-2016
(WHO, 2022c¢). To avoid this kind of global di-
sasters, we should focus on more efficient con-
trol and prevention strategies of emergencies of
disease vectors and pathogens around the globe
because a number of zoonotic diseases are in-
creasing (Caminade et al., 2019).

Mosquitoes (Diptera, Culicidae) are vectors
for numerous pathogens, which are collectively
responsible for millions of human deaths each
year. In the tropical regions, including Kenya,
the most common and recent mosquito-borne
outbreaks are malaria, dengue fever, Zika virus
disease, Rift Valley fever and chikungunya, caus-
ing a substantial health and economic burden. In
Northern Europe, in Finland, the most prevalent
mosquito-borne diseases (MBDs) are tularemia,
caused by the bacteria Francisella tularensis,and
Sindbis virus (SINV) infection, also called as
Pogosta disease (NIDR, 2022). During 2021, an
outbreak of Pogosta disease emerged with the
highest numbers of diagnosed cases and inci-
dence rates (N=566, 10.3/100.000) since 2002
(NIDR, 2022). In addition to mosquitoes, ticks

are capable to transmit pathogens that can cause
severe, sometimes fatal, human disease. In Fin-
land, two dominant tick species; the castor bean
tick, Ixodes ricinus, and the taiga tick, Ixodes per-
sulcatus, are responsible for the transmission of
Lyme borreliosis (LB), caused by the Borrelia
bacterium, and tick-borne encephalitis (TBE),
the most prevalent and severe tick-borne dis-
eases (TBDs) in Europe.

Recently, the abundance of the two tick spe-
cies and the numbers of diagnosed TBDs have
increased. During 2021, 151 human TBE cases
were diagnosed which is 60 cases more than in
the previous year (ECDC, 2021a ; NIDR, 2022).
In Finland, TBE, LB and Pogosta disease have
been defined as the major risks to public health
in changing climate and thus, increased prepad-
ness, risk assessment, training and research are
called (Ministry of Social Affairs and Health,
2021). Following the global trend, numbers of
vector-borne diseases (VBDs), mainly caused
by mosquitoes, have also increased in African
continent, including in Kenya. African govern-
ments have recently endorsed the region’s first
aggressive plan for vector control (WHO, 2019).

Since 1855, when Dr John Snow made his
well-known work on mapping cholera clusters in
London, geographic information systems (GIS)
has been developed, and used to analyze the pat-
terns of spatial distribution and risk factors, to
identify, prevent and control diseases, and to im-
prove the impact of public health interventions
(WHO, 2022d). Using spatial analyses we can
also determine e.g. a site of origin of outbreaks or
pandemics, such as in a recent study, in which the
Huanan Seafood Wholesale Market in Wuhan
was identified as the epicenter of SARS-CoV-2
emergence using geographical clustering method
(Worobey et al., 2022). Using GIS also support
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better public health planning and decision-
making, and enables timely and reliable decisions
that can save lives. Vector and environment
interactions have been studied through species
distribution models (SDM) especially in Europe,
Asia and North America but also increasingly
in African continent. In Finland, however, there
are no earlier SDM studies on risk assessment of
disease vectors and VBDs, although it is a broad
study approach elsewhere (Nykiforuk & Flaman
2009; Cromley & McLafferty 2011; Purse &
Golding 2015 ; Wang 2019). In contrast, in
Kenya, several SDM studies on risk assessments
of vectors and VBDs were conducted during last
decade (Drake & Beier 2014; Ochieng et al.,
2016; Sintayehu etal., 2020; Kimuyu 2021; Boitt
et al., 2021). Nevertheless, none of them were
conducted in the Taita Hills, in rural southeastern
Kenya, despite of emerging VBDs (Masika et
al., 2020, Masika et al., unpublished results).
Taita Hills, is an ecologically diverse area with
little previous mosquito research, characterized
by strong variability in rainfall and a rapidly
growing human population, offering good
breeding sites for mosquitoes. The emergence
of disease vectors and pathogens anywhere in
the world are of a global concern, with a good
example of recent outbreaks. As such, we have
a shared responsibility to fight against the new
emergencies.

1.2 Objectives

The major aim of this work, was to predict the
habitat suitabilities of medically important species
in Kenya and in Finland, and to identify disease
risk areas of the significant VBDs in Finland.
Furthermore, the objective was to determine
the environmental and other factors driving the
spatial patterns. More specifically, this thesis
seeks answers to the following questions:
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. How are the two mosquito genera; Cu-
lex and Stegomyia (Aedes) distributed to the Taita
Hills region in Kenya (Article I) ?

. What are the risk areas of tick-borne
encephalitis (TBE) in Finland in current and fu-
ture climate conditions (Article IT) ?

. What are the habitat suitabilities for
Sindbis virus (SINV) vectors, and the risk ar-
eas of SINV infections in Finland? (Article IIT)

. What are the environmentally suitable
areas for the castor bean tick Ixodes ricinus and
the taiga tick 1. persulcatus in Finland? (Article
V)

This thesis is a multidisciplinary project
linked to the fields of geography, GIScience, en-
vironmental studies, climatology, virology, vec-
tor and host ecology, spatial epidemiology and
public health in the broader context.

1.3 Background

1.3.1 Mosquitoes and ticks of medical
importance in tropical and boreal regions

In Kenya, the mosquitoes which are responsible
for a majority of mosquito-borne pathogens
belong to genera Aedes, Anopheles, Culex, and
Mansonia (Karungu et al., 2019). As such, two
notable mosquito genera are Culex Linnaeus
and Stegomyia (Aedes) Theobald (following the
classification of Reinert et al., 2009). Culex is
a large genus of mosquitoes, with 769 species
in 26 subgenera (MTI, 2022a), accounting for
21.6% of all mosquito species worldwide (Fig.
1A). Species of Culex have an almost worldwide
distribution from the tropics to cool temperate
regions, but do not extend into extreme northern
latitudes (MTTI, 2022a). Subgenus Culex (Culex)
contains many of the significant human vector
species, including those transmitting West Nile
virus (WNV), Rift Valley virus (RFV) and
Japanese encephalitis virus (JEN, ECDC, 2014;
MTI, 2022b). Stegomyia (Aedes) is amoderately
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Fig. 1. (A) Culex pipiens on the left, and (B) Stegomyia (Aedes) aegypti on the right.

sized mosquito genus comprising 128 species,
and distributed in the Afrotropical, Oriental and
Australasian regions (Fig. 1B; MTI,2022c). Fol-
lowing human dispersal, at least two species St.
(de. ) aegypti and St. (de. ) alpobicta, are also
present in Neotropical, Nearctic and Palearc-
tic regions (Paupy et al., 2009; MTI, 2022c).
Member species are competent vectors of yel-
low fever virus (YFV; Huang, 1986), dengue vi-
rus (DENV) serotypes 1-4, zika virus (ZIKV),
and chikungunya virus (CHIKV), among others
(Huang, 1990; MTI, 2022c).

In Finland, 43 mosquito species have been
reported occur, of which 21 species are found
to transmit one or more mosquito-borne patho-
gens causing human disease (Culverwell et al.,
2021). These pathogens include the viruses such
as Inkoo virus (INKV) (Bunyaviridae: Orthobu-
nyavirus) (Brummer-Korvenkontio et al., 1973),
Sindbis virus (SINV) (Togaviridae: Alphavirus)
(Sane et al., 2012), Chatanga virus (CHATV)
(Bunyaviridae: Orthobunyavirus) (Putkuri et al.,
2014), and the bacterium Francisella tularensis
causing tularemia (Jounio et al., 2010). Culex
pipiens, Cx. torrentium Martini and Cs. morsi-
tans Theobald and Ae. cinereus are known to
be associated with SINV transmission (Francy
etal., 1989; Turell et al., 1990; Lundstrom et al.,
2001; Hubalék 2008; Turell 2012; Hesson et al.,
2015). Inrecent studies, SINV genotype I (SINV-
I) has also been detected in or isolated from Och-

lerotatus species (Sane et al., 2012; Tingstrom
et al., 2016; Korhonen et al., 2020) and Aedes
rossicus Dolbeskin, Gorichaja and Mitrofanova
(Lundstrém et al., 2019).

In addition to mosquitoes, ticks are capable
of transmitting notable VBDs in Northern Eu-
rope. Finland lies in the zone where the geo-
graphical distributions of two tick species; cas-
tor bean tick Ixodes ricinus and the taiga tick
L persulcatus, overlap. To develop to the next
life stage, Ixodes ticks need a blood-meal from
suitable host, which varies depending on the life
stage, from small vertebrate hosts to large-sized
mammals (Fig. 2). Ixodes ricinus is predomi-
nant in southern Finland while 1. persulcatus
prevails typically in more northern latitudes, al-
though 1. persulcatus may be spreading south-
wards (Laaksonen et al., 2017; Zakham et al.,
2021). Both tick species are capable to transmit
pathogens such as Borrelia burgdorferi causing
Lyme borreliosis (LB) (Movila et al., 2014; Mi-
chelet et al., 2014), Borrelia miyamotoi causing
tick-borne relapsing fever (Platonov et al., 2011),
genus Rickettsia, obligate intracellular bacteria
causing spotted fever and tick-borne rickettsioses
(Parola et al., 2013), Anaplasma phagocytophi-
lum causing human granulocytic anaplasmosis
(Rar et al., 2011; Stuen et al., 2013), and TBEV
causing tick-borne encephalitis (Jadskeldinen et
al., 2006; Laaksonen et al., 2018).
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Fig. 2. The life cycle of Ixodes ticks.

1.3.2 Emerging mosquito- and tick-

borne diseases in Finland

Pogosta disease and TBE are among the most
common VBDs in Finland (NIDR, 2021). Pogos-
ta disease is the result of SINV infection in hu-
mans, most of the cases occurring in August
and September (Sane et al., 2010). The estimat-
ed seroprevalence of SINV was 5.2% between
1995-2003 (Kurkela et al., 2005; 2007). SINV
infection manifests with fever, rash, headache,
myalgia, arthralgia, nausea, conjunctivitis and
pharyngitis (Espmark & Niklasson 1984; Tu-
runen et al., 1998; Kurkela et al., 2005). After
the acute phase, long-lasting joint pain and ten-
don insertions occur in 25% of infected indi-
viduals (Laine et al., 2004; Kurkela et al., 2005;
2008; Hubalék 2008). As no vaccine or specific

etiologic treatment is available, clinical care is
strictly symptomatic (ECDC, 2021b). SINV in-
fections are notifiable in Australia and in some
European, Asian and African countries (Go et
al., 2014), but despite widespread circulation,
human outbreaks associated with SINV-I, have
only been documented in Northern Europe and
South Africa (Jupp et al., 1986; Lundstrom et
al., 1991; Brummer-Korvenkontio et al., 2002).
In Finland, outbreaks of Pogosta disease have
been strongly concentrated in eastern and cen-
tral parts of the country (Kurkela et al., 2005).
SINV circulates in enzootic or epidemic trans-
mission cycles (Fig 3.).
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Fig. 3. The transmission cycle of SINV.

In enzootic cycles, SINV spreads between birds,
which act as amplifying hosts that are able to de-
velop enough viremia so that vector species will
probably come infectious. The known bird hosts
include resident grouse or migratory birds, main-
ly passerines, such as trushes (7Turdidae) (Lund-
strometal., 2001; Brummer-Korvenkontio et al.,
2002; Kurkela et al., 2008). Ornitophilic mos-
quitoes; Cx. forrentium and Cs. morsitans, main-
tain the virus in enzootic cycles (Lundstrom et
al., 2001; Hesson et al., 2015). dedes cinereus
and Cx. pipiens are bridge vectors that transmit
the virus from birds to humans (Francy et al.,
1989; Turell et al., 1990; Hubalek 2008; Turell
2012). Specifically, high summer temperatures
and thick snow layer in Finland during the spring
(Jalava et al., 2013), and higher precipitation (Ja-
lava et al., 2013; Uejio et al., 2012) both in Fin-
land and South Africa, where the disease is en-
demic, were found to be associated with SINV
transmission.

Bridge vector:

EPIDEMIC
TRANSMISSION

DEAD-END HOST

TBE, caused by the TBE virus (TBEV), typi-
cally induces a febrile disease, and in one third of
cases, the initial illness may be followed by fe-
ver, meningitis, or meningoencephalitis (ECDC,
2021c¢). Neurological sequelae, including pare-
sis, may occur, sometimes leading to death (1—
2% of cases) (WHO, 2022¢). TBE occurs focally
in endemic areas across large regions of the tem-
perate and boreal forest regions of Europe and
Asia (Woolhose et al., 2001; Charrel et al., 2004;
Lindqvist & Vapalahti, 2008; ECDC, 2021d). In
Finland, most cases occur between June and Sep-
tember, and the geographical distribution of cases
is mainly focused on coastal and southern Fin-
land including the Aland Islands. However, the
geographical distribution of cases has expanded
during the past decade (NIDR, 2022). In 2006,
TBE cases were diagnosed in 7/21 health care
districts, while in 2021, diagnoses were made in
17/21 health care districts (NIDR, 2022).
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Fig. 4 The transmission cycle of TBEV.

Within the tick population, TBEV is maintained
through trans-ovarial or trans-stadial transmis-
sion (Fig. 4.). In trans-ovarial transmission, an
infected tick passes the virus to its offspring, and
in trans-stadial transmission, the infected tick car-
ries the virus through all four development stag-
es (Alekseev & Chunikhin, 1990; Mischelitch et
al., 2019). Furthermore, TBEV is maintained in
transmission cycles, in which infected ticks pass
the virus to a variety of small and large vertebrate
host animals, as well as humans. Each develop-
ment stage prefers for certain animal groups as
their host reservoirs. Small vertebrates, such as
rodents, are able to harbor the virus for a long
time and transmit it to their offspring (Bakh-
valova et al., 2009; Mischelitch et al., 2019).
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Virus transmission can also occur by co-feeding,
when uninfected ticks feed simultaneously close
to infected ticks (Labuda et al., 1993; Randolph
et al., 1996). The natural cycles of TBEV are
sensitive to various environmental and ecologi-
cal factors, such as climate (Semenza & Menne
2009; Daniel et al., 2015; Brabec et al., 2017),
microclimate (Randolph et al., 2001), and den-
sities of tick hosts (Heyman et al., 2010; Brug-
ger et al., 2017).

1.3.3 Impacts of environment and climate
change on vector and VBD distributions
Arthropods are especially sensitive to changes
in environmental conditions. Climatic conditions
and environment influence the habitat suitability,



vector activity and the rate of vector development
(Reiter 2001; Hubalek 2008; Gray et al., 2009;
Brady et al., 2013; ECDC, 2021e). The replica-
tion of pathogens within vectors occurs faster at
warm temperatures (Reisen et al., 2007; 2014).
Generally, warm temperatures and increased
rainfall positively affect vector densities (Gray
et al., 2009; Tian et al., 2015; Poh et al., 2019)
although extreme high temperatures combined
with decreased rainfall may reduce mosquito and
tick populations (Apanaskevich 1991; Morin et
al., 2013; Brown et al., 2014). The environmen-
tal conditions differ significantly in tropical and
boreal regions and thus, vector responses to dif-
ferent climatic conditions vary in Finland and in
Kenya. In Northern Europe, the duration of mos-
quito development is influenced by snow cover,
as flooding after snow melt creates suitable water
sources for mosquitoes to develop (Becket et al.,
2010). Snow cover also influence in tick devel-
opment acting as an insulator to protect nymph-
al ticks and larvae from freezing (Vollack et al.,
2017). Relative humidity (RH), particularly long
periods of low RH, affect tick activity and tick
survival (Gray et al., 1998; Daniel et al., 2015).
Human behaviour and human population density
are factors influencing in an exposure to tick or
mosquito bites, as people who spend more time
outdoors are more likely to get mosquito or tick
bite than others.

Global locations are influenced by the climate
change in various ways depending on their geo-
graphic position. Air temperatures over equatori-
al eastern Africa are expected to increase between
2-5°C by the end of the 21st century (Elshamy
et al., 2009; Anyah & Qiu, 2012). Also, wetter
climate with more intense wet seasons and less
severe droughts are estimated to occur over east-
ern Africa (Moise & Hudson, 2008; Shongwe et
al., 2011). In Northern Europe in Finland, the
annual mean temperature has already risen over

2°C since the middle of the 19th century (FMI,
2022a), and is expected to rise 3—6°C by the end
of 21st century, which is faster than the global
average (Ruosteenoja & Kamardinen 2016; Ruo-
steenoja et al., 2016; Ruosteenoja 2021). At least
following impacts on weather are estimated to
occur during the ongoing century; rising tem-
peratures especially during winter (Ruosteenoja
2013;2021; Ruosteenoja etal., 2016), more com-
mon and longer heatwaves, longer and warmer
growing season (FMI, 2011; Jylhi et al., 2012;
Ruosteenoja et al., 2016), increased precipita-
tion, more intense heavy rains (Jylhé etal., 2012;
Ruosteenoja 2013), shorter snow cover period,
and reduced amount of soil frost (FMI, 2011;
Jylhd et al., 2012).

1.3.4 Species distribution modelling (SDM)

Across the globe, GIS analysis and SDM on
vector species and VBDs are an active area of
research due to their benefits for prevention and
control of VBDs (Eisen & Eisen 2011; WHO,
2018). SDMs (Guisan & Thuiller, 2005), also
called as ecological niche modeling (ENM) or
habitat suitability modelling (HSM), is used to in-
terpolate geographical information about where a
species occurs, to predict suitable conditions for
species survival, to project potential distributions
of species or disease at another point in time, and
to predict the impacts of environmental change
on the occurrence of species or disease (Franklin
etal., 2010). Niche (i.e.) habitat suitability refers
to condition, when the combination of abiotic en-
vironmental variables at the site is included in the
environmental condition that a species needs to
survive and reproduce (Hutchinson, 1987; 1992).
Here, we conduct SDM research on medically
important mosquito and tick species in selected
tropical and boreal regions, and on two endemic
zoonosis in Finland for the first time.
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2 Material and Methods

21 Study areas

Studies presented in this thesis were conducted
in Kenya, and in Finland (Figs. 5-6). More spe-
cifically, studies focused on 1) the Taita Hills,
southeastern Kenya (Article I), and 2) on parts
of Finland or the whole country (Articles II-
IV). Kenya (1° 00’ N, 38° 00’ E) is among the
most affected tropical countries with the MBDs
(Karungu et al., 2019). The Taita Hills is a range
of peaks varying in altitude between 600—2200
m a.s.l. in Taita—Taveta county in southeastern
Kenya (Erdogan et al., 2011). There are two dry
and wet seasons in Kenya; the long rains occur
between March/April-May/June, and the short
rains occur between October—-November/De-
cember (Kaplan et al., 1976). The Taita Hills
region receives on average 1330-1910 mm of
precipitation annually, which contributes to the
formation of suitable mosquito breeding habitats
(Erdogan et al., 2011).

Finland (64° 00’ N, 26° 00’ E) is located
in Northern Europe between Sweden and Rus-

sia. Finland has so-called intermediate climate,
where characteristics of both a maritime and a
continental climate are combined (FMI, 2021a).
The annual mean temperature varies from 5°C in
southwestern Finland to -2°C in northern Lap-
land (FMI, 2021a). The annual amount of precip-
itation in Finland varies between 500-650 mm
(FML, 2021a). The average length of the grow-
ing season is 180 days in the southwestern ar-
chipelago, 140-175 days elsewhere in southern
and central Finland, and 100-140 days in Lap-
land (FMI, 2021a). Finland lies in the zone of
boreal forests which cover 75% of the land ar-
ea (Turunen 2008; Ministry of Agriculture and
Forestry of Finland, 2022). In addition to forest
area, bogs cover 28% of the land area (Turunen
2008), and water 10% of the total area of Fin-
land (Statistics Finland, 2021).

Fig. 5 Taita hills, Kenya is largely covered by afromontane cloud forests with varying altitude and precipitation (A).
In Finland, bogs are important habitats for many mosquito species, and cover 28% of the land area (B).
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2.2 Data

Data for this thesis consisted of response data
including mosquito, tick and patient data,
and covariates including environmental, host,
distance and other data. The data properties of
response variables and covariates are shown in
separate tables (Tables 1-6.). Within this work
and VECLIMIT consortium in Climate Change
and Health- project funded by Academy of
Finland, we also created a framework in which
multidisciplinary and multi-organizational data
presented herein were brought into a same
database with same geographical units.

2.2.1 Mosquito data

Mosquito collection data were used in Articles I
and III. Data for the Article I were collected by
me at over 122 locations in the Taita Hills region
in Kenya in January—March 2016. Stratified
sampling scheme was applied based on the
road network in which each main road from the
lowlands to the highest reachable locations was
used to collect mosquitoes on 100 m elevation
intervals. Collection locations and sub-locations
were mainly around human dwellings close
to roads, but also in forest fragments and
in croplands. Adults were collected using
commercially available Prokopack aspirators
(The John W. Hock Company, Gainesville,
USA) or by using CDC Miniature Light Traps
(The John W. Hock Company, Gainesville,
USA). Immature life stages (larvae, pupae and
eggs) were collected from stagnant water using
a 1 1 plastic dipper, a fine meshed aquarium
net or a turkey baster. All water sources were
considered, including septic tanks, discarded
tires, tree cavities, leaf axils and other items
filled with rain water. At each collection
location, coordinates were recorded with hand-
held consumer-grade GNSS (Garmin model
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GPSMap64s). Collections were initially sorted
in a field laboratory and stored in ethanol or
RNA-later to preserve the RNA and DNA for
future studies. Genus-level identificatons were
made in Finland using suitable identification
keys (Service, 1991; Huang 2001; 2004).
In Article III, mosquito presence data were
collected in Finland in 2009 (Hesson et al.,
2014), and presence/absence data between
2012-2018 (Culverwell et al., 2021).

2.2.2 Tick data

In Article IV, we combined historical tick data,
collected by crowdsourcing by University of
Turku in 2015 (Laaksonen et al., 2017), and
smaller collections conducted by Universities
of Jyviskyld, Turku and Helsinki between
2014-2020, with new collections collected by
me and the co-authors in early summer 2021
(Article IV). As historical occurrence data of
I persulcatus didn’t cover whole Finland, we
decided to make additional sampling with GIS-
based sampling strategy with 100 locations
targeting to collect I persulcatus, specifically.
Sampling strategy, in detail, is described in
Article IV. Ticks were collected by slowly
dragging 1 m x 1.5 m cotton cloth in 10 m
sections, altogether 400 m dragging session in
each locality. Larvae, nymphs, adult females
and males were separated and placed into 15 ml
Greiner falcon tubes with grass stalk. All tick
samples were transported to the Department of
Virology for University of Helsinki, and were
stored alive in 4°C until homogenization. DNA
and RNA were extracted using DNA/RNA
Kits following the Kit protocols. Tick species
was confirmed by molecular identification
(Sormunen et al., 2016), and pathogens Borrelia
and TBEV were screened using real-time
polymerase chain reaction (PCR) assays, as pre-



viously described with few modifications
(Article IV, Schwaiger & Cassinotti, 2003;
Laaksonen et al., 2017;).

2.2.3 Patient data

For Articles II and III, patient data were
obtained from the National Infectious Diseases
Register (NIDR). Occurrence data of human
TBE cases included serologically comfirmed
TBE cases by municipality from 2007 to
2017 (Article II). Data were split into two
differentdatasets (2007-2011 and 2012-2017),
to identify differences in predictors and TBE
risk between the two time periods. The first

dataset consisted of 24 municipalities with
86 TBE cases and 24 control municipalities
without TBE cases. The second dataset
included 51 municipalities with 244 TBE
cases and 51 control municipalities. In Article
111, we used serologically confirmed Pogosta
disease cases (n = 1825) by municipality of
residence from 2000-2019. We calculated
the incidences for each municipality per
1000 inhabitants between 2000-2019 and
calculated the average incidence of all
municipalities (0.48/1000) over a 20—year
period. Municipalities with incidence rates
above the average were considered presence
municipalities (n = 97) and the rest were
considered absence municipalities (n = 213).

Table 1. Properties of response variables; mosquito, tick and patient data.

Variable Article Unit Description Reference
Aedes (Ae. ) genus | Presence/ Occurrence data Uusitalo et al., 2019
absence from field collec-
tions
Culex (Cx.) genus | Presence/ Occurrence data Uusitalo et al., 2019
absence from field collec-
tions
Aedes (Ae. ) cinereus/ | lll Presence/ Occurrence data Culverwell et al., 2021
geminus absence from field collec-
tions
Culex (Cx.) pipiens/ ] Presence/ Occurrence data Culverwell et al., 2021;
torrentium absence from field collec-
tions Hesson et al., 2014
Culiseta (Cs.) morsi- 11l Presence/ Occurrence data Culverwell et al., 2021
tans absence from field collec-
tions
Ixodes (1.) ricinus v Presence/ Occurrence data Laaksonen et al., 2017;
absence from field collec-
tions Pakanen et al., 2021;
Zakham et al., 2021;
Uusitalo et al., 2021
Ixodes (I.) persulcatus | IV Presence/ Occurrence data Laaksonen et al., 2017;
absence from field collec-
tions Pakanen et al., 2021;
Zakham et al., 2021;
Uusitalo et al., 2021
TBE patient data Il Presence/ Laboratory-confir- NIDR, 2021
absence med SINV infec-
tions
Pogosta disease 11l Presence/ Laboratory-confir- NIDR, 2021
absence med TBE cases
patient data
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2.2.4 Environmental data

Environmental data were obtained from various
sources, and included interpolated data, data
directly obtained from satellite imagery, or
data derived from GIS layers (Table 2 and 3).
Precipitation and air temperature were variables

used in all four Articles, and were derived from
different sources for Finland and for Kenya
(Table 2 and 3). Land surface temperature (LST),
topographic wetness index (TWI) and snow
depth were used in Articles II-IV. A digital
elevation model (DEM) was used to calculate
the elevation, slope, and mean monthly solar

radiation in GIS software in Article 1.
Table 2. Environmental data properties used in the analyses.

Environ- Article | Unit | Description Data source, refer-
mental ence
variable
Snow depth | lII-IV cm Il: Mean in March, April, November, December | Il: MODIS satellite
imagery, Hall & Riggs,
lll: Mean per municipality in October—No- 2015
vember, December—February, March—April in
2000-2019 HI-IV: Aalto et al.,
2016
IV: Mean in January—April 2014-2021
Air tem- -1V °C I: Mean in January—March I: Virtanen, 2015
perature
Il: Mean in April, May, June, July, August, Sep- | II-IV: Aalto et al.,
tember, October in 2007-2011, 2012-2017 2016
lll: Mean per municipality in July—September,
October—February, March—June in 2000-2018
IV: Mean during the activity season of /. ricinus
(May—September), and /. persulcatus (April—
June) in 2014-2021
Precipita- -1V mm | I: Mean in January—March I: Long-term mean
tion precipitation grids,
Il: Mean in April, May, June, July, August, Sep- | Hutchinson 1991;
tember, October in 2007-2011, 2012-2017. Erdorgan et al., 2011
lll: Mean per municipality in July—-September, lI-1V: Aalto et al.,
October—February, March—June in 2000-2019 | 2016
IV: Mean during the activity season of /. ricinus
(May—September), and /. persulcatus (April—
June) in 2014-2021
Relative air | I, IV % I: Mean in January—March I: Data logger ob-
humidity servations, Virtanen,
(RH) IV: Mean during the activity season of /. ricinus | 2015
(May—September), and /. persulcatus (April—
June) in 2014-2021 IV: Aalto et al., 2016
Wind speed | 1l m/s | Mean per municipality 50 years return inter-
val data (1979-2015),
Venalainen et al.,
2017
Elevation 1, - m I: Mean from DEM Digital elevation
\' model,
lll: Mean per municipality
I: Clark & Pellikka,
IV: Mean from DEM 2005
I-IV: NLS of Finland,
2019
Topograph- | IIHIV Mean per municipality Salmivaara et al.,
ic wetness 2017
index (TWI)




Table 3. Environmental data properties used in the analyses.

Environmental | Ar- Unit Description Data source, reference
variable ticle
Normalized I-Iv I: Derived from Sentinel satellite I: Sentinel-2 A MSI satellite
difference image image, ESA, 2016
vegetation
index (NDVI) Il: Derived from MODIS satellite 11I-11l: MODIS satellite im-
image age, Didan 2015
lll: Mean in June 2000—-2019 per IV: Global VIIRS data,
municipality Scharlemann et al., 2008
IV: Mean
Enhanced v Mean Global VIIRS data, Schar-
vegetation lemann et al., 2008
index (EVI)
Middle infra- v Mean Global VIIRS data, Schar-
red reflec- lemann et al., 2008
tance (MIR)
Solar radiation | I, lll I: kWh/ | I: Mean from DEM I: Digital elevation model,
m? Clark & Pellikka, 2005
lll: Mean solar radiation during mos-
lll: kJ/M | quito season May—September 1I: WorldClim Global cli-
-2/d - mate data, averages for
1980-2000, Fick & Hij-
mans, 2017
Water vapor 11l kPa Mean water vapor pressure during WorldClim Global climate
pressure mosquito season May—September data, averages for 1980—
2000,
Fick & Hijmans, 2017
Land surface I-v | °C Il: Mean per municipality in April, 1I-1ll: MODIS satellite im-
temperature May, June, July, August, September, | agery, Wan et al., 2015
(LST) October in 2007-2011, 2012-2017.
IV: Global VIIRS data,
lll: Mean per municipality in April— Scharlemann et al., 2008
May, June—August, September—Oc-
tober
IV: Mean day and night LST, 2012—
2020
Growing sea- | lll, IV | day lll: Mean per municipality 1I-IV: Averages for 1981—
son length 2010, Pirinen et al., 2012
(GSL) IV: Mean
Precipitation L, IV | mm lll: Mean per municipality II-1V: Averages for 1981—
during growing 2010, Pirinen et al., 2012
season IV: Mean
Temperature L, Iv | °C lll: Mean per municipality 1I-1V: Averages for 1981—
during growing 2010, Pirinen et al., 2012
season IV: Mean
19 bioclimatic | Il 30 sec- | Current and future climate data: WorldClim Global climate
variables onds Mean per municipality data, Current: averages
(~1 ] for 1970-2000, Fick &
km?) Future climate: GCM: IPSL-CM5; Hijmans, 2017, Future:
RCP 4.5, RCP 8.5 2041-2060, 2061-2080,
Hijmans et al., 2005
Slope angle | ° Derived from DEM Digital elevation model,

Clark & Pellikka, 2005
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Normalized vegetation index (NDVI, Articles
I-IV), enhanced vegetation index (EVI,
Article IV) and middle infrared reflectance
(MIR, Article IV) were used to measure plant
greenness. Environmental data based on long-
term grids included the variables relating to
growing season such as growing season length
(GSL), and precipitation and temperature during
growing season (Articles III, IV). Furthermore,
wind speed, water vapor pressure, monthly
precipitation in Taita Hills (Article I), and solar
radiation in Article III, were created based on

long-term data. In Article II, current and future
climate data included 19 bioclimatic variables
derived from the WorldClim datasets (Hijmans
et al., 2015; Fick & Hijmans, 2017).

2.2.5 Host data

Host data were density data created either from
hunting or snow-track data (Table 4). Host data
were used in Articles II-1V, and were selected
based on earlier knowledge of their influence
in the distribution of a given species or disease.

Table 4. Host density data properties used in the analyses.

Data source, reference

II: Averages per game management

IV: Annual averages at a 50 km radi-
us, further averaged over 2014—2021

Il: Hunting data, NRIF
2020a

IV: Snow-track data,
NRIF, 2022

II: Averages per game management

IV: Annual averages at a 50 km radi-
us, further averaged over 2014—2021

Il: Hunting data, NRIF
2020a

IV: Snow-track data,
NRIF, 2022

II: Averages per game management

IV: Annual averages at a 50 km radi-
us, further averaged over 2014—2021

Il: Hunting data, NRIF
2020a

IV: Snow-track data,
NRIF, 2022

II: Averages per game management

IV: Annual averages at a 50 km radi-
us, further averaged over 2014—2021

Il: Hunting data, NRIF
2020a

IV: Snow-track data,
NRIF, 2022

II: Averages per game management

IV: Annual averages at a 50 km radi-
us, further averaged over 2014—2021

Il: Hunting data, NRIF
2020a

IV: Snow-track data,
NRIF, 2022

II: Averages per game management

IV: Annual averages at a 50 km radi-
us, further averaged over 2014—2021

Il: Hunting data, NRIF
2020a

IV: Snow-track data,
NRIF, 2022

Annual averages at a 100 km radius,
further averaged over 2000—2019

Hunting data, NRIF
2020a

Annual averages at a 100 km radius,
further averaged over 2000-2019

Hunting data, NRIF
2020a

Annual averages at a 100 km radius,
further averaged over 20002019

Hunting data, NRIF
2020a

Annual averages at a 100 km radius,
further averaged over 2000—2019

Hunting data, NRIF
2020a
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Host Article | Unit Description

European hare I, Iv individ-

(Lepus europaeus) uals/ area (GMA)

density km?

Mountain hare I, Iv individ-

(Lepus timidus) uals/ area (GMA)

density km?

Red fox (Vulpes I, IV individ-

Vulpes) density uals/ area (GMA)
km?

Roe deer (Cap- I, IV individ-

reolus capreolus) uals/ area (GMA)

density km?

White-tailed deer I, IV individ-

(Odocoileus virgin- uals/ area (GMA)

ianus) density km?

Moose (Alces I, IV individ-

alces) density uals/ area (GMA)
km?

Black grouse n individ-

(Lyrurus tetrix) uals/

density km?

Capercaillie (Te- 11l individ-

trao urogallus) uals/

density km?

Hazel grouse (Tet- | lll individ-

rastes bonasia) uals/

density km?

Willow grouse 1 individ-

(Lagopus lagopus) uals/

density km?

NRIF= Natural Resources Institute Finland




2.2.6 Distance-based data

Distance-based data were used in Articles I, ITT
and IV, in which response variables were avail-
able as accurate locations, not at municipality
level. Accurate locations enabled us to calculate

Euclidean distances to a selected environmen-
tal determinant known to affect species distri-
butions (Table 5). In Article I, Euclidean dis-
tances were calculated from an existing Taita
Hills geo-database and in Articles III and IV,
from landcover data.

Table 5. Properties of distance-based data used in the analyses.

Distance-based Article Unit Description Data source, reference
variable
Distance to water i, 1Iv m Euclidean distances from mos- | CORINE land cover
bodies quito/ tick PA 2018, SYKE, 2018
Distance to water i, 1Iv m Euclidean distances from mos- | CORINE land cover
courses quito/ tick PA 2018, SYKE, 2018
Distance to peatbogs | Ill m Euclidean distances from mos- | CORINE land cover
quito PA 2018, SYKE, 2018
Distance to inland 1l m Euclidean distances from mos- | CORINE land cover
marshes quito PA 2018, SYKE, 2018
Distance to conifer- i, 1Iv m Euclidean distances from mos- | CORINE land cover
ous forest quito/ tick PA 2018, SYKE, 2018
Distance to broad- 1, Iv m Euclidean distances from mos- | CORINE land cover
leaved forest quito/ tick PA 2018, SYKE, 2018
Distance to mixed 1, Iv m Euclidean distances from mos- | CORINE land cover
forest quito/ tick PA 2018, SYKE, 2018
Distance to tran- 1l m Euclidean distances from mos- | CORINE land cover
sitional woodland/ quito PA 2018, SYKE, 2018
shrub
Distance to houses | m Euclidean distances from mos- | Building data, Siljander
quito/ tick PA etal., 2011
Distance to roads | m Euclidean distances from mos- | Road data, Broberg &
quito/ tick PA Keskinen 2004

PA= presence-absence

2.2.7 Other data

Other than earlier presented data included an-
thropogenic factors such as human popularion
density, summer cottage densities and number
of people working in primary sector (Table 6.).

As response data in Articles II-III were at mu-
nicipality level, we calculated the proportion of
selected land cover variables in municipalities.
In Article ITI, we first created suitability data for
the mosquito species, and used this data to esti-
mate the spatial distribution of SINV infections.
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Table 6. Properties of other than environmental, host and distance-based data in the analyses.

Other variables Article | Unit Description Data source, reference
Human population | I-lll persons/ | I: Estimated from ALS build- I: ALS buildings data,
density km? ings data and from non-strat- Siljander et al., 2011
ified household survey, modi-
fied by digitizing more houses | Il, lll: Statistics Finland
on the study area
11, Ill: Density calculated from
human population data
Summer cottage ]l cottages/ | Density per municipality Statistics Finland
density km?

People working in
primary sector

%

Percentage per municipality

Statistics Finland

Built-up areas

%

Percentage of built-up areas
per municipality

CORINE land cover 2012,
SYKE 2012

nicipality

Field I % Percentage of field per munici- | CORINE land cover 2012,
pality SYKE 2012
Forest I % Percentage of forest per mu- CORINE land cover 2012,

SYKE 2012

Inland wetlands

%

Percentage of inland wetlands
per municipality

CORINE land cover 2012,
SYKE 2012

Lakes

%

Percentage of lakes per mu-
nicipality

CORINE land cover 2018,
SYKE 2018

Mixed forest in
mineral soil

%

Percentage of mixed forest in
mineral soil per municipality

CORINE land cover 2018,
SYKE 2018

Mixed forest in
peatlands

%

Percentage of mixed forest in
peatlands per municipality

CORINE land cover 2018,
SYKE 2018

Mixed forest in
rocky soil

%

Percentage of mixed forest in
rocky soil per municipality

CORINE land cover 2018,
SYKE 2018

Peatbogs

%

Percentage of peatbogs per
municipality

CORINE land cover 2018,
SYKE 2018

Seroprevalence
of SINV in human
population

Seroprevalence rate per hospi-
tal districts

Seroprevalence data,
Kurkela et al., 2008

Suitability for Cx.
pipiens/torrentium

%

Habitat suitability of Cx.
pipiens/torrentium produced
by SDM

Occurrence data of
Cx. pipiens/torrentium,
Uusitalo et al., 2021

Suitability for Ae.
cinereus/geminus

%

Habitat suitability of Ae. ci-
nereus/geminus produced by
SDM

Occurrence data of
Ae. cinereus/geminus,
Uusitalo et al., 2021

Suitability for Cs.
morsitans

%

Habitat suitability of Cs. morsi-
tans produced by SDM

Occurrence data of Cs.
morsitans, Uusitalo et al.,
2021

2.3 Data analysis

In this thesis, we used the biomod2 package in
R (Thuiller et al., 2009), and VECMAP software
(Kruijiff et al., 2011) to model the species and
disease distributions. The biomod?2 is a comput-
er platform intended for ensemble forecasting
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of species distributions, which enables the treat-
ment of a range of methodological uncertainties
in models and the examination of species-host-
disease-environment relationships. VECMARP is
aservice to predict potential vector-related health
risks and to reduce nuisance which enhances and



Articles, and the VECMAP was used in Ar-
ticles III and IV. The processing workflow of
SDM is presented in Fig. 7.

simplifies traditional mathematical distribution
modelling, and field and laboratory work with
the help of satellite navigation (Kruijiff et al.,

2011). The biomod2 platform was used in all

OCCURRENCE DATA

[MULTICOLLINEARITY]
PREDICTORS |

DATA & 8 ‘
* . e .
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DATA CLEANING

PARTITIONING
| olv cAM GBM AW MARS CTA RF MAXENT [— AS0heetbam
MODELING MODEL FITTING AND
ANALYSIS y VALIDATION
ENSEMBLE MODELING
RREDIGTIONS PREDICTIVE ACCURACY
ESTIMATING

UNCERTAINTY

Fig. 7 The processing workflow of SDM.

The first step of data preparation was the
cleaning of observation data. If the data were
spatially autocorrelated (SA), we removed SA ei-
ther by removing the autocorrelated occurrences
manually, or with special R packages, such as
with package Wallace in Article IV. All geospa-
tial datasets, including environmental and other
data, were processed in ESRI ArcGIS (version
10.3.1) (ESRI, Redlands, CA, USA), and were
set to the same spatial extent, geographic coor-
dinate system and resolution (Table 7). Multicol-

linearity of the variables was investigated with
the suitable method (Table 7), and correlated
variables were excluded from the final dataset.
In this thesis, we conducted empirical mod-
els which use observed data to build correlative
relationships between species occurrences and
environmental factors. We used several model-
ling algorithms including regression-based mod-
els; generalized linear models (GLM, McCullagh
& Nelder, 1989) and generalized additive models
(GAM, Hastie & Tibshirani, 1990), classification
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trees (CTAs, Breiman etal., 1984), artificial neu-
ral networks (ANNs, Ripley 1996), multivari-
ate adaptive regression splines (MARS, Fried-
man 1991), ensemble decision tree methods;
generalized boosted models (GBM, Ridgeway,
1999) and random forests (RF, Breiman 2001),
and distance-based machine-learning approach,
maximum-entropy (MAXENT, Phillips et al.,
2004). In Article I, single-modelling methods
were used to estimate the potential species distri-
butions. As ensemble modelling has an advan-

Table 7. Method description of each study.

tage of producing more robust decision-making
in the face of uncertainty in comparison with sin-
gle-model forecasts (Araujo & New, 2007), we
mostly used ensemble models (Articles II-1V).
Ensembles were generated using the best-per-
forming model algorithms (0.7<AUC>1.0) with
statistically significant variables (p < 0.05). We
also compared the prediction results from en-
sembles with the predictions from single-mod-
elling techniques, and used consensus method
of weighted mean ensemble approach (Arti-
cle III).

Modelling | Spatial | Ar- Resolution Geographic | Multicol- Final Modelling
study extent |ticle | of response/ coordinate linearity in- | nr. of method
environmental | system vestigation | predic-
data method tors
SDM of Taita 1 Coordinates/20 | UTM Zone Pearson 5 GLM, GAM,
Culex Hills mx 20 m 37S correlation RF
SDM of Taita 1 Coordinates/20 | UTM Zone Pearson 5 GLM, GAM,
Aedes Hills mx 20 m 37S correlation RF
TBE study | Finland | Il Municipality/ EUREF FIN | VIF pack- | 14 Ensemble
2007-2011 1000 m x 1000 | TM35FIN age usdm
m
TBE study | Finland | Il Municipality/ EUREF FIN | VIF pack- |13 Ensemble
2012- 1000 m x 1000 | TM35FIN age usdm
2017 m
TBE study | Finland | Il Municipality/ EUREF FIN | VIF pack- |6 Ensemble
on current 1000 m x 1000 | TM35FIN age usdm
climate m
TBE study | Finland | Il Municipality/ EUREF FIN | VIF pack- |6 Ensemble
on future 1000 m x 1000 | TM35FIN age usdm
climate m
SINV Finland | I Coordinates/ EUREF FIN | VIF pack- | 21 Ensemble
vector 1000 m x 1000 | TM35FIN age usdm
m
Pogosta Finland | Il Municipality EUREF FIN | VIF pack- |19 Ensemble/bio-
disease TM35FIN age usdm mod2, GLM/
RF, VECMAP
SDMof I. | Finland | IV Coordinates EUREF FIN | VIF pack- | 19 Ensemble
ricinus TM35FIN age usdm
SDMof /. | Finland | IV Coordinates EUREF FIN | VIF pack- | 19 Ensemble
persulca- TM35FIN age usdm
tus

In our studies, the metrics used to assess model
accuracy were the proportion of actual presenc-
es (i.e. sensitivity) and absences (i.e. specific-
ity) accurately predicted, area under the receiv-
er operating characteristic curve (AUC, Han-
ley & McNeil 1982; Pearce & Ferrier 2000),
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and the true skill statistic (TSS, Allouche et al.,
2006). Sensitivity and specificity were calculat-
ed to quantify the omission errors (Fielding &
Bell 1997). Sensitivity is calculated dividing true
presences (TP) by the sum of TP and false ab-
sences (FA). Similarly, specificity is calculated



dividing true absences (TA) by the sum of TA
and false positives (FP). AUC is the measure
of the ability of a model to distinguish between
these presence and absence classes. TSS is de-
fined as (1 — maximum (sensitivity + specificity)
where sensitivity and specificity are calculated
based on the probability threshold for which their
sum is maximized (Allouche et al., 2006). In an
ideal world, model accuracy should be evaluated
with statistically independent data, which is not
often possible (Fielding & Bell, 1997; Aratjo et
al., 2005). An alternative is to use split-sample
approaches, an example of two-fold cross-val-
idation, (Guisan & Zimmerman, 2000), where
original data are divided into one portion used
to calibrate the model (i.e. training data), and
one portion used to validate the predictions (i.e.
testing data) (Smith, 1994; Miller & Franklin,
2002). We used this cross-validation technique
in all analyses, where we split the dataset into
two subsets, one to calibrate the models (70%)
and another to evaluate the models (30%). We
estimated the importance of each variable en-
abling direct comparison across models, which
is produced by a randomisation procedure, inde-
pendent of the modelling technique (Thuiller et
al., 2009). Partial dependency plots were gener-
ated to show the predictors’ estimated effects on
the species and disease distributions. Prediction
maps were first created by using R or VECMAP,
and modified in ArcGIS. Method description of
each study is presented in Table 7.

3 Results

3.1 The spatial distribution of
Stegomyia (Aedes) and Culex
mosquitoes in the Taita Hills, Kenya

In Article I, we collected over 3,000 mosqui-
toes across the Taita Hills to study species distri-

butions, circulating mosquito-borne pathogens,
and to create SDMs at genus level (Fig. 6.1).
The majority of mosquitoes belonged to genus
Culex and included at least three subgenera:
Culex (Culex), Cx. (Culiciomyia) and Cx. (Eu-
melanomyia). Stegomyia were the second most
abundant genus in the collections. Stegomyia ae-
gypti larvae were especially common in water
tanks in the villages of Paranga and Kishushe
in the Taita Hills north, and also in car tires in
Mwatate village. Both genera were present in
lowland and upland areas, including elevations
up to 1900 m. We predicted the distributions of
Culex and Stegomyia across Taita Hills region.
From a total of eight models, GAM (AUC =
0.791) and MARS (AUC = 0.809) models pro-
duced the highest model performances for Cu-
lex, and GBM (AUC = 0.708) and RF models
(AUC = 0.708) for Stegomyia. The prediction
results showed that high suitabilities of Culex
were associated with poor vegetation (NDVI
<0.2), elevations between 8002000 m, loca-
tions with moderate slope angles (0°-35°), and
varying population densities of 5006000 peo-
ple/km? (Article I: Fig. 3). The suitabilities for
Stegomyia were highest in locations with solar
radiation levels > 230 kWh/m?, in air tempera-
tures between 15-20°C, and over 23°C, and in
locations with poor (NDVI < -0.2) and moder-
ate vegetation (NDVI > 0.2, Article I: Fig. 4).
Produced habitat suitability maps for Culex in-
dicated that villages and forests, including el-
evations above 1500 m in the Taita Hills, were
most suitable for Culex mosquitoes (80—100%,
Article I: Fig. 5A). Areas with high suitability
for Stegomyia were sporadically dispersed across
the Taita Hills, including villages on the plateaus
and locations close to roads (Article I: Fig. 5B).

3.2 The risk of tick-borne encephalitis
(TBE) in Finland
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TBE is one of the endemic VBDs in Finland
with an increased number of patient cases, and
requires further attention under changing climate
patterns. In Article II, we investigated TBE risk
in Finland using TBE patient case data (Fig.
6.2A-B). First, we created an ensemble mean
model of best-performing single models to esti-
mate the risk based on environmental and host
data in two different datasets (Article II: Fig. 3).
Second, we used bioclimatic drivers to estimate
the risk in current and future climate conditions
by using global climate models (GCM). Mean
ensemble model based on environmental and
host data produced an excellent predictive per-
formance with the median TSS values of (0.988)
and (0.956) in the two datasets. Based on the
mean ensembles, predictor variables including
proportion of built-up areas, forest, field, people
working in the primary sector, human population
density, mean precipitation, snow-covered land,
and densities of white-tailed deer, raccoon dogs
and European hare in the municipalities, were
the most important drivers for TBE risk (Ar-
ticle II: Fig. 5). The results suggested moderate
to high risk for TBE in the majority of coastal
municipalities, municipalities in the Aland Is-
lands, and several municipalities in southwest-
ern, central, and eastern Finland, close to the
Russian border (Article I1: Fig. 6). We used the
ensemble mean method with the bioclimatic data
to explore potential changes in risk under current
and projected future climate scenarios. We used
medium (RCP 4.5) and high (RCP 8.5) change
scenarios for 2041-2060, and 2061-2080. The
risk maps of TBE under current climate condi-
tions indicated moderate to high risk areas in
the Aland Islands, in southwestern, southern and
southeastern Finland, and in Ostrobothnia, North
Ostrobothnia and southern Lapland (Article I1:
Fig. 8). Ensemble forecasts for 2041-2060 and
2061-2080 showed that moderate to high risk
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areas for TBE were wider both with medium
and high change scenarios. Wider risk areas were
estimated specifically for southern and western
coast but also for inland municipalities in south-
ern Lapland (Article II: Fig. 8).

3.3 Habitat suitabilities of SINV
mosquito vectors and the risk areas
for SINV infections in Finland

Article III investigated 1) habitat suitabilities
of major SINV vectors Ae. cinereus/geminus,
Cx. pipiens/torrentium and Cs. morsitans based
on environmental data, and 2) the risk areas for
SINV infections (i.e. Pogosta disease) based
on environmental and host data, and produced
habitat suitability data of mosquito vectors (Fig.
6.2C-D). The results showed that locations with
high suitabilities for Ae. cinereus/geminus were
associated with high mean LST in June—August
and solar radiation during May—September, high
NDVI, low wind speed, and short distances to
coniferous and mixed forest. For Cx. pipiens/tor-
rentium, locations with higher water vapor pres-
sure, precipitation during March—September and
LST in June—-August, low wind speed and short
distances to lakes were considered suitable habi-
tats. For Cs. morsitans instead, longer growing
season, higher precipitation in March—June and
higher solar radiation in May—September, and
shorter distances to coniferous and mixed for-
ests positively influenced the species presence.
Based on the predictions, the areas with moder-
ate to high suitability for Ae. cinereus/geminus
were located throughout Finland (30-70%), ex-
cluding the northernmost Lapland (0-30%, Ar-
ticle I1I: Figure 3a). Similarly, high suitabilities
for Cx. pipiens/torrentium were found to occur
throughout Finland excluding northern Lapland
and the narrow areas in central and western Fin-
land (Article III: Figure 3b). For Cs. morsitans,
in contrast, high suitabilities were only estimated



across southern Finland up to 64°N, along the
southern and western coast, in the Aland Islands,
and in sporadic areas in western and eastern Fin-
land (Article III: Figure 3c).

Second, we modelled the risk of SINV in-
fections in two platforms; the biomod2 pack-
age in R and VECMAP software. We created
the weighted mean ensemble produced by the
best-performing models which yielded the mean
AUC of 0.98 with high sensitivity and specific-
ity rates (Article II1: Figure 4b). To test consis-
tency of the study results, we used GLM and RF
models in VECMAP to model the risk of SINV
infections, which both resulted excellent predic-
tive performances with AUC > 0.90. The predic-
tion results showed that high densities of black
grouse, capercaillie and hazel grouse, a high pro-
portion of mixed forest in peatland, and a high
proportion of lakes in the municipalities were as-
sociated with increased Pogosta disease risk (>
70%, Article I1I: Figure 5). Furthermore, in the
municipalities with a high probability of Ae. ci-
nereus/geminus occurrence, Pogosta disease risk
was high (80-98%). The produced risk map sug-
gested that municipalities with moderate to high
risk (30-100%) for SINV infections were located
in municipalities in eastern and central Finland,
along the western coast up to southern Lapland
in latitudes between 61-64°N (Article III: Fig-
ure 6). Contrarily, municipalities in southern- and
northernmost Finland, southwestern Finland and
the Aland Islands were estimated to be at a low
risk (0-20%) for SINV transmission.

3.4 Habitat suitabilities of Ixodes
ricinus and I. persulcatus ticks in
Finland

Article IV examined the spatial distribution of
Ixodes ricinus and I. persulcatus in Finland based

on environmental and host data with four vari-
able compositions with the uncertainty assess-

ments. We used historical tick occurrence data,
and new collection data from 2021 (Fig. 6.2E).
The collections in early summer 2021 were de-
signed based on the GIS-based sampling strat-
egy, and from these samples we also screened
pathogens TBEV and Borrelia. During May—
June 2021, 25 new presences and 63 absences
were found for 1. ricinus, and only one presence
and 88 new absences for 1. persulcatus. In a total
of 500 ticks were collected and analysed with
no ticks positive for TBEV, and 56 (= 47 %) of
the 120 tick pools positive for Borrelia burg-
dorferi sensu lato (Article I'V: Additional File
1: Figure S1). The results showed that from four
variable compositions, combined predictor da-
tasets based on ensemble mean models yielded
the highest predictive accuracy both for 1. rici-
nus (AUC=0.91, 0.94), and for I persulcatus
(AUC=0.93, 0.96, Article IV: Table 3). The lo-
cations with higher RH, higher mean air tem-
perature during the activity season, higher pre-
cipitation sum and middle infrared reflectance
levels, and higher densities of white-tailed deer,
European hare and red fox were associated with
high probabilities of . ricinus occurrence (Arti-
cle IV: Fig. 5a). For I persulcatus, higher mean
precipitation and higher densities of white-tailed
deer, roe deer and mountain hare were associ-
ated with high habitat suitabilities for 1. persul-
catus (Article IV: Fig. 5b). However, too high
precipitation sum, higher mean air temperature
during the activity season, and DLST in the lo-
cations, began to influence negatively in the suit-
ability of I persulcatus. The results suggested
that areas with moderate to high suitability for
1. ricinus were located southwards from Central
Ostrobothnia, with the following exceptions; nar-
row areas located in southern Pirkanmaa, and
southern coast of Ostrobothnia (Article IV: Fig.
6¢). In contrast, northern parts of North Savo,
North Karelia and North Ostrobothnia and Kai-
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nuu were estimated to have a low to moderate
suitability for /. ricinus. For I persulcatus, the
areas with moderate to high suitabilities were lo-
cated mainly northwards from Ostrobothnia up
to southern Lapland including areas along the
western coast and eastern Finland (Article IV:
Fig. 7¢). In southern Finland, moderate to high
suitability areas for I persulcatus were located
across Pirkanmaa, and in narrow areas in Kanta-
Hame, Paijat-Hame, South Karelia, South Savo
and Uusimaa. Other areas in southern Finland,
northern Kainuu and eastern North Ostrobothnia
were estimated to have a low to moderate prob-
ability for I persulcatus occurrence.

4 Discussion

In this work, we aimed at studying the distribu-
tion of medically important mosquito and tick
species in boreal and tropical regions, and the
distribution of two endemic VBDs in Finland,
to explore environmental and other determinants
driving the spatial patterns at regional and na-
tional scales. The thesis is closely related to pre-
dictive vector ecology and spatial epidemiology,
broad study fields across the Globe, which utilize
climate, vegetation and host variables known to
affect distribution of a given species or a VBD,
at varying spatial scale. Although SDM approach
has been widely used by researchers and global
health agencies, there are no earlier SDM stud-
ies on vectors or VBDs in Finland. In tropical
regions, including Kenya, where the need for
vector control and disease prevention is high-
est, SDM studies have been conducted although,
rural regions, particularly, remain understudied.
Here, we utilized environmental and vegetation
data as predictor data, which are often consid-
ered in SDM studies. We also used good qual-
ity host data and habitat suitability data of vec-
tor species to gain a better understanding of spe-
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cies-host-disease-environment relationships. To
our knowledge, there are no earlier SDM stud-
ies on vector species which used high-quality
host data, and there are only a handful of stud-
ies which included suitability data of vectors to
predict disease occurrence (Messina et al., 2019;
Akhtar et al., 2019).

4.1 Geographies of

vectors and VBDs

One of the key results of this thesis was the pre-
dicted occurrences of mosquito and tick vectors,
and VBDs. Each vector and VBD have the en-
vironmental conditions, niches, under which
they can reproduce and survive (Austin 2002)
although all these factors may not be fully under-
stood. In the Taita Hills in southeastern Kenya,
Culex and Stegomyia mosquitoes were found
to overlap in geographical range, but also to be
common in different areas (Article I: Fig. 5).
Predictive risk maps for Culex and Stegomyia
genera indicated that highest suitabilities for Cu-
lex occurred in the central Taita Hills, but also in
the plateau and lowland villages, strengthening
previous findings of its widespread distribution
in a variety of global locations but also locally, in
different environments (MTI, 2022c¢). For Stego-
myia, the highest suitabilities were in plateau vil-
lages and fragmented areas across the Taita Hills.
This was consistent with historic records suggest-
ing that members of Stegomyia genus are forest
dwelling, with only some adapted to breeding
close to human habitation (Powell & Tabachnick,
2013). Since our collections included several dif-
ferent Stegomyia species —with St. aegypti being
the only species collected from around villages,
and other species being restricted to the forest—
the model findings were consistent with these
historical reports (Powell & Tabachnick, 2013).
In Finland, high-risk areas for TBEV transmis-
sion were estimated to be in the



Aland Islands, the coastal regions of southern,
western, and northern Finland, and several mu-
nicipalities in central and eastern Finland, based
on risk maps (Article II: Fig. 6). In future fore-
casts for 2041-2060 and 20612080 climate, a
wider geographical extent of TBE risk was intro-
duced in the Aland Islands and southern, west-
ern and northern Finland (Article II: Fig. 8).
Identified risk areas were consistent with previ-
ous study results, however, which were largely
based on extrapolation of Central and Eastern
European /. ricinus data (Randolph & Rogers,
2000). In this study, southern and southeastern
Finland were estimated to be suitable for TBE
transmission in the 2020 forecast, and risk areas
were suggested to expand up to central Finland
in the 2080 forecast (Randolph & Rogers, 2000).
Higher TBE risk in northern regions is reason-
able as temperature and precipitation increase are
greater in the northernmost latitudes (Trenberth
& Josey 2007; Ruosteenoja et al., 2021), which
make the region more favorable for tick activ-
ity (Soucy et al., 2018; Medlock et al., 2013;
Lindgren & Gustafson, 2001; Gray et al., 2009).

The habitat suitability maps of SINV vec-
tors (Article III: Figure 3) suggested that suit-
able habitats for Ae. cinereus/geminus and Cx.
pipiens/torrentium occurred throughout Finland
demonstrating their widespread distribution also
elsewhere in Northern Europe including Swe-
den, Finland’s neighboring country (Becker et
al.,2010; Lundstrom et al., 2013). For Cs. morsi-
tans, suitable habitats occurred mainly in south-
ern Finland including sporadic areas in west-
ern and eastern Finland. Culiseta morsitans is a
species whose distribution ranges from southern
Scandinavia to Northern Africa. In Sweden, the
observations of Cs. morsitans were documented
in the same latitude where their suitability was
highest in Finland (Lundstrém et al., 2013). The
risk maps of SINV infections (Article III: Figure

6) suggested that moderate to high risk areas oc-
curred in municipalities located in central, east-
ern, and western Finland which are populated by
2.800.000 residents (50.5 % of the total human
population in Finland). Areas with the higher risk
were generally consistent with previous findings
about the incidence of Pogosta disease (Brum-
mer-Korvenkontio et al., 2002; Kurkela et al.,
2008; Sane et al., 2010). However, when com-
paring the prediction maps to the Pogosta disease
incidence map 2000-2019, several differences
are evident. Moderate to high risk areas extend-
ed from southern Lapland to southern Finland
at latitudes between 61-66°N. These are areas
in Finland characterized by abundant lakes and
summer cottages where people are used to have
outdoor activities, such as berry picking, altering
them to mosquito bites in forests during the late
summer and early fall. When comparing the pre-
diction maps with the incidence maps, the largest
differences occurred in western Finland, southern
Lapland and North Ostrobothnia with either high
or moderate risk in several municipalities where
only few cases were documented. According to
the results from predictions, locations with the
highest environmental suitability for Ae. cinere-
us/geminus and Cx. pipiens/torrentium overlap
in geographical range with the municipalities at
high risk of SINV infections demonstrating their
potential role in SINV transmission in Finland.
Northern Lapland, in contrast, was estimated to
be a low-risk area for SINV transmission. This
area is characterized by low abundance of resi-
dent grouse, long winter, high snow depth and
cold air temperatures compared to elsewhere in
Finland, which may halt viral replication and re-
strict vector populations (Ciota & Keyel 2019),
and influence the low probability of Pogosta dis-
ease occurrence. Southern coast, southwestern
Finland, Ostrobothnia and the Aland archipelago
are areas with the extreme ends of wind speed,
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compared with other regions in the country,
which may affect the decreased exposure for
mosquito bites. Although SINV vector species
are present in southern coast, however, the area
was estimated to be at low risk for SINV infec-
tions. A potential explanation for this may be the
resident grouse population, especially capercail-
lie and black grouse populations, which have
collapsed even 80% during the last 40 years due
to fragmentation of suitable habitats caused by
human activities (NRIF, 2022). As SINV circu-
lates through a transmission cycle, all events in
the cycle; vector, pathogen, host, suitable en-
vironmental conditions and human exposure to
mosquito bite, should be present.

Similar to other arthropod vectors, tick spe-
cies Ixodes ricinus and I. persulcatus have their
own niches in which they can survive and re-
produce, and which determine their geographical
distributions. Based on our study results (Article
IV: Fig. 6), moderate to high suitability areas
for . ricinus occurred throughout southern and
central Finland up to the Central Ostrobothnia
(64°N), excluding the narrow areas in Ostroboth-
nia and Pirkanmaa. In neighboring country in
Sweden, only the areas southwards from the cap-
ital region (60°N) were predicted to be areas
with abundant 7. ricinus (Kjaer et al., 2019), al-
though . ricinus have been collected up to 66°N
(Jaenson et al., 2012). Based on the recent /. rici-
nus studies from Russian Karelia, the species was
absent already north from 63°N (Bugmyrin et
al., 2012; Bespyatova & Bugmyrin, 2021). The
narrow areas in Ostrobothnia and in Pirkanmaa
which are considered sympatric areas, were esti-
mated to have low suitability for 1. ricinus which
may, partly, be explained by the model-based
uncertainty. The dominance area of /. persulca-
tus is known to be northwards from the domi-
nance area of I. ricinus. The prediction results
showed that northwards from Ostrobothnia along
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the northern coast up to southern Lapland, Kain-
uu, North Savo and North Karelia, the suitability
of I persulcatus was highest (Article IV: Fig.
7). Southern Finland, excluding the areas in Pir-
kanmaa, western Piijat-Hame, northern Kanta-
Héame, and southern Uusimaa, were estimated to
have a low habitat suitability for /. persulcatus.
However, a moderate to high uncertainty in the
predictions for I. persulcatus occurred widely
across southern Finland which may indicate that
there may occur suitable areas for I. persulcatus
(Article IV: Fig. 9). In neighboring countries, /.
persulcatus have only been found up to 63°N in
Russian Karelia (Bugmyrin et al., 2013; Popov
& Popova 2020) while in Sweden, the species
was first introduced close to Finnish border =
66°N in 2015 (Jaenson et al., 2016).

4.2 Climate, vegetation and host
interactions on the distribution
of vectors and VBDs

Consistent with previous findings, similar envi-
ronmental and climatic variables were important
determinants of the species or disease of interest
in boreal and tropical landscapes, although suit-
able environmental gradients for habitat suitabil-
ity of each vector are species-specific. In the Taita
Hills, Kenya, Stegomyia favored locations with
intermediate and high temperatures, supporting
the argument that Stegomyia mosquitoes have
temperature-based limits to survival (Article I;
Brady et al., 2013). Both rich and poor vegeta-
tion were suitable for Culex mosquito presence,
also strengthening previous findings of its occur-
rence in a variety of habitats (Article I: Fig. 3;
MTI, 2022b). Residential and urban areas with
poor vegetation are often recognized as impor-
tant for Culex distributions (Reiter & LaPointe,
2007; Conley et al., 2014). A high suitability for
Culex were found in locations with high NDVI
values caused by strongly reflecting orchard trees



and croplands adjacent to dwelling units in the
Taita Hills. Specifically, we found that locations
with high population densities positively influ-
enced Culex presence (Article I: Fig. 3). Stego-
myia mosquitoes preferred locations either with
low or high human population densities and poor
or moderate vegetation (Article I: Fig. 4). This
finding somewhat contradicts the notion that Sz.
aegypti distribution is linked to growing human
population (Fatima et al., 2016), but is consistent
with historic records of the variety of Stegomyia
species indicating that most members of Stego-
myia genus are forest dwelling, with only some
adapted to breeding close to human habitation
(Powell & Tabachnick, 2013).

In Article III, locations with high mean tem-
peratures in June—August, rich vegetation and a
long growing season positively influenced the
occurrence of Ae. cinereus/geminus (Article I11:
Fig. A2.a). Aedes cinereus larvae are known to
need a temperature of 12—13°C to hatch and 14—
15°Cto develop, the optimum temperature being
24-25°C (Mohrig 1969). Similarly, Cx. pipiens/
torrentium favored locations with high LST (Ar-
ticle III: Fig. A2.b). For Cs. morsitans, higher
precipitation in March—June, and moderate pre-
cipitation in July—September, and October—Feb-
ruary, were associated with higher occurrence
(Article IIT: Fig. A2.c). This finding is already
evident as Cs. morsitans deposit their eggs dur-
ing early summer in the moist substrate above
the residual water level (Medlock et al., 2005;
Becker et al., 2010;). For Ae. cinereus/geminus,
instead, suitable areas were locations with short
distances to coniferous and mixed forest. Aedes
cinereus is also an acidophilic mosquito, most
often found in acido-oligotrophic habitats (Beck-
er et al., 2010). Based on the study results, Cx.
pipiens/torrentium favored locations with barren
vegetation. These species are widely distributed
and able to survive in various habitats, includ-

ing natural unpolluted and urban polluted habi-
tats close to humans (Becker et al., 2010; Har-
bach 2012). A long growing season, and short
distances to mixed or coniferous forests, were
suitable conditions for Cs. morsitans to be pres-
ent. Suitable sites for Cs. morsitans are known
to occur in both shaded and open habitats in
swampy woodlands and temporary water bod-
ies in forests (Becker et al., 2010; Medlock &
Leach2015). The results indicated that increased
Pogosta disease risk in municipalities was asso-
ciated with a high proportion of mixed forest in
peatlands, peatbogs, inland wetlands and lakes
(Article IIT: Figure 5). These findings that the
natural foci of SINV infections mainly occur in
wetland ecosystems of diverse biomes, includ-
ing lowland forested wetlands and humid forests
composed of deciduous and coniferous trees, are
consistent with previous studies from other Eu-
ropean locations (Ernek et al., 1973; Lundstrom
et al., 2001). The results showed that the risk
of SINV infections was high in municipalities
with a high probability of Ae. cinereus/geminus
to occur (Article IIT: Figure 5). A recent study
by Lundstrom et al. (2019) suggests that the in-
creased prevalence of SINV-I, especially in Ae.
cinereus and Cx. pipiens/torrentium, is a major
cause of recent SINV outbreaks in Northern Eu-
rope. Our prediction results also suggested that
the habitat suitability for Cs. morsitans nega-
tively influenced the risk of SINV infections.
This observation somewhat contradicts the no-
tion that the presence of Cs. morsitans is linked
to SINV transmission elsewhere in Northern Eu-
rope (Francyetal., 1989; Lundstrom etal.,2019).
The role of Cs. morsitans in SINV transmission
has not yet been studied in Finland, but would
benefit from more mosquito collection data to
boost predictions of presence. In Article I, the
results showed that the distribution of TBE is af-
fected by mean precipitation from April to July
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(Article II: Fig. SA). Both Ixodes ricinus and
L persulcatus are vulnerable to desiccation and
consequently require high RH (> 80%) in their
microhabitats to be able to quest and survive
(Gray, 1998). The increased bursts of humid-
ity provided by more rainfall help in maintain-
ing adequately humid shelters for ticks on the
ground floor and reduce moisture loss during
questing, improving tick survival and lengthen-
ing questing periods. Precipitation in April were
previously found to correlate with TBE incidence
(Czupryna et al., 2016). Dry periods at the be-
ginning of the tick season were found to lead to
tick mortality and reduced late-season popula-
tions for . ricinus (Perret et al., 2000; Berger et
al., 2014). Based on risk maps for TBE, a pro-
portion of snow-covered land affect the risk of
TBE (Article II: Fig. 5B). Snow cover may pos-
itively affect tick activity and survival because
it acts as an insulating blanket over ground lit-
ter and tends to further insulate ticks from the
frigid winter air temperatures (Lundkvist et al.,
2011; Dautel et al., 2016; Vollack et al., 2017).
The proportion of field and forest area in mu-
nicipalities had indirect effects on TBE trans-
mission (Article II: Fig. 5). Forests are typical
habitats for many important tick host animals,
such as deer and hares, and higher amounts of
forests, therefore, typically increase host animal
and consequently, tick abundance. On the other
hand, increasing proportion of field area often
means that a more fragmented habitat mosaic
is formed, wherein the amount of boundary ar-
eas between different habitats increases. These
increasing edge effects allow for greater biodi-
versity and often higher animal densities (Tack
et al., 2012; Czupryna et al., 2016; Nadolny &
Gaft, 2018). High human population density and
a high proportion of built-up areas are associ-
ated with the large number of population and
naturally increase TBE risk (Article II: Fig. 5).
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People who are working in the primary sector
spend relatively more time outdoors than other
sectors and consequently have a higher risk for
getting tick bites (Randolph et al., 2008). The
results also showed that white-tailed deer, Euro-
pean hare, and raccoon dog density were associ-
ated with higher TBE risk (Article II: Fig. 5).
Medium-sized and large animals such as deer,
hares and raccoon dogs are potential hosts for
1 ricinus nymphs and adults, and . persulcatus
adults (Gray et al., 2016; Klemola et al., 2019).
The population sizes of white-tailed deer and
raccoon dogs have significantly increased in Fin-
land recently (NRIF, 2022), and may possibly be
connected with higher /. persulcatus and 1. rici-
nus density. White-tailed deer density and hare
density have earlier been confirmed to correlate
with 1. ricinus abundance and consequently, TBE
distribution (Brugger et al., 2017; Jaenson et al.,
2018). In the future forecasts for TBE, mean tem-
perature of the warmest month and wettest quar-
ter and temperature seasonality were the most in-
fluential bioclimatic factors on TBE risk (Article
II: Fig. 7). High spring and summer tempera-
tures and mild winter temperatures are drivers
of new tick establishment and higher TBE risk
at high-latitudes in Northern Europe (Randolph
& Rogers, 2000; Gray et al., 2009).

In Article III, we found that high densities
of hazel grouse, capercaillic and black grouse
positively influenced the occurrence of SINV in-
fections, with very similar response functions,
indicating the role of resident grouse in the ep-
idemiology of SINV in humans (Article I1I:
Figure 5). On the contrary, we found that high
willow grouse density was not associated with
high Pogosta disease risk as with other resident
grouse. Historically the distribution of willow
grouse extended from southern Finland to Lap-
land, but as aresult of population decline, the ma-
jority of the remaining willow grouse population



is nowadays restricted to Lapland (NRIF, 2019).
Outbreaks of Pogosta disease have previously
been reported to follow a 7-year cycle in Fin-
land (Brummer-Korvenkontio et al., 2002), and
were thought to be influenced by the resident
grouse populations that also show 6—7-year cy-
cles (Emek et al., 1973). Based on the Pogos-
ta disease cases during recent decades, distinct
epidemic cycles are no longer observed, and
the capercaillie population, particularly, has not
shown 6-7-year cycles anymore (NRIF, 2020b).
The Finnish grouse populations were at a record
low in 2009, and subsequently reached similar
low values during the summers of 2016-2017.
However, since 2018, the grouse population has
shown signs of recovery across Finland exclud-
ing southern parts, which remains in decline due
to habitat fragmentation (NRIF, 2019).
Environmental, host and climatic variables
were important determinants for /. ricinus and
L persulcatus occurrence which were in line
with previous studies (Article IV: Fig. 4). Re-
sults showed that climatic factors such as higher
RH, higher mean air temperature and precipi-
tation sum were associated with higher occur-
rence of I ricinus (Article IV: Fig. 5a). Higher
air temperatures (Kjaer et al., 2019; Gethmann
et al., 2020; Rochat et al., 2021) and precipita-
tion, especially in spring (Jore et al., 2014) were
found to positively influence in 1. ricinus pres-
ence. Based on the study results, higher densities
of red fox, white-tailed deer and European hare
were associated with higher habitat suitabilities
for . ricinus which is in accordance with earlier
findings (Talleklint & Jaenson, 1997; Handeland
et al., 2013; Hofmeester et al., 2017; Jaenson et
al., 2018; Mysterud et al., 2021). Although gen-
erally red foxes have been found to be suitable
hosts for ticks in Europe (Cadenas et al., 2007,
Wodecka et al., 2016), they were not considered
suitable hosts in the recent study from Norway

(Mysterud etal., 2021). Consistent with previous
research (Kjaer et al., 2019), our study showed
that high MIR rates positively influenced with
I ricinus occurrence. Similar to I ricinus, the
suitabilities for /. persulcatus were higher in the
locations with higher mean precipitation and air
temperature during the activity season (Article
IV: Fig. 5b). However, when precipitation, mean
air temperature and DLST increased at a partic-
ular point, the suitability for 1. persulcatus be-
gan to decrease. This finding may demonstrate
the characteristics of 1. persulcatus to prosper in
slightly drier and colder habitats than 1. ricinus
(Sirotkin & Korenberg, 2018). However, the ex-
pansion of I. persulcatus have been found to cor-
relate with the increase of mean annual air tem-
peratures that determine compatible temperature
conditions for . persulcatus establishment at new
territories (Tokarevich et al., 2011; Bugmyrin et
al., 2019). As warmer winters and hotter sum-
mers are estimated to change the dynamics and
pattern of seasonal tick activity (Gray 2009), it
will be seen if 1. persulcatus adapts to warmer
and wetter habitat conditions. Some adaptation
has already occurred with a recent introduction of
the species in southern parts of Finland (Zakham
etal., 2021). For I persulcatus, higher densities
of white-tailed deer, roe deer and mountain hare
were associated with higher habitat suitabilities
which is in line with previous findings (Kim et
al., 2011; Jaenson et al., 2016; Pakanen et al.,
2020). Notable is that during the last few years
white-tailed deer and roe deer populations have
rapidly increased in southern Finland, especially
in the southwest (NRIF, 2022), which may have
a potential effect, not only on the increased abun-
dances of I ricinus but also, on the spread of .
persulcatus southwards.

4.3 Uncertainties
In SDM studies, in general, there are often under-
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lying data-related and methodological chal-
lenges which affect the study results (Good-
child, 1994; Barry & Elith, 2006). The highest
quality of response and predictor data available
are used, but there are always data- and mod-
el-related limitations, and these issues are dis-
cussed herein. A common challenge in SDM is
the lack of suitable predictors most often due to
lack of spatial data nor the lack of knowledge
on influential factors (Dormann et al., 2007).
However, we highlight that conversations be-
tween experts from various fields are needed
to understand the broader context of influen-
tial determinants for a given species or disease.
Sample size and extent, sampling design and
data resolution are important data issues affect-
ing the performance of SDMs by addressing
whether species data is unbiased and repre-
sentative; well covering all the environmen-
tal gradients within the study area (Franklin et
al., 2010). Sample size has been found to be
negatively associated with model performance
which was also identified in our work (Cum-
ming 2000; Hirzel & Guisan, 2002; Wisz et al.,
2008; Franklin et al., 2010). In Articles I-III,
a relatively low number of occurrence data for
Stegomyia, TBE disease cases, and Cs. morsi-
tans may have affected the representativeness
of the species and disease data and influenced
the model performances and the prediction re-
sults. Due to the narrow geographical range of
TBE cases in Article II, it was not possible to
predict TBE risk throughout Finland but on se-
lected presence and control municipalities with
ratio of 1:1, as suggested (Article II, Fielding
& Bell, 1997; Wisz et al., 2008; Barbet-Mas-
sin et al., 2012). Sampling design in Article L,
based on 100 m elevation interval along the
roads, affected the Stegomyia predictions with
a visible influence of road network in the pre-
dictions. The choice of modelling technique is
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also critical to produce the highest predictive ac-
curacy with low uncertainties. In Article I, we
used GAM and RF models to model the distribu-
tions of Culex and Stegomyia, and we note that use
of ensemble, instead, might have produced higher
predictive accuracy for both genera. In general, en-
semble modelling has been found to produce more
robust decision-making in the face of uncertainty in
comparison with single-model predictions (Araujo
& New, 2007, Article III). The lack of very high-
resolution environmental data (e.g. the resolutions
of 2-5 m) is a general problem in SDM. In Article
I, we utilized the environmental data at 20 m. Al-
though this is already reasonably good resolution,
it may have produced some bias to the study re-
sults, as mosquitoes are also breeding e.g. in tree
holes and water tanks in different microclimates.
However, we have to note that by increasing the
resolution of environmental data does not always
improve the SDMs (Pradervand et al., 2014). Data
from human TBE cases and SINV infections were
only available at municipality level and produced
results at same resolution (Article II-TII). As ex-
planatory data were mainly available at higher
resolution (1000 m x 1000 m) and data were cal-
culated to correspond the resolution of response
variable, some information was lost. Disease data
are often aggregated and dependent on the chosen
set of aggregate-level mapping units e.g. due to
privacy policy. This phenomenon, also called as
the modifiable areal unit problem (MAUP), may
lead to misleading conclusions (Gehlke & Biehl,
1934). Also, in Article I1, excluding the Aland Is-
lands, hunting data were performed in game man-
agement area (GMA) level, which is larger than
municipality boundaries and thus, were not real
density data per municipality.

There are also some uncertainties concerning
the data of species of concern (Article I, III-IV).
In Article I, we only used mosquito data collected
during three months in 2016. Species com-



position and abundance vary throughout a year
depending on a variation of climate-specific pat-
terns. Also, we note that the genus-level pooling
of the species will mask species distribution de-
terminants (Article I). We cannot rule out some
effects of other potential sample biases (e.g. time
of the day and traps involved) which may have
affected the mosquito and tick spectrum captured
(Articles I, III-IV). Random selection of ab-
sences from the historical data of other species
may not reflect true absence of the species but
could be due to having visited sites when one
or more life stages was not active or to be col-
lected or by using collection methods which ex-
cluded some species (Articles I, III-IV). How-
ever, despite of the limitations we decided to use
true absences instead of pseudo-absences, as rec-
ommended (Wisz & Guisan, 2009). In Article
IV, we utilized crowdsourcing-based tick data
as historical data and thus, there may be some
uncertainties related to e.g. accuracy of collec-
tion sites (Laaksonen et al., 2017). There may
also exist differences in species-specific factors
between Cx. pipiens and Cx. torrentium and be-
tween Ae. cinereus and Ae. geminus, which
were pooled in Article I11.

Although use of host density data are use-
ful when predicting species distributions, host
densities may be directly and indirectly affected
by climate being difficult to separate factors in-
to causal and confounding (Scharlemann et al.,
2008; Jaenson et al., 2012). Furthermore, there
are other influential factors affecting the spatial
patterns of species and disease which were not
included in this project due to lack of the data.
In Article I, landscape fragmentation indicators
such as distance from forest patch, patch size,
distance from patch edge and the landscape met-
ric of PPU (patches per unit) could have added
value to the suite of predictors as they have result-
ed significant statistical relations with mosquito

distributions (Reiter & LaPointe, 2007; Richman
et al., 2018). Article II, would have benefited
from data on vaccination coverage because an
effective TBE vaccination in risk localities af-
ter a few cases may make the risk in the nature
appear low or even nonexistent. Furthermore,
studies would have benefited the density data on
small vertebrate hosts such as rodents (Articles
II and IV) or migratory birds (e.g., passerines)
(Article III) but these data were not available
for studies at larger spatial scales. In addition, all
articles would have benefited from micro-climate
data. Micro-climate data (spatial resolution < 50
m) better represents thermal and moisture con-
ditions than coarse-scale gridded climate data
(> 1 km2) (Lembrechts et al., 2019), but due to
computationally intensive production it was not
yet feasible to apply in SDMs at larger scale. In
addition to the microclimate, North-Atlantic Os-
cillation (NAO) index and wind climate (Laurila
et al., 2021) which capture the wide spectrum
of conditions related to precipitation (water and
snow), winds and temperature could have added
value, specifically, in Articles I-111.

Data quality is an important aspect of the
input data. Usually species and disease data are
heavily spatially autocorrelated (SA) and re-
quires reduction of SA before modelling analy-
sis. In Article I, environmental, anthropogenic
and distance variables were spatially autocorre-
lated to some extent, which may have affected
e.g. the precision of coefficients (Diniz-Filho et
al.,2003). In Article I'V, particularly, efforts were
made to reduce SA from the tick observation data
but despite this, we note the results may still be
influenced by SA to some extent. In Article II,
game animal density data were not real density
data but hunting data, and this may have caused
bias in the study results although hunting data
correlates with animal densities (Cattadori et al.,
2003; Jore et al., 2014; Jaenson et al., 2018). In
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Articles II and III, we used patient case data
which are always affected by disease awareness
among physicians, especially when diagnosing
SINV infection with serological evidence. Pa-
tient data (NIDR, 2021) were documented by
municipality of residence and may not reflect
actual municipality where patients were infected.
Because patient data were documented based on
the date of sample collection rather than the onset
of symptoms, it may indicate a time lag to sero-
logical diagnosis. Furthermore, using presence-
absence data instead of mosquito abundance da-
ta in all articles, loses information on the rela-
tive suitability of habitats when all presences are
treated as equal, regardless of the abundance of
the individuals that the habitat supports (Pearce
& Boyce 2005). We also note that vector data
collected and aggregated for this study are not
suitable for abundance modelling in which sea-
sonal data from several years are needed. Overall
limitation of SDMs are that correlation does not
imply causation, and the assumption that the spe-
cies are in equilibrium with contemporary envi-
ronmental conditions, not spreading, being indic-
ative of environmental tolerances, and that SD-
Ms cannot account for dispersal or interspecific
interactions (Leathwick, 1998; Franklin et al.,
2010; Drew etal., 2011). The predicted distribu-
tions for I. persulcatus should be considered with
wary, as there are findings which may indicate
that the species is still spreading (Article IV).

4.4 Implications and future prospects
As a significant part of emerging infectious dis-
ease outbreaks occur in Africa (Chan, 2010), our
study is partly conducted at the very center of
potential emergence of disease vectors and zoo-
notic pathogens. Mosquito species; Cx. pipiens,
St. (de. ) aegypti, Ae. cinereus, Cs. morsitans
and Cx. forrentium, and tick species; 1. ricinus
and 1. persulcatus, are well-known vectors of
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significant human pathogens in boreal and trop-
ical landscapes. Predictive modelling of these
vectors, together with spatial risk analyses of
important VBDs; Pogosta disease and TBE, as-
sist both public health authorities and scientific
community.

Vector surveillance and studies on predicting
their current and future distribution serve public
health outcomes in several ways. The data gen-
erated here, help to find significant facts to as-
sist the authorities and experts in decision-mak-
ing to determine area-specific recommendations
on vector control strategies and disease preven-
tion. The results have implications for improving
knowledge on disease prevention, by applying
GIS and SDM approaches to identify risk areas
and environmental determinants, and for opti-
mizing the use of limited resources for mitiga-
tion strategies. The results can also be applied
to other regions located in similar environmental
conditions to study regions. Produced data is vi-
tal for better understanding of the current situa-
tion of vector and VBD distributions, and future
threats to plan the correct and effective actions
and control measures.

In this thesis, use of different platforms for
SDM, sampling design and field collections gave
new improvements. The use of biomod2 pack-
age in R and VECMAP software, showed that
robust model outputs may be achieved both by
using programming language and GIS mapping
software. Sampling design was planned in Ar-
ticle I based on elevation interval, but in Arti-
cle IV, we used ArcGIS and VECMAP to cre-
ate GIS-based sampling design based on relative
shares of suitable land cover classes within se-
lected distance from roads. This new sampling
approach improved the study design by maxi-
mizing a range of environmental values within a
study area and ensuring accessibility to collection
locations. Mosquito collection data in Article



I, were manually filled in collection sheets
and coordinates were saved using a hand-held
consumer-grade GNSS (Garmin model GPS-
Map64s). A great amount of work and time was
reduced when VECMAP mobile app was used
in tick collections for Article I'V.

Our results help to prioritize the research top-
ics and funding to correct targets and actions in
future. Produced data may be used in other stud-
ies with related study topics. The habitat suitabil-
ity data on tick and mosquito species (Articles I,
II-IV) may be used in studies modelling spatial
patterns of disease they transmit. Prediction data
of tick vectors I ricinus and I. persulcatus were
produced (Article I'V) which can be utilized as
predictor data for modelling the risk of TBPs in
Finland, or in Nordic countries in future. Human
TBE cases are increasing and there is a high need
for further research (NIDR, 2022; Ministry of
Social Affairs and Health, 2021). Article IT was
an insight into TBE distribution modelling, and
our goal in future studies is to combine larger
and more detailed datasets of human TBE cases
from Scandinavia and create predictions across
Northern Europe under current and future cli-
mate conditions. The habitat suitability data on
SINV vector species may be used in future spa-
tial modelling studies, which may be useful, es-
pecially, after SINV infection outbreak occurred
in Finland in 2021. In near future, our aims are
to identify space-time clustering and risk areas of
SINV infections during the 2021 outbreak and to
model the spatial distribution of SINV infections
cases by using environmental, host and other in-
fluential determinants. Within this work, we also
created a framework in which multidisciplinary
and multi-organizational data were brought into
a same database with same geographical units.

We note that the genus-level pooling of the
species (Article I) mask species distribution de-
terminants, and thus species-level data with spe-

cies-level identification and screening for arbo-
viruses will be targeted in future work in Kenya
with larger and more detailed datasets. During
the ongoing and following year, we aim to col-
lect mosquitoes in 50 locations with varying land
cover classes, and from houses with different
building designs across Taita Hills during each
dry and wet season. During the mosquito collec-
tions in 2016 (Article I), we found that a high-
er number of mosquitoes were found in houses
with modern than with traditional design, and we
noted that more research and actions are needed
for the justification (Uusitalo, MSc Thesis 2017).
To model the seasonal abundance of St. (4e. )
aegypti, to screen the circulating mosquito-borne
viruses, and to provide practical solutions for lo-
cals to fight against MBDs, our plans are to con-
tinue research on the area. After all the collect-
ed mosquito and tick species data from Finland
and Kenya (Culverwell et al., 2021; Korhonen,
unpublished results; tick collections from VE-
CLIMIT consortium; Finnish Mosquito Projects)
are aggregated and screened for the pathogens,
the data enables more accurate SDM of vectors
but also of pathogens they carry. In Finland, we
continue studying vectors, VBDs, and their dis-
tributions in Climate Change and Health- project
within VECLIMIT consortium funded by Acad-
emy of Finland until the end of 2023.

The lack of high-resolution data on species,
diseases, hosts and environment is a major chal-
lenge in SDMs. New crossnational databases on
the distribution of vectors and VBPs, such as Vec-
torNet coordinated by ECDC, enables research-
ers to use the species and pathogen data for SDM
inreal time across Europe (ECDC, 2022). In Fin-
land, fine scale disease data are hard to receive
due to its sensitive nature and due to strict data
policies. Data request and application processes
are complicated, time consuming and costly. To
balance between privacy policy and spatiotem-
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poral studies of emerging epidemics, solutions in ~ 2018). For example, the potential solution for
governmental level should be done to achieve real ~ the lack of microclimate data could be the use
time research serving public health outcomes (Sil-  of unmanned aerial vehicles (UAVs) to map the
jander et al., 2022). To improve resolution of en-  sampling areas in real time at smaller scale stud-
vironmental and climatic factors, local field mea- ies, and to produce very high-resolution environ-
surements such as fine environmental mapping or ~ mental data of even 3 cm (Anderson & Gaston,
in-situ measurements should be taking in to ac-  2013; Fornace et al., 2014).

count (Pradervand et al., 2014; Lembrechts et al.,
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Fig. 8 Estimated daily mean air temperatures during the warmest quarter of the year for Finland for 20412070 and

2071-2100 by using IPSL-CM6A-LR global climate model (GCM) with SSP3—-RCP7 and SSP5-RCP 8.5 scenarios
(Karger et al., 2017). The warmest quarter of the year is the season when vector species are active and pathogen
replication is most efficient.

44



Due to climate change, increases in air tempera-
tures are expected in Northern Hemisphere dur-
ing the ongoing century (Fig. 8.). Rising temper-
atures and higher precipitation bring favorable
conditions for new invasive species and patho-
gensto spread in space. For example, Ae. aegypti
and Ae. albopictus are invasive species which, in
Europe, continue spreading northwards (Cunze
et al., 2016; Kraemer et al., 2019). In Finland,
the distribution of the taiga tick I persulcatus
may be shifting southwards (Laaksonen et al.,
2017; Zakham et al., 2021).

Due to climate change and its impacts on
weather patterns, new vector-borne pathogens
may emerge and be transmitted from animals
to humans if potential vector species and hosts
are present. For example, WNV, causing fatal
neurological disease (WHO, 2022f), may be a
potential threat for the public health also in Fin-
land in future. A recent study showed that Cx.
pipiens and Cx. torrentium, species distributed
across Finland (Culverwell et al., 2021), are able
to transmit WNV through its saliva especially
when daily mean temperature is 24°C during 14
consecutive days at minimum (Jansen et al., un-
published results). As daily mean temperatures
are expected to rise for this temperature thresh-
old when transmission rates in mosquitoes were
most efficient by the end of 21st century (Jansen
et al., unpublished results), there is a potential
risk for new circulating VBD in the country. Due
to increased threat for public health caused by
arthropods, there is a higher demand for training
and research on VBDs (Ministry of Social Af-
fairs and Health, 2021) to produce information
which supports public health planning.

5 Concluding remarks

Most emerging infectious disease outbreaks
occur in the Tropics, although some outbreaks

emerge in Nordic countries, with varying sever-
ity. The distribution of vectors and VBDs through
GIS and SDM techniques are understudied in
Finland despite their widespread use elsewhere
in the world. Thus, our study is conducted both at
the center of potential emergence of disease vec-
tors and zoonotic pathogens, but also in North-
ern Europe in Finland, in the understudied re-
gion. This fact together with the current concern
of an increased risk of vector-borne pathogens
and a spread of invasive species due to chang-
ing weather patterns, adds need and requirements
for increased research and concrete actions. In
this thesis, environmentally suitable areas for the
mosquito and tick species of medical importance
in boreal and tropical landscapes, and the risk
areas for two endemic VBDs in Finland were
identified at first time.

With our prediction results in Article I, we
note that both Culex and Stegomyia genera, of
which species are both vectors of important VB-
Vs in the Tropics, are present across the Taita
Hills in the villages and rural areas being able
to survive both with sparse and rich vegetation.
In Article II, high-risk areas for TBE in Finland
were identified based on influential environmen-
tal and host drivers, and under current and future
climate. Especially field, forest, precipitation and
host variables including white-tailed deer, Euro-
pean hare and raccoon dog density were found
correlated with the occurrence of TBE. Based on
future forecasts for 20412060 and 2061-2080
climate, a wider geographical extent of TBE risk
was introduced in southern and western coast,
and southern Lapland. In Article III, environ-
mentally suitable areas were identified for the po-
tential SINV vectors Ae. cinereus/geminus, Cx.
pipiens/torrentium and Cs. morsitans in Finland,
and risk areas for SINV infections were indicat-
ed based on vector, host and environmental data.
Municipalities with an increased risk of Pogosta

45



DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A

disease were characterized by high environmen-
tal suitability for de. cinereus/geminus; high
densities of black grouse, capercaillie and ha-
zel grouse; a high proportion of mixed forest
in peatlands; and a high number of lakes. The
risk of transmission was predicted to be great-
est in eastern and central Finland, and in several
municipalities in western Finland, excluding the
coastal areas. In Article IV, we estimated the
distributions of Ixodes ricinus and 1. persulca-
tus across Finland by using historical data, and
newly collected data, of which we also screened
pathogens TBEV and Borrelia. A total of 500
ticks were analysed for the pathogens; with no
ticks positive for TBEV and =47 % of tick pools
positive for Borrelia burgdorferi s.1. High suit-
ability areas for 1. ricinus occurred throughout
southern and central Finland up to the Central
Ostrobothnia, excluding the narrow areas in Os-
trobothnia and Pirkanmaa. For I. persulcatus, the
regions northwards from Ostrobothnia along the
northern coast up to southern Lapland, Kainuu,
North Savo, North Karelia, and areas in Pirkan-
maa and Pijat-Hame were estimated to be suit-
able areas. Based on the predictions, locations
with higher air temperature, higher RH, higher
precipitation sum and MIR, and higher densi-
ties of white-tailed deer, European hare and red
fox were suitable for 1. ricinus. For I persulca-
tus, higher mean precipitation, higher densities
of white-tailed deer, roe deer and mountain hare
indicated higher probability of occurrence.
Together, these results have implications for
improving knowledge on disease prevention, ap-
plying GIS and SDM approaches for identifying
risk areas and environmental determinants, opti-
mizing the use of limited resources for mitigation
strategies and improving public health outcomes.
The data generated in this project will help to find
significant facts to assist the authorities and ex-
perts in decision-making on vector control strate-
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gies and disease prevention. Produced data help
us to prioritize the research topics and funding to
correct targets and actions in the following stud-
ies. The results can be applied to other regions
located in similar environmental conditions to
study regions. During and after the ongoing CO-
VID-19 pandemic, it is even more vital to under-
stand the benefits of spatial epidemic analyses to
be better prepared for future disease outbreaks
and new emergences of vector species, and to
guide public health authorities and policymakers
in implementing the correct and effective actions
and control measures.
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