
https://helda.helsinki.fi

Modern Web Frameworks : A Comparison of Rendering Performance

Ollila, Risto

2022

Ollila , R , Mäkitalo , N & Mikkonen , T 2022 , ' Modern Web Frameworks : A Comparison of

Rendering Performance ' , Journal of Web Engineering , vol. 21 , no. 3 , pp. 789-813 . https://doi.org/10.13052/jwe1540-9589.21311

http://hdl.handle.net/10138/343674

https://doi.org/10.13052/jwe1540-9589.21311

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Modern Web Frameworks: A Comparison of
Rendering Performance

Risto Ollila1,∗, Niko Mäkitalo2 and Tommi Mikkonen2

1Intruder Systems Ltd, London, UK
2University of Helsinki, Department of Computer Science, Helsinki, Finland
E-mail: risto@giantmoo.se; niko.makitalo@helsinki.fi;
tommi.mikkonen@helsinki.fi
∗Corresponding Author

Received 30 May 2021; Accepted 25 November 2021;
Publication 08 March 2022

Abstract

Recent years have seen the rise of a new generation of UI frameworks for web
application development. These frameworks differ from previous generations
of JavaScript frameworks in that they define a declarative application devel-
opment model, where transitions in the state of the UI are managed by the
framework. This potentially greatly simplifies application development, but
requires the framework to implement a rendering strategy which translates
changes in application state into changes in the state of the UI. The perfor-
mance characteristics of these rendering strategies have thus far been poorly
studied.

In this article, we describe the rendering strategies used in the frameworks
Angular, React, Vue, Svelte and Blazor, which represent some of the most
influential and widely used modern web frameworks. We find significant
differences in the scaling of costs in their rendering strategies with poten-
tially equally significant practical performance implications. To verify these
differences, we implement a number of benchmarks that measure the scaling
of rendering costs as an application grows in complexity.

Journal of Web Engineering, Vol. 21 3, 789–814.
doi: 10.13052/jwe1540-9589.21311
© 2022 River Publishers

790 R. Ollila et al.

The results of our benchmarks confirm that under certain circumstances,
performance differences between frameworks can range up to several orders
of magnitude when performing the same tasks. Furthermore, we find that
the relative performance of a rendering strategy can be effectively estimated
based on factors affecting the input sizes of render loops. The best performing
rendering strategies are found to be ones which minimize input sizes using
techniques such as compile-time optimization and reactive programming
models.

Keywords: Web framework performance, declarative rendering, virtual
DOM, frontend frameworks, single-page application frameworks, angular,
react, vue, svelte, blazor.

1 Introduction

The use of JavaScript on the web has become ubiquitous, with up to 97% of
websites today using JavaScript, up from 88% a decade ago [16]. Over the
same timeframe, there has been a change in how JavaScript is used: whereas
ten years ago up to 60% of websites used JavaScript without the help of any
libraries or frameworks, today less than 20% do so [17].

One reason for the rise of scripting is that it enables rich, responsive user
interfaces for web applications. Without scripting, all transitions in UI state
require page navigation [31], a process that involves resource fetching and
a full reconstruction of the UI for every transition [4] (Figure 1). This is
highly inefficient, particularly for small transitions. Using DHTML [33], a
set of technologies which together enable dynamic modification of a doc-
ument, the UI can be modified incrementally. When a UI state transition
requires resource loading, this can be done asynchronously using the AJAX
pattern [31].

At the core of DHTML is the Domain Object Model (DOM) [5]. DOM
describes the structure of a document as a tree of nodes, and provides a
set of APIs which can be used to dynamically modify that structure. DOM
APIs are imperative, consisting of functions that enable querying, adding
and removing nodes as well as modifying node attributes. Using DOM APIs,
any DOM node tree which can be parsed from an HTML source can also be
constructed using JavaScript.

A pitfall of DHTML is that DOM APIs are error-prone to use [28]. This
may partly explain the increase in the use of JavaScript libraries, as many
of them provide utilities for DHTML and AJAX, often providing library

Modern Web Frameworks: A Comparison of Rendering Performance 791

functions that wrap browser APIs and make them more convenient to use.
Modern web frameworks go a step further, by defining a custom declarative
syntax with which to develop applications. In this model, application code
never directly calls DOM APIs. Instead, application code only describes the
desired state of the UI, and the framework will dynamically generate DOM
API calls to update the UI to match the desired state. Modern web frameworks
are often used in single-page applications, where all page navigation is
replaced with DHTML [26].

When using browser APIs directly or through a simple wrapper, the
amount of script execution required to perform a UI update scales linearly
with the complexity of the update. This is a desirable property for responsive-
ness. When DOM API calls are generated dynamically by a framework, the
framework must perform work to determine exactly which calls are required
for each particular transition, which causes additional overhead.

This presents an interesting problem from a performance point of view:
there are potentially multiple different rendering strategies which can be used
to determine the required API calls, and each strategy might be expected
to have different performance characteristics. In a trivially simple UI, any
strategy is likely to work well enough. It is therefore the scaling of costs that
is of practical concern. Ideally, the cost of an update should depend only on
the complexity of the update, just as when DOM APIs are used directly. A
poorly scaling strategy might in the worst case cause noticeable delays on
even small updates, defeating the purpose of using scripts in the first place.

To our knowledge, there is essentially no previous published research on
the subject of declarative rendering strategies in the web application context.
Previous research on web application performance has focused on the costs
of an initial page load, where costs of resource loading may dominate [35], or
in the performance of the browser’s content rendering process [27]. Scattered
research on JavaScript libraries and frameworks exists, but these typically
do not focus on performance aspects or differentiate between different
types of libraries and frameworks [30], or discuss an older generation of
frameworks [21].

Our contribution to this topic consists of a comparison of the rendering
strategies used in Angular [1], React [8], Vue [15], Svelte [13] and Bla-
zor [2], which are some of the most widely used and influential modern
web frameworks. Using publicly available documentation, we have reviewed
how their rendering strategies work and present a way to estimate their
relative levels of performance. Additionally, we have implemented several
benchmarks where we test expected differences in performance arising from

792 R. Ollila et al.

Figure 1 The critical rendering path used to render web pages in a browser.

differences in rendering strategies. The work is based on a thesis project under
the scope of which the study was conducted [29].

The rest of this article is structured as follows. In Section 2, we will
describe modern web frameworks in more detail. Section 3 introduces bench-
marks which we have implemented to measure the selected frameworks’
rendering performance, the results of which will be discussed in Section 4.
A final summary will be presented in Section 5.

2 Background

In this section, we present our findings from a review of Angular, React,
Vue, Svelte and Blazor. We will first briefly explore the motivations behind
using a declarative rendering model, after which we will discuss the rendering
strategies used in these frameworks in detail.

2.1 Motivations for Using a Declarative Rendering Model

DOM APIs are error-prone to use. Ocariza et al. found that up to 80% of
high-impact bugs in web applications are caused by errors in DOM manipu-
lation [28]. This is explained by the exponential growth of UI state transitions
as the complexity of an application grows. In an application with N valid UI
states, where from each state there is a valid transition to a fraction k other
states, the number of valid transitions is kN(N − 1). DOM APIs are im-
perative, and therefore when they are used directly, the application developer

Modern Web Frameworks: A Comparison of Rendering Performance 793

must define every transition and ensure none of them lead to invalid states.
This easily leads to errors such as attempting to manipulate nodes which are
not present in the DOM.

Web application developers have long used libraries and frameworks
to simplify DOM manipulation. Previous generations of frameworks, the
most widely used of which [17] include jQuery [24], MooTools [6] and
Prototype.js [7], provide wrappers over DOM APIs which make them more
convenient to use. They remain imperative, however, and therefore have
fundamentally similar performance characteristics as direct DOM API use,
and remain just as error-prone.

In modern web frameworks, the application developer only needs to
describe the possible states of the application, while the transitions between
states – DOM API calls – are dynamically generated by the framework.
This frees the application developer from the need to manually define state
transitions and potentially entirely eliminates the class of DOM manipulation
errors identified by Ocariza et al. However, the work which a framework must
perform to determine the required API calls for UI transitions represents addi-
tional overhead on top of DOM manipulation. The scaling of this overhead is
the focus of subsequent discussion.

2.2 Frameworks

There exists a huge number of modern web frameworks which implement
a declarative rendering model, and we have not attempted to conduct an
exhaustive survey of them. Instead, we have selected a number of frameworks
which are popular or widely used [11, 12] and show distinct approaches in
their rendering strategies. We have listed the selected frameworks and the
versions used in Table 1. Unless otherwise stated, all information presented
below is sourced from the developer documentation of each framework.

All the selected frameworks are based on JavaScript, with the exception of
Blazor, which is a WebAssembly-based framework. Blazor applications are

Table 1 Introducing the reviewed frameworks
Framework Year Released Version Reviewed
Angular 2016 11.2.3
React 2013 17.0.1
Vue 2014 3.0.7
Svelte 2016 3.35.0
Blazor 2018 5.0.3

794 R. Ollila et al.

written in C# and executed within a .NET runtime that has been compiled to
WebAssembly ahead of time. WebAssembly modules have no direct access
to DOM APIs, and instead must use them through a JavaScript interoper-
ability layer. This is a potential source of overhead which makes Blazor an
interesting comparison with its JavaScript-based peers.

2.3 MVVM and Data Binding

The frameworks we have reviewed all follow some variant of the Model-View-
ViewModel (MVVM) pattern [22]. MVVM is a declarative pattern, where the
Model represents the application’s data source and the View the concrete GUI
visible to the user. The View is built from a ViewModel, which contains a
declarative description of the View along with any related data and custom
logic. A central concept in MVVM is data binding: data within the ViewModel
can be bound to the View so that any changes to them are automatically
reflected in the View.

In web frameworks, typically the word “component” is used instead
of ViewModel, but they are conceptually equivalent. In all frameworks we
reviewed, the application is structured as a tree of components, where each
component describes a subset of the DOM. Components can contain applica-
tion state, which can be optionally shared with descendant components. Data
bindings are used to define custom rendering logic: for example, a conditional
rendering expression might be used to render or hide an element depending
on the truthiness of a data binding’s value. In the frameworks we reviewed,
data bindings are always one-way, flowing from application state to the UI
but not the other way around. This ensures that DOM manipulation during
a render loop will not cause changes to application state, guaranteeing that
render loops can be performed in linear time [34].

2.4 Rendering Strategies

All frameworks we reviewed perform the same task, which consists of keep-
ing the state of the DOM synchronized with the state of the component tree by
creating and updating DOM nodes and their attributes. We found two distinct
approaches to how this is achieved.

The first approach, used in React, Vue and Blazor, is based on explicitly
solving the tree edit distance problem. This consists of comparing two trees
and computing the minimum set of changes needed to transform one tree into
the other [19]. In the general case, solving the tree edit distance problem has
a time complexity of O(n3) [32], but according to the authors of React, this

Modern Web Frameworks: A Comparison of Rendering Performance 795

can be simplified to O(n) by making certain assumptions which generally
hold in the context of browser applications [9].

This approach is often called the virtual DOM (vDOM)-based rendering
strategy, because the frameworks manage a data structure which represents
a particular state the DOM, a ”virtual DOM” [10, 14]. In a vDOM-based
framework, each component produces as its output a single vDOM node,
which describes a set of DOM nodes. At any given time, it is possible to walk
through the component tree to produce a new vDOM tree, which represents a
desired state of the DOM based on current application state. This tree is then
compared to a previously generated vDOM tree representing the current, not
yet updated state of the DOM. The comparison produces the set of changes
that must be applied to the previous tree in order to obtain the new one. This
set of changes is then applied to the real DOM using DOM APIs.

The second category of frameworks, represented by Angular and Svelte,
solves the tree edit distance problem implicitly. As with vDOM, each com-
ponent defines a set of DOM nodes that should be rendered by an instance of
the component. Unlike vDOM, at no point is there a separate step where the
overall required changes to the UI are computed. Instead, each component
directly modifies the portion of the DOM which it represents. This is based
on dirty checking of data bindings: in addition to tracking current application
state, each component keeps track of the values of all data bindings as they
are currently represented in the DOM. Rendering consists of walking through
the component tree, performing dirty checks on data bindings to see which
bindings have changed, and applying changes to the DOM for each dirty
binding found. The sum total of the changes is a solution to the tree edit
distance problem.

In terms of performance, use of a virtual DOM potentially presents over-
head not present when a binding-based rendering strategy is used. Although
both strategies involve walking through the component tree, the vDOM-based
strategy must in effect perform an additional loop: one over the component
tree to produce a new vDOM tree, and another over the newly produced
vDOM tree to compare it to the previous vDOM tree.

2.5 Performance Differences

All frameworks we reviewed perform DOM updates in a render loop that
walks through the component tree. The performance costs of a render loop
depend on input sizes and fixed costs. Input sizes can be measured precisely
in the number of components that each loop must process, as well as the

796 R. Ollila et al.

number of elements or data bindings processed per component. Fixed costs
represent the amount of work which must be performed for each processed
element or data binding. Fixed costs depend on implementation details that
are not straightforward to compare, and we have therefore not investigated
them in detail. Input sizes, on the other hand, can be directly compared, and
here we found significant differences between frameworks.

We can distinguish two different types of work that a render loop may
perform: creating new components and their associated elements, or updating
existing ones. In the case of creating new components and elements, all
relevant elements and components must be created, and therefore input sizes
are equivalent regardless of rendering strategy.

In the case of updating existing components, a change may affect only
a subset of components. However, because components can share their state
with descendant components, a change in application state in a particular
component can affect the output of other components as well. Frameworks
must therefore adopt a strategy to ensure that all relevant components are
processed when application state is modified. In the frameworks we reviewed,
we found three distinct approaches to this problem, each with implications to
the number of components that must be processed in each update loop.

The first approach, used by Angular, is to simply walk through the entire
component tree exactly once. This ensures that all data bindings are checked
and therefore all necessary changes are processed, but requires unnecessary
work for any update that targets only a subset of the component tree. In Angu-
lar, it is possible to optimize this by manually indicating when components
should not be re-rendered.

The second approach, taken by React and Blazor, is to walk through the
subtree of the component which initiates the render loop. Components are
only permitted to share their state with their descdendants, which ensures that
components further up the component tree cannot be affected by changes in a
component’s state. Therefore, this approach is also guaranteed to process all
required components, but will still require unnecessary work for descendants
whose output has not changed. As with Angular, both React and Blazor
allow the application developer to manually designate when re-rendering a
component can be safely skipped. Blazor in particular implements a default
optimization of not re-rendering components if the component only contains
primitive type inputs and those have not changed since the previous render.

The final approach, taken by Vue and Svelte, is to process only dirty com-
ponents: components the output of which has changed. This is optimal, but
requires some way to precisely determine ahead of time which components

Modern Web Frameworks: A Comparison of Rendering Performance 797

are dirty. Both frameworks achieve this by use of a limited reactivity sys-
tem. In reactive programming, values can be declared as being produced
through computations based on other values. Whenever a value changes,
dependant values are automatically updated transitively by the runtime which
implements the reactive programming model [18].

In the case of Vue and Svelte, a component’s output is treated as part of
a dependency graph, where every value which affects the output is treated
as a dependency of the component. Whenever any such value is mutated or
reassigned, the reactivity system automatically marks the component as dirty
and schedules it to be re-rendered. This works transitively across components
which depend on inputs shared from a parent component, ensuring that all
affected components are marked dirty automatically, and there is no need to
check unaffected components.

Vue’s reactivity system is based on explicitly tracking dependencies at
runtime using proxies, a special type of JavaScript object which enables inter-
cepting access to other objects at runtime [20]. Svelte’s reactivity system, in
contrast, tracks dependency graphs only at compile time, and works by gener-
ating imperative code which at runtime updates dependency graphs whenever
values are reassigned or mutated [23]. Functionally, the two approaches are
equivalent, but Svelte’s approach has potentially lesser runtime costs.

The other aspect of input sizes is the number of elements which must
be processed for each component. A component’s output can be divided
into static and dynamic contents, where static content will never change
after a component’s initial render, whereas dynamic content – content which
depends on data bindings – may change. Of the frameworks we reviewed, we
found that React and Blazor process both static and dynamic content on each
render, whereas all the other frameworks process static content only on the
initial render of a component.

Differences in input sizes determine the scaling in costs of each rendering
strategy. Strategies which are unable to automatically determine dirty com-
ponents scale in cost with the size and complexity of the entire component
tree and therefore suffer from a similar performance profile as page navi-
gation. Rendering strategies which do not optimize the processing of static
content will suffer an additional performance cost factor, the impact of which
depends on the ratio of dynamic versus static content found in the processed
components.

In conclusion, input sizes in update loops present a potential way to
estimate the relative levels of performance of different rendering strategies.
Use of a virtual DOM represents another potential source of overhead due to

798 R. Ollila et al.

Table 2 Summary of factors affecting performance in the reviewed frameworks
Framework Components Processed Elements Processed Virtual DOM
Angular All Bindings only No
React Subtree of updated component All Yes
Vue Dirty components only Bindings only Yes
Svelte Dirty components only Bindings only No
Blazor Subtree of updated component All Yes

the need to perform an additional loop. In Table 2, we have summarized the
frameworks we have reviewed along these aspects.

3 Benchmarks

This section describes a set of benchmarks we have implemented to measure
performance differences between frameworks. We will first describe the
methodology and aims of the benchmarks, and then present the results.

3.1 Methodology and Aims

Given the differences outlined in Table 2, it should be expected that perfor-
mance differences between frameworks would manifest themselves partic-
ularly when applying updates to a small number of components with large
subtrees or when updating components which contain a high ratio of static
to dynamic content. The primary aim of our benchmarks is to verify the
existence of these differences.

From the user’s perspective, the delay between action and response
corresponds to a full render cycle by the browser, which consists of script
execution and partial re-evaluation of the critical rendering path (Figure 1).
Typically, this is what benchmarks on frameworks measure [25]. This is an
inaccurate measure of the work performed by frameworks, however, which
consists exclusively of script execution. We have therefore chosen to measure
script execution in specific in addition to the duration of the full render cycle.
All benchmarks were implemented using Chrome Devtools Protocol [3],
which allows precise tracking of script execution using CPU polling.

In each benchmark described in this chapter, we have implemented an
application identically with each framework. We then perform a particular
action and measure the time taken for script execution in the render cycle that
follows the action. Each scenario measures the costs of a particular aspect
of rendering by varying the size and shape of the component tree and the

Modern Web Frameworks: A Comparison of Rendering Performance 799

actions performed. A total of five test scenarios were implemented. Each test
was repeated 10 times, and the results presented are the mean values from 10
samples.

The purpose of these benchmarks is only to measure the relative differ-
ences between frameworks. We present the results measured in absolute terms
as measured in milliseconds, but because of the simplicity of the components
we use, they do not represent the expected performance of a real-world
application with a component tree of equivalent size.

3.2 Results

As outlined in the previous section, we expect the greatest performance
differences to arise when updating content. When creating components and
elements, performance differences should arise purely from fixed costs,
which we have not investigated. These differences can still be measured,
however, which is the purpose of the first two benchmarks.

In the first test scenario, we measure the cost of creating static elements.
The implementation consists of a single component which renders N static
elements within a single component. Table 3 displays the time taken for script
execution on this task.

The second test scenario measures the cost of creating components. In
this case, N components are created in the shape of a binary tree, where each
non-leaf component contains exactly 2 children. The results are shown in
Table 4.

In the remaining test scenarios, we measure the cost of update actions.
The following two scenarios utilize the same component tree, which contains
N components in the shape of a binary tree. The two scenarios differ only
in which component is updated. The results of updating the root compo-
nent of the component tree are shown in Table 5. Table 6 shows the results

Table 3 Script execution time (ms) when creating N static elements
N Angular React Vue Svelte Blazor
100 3 2 1 1 3
500 9 9 3 2 8
1000 16 11 6 3 13
5000 85 77 28 14 61
10000 177 200 47 24 123
25000 844 956 95 63 371
50000 2520 3559 173 98 964

800 R. Ollila et al.

Table 4 Script execution time (ms) when creating N components as a binary tree
N Angular React Vue Svelte Blazor
128 20 7 16 3 17
512 75 32 53 10 59
1024 120 55 84 22 128
4096 216 137 223 83 485
8192 297 233 313 142 966
16384 469 394 485 233 1870
32768 774 733 897 482 3644

Table 5 Script execution time (ms) when updating the root component of a component tree
of N components

N Angular React Vue Svelte Blazor
128 3 7 < 1 < 1 3
512 12 23 < 1 < 1 3
1024 14 42 < 1 < 1 2
4096 32 92 < 1 < 1 3
8192 32 148 < 1 < 1 3
16384 43 211 < 1 < 1 2
32768 103 379 < 1 < 1 3

Table 6 Script execution time (ms) when updating a leaf component in a component tree of
N components

N Angular React Vue Svelte Blazor
128 3 < 1 < 1 < 1 1
512 13 < 1 < 1 < 1 1
1024 14 1 < 1 < 1 1
4096 33 4 < 1 < 1 3
8192 33 3 < 1 < 1 5
16384 44 5 < 1 < 1 4
32768 104 4 < 1 < 1 8

of updating a leaf component. No other components are updated in either
scenario.

In the final test scenario, we measure the cost of updating components
which primarily render static content. Again, the component tree contains N
components in the shape of a binary tree. In the previous scenarios, we used
components which only output at most a single data binding and a single
static element. In this scenario each component produces as their output 50
static elements, in additional to containing two data bindings for a 25:1 ratio

Modern Web Frameworks: A Comparison of Rendering Performance 801

Table 7 Script execution time (ms) when updating the entire component tree of N compo-
nents where each component contains primarily static content

N Angular React Vue Svelte Blazor
128 4 34 20 2 28
256 8 44 32 3 60
512 17 66 42 5 101
1024 27 101 72 10 250
2048 29 235 91 20 502
4096 44 289 149 54 1020
8192 238 841 311 80 2013

of static to dynamic content. The benchmark measures the time taken to
update all components in the entire tree. The results are shown in Table 7.

4 Discussion

In this section, we will discuss the results of the benchmarks. First, we will
discuss the results of each benchmark in turn, and then offer our interpretation
of the validity and applicability of the results.

4.1 Analysis of the Benchmarks

An overall impression of the results is that they are in line with what would
be expected given the characteristics of each rendering strategy as outlined in
Table 2. There are, however, unexpected results as well.

In the first two benchmarks we measured the cost of creating elements
and components. Based on the rendering strategies used by each framework,
we would not expect fundamental differences to be found here. Two things
stand out from the results, however.

Firstly, Angular and React exhibit nonlinear performance costs when
rendering a single component containing a large number of child elements.
This becomes most obvious when more than 10000 elements are rendered
in a single component, as seen in Figure 2. This effect disappears when no
single component has a large number of child elements or components, as
shown in Figure 3.

Secondly, it appears that there are significant differences in fixed costs.
Blazor is a clear outlier with significantly worse performance than its
JavaScript-based competitors. Angular, React and Vue post comparable
results, but the most performant framework, Svelte, has an edge of at least

802 R. Ollila et al.

Figure 2 Script execution time (ms) when rendering N elements in a single component.

Figure 3 Script execution time (ms) when rendering N components as a binary tree.

50% over its competitors, as seen in Table 8. While we expected Svelte
to perform well when updating components, the reasons for its superior
performance here must be explained by fixed costs rather than input sizes.

To put the results in context, we can compare script execution times to
the duration of the full render cycle. Table 9 contains for each framework the
duration of the full render cycle in the component creation scenario, including
script execution times. This is the true measure of rendering costs as it appears
to a user. The relative differences here are significantly smaller than if we only
consider script execution times.

The outlier here is Angular, where the difference in the cost of a full
render cycle compared to other frameworks is in fact significantly greater

Modern Web Frameworks: A Comparison of Rendering Performance 803

Table 8 Relative costs of script execution when rendering N components as a binary tree
N Angular React Vue Svelte Blazor
128 6.7 2.3 5.3 1 5.7
512 7.5 3.2 5.3 1 5.9
1024 5.5 2.5 3.8 1 5.8
4096 2.6 1.7 2.7 1 5.8
8192 2.1 1.6 2.2 1 6.8
16384 2.0 1.7 2.1 1 8.0
32768 1.6 1.5 1.9 1 7.5

Table 9 Duration of a full render cycle (ms) when creating a binary tree of N components
N Angular React Vue Svelte Blazor
128 34 14 24 7 23
512 117 45 72 22 74
1024 204 77 115 53 153
4096 556 249 340 198 585
8192 992 464 549 375 1172
16384 1878 858 953 696 1407
32768 3654 1669 1836 1407 4446

Figure 4 Comment nodes inserted by Angular in the DOM.

than the difference in script execution times alone. This appears to originate
from the fact that Angular generates comment nodes in the DOM when con-
ditional rendering is used (Figure 4), which causes a significant increase in
the size of the DOM in this particular benchmark. While comment nodes
do not contain any meaning for the document’s structure or content, they
increase the size of the DOM node tree and consequently increase the cost
of render tree construction. We found that Blazor exhibits similar behaviour
under other circumstances, but not to an extent which affected the results.

804 R. Ollila et al.

Figure 5 Script execution time (ms) when updating the root component of a component tree
with N components.

When components are updated, we expect to see the best performance
from the frameworks that have to process the least number of components
in the update loop. This is exactly what we see in the results as well. When
updating a leaf component, Angular stands out as the only framework with
a less-than-trivial rendering cost, having identical performance regardless of
whether a leaf or a root component is updated, as seen in Tables 5 and 6.
Measured in absolute terms, the cost is still relatively low, but this might not
be the case in a real-world application with more complex components to ren-
der. In effect, Angular’s rendering strategy places a minimum cost on every
update that scales linearly with the complexity of the view, which may make it
unsuitable for applications with complex views and real-time responsiveness
requirements.

As expected, updating the root component also confirms the costs of
React’s rendering strategy which must re-render the entire subtree of the
updated component, as seen in Figure 5. The relative performance difference
to the best performing strategies is dramatic, and measured in several orders
of magnitude. Blazor’s default optimization of not re-rendering components
with unchanged inputs ensures that it performs well here, but if the child
components were to contain reference type inputs, we would witness a curve
similar to that of React.

Again, it is useful to put these results in context by comparing script
execution times to the duration of a full render cycle. The most striking
differences are found when the root component is updated, with the full
render cycle costs shown in Table 10. Even though the differences are smaller

Modern Web Frameworks: A Comparison of Rendering Performance 805

Table 10 Duration of a full render cycle (ms) when updating the root component in a tree of
N components

N Angular React Vue Svelte Blazor
128 8 12 4 7 5
512 17 32 9 8 6
1024 26 47 5 4 9
4096 53 105 13 10 20
8192 60 166 20 12 28
16384 98 237 26 22 41
32768 224 439 48 24 51

Figure 6 Script execution times (ms) when updating all components in a component tree of
N components where each component contains primarily static content.

than if only script execution costs are considered, there is still an order of
magnitude of difference in the full render cycle duration between React and
Svelte. Because the changes made to the DOM are very minor, critical path
evaluation is quick, and script execution costs become the dominant factor in
the duration of the render cycle.

When updating static content, we would expect to see a significant advan-
tage for frameworks which only process data bindings on updates, not static
content. This is exactly what we see, with React and Blazor in particular
again having a significant disadvantage due to their inability to differentiate
between static and dynamic content. This difference is very significant,
reaching an order of magnitude as shown in Figure 6 and Table 11. Svelte is
again the best performing framework overall, although the absolute difference
to Angular and Vue is small enough when the number of components is low
that Angular is shown to outperform Svelte when N = 4096.

806 R. Ollila et al.

Table 11 Relative costs of script execution when updating all components in a tree of N
components containing primarily static content

N Angular React Vue Svelte Blazor
128 2.0 17.0 10.0 1 14.0
256 2.7 14.7 10.7 1 20.0
512 3.4 13.2 8.4 1 20.2
1024 2.7 10.1 7.2 1 25.0
2048 1.5 11.8 4.55 1 25.1
4096 0.8 5.4 2.8 1 18.9
8192 3.0 10.5 3.9 1 25.1

Table 12 Duration of a full render cycle (ms) when updating all components in a tree of N
components containing primarily static content

N Angular React Vue Svelte Blazor
128 11 43 29 7 41
256 31 67 56 13 72
512 47 91 67 29 126
1024 72 142 106 56 303
2048 115 295 152 82 605
4096 211 419 270 174 1213
8192 577 1068 542 387 2396

We can again compare script execution times to the duration of the full
render cycle, which is shown in Table 12. Here, layout costs are somewhat
significant due to a large number of changes in the DOM, but costs are still
dominated by script execution. Although the relative costs differences are
smaller, they are still very significant when comparing Blazor and React to
the three other frameworks which process only dynamic content.

4.2 Summary of the Results

The differences in rendering strategies outlined in Table 2 indicate that
certain strategies can automatically determine which components are dirty
and process only those, while others may need to process components which
remain unchanged since the previous render loop. These differences imply
that frameworks of the latter type may in some circumstances perform several
orders of magnitude more work than those of the first type. The benchmarks
we have implemented confirm these differences.

Blazor, the sole WebAssembly-based framework which we reviewed has
significantly worse performance than any of its JavaScript-based competitors,
including React which has an identical rendering model. We cannot

Modern Web Frameworks: A Comparison of Rendering Performance 807

determine if this is due to factors specific to Blazor or a weakness inherent
to WebAssembly. The need to mediate access to DOM APIs through a
JavaScript layer undoubtedly causes at least some of the overhead seen in
the results.

In Section 2, we outlined that one of the problems with page navigation,
aside from the need for resource loading, is that the cost of a transition in the
state of the UI depends on the complexity of the entire UI, which makes
small transitions particularly expensive. Frameworks which are unable to
automatically determine dirty components suffer from essentially the same
problem. The indication is that such frameworks may be unable to reliably
provide a responsive user experience as the complexity of the UI grows, and
will at a minimum require manual optimization of a kind that is performed
automatically by other frameworks.

These differences in performance are most likely to be encountered when
components containing large subtrees are updated. A case where this is likely
to be of practical concern is applications that render large lists. When the
component containing a list is updated, such as when items are added or
removed, certain rendering strategies will process every item in the list, and
performance differences similar to those we have measured can be expected
to appear. Frameworks which process static content on every render loop are
likely to suffer from the worst performance.

Of the frameworks we reviewed, the ones which are able to automatically
determine dirty components do so using a reactivity system. There appear to
be no unavoidable drawbacks to using such a system. Although Vue’s proxy-
based solution may have associated runtime costs, Svelte’s compile-time
reactivity system is functionally equivalent, and Svelte consistently has the
best performance of all the frameworks we tested across all the benchmarks.

Overall, we can identify the following factors as producing improved
performance:

• Use of a reactivity system to automatically detect dirty components
• Use of an optimizing compiler to generate component update code

which ignores static content
• Use of data binding-based rendering, rather than virtual DOM

The relative performance of the rendering strategies we have reviewed
can be approximately estimated based on input sizes in update loops. We
believe this to be a valid and practically useful approach to characterizing
and comparing script-based rendering strategies in the browser application
context in general.

808 R. Ollila et al.

4.3 Validity and Applicability of the Results

All tests were performed on a desktop computer with a Ryzen 5 3600 CPU
and 16GB of RAM. The results are not directly applicable to devices with
different specifications. The relative results of each framework should be
similar, however, as they arise from the differing amounts of work each
framework must perform.

The components used in our scenarios are necessarily very simple. In
a real-world application, the number of components would likely seldom
reach the higher ends of the ranges we have tested, while each individual
component’s complexity should in almost all cases be higher. These and other
factors which the tested components do not account for will likely increase
the costs of rendering individual components. This is likely to increase costs
particularly for rendering strategies which do not optimize static content or
which perform expensive dirty checks.

The components used in our benchmarks use no custom styling at all and
use only the simplest of elements with minimal attributes. Although we have
brought up the proportion of script execution costs vs. full render cycle costs
where it seems relevant, it is likely that the aspects of rendering not related to
script execution would be much more expensive in a real-world application
due to more complex layouts. Our benchmarks hence do not represent the
relative importance of optimizing script execution compared to other factors.

The results from our benchmarks represent only relative performance
differences between frameworks under the specific conditions in each test
scenario. We cannot, based on our tests, determine what constitutes a complex
enough UI or component tree that performance costs arising from script
execution are likely to cause noticeable delays for most users.

5 Conclusions

Page navigation requires the browser to fetch resources and to fully re-render
a web page in order to facilitate transitions in the state of the UI. This
is often an inadequate approach for applications with rich user interfaces
and real-time interaction requirements. Using browser APIs to dynamically
modify the document overcomes these shortcomings, but is itself fraught
with complexity due to the difficulty of managing state transitions in a
complex application. Modern web frameworks solve this problem by pro-
viding a declarative abstraction over rendering which reduces the difficulty
of managing the state of the UI.

Modern Web Frameworks: A Comparison of Rendering Performance 809

The rendering strategies used in modern web frameworks vary not only
in their technical implementation, but in their performance characteristics.
These characteristics may not be obvious to the application developer using
such a framework, yet can have significant consequences for the runtime
performance of any application implemented using it. When choosing a
framework for building a web application, it is therefore crucial to understand
the fundamental characteristics of its rendering strategy.

In our review of Angular, React, Vue, Svelte and Blazor, we found that
there are major differences particularly in the ways they update existing
content. While some frameworks are able to limit an update loop to concern
only those parts of the application which actually need to be updated, others
may need to process unaffected components on each update. Similarly, some
frameworks are able to significantly optimize rendering of static content by
only rendering it once, whereas others must process it on every update.

By benchmarking the frameworks in various situations, we find that
these theoretical differences translate directly into differences in practical
performance, often with an order of magnitude or more of difference between
different strategies. Moreover, we find that there are significant differences
even in fixed costs of creating components and elements. Overall, we find
that significant performance gains are obtained through using a compiler
to optimize rendering of static content, implementing a reactivity system to
accurately track which components need to be updated, and updating the UI
based on individual changes to data bindings rather than explicitly computing
the steps required to update the UI to the desired state.

The modern browser is the most ubiquitous application platform in
existence today. Given the ease of sharing content on the Web and the
browser’s availability on a huge variety of devices, this is unlikely to change
soon. As the use of scripting continues to increase, web application perfor-
mance becomes an increasingly pertinent question particularly on resource
constrained devices. A better understanding of the tools used to produce
content, including their performance characteristics, is therefore a necessity
for ensuring that the Web remains a platform accessible to all.

References

[1] Angular. https://angular.io/. (May 26, 2021).
[2] Blazor |build client web apps with c# |.NET. https://dotnet.microsoft.c

om/apps/aspnet/web-apps/blazor. (May 26, 2021).

https://angular.io/
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor

810 R. Ollila et al.

[3] Chrome DevTools protocol. https://chromedevtools.github.io/devtools-
protocol/. (May 26, 2021).

[4] Critical rendering path – web performance |MDN. https://developer.mo
zilla.org/en-US/docs/Web/Performance/Critical rendering path. (Feb
17, 2021).

[5] DOM standard. https://dom.spec.whatwg.org/. (May 26, 2021).
[6] MooTools. https://mootools.net/. (May 26, 2021).
[7] Prototype JavaScript framework: a foundation for ambitious web appli-

cations. http://prototypejs.org/. (May 26, 2021).
[8] React – a JavaScript library for building user interfaces. https://reactjs.

org/. (May 26, 2021).
[9] Reconciliation – react. https://reactjs.org/docs/reconciliation.html. (Feb

19, 2021).
[10] Render functions & JSX – vue.js. https://vuejs.org/v2/guide/render-fu

nction.html#The-Virtual-DOM. (May 04, 2021).
[11] Stack overflow jobs. https://stackoverflow.com/jobs. (May 26, 2021).
[12] State of JS 2020: Front-end frameworks. https://2020.stateofjs.com/en-

US/technologies/front-end-frameworks/. (May 26, 2021).
[13] Svelte cybernetically enhanced web apps. https://svelte.dev/. (May 26,

2021).
[14] Virtual DOM and internals – react. https://reactjs.org/docs/faq-internals

.html. (May 04, 2021).
[15] Vue.js. https://vuejs.org/. (May 26, 2021).
[16] W3techs: Historical yearly trends in the usage statistics of client-side

programming languages for websites, April 2021. https://w3techs.com/
technologies/history overview/client side language/all/y. (Apr 23,
2021).

[17] W3techs: Historical yearly trends in the usage statistics of javascript
libraries for websites, April 2021. https://w3techs.com/technologies/his
tory overview/javascript library/all/y. (Apr 23, 2021).

[18] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cut-
sem, Stijn Mostinckx, and Wolfgang de Meuter. A survey on reactive
programming. 45(4):1–34.

[19] Philip Bille. A survey on tree edit distance and related problems.
337(1):217–239.

[20] Tom Van Cutsem and Mark S Miller. Proxies: design principles for
robust object-oriented intercession APIs. page 14.

[21] Andreas Gizas, Sotiris Christodoulou, and Theodore Papatheodorou.
Comparative eval-uation of javascript frameworks. In Proceedings of

https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://dom.spec.whatwg.org/
https://mootools.net/
http://prototypejs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/docs/reconciliation.html
https://vuejs.org/v2/guide/render-function.html#The-Virtual-DOM
https://vuejs.org/v2/guide/render-function.html#The-Virtual-DOM
https://stackoverflow.com/jobs
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://svelte.dev/
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/faq-internals.html
https://vuejs.org/
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://w3techs.com/technologies/history_overview/javascript_library/all/y
https://w3techs.com/technologies/history_overview/javascript_library/all/y

Modern Web Frameworks: A Comparison of Rendering Performance 811

the 21st International Conference on World Wide Web, WWW ’12
Companion, pages 513–514. Association for Computing Machinery.

[22] John Gossman. Introduction to model/view/ViewModel pattern for
building WPF apps. https://docs.microsoft.com/en-us/archive/blogs
/johngossman/introduction-to-modelviewviewmodel-pattern-for-buildi
ng-wpf-apps. (Feb 25, 2021).

[23] Li Tan Hau. Compile svelte in your head (part 1). https://lihautan.com
/compile-svelte-in-your-head-part-1/#compile-svelte-in-your-head.
(Mar 31, 2021).

[24] JS Foundation js.foundation. jQuery. https://jquery.com/. (May 26,
2021).

[25] Stefan Krause. krausest/js-framework-benchmark. https://github.com/k
rausest/js-framework-benchmark. (May 26, 2021).

[26] Ali Mesbah and Arie van Deursen. Migrating multi-page web appli-
cations to single-page AJAX interfaces. In Proceedings of the 11th
European Conference on Software Maintenance and Reengineering,
CSMR ’07, pages 181–190. IEEE Computer Society.

[27] Leo A. Meyerovich and Rastislav Bodik. Fast and parallel webpage
layout. In Proceedings of the 19th international conference on World
wide web, WWW ’10, pages 711–720. Association for Computing
Machinery.

[28] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah.
An empirical study of client-side JavaScript bugs. In 2013 ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement, pages 55–64. ISSN: 1949-3789.

[29] Risto Ollila. A performance comparison of rendering strategies in open
source web frontend frameworks. 2021.

[30] Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. Factors
and actors leading to the adoption of a JavaScript framework. 23(6):
3503–3534.

[31] L. D. Paulson. Building rich web applications with ajax. 38(10):14–17.
Conference Name: Computer.

[32] Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree
edit distance. 40(1):1–40.

[33] Antero Taivalsaari, Tommi Mikkonen, Kari Systä, and Cesare Pautasso.
Web user interface implementation technologies: An underview:. In
Proceedings of the 14th International Conference on Web Information
Systems and Technologies, pages 127–136. SCITEPRESS – Science
and Technology Publications.

https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://lihautan.com/compile-svelte-in-your-head-part-1/#compile-svelte-in-your-head
https://lihautan.com/compile-svelte-in-your-head-part-1/#compile-svelte-in-your-head
https://jquery.com/
https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark

812 R. Ollila et al.

[34] Victor Savkin. Change detection reinvented. https://www.youtube.com/
watch?v=jvKGQSFQf10. (Feb 25, 2021).

[35] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie.
Why are web browsers slow on smartphones? In Proceedings of the
12th Workshop on Mobile Computing Systems and Applications –
HotMobile ’11, page 91. ACM Press.

Biographies

Risto Ollila is a software engineer at Intruder Systems Ltd. He earned his
B.Sc degree in computer science at the University of Helsinki in 2017 and
will receive his M.Sc. from the same institution in 2021.

Niko Mäkitalo is a researcher at the University of Helsinki. His primary
focus of research has been on novel web technologies, pervasive systems,
Fog/Edge computing, and software architectures, focusing on coordinating
IoT devices. Lately, Mäkitalo has focused on WebAssembly technology
outside the web browser for enabling liquid software behavior. Mäkitalo has
a Phd in Computer Science from the Tampere University of Technology.

https://www.youtube.com/watch?v=jvKGQSFQf10
https://www.youtube.com/watch?v=jvKGQSFQf10

Modern Web Frameworks: A Comparison of Rendering Performance 813

Tommi Mikkonen is a Professor of Software Engineering at the University
of Helsinki, Finland. He received his PhD from Tampere University of
Technology, Finland. His research interests include Web engineering, IoT,
and software architectures.

