

Master's Thesis

High-throughput evaluation of the combinatorial approach to improve NK cell cancer immunotherapy using anti-cancer drugs in acute myeloid leukaemia

Jonas Bouhlal Master's Programme in Translational Medicine Faculty of Medicine University of Helsinki

March 2022

# Table of Contents

| Abbreviations                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Abstract                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                      |
| Tiivistelmä                                                                                                                                                                                                                                                                                                                                                                                                | 7                                      |
| 1. Introduction                                                                                                                                                                                                                                                                                                                                                                                            | 8                                      |
| <ul> <li>1.1 Acute myeloid leukaemia</li> <li>1.1.1 Pathophysiology</li> <li>1.1.2 Classification</li> <li>1.1.3 Prognostic factors</li> <li>1.1.4 Treatment</li> <li>1.1.5 Methods to study acute myeloid leukaemia</li> </ul>                                                                                                                                                                            | 8<br>9<br>11<br>12<br>14<br>20         |
| <ul> <li>1.2 Immunology and cancer</li> <li>1.2.1 The human immune system</li> <li>1.2.2 Role of immune system in cancer</li> <li>1.2.2 Natural killer cells</li> </ul>                                                                                                                                                                                                                                    | <i>21</i><br>21<br>22<br>23            |
| 1.3 NK cell-based immunotherapy for AML                                                                                                                                                                                                                                                                                                                                                                    | 27                                     |
| 1.4 Drug sensitivity and resistance testing                                                                                                                                                                                                                                                                                                                                                                | 29                                     |
| 1.5 Combinatorial approaches to improve immunotherapy                                                                                                                                                                                                                                                                                                                                                      | 31                                     |
| 2. Aims of the Thesis                                                                                                                                                                                                                                                                                                                                                                                      | 34                                     |
| 3. Materials and methods                                                                                                                                                                                                                                                                                                                                                                                   | 35                                     |
| <ul> <li>3.1 Cell culture related methods</li> <li>3.1.1 Cell lines</li> <li>3.1.2 Cell culture</li> <li>3.1.3 NK cell isolation and expansion</li> <li>3.1.4 Transducing cell lines with luciferase constructs</li> <li>3.1.5 Selection of transduced cell lines – THP-1 and MOLM-14</li> <li>3.1.6 Post-transduction single cell sorting of HEL cell line</li> <li>3.1.7 Freezing and thawing</li> </ul> | 35<br>35<br>36<br>39<br>40<br>41<br>42 |
| 3.2 Drug screening<br>3.2.1 Optimisation<br>3.2.2 DSRT method                                                                                                                                                                                                                                                                                                                                              | <i>43</i><br>43<br>44                  |
| <ul> <li>3.3 Single cell RNA sequencing using hashtag oligos</li> <li>3.3.1 Drug dilutions</li> <li>3.3.2 Pre-hashing optimisation</li> <li>3.3.3 Hashing experiment and preparation for single cell RNA sequencing</li> <li>3.3.4 Single cell sequencing using hashtag oligos</li> </ul>                                                                                                                  | 47<br>47<br>47<br>48<br>51             |
| 3.4 Data analysis<br>3.4.1 Analysis of DSRT data<br>3.4.2 Analysis of scRNA sequencing data                                                                                                                                                                                                                                                                                                                | <i>52</i><br>52<br>52                  |

| 4. Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 4.1 Effector-target optimisation of different cell lines and different donor effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                     |
| <ul> <li>4.2 DSRT results</li> <li>4.2.1 Data quality</li> <li>4.2.2 Most activating drugs</li> <li>4.2.3 Most inhibiting drugs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55<br>57<br>58<br>68                   |
| <ul><li>4.3 Single cell RNA sequencing of MOLM-14</li><li>4.3.1 Drug selection for transcriptomic analysis and validation experiment</li><li>4.3.2 MOLM-14 scRNA data analysis</li></ul>                                                                                                                                                                                                                                                                                                                                                                                            | 77<br>77<br>79                         |
| <ul> <li>4.4 Drug-specific effects and further analysis</li> <li>4.4.1 Pevonedistat activates NK cell mediated killing in both MOLM-14 and THP-1</li> <li>4.4.2 Daporinad enhances NK cell cytotoxicity in MOLM-14 and THP-1</li> <li>4.4.3 Effect of JAK inhibitors are cell line dependent</li> <li>4.4.4 Tacrolimus strongly activates NK cell cytotoxicity in HEL cell line</li> <li>4.4.5 PI3K inhibitors have an inhibitory effect on NK cell cytotoxicity in MOLM-14</li> <li>4.4.6 Effect of FLT3 inhibitors and other broad range TKIs is decreased by NK cells</li> </ul> | 84<br>84<br>86<br>88<br>89<br>90<br>91 |
| 5. Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93                                     |
| 5.1 Significant findings and their potential implications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93                                     |
| 5.2 Shielding effect of NK cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96                                     |
| 5.3 Assessment of DSRT and scRNA methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96                                     |
| 5.4 Improvements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                     |
| 5.5 Future perspectives and conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99                                     |
| Acknowledgements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101                                    |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102                                    |
| Supplementary material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111                                    |

# Abbreviations

| ADCC   | antibody-dependent cell-mediated cytotoxicity             |
|--------|-----------------------------------------------------------|
| AML    | acute myeloid leukaemia                                   |
| ALL    | acute lymphoid leukaemia                                  |
| APL    | acute promyelocytic leukaemia                             |
| ATO    | arsenic trioxide                                          |
| ATRA   | all-trans retinoic acid                                   |
| BCL-2  | B-cell lymphoma 2                                         |
| BiKE   | bi-specific killer engager antibody                       |
| CAR    | chimeric antigen receptor                                 |
| CBF    | core binding factor                                       |
| CD     | cluster of differentiation                                |
| CEBPA  | CCAAT enhancer binding protein alpha                      |
| CLP    | common lymphoid progenitor                                |
| CML    | chronic myeloid leukaemia                                 |
| CRISPR | clustered regularly-interspaced short palindromic repeats |
| DMSO   | dimethyl sulfoxide                                        |
| DNA    | deoxyribonucleic acid                                     |
| DSRT   | drug sensitivity and resistance testing                   |
| DSS    | drug sensitivity score                                    |
| EDTA   | ethylenediaminetetraacetic acid                           |
| ELVA   | expressed luciferase viability assay                      |
| FAB    | French-American-British                                   |
| FACS   | fluorescence-activated cell sorting                       |
| FBS    | fetal bovine serum                                        |
| FIMM   | Finnish Institute for Molecular Medicine                  |
| FLT3   | fms like tyrosine kinase 3                                |
| GFP    | green fluorescent protein                                 |
| GO     | gemtuzumab ozogamicin                                     |
| GVHD   | graft-versus-host-disease                                 |
| GVL    | graft-versus-leukaemia                                    |
| HCT    | hematopoietic cell transplantation                        |
| HGNC   | HUGO Gene Nomenclature Committee                          |
| HLA    | human leukocyte antigen                                   |
| HSC    | hematopoietic stem cell                                   |
| HSP    | heath shock protein                                       |
| HTO    | hashtag oligonucleotide                                   |
| IDH    | isocitrate dehydrogenase                                  |
| IFN    | interferon                                                |
| IL     | interleukin                                               |
| ISM    | individualised systems medicine                           |

| ITD      | internal tandem duplication                              |
|----------|----------------------------------------------------------|
| KIR      | killer immunoglobulin-like receptor                      |
| KRAS     | Kirsten rat sarcoma virus                                |
| LMPP     | lymphoid-primed multipotential progenitor                |
| MACS     | magnetic cell sorting                                    |
| MAPK     | mitogen-activated protein kinase                         |
| MHC      | major histocompatibility complex                         |
| MLL      | mixed-lineage leukaemia                                  |
| NAE      | NEDD8-activating enzyme                                  |
| NAMPT    | nicotinamide phosphoribosyltransferase                   |
| NK cell  | natural killer cell                                      |
| NKEM     | NK cell culture media                                    |
| NKP      | NK cell progenitor                                       |
| NOS      | not otherwise specified                                  |
| NPM1     | nucleophosmin 1                                          |
| PBMC     | peripheral blood mononuclear cell                        |
| PBS      | phosphate-buffered saline                                |
| PFA      | paraformaldehyde                                         |
| PI3K     | phosphoinositide 3-kinase                                |
| R10      | cell culture media with 10% fetal bovine serum           |
| RNA      | ribonucleic acid                                         |
| scRNA    | single cell RNA                                          |
| scRNAseq | single cell RNA sequencing                               |
| sDSS     | differential drug sensitivity score                      |
| SEER     | Surveillance, Epidemiology and End Result program        |
| SMAC     | second mitochondria-derived activator of caspase         |
| STAT     | signal transducer and activator of transcription         |
| TGF      | transforming growth factor                               |
| TKI      | tyrosine kinase inhibitor                                |
| TNF      | tumour necrosis factor                                   |
| TP53     | tumour protein 53                                        |
| TRAIL    | tumour necrosis factor-related apoptosis-inducing ligand |
| TriKE    | tri-specific killer engager antibody                     |
| JAK      | Janus kinase                                             |
| WHO      | World Health Organisation                                |
| UCB      | umbilical cord blood                                     |
| UMAP     | Uniform Manifold Approximation and Projection            |
|          |                                                          |

## Abstract

Faculty: Faculty of Medicine Degree programme: Translational Medicine Study track: Cancer Author: Jonas Otto Vilhelm Bouhlal Title: High-throughput evaluation of the combinatorial approach to improve NK cell immunotherapy using anti-cancer drugs in acute myeloid leukaemia Level: Master's Thesis Month and year: March 2022 Number of pages: 126 Key words: Immuno-oncology, NK cells, acute myeloid leukaemia, immunotherapy, single cell RNA sequencing, drug sensitivity and resistance testing Supervisors: Prof. Satu Mustjoki, MD Olli Dufva Where deposited: University of Helsinki Library Abstract:

Despite of great advancements in the field of cancer therapy in the past decades, the 5year survival of acute myeloid leukaemia (AML) patients remains low with high mortality especially in elderly patients, in whom the disease is most often observed. Poor prognosis often results from complex heterogenous molecular abnormalities defining the progress of the disease, while making it more difficult to treat due to intensive treatments only being feasible for younger patients. Our increased understanding of cancer immunology and the potential of immunotherapy has, however, led to promising therapeutic innovations, which give hope for discovering long-lasting and effective treatment options. Natural killer (NK) cell-based immunotherapies are amongst the emerging novel therapeutic approaches that aim to target malignant cells with less toxicity and improved applicability. Using highthroughput drug sensitivity and resistance testing combined with single cell RNA (scRNA) sequencing, this study focused on finding drug compounds that could synergise with NK cells to improve their effectiveness in killing leukemic cells. In this study, many drugs showed promising results in being able to potentiate NK cell cytotoxicity, with daporinad and pevonedistat showing the most notable differences when compared to controls. The potentiating effect of Janus kinase (JAK) inhibitors also suggested a method of increasing NK cell activity against leukemic cells through downregulation of major histocompatibility complex (MHC) class I molecules. In conclusion, findings shed light on the synergetic potential of drugs and NK cells, giving hope for clinically relevant findings following further validation and testing.

# Tiivistelmä

Viimeisten vuosikymmenten merkittävistä syöpälääketieteen edistysaskelista huolimatta akuutin myeloisen leukemian (AML:n) 5 vuoden elossaoloennuste on edelleen huono, erityisesti vanhemmissa potilaissa, joissa AML:n ilmaantuvuus on suurimmillaan. Huono elossaoloennuste johtuu usein monimutkaisista heterogeenisistä molekyylitason muutoksista, jotka määrittävät taudin etenemisen, mutta ovat vaikeita hoitaa, sillä tehokkaammat hoidot onnistuvat usein vain nuoremmille potilaille. Lisääntynyt syövän immunologian ymmärryksemme ja immunoterapian kehittyminen on kuitenkin johtanut uusiin innovaatioihin syövän hoidossa, jotka antavat toivoa tehokkaiden hoitomuotojen löytymiselle. Luonnolliseen tappajasoluun (NK-solu) perustuva immunoterapia on orastava hoitomuoto, joka kohdistuu pahanlaatuisiin soluihin ollen samalla vähemmän myrkyllinen ja verrattuna. hoitomuotoihin Käyttäen soveltuvampi muihin suurikapasiteettista lääkeaineseulontaa yhdistettynä yksisolu-RNA-sekvensointiin, tutkimuksemme keskittyi löytämään lääkeaineita, joilla on kyky synergiaan NK-solujen kanssa parantaen niiden kohdistettua tappokykyä. Tutkimuksessamme leukemiasoluihin löysimme useita lääkeaineita, joilla on kyky edesauttaa NK-solujen tappokykyä, joista erityisesti daporinad ja pevonedistat johtivat huomattaviin eroihin verrattuna kontrolleihin. Janus-kinaasien (JAK) estäjät edesauttoivat myös NK-solujen tappokykyä, osoittaen mahdollisen keinon lisätä NKleukemiasoluja solujen aktiivisuutta vastaan vähentämällä I-luokan kudosyhteensopivuustekijöitä (MHC) leukemiasolujen pinnalla. Johtopäätöksenä voidaan todeta, että tutkimuksessa tehdyt löydökset osoittavat synergistisen yhteisvaikutuksen mahdollisuuden NK-solujen ja lääkeaineiden välillä, jota hyödyntämällä tulevaisuudessa voisi olla mahdollista hoitaa syöpää tehokkaammin.

### 1. Introduction

#### 1.1 Acute myeloid leukaemia

Acute myeloid leukaemia (AML) is a cancer of the bone marrow and blood, which is characterised by the abnormally proliferative nature and poor maturation of myeloid clonal cell populations. The malignancy originates from hematopoietic stem cells of the bone marrow and in most cases, it appears *de novo* in previously healthy individuals. However, AML may also arise because of previously used therapies such as ionizing radiation in addition to chemotherapy including antimetabolites, topoisomerase-II-inhibitors, and alkylating agents.<sup>1</sup>

AML is the most frequently diagnosed acute leukaemia in adults, accounting for approximately 23.1% of all leukaemias globally.<sup>2</sup> In the United States alone, AML was responsible for approximately 80 percent of all acute leukaemias in 2018 with the other 20 percent of acute leukaemias originating from the lymphocytic lineage. (SEER Research Data 1975-2018) In 2017, approximately 119,600 cases of AML were diagnosed worldwide, with a median age at diagnosis of approximately 70 years.

Although big leaps have been taken in the treatment of younger AML patients, the prognosis for elderly patients remains poor. In the United States, the relative 5-year survival rate for those over 65 years or older is only 8.9%, compared to that of 60.6% in patients aged 50 years and below. (SEER Research Data 1975-2018) This highlights the relatively poor prognosis in older patients, who require alternative treatment options to improve their long-term survival.<sup>3</sup>

#### 1.1.1 Pathophysiology

AML originates from the bone marrow where myeloblasts, a form of immature white blood cells, develop abnormally, leading to the accumulation of leukemic myeloblasts which interfere with normal blood cell production. Although AML cannot metastasize like solid cancers, leukaemia cells can spread around the body, leading to a wide range of symptoms. As the disease develops, abnormal leukemic cells proliferate and take up space from healthy cells in the blood and bone marrow.<sup>4</sup>

The genomic landscape of AML has become clearer through advances in next generation sequencing methods, which has led to findings indicating that over 97 percent of AML cases have identifiable somatic mutations.<sup>5</sup> Whole-genome sequencing analyses have also revealed that, although AML genomes have fewer mutations than most other adult cancers, some can be clearly associated with AML. A whole-genome study of 200 patients revealed a total of 23 genes that were significantly mutated with an average number of 13 mutations per patient, on average of which 5 were recurrently mutated in AML.<sup>6</sup>

Generally, in AML, the genomic alterations often occur without major chromosomal abnormalities, although some chromosomal translocations have been well characterised. Examples of these include the t(8:21) translocation in core-binding factor AML (CBF-AML) and t(15:17) in acute promyelocytic leukaemia (APL).<sup>7</sup> In 2002, a two-hit model of cooperativity of activating mutations was suggested as a basis for the genetic reasoning behind AML. The model suggested that mutations could be divided into two groups based on their function. Class I mutations include *FLT3-ITD*, *K/NRAS*, *TP53* and *c-KIT* mutations, which can all on their own confer a proliferative and survival advantage to hematopoietic progenitor cells without affecting differentiation. By contrast, class II mutations were suggested not to be able to cause leukaemia when expressed alone but appear to be impairing hematopoietic differentiation. Mutations of this class include *NPM1*, *CEBPA* and *MLL*-related fusion genes for example. The combination of both classes was hypothesized

9

to lead to an AML phenotype that proliferates more aggressively, has enhanced survivability, and impaired differentiation.<sup>8</sup>

Genetic alterations manifesting in AML lead to increased accumulation of malignant, poorly maturated myeloid cells, which tend to collect in the peripheral blood, bone marrow and in monocytic leukaemias often also to the skin and gums. More rarely, malignant cells can also accumulate to other organs such as the brain and heart. Depending on the location of the accumulated malignant cell mass in the body, different clinical manifestations are observed in patients. A combination of bone marrow failure and leukocytosis are most often seen in patients, with symptoms such as thrombocytopenia, anaemia, fatigue, and weight loss. Infections and bleeding are also often observed in AML patients, leading to death if left untreated.<sup>7</sup>



Figure 1. Graphical representation of most common genetic abnormalities observed in AML patients. Mutations are marked as red crosses with effects being highlighted for each abnormality.<sup>9</sup>

#### 1.1.2 Classification

In the 1970's, a group of scientists suggested a classification system for AML to categorise the malignancy into subtypes according to pathological features. At first, the French-American-British (FAB) classification of AML described the malignancy with six subtypes, although the modern classification categorises it into eight subtypes. The subtypes range from M0 to M7, with classification being based on the cell type from which the leukaemia develops from.<sup>10</sup>

Although the FAB classification system can be useful, it does not consider the numerous factors, for example the genetics, related to the malignancy and its prognosis. The World Health Organisation (WHO) is responsible for the global management of AML diagnosis and treatment and has developed its own classification system that better incorporates other factors affecting AML prognosis with the attempt to better classify the illness. The latest update by the WHO to the classification system took place in 2016, when underlying genetic defects and predispositions were made a part of the diagnosis.<sup>11</sup>

| Type of AML or related     | Genetic abnormalities                                        |
|----------------------------|--------------------------------------------------------------|
| neopiasm                   |                                                              |
| AML with recurrent genetic | AML with t(8:21)(q22;q22) RUNX1-RUNX1T1                      |
| abnormalities              | AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22) CBFB-MYH11 |
|                            | AML with t(9;11)(p21.3;q23.3) MLLT3-KMT2A                    |
|                            | AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2 GATA2,     |
|                            | MECOM                                                        |
|                            | AML with BCR-ABL1 (provisional)                              |
|                            | AML with mutated NPM1                                        |
|                            | AML with biallelic mutations of CEBPA                        |
|                            | AML with mutated RUNX1 (provisional)                         |
|                            | megakaryoplastic AML with t(1;22)(p13.3;q13.3) RBM15-MKL1    |
|                            | APL with PML-RARA                                            |
|                            | ML with t(6;9)(p23;q34.1) DEK-NUP214                         |
| AML with myelodysplasia-   |                                                              |
| related changes            |                                                              |

Table 1. WHO classification of AML and related neoplasms according to 2016 revision.<sup>11</sup>

| Therapy related myeloid     |                                          |
|-----------------------------|------------------------------------------|
| neoplasms                   |                                          |
| AML not otherwise specified | AML with minimal differentiation         |
| (NOS)                       | AML without maturation                   |
|                             | AML with maturation                      |
|                             | Acute myelomonocytic leukaemia           |
|                             | Acute monoblastic or monocytic leukaemia |
|                             | Acute erythroid leukaemia                |
|                             | Pure erythroid leukaemia                 |
|                             | Acute megakaryoblastic leukaemia         |
|                             | Acute panmyelosis with myelofibrosis     |

#### 1.1.3 Prognostic factors

Classification of AML is highly linked to the prognosis and hence also the treatment of AML. The cytogenetic and molecular profile of the disease, which is also addressed by the WHO classification system, can be used to group AML patients into prognostic risk groups and is by far the most important parameter for determining prognosis. As in many other cancers, the accurate assessment of prognosis is the key to successful management of AML, as it helps clinicians make decisions between standard and more aggressive treatment options.<sup>12</sup>

Generally, increased age and poor physical condition are factors that are associated with poor prognosis. This is due to reduced tolerability of certain treatment options and other underlying health conditions. Prognosis has also been found to be worse in AML patients with prior hematological conditions or with AML related to prior treatments. In these groups of patients, complete remission is more difficult to achieve, and the overall survival rates are decreased.<sup>13</sup>

Although clinical factors affect prognosis substantially, a more detailed and accurate prognosis factor is obtained through the assessment of cytogenetic changes. Certain chromosomal rearrangements such as t(15;17) and t(8:21) without *c-KIT* mutation are indicators of better prognosis. In patients with such chromosomal rearrangements, overall

survival is significantly increased by 66% in patients aged under 60 years and by 33% in patients over 60 years old. On the other hand, *FLT3-ITD* and *TP53* mutations have been linked to poor prognosis.<sup>7</sup>

As can be seen from Table 2, the assessment of the cytogenetic profile and molecular abnormalities can further increase our understanding of AML on an individual level, enabling more precise diagnosis and treatment. In addition, these can help us develop more targeted therapies for improved therapeutic results.

Table 2. Cytogenetic profiles and molecular abnormalities grouped into prognostic risk group classifications of AML.<sup>7</sup> These groupings are used to help decide on treatment plans and assess the prognosis.

| Prognostic risk | Cytogenetic profile and molecular abnormalities                        |
|-----------------|------------------------------------------------------------------------|
| group           |                                                                        |
| Favourable      | t(8:21)(q22;q22) without <i>c-KIT</i> mutation                         |
|                 | inv(16)(p13;1q22)                                                      |
|                 | t(15;17)(q22;q12)                                                      |
|                 | Mutated NPM1 without FLT3-ITD mutation (cytogenetically normal (CN)    |
|                 | AML)                                                                   |
|                 | Mutated biallelic CEBPA (CN-AML)                                       |
| Intermediate    | t(8:21)(q22;q22) with mutated <i>c-KIT</i>                             |
|                 | t(9;11)(p22;q23)                                                       |
|                 | CN-AML other than those in other prognostic risk groups                |
|                 | Cytogenetic abnormalities not included in other prognostic risk groups |
| Adverse         | TP53 mutation, regardless of cytogenetic profile                       |
|                 | CN-AML with FLT3-ITD                                                   |
|                 | CN-AML with DNMT3A                                                     |
|                 | CN-AML with KMT2A-PTD                                                  |
|                 | inv(3)(q21q26.2)                                                       |
|                 | t(6;9)(p23;q34)                                                        |
|                 | 11q abnormalities other than t(9;11)                                   |
|                 | -5 or del(5q)                                                          |
|                 | -7                                                                     |
|                 | Complex karyotype                                                      |

#### 1.1.4 Treatment

#### 1.1.4.1 Chemotherapy

Chemotherapy is a type of standardised cancer treatment that relies on the use of one or multiple anti-cancer drugs that inhibit mitosis or induce DNA damage in cells to result in apoptosis. In AML, chemotherapy treatment consists of two phases: induction and consolidation. Induction therapy is the first phase of treatment, which relies on the use of chemotherapy drugs in a short-lasting and intensive manner to eradicate leukemic cells from the blood and reduce the number of blasts in the bone marrow. In the consolidation phase, which takes place after recovery from the induction phase, chemotherapy drugs are administered to patients in cycles to remove the remaining leukaemia cells. Between cycles in the consolidation phase, patients have a period of rest to allow for recovery from the previous cycle of chemotherapy. In addition, for acute promyelocytic leukaemia (APL), post-consolidation chemotherapy can also be given as maintenance therapy using lower doses of chemotherapy drugs.<sup>14,15</sup>

Drugs used for chemotherapy include antimetabolites, alkylating agents, topoisomerase inhibitors, antitumour antibiotics and anti-microtubule agents. For AML, most often a combination of cytarabine and an anthracycline drug are used. For example, cytarabine, being an antimetabolite, interferes with DNA synthesis in the S phase of the cell cycle. Anthracycline drugs on the other hand, including daunorubicin and idarubicin for example, interferes the activity of topoisomerase II. Issues related to the use of chemotherapy agents are most often caused by their effects also on healthy tissues due to their unspecific nature.<sup>15</sup>

Although chemotherapy is widely used and is often effective at inhibiting proliferation of malignant cells or even achieve complete remission, it is widely known for its toxicity and adverse effects. These include hair loss, nausea, loss of appetite, diarrhoea, fatigue, easy

bruising, and bleeding as well as an increased risk of infections due to effects on white blood cell counts. Despite of its adverse effects, chemotherapy remains an important tool in the fight against AML, with major advancements being made in developing its use together with more targeted therapies for example.<sup>16</sup>

#### 1.1.4.2 Targeted drug therapies

Targeted therapies have been designed to target specific molecular mechanisms related to AML. As described in Section 1.1.1, AML surfaces with molecular abnormalities that can be used as targets to prevent proliferation of malignant cells.

In the fight against AML, a range of FLT3, IDH, BCL-2 and hedgehog signalling pathway inhibitors have been developed. Examples of FLT3 inhibitors used to treat AML are midostaurin and gilteritinib, which are both broad range tyrosine kinase inhibitors (TKIs) also targeting activated FLT3. In a phase 3 clinical trial, midostaurin has been shown to be effective at improving overall survivability when combined with induction chemotherapy.<sup>17</sup> Moreover, uses of FLT3-targetting TKIs as maintenance therapy post-transplantation has shown promising results.<sup>18</sup> However, studies on gilteritinib monotherapy in AML have shown less impressive results due to resistance accumulated due to resistance-causing mutations.<sup>19</sup>

Mutations of *IDH1* and *IDH2* interfere with normal blood cell maturation, hence playing a role in the development of AML. Ivosidenib, an *IDH1* inhibitor, can be used for AML patients who no longer respond to other treatments and as a first line treatment for patients who are ineligible for standard treatment. Enasidenib, which targets *IDH2*, can be used in patients that fit similar criteria to those receiving ivosidenib. Ivosidenib has recently been studied in *IDH1*-mutated patients ineligible for standard treatment with a median age of 76.5 years. In the trial, complete remission was achieved in over 30% of the patients, with 42.4% of the patients achieving complete remission with partial hematologic recovery.<sup>20</sup>

The results are encouraging, as they give hope for making new discoveries in order to develop cures for elderly patients with a poor prognosis.

Venetoclax is a drug that has been recently approved for use in AML patients who are not suitable for chemotherapy due to high age or comorbidities. It targets the BCL-2 protein, which can enhance survival of leukaemia cells, leading to increased proliferation.<sup>21</sup> A recent study conducted on patients previously untreated for AML compared a placebo group to a group of patients who were given azacitidine and venetoclax in 28-day cycles. Results showed that complete remission was achieved in more patients who received a combination of venetoclax and azacytidine, with 36.7% compared to 17.9% in the placebo group.<sup>22</sup>

For APL specifically, all-trans retinoic acid (ATRA) is an effective targeted therapy that can lead to response rates of over 90%, although the response only last for 3 to 6 months. ATRA can also be used in combination with arsenic trioxide (ATO) are chemotherapy agents to induce an increased and more long-lasting response.<sup>23</sup>

#### 1.1.4.3 Stem cell transplant

Stem cell transplants, also known as bone marrow transplants, are a widely used treatment method for patients with AML. It is used to restore bone marrow function in patients who are given intensive chemotherapy, which damages the patient's own bone marrow and to eradicate remaining malignant cells through the graft-versus-leukaemia (GVL) effect.<sup>24</sup>

Stem cell transplants can be used in AML patients through multiple ways. Allogeneic stem cell transplants, for example, make use of a donor's bone marrow that is transplanted to a patient. For an allogeneic transplant to be successful, the donor's tissue type must be closely matched with that of the patient. In addition to restoring the immune functions in a patient treated with high intensity chemotherapy, allogeneic transplants result in an effect

known as graft-versus-leukaemia, in which immune cells from the donor do not recognise leukemic cells as self, resulting in an attack. This can lead to further eradication of the remaining malignant cells from the body. However, allogeneic transplants do not come without costs. Graft-versus-host-disease (GVHD) is the most severe side effect resulted by the transplant, although milder adverse effects similar to those experienced during chemotherapy may occur. Due to the increased risk of severe side effects, allogeneic transplants are not given to older patients and to those whose general health condition is poor.<sup>25</sup>

In patients who are ineligible for receiving an allogeneic stem cell transplant together with high intensity chemotherapy, a non-myeloablative transplant can be given. This involves leaving some of the patient's own bone marrow alive by using less intense chemotherapy methods and adding a donor's stem cells to achieve a GVL effect.<sup>26</sup>

Although not used regularly, autologous stem cell transplants can be used in patients who have achieved complete remission after the first line of treatments and do not have a matched stem cell donor. In autologous transplants, the patient's own stem cells are removed from the bone marrow or blood, leukemic cells are removed, and cells are frozen prior to high-dose chemotherapy. The frozen stem cells are then retransplanted following chemotherapy. Autologous transplants are generally better tolerated by patients due to not experiencing tissue rejection, although GVL is not observed, which decreases the benefits of the transplant compared to allogeneic transplants. In addition, some leukemic cells may have escaped the purging process used to remove malignant cells from the stem cell masses, which can lead to a relapse.<sup>27,28</sup>

Although stem cell transplants involve risks and can induce unpleasant side effects resulted in by graft-versus-host disease, they make it possible to eradicate cancerous cells with higher intensity chemotherapy. This can in turn lead to less residual malignant cells

17

remaining in the patient, allowing for decreased likelihood of relapse when monitored appropriately and combined with other therapeutic options.<sup>29</sup>

#### 1.1.4.4 Radiation therapy

Radiation therapy is not part of the standard treatment options for AML, although it is used as treatment in paediatric acute lymphoid leukaemia (ALL).<sup>30</sup> However, it is administered in rarer occasions where AML has spread from the bone marrow and blood to other parts of the body such as the brain and spine. In these cases, the use of more localised therapies is more effective, when compared to chemotherapy for example. However, interestingly, although radiation therapy is not considered a very useful tool against AML, it has been shown to increase the probability of developing AML, when given as treatment for other types of cancers.<sup>1,31</sup>

#### 1.1.4.5 Immunotherapy

The aim of immunotherapy in the context of cancer is to activate immune defence mechanisms to fight cancer while trying to leave healthy tissues unaffected. Currently, there are numerous clinical trials ongoing studying the potential of these therapies for treating both hematological and solid cancers. For AML, also a wide range of immunotherapy trials are underway, although so far only gemtuzumab ozogamicin (GO) has been approved for clinical use. Numerous strategies and targets can be utilised in designing novel immunotherapeutic therapies, leaving room for innovations in the future.<sup>32</sup>

Antibody-based treatment options for AML aim to identify and target antigens specific to leukemic cells in AML patients to induce cancer cell death. Monoclonal antibodies take advantage of their ability to selectively target cancer cells to create cytotoxic effects, deliver drugs and boost the innate immune system. The use of monoclonal antibodies is highly dependent on the identification of AML specific antigens, a few of which have been identified already. These include leukaemia-associated antigens such as CD33, CD47 and CD123. CD33, for example, has been found to be expressed in 85-90% of AML cases, giving rise to a promising therapeutic target.<sup>33</sup> However, it is worth noting that CD33 is also expressed in healthy myeloid cells, although in AML its expression is increased.<sup>33</sup> It is the target of GO, the first approved monoclonal antibody for the treatment of AML. In adults with *de novo* AML, GO has been shown to significantly improve the event-free survival when combined with daunorubicin and cytarabine chemotherapy.<sup>34</sup>

As will be described in more detail in Section 1.2.2.3, NK cell dysfunction remains a major concern in AML patients, most notably aften hematopoietic stem cell transplantation.<sup>35</sup> Biand tri-specific killer engager antibodies (BiKEs and TriKEs), propose a solution to this issue by augmenting NK cell function in patients with NK cell dysfunction by directing NK cells to target tumour antigens. For example, 1633 BiKE is specific to CD16 found on NK cell surface and CD33, which allows for the activation of NK cell cytotoxicity while avoiding MHC class I inhibition observed in AML cells.<sup>36</sup> Similar to 1633 BiKE, 161533 TriKE targets NK cell specific mechanisms to induce NK cell proliferation, survival and enhanced targeting of CD33<sup>+</sup> AML cells, while offering slightly better outcomes than its BiKE alternative 1633. In addition to CD16 and CD33, the 161533 TriKE also targets IL-15, which has been shown to lead to enhanced NK cell function and proliferation.<sup>37,38</sup>

Immune checkpoint inhibitors have been widely studied and several approved drugs exist on the market, most of which focus on solid tumours and lymphoma. Their functions are based on the inhibition of checkpoint receptors on the surface of immune cells, leading to their activation as the "off" signalling is reduced. More specifically, immune checkpoint inhibitors target for example CTLA-4 and PD-1 to induce increased T cell activation. In highrisk AML patients for example, nivolumab, a PD-1 inhibitor, following chemotherapy has been shown to enable a 12-month duration of complete remission at a 71% rate.<sup>39</sup> Adoptive cell therapies rely on the use of immune cells to kill cancer cells through immunological effects. Among these, chimeric antigen receptor (CAR) T cell therapy has been the most studied method with significant results being achieved in B cell malignancies for example.<sup>40</sup> Moreover, CAR T cells have been studied in combination with drug-based therapies through DSRT methods, highlighting the potentiating effects of SMAC mimetics in activating CAR T cells against malignant cells.<sup>41</sup> In addition to CAR T cell therapies, NK cells-based therapy options have been suggested, which will be discussed later in Section 1.3.

To highlight the potential of combinatorial approaches from cancer treatment, studies show the efficacy of immunotherapy being enhanced by 20-30% when combined with conventional treatment options, including chemotherapy.<sup>42</sup> This emphasises the importance of finding more effective combinatorial approaches to better utilise novel and more traditional therapy methods in the treatment of AML and other malignancies.

#### 1.1.5 Methods to study acute myeloid leukaemia

In the study of AML, mouse models have been of great importance in the search for molecular mechanisms behind the disease. In addition, murine models have provided a platform to test a wide range of novel therapy options. Mouse models have, for example, been used to show that AML can be induced by radiation and chemicals.<sup>43,44</sup> The development of transgenic mouse models has allowed the study of the effects of genetic mutations in genes related to AML. For example, the putative cellular targets of *MLL-AF9* in initiating AML have been thoroughly studied with the help of transgenic mouse models.<sup>45</sup> AML has also been studied in immune-compromised mice by modelling the disease by transferring patient-derived cells to animals. Through modelling AML in animals, it has been possible to study effects of different therapeutic approaches to target the malignancy, including the use of cytarabine and doxorubicin in *MLL-AF9* positive AML to reduce the residual disease burden.<sup>46</sup> Although murine models have been shown to be relatively

effective modelling tools to study cancers such as AML, they still fail to faithfully model the progress of the disease in humans. However, advances in biotechnology, including next generation sequencing methods, help in creating more reliable mouse models.<sup>47</sup>

The *in vitro* study of patient-derived cell lines remains a key strategy in the study of AML and related therapy innovations. For AML, many well-defined *in vitro* models allow for the study of specific genetic mutations and other molecular abnormalities in cells that have been genetically characterised. These numerous AML models can be used for example to study effects of drugs on a cellular level and help at creating reproducible scientific experiments as the results are not specific to a patient, but rather a standardised model.

The effect of drugs and NK cells of three widely used *in vitro* AML models, MOLM-14, THP-1 and HEL will be thoroughly investigated through methods described in Section 3. The MOLM-14 cell line is an adult acute myeloid leukaemia cell line that was isolated from a 20year-old Japanese male. It has an *MLL-AF9* (HGNC 7132) gene fusion in addition to an internal tandem duplication (ITD) of the *FLT3* gene (HGNC 3765).<sup>48</sup> The THP-1 cell line is an acute monocytic leukaemia cell line that was isolated from a 1-year-old male in Japan and has *KMT2A-MLLT3* gene fusion (HGNC 7136) in addition to mutations in *TP53* and *NRAS*.<sup>49</sup> HEL is a rarer form of AML with erythroid proliferation including mutations in *JAK2* and *TP53* genes.<sup>50</sup>

# 1.2 Immunology and cancer1.2.1 The human immune system

The human immune system has evolved to protect humans from a universe of constantly evolving pathogenic microbes, in addition to being able to eliminate toxic and allergenic substances. It comprises of the innate and adaptive immune systems, which support each other and work together to defend from foreign substances and pathogens.

21

The innate immune system can be considered as a series of hard-wired responses that are encoded in the human germ line. Its functions are based on recognising molecular patterns that are foreign to the human body, leading to a range of responses to eliminate the foreign structures. The innate immune system often acts as the first line of defence. However, it is less specific and does not result in as strong effects as the adaptive part of our immune system. Cells of the innate immune system include antigen independent cells such as natural killer (NK) cells, macrophages, neutrophils, mast cells, dendritic cells, basophils, and eosinophils.<sup>51</sup>

Often followed by innate immune system responses, adaptive immune system responses activate for more specific targeting of foreign structures. The adaptive immune system comprises of T and B cells, which base their function on the ability to target pathogens through somatic rearrangements of gene elements to assemble antigen-binding molecules. These antigens can bind to unique foreign structures with significant specificity, leading to highly effective target-specific responses. In addition, a key feature of the adaptive immune system is the ability to memorise target-specific responses through long-lived cells that persist in a dormant state. Upon re-exposure to an already encountered pathogen, memory cells can activate and rapidly re-express effector functions for faster pathogen elimination.<sup>52</sup>

#### 1.2.2 Role of immune system in cancer

The immune system has been shown to play a role in cancer, both in preventing it and leading to its causes. Inflammation is nowadays considered as one of the hallmarks of cancer, with at least 25% of cancers being associated with it.<sup>53</sup> Cancer-associated inflammation plays a role in different stages of tumorigenesis, with effects leading to cancer cell proliferation, genomic instability, and epigenetic modifications for example.<sup>54</sup> Studies have revealed the essential role of immune cells in cancer-related inflammation, including the role of macrophages, NK cells and T cells. During early stages of cancer, NK cells and

CD8<sup>+</sup> T cells have been shown to eliminate immunogenic cancer cells.<sup>55</sup> However, as the cancer progresses, malignant cells develop ways to avoid the immune system, leading to faster proliferation and uncontrolled growth.<sup>56</sup>

#### 1.2.2 Natural killer cells

Natural killer (NK) cells are a lymphocyte population of the innate immune system that control infections and tumours by limiting their activity and subsequent damage to the body. As their name suggests, NK cells are naturally cytotoxic, as they do not require prior antigen exposure to mediate anti-pathogenic and anti-cancer effects, unlike T cells for example. In humans, NK cells represent 5 to 20% of the circulating lymphocyte population.<sup>57</sup> In addition to their unique functions, NK cell can be characterised by specific surface antigens. These include CD16, the activating Fc receptor and CD56.<sup>58</sup> Although being part of the innate immune system, NK cells have also been shown to have memory-like features upon activation with cytokines.<sup>59</sup>

#### 1.2.2.1 Development and maturation

NK cells develop mostly in the bone marrow, although evidence shows that they can also develop and mature in secondary lymphoid tissues, such as lymph nodes, although some uncertainty remains around the primary origin of NK cells and their maturation.<sup>60</sup> The development of NK cells begins with hematopoietic stem cells (HSCs), which differentiate into lymphoid-primed multipotential progenitor (LMPP) cells. The cluster of differentiation (CD) markers, namely CD7, CD10, CD38 and CD127, indicate transition of LMPPs to common lymphoid progenitors (CLPs). CLPs have the potential to differentiate into different innate lymphoid cells, pro-B and pro-T cells as well as NK cell progenitors (NKPs). The transition of CLPs into NK cell progenitors is indicated by the appearance of CD122, which is followed by the expression of CD56 which marks the final stage of NK cell maturation occurs as

CD56<sup>bright</sup> expression is downregulated to become CD56<sup>dim</sup>, which become the dominating population of NK cells, making up over 90% of NK cells. Some evidence also argues that NKPs could directly mature into the CD56<sup>dim</sup> cell population, however some questions remain unclear.<sup>61</sup>



Figure 2. Mechanism of NK cell development and maturation with distinct markers related to distinct steps along the process.<sup>61</sup> The development of NK cells starts from hematopoietic stem cells and through a set of progenitors, leads to NK cell progenitors that mature into NK cells (bottom right).

#### 1.2.2.2 Effector functions

The effector function of NK cells relies on direct and in-direct mechanisms of action which NK cells use to clear pathogens and cancer cells from the body. Direct killing effects are based on cytotoxicity, meaning the use of cytotoxic proteins such as perforin and granzymes, stored within secretory lysozymes, to lyse malignant and infected cells. When released in the target cells, perforin polymerises, leading to pores that allow the entry of granzymes into the cell. This in turn activates caspase molecules, resulting in the induction

of apoptosis of the target cell. In addition, NK cells mediate killing of target cells through death receptor-induced apoptosis of target cells. NK cells express receptor ligands such as TNF and TRAIL, which bind to corresponding receptors on the target cell surface. The engagement of such ligands with the death receptor leads to apoptosis of the target cell through conformational changes in the death receptor and adaptor protein recruitment.<sup>62–</sup> <sup>64</sup> In-direct approaches NK cells use to kill target cells are the production of inflammatory cytokines such as interferon-**γ** (IFN-**γ**), interleukin-10 (IL-10) and tumour necrosis factor-**α** (TNF-**α**), which can activate other parts of the immune system such as dendritic cells and macrophages.<sup>65,66</sup>

NK cells are activated according to a "missing-self" hypothesis, that was first suggested by Karre et al. in 1986. This hypothesis suggests that NK cell activation is based on NK cell receptors' ability to recognize cells that fail to express major histocompatibility complex (MHC) class I molecules on their surface.<sup>67</sup> Therefore, unlike cytotoxic T cells, NK cells do not require prior antigen exposure to mediate anti-tumour effects for example. In humans, the receptors on NK cells responsible for the recognition of MHC class I molecules belong mostly to the killer immunoglobulin-like receptor (KIR) family.<sup>68</sup>

Interleukins have been shown to have important effects on NK cell function, ranging from their role in NK cell maturation to potentiating cytotoxicity.<sup>69</sup> The role of interleukin (IL)-2 and IL-15 in "priming" NK cells has been well established. IL-2 can for example activate NK cells *in vitro* and can enhance responses to infections *in vivo*.<sup>70,71</sup> IL-15 on the other hand, has been shown to sensitize NK cells to secondary stimuli, also referred to as "priming", which results in enhanced activation.<sup>72</sup> In addition to IL-2 and IL-15, other interleukins such as IL-12, IL-18 and IL-21 have been demonstrated to strengthen NK cell cytotoxicity. IL-12, for example, have been linked with NK cell stimulating capabilities inducing higher levels of TNF-**a** secretion by NK cells.<sup>73</sup> A recent report has also given a more generalized description of IL-12, IL-15, and IL-18 functionality in NK cells, demonstrating that NK cells

show enhanced functionality after pre-activation with these interleukins.<sup>74</sup> Finally, IL-21, involved in the expression of IFN- $\gamma$  through JAK1 and JAK3 activation, has been shown to promote rapid differentiation and expansion of CD16<sup>+</sup>CD56<sup>+</sup> NK cells.<sup>75</sup>





#### 1.2.2.3 Role in acute myeloid leukaemia

NK cells have a wide range of function in human health and disease through their immune functions. In AML and in cancers in general, NK cells can act in destroying malignant cells through their ability to distinguish "non-self" cells that lack MHC class I molecules on the cells' surface.<sup>55</sup> In addition, NK cells can target cancer cells through the release of cytokines.<sup>65,66</sup> Moreover, NK cells have been demonstrated to have the ability to kill tumour cells by antibody-dependent cell-mediated cytotoxicity (ADCC), a feature mediated by the IgG Fg receptor CD16.<sup>77</sup>

In AML, leukemic cells can escape NK cell recognition, leading to uncontrolled proliferation. In AML patients, NK cell abnormalities in inhibitory and activating receptors can lead to decreased NK cell function.<sup>78</sup> In addition to defects in NK cells, AML cells can also have defective ligand expression on the cell surface, that would otherwise interact with NK cells. For example, the low expression of NKG2DL ligands can render leukemic cells resistant to NK cell mediated cytotoxicity.<sup>79</sup> Furthermore, the effectiveness of NK cells to target malignant cells can be limited by interactions with other cells and biological compounds in the tumour microenvironment, including interactions with regulatory T cells, transforming growth factor (TGF)-**β** as well as myeloid-derived suppressor cells.<sup>80</sup>

### 1.3 NK cell-based immunotherapy for AML

NK cell-based immunotherapy represents one of the emerging immunotherapy strategies to target various cancers. In the recent years, our understanding about the NK cell immunobiology and function in cancer has led to advancements in the development of novel treatment options taking advantage of the cytotoxic potential of NK cells against hematological malignancies. Newly developed strategies to utilise NK cells in managing hematological malignancies include adoptive NK cell transfer, chimeric antigen-receptor (CAR)-modified NK cells, cytokines, antibodies, and drug-based therapies.<sup>81</sup> However, the use of these approaches in the management of AML remains in its early steps and much remains to be discovered.

Adoptive NK cell transfer has become a field of great interest in cancer immunotherapy due to promising results observed in allogeneic hematopoietic cell transplantation (HCT), where NK cells have shown beneficial effects due to potential alloreactivity. NK cell alloreactivity was described in more detail initially in 1999, as different donor-recipient pairs were studied in HCT receiving patients and KIR epitopes were correlated with HLA haplotype mismatch. This research suggested that NK cell alloreactivity is triggered by the mismatch between human leukocyte antigen (HLA) class I molecules on the recipient's cells

27

and KIRs on the donor's NK cells. The activation of NK cells resulted by alloreactions can effectively kill leukemic cells in AML through GVL effects for example.<sup>82</sup>

Further to promising NK cell-based effects in HCT studies, NK cells derived from donors and expanded *ex vivo* have been transferred to AML patients in addition to HCT. NK cells can be transferred to patients after being isolated donor leukapheresis using NK cellspecific magnetic cell sorting (MACS) and expansion using cell culture methods including interleukin stimulation. A phase I study using IL-15 and IL-23 stimulated NK cells has shown lowered leukaemia progression in patients receiving patient-derived NK cells after HCT, when compared to patients receiving HCT only.<sup>83</sup> However, some drawbacks have been experienced in similar trials with cytokine release syndrome related toxicity being observed in patients receiving early NK cell transfers 6 and 9 days post-HCT.<sup>84</sup>

Clinical trials have also investigated the use of adoptive NK cell transfer independent of HCT, the first one of which was reported in 2005 involving *in vivo* expansion of NK cells after adoptive transfer. In the study, IL-2 was used subcutaneously to induce NK cell proliferation *in vivo* in combination with chemotherapy-based treatments to activate NK cells against AML.<sup>85</sup> This method has been later developed, including the addition of selective NK cell purification using CD3 depletion and CD56 enrichment in addition to lower doses of IL-2 administered to reduce toxicity. Adoptive NK cell transfer in combination with chemotherapy be an effective method of consolidation therapy, with improved prognosis for AML patients achieving complete remission as long-term recurrence is decreased, although statistical significance has not been demonstrated.<sup>86</sup>

Increasing the number of alloreactive NK cells has been associated with better outcomes in AML patients<sup>87</sup> for which finding different ways to maximize the NK cell-induced alloreaction is considered important. NK cell expansions and their functionality can be, for example, significantly enhanced by co-culturing NK cells with IL-2 and IL-15 or feeding NK

28

cells with K562 cell line-derived feeder cells. These methods make it possible to produce larger quantities of NK cells *ex vivo* and allow them to have better functionality at targeting malignant cells.<sup>88,89</sup> In addition to finding ways to meet quantity and functional demands for NK cells in AML treatment, alternative sources for such cells have been investigated to provide ways to better incorporate NK cells into clinical use. For example, the generation of NK cells from CD34 positive hematopoietic stem and progenitor cells (HSPCs) isolated from cryopreserved umbilical cord blood (UCB) has been shown to be feasible.<sup>90</sup> Their use in elderly AML patients has also shown to be an effective way to promote NK cell expansion and maturation *in vivo* as well as being effective at reducing minimal residual disease.<sup>91</sup> Different methods of producing and storing expanded NK cells for later use in adoptive NK cell transfers allows for an "off-the-shelf" product that can have significant benefits for AML patients due to lowered costs, improved therapeutic potential and immediate application. Currently, numerous clinical trials are ongoing to assess the potential of using NK cell transfers as treatment for AML, also in combination with drug-based therapies.<sup>76</sup>

In addition to adoptive NK cell transfer-based therapies, NK cells can be genetically modified to target hematological malignancies. This can be done using CAR-modified NK cells, where NK cells are modified similar to CAR-T cells in order to augment cytotoxicity and specificity of NK cells. CAR-NK therapies are being considered as alternatives to CAR-T therapy due to their lower manufacturing costs and reduced toxicity.<sup>92</sup> However, it is worth noting that AML is relatively difficult to target as it shares some phenotypic markers with hematopoietic stem cells.<sup>93</sup> So far, AML-related breakthroughs in the use of CAR-NK therapies remain to be discovered, although advancements in lessons learned from their use in other cancers may help in developing the method further.

#### 1.4 Drug sensitivity and resistance testing

Drug sensitivity and resistance testing (DSRT) has become a widely used tool as a high throughput assessment method of drug compounds against a variety of cancers and to evaluate pharmacogenomic interactions in these malignancies. They have also paved the way for personalised medicine, allowing clinicians to find optimal doses and compounds to be used for improved effectiveness of the treatment in addition to decreased adverse effects. Although DSRT methods have been increasingly used for a variety of clinical and scientific needs, its potential to be used as a platform to investigate the synergy between immunotherapy methods and drug-based therapies has only scratched the surface.<sup>41,94</sup>

Individualised systems medicine (ISM) approaches have been investigated in the treatment for AML, with focus on developing *ex vivo* drug sensitivity platforms from which findings can directly be translated back to clinical use.<sup>94</sup> The platform was demonstrated to be efficient at screening for effective treatment options for patients, with hopes to simultaneously de-risking the use of investigational drugs clinical testing. This study laid a firm foundation for DSRT testing combined with molecular profiling in order to fully understand drug sensitivity and resistance mechanisms, in addition to better understanding the biology behind malignancies.<sup>94</sup>

Drug platforms used in DSRT experiments related to this study follow the design and manufacturing process described by the Finnish Institute for Molecular Medicine (FIMM) High Throughput Biomedicine Unit, which has a validated method of creating large scale drug libraries for uses in DSRT experiments.<sup>95</sup> The FIMM FO5A screening platform provides a high throughput model to study responses of standardised cancer cell lines and primary cells to 528 approved and investigational oncology drugs at 5 different concentrations.<sup>95</sup>

Evaluating the effect of drugs and immunotherapy methods on cancer cells *in vitro* requires high throughput methods of measuring cell viability and proliferation for obtaining accurate quantitative data. One widely used method is the expressed luciferase viability assay (ELVA), which relies on luciferase expression of target cells for detection through luminescence measurements. Like other endogenous enzymes, luciferase is rapidly

30

degraded after cell death, making it a useful tool for detecting cell viability. Its bioluminescent abilities allow for luminescence measurements to be used as a tool for its detection, which can be directly related to the number of viable cells.<sup>96,97</sup> The use of luciferase luminescence measurement requires, however, transduction of the cell line under investigation with luciferase constructs, which adds extra steps to the overall experimental plan.

In addition to luciferase-based viability assessment methods, other techniques evaluating the viability of cells and apoptosis exist. For example, caspase-based analytical methods allow for evaluation of apoptotic mechanisms in cells of interest.<sup>98</sup> In addition, flow cytometry-based methods of viability assessment could be utilised.<sup>99</sup> As cell viability assays only give qualitative information on drugs' ability to kill target cells or enhance proliferation, other methods such as single cell RNA sequencing can be used for determining more detailed effects induced by drugs.

Future approaches for high throughput DSRT include computational models, which would allow for testing and optimising drug compounds to different biological targets *in silico*. This minimizes the need for expensive laboratory experiments as well as speeds up the time it takes for obtaining results, which may turn out crucial in the study of acute malignancies in clinical settings.

#### 1.5 Combinatorial approaches to improve immunotherapy

Due to the complexity of cancers and their varying pathophysiology, effective cancer treatments are rather a combination of targeted strategies to counteract the malignancy than one universal miracle therapy that would solve the puzzle. This idea also applies to immunotherapy methods, to which combining other more conventional treatment options may prove beneficial for improved anti-cancer effects.

Chemotherapy, a widely used and effective cancer treatment also used to treat AML, can target biological mechanisms that can help potentiate immune responses towards cancer. They can, for example, inhibit immunosuppressive pathways developed by mutated cancer cells or increase immunogenicity of malignant cells for more effective immunological responses. Although these effects can occur, they are rarely the primary mode of action of chemotherapy drugs.<sup>14</sup> Therefore, more in-depth studies into their potential as immunotherapy potentiators are increasingly more important with immunotherapy options being introduced for clinical use. Studies focusing on discovering chemotherapy drug-related effects on the immune system have reported findings that support their use in combination with immunotherapy methods. Cyclophosphamide chemotherapy has been associated with restauration of NK and T cell function in patients with advanced cancer.<sup>100</sup> In addition, 5-fluorouracil has been shown to promote NK cell recruitment in murine models of pancreatic carcinoma.<sup>101</sup> NK cell recruitment in human cancers has also been shown to be a secondary effect of gemcitabine.<sup>102</sup>

Similar to chemotherapeutic agents, targeted anti-cancer drugs have also shown to affect the immune system. In relation to NK cells, imatinib has been shown to favour NK cell expansion in chronic myeloid leukaemia (CML) patients, in addition to IFN-**Y** production activation in NK cells in patients suffering from gastrointestinal stromal tumours.<sup>103</sup> Furthermore, dasatinib has been shown to result in effect similar to those seen with imatinib in CML patients.<sup>104</sup> NK cell function has also been shown to be affected by JAK inhibitors, which block the effect of IFN-**Y**, resulting decreased MHC class I molecule expression on cells' surface, leading to stronger activation of NK cells.<sup>105</sup> However, not only potentiating effects have been reported. For example, MAPK inhibitors have been shown to upregulate the expression of MHC class I molecules, which lead to increased antigenicity and hence decreased NK cell cytotoxicity.<sup>106</sup> Interestingly, although specific underlying biological mechanisms of individual oncology drugs have been investigated, relatively little is known about combining NK cells with drugbased treatment options using high throughput methods. In addition, drugs have primarily been studied with models of their intended cancer target, without evaluating their potential in treating myeloid malignancies such as AML. By combining high throughput DSRT methods with NK cell co-cultures, we hope to find clues to better understand the potential of NK cells in targeting AML.

### 2. Aims of the Thesis

In this thesis and in the larger project connected to it, we aim to evaluate the potential of approved and emerging investigational oncology drugs to enhance NK cell-based immunotherapy in the treatment of AML. In addition, we hope to increase our biological understanding of underlying cellular mechanisms behind NK cell function in its capabilities to kill tumorous cells. Furthermore, we hope to find drug compounds and targets that may adversely affect the function of NK cells so that in the future, if NK cells are made available in the oncology clinics, these compounds could be avoided in conjunction with NK cell immunotherapy. Finally, our aim is to discover drug compounds that sensitize cancer cells to immune cell-mediated apoptosis and finding compounds that synergize with NK cells to induce strong cytotoxic effects.

# 3. Materials and methods

# 3.1 Cell culture related methods3.1.1 Cell lines

All cancer cell lines were obtained from commercially available sources, including also the Finnish Red Cross' Blood Service. Buffy coats used to obtain NK cells were received from the Finnish Red Cross, where samples were taken from healthy donors with whom necessary agreements have been signed for the use of their samples in research. In addition, for NK cells used in single-cell sequencing experiments, buffy coats from donors with additional agreements for their genetic material to be used and analysed for research purposes were obtained from the Finnish Biobank.

#### 3.1.2 Cell culture

Cell culture media, later referred to as R10, was prepared beforehand by adding 5 mL of penicillin-streptomycin (10,000  $\mu$ L/mL penicillin, 10,000  $\mu$ L/mL streptomycin, Lonza), 5 mL L-glutamine (200 mM in 0,85% NaCl solution, Lonza) and 57 mL heat inactivated FBS (Gibco) to 500 mL of RPMI-1640 cell culture media (without L-glutamine, Lonza). R10 media was used in culturing cancer cell lines, where cells were kept at approximately 0.50×10<sup>6</sup> cells/mL concentration.

NK cells were cultured in cell culture media containing IL-2, later referred to as NKEM. NKEM was prepared by adding IL-2 (10  $\mu$ g/mL) 1  $\mu$ L to each mL of R10 to obtain a 10  $\mu$ g/mL IL-2 concentration.

# 3.1.3 NK cell isolation and expansion 3.1.3.1 Irradiating K562 cells

 $10.0 \times 10^{6}$  K562 CSTX002 cells obtained from Kiadis Pharma were thawed in 13 mL R10 and a pallet of cells was recovered after centrifugation at 300g for 5 mins. The media was removed, and cells were washed with 12 mL PBS, following centrifugation at 300g for 5 mins. After washing, PBS was removed, and cells were resuspended in R10 to obtain a concentration of  $5.0 \times 10^{5}$  cells/mL in a T75 (with filter, Greiner) flask.

Cells were kept in culture for 14 days, during which they were passaged every 3 days. At the end of the 14 day culture,  $2.0 \times 10^{\circ}$  cells were collected and prepared for irradiation by changing the media and transferring to two T75 flask at  $10.0 \times 10^{\circ}$  cells/mL concentration with 100 mL of cell suspension in each flask. Cells were then placed into an OB29/4 (Cs-137 isotope, Braunschweig, Germany) gamma irradiator and given a 100 Gy dose of radiation by irradiating them for 5078 s. Dose calculations can be found from Supplementary Materials, Equation 1.

#### 3.1.3.2 NK cell expansion from buffy coat

A buffy coat was obtained through The Finnish Red Cross and taken from a healthy donor through leukapheresis. To start the expansion, the buffy coat was placed in 50 mL Falcon tubes and diluted in a 1:1 ratio with PBS in sterile conditions. After dilution, 30 mL of the diluted buffy coat was layered on top of 20 mL of FicoII-Paque solution (GE Healthcare) following centrifugation for 20 mins at 300g. Once layered, peripheral blood mononuclear cells (PBMCs) were recovered from the plasma interface using a glass pipette. The recovered PBMCs were then washed three times with PBS and centrifuged each time for 5 mins at 300g. Once washed, cells were counted using a Bio-Rad automated cell counter.
The NK cell expansion was then started (day 0) by seeding  $5.0 \times 10^6$  of PBMCs with  $10.0 \times 10^6$  irradiated K562 CSTX002 cells in 40 mL of NKEM in a T75 cell culture flask, which was placed upright in an incubator set to 37°C and 5% CO<sub>2</sub>. On days 3 and 5 of the protocol, cells were recovered by centrifuging the suspension for 5 mins at 300g. Half of the supernatant was removed and replaced with fresh R10, following the addition of 10 ng/mL of IL-2. On day 7 of the expansion protocol, NK cells were counted and an equal number of irradiated CSTX002 cells were added together with NKEM in order to obtain a  $2.5 \times 10^5$  total cells/mL concentration. On days 10 and 12, the entire media was changed to fresh NKEM and cell suspensions were diluted to  $5.0 \times 10^5$  cells/mL. On day 14, the expansion was finished by purifying the cell suspension and separating NK cells.

NK cells were purified from the expanded PBMCs using a Miltenyi NK cell isolation kit (Miltenyi Biotec, catalogue number 130-092-657). 50 million PBMC cells were first centrifuged for 5 mins at 300 g and the supernatant was removed. 200  $\mu$ L of a buffer solution containing PBS with 2 mM EDTA and 0.5% BSA was added to tube and the cells were resuspended in it. Into the resuspended cell suspension, 50  $\mu$ L of NK Cell Biotin-Antibody Cocktail was added and carefully mixed, following a 5 min incubation at 4°C. After incubation, 150  $\mu$ L of the buffer solution and 100  $\mu$ L of NK Cell MicroBead Cocktail were added and carefully mixed, following a 10 min incubation at 4°C. An LS column (Miltenyi Biotec) was placed in a MACS Separator (Miltenyi Biotec), which was rinsed with 3 mL of buffer solution. The cell suspension was applied onto the column and the flow-through was collected, leading to other cells being left into the column. The column was washed with 2 mL of buffer and the effluent was combined with the first flow-through. Collected cells were counted and checked for purity.

# 3.1.3.3 NK cell analysis with flow cytometry

Samples containing  $10.0 \times 10^6$  cells of the NK cell expansion were frozen on day 0 of expansion and on day 14 after isolation. On the day of flow cytometry analysis, both

samples were thawed in 14 mL of PBS containing 2 mM EDTA and 0.5% BSA. After thawing, cell suspensions were centrifuged at 300g for 5 mins and supernatant was discarded. Cells were counted and viabilities were recorded. The cell suspensions were diluted to obtain a cell concentration of  $10.0 \times 10^6$  cells/mL using PBS.

A master mix of markers was prepared by combining 60  $\mu$ L CD3 PerCP-Cy5.5, 24  $\mu$ L CD 45 APC-H7, 24  $\mu$ L CD8 BV510, 60  $\mu$ L CD56 BV421 and 24  $\mu$ L PBS. After combining the markers, the mixture was vortexed and 9,5  $\mu$ L of the master mix was pipetted into labelled FACS tubes according to Tables 2 and 3. Following the same table, other markers were added to tubes. To tubes labelled 5, only 2  $\mu$ L CD3 APH-H7, 2  $\mu$ L CD56 BV510, 5  $\mu$ L CD57 BV421, 5  $\mu$ L PerCP-Cy5.5 CD19 and 5  $\mu$ L PerCP-Cy5.5 CD14 were added. Tubes labelled 8 and 9 were left without markers.

100  $\mu$ L of the NK cell suspensions were added to tubes with different marker contents and the contents were allowed to incubate for 15 mins at room temperature. After incubation, 1 mL of PBS was added to all tubes which were then centrifuged for 5 mins at 300g. Tubes 5 and 9 were set aside and 100  $\mu$ L of 2% PFA was added following a 15 min incubation at room temperature. 100  $\mu$ L of PBS was added to all other tubes, which were then vortexed, covered with aluminium foil and left in room temperature.

After 15 mins of incubation, 1 mL of PBS was added to tubes 5 and 9, which were then centrifuged for 5 mins at 300 g. Cells in tubes 5 and 9 were then permeabilized by adding 100  $\mu$ L of 0.05% Triton-X in PBS and incubating the samples for 15 mins at room temperature. Samples were then washed by adding 2 mL of PBS and centrifuging for 5 mins at 300 g, after which the supernatant was removed, and the procedure repeated another time. To tube 5, 2  $\mu$ L FITC FCeR1gamma, 3  $\mu$ L APC Syk, 3  $\mu$ L PLZF PeCy7 and 3  $\mu$ L EAT2 FITC were added. Both tubes 5 and 9 were then left to incubate for 30 mins at room temperature in a dark box. After incubation, 1 mL of PBS was added to tubes and

they were centrifuged for 5 mins at 300g, after which the supernatant was removed. Following this, 180  $\mu$ L of PBS was added and samples were vortexed, covered with aluminium foil and left in room temperature.

After the preparation of all samples, they were analysed using the FACSVerse (BD Biosciences) flow cytometer with pre-set parameters. The data was then interpreted to verify the purity of NK cells.

### 3.1.4 Transducing cell lines with luciferase constructs

All cell lines used in the DSRT experiments were transduced to express luciferase for viability measurements. MOLM-14 and THP-1 cells were transduced with pLenti PGK V5-LUC Neo lentivirus (Addgene, luc-neo) prior to being used in this study. Specifically for this project, the HEL cell line was transduced using EF1a-Luciferase (firefly)-2A-GFP (puro) lentivirus (Amsbio, LVP437). The general protocol for both viruses is the same, however differences in the number of cells used in the transduction differs between lentiviruses.

Cells were first thawed 6 days prior to starting the transduction experiment and passaged once on day 3 after thawing. Cell suspensions were then moved to a BSL2 facility. For cell lines transduced using LUC Neo,  $1.50 \times 10^6$  cells were centrifuged, the supernatant was removed and replaced by 400 µL R10 in which cells were resuspended. 200 µL of the cell suspension was placed in two separate wells of a 48-well flat-bottom plate (Corning). To one (control well), 50 µL of R10 and 0,25 µL polybrene (Sigma-Aldrich, 8 mg/mL) were added. To the other well, 50 µL of concentrated (175x) luc-neo virus suspension and 0,25 µL polybrene were added.

For cell lines transduced using LVP437 virus,  $0.40 \times 10^5$  cells were centrifuged, the supernatant was removed and replaced by 100 µL R10 in which cells were resuspended. 50 µL of the cell suspension was placed in two separate wells of a 96-well flat-bottom plate.

To one (control well), 50  $\mu$ L of R10 and 0.10  $\mu$ L polybrene (Sigma-Aldrich, 8 mg/mL) were added. To the other well, 50  $\mu$ L of LVP437 virus suspension and 0.10  $\mu$ L polybrene were added.

Independent of the virus used, cell-containing plates were centrifuged for 2h at 800g (Multifuge 3SR+, Thermo Scientific). Following centrifugation, the supernatant was aspirated, and cells were moved resuspended in media and transferred to new plates. For transductions involving 750,000 cells/well, the cells were resuspended in 1 mL of R10 and moved to 12-well plates. For cells transduced using LVP437 virus, cells were resuspended in 100 µL R10 and moved to a 96-well plate (Corning).

Cells were then cultured for 14 days, with media change after every 3 days. On the 13<sup>th</sup> day of cell culture after transduction, the supernatant was removed after centrifugation at 300g for 5 mins, following 2 washes with PBS. Cells were then resuspended back in appropriate amount of R10 to obtain a 1.50×10<sup>6</sup> cells/mL concentration. On the 14<sup>th</sup> day after transduction, cell suspensions were centrifuged and 1 mL of supernatant was set aside for replication competent virus (RCV) testing, which was performed by the Biomedicum Virus Core. Once cleared by the RCV test, the cell suspensions were moved to a BSL1-level laboratory facility, tested for luciferase and frozen.

# 3.1.5 Selection of transduced cell lines – THP-1 and MOLM-14

Clones that were successfully transduced were first tested for luciferase levels by diluting the cell suspension to 0.80×10<sup>6</sup> cells/mL concentration and then pipetting 25 µL of the suspension into a row of wells of a sterile 384 well plate. The samples were then incubated at 37°C for 24h, after which 25 µL of ONE-Glo<sup>™</sup> reagent was added and the luciferase levels were measured according to the method described in Section 3.2.2.3. In the case of MOLM-14 and THP-1 cell lines, the luciferase level measured for 20,000 cells after 24h of incubation was 600 or over, meaning that the cells can be used in the drug screenings

without the need for further sorting. However, in the case of the HEL cell line, the luciferase levels were not high enough, requiring further refinements that are described in the next section.

#### 3.1.6 Post-transduction single cell sorting of HEL cell line

The HEL cell line was thawed 6 days prior to the sorting and passaged once to obtain enough viable cells for the experiment. Before the sorting, the cell culture media was changed to fresh R10 and cells were diluted to  $2.0 \times 10^6$  cells/mL concentration. Cells were placed in a 15 mL Falcon tube (Corning), placed on ice and transported to the cell sorting facility. To sort the cells, a Sony SH800S cell sorter was used. The sorter was set to pick single cells at high GFP levels and place them into wells of a 96 well round-bottom plate (Corning), where one cell was placed in each well containing 100 µL of R10.

Single cell sorted cells of the HEL cell line were let to grow in a 96 well round-bottom plate containing 100  $\mu$ L R10 for 10 days. The wells were then checked under a microscope to see which cells had started to divide and to check for bacterial infection. Those clones of the HEL cell line were selected which had started to grow efficiently and showed no bacterial infection in the form of a cloudy microscope image. Selected clones were suspended in their culture media and moved to a 48 well plate to the wells of which 100 uL of R10 was added. Cells were allowed to grow for 3 days, after which 100 uL of media was removed from each well and another 100 uL of fresh R10 was added. As more cells were grown, the clones were moved to larger welled plates and more R10 was added.

After 21 days of culture and 7 passages, 8 clones of 20,000 cells/well were plated onto a 384 well plate (low flange, Corning) and suspended in 25 uL of R10 media. These clones were placed in culture for 24 h to later check for luciferase levels. After 24h of incubation, the HEL clones were tested for luciferase levels according to the method described in Section 3.2.2.3. Out of all the clones tested, the HEL D8 clone was selected due to its high

viability and high luciferase level of approximately 6000 compared to 3000 of the secondbest clone.

## 3.1.7 Freezing and thawing

Cells were frozen by suspending cells into cold FBS containing 10% DMSO and placing 1 mL of the cell suspension into cryotubes. Cryotubes were then places in a freezer set to - 80°C for a day, after which they were moved to a -150°C cryogenic freezer for long-time storage.

For thawing cells, 12 mL of R10 was pre-heated to 37°C in a 15 mL Falcon tube. Cells were taken up from the cryogenic freezer (37°C) and placed in a water bath at 37°C for 1 min. The cryogenic tubes containing the cells were then moved to room temperature and allowed to thaw for a further 2 mins. Once all the content was in a liquid state, cells in the freezing media were taken from the cryogenic tubes and added to Falcon tube containing R10. The contents of the tube were then carefully mixed by turning the tube upside down and centrifuged for 5 mins at 300g (Universal 320, Hettich). After centrifugation, the media was removed using suction and the cell pallet was resuspended in 12 mL sterile PBS (Corning). The cell suspension in PBS was then centrifuged for 5 mins at 300g. After centrifugation, the PBS was removed using suction and the cell pallet was resuspended in 2 mL R10 by thorough mixing by pipetting up and down with a 1000 µL micropipette. Cells were then counted by mixing 10 µL of cell suspension with 10 µL of 0,4% Trypan blue (Gibco) and placing 10 µL of the mixture into a TC10 counting slide (BioRAD). The counting slide was placed in a TC20 automated cell counter (BioRAD) for counting cells and the cell count and viability was recorded. The cell suspension was then diluted with R10 to obtain 0.5 x 10<sup>6</sup> cells/mL concentration. The cell suspension was then placed in a cell culture flask with a filtered cap and placed in a cell incubator (37°C, 5% CO<sub>2</sub>).

42

# 3.2 Drug screening



Figure 4. Representation of main experimental methods to study the combinatorial effects of oncology drugs and NK cells. Overall experimental set-up to study the effects of drugs using a high-throughput method.

# 3.2.1 Optimisation

Prior to applying high-throughput drug screening methods, the killing effect of NK cells was evaluated to enable the study of the effects induced by drugs in both directions, leading to either the enhanced or decreased killing of cancer cells. This was achieved by testing different NK cell to target cell ratios with the aim of finding a ratio that would lead to 50% of target cells being killed by NK cells alone.

Selected target cells and expanded NK cells (day 14 of expansion) were thawed 3 days prior to the optimization experiment and placed in appropriate culture media to allow for recovery. After 3 days of culture, target cells were placed into 50 mL Falcon tubes and centrifuged. Media was removed and cell pallets were resuspended in 2 mL of R10. Cells were then counted by mixing 10  $\mu$ L of cell suspension with 10  $\mu$ L of 0.4% Trypan blue (Gibco) and placing 10  $\mu$ L of the mixture into a TC10 counting slide (BioRAD). The counting slide was placed in a TC20 automated cell counter (BioRAD) for counting cells and the cell count and viability was recorded. The cell suspension was then diluted with R10 to obtain 0.80×10<sup>6</sup> cells/mL concentration. 25  $\mu$ L of the target cell solution at the appropriate

concentration was then plated into wells of a 384-well plate (low flange, Corning) according to a plating map of the 24h optimization plates. The same amount of the target cell suspension was then added into a separate 384-well plate that was used as a 0h control.

NK cells were also placed in Falcon tubes and centrifuged to change the media. Cells were counted and diluted to  $4.00 \times 10^6$  cells/mL concentration. A serial dilution was then made from the NK cell suspension by first placing 2 mL of the  $4.00 \times 10^6$  cells/mL suspension into one well of a 6-well plate. 1 mL of R10 was then added into the remaining wells and 1 mL of the  $4.00 \times 10^6$  cells/mL suspension was added to one of the R10 containing wells and thoroughly mixed using a pipette. 1 mL of the diluted solution was then moved to the adjacent well and the same process was applied to the rest of the wells until 6 wells with  $4.00 \times 10^6$  cells/mL,  $2.00 \times 10^6$  cells/mL,  $1.00 \times 10^6$  cells/mL,  $0.50 \times 10^6$  cells/mL,  $0.25 \times 10^6$  cells/mL concentrations were obtained.

Once the serial dilutions of NK cells were made,  $25 \,\mu$ L of the NK cell suspension of different concentrations were added to the wells containing the target cells according to the plating map. In addition,  $25 \,\mu$ L of R10 was added into no-NK wells and the 0h control plate. Once plated, 24h plates were placed in an incubator and the 0h control plate was tested for luciferase levels according to the method described in Section 3.2.2.3.

# 3.2.2 DSRT method 3.2.2.1 Drug plates

FO5A drug plates, containing 528 approved and investigational oncology drugs at 5 concentrations were purchased from the Finnish Institute for Molecular Medicine (FIMM) High Throughput Biomedicine Unit. The drugs included in the FO5A plates, their targets and approval status can be found from Supplementary Materials, Table 1.

## 3.2.2.2 DSRT experiment

Both NK cells and target cells were thawed 3 days prior to the experiment and placed in appropriate media at 0.50×10<sup>6</sup> cells/mL concentration. From optimization data, the appropriate effector-target ratio was determined, and on the day of the experiment, cell suspensions were prepared accordingly as demonstrated in Table 3. The old cell culture media was first removed and fresh R10 was added to get appropriate concentrations. Once diluted, cells were counted three times for accurate counts and the R10 volume was adjusted if necessary. Cell suspensions at final concentrations were placed in 250 mL screw top bottles and stored in an incubator set to 37°C.

| Target cell line | Effector-target ratio | Target cell concentration     | NK cell concentration         |
|------------------|-----------------------|-------------------------------|-------------------------------|
| MOLM-14          | 1:1                   | 2,00×10 <sup>6</sup> cells/mL | 2,00×10 <sup>6</sup> cells/mL |
| THP-1            | 1:1                   | 2,00×10 <sup>6</sup> cells/mL | 2,00×10 <sup>6</sup> cells/mL |
| HEL              | 1:1.5                 | 2,00×10 <sup>6</sup> cells/mL | 1,33×10 <sup>6</sup> cells/mL |

Table 3. Cell suspension concentrations of cancer cell lines and NK cells.

R10 was warmed to 37°C and 200 mL of it was placed in a 250 mL screw top bottle. Two sets of pre-made drug plates (FO5A, Finnish Institute for Molecular Medicine) were retrieved from storage and 5 µL of R10 was plated into each well of the 384 well-plates containing drug compounds using a BioTek multi-mode dispenser (Multiflo FX with stacker, 5 µL RAD<sup>™</sup> cassette). The drug plates were then centrifuged for 1 min at 1000 rpm, following 10 mins of shaking in a plate shaker set to 450 rpm at variable setting (Perkin Elmer, DELFIA<sup>®</sup> PlateShake). Meanwhile, 15 µL of R10 was also added to one column of a 384 well plate (low flange, Corning) which was used as a 0h control plate.

Next, target cells were taken from the incubator, a magnetic stirrer bar was added to the suspension and the bottle was placed on a magnetic stirrer set to minimum mixing setting. Plates were placed back in the dispenser and 10  $\mu$ L of the cell suspension was pipetted into

each well (20,000 cells/well). 10  $\mu$ L of the cell suspension was also added to the column containing R10 of the 0h plate. At this point, the two sets of drug plates were separated, and one was assigned to be the control set and the other was referred to as the NK cell set.

After plating target cells, the dispensing cassette was washed and 10  $\mu$ L of R10 was added to wells of the drug plate set that was set to not contain NK cells (control set). The NK cell set was then placed into the dispenser and 10  $\mu$ L of R10 was also added to the control wells. After plating R10, the NK cell suspension was mixed by pipetting it rigorously and a magnetic stirrer bar was added. The bottle was then placed on the magnetic stirrer set to its lowest setting and 10  $\mu$ L of the NK cell suspension was plated on the appropriate wells of the drug plates. The plating plan used to plate cells and media can be found from Supplementary Materials, Table 1.

Once all components were plated into the drug plates, the plates were covered with lids and shaken for 5 mins at 450 rpm. After shaking, the plates were placed into an incubator set to  $37^{\circ}$ C and 5% CO<sub>2</sub> for 24 h. Instead of incubation, the 0h control plate was measured for luciferase levels as described in the following section.

## 3.2.2.3 Luciferase bioluminescence measurement

200 mL of ONE-Glo<sup>™</sup> luciferase assay solution (Promega, E6130) was thawed in a water bath and placed in a 250 mL screw top bottle covered in aluminum foil. Once the ONE-Glo<sup>™</sup> solution was prepared, plates containing cells or drugs and cells were placed in a BioTek multi-mode dispenser and 25 µL of the ONE-Glo<sup>™</sup> solution was pipetted into each well. After this, plates were covered with aluminum foil covers and placed in a shaker (Perkin Elmer, DELFIA<sup>®</sup> PlateShake) set to 450 rpm for 10 mins, following centrifugation for 5 mins at 1000 rpm. After applying the ONE-Glo<sup>™</sup> solution, luciferase levels were measured using a PHERAstar FSX microplate reader with a pre-made reading protocol specifically designed for this experiment.

# 3.3 Single cell RNA sequencing using hashtag oligos3.3.1 Drug dilutions

Drug solutions at 10 mM concentration, including ruxolitinib, daporinad, midostaurin, pictilisib, pevonedistat and quizartinib were aliquoted by FIMM High Throughput Biomedicine Unit into aliquots of 50  $\mu$ L. Drugs were diluted by first adding 40  $\mu$ L of H<sub>2</sub>O, and from then on different amounts of solution containing H<sub>2</sub>O with 20% DMSO. More detailed descriptions on the dilutions can be found from Supplementary Materials, Figure 2.

### 3.3.2 Pre-hashing optimisation

Both NK cells and MOLM-14 cells were thawed 3 days prior to the experiment. On the day of plating the cells, they were first counted and diluted to  $2.00 \times 10^6$  cells/mL in R10. First, 10 µL of MOLM-14 cell suspension was plated according to the plating plan into two 384 well plates (low flange, Corning), one being the 0h plate and the other being the 24h plate. Once MOLM-14 cells were plated, a serial dilution was made of the NK cells in a 6 well plate (Corning), starting with 2 mL of NK cell suspension at  $2.00 \times 10^6$  cells/mL concentration. 1 mL of R10 was added to all wells apart from the one containing the cell suspension, after which 1 mL of the NK cell suspension was systematically transferred from higher concentration to a well only containing R10, hence ending up with suspensions at  $2.00 \times 10^6$  cells/mL,  $1.00 \times 10^6$  cells/mL,  $0.50 \times 10^6$  cells/mL,  $0.25 \times 10^6$  cells/mL,  $0.125 \times 10^6$  cells/mL concentrations. When combined with target cells, these dilutions would lead to effector-target ratios of 1:1, 0.5:1, 0.25:1, 0.125:1 and 0.0625:1 respectively. One well was left with only R10 without the addition of NK cells.

Once NK cell dilutions were made, 10 µL of the suspensions of different concentrations were plated according to the plating plan. For wells with no NK cell suspension added, 10 µL of R10 was added instead. Following the plating of NK cell suspensions, 5 µL of drug solutions were added to relevant wells according to the plating plan. After all components had been plated, the plates were centrifuged for 1 min at 1000 rpm, placed in a shaker for 5 mins at 450 rpm and placed in an incubator set to 37°C and 5% CO<sub>2</sub>. The luciferase level measurement was then performed on the 0h plate. After 24h incubation of the 24h plate, luciferase levels were also measured following the addition of ONE-Glo<sup>™</sup> and relevant steps described in Section 3.2.2.3.



## 3.3.3 Hashing experiment and preparation for single cell RNA sequencing

**Figure 6. Experimental method for hashing experiment in preparation to scRNA sequencing.** Experimental set-up of hashing scRNA sequencing experiment following the selection of drugs using high-throughput DSRT.

Cells were thawed 3 days prior to plating the cells into co-culture with NK cells having 10 ng/mL IL-2 added to the media. Based on the pre-hashing optimization experiment, a 1:4 effector-target ratio was selected. On the day of plating, old media was discarded, MOLM-14 cells were resuspended in R10 to obtain a  $2.00 \times 10^6$  cells/mL concentration and NK cells were also resuspended in R10 to a  $0.50 \times 10^6$  cells/mL concentration. 250 µL of MOLM-14 cell suspension was then plated according to the plating plan into appropriate wells of four 24 well plates (Corning), leading to two duplicate plates of two different conditions. 250 µL

of NK cell suspension was then added to appropriate wells and the contents were mixed with a pipette.

After plating all cells, drugs were combined with R10 by adding 5  $\mu$ L of the pre-diluted drug solution into either 495  $\mu$ L or 745  $\mu$ L of R10. For each drug, four 750  $\mu$ L drug and R10 solutions were made in 1 mL Eppendorf tubes in addition to two 500  $\mu$ L solutions per drug. A 20% DMSO solution was also made by combining 200  $\mu$ L of DMSO (99,9%, Sigma-Aldrich) and 800  $\mu$ L H<sub>2</sub>O. 5  $\mu$ L of the 20% DMSO solution was then added to 8 Eppendorf tubes containing 745  $\mu$ L of R10 and four tubes containing 495  $\mu$ L of R10. Once all drug solutions and DMSO solutions were ready, they were added into appropriate wells according to the plating plan. The contents of each well were thoroughly mixed by pipetting and placed into an incubator set to 37°C and 5% CO<sub>2</sub> for 24h.

After 24 h incubation, one plate of each condition was taken out of the incubator and the contents of each well were moved to separate 15 mL Falcon tubes containing 10 mL of cold PBS (4°C). The cells were mixed with PBS, following centrifugation of 5 mins at 300g. After centrifuging the samples, the supernatants were removed, and all samples were washed another two times with 10 mL of cold PBS. After the last wash, as much of the PBS was removed from each tube as possible using a micropipette.

After removing the excess PBS, 10  $\mu$ L of Fc blocking reagent (FcX, BioLegend) was added to FACS tubes assigned to each sample. Following this, cells were resuspended in 100  $\mu$ L of staining buffer (BioLegend) and transferred to assigned FACS tubes. Tubes and their contents were mixed using a vortex mixer and left to incubate at 4°C for 10 mins. After incubation, 2  $\mu$ L of a unique Cell Hashing antibody was added according to Tables 2 and 3. Samples were then mixed using a vortex mixer and left to incubate at 4°C for 30 mins. In the meantime, a 0,04% BSA solution in PBS was prepared by mixing 19,92 mL of PBS with 0,08 mL BSA (10%, Sigma-Aldrich). After incubating the cells with the hashtag antibodies, each sample was washed five times with 3 mL staining buffer including a 300g centrifugation at 4°C for 5 mins between each wash to remove the staining buffer.

After the last wash, 100  $\mu$ L of staining buffer was added to each tube and cells were resuspended. Once in suspension, all cells from different tubes within each condition were combined into one tube and centrifuged for 5 mins at 4°C in 300g. The staining buffer was then removed, and cells were resuspended in 3 mL of PBS with 0.04% BSA and the suspension was transferred into a 15 mL Falcon tube. Cells were then counted, and the concentration of the suspension was adjusted by adding more of the PBS with 0.04% BSA to obtain a final concentration of 1.50×10<sup>6</sup> cells/mL. Finally, 1 mL of the final product was placed in a 1.5 mL Eppendorf tube and transported on ice to the sequencing facility for further analysis.

| Hashtag | Sequence        | Sample / Condition          | Catalogue |
|---------|-----------------|-----------------------------|-----------|
|         |                 |                             | number    |
| 1       | GTCAACTCTTTAGCG | Daporinad + NK              | 394601    |
| 2       | TGATGGCCTATTGGG | Ruxolitinib + NK            | 394603    |
| 3       | TTCCGCCTCTCTTTG | Pevonedistat + NK           | 394605    |
| 4       | AGTAAGTTCAGCGTA | Daporinad + MOLM-14         | 394607    |
| 5       | AAGTATCGTTTCGCA | Ruxolitinib + MOLM-14       | 394609    |
| 6       | GGTTGCCAGATGTCA | Pevonedistat + MOLM-14      | 394611    |
| 7       | TGTCTTTCCTGCCAG | Daporinad + MOLM-14 + NK    | 394613    |
| 8       | CTCCTCTGCAATTAC | Ruxolitinib + MOLM-14 + NK  | 394615    |
| 9       | CAGTAGTCACGGTCA | Pevonedistat + MOLM-14 + NK | 394617    |
| 10      | ATTGACCCGCGTTAG | NK in 0,1% DMSO             | 394619    |
| 12      | TAACGACCAGCCATA | MOLM-14 in 0,1% DMSO        | 394621    |
| 13      | AAATCTCTCAGGCTC | MOLM-14 + NK in 0,1% DMSO   | 394623    |

Table 4. Hashtags used in sequencing sample 1. Hashtag oligonucleotides with respective sequences and co-culture conditions to which they bound in the sequencing sample consisting of activating drugs.

Table 5. Hashtags used in sequencing sample 2. Hashtag oligonucleotides with respective sequences and co-culture conditions to which they bound in the sequencing sample consisting of inhibiting drugs.

| Hashtag | Sequence        | Sample / Condition         | Catalogue<br>number |
|---------|-----------------|----------------------------|---------------------|
| 1       | GTCAACTCTTTAGCG | Pictilisib + NK            | 394601              |
| 2       | TGATGGCCTATTGGG | Quizartinib + NK           | 394603              |
| 3       | TTCCGCCTCTCTTTG | Midostaurin + NK           | 394605              |
| 4       | AGTAAGTTCAGCGTA | Pictilisib + MOLM-14       | 394607              |
| 5       | AAGTATCGTTTCGCA | Quizartinib + MOLM-14      | 394609              |
| 6       | GGTTGCCAGATGTCA | Midostaurin + MOLM-14      | 394611              |
| 7       | TGTCTTTCCTGCCAG | Pictilisib + MOLM-14 + NK  | 394613              |
| 8       | CTCCTCTGCAATTAC | Quizartinib + MOLM-14 + NK | 394615              |
| 9       | CAGTAGTCACGGTCA | Midostaurin + MOLM-14 + NK | 394617              |
| 10      | ATTGACCCGCGTTAG | NK in 0,1% DMSO            | 394619              |
| 12      | TAACGACCAGCCATA | MOLM-14 in 0,1% DMSO       | 394621              |
| 13      | AAATCTCTCAGGCTC | MOLM-14 + NK in 0,1% DMSO  | 394623              |

# 3.3.4 Single cell sequencing using hashtag oligos

Sequencing of the MOLM-14 sample containing hashtags was performed by the Single-Cell Analytics Unit of the Finnish Institute for Molecular Medicine. Single cell gene expression profiles were studied using 10x Genomics Chromium Single Cell 3'RNAseq platform. The Chromium Single Cell 3'RNAseq run and library preparation were done using the Chromium Next GEM Single Cell 3' Gene Expression version 3.1 Dual Index chemistry. The Sample libraries were sequenced on Illumina NovaSeq 6000 system using read lengths: 28bp (Read 1), 10bp (i7 Index), 10bp (i5 Index) and 90bp (Read 2). The TotalSeq<sup>™</sup>-A Antibodies and Cell Hashing with 10x Single Cell 3' Reagent Kit v3 or v3.1 (Single Index) protocol from BioLegend<sup>®</sup> was used.

# 3.4 Data analysis3.4.1 Analysis of DSRT data

DSRT data was analysed with a purposefully designed script on R that uses a validated systematic algorithmic solution to calculate differential drug sensitivity scores for each drug. This relies on reading data from luciferase measurements to calculate scores and create inhibition curves. The analysis incorporates both NK and no-NK conditions for comparison.<sup>107</sup>



Figure 7. Processing and analysis of DSRT data, starting with bioluminescence readouts. Data was computationally matched to specific conditions. These values were used to calculate drug sensitivity scores, and the results between NK only and NK with drug conditions were compared to determine differential drug sensitivity scores.

# 3.4.2 Analysis of scRNA sequencing data

Data processing and analysis were performed by the FIMM Technology Center using 10x Genomics Cell Ranger v5.0.1 pipelines. Cell Ranger includes several pipelines of which the "cellranger mkfastq" was used to produce raw data files and "cellranger count" to perform alignment, filtering and UMI counting. Mkfastq was run using the Illumina bcl2fastq v2.2.0 and alignment was done against human genome GRCh38. Cellranger aggr pipeline was used to combine data from multiple samples into an experiment-wide gene-barcode matrix and analysis. Count matrix for hashtag oligonucleotides (HTO) was generated using the CITE-seq-Count-tool.<sup>108</sup>

Further analysis including quality control, normalization, data correction and clustering were performed using the Seurat package (version 4.0) according to the Current Best Practices in Single-Cell RNA-seq analysis.<sup>109</sup> Further analysis and exploring of the data was done using R scripts kindly provided by MD Olli Dufva with functions and added features created by MD Jani Huuhtanen. The analysis consisted of packages such as SingleR and clusterProfiler. After merging data from both scRNA sequencing samples, these computational tools were used to study the NK cell and MOLM-14 cell populations separately to investigate cell-specific changes in response to drug co-culturing with NK cells. Additional figures related to the scRNA sequencing data can be found from the Supplementary Materials, Figures 3-5.

# 4. Results

# 4.1 Effector-target optimisation of different cell lines and different donor effects

Prior to performing drug screenings with cells of interest, target cell and NK cell ratios were optimised as target cells differ in sensitivity to NK cells, in addition to donor-dependent differences in NK cells' ability to kill target cells. Hence, target cells and NK cells were co-cultured for 24 hours to study the effect of NK cells on cancer cells without the addition of drug compounds. Differences between different effector-target ratios were studied with the goal of obtaining approximately a 50% inhibition of the cell viability by exposing target cells to a given number of NK cells. The 0.5 viability has been selected as the condition at which target cell viability can show changes in both inhibiting and activating directions when drugs are applied.

For MOLM-14, a 1 to 1 ratio of target cells and NK cells showed inhibition of the target cell viability by 50%. This result was observed by comparing the condition in which only target cells were cultured in R10 to the condition in which the luciferase luminescence was halved to that of the control. Similarly, for THP-1 and HEL cell lines, effector-target ratios of 1 to 1 and 1 to 1.5 were determined respectively.

In the optimisation data for the HEL cell line, increases in viabilities are observed as small numbers of NK cells are co-cultured with the target cell. As seen in Figure 8, at 1:16, 1:8 and 1:4 effector-target ratios, HEL cells proliferate more compared to the condition in which no NK cells are added, which could imply that NK cell may interfere with the luciferase level measurements. In addition, small errors in cell counts may have led to such effects being seen despite of small numbers of NK cells being added.

Interestingly, the effector-targets required to reach a 50% decrease in viability were notably higher compared to unpublished previous measurements made on MOLM-14. In a previous experiment performed in our group, a 1 to 4 effector-target ratio was required, shedding light on donor-dependent differences in the effects of NK cells on the targeted cancer cell line. This finding emphasized the importance of a validation experiment when changing to NK cells expanded from a different donor.



**Figure 8. Cell viability curves with respect to ratio of effector cells to target cells**. This gives indication of appropriate effector-target ratio to be used in later experiments to reach 50% inhibition with NK cells alone.

# 4.2 DSRT results

High-throughput drug sensitivity and resistance testing was used to obtain qualitative information on the capability of different oncology drugs to synergise with NK cell for effects on cytotoxic capabilities against AML cell lines. Out of hundreds of drugs, the most potential NK cell cytotoxicity-enhancing compounds, in addition to those limiting their

effect, were studied further using single-cell methods for deeper understanding about the underlying mechanisms of action.

In principle, comparison between target cell cultures with added drug or drug and NK cells was performed using computational methods. Drug sensitivity scores (DSS) and differential drug sensitivity scores (sDSS), obtained from the computational analysis, were studied in detail to determine the effects of drugs and NK cells on target cell lines. Although the computational model used for analysis works well in general, it fails to consider errors within the raw screening data, for which viability curves, also provided by the computational method, must be gone through to determine meaningful results from compounds giving a significant sDSS score.

To determine whether a drug shows meaningful results in the DSRT, a cut-off sDSS score was used. Generally, for a drug to have been considered as being significantly NK cell-activating, the sDSS score had to be over 7.5, although exceptions exist. When analysing inhibitory effects, sDSS of -10.0 and below were generally considered significant and worth investigating further. In addition, the drug concentrations at which the drug showed meaningful activity was taken into consideration, as compounds with significant inhibitory effect only achieved at high concentrations were considered less effective and meaningful, due to not necessarily being achievable *in vivo*. All differential drug sensitivity scores describing the relative inhibition between conditions with only NK cells and NK cells with drugs can be found from Supplementary Materials, Table 1.

In this section, DSRT data from significant compounds for each cell line will analysed. Overall, this covers only a small minority of all compounds used in the drug screenings, which consisted of 528 oncology drugs. In the following assessment of results, it is important to note that inhibition of target cells reflects their decreased viability, and hence their killing.

56

### 4.2.1 Data quality

The DSRT data quality was evaluated as part of computational data analysis for each experiment to evaluate the validity of findings in a high throughput setting. Data quality was analysed primarily through the Z-prime value, which evaluates the quality of high-throughput screening data by studying positive and negative controls. Z-prime values between 0.5 and 1.0 are considered as indicator of good quality data. Data quality measures for different cell lines can be seen in Table 6, with average Z-prime values provided, taken from individual screening plate's Z-prime values.

The Z-prime value can be calculated using the following equation,

$$Z' = 1 - \frac{3(\sigma_p + \sigma_n)}{|\mu_p - \mu_n|}$$

where means ( $\mu$ ) and standard deviations ( $\sigma$ ) of positive (p) and negative (n) controls are used as parameters. Using this equation, mean Z-prime values can be calculated for sets of drug plates used to study each cell line (Table 6).

| Cell line | Z-prime value |
|-----------|---------------|
| MOLM-14   | 0.61          |
| THP-1     | 0.76          |
| HEL       | 0.82          |

Table 6. Average Z-prime values of all drug plates for respective cell lines' drug screenings.

# 4.2.2 Most activating drugs 4.2.2.1 MOLM-14





Out of the DSRT data of MOLM-14, 12 compounds had an sDSS score of over 7.5, which are shown in Figure 9. Although prexasertib gives the highest sDSS score, the analysis of

its inhibition curve reveals what would seem to be a measurement error at 1000 nM drug concentration, for which the result is interpreted as insignificant. The analysis of inhibition curves of abexinostat, bryostatin 1 and SB 743921 also reveals errors in the measurement of viabilities at individual drug concentrations, which has an increasing effect on the sDSS score.



**Figure 10.** Inhibition curves of prexasertib, bryostatin 1, abexinostat and SB 743921 in MOLM-14. The blue line represents the condition in which only MOLM-14 cells are cultured with the drug, whereas the red line is representative of MOLM-14 cells combined with NK cells and the drug.

Interesting findings are seen for eight other drug compounds, which seem to synergise with NK cells to create an increased inhibitory effect. Daporinad gives a high sDSS score of 14.9 and data indicates no effect of the drug alone on target cells. However, with NK cells present, the inhibition increases to 37.5% at 10 nM drug concentration, rising to 59.6% at 1000 nM. Similar effects are also observed in drugs belonging to the family of JAK inhibitors such as baricitinib and ruxolitinib. In these drugs, increased inhibition in the presence of

NK cells is observed at higher concentrations, rising to 45.3% and 60.0% in baricitinib and ruxolitinib respectively. Furthermore, pevonedistat shows increase in inhibition at 100 nM drug concentration, although the effect of combining drugs with NK cells is diminished at higher drug concentrations. Resiquimod also shows a 50% difference in inhibition when comparing the drug only to NK cells with drug conditions, which can, however, only be seen at higher concentrations.



Figure 11. Inhibition curves of daporinad, pevonedistat, baricitinib, ruxolitinib and resiquimod in MOLM-14. The blue line represents the condition in which only MOLM-14 cells are cultured with the drug, whereas the red line is representative of MOLM-14 cells combined with NK cells and the drug.

Smaller NK cell induced increases in inhibition are noted in drugs such as letrozole, raltitrexed, and temsirolimus. In the case of temsirolimus, the drug itself has a relatively good inhibitory effect on the cancer cells and adding NK cells to the picture does not significantly increase the inhibitory effect. In the other drugs with small increases in inhibition, small differences exist across all drug concentrations which, however, remain relatively minor.



**Figure 12. Inhibition curves of letrozole and temsirolimus in MOLM-14.** The blue line represents the condition in which only MOLM-14 cells are cultured with the drug, whereas the red line is representative of MOLM-14 cells combined with NK cells and the drug.

# 4.2.2.2 THP-1



Figure 13. Bar plot of top activating drugs in THP-1.

THP-1 data shows fewer activating drug compounds when compared to MOLM-14 as only seven compounds reach the 7.5 sDSS threshold. However, similar to MOLM-14, pevonedistat and daporinad both give a strong sDSS score of 13.8 and 13.7 respectively.

In the case of pevonedistat, the drug itself reaches a 37.4% inhibitory effect at 1000 nM concentration. Notably, the effect is increased when NK cells are co-cultured with target cells, reaching 90.0% inhibition at 1000 nM and 94.6% at 10,000 nM concentration. Daporinad, on the other hand, has no effect on the target cell line on its own. With NK cells, however, a notable inhibitory effect is observed with an inhibition of 53.1% at 100 nM drug concentration.



**Figure 14. Inhibition curves of daporinad and pevonedistat in THP-1.** The blue line represents the condition in which only THP-1 cells are cultured with the drug, whereas the red line is representative of THP-1 cells combined with NK cells and the drug.

Less significant activating effect are seen when NK cells are combined with 1-methyl-Dtryptophan, bortezomib, encorafenib, bryostatin 1 and salinomycin. Out of these, the effect of 1-methyl-D-tryptophan on the target cells is increased by approximately 24% across all concentrations when NK cells are used. The inhibitory effect of bortezomib increases from 19.0% to 57.8% at 10 nM drug concentration when NK cells are co-cultured with target cells. However, bortezomib has also a good effect alone at 100 nM and 1000 nM drug concentration, and NK cells do not seem to give an advantage over the "drug only" condition at these concentrations. Encorafenib, bryostatin 1 and salinomycin in NK cocultures show small improvements over "drug only" conditions, however the effect is not large enough to be considered significant at any concentration.



**Figure 15. Inhibition curves of 1-methyl-D-tryptophan, bortezomib and bryostatin 1 in THP-1.** The blue line represents the condition in which only THP-1 cells are cultured with the drug, whereas the red line is representative of THP-1 cells combined with NK cells and the drug.

# 4.2.2.3 HEL



Figure 16. Bar plot of top activating drugs in HEL.

Results for the HEL cell line gave rise to 16 drug compounds that have an sDSS score of 7.5 or over. All compounds with significantly positive sDSS scores had a clear inhibition curve, and as the data was of good quality, none of the drug compounds had to be discarded due to errors.

The most notable activating result was observed in tacrolimus, the results of which showed a consistent inhibiting effect of 60% to 70% at concentrations ranging from 10 nM to 10,000 nM drug concentration in the condition involving NK cells. The drug alone had no significant effect on the target cell line and the "no NK" DSS score was analysed to be zero. A similar effect was observed in the results for FRAX486, however the higher inhibitory effect of the NK cell-including condition was only observed at higher drug concentrations of 500 nM and 5000 nM.



**Figure 17. Inhibition curves of tacrolimus and FRAX486 in HEL.** The blue line represents the condition in which only HEL cells are cultured with the drug, whereas the red line is representative of HEL cells combined with NK cells and the drug.

Bosutinib, prexasertib, nintedanib, AZD1775, crenolanib and bortezomib all showed increased inhibition of the target cells at one or two drug concentrations, although at the highest drug concentration point the drug alone achieved the same effect. In addition, TIC10 reached the same inhibitory effect at the highest drug concentration tested, although a 20% to 30% increase in inhibition was observed at all lower concentrations when NK cells were involved. Cabazitaxel and neflamapimod, on the other hand, had a slight improvement in inhibition in the NK cell-containing condition at higher drug concentrations



when compared to "drug only". However, the difference in inhibition between the two

Figure 18. Inhibition curves of bosutinib, prexasertib, nintedanib, bortezomib, cabazitaxel and neflamapimod in HEL. The blue line represents the condition in which only HEL cells are cultured with the drug, whereas the red line is representative of HEL cells combined with NK cells and the drug.

PH-797804, triciribine, alvocidib, SB743921 and alisertib all showed an increase in inhibition across all drug concentrations when co-cultured with NK cells. The most significant improvements in target cell inhibition were seen in PH-797804 and alisertib. PH-797804 reached inhibition of 60.8% with NK cells compared to 18.1% without at 1000 nM drug concentration and alisertib had an inhibitory effect of 68.7% with NK cells compared to -13.9% with drug alone at 10,000 nM concentration.



# 4.2.3 Most inhibiting drugs

### 4.2.3.1 MOLM-14



Figure 20. Bar plot of top inhibiting drugs in MOLM-14.

NK cells have an inhibitory effect of -10.0 sDSS on 27 drug compounds in the screening. However, many of these can be discarded due to errors on the data that can be observed by analysing the individual inhibition curves. A more thorough overview of the drugs that were considered as having been significantly inhibited by NK cells are displayed in Figure 20.



**Figure 21. Inhibition curves of pictilicib, serabelisib and AZD-6482 in MOLM-14.** The blue line represents the condition in which only MOLM-14 cells are cultured with the drug, whereas the red line is representative of MOLM-14 cells combined with NK cells and the drug.

Many of the drugs that are found to be inhibited by NK cells have a high inhibitory effect on the cancer cells on their own, which is decreased when NK cells are co-cultured with the target cells. Notable groups of compounds being adversely affected by NK cells include PI3K inhibitors, FLT3 inhibitors, and more broad range tyrosine kinase inhibitors. Pictilisib shows a decrease of 30% to 35% at 100 nM and 1000 nM concentrations respectively. Quizartinib for instance shows a decrease in inhibition of 10% to 20% across all concentrations in co-culture. Midostaurin is most significantly affected at 10 nM concentration, where a negative difference of 54.1% is observed when NK cells are combined with the drug.



**Figure 22.** Inhibition curves of midostaurin, quizartinib and sorafenib in MOLM-14. The blue line represents the condition in which only MOLM-14 cells are cultured with the drug, whereas the red line is representative of MOLM-14 cells combined with NK cells and the drug.

# 4.2.3.2 THP-1



Figure 23. Bar plot of top inhibiting drugs in THP-1.

Out of 528 drugs screened for THP-1, 27 show a significantly negative sDSS score of -10.0 or lower. However, more detailed analysis of the findings reveals several drugs having abnormalities in the data, suggesting decreased reliability of the findings in these specific compounds.



**Figure 24. Inhibition curves of cerdulatinib, baricitinib, ruxolitinib and dasatinib in THP-1.** The blue line represents the condition in which only THP-1 cells are cultured with the drug, whereas the red line is representative of THP-1 cells combined with NK cells and the drug.

The compounds with inhibiting effects in THP-1 can be divided into two distinct groups based on the way in which they seem to interact with NK cells to give a negative sDSS score. In one distinct group, including JAK inhibitors such as cerdulatinib, ruxolitinib and baricitinib, the drug alone has no effect on the target cells. However, in co-culture conditions the target cells seem to proliferate, which appears as a negative inhibition curve.
In addition to JAK inhibitors, A-419259, dasatinib, tamatinib, olmutinib, and spebrutinib show similar effects.

In the other group of drugs, the drug itself has an inhibiting effect on the target cells. When NK cells are added to the picture, the inhibiting effect of the drug is decreased, portraying as a shielding effect created by NK cells. This group of drugs include prexasertib, LY-2874455, PD0325901, methotrexate, pictilisib, selumetinib, and cobimetinib.



**Figure 25.** Inhibition curves of prexasertib, methotrexate and pictilisib in THP-1. The blue line represents the condition in which only THP-1 cells are cultured with the drug, whereas the red line is representative of THP-1 cells combined with NK cells and the drug.

#### 4.2.3.3 HEL



Figure 26. Bar plot of top inhibiting drugs in HEL.

Overall, 35 compounds give sDSS scores of -10.0 and below, although the analysis of inhibition curves reveals errors in how they have been determined, mostly due to measurement errors seen at individual conditions. Data from entospletinib misses data points in the "drug only" condition completely, in addition to the extremely low negative inhibition points. Similarly for ARV-825, the condition without NK cells is reported as exactly zero across all concentrations, which is unlikely to be the case. Clofarabine also shows some irregularities in both NK and no-NK conditions, for which the reliability of the data is hard to assess. In addition, apatinib is falsely reported with a highly negative sDSS score of - 14.7, although the closer study of the data reveals significantly negative inhibitory effects at higher concentrations in the condition. The same is observed in the case of rigosertib, vinorelbine, SCH772984, milciclib and dBET1.

More significant findings are seen in the case of GSK269962, dasatinib, AZD7762, chloroquine, olmutinib, AZ3146, fingolimod and palbociclib which have no effect on target cells on their own but following co-culture with NK cells induce proliferative activity seen as a strongly negative inhibition curve.



**Figure 27. Inhibition curves of GSK269962, dasatinib and AZD7762 in HEL.** The blue line represents the condition in which only HEL cells are cultured with the drug, whereas the red line is representative of HEL cells combined with NK cells and the drug.

Another group of drugs have some inhibiting effects on target cells, however co-culture with NK cells reverses anti-proliferative effects on target cells, leading to maintained on increased target cell viability. These drugs include abemaciclib, methotrexate, sotrastaurin, cerdulatinib, I-BET151, JQ1, birabresib, allopurinol and paclitaxel. In these drugs, we hypothesise that cytokines produced by NK cells may interfere with the mechanisms of action of these drugs, leading to unwanted proliferative activity. Mivebresib, on the other hand, shows high inhibitory effect when administered to HEL cells on its own, but NK cells seem to shield target cells from its function, leading to a decreased inhibitory effect.



**Figure 27. Inhibition curves of abemaciclib, sotrastaurin, paclitaxel and mivebresib in HEL.** The blue line represents the condition in which only HEL cells are cultured with the drug, whereas the red line is representative of HEL cells combined with NK cells and the drug.

## 4.3 Single cell RNA sequencing of MOLM-14

To add more information on what was observed in high-throughput DSRT, single cell RNA sequencing (scRNA seq) was performed on the MOLM-14 cell line. ScRNA seq was hoped to reveal biological mechanisms affected by interactions between NK cells, target cells and drugs.

#### 4.3.1 Drug selection for transcriptomic analysis and validation experiment

Based on DSRT results, daporinad, pevonedistat, ruxolitinib, midostaurin, pictilisib and quizartinib were selected for further analysis using scRNA seq methods combined with oligo-tagged antibodies, enabling multiplexing and improved doublet detection. In the drug screening data, daporinad and pevonedistat both showed significant increases in MOLM-14 killing when co-cultured with NK cells, a finding shared with THP-1. These strong effects shared across different cell lines was considered significantly important for further investigation. Ruxolitinib, forming part of a number of JAK inhibitors having an activating effect over NK cells, was selected due to its wider use in clinical settings as compared to other compounds of the same family such as baricitinib. On the side of inhibitory effectinducing drugs, pictilisib was chosen out of several PI3K inhibitors to study the effect of such compounds on NK cell cytotoxicity. Midostaurin and quizartinib were chosen for further investigation due to their shared target, FLT3. We hypothesised that, due to the FLT3-ITD mutation present in MOLM-14, the drugs are effective at targeting this pathway to induce a killing effect, but the target cells can be shielded by NK cells from their effect. Quizartinib, a more FLT3 affinitive compound was chosen to give further details on the specific role of FLT3, whereas midostaurin, a more widely used broad range tyrosine kinase inhibitor, was chosen due to its wider clinical application.

Prior to proceeding to single cell experiments with drug compounds of interest, findings from drug screenings were validated and effector-target ratios were revised to compensate for the change in donor of expanded NK cells used in the experiment. Co-cultures with target cells and the new set of NK cells, followed by viability measurements, revealed an effector-target ratio of 1 to 4 capable of achieving 50 percent inhibition of target cell viability. This confirmed the change from the originally used 1 to 1 effector-target ratio to a 1 to 4 ratio for the single cell experiment to make sure there are enough cells for the sequencing. In addition to revising the effector-target ratio, the viability measurements with target cells, NK cells and drugs confirmed the findings from screenings, indicating that daporinad, pevonedistat and ruxolitinib increase target cell killing when in co-culture with NK cells. In addition, the experiment confirmed the inhibitory effects of pictilisib, quizartinib and midostaurin on NK cell cytotoxicity towards target cells.



**Figure 28.** Inhibition curves of pre-hashing optimisation experiment. At 1:4 effector-target ratio, the inhibition with NK cells is 50%. In addition, the results confirm findings from DSRT, where in MOLM-14 daporinad, pevonedistat and ruxolitinib enhance target cell killing, whereas pictilisib, midostaurin and quizartinib have reduced effects when co-cultured with NK cells.

## 4.3.2 MOLM-14 scRNA data analysis





**Figure 28. Analysed scRNA sequencing data of MOLM-14 cells.** UMAP of MOLM-14 cells based on the condition to which the cells were cultured in (A). The transcriptomic profile can also be compared between drugs and controls (B), where distinct changes occur in daporinad, pevonedistat and

ruxolitinib. Differential gene expression in different clusters can reveal why changes in target cell viability occur when co-cultured with NK cells and drugs (C).

To effectively study the transcriptomic data and changes occurring due to interactions with drugs and NK cells, the single cell data was divided into two groups – NK cells and MOLM-14 cells. This allowed for detailed analysis of the transcriptomic landscape and the specific effects seen in the different cell types. As a consequence, separate clustering and UMAPs were created for NK cells and MOLM-14 cells and the differential gene expression was calculated by comparing cell-specific clusters. As described in Figure 28, a range of difference arise as different drugs are applied to target cells. These differences become increasingly more apparent as NK cells are co-cultured with target cells in the presence of selected drug compounds.

Generally, when drugs are administered to MOLM-14 cells alone, the transcriptomic profile remains very similar across all drugs. However, pevonedistat is an exception to these as some differences already occur when it is administered to MOLM-14 cells without NK cell co-culture. In this condition, genes such as *TXNRD1*, *NQO1* and *TALDO1* are increasingly expressed in most cells, and relatively little of the normal transcriptomic profile, seen in the control condition with target cells only, remains. In the control condition with MOLM-14 cells and DMSO only, cells form smaller clusters depending on the activated genes of different cells within the group of MOLM-14 cells. These represent characteristic features of the target cell line, with proliferation related genes such as *GRN* and *MKl67* being increasingly expressed. In addition, *CD37*, a leukaemia-related gene is also highly expressed in the major cluster within MOLM-14 cells.

The addition of NK cells into culture with target cells results in a change in the genetic expression of MOLM-14 cells. Co-culture of target cells with NK cells results in an increase in expression of HLA-encoding genes, lysozyme-encoding *LYZ* gene, Heat Shock Protein (HSP) family protein-encoding genes as well as *PTTG1*. A similar effect is observed with the addition of midostaurin, pictilisib or quizartinib, where a signature consisting of clusters 1,

80

5 and 7 form the NK cell activated MOLM-14 gene expression profile. Compared to midostaurin and quizartinib, pictilisib has a less significant effect on the target cell gene expression as some cells remain in their natural form. The addition of daporinad into the co-culture of NK cells and MOLM-14 cells also changes the transcriptional profile to form clusters 1, 5, 7 and 9. Cluster 9, a daporinad-specific cluster of genes is created in response, with upregulated *CXCL10*, *HLA-E*, *MT2A*, *TXNIP*, *IRF1* and *CBP2*. Like daporinad, pevonedistat also results in a significantly different genetic expression profile when added into co-culture conditions. In pevonedistat-specific clusters 6 and 8, genes such as *IFI27*, *TXNRD1*, *NQO2*, *TALDO1*, *FTL*, *GCLM*, *S100A9*, *WARS*, and *FTH1* are upregulated. Unlike other drugs, ruxolitinib does not induce a major change in gene expression profile is very similar to that of MOLM-14 alone, and comparable to that of ruxolitinib with MOLM-14 alone.



**Figure 29. Analysed scRNA sequencing data of NK cells.** UMAP of NK cells can be divided into sections based on the gene expression (A). The transcriptomic profile can also be divided according to NK-only and NK-MOLM-14 co-culture conditions (B), where distinct changes occur in daporinad as a

daporinad-specific cluster is formed. Differential gene expression in different clusters can reveal why changes in target cell viability occur when co-cultured with NK cells and drugs (C).

According to the transcriptional profile, the NK cell gene expression profile can be broken down into clusters representing certain populations of NK cells (Figure 29). *KLRC1* and *KLRB1* genes mark for NK cells in resting state and are described as cluster 0, whereas cluster 1 includes adaptive NK cells, with *KLRC2* as well as different KIR and HLA-related genes. *TNFRSF18*, *TNFRSF9* and *BCL2L11* upregulation in cluster 2 indicate an activated NK cell population, with activated cytokine signalling pathways. Despite of phase correction at analysis phase, cluster 3 reflects a distinctly proliferative NK cell population with *LGALS1* and *BIRC5* upregulation being indicators of this effect. Notably, cluster 4 represents a daporinad-specific transcriptional profile, with strong *CYTIP* upregulation indicating activated NK cells.

The most notable effect in NK cell transcriptional profile is seen in daporinad-including cultures, where a distinctive cluster appears. This daporinad-specific transcriptional profile is expressed in both daporinad-NK and daporinad-NK-MOLM14 conditions, indicating daporinad's effects on the NK cell population. Moreover, upon addition of target cells into co-culture conditions, a cluster appears, indicating NK cell activation including the transcription of genes such as *TNFRSF18*, *TNFRSF9* and *BCL2L11*.

Pevonedistat, on the other hand, has a transcriptional profile relatively similar to the NK control condition, with increase of activated NK cells when target cells are introduced. Ruxolitinib alone, appears to have anti-proliferative effects on NK cells, which can be noted as the decreased cell count when administered to NK cells alone. However, high numbers of NK cells are activated when co-cultured with target cells, leading to decrease of target cell viability. Midostaurin, pictilisib and quizartinib all have a very similar transcriptional profile across the board, with slight activation of NK cells being observable when co-cultured with target cells.

83

#### 4.4 Drug-specific effects and further analysis

DSRT data reveals specific compounds and drug targets which give rise to significant effects in target cell inhibition and proliferation. Combining this with transcriptomic data analysis and existing knowledge on the drugs' functions can help determine the underlying mechanisms of action in addition to revealing potential enhancers of NK cell cytotoxicity in NK cell-based immunotherapy approaches.

#### 4.4.1 Pevonedistat activates NK cell mediated killing in both MOLM-14 and THP-1

Pevonedistat, also known as MLN4924, is a NEDD8-activating enzyme (NAE) inhibitor, which works by promoting apoptosis of dividing cells through deregulating S-phase DNA synthesis.<sup>110</sup>

In DSRT data, pevonedistat shows a high sDSS score, indicating that the drug, when applied to the target cells together with NK cells, has an improved killing effect on the cancer cells. Although the drug itself already has an inhibitory effect on the target cell proliferation and function, when combined with NK cells the effect is significantly larger. The effect is even more significant in THP-1, with which the full inhibitory effect is only seen when NK cells and the drug are applied together. This effect could be explained by the TNF-**a** that is generally known to be released by NK cells, although its levels were not measured as part of this study. It has been shown that TNF-**a** synergises with pevonedistat to induce apoptosis, which could lead to effects observed in our findings. Therefore, it could be considered that NK cells themselves do not result in the increased killing of the target cells, but rather the compound released by them to activate apoptosis-inducing signalling pathways.

Gene differential expression analysis from scRNA sequencing highlights that an activating effect is observed in NK cells when co-cultured with MOLM-14 cells, although the effects

are similar when pevonedistat is not added to the culture. However, the transcriptomic landscape of target cells is more significantly affected, with significant changes observed when compared to the normal target cell transcriptomic profile. Pevonedistat alone, when administered to MOLM-14 cells, significantly upregulates the transcription of *NQO1*, *TXN*, *TXNRD1* and ferritin-related genes such as *FTL* and *FTH1*. In addition, the monocyte specific *LYZ* gene is notably downregulated. In co-culture with NK cells, pevonedistat induces significant downregulation of *MYC* proto-oncogene, which could serve as an explanation to the inhibitory effect observed in DSRT. In addition, the *FLT3-ITD* mutation occurring in MOLM-14 seems to become a target when NK cells are co-cultured with MOLM-14 cells, as *FLT3* is downregulated by the addition of pevonedistat when compared to control conditions.



**Figure 30. Volcano plot representation of differentially expressed genes in pevonedistat-NK-MOLM-14 co-culture.** Comparison of NK-MOLM-14-DMSO control condition versus pevonedistat-NK-MOLM-14 co-culture to highlight effects of pevonedistat on the MOLM-14 transcriptome.

#### 4.4.2 Daporinad enhances NK cell cytotoxicity in MOLM-14 and THP-1

Daporinad is a small molecule drug that targets the nicotinamide phosphoribosyltrasferase (NMPRTase). By inhibiting NMPRTase, it inhibits the biosynthesis of niacinamide and nicotinamide adenine dinucleotide (NAD+), which in turn can deplete the energy reserves of metabolically active tumour cells, leading to apoptosis. In addition to these effects, daporinad has potential antineoplastic and antiangiogenic activities.<sup>111</sup>

In the DSRT results, daporinad can be seen to enhance NK cell induced cytotoxicity in both MOLM-14 and THP-1 cell lines. In both cell lines, the drug itself does not seem to influence the cancer cells but when co-cultured with NK cells, the inhibition rises to 50% at 100 nM drug concentration. However, no effects are seen in the HEL results, which implicates that the effect is not extended to acute leukaemias of erythroid origin. This could suggest that MOLM-14 and THP-1 cell lines are more sensitive to changes in the energy levels within the cells and are therefore more prone to NK cell induced killing. Single cell RNA sequencing reveals interesting findings in the transcriptomic data, supporting the DSRT findings by shedding light on daporinad-specific gene regulation.

The transcriptomic data suggests that daporinad does not affect MOLM-14 cell on its own, but its inhibiting activity requires NK cells. This can be seen as a MOLM-14 transcriptomic profile relatively similar to control conditions when only daporinad is added to the culture. However, daporinad alone with NK cells creates changes in the gene expression by upregulation of *CYTIP*, *GNPTAB*, *SLC3A2* and *RSRC2*. In addition, when NK cells are co-cultured with MOLM-14 cells together with daporinad, a separate cluster appears in both NK cells and target cell transcriptional profiles presented as UMAPs. In co-culture conditions, NK cells show activation-related transcriptomic changes through the upregulation of *BCL2L11* and *TNFRSF9* for example, in addition to upregulated genes already observed in NK cells cultured with daporinad alone. Moreover, in MOLM-14, daporinad upregulates the gene expression of *HLA-E*, in addition to *CXCL10* known for its role in NK cell

chemoattraction and activation as response to IFN- $\gamma$ . In addition, tumour suppressor genes such as *TXNIP* and *IRF1* are also upregulated in response to daporinad and NK cells.



Figure 31. Volcano plot representation of differentially expressed genes in MOLM-14 and NK cells after co-culture with daporinad. Comparison of NK-MOLM-14-DMSO control condition versus daporinad-NK-MOLM-14 co-culture to highlight effects of daporinad on the MOLM-14 transcriptome (A). NK cell transcriptome shows also effects when comparing NK-DMSO to NK-daporinad co-culture (B).

#### 4.4.3 Effect of JAK inhibitors are cell line dependent

Janus kinase (JAK) inhibitors such as baricitinib, ruxolitinib and tofacitinib function by interfering with the JAK/STAT signalling pathway through inhibition of the activity of one or more of the JAK enzymes. More specifically, baricitinib and ruxolitinib target JAK 1 and 2, whereas tofacitinib targets JAK 1 and 3.<sup>112</sup>

In the DSRT testing, JAK inhibitors have a varied effect depending on the cell line. In MOLM-14, the drug alone has no effect but when cultured with NK cells, a killing effect is observed at higher drug concentrations. However, in THP-1 the effect is opposite, with negative sDSS scores as low as -18.0 in the case of ruxolitinib. With all drugs, no effect is observed with the drug alone, but when cultured with NK cells the target cells seem to proliferate increasingly. In the case of HEL, a similar killing effect is observed both with and without NK cells, with DSS scores as high as 14.4 in the case of ruxolitinib, although the sDSS score is only 0.3 with the same drug. This can be explained by the genetic profile of the HEL cell line, where a *JAK2* mutation is present. By inhibiting the JAK/STAT signalling pathway in HEL, a killing effect can be observed, which is not affected by NK cells.

Single cell RNA sequencing was hoped to give more information on how ruxolitinib affects NK cells and MOLM-14 cells to enhance target cell killing. However, compared to daporinad and pevonedistat, no distinct transcriptional changes were observed, when looking at the overall transcriptional profile of MOLM-14 and NK cells in co-culture conditions. Nevertheless, NK cell activation was observed in NK cell co-cultures with MOLM-14 including ruxolitinib, with differential gene expression analysis showing significant downregulation of *IFI27*, *IRF1* and HLA class I-encoding genes when compared to control conditions. This finding supports findings made in previous studies, where JAK signalling pathways have been shown to play a role in MHC class I receptor expression.<sup>113</sup> More specifically, IFN-**γ** signaling has been shown to result in activation of JAK and STAT signaling pathways, which are in turn critical at regulating MHC class I molecule expression,

which is crucial for NK cell recognition. By blocking the JAK/STAT pathway, target cells fail to express HLA class I molecules on the cells' surface, leading to "non-self" recognition by NK cells. However, this hypothesis does not support the findings in THP-1, for which specific scRNA sequencing experiments should be performed.



Figure 32. Volcano plot representation of differentially expressed genes in MOLM-14 after co-culture with ruxolitinib. Comparison of NK-MOLM-14-DMSO control condition versus ruxolitinib-NK-MOLM-14 co-culture to highlight effects ruxolitinib on the MOLM-14 transcriptomic profile.

## 4.4.4 Tacrolimus strongly activates NK cell cytotoxicity in HEL cell line

Previous studies combining CAR-T therapy and oncology drugs has shown tacrolimus to be highly inhibiting with regards to CAR-T activity.<sup>41</sup> However, in the case of NK cell in combination with tacrolimus in targeting HEL cells, the effect is the opposite, with 50 percent inhibition achieved only with the combination of the drug and NK cells. However, no effects are seen in other cell lines, indicating that the effect is specific to erythroleukemia. As scRNA sequencing was only performed on MOLM-14 at this stage, the transcriptomic data cannot be investigated to get a better picture of the underlying mechanisms.

## 4.4.5 PI3K inhibitors have an inhibitory effect on NK cell cytotoxicity in MOLM-14

DSRT results reveal that NK cells inhibit the effect of phosphoinositide 3-kinase (PI3K) inhibitors such as pictilisib, serabelisib and AZD-6482 in MOLM-14. PI3Ks signal downstream of G protein coupled receptors and GTPases to control cellular functions such as proliferation and metabolism. In MOLM-14, the drugs alone have a higher effect on the cancer cells than when cultured together with NK cells.

In THP-1, pictilisib has a similar effect with an sDSS score of -10.5. However, other PI3Ks do not seem to affect the cell line anti-proliferatively and hence NK cells do not seem to affect their function. A similar effect is seen in HEL with pictilisib, although the sDSS score is only negative at -5.0, which may not be interpreted as a significant finding.

Prior to scRNA sequencing, we hypothesised that NK cells may be shielding target cells from PI3K function, therefore resulting in a decreased inhibitory effect by the drug. Although differential gene expression analysis, when comparing the drug-NK-MOLM-14 condition to NK-MOLM14-DMSO, revealed moderate upregulation of *RPL5*, *RPL13* and *RPL14* in addition to downregulation of *WARS* and *IFI27* genes, these fail at providing a clear answer to protective effect NK cells seem to have at keeping target cells shielded from the drug.



Figure 33. Volcano plot representation of differentially expressed genes in MOLM-14 after co-culture with pictilisib. Comparison of NK-MOLM-14-DMSO control condition versus pictilisib-NK-MOLM-14 co-culture to highlight effects pictilisib on the MOLM-14 transcriptomic profile.

## 4.4.6 Effect of FLT3 inhibitors and other broad range TKIs is decreased by NK cells

Tyrosine kinase inhibitors (TKIs) work by inhibiting the function of tyrosine kinases, which can, in the case of cancer, be mutated leading to unregulated cell growth. DSRT results show that the effect of TKIs targeting the *FLT3* mutation in MOLM-14 cells is effectively decreased when co-cultured with NK cells. This effect can be seen for example with quizartinib, which is more specific to FLT3 as compared to other broader range TKIs. Effects related to TKIs were not observed in neither THP-1 nor HEL, which could be explained by different genetic profiles lacking *FLT3* mutations.

Similar interest in studying the shielding effect of NK cells to decrease the effect of TKIs on MOLM-14 was the primary interest in wanting to investigate the transcriptomic profile through scRNA sequencing. Our primary hypothesis was similar to that we had with PI3K inhibitors, which led us to believe NK cells can limit the effect of such drug by interacting

with the target cell. Investigations into the transcriptomic data provided by the scRNA sequencing revealed increases in *HLA-A* and *HLA-E* transcription in both midostaurin and quizartinib co-cultures with NK cells. This could in part, explain the inability of NK cells to target MOLM-14 cells to induce apoptosis. However, the closer inspection of transcriptomic changes when comparing the drug condition to the control does not reveal distinctive features that would explain the shielding effect observed in the DSRT results.



Figure 34. Volcano plot representation of differentially expressed genes in MOLM-14 after co-culture with midostaurin and quizartinib. Comparison of NK-MOLM-14-DMSO control condition versus midostaurin-NK-MOLM-14 (A) and quizartinib-NK-MOLM-14 (B) co-cultures.

# 5. Discussion

In this study, the effect of different approved and investigational oncology drugs on NK cell cytotoxicity against AML cell lines was evaluated, with the hopes of finding compounds capable of synergising with NK cells for improved activity against malignant cells.

## 5.1 Significant findings and their potential implications

Most significant findings were related to the potentiating effects observed with the use of daporinad and pevonedistat in combination with expanded NK cells. In DSRT results, both showed significant improvements in the inhibition of MOLM-14 viability, although the importance and significance of these effects were only confirmed after interpretation of scRNA sequencing data.



**Figure 35. Summary of key findings on the effects of drugs on NK cell cytotoxicity.** Daporinad affects both the NK cell transcriptome and MOLM-14 gene expression when co-cultured with NK cells. Pevonedistat has direct effects on MOLM-14 cells and induces changes in the NK cell activity. Ruxolitinib is hypothesised to affect MHC class I molecule presentation on the target cell surface. Midostaurin and pictilisib give rise to effects in MOLM-14 gene expression that can explain the reduced effects of NK cells. The effects of quizartinib remain unclear.<sup>113–121</sup>

Daporinad showed significant differences compared to control samples in its transcriptomic landscape, with distinct genes being up- and downregulated as it was used in combination with NK cells. In co-culture conditions, daporinad interacted with NK cells to create a completely new type of transcriptomic profile for NK cells, resulting in effect in the target cells as well. Previous studies and literature fail at giving explanatory answers to the findings, which further emphasises the unique nature of investigating NK cell function in combination with oncology drugs for enhanced anti-tumour effects. Based on the transcriptomic profile, however, some conclusions can be made to describe the potential reasoning behind effects observed in the scRNA seq findings. One possible explanation is that in target cells, daporinad downregulates MYC transcription, which is a proto-oncogene known for its role in controlling cell cycle progression, apoptosis, and cellular transformation. This could lead to more vulnerable leukemic cells, that are more likely to suffer from NK cell cytotoxicity. In addition, upon administration of daporinad, NK cells significantly upregulate TXNIP, a gene with potential tumour suppressor activities as its over expression has been linked with cell-cycle arrest, which could explain the promotion of the killing effect by NK cells.<sup>118</sup> TXNIP is also upregulated in the NK cell population, which could be another explanation to the enhanced cytotoxic capabilities induced by daporinad.<sup>118</sup> In NK cells, its expression has been linked with increased maturation which, together with the upregulation of SLC3A and downregulation of KLRD1, could lead to strengthened effector functions.<sup>114,120</sup> However, further investigation into the underlying mechanism of action is required before being able to make any further conclusions.

Similar findings were made with the use of pevonedistat, although effects were more focused on target cell activity and NK cell activation. In the case of pevonedistat, the transcription of *MYC* was also significantly downregulated, suggesting that it may play a key role in determining the faith of MOLM-14 cells. In addition, in the case of pevonedistat, *IFI27* upregulation is significant, indicating IFN- $\gamma$  signalling which can partially explain the potentiating effect seen in co-culture conditions. Moreover, the upregulation of

metallothionine-related genes could indicate effects on IFN- $\gamma$  production.<sup>121</sup> Importantly, previous studies on pevonedistat have found synergetic activity between the drug and with TNF- $\alpha$ , which has been shown to lead to rapid cell death both *in vivo* and *in vitro* using rat models.<sup>122</sup> This finding could explain the increased cytotoxic effect of NK cells when combined with pevonedistat, although further validation in humans and *in vitro* would be needed. It is also worth noting that pevonedistat also downregulates *FLT3*, a driver mutation of MOLM-14, although there are no reports of it specifically affecting this target on its own. The indirect downregulation of *FLT3* is an interesting finding and deserves further investigation.

Findings made from the study of combining ruxolitinib with NK cells shed light on the role of JAK inhibitors in activating NK cell cytotoxicity through downregulation of MHC class I molecules on target cell surface. The effect of IFN-**Y** signalling on MHC class I molecule expression has been well established and with JAK signalling pathways being downstream of IFN-**Y** signalling, their inhibition can decrease the expression of MHC class I molecules that are recognised by NK cells.<sup>113</sup> Due to their decreased expression, NK cells are more likely to attack the target cells and hence induce an increased cytotoxic effect, which gives an explanation to the increased killing observed in the DSRT.

In addition to the forementioned findings, the NK cell-inhibiting effect of midostaurin may have clinically important implications due to its use as a targeted therapy option for AML patients with *FLT3-ITD* mutations.<sup>17,123</sup> In the case that NK cells would be approved and used widely for treating AML, this finding could support our understanding of the importance of not using midostaurin or other *FLT3-ITD* targeting drugs in combination with NK cell immunotherapy.

In addition to TKIs, PI3K inhibitors such as pictilisib may also induce decreased cytotoxic effects of NK cells towards malignant cells. This could be explained by the downregulation

of genes such as WARS and IFI27, which could play a role in decreasing responses to IFN- $\gamma$  released by NK cells. In addition, ribosomal protein (RP) -related genes have also been linked to MHC class I molecule presentation systems, offering another possible mechanism of action.<sup>116</sup>

## 5.2 Shielding effect of NK cells

As shown by findings made in different cell lines, NK cells show some shielding activity in some compounds, which protects target cells from their function. In the case of MOLM-14, these drugs included TKIs and more specifically *FLT3*-inhibiting drugs such as midostaurin and quizartinib. One hypothesis we were exploring was that NK cells have affinity for some of these drugs, which could decrease the number of drug molecules finding their way over to the intended target on the cancer cells. However, scRNA sequencing analysis revealed that the effects may be more in line with some previous findings, which have suggested that TKIs such as midostaurin and sorafenib could inhibit the production of cytokines by NK cells and reduce lysis of leukaemia cells.<sup>117</sup> Our findings highlighted the reduced ability for NK cells to target leukaemia cells through the downregulation of MHC class I molecules although direct effects of the drug on the NK cell transcriptome were not observed. These notable differences between findings highlight the need for developing new strategies to investigate such effects. The further study of these drugs and their interaction with NK cells could reveal information about NK cell biology in addition to creating new therapeutic targets for NK cell-based treatments.

## 5.3 Assessment of DSRT and scRNA methods

DSRT experiments combining NK cell co-cultures and drugs proved to be a functioning way of assessing NK cell-based combination therapies with oncology drugs. Drugs activating and inhibiting the cytotoxic activity of NK cells could be identified from the large pool of compounds studied, with most drugs, however, having relatively insignificant effects on target cells or NK cell cytotoxicity. Nevertheless, significant findings were made in all cell lines, with individual drugs and families of drugs showing specific effects when in co-culture with NK cells. This not only allowed for the detailed concentration-dependent study of individual drug compounds and their inhibitory activity over target cells, but also allowed for the creation of hypotheses worth further investigation. Most notably, DSRT experiments on different cell lines allowed for the identification of similarities and differences, which could be related to genetic differences between the cell lines or the underlying pathophysiology more widely. In this study, the most notable similarities were seen between MOLM-14 and THP-1, with especially daporinad and pevonedistat showing effects that could be translated to AML treatments more widely. The AML subtype HEL, which is defined by erythroblastic proliferation, showed notable differences compared to monocytic cell lines, which highlights the importance of personalised treatments and detailed diagnostics. In essence, drug screening results can translate into more generalised findings a provide a tool for finding important drug compounds.

Single cell RNA sequencing in combination with oligo hashtags provided a tool further analysis of drugs' effects on NK cells and target cells through the investigation of transcriptomic changes. It provided a method to study the underlying mechanisms in the target cell line affected by drugs and NK cells, which is not possible with the highthroughput drug screening alone. To better assess the effects of drugs and to investigate the reasons behind differences and similarities observed in DSRT results between cell lines, transcriptomic data would be required from THP-1 and HEL to accurately point out molecular changes resulted in by NK cell synergy with oncology drugs.

#### 5.4 Improvements

To facilitate the discovery of new significant drug compounds, developing new custom drug screenings would be crucial. Currently, the FO5A plate used in the experiments includes large numbers of drugs with little to no effect on target cells, be it with NK cells or with the drug only. In addition, some compounds consistently give abnormally high bioluminescence levels, indicating potential unwanted interactions with luciferase and substances used to measure it. As the molecular profile and genetic abnormalities of cancers are widely known, drug screenings could be purposefully designed to target genetic abnormalities introduced by mutations in the malignant cell line for more meaningful findings. In addition, custom screening collections of drugs could help at identifying effects of drugs used for common illnesses such as hypertension, coronary heart disease, diabetes, and different neurological malignancies. This would allow for better understanding of ways in which the effectiveness of NK cell-based immunotherapy methods can be limited due to synergy with other medications and potentially even finding compounds unrelated to cancer therapy that could enhance NK cell cytotoxicity.

In addition to creating custom drug screenings, DSRT methods could also be improved by advancements in computational analysis of large datasets obtained from DSRT measurements. Currently, the method is incapable of processing errors and outliers in luminescence measurements, creating false results in the form of extreme sDSS scores. In addition, the currently used model does not consider the possibility that the drug alone could create a proliferating effect in the target cell line. These modifications in the computational tools used for data analysis would allow for improved reliability of findings, in addition to saving time by removing the need for manual assessment of each inhibition curve. Furthermore, advancements in the data analysis could allow for automatic classification of drugs into groups depending on the effects seen in NK cell co-culture conditions in comparison to drug only.

In addition to improvements in DSRT data analysis, single cell RNA sequencing data analysis could be improved, with the introduction of the MAST statistical framework for example. This could allow for improved assessment of transcriptional changes and better characterisation of heterogeneity from the data.<sup>124</sup>

98

The use of NK cells from different donors validates the findings and translates to more universal findings. However, when comparing large numbers of target cell lines, the aim should be in using the same expanded NK cells from a specific donor in both drug screenings and scRNA sequencing for improved reliability and comparability of data. Related to cells and their biology, it is also important to note that we are only able to study cells that remain viable at the point of scRNA sequencing and do not fully understand the effects of the drugs and NK cells that have been induced on those cells that have been eradicated.

# 5.5 Future perspectives and conclusions

The characterisation of specific drug compounds with synergetic interactions with NK cells increases the hopes for finding important targetable pathways which could be taken advantage of in improving NK cell-based immunotherapy. In the future, specific drugs of interest should be tested on a wider number of cancer cell lines for evaluation of cell line specificity of compounds such as daporinad and pevonedistat. Validation of the roles of specific transcriptional features should be performed using gene knockout experiments, made possible by advancements in genome editing technologies such as CRISPR-Cas9.

In addition, as more cell lines are studied and the significant mechanisms of action are studied in more depth, primary cells could also be studied to investigate the potential of *in* vitro findings in being translatable to clinical uses. This could facilitate the development of personalised immunotherapy options, including the combination of NK cells and anti-cancer drugs, while minimizing risks for patients.

Although the use of NK cells in clinical settings is still in its early steps, results from different studies give hope for its potential at combatting various types of cancers without strong

adverse effects. However, before they can be taken into wider uses, many questions related to their specific functions but also their efficient production remain unanswered.

In conclusion, DSRT screening provides a highly functional platform for testing the combination of drugs and NK cells against hematological malignancies such as AML. The promising findings, including significant improvements in NK cell cytotoxicity enabled by daporinad and pevonedistat in targeting MOLM-14, shed light on the remarkable potential of combining conventional drug-based therapies with emerging immunotherapy methods. Investigations of the transcriptomic landscape in different therapeutic conditions further reveal effects on gene expression at single-cell level, increasing our understanding on both NK cell function and its capabilities of being used in combination with other therapy methods. The future for NK cell therapy methods is looking increasingly promising and hopefully its combinatorial uses with different drugs could translate into improved therapy options and long-lasting outcomes in patients suffering from acute myeloid leukaemia.

## Acknowledgements

First and foremost, I would like to thank my supervisors Olli Dufva and Prof. Satu Mustjoki for their continuous support and for introducing me to the exciting world of immunooncology and hematology. This project has made me learn tremendously about immunology, oncology, and hematology, and has allowed me to combine information from all these disciplines in a fascinating manner. I would especially like to thank Olli for his gratuitous support in all aspects of research and science during my time in the group and for all the scientific and non-scientific discussions we have had, which have allowed me to develop as a researcher and scientist. Furthermore, I would like to thank Petra Nygren for her support in my thesis project and for allowing me to take part in her PhD project. It has been a pleasure working with you and I hope we can keep on developing this work in the future. Importantly, I would also like to thank Sara Gandolfi for introducing me to tissue culture techniques and for continuously challenging me in order to develop and learn. In addition, a big thanks to Shady Awad for teaching me the use of DSRT methods and the related tools, which have formed a large part of my thesis work. Very importantly, I would like to thank Jay Klievink and Hanna Lähteenmäki for their efforts in supporting me with work in the laboratory and giving a helping hand whenever needed.

Although a lot of work was done in the laboratory and in the office, much of it was being motivated by the great atmosphere in the group. For keeping up the spirits and organising different activities, I would like to thank Hanna, Sofie, Olli, Petra, Jani, Jason, Dipabarna, Neja, Anita, Otso, Aino, Milla and Moon. Also a big thanks goes to Jenni and everyone else at the Hematology Research Unit that have made me feel welcome.

Finally, I would also like to thank my family and friends for all the support throughout my academic journey so far.

# References

- Sill H, Olipitz W, Zebisch A, Schulz E, Wölfler A. Therapy-related myeloid neoplasms: Pathobiology and clinical characteristics. *Br J Pharmacol*. 2011;162(4):792-805. doi:10.1111/j.1476-5381.2010.01100.x
- 2. Dong Y, Shi O, Zeng Q, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. *Exp Hematol Oncol.* 2020;9(1):1-11. doi:10.1186/s40164-020-00170-6
- 3. Finn L, Dalovisio A, Foran J. Older patients with acute myeloid leukemia: Treatment challenges and future directions. *Ochsner J.* 2017;17(4):398-404. doi:10.1043/TOJ-17-0035
- 4. Licht JD, Sternberg DW. The molecular pathology of acute myeloid leukemia. *Hematology*. 2005;(212):137-142. doi:10.1182/asheducation-2005.1.137
- 5. Patel JP, Gönen M, Figueroa ME, et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. *N Engl J Med.* 2012;366(12):1079-1089. doi:10.1056/NEJMoa1112304
- 6. Ley T, Miller C, Raphael BJ. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. *N Engl J Med*. 2013;368(22):2059-2074. doi:10.1056/nejmoa1301689
- 7. De Kouchkovsky I, Abdul-Hay M. 'Acute myeloid leukemia: A comprehensive review and 2016 update.' *Blood Cancer J.* 2016;6(7). doi:10.1038/bcj.2016.50
- 8. Gary Gilliland D, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. *Blood*. 2002;100(5):1532-1542. doi:10.1182/blood-2002-02-0492
- 9. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. *N Engl J Med.* 2015;373(12):1136-1152. doi:10.1056/NEJMra1406184
- 10. Bennett JM, Catovsky D, Daniel M -T, et al. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. *Br J Haematol.* 1976;33(4):451-458. doi:10.1111/j.1365-2141.1976.tb03563.x
- Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. *Blood*. 2016;127(20):2391-2405. doi:10.1182/blood-2016-03-643544
- 12. DiNardo CD, Wei AH. How I treat acute myeloid leukemia in the era of new drugs. *Blood*. 2020;135(2):85-96. doi:10.1182/blood.2019001239
- Liersch R, Müller-Tidow C, Berdel WE, Krug U. Prognostic factors for acute myeloid leukaemia in adults - biological significance and clinical use. *Br J Haematol*. 2014;165(1):17-38. doi:10.1111/bjh.12750
- 14. DeVita V, Rosenberg SA, Lawrence T. *Principles and Practice of Oncology.*; 2015. https://www.wagecommunication.com/devita/p1.pdf.
- 15. Estey EH. Treatment of acute myeloid leukemia. *Haematologica*. 2009;94(1):10-16. doi:10.3324/haematol.2008.001263
- 16. Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? *Front Pharmacol.*

2018;9(3):1-3. doi:10.3389/fphar.2018.00245

- 17. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation . *N Engl J Med*. 2017;377(5):454-464. doi:10.1056/nejmoa1614359
- Maziarz RTT, Patnaik MM, Scott BL, et al. Radius: A Phase 2 Randomized Trial Investigating Standard of Care +/- Midostaurin after Allogeneic Stem Cell Transplant in FLT3-ITD-Mutated AML. *Blood*. 2018;132(1). doi:10.1182/blood-2018-99-113582
- 19. Smith CC, Zhang C, Lin KC, et al. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 "Gatekeeper" F691L mutation with PLX3397. *Cancer Discov.* 2016;5(6):668-679. doi:10.1158/2159-8290.CD-15-0060
- 20. Roboz GJ, DiNardo CD, Stein EM, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. *Blood*. 2020;135(7):463-471. doi:10.1182/blood.2019002140
- 21. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. *Nat Rev Mol Cell Biol*. 2019;20(3):175-193. doi:10.1038/s41580-018-0089-8
- 22. DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. *N Engl J Med*. 2020;383(7):617-629. doi:10.1056/nejmoa2012971
- 23. Yilmaz M, Kantarjian H, Ravandi F. Acute promyelocytic leukemia current treatment algorithms. *Blood Cancer J*. 2021;11(6). doi:10.1038/s41408-021-00514-3
- 24. Dickinson AM, Norden J, Li S, et al. Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. *Front Immunol.* 2017;8(6). doi:10.3389/fimmu.2017.00496
- 25. Loke J, Buka R, Craddock C. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia: Who, When, and How? *Front Immunol*. 2021;12(May):1-18. doi:10.3389/fimmu.2021.659595
- Gyurkocza B, Storb R, Storer BE, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. *J Clin Oncol.* 2010;28(17):2859-2867. doi:10.1200/JCO.2009.27.1460
- Saraceni F, Bruno B, Lemoli RM, et al. Autologous stem cell transplantation is still a valid option in good- and intermediate-risk AML: A GITMO survey on 809 patients autografted in first complete remission. *Bone Marrow Transplant*. 2017;52(1):163-166. doi:10.1038/bmt.2016.233
- 28. Linker CA. Autologous stem cell transplantation for acute myeloid leukemia. *Bone Marrow Transplant*. 2003;31(9):731-738. doi:10.1038/sj.bmt.1704020
- 29. Rein LA, Sung AD, Rizzieri DA. New approaches to manipulate minimal residual disease after allogeneic stem cell transplantation. *Int J Hematol Oncol.* 2013;2(1):39-48. doi:10.2217/ijh.13.4
- 30. Jairam V, Roberts KB, Yu JB. Historical trends in the use of radiation therapy for pediatric cancers: 1973-2008. *Int J Radiat Oncol Biol Phys.* 2013;85(3):e151-e155.

doi:10.1016/j.ijrobp.2012.10.007

- 31. Nardi V, Winkfield KM, Ok CY, et al. Acute myeloid leukemia and myelodysplastic syndromes after radiation therapy are similar to de novo disease and differ from other therapy-related myeloid neoplasms. *J Clin Oncol.* 2012;30(19):2340-2347. doi:10.1200/JCO.2011.38.7340
- Liu Y, Bewersdorf JP, Stahl M, Zeidan AM. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? *Blood Rev.* 2019;34:67-83. doi:10.1016/j.blre.2018.12.001
- 33. de Propris MS, Raponi S, Diverio D, et al. High CD33 expression levels in acute myeloid leukemia cells carrying the nucleophosmin (NPM1) mutation. *Haematologica*. 2011;96(10):1548-1551. doi:10.3324/haematol.2011.043786
- 34. Lambert J, Pautas C, Terré C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. *Haematologica*. 2019;104(1):113-119. doi:10.3324/haematol.2018.188888
- 35. Foley B, Cooley S, Verneris MR, et al. NK cell education after allogeneic transplantation: Dissociation between recovery of cytokine-producing and cytotoxic functions. *Blood*. 2011;118(10):2784-2792. doi:10.1182/blood-2011-04-347070
- Wiernik A, Foley B, Zhang B, et al. Targeting Natural Killer cells to Acute Myeloid Leukemia in vitro with a CD16x33 bispecific killer cell engager (BiKE) and ADAM17 inhibition Andres. *Clin Cancer Res.* 2014;19(14):3844-3855. doi:10.1158/1078-0432.CCR-13-0505.Targeting
- Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X. IL-15 Trispecific Killer Engagers (TriKEs) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. *Clin Cancer Res.* 2016;176(3):3440-3450. doi:10.1158/1078-0432.CCR-15-2710.IL-15
- Sarhan D, Brandt L, Felices M, et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. *Blood Adv.* 2018;2(12):1459-1469. doi:10.1182/bloodadvances.2017012369
- Kadia TM, Cortes JE, Ghorab A, et al. Nivolumab (Nivo) maintenance (maint) in high-risk (HR) acute myeloid leukemia (AML) patients. *J Clin Oncol.* 2018;36(15\\_suppl):7014. doi:10.1200/JCO.2018.36.15\\_suppl.7014
- 40. Park JH, Rivière I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. *N Engl J Med*. 2018;378(5):449-459. doi:10.1056/nejmoa1709919
- 41. Dufva O, Koski J, Maliniemi P, et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. *Blood*. 2020;135(9):597-609.
- 42. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. *Lancet Oncol.* 2017;18(12):e731-e741. doi:10.1016/S1470-2045(17)30607-1
- 43. Alfred LJ, Wojdani A, Nieto M, Perez R, Yoshida G. A chemical carcinogen, 3methylcholanthrene, alters T-cell function and induces T-suppressor cells in a

mouse model system. Immunology. 1983;50(2):207-213.

- 44. Dekkers F, Bijwaard H, Bouffler S, et al. A two-mutation model of radiation-induced acute myeloid leukemia using historical mouse data. *Radiat Environ Biophys*. 2011;50(1):37-45. doi:10.1007/s00411-010-0328-7
- 45. Stavropoulou V, Almosailleakh M, Royo H, et al. A novel inducible mouse model of MLL-ENL -driven mixed-lineage acute leukemia. *HemaSphere*. 2018;2(4):1-11. doi:10.1097/HS9.000000000000051
- 46. Wunderlich M, Mizukawa B, Chou FS, et al. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. *Blood*. 2013;121(12):e90-e97. doi:10.1182/blood-2012-10-464677
- 47. Almosailleakh M, Schwaller J. Murine models of acute Myeloid Leukaemia. *Int J Mol Sci.* 2019;20(2). doi:10.3390/ijms20020453
- Matsuo Y, MacLeod RAF, Uphoff CC, et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). *Leukemia*. 1997;11(9):1469-1477. doi:10.1038/sj.leu.2400768
- 49. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. *Int Immunopharmacol.* 2014;23(1):37-45. doi:10.1016/j.intimp.2014.08.002
- Martin P, Papayannopoulou T. HEL cells: A new human erythroleukemia cell line with spontaneous and induced globin expression. *Science (80- )*. 1982;216(4551):1233-1235. doi:10.1126/science.6177045
- 51. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. *Allergy, Asthma Clin Immunol.* 2018;14(s2):1-10. doi:10.1186/s13223-018-0278-1
- 52. Chaplin D. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2):3-23. doi:10.1016/j.jaci.2010.01.002
- 53. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. *Carcinogenesis*. 2009;30(7):1073-1081. doi:10.1093/carcin/bgp127
- 54. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. *Cell*. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
- 55. Teng MWL, Galon J, Fridman WH, Smyth MJ. From mice to humans: Developments in cancer immunoediting. *J Clin Invest*. 2015;125(9):3338-3346. doi:10.1172/JCI80004
- 56. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. *Genes Dev.* 2018;32(19-20):1267-1284. doi:10.1101/GAD.314617.118
- 57. Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N. Natural killer cells: Role in local tumor growth and metastasis. *Biol Targets Ther*. 2012;6:73-82.
- 58. Lanier LL, Phillips JH, Hackett J, Tutt M, Kumar V. Natural killer cells: definition of a

cell type rather than a function. J Immunol. 1987;138(2745).

- 59. O'Sullivan TE, Sun JC, Lanier LL. Natural Killer Cell Memory. *Immunity*. 2015;43(4):634-645. doi:10.1016/j.immuni.2015.09.013
- 60. Scoville SD, Freud AG, Caligiuri MA. Modeling human natural killer cell development in the era of innate lymphoid cells. *Front Immunol*. 2017;8(MAR):4-11. doi:10.3389/fimmu.2017.00360
- 61. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: Development, maturation, and clinical utilization. *Front Immunol*. 2018;9(AUG):1-23. doi:10.3389/fimmu.2018.01869
- 62. Screpanti V, Wallin RPA, Ljunggren H-G, Grandien A. A Central Role for Death Receptor-Mediated Apoptosis in the Rejection of Tumors by NK Cells. *J Immunol*. 2001;167(4):2068-2073. doi:10.4049/jimmunol.167.4.2068
- 63. Sonar S, Lal G. Role of tumor necrosis factor superfamily in neuroinflammation and autoimmunity. *Front Immunol.* 2015;6(7):1-13. doi:10.3389/fimmu.2015.00364
- 64. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. *Front Immunol*. 2017;8(9). doi:10.3389/fimmu.2017.01124
- 65. Thomas R, Yang X. NK-DC Crosstalk in Immunity to Microbial Infection. *J Immunol Res.* 2016;2016. doi:10.1155/2016/6374379
- 66. Zhou Z, Zhang C, Zhang J, Tian Z. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1. *PLoS One*. 2012;7(5). doi:10.1371/journal.pone.0036928
- 67. Karre K, Ljunggren HG, Piontek G KR. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. *Nature*. 1986;319:675-678.
- Elliott J, Yokoyama W. Unifying concepts of MHC-dependent natural killer cell education. *Trends Immunol*. 2011;32(8):364-372. doi:10.1016/j.it.2011.06.001.Unifying
- 69. Wu Y, Li Y, Fu B, et al. Programmed differentiated natural killer cells kill leukemia cells by engaging SLAM family receptors. *Oncotarget*. 2017;8(34):57024-57038. doi:10.18632/oncotarget.18659
- 70. Fehniger TA, Cooper MA, Nuovo GJ, et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: A potential new link between adaptive and innate immunity. *Blood*. 2003;101(8):3052-3057. doi:10.1182/blood-2002-09-2876
- 71. Trinchieri G. Biology of Natural Killer Cells. Adv Immunol. 1989;47(C):187-376. doi:10.1016/S0065-2776(08)60664-1
- 72. Fehniger TA, Cai SF, Cao X, et al. Acquisition of Murine NK Cell Cytotoxicity Requires the Translation of a Pre-existing Pool of Granzyme B and Perforin mRNAs. *Immunity*. 2007;26(6):798-811. doi:10.1016/j.immuni.2007.04.010
- 73. Kobayashi BYM, Fitz L, Ryan M, et al. Identification And Purification Of Natural Killer Cell Stimulatory Factor ( Nksf ), A Cytokine With Multiple Biologic Effects On

Human Lymphocytes Human B lymphoblastoid cell lines facilitate the growth in vitro of human NK cells and of T cell clones (1-. *J Exp Med*. 1989;170(September):827-845.

- 74. Wagner JA, Berrien-Elliott MM, Rosario M, et al. Cytokine-Induced Memory-Like Differentiation Enhances Unlicensed Natural Killer Cell Antileukemia and Fc**y**RIIIa-Triggered Responses. *Biol Blood Marrow Transplant*. 2017;23(3):398-404. doi:10.1016/j.bbmt.2016.11.018
- 75. Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. *Nature*. 2000;408(6808):57-63. doi:10.1038/35040504
- 76. Carlsten M, Järås M. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells. *Front Immunol.* 2019;10(October):1-18. doi:10.3389/fimmu.2019.02357
- 77. Gómez Román VR, Murray JC, Weiner LM. Chapter 1 Antibody-Dependent Cellular Cytotoxicity (ADCC). In: Ackerman ME, Nimmerjahn F, eds. Antibody Fc. Boston: Academic Press; 2014:1-27. doi:https://doi.org/10.1016/B978-0-12-394802-1.00001-7
- 78. Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. *Blood*. 2002;99(10):3661-3667. doi:10.1182/blood.V99.10.3661
- 79. Nowbakht P, Ionescu MCS, Rohner A, et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. *Blood*. 2005;105(9):3615-3622. doi:10.1182/blood-2004-07-2585
- 80. Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. *Eur J Immunol.* 2014;44(6):1582-1592. doi:10.1002/eji.201344272
- Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. *Cell Mol Immunol*. 2013;10(3):230-252. doi:10.1038/cmi.2013.10
- Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. *Blood*. 1999;94(1):333-339. doi:10.1182/blood.v94.1.333.413a31\_333\_339
- 83. Choi I, Yoon SR, Park SY, et al. Donor-Derived Natural Killer Cells Infused after Human Leukocyte Antigen-Haploidentical Hematopoietic Cell Transplantation: A Dose-Escalation Study. *Biol Blood Marrow Transplant*. 2014;20(5):696-704. doi:10.1016/j.bbmt.2014.01.031
- Choi I, Yoon SR, Park SY, et al. Donor-Derived Natural Killer Cell Infusion after Human Leukocyte Antigen–Haploidentical Hematopoietic Cell Transplantation in Patients with Refractory Acute Leukemia. *Biol Blood Marrow Transplant*. 2016;22(11):2065-2076. doi:10.1016/j.bbmt.2016.08.008

- 85. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. *Blood*. 2005;105(8):3051-3057. doi:10.1182/blood-2004-07-2974
- 86. Wang CJ, Huang XJ, Gong LZ, et al. Observation on the efficacy of consolidation chemotherapy combined with allogeneic natural killer cell infusion in the treatment of low and moderate risk acute myeloid leukemia. *Zhonghua xue ye xue za zhi*. 2019;40(10):812-817. doi:10.3760/cma.j.issn.0253-2727.2019.10.003
- 87. Curti A, Ruggeri L, Parisi S, et al. Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. *Clin Cancer Res.* 2016;22(8):1914-1921. doi:10.1158/1078-0432.CCR-15-1604
- Zhao XY, Jiang Q, Jiang H, et al. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo. *Eur J Immunol.* 2020;50(9):1374-1385. doi:10.1002/eji.201948375
- 89. Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. *Front Immunol.* 2017;8(AUG). doi:10.3389/fimmu.2017.00930
- 90. Cany J, van der Waart AB, Tordoir M, et al. Natural Killer Cells Generated from Cord Blood Hematopoietic Progenitor Cells Efficiently Target Bone Marrow-Residing Human Leukemia Cells in NOD/SCID/IL2Rgnull Mice. *PLoS One*. 2013;8(6):1-11. doi:10.1371/journal.pone.0064384
- 91. Dolstra H, Roeven MWH, Spanholtz J, et al. Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. *Clin Cancer Res.* 2017;23(15):4107-4118. doi:10.1158/1078-0432.CCR-16-2981
- 92. Klingemann H. Are natural killer cells superior CAR drivers? *Oncoimmunology*. 2014;3(4):1-4. doi:10.4161/onci.28147
- 93. Hauswirth AW, Florian S, Printz D, et al. Expression of the target receptor CD33 in CD34 +/CD38 -/CD123 + AML stem cells. *Eur J Clin Invest*. 2007;37(1):73-82. doi:10.1111/j.1365-2362.2007.01746.x
- 94. Pemovska T, Kontro M, Yadav B, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. *Cancer Discov.* 2013;3(12):1416-1429. doi:10.1158/2159-8290.CD-13-0350
- 95. Kulesskiy E, Saarela J, Turunen L, Wennerberg K. Precision Cancer Medicine in the Acoustic Dispensing Era: Ex Vivo Primary Cell Drug Sensitivity Testing. *J Lab Autom.* 2016;21(1):27-36. doi:10.1177/2211068215618869
- 96. Branchini BR, Magyar RA, Murtiashaw MH, Anderson SM, Helgerson LC, Zimmer M. Site-Directed Mutagenesis of Firefly Luciferase Active Site Amino Acids: A Proposed Model for Bioluminescence Color. *Biochemistry*. 1999;38(40):13223-13230. doi:10.1021/bi9911810
- 97. Allard S, Kopish K. Luciferase Reporter Assays: Powerful, Adaptable Tools For Cell Biology Research. *Cell Notes*. 2008;(21):23-26. doi:10.1053/j.gastro.2006.05.006
- 98. Tawa P, Tam J, Cassady R, Nicholson DW, Xanthoudakis S. Quantitative analysis of
fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. *Cell Death Differ*. 2001;8(1):30-37.

- 99. Kummrow A, Frankowski M, Bock N, Werner C, Dziekan T, Neukammer J. Quantitative assessment of cell viability based on flow cytometry and microscopy. *Cytom Part A*. 2013;83 A(2):197-204. doi:10.1002/cyto.a.22213
- Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4 +CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. *Cancer Immunol Immunother*. 2007;56(5):641-648. doi:10.1007/s00262-006-0225-8
- Khallouf H, Märten A, Serba S, et al. 5-fluorouracil and interferon-a immunochemotherapy enhances immunogenicity of murine pancreatic cancer through upregulation of NKG2D ligands and MHC class i. *J Immunother*. 2012;35(3):245-253. doi:10.1097/CJI.0b013e31824b3a76
- 102. Liu WM, Fowler DW, Smith P, Dalgleish AG. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. *Br J Cancer*. 2010;102(1):115-123. doi:10.1038/sj.bjc.6605465
- 103. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. *Cancer Sci.* 2013;104(9):1146-1153. doi:10.1111/cas.12216
- 104. Iriyama N, Fujisawa S, Yoshida C, et al. Early cytotoxic lymphocyte expansion contributes to a deep molecular response to dasatinib in patients with newly diagnosed chronic myeloid leukemia in the chronic phase: Results of the D-first study. *Am J Hematol.* 2015;90(9):819-824. doi:10.1002/ajh.24096
- Brachène A, Dos Santos R, Marroqui L, Colli ML. IFNa induces a preferential longlasting expression of MHC class I in human pancreatic beta cells. *Diabetologia*. 2018;61(3):636-640. doi:10.1007/s00125-017-4536-4.IFN
- 106. Liu L, Mayes PA, Eastman S, et al. The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. *Clin Cancer Res.* 2015;21(7):1639-1651. doi:10.1158/1078-0432.CCR-14-2339
- 107. Yadav B, Pemovska T, Szwajda A, et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. *Sci Rep.* 2014;4:1-10. doi:10.1038/srep05193
- 108. Stoeckius M, Zheng S, Houck-Loomis B, et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. *Genome Biol.* 2018;19(1):1-12. doi:10.1186/s13059-018-1603-1
- 109. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. *Mol Syst Biol.* 2019;15(6). doi:10.15252/msb.20188746
- 110. Ferris J, Espona-Fiedler M, Hamilton C, et al. Pevonedistat (MLN4924): mechanism of cell death induction and therapeutic potential in colorectal cancer. *Cell Death Discov*. 2020;6(1). doi:10.1038/s41420-020-00296-w
- 111. Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent

Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. *Front Pharmacol.* 2020;11(May):1-20. doi:10.3389/fphar.2020.00656

- 112. Senkevitch E, Durum S. The promise of Janus kinase inhibitors in the treatment of hematological malignancies. *Cytokine*. 2017;98:33-41. doi:10.1016/j.cyto.2016.10.012.The
- Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. *Front Immunol*. 2018;9(5):1-19. doi:10.3389/fimmu.2018.00847
- 114. Nachef M, Ali AK, Almutairi SM, Lee SH. Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment. Front Immunol. 2021;12(April):1-11. doi:10.3389/fimmu.2021.624324
- 115. Sottile R, Federico G, Garofalo C, et al. Iron and ferritin modulate MHC Class i expression and NK cell recognition. *Front Immunol*. 2019;10(February):1-12. doi:10.3389/fimmu.2019.00224
- 116. Wei J, Kishton RJ, Angel M, et al. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. *Mol Cell*. 2019;73(6):1162-1173.e5. doi:10.1016/j.molcel.2018.12.020
- 117. Salih J, Kanz L, Salih HR, Krusch M. The FLT3-Inhibitors Midostaurin, Sunitinib, Sorafenib, and TKI258 Differentially Affect NK Cell-Mediated Immunesurveillance of Acute Myeloid Leukemia. *Blood*. 2009;114(22):3785. doi:10.1182/blood.V114.22.3785.3785
- 118. Chen Y, Ning J, Cao W, et al. Research Progress of TXNIP as a Tumor Suppressor Gene Participating in the Metabolic Reprogramming and Oxidative Stress of Cancer Cells in Various Cancers. *Front Oncol.* 2020;10(October):1-12.
- Kim DO, Byun JE, Kim WS, et al. Txnip regulates natural killer cell-mediated innate immunity by inhibiting ifn-γ production during bacterial infection. Int J Mol Sci. 2020;21(24):1-19. doi:10.3390/ijms21249499
- 120. Fang M, Orr MT, Spee P, Egebjerg T, Lanier LL, Sigal LJ. CD94 Is Essential for NK Cell-Mediated Resistance to a Lethal Viral Disease. *Immunity*. 2011;34(4):579-589. doi:10.1016/j.immuni.2011.02.015
- 121. Vignesh KS, Deepe GS. Metallothioneins: Emerging modulators in immunity and infection. *Int J Mol Sci.* 2017;18(10). doi:10.3390/ijms18102197
- 122. Wolenski FS, Fisher CD, Sano T, et al. The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-**a** to activate apoptosis. *Cell Death Discov*. 2015;1(1):1-9. doi:10.1038/cddiscovery.2015.34
- 123. Levis M. Midostaurin approved for FLT3-mutated AML. *Blood*. 2017;129(26):3403-3406. doi:10.1182/blood-2017-05-782292
- 124. Finak G, McDavid A, Yajima M, et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol.* 2015;16(1):1-13. doi:10.1186/s13059-015-0844-5

## Supplementary material

Equation 1. Dose calculations of radiation given to K562 feeder cells.

Radiation dose needed: 100 Gy

Original dose rate: 2.01 Gy/min

Dose factor in March 2021: 1.696028

Time required to give 100 Gy dose =  $\frac{100}{\frac{2.01 \text{ Gy/min}}{1.696028}}$  = 84.64 min = 5078 s

|   | 1     | 2    | 3      | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23 | 24    |
|---|-------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|-------|
| Α | cells | BzCl | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | BzCl  |
| в | cells | d    | d      | d    | d    | d    | d    | d    | DMSO | d    | d    | d    | d    | d    | d    | BzCl | d    | d    | d    | d    | d    | d    | d  | cells |
| С | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | DMSO | d    | d    | d    | d    | d    | d    | d    | DMSO | d    | d    | d  | cells |
| D | cells | d    | d      | d    | DMSO | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| Е | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | DMSO | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| F | cells | d    | d      | d    | d    | d    | d    | d    | d    | BzCl | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| G | cells | d    | d      | d    | d    | BzCl | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| н | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | DMSO | d    | d    | d    | d  | cells |
| 1 | cells | d    | d      | d    | d    | d    | d    | DMSO | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| J | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | BzCl | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| к | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | BzCl | d    | d  | cells |
| L | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | DMSO | d    | d    | d    | d    | d    | d  | cells |
| м | cells | d    | d      | BzCl | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| Ν | cells | d    | d      | d    | d    | d    | DMSO | d    | d    | d    | BzCl | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d  | cells |
| ο | cells | d    | d      | d    | d    | d    | d    | d    | d    | d    | d    | d    | DMSO | d    | d    | d    | d    | BzCl | d    | d    | d    | d    | d  | cells |
| Р | cells | d    | DMSO   | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | d    | DMSO | d  | BzCl  |
|   |       | _    |        |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |       |
|   | DMSO  | = NK | + DMSO |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |       |
|   | DMSO  | = DM | 50     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |       |

DMSO = DMSO BzCl = benzyl chloride

cells = target cells only d = drugs

**Figure 1. Plating map used for automated pipetting in DSRT.** Map used to plate cells and media on 384-well micro plates including drugs from the FO5A drug library. NK + DMSO includes only NK cells in diluted DMSO as control. DMSO includes only diluted DMSO as a control, whereas BzCl is used as an indicator of absolute cell death due to its toxicity. Wells including cells only were on the far right and left sides of the plate. Wells marked as d included drugs according to the FO5A protocol by FIMM.

| Drugs: Ruvalitinih                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pictilieih                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drug: Peyoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | istat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drugs: Kuxolitihib,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ial D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iluted D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSO conc (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Add 40 ul H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drug: Fevored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nitial D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iluted DM <sup>4</sup>                                                                                                    | SO conc (9                                                                    | Add 40 ul H2O                                                                                                                                                                     |
| Conc (nm) 1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAVE ALIQUOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000000                                                                                                                   | 20                                                                            |                                                                                                                                                                                   |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                        |                                                                               |                                                                                                                                                                                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add 500 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               | Add 950 uL 20% DMSO                                                                                                                                                               |
| Conc (nm) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000                                                                                                                    | 20                                                                            | SAVE ALIQUOT                                                                                                                                                                      |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                                                                                                                      |                                                                               |                                                                                                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add 995 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               | Add 995 uL R10                                                                                                                                                                    |
| Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                       | 0,1                                                                           |                                                                                                                                                                                   |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000                                                                                                                      |                                                                               |                                                                                                                                                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add 5 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400                                                                                                                       |                                                                               | Add 5 uL of diluted drug into well                                                                                                                                                |
| Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                       | 0,02                                                                          |                                                                                                                                                                                   |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                        |                                                                               |                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| Drugs: Daporinad,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , Midostau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drug: Quizartir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| 1 Initi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ial D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iluted D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSO conc (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Add 40 uL H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nitial D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iluted DMS                                                                                                                | SO conc (%                                                                    | Add 40 uL H2O                                                                                                                                                                     |
| Conc (nm) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000000                                                                                                                   | 20                                                                            |                                                                                                                                                                                   |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                        |                                                                               |                                                                                                                                                                                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add 950 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               | Add 950 uL 20% DMSO                                                                                                                                                               |
| Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAVE ALIQUOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000                                                                                                                    | 20                                                                            | SAVE ALIQUOT                                                                                                                                                                      |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                                                                                                                      |                                                                               |                                                                                                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add 950 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               | Add 995 uL 20% DMSO                                                                                                                                                               |
| Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                       | 20                                                                            |                                                                                                                                                                                   |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000                                                                                                                      |                                                                               | 1 1 222 1 242                                                                                                                                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add 990 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                         |                                                                               | Add 990 uL R10                                                                                                                                                                    |
| Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                                                      | 0,2                                                                           |                                                                                                                                                                                   |
| Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add End of dilated to the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                                                                                                                      |                                                                               | Add E. J. af allows J. J. S. S. M.                                                                                                                                                |
| Conc (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add 5 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conc (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                         | 0.04                                                                          | Had 5 uL of diluted drug into well                                                                                                                                                |
| Amount (ul.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount (ul.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                        | 0,04                                                                          |                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nc. 1 v<br>50<br>5000<br>5000<br>5000<br>5<br>5000<br>5<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onc. 2<br>100<br>1000<br>1000<br>1000<br>1<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| Paporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nc. 1 v<br>50<br>5000<br>5000<br>5000<br>5<br>5000<br>5<br>5000<br>5<br>5000<br>5000<br>5<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>50000<br>5000<br>5000000               | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>rol. added Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onc. 2<br>10<br>100(<br>100(<br>100(<br>1<br>10<br>nal conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nc. 1 v<br>50<br>5000<br>5000<br>5000<br>5<br>500<br>5<br>50<br>50<br>0ck V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onc. 2<br>10<br>1000<br>1000<br>1000<br>1<br>10<br>nal conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5<br>500<br>5<br>50<br>vck V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>'ol. added Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onc. 2<br>10<br>1000<br>1000<br>1000<br>1<br>100<br>1<br>10<br>nal conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| I ABLE I Con<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5<br>500<br>sck V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol. 1 co<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onc. 2<br>10<br>100(<br>100(<br>100(<br>1<br>100(<br>1<br>0<br>nal conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,025<br>0,025<br>Vol./well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drug: Pevoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | istat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                           |                                                                               |                                                                                                                                                                                   |
| I ABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Livit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5<br>500<br>rck V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>ol. added Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onc. 2<br>10<br>1000<br>1000<br>1<br>1000<br>1<br>10<br>nal conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>Vol./well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drug: Pevoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | istat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iluted DM                                                                                                                 | SO cone (%                                                                    | Add 40 ul. 20% DMSO                                                                                                                                                               |
| IABLE I CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>NG<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nc. 1 v<br>50<br>5000<br>5000<br>5000<br>5<br>500<br>5<br>500<br>5<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5nc. 2<br>10<br>1000<br>1000<br>1<br>10<br>10<br>10<br>10<br>nal conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drug: Pevoned<br>1 I<br>Conc (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | istat<br>nitial D<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iluted DM:<br>2000                                                                                                        | 50 conc (%<br>20                                                              | Add 40 uL 20% DMSO                                                                                                                                                                |
| IABLE I CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm) 2<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nc. 1 v<br>50<br>5000<br>5000<br>5000<br>5<br>500<br>5<br>500<br>5<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>500000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000000 | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | istat<br>itial D<br>100000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iluted DM<br>20000<br>50                                                                                                  | 50 conc (%<br>20                                                              | Add 40 uL 20% DMSO                                                                                                                                                                |
| IABLE 1 Con<br>Daporinal<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nc. 1 v<br>500<br>5000<br>5000<br>5<br>5000<br>5<br>500<br>5<br>50<br>kck V<br>200000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000                                                                                                                                        | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | istat D<br>nitial D<br>100000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iluted DM<br>20000<br>50                                                                                                  | 50 conc (%<br>20                                                              | Add 40 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                              |
| IABLE 1 Con<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>2<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nc. 1 v<br>500<br>5000<br>5000<br>5<br>500<br>5<br>500<br>ckk V<br>pPictilisib<br>ial C<br>200000<br>10<br>400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000                                                                                                                                                          | onc. 2<br>10<br>1000<br>1000<br>1<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istat<br>nitial D<br>100000<br>10<br>20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iluted DM<br>20000<br>50<br>200                                                                                           | SO conc (%<br>20<br>0,2                                                       | Add 40 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                              |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>Drugs: Ruxolitinib,<br>Conc (nm) 2<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nc. 1 v<br>500<br>5000<br>5000<br>5<br>500<br>5<br>500<br>rck V<br>200000<br>10<br>400000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000                                                                                                                                                 | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istat D<br>100000<br>10<br>20000<br>5_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iluted DM<br>20000<br>50<br>200<br>500                                                                                    | 50 conc (%<br>20<br>                                                          | Add 40 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                              |
| IABLE I CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>NG<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>500<br>500<br>500<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,000<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000                                                                                                                                                                   | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | istat<br>iitial D<br>100000<br>10<br>20000<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iluted DMS<br>20000<br>50<br>200<br>500                                                                                   | 50 conc (%<br>20<br>0,2                                                       | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm) 2<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nc. 1 v<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50<br>0<br>50<br>0<br>50<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,000<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000                                                                                                                      | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | istat<br>100000<br>10<br>20000<br>5<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iluted DMS<br>20000<br>50<br>200<br>500<br>100                                                                            | 50 conc (%<br>20<br>0,2                                                       | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE I CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nc. 1 v<br>500<br>5000<br>500<br>500<br>500<br>500<br>50<br>50<br>rck V<br>7<br>Pictilisib<br>ial E<br>200000<br>10<br>400000<br>10<br>200000<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | onc. 2<br>10<br>1000<br>1000<br>1<br>1000<br>1<br>1000<br>1<br>1000<br>1<br>1000<br>1000<br>1000<br>1000<br>1000<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | istat D<br>100000<br>10<br>20000<br>5<br>2000<br>5<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iluted DMS<br>20000<br>50<br>2000<br>500<br>1000                                                                          | 50 conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm) 2<br>Conc (nm) 2<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,000<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000                                                                         | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>nal conc.<br>MSO conc (%<br>20<br>20<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istat D<br>100000<br>10<br>20000<br>5<br>200<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iluted DM<br>20000<br>50<br>200<br>500<br>1000                                                                            | SO conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE I CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nc. 1 v<br>50<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,000<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | onc. 2<br>10<br>1000<br>1000<br>1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 50 uL n10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drug: Pevoned<br>1 li<br>Conc (m)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istat D<br>100000<br>10<br>20000<br>5<br>200<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iluted DM<br>20000<br>50<br>200<br>500<br>100<br>1000                                                                     | 50 conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE I CON<br>Daporinad<br>Pevonedistat<br>Pictilisib<br>Quazirtnib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>4<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>10<br>200000<br>50<br>20000<br>50<br>50<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>10<br>5000<br>10<br>5000<br>10<br>5000<br>10<br>5000<br>5000<br>10<br>5000<br>10<br>5000<br>10<br>5000<br>10<br>50000<br>10<br>5000<br>5000<br>10<br>5000<br>5000<br>10<br>50000<br>5000<br>5000<br>10<br>500000<br>5000<br>5000<br>10<br>500000<br>5000<br>5000<br>5000<br>10<br>500000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>50000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 50 uL 20% DMSO<br>Add 55 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istat<br>itiial D<br>100000<br>20000<br>5<br>2000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iluted DM<br>20000<br>50<br>200<br>500<br>100<br>1000                                                                     | 50 conc (%<br>20<br>0,2                                                       | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Midostaurin<br>Stor<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nc. 1 v<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>10<br>400000<br>10<br>200000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | Vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istat<br>100000<br>10<br>20000<br>5<br>2000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iluted DMS<br>20000<br>50<br>200<br>500<br>100<br>1000                                                                    | 50 conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto.<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nc. 1 v<br>500<br>5000<br>5000<br>500<br>500<br>500<br>500<br>500<br>10<br>400000<br>10<br>200000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | Dinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | Vol. 2<br>0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>0,0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 50 uL cf diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istat<br>100000<br>10<br>20000<br>5<br>200<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iluted DMS<br>20000<br>50<br>200<br>500<br>1000                                                                           | 50 conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm) 2<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>10<br>400000<br>10<br>200000<br>500<br>500<br>10<br>400000<br>500<br>500<br>10<br>200000<br>500<br>500<br>500<br>500<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | 5nc. 2<br>10<br>1000<br>1000<br>1000<br>10<br>10<br>nal conc.<br>MSO conc (%<br>20<br>20<br>0,2<br>0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drug: Pevoned<br>1 li<br>Conc (m)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istat D<br>100000<br>10<br>20000<br>5<br>200<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iluted DM<br>20000<br>50<br>2000<br>500<br>1000                                                                           | 50 conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm) 2<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nc. 1 v<br>500<br>5000<br>5000<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 40 uL 10<br>Add 40 uL 4120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drug: Pevoned<br>1 li<br>Conc (m)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istat<br>itial D<br>10000<br>10<br>2000<br>500<br>200<br>500<br>vib<br>vib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iluted DM<br>20000<br>50<br>200<br>500<br>100<br>1000                                                                     | SO conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O                                                                                       |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>1 Initi<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nc. 1 v<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0,025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartiri<br>1 li<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | istat<br>itial D<br>100000<br>20000<br>5<br>2000<br>500<br>itib<br>nitial D<br>100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iluted DM<br>20000<br>50<br>200<br>500<br>100<br>1000<br>1000                                                             | 50 conc (%<br>20<br>0,2<br>0,1                                                | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well                                                                                                        |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nc. 1 v<br>500<br>5000<br>500<br>500<br>500<br>500<br>500<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | Dinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0,025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartin<br>1 li<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | istat<br>10000<br>10<br>20000<br>5<br>200<br>5<br>200<br>500<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iluted DMS<br>20000<br>50<br>2000<br>500<br>1000<br>1000<br>1000<br>1000<br>50                                            | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20                            | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O                                                                                       |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>1 Initi<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nc. 1 v<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>10<br>400000<br>10<br>200000<br>500<br>500<br>500<br>10<br>20000<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | onc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 | Vol. 2<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>Vol./well<br>Add 40 uL 20% DMSO<br>Add 500 uL 20% DMSO<br>Add 5 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 40 uL H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drug: Pevoned<br>1 li<br>Conc (m)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartin<br>1<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | istat D<br>100000<br>20000<br>5<br>200<br>500<br>iib<br>iitial D<br>100000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iluted DM<br>20000<br>500<br>2000<br>500<br>1000<br>1000<br>1000                                                          | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20                            | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO                                                                |
| IABLE 1 CON<br>Daporinad<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm) 2<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nc. 1 v<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>10<br>400000<br>10<br>200000<br>5<br>20000<br>5<br>2000<br>50<br>10<br>20000<br>5<br>2000<br>50<br>10<br>20000<br>5<br>2000<br>10<br>20000<br>5<br>2000<br>10<br>20000<br>5<br>2000<br>10<br>20000<br>5<br>2000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>10<br>200000<br>200000<br>200000<br>200000<br>200000<br>2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,000<br>0,00000000 | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drug: Pevoned<br>1 li<br>Conc (mi)<br>Amount (ul.)<br>2<br>Conc (mi)<br>Amount (ul.)<br>Drug: Quizartiri<br>1 li<br>Conc (nm)<br>Amount (ul.)<br>2<br>Conc (mi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | istat<br>itial D<br>100000<br>20000<br>5<br>200<br>500<br>iub<br>itial D<br>100000<br>10<br>20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iluted DMS<br>20000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>1000<br>2000<br>50<br>200                              | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20                      | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO                                                                |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nc. 1 v<br>500<br>5000<br>500<br>500<br>500<br>500<br>50<br>50<br>50<br>50<br>70<br>70<br>10<br>200000<br>10<br>200000<br>5<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>10<br>20000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0,025   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 50 uL R10 Add 5 uL of diluted drug into well Add 40 uL H2O Add 90 uL 20% DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartir<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | istat<br>itial D<br>100000<br>5<br>2000<br>500<br>ibb<br>itial D<br>100000<br>10<br>20000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iluted DM:<br>20000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>2000<br>50<br>2000<br>1000                             | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20                      | Add 40 ul. 20% DMSO<br>Add 495 ul. R10<br>Add 5 ul. of diluted drug into well<br>Add 40 ul. H2O<br>Add 990 ul. 20% DMSO                                                           |
| IABLE 1 CON<br>Daporinad<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Amount (uL)<br>Drugs: Daporinad,<br>Amount (uL)<br>2 Conc (nm)<br>Amount (uL)<br>2 Conc (nm)<br>2 Conc (nm | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>500<br>500<br>500<br>10<br>200000<br>10<br>200000<br>500<br>500<br>10<br>20000<br>500<br>10<br>20000<br>500<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 5 uL R10 Add 5 uL of diluted drug into well Add 40 uL H2O Add 90 uL 20% DMSO Add 90 uL 20% DMSO Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartii<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | istat D<br>100000<br>20000<br>5<br>200<br>500<br>iib<br>iitial D<br>100000<br>10<br>20000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iluted DM<br>2000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>50<br>2000<br>50                                         | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20                      | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO<br>Add 495 uL R10                                              |
| IABLE 1 CON<br>Daporinad<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Toconc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nc. 1 v<br>50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>10<br>400000<br>10<br>20000<br>500<br>500<br>500<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 5 uL R10 Add 5 uL of diluted drug into well Add 40 uL H2O Add 90 uL 20% DMSO Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drug: Pevoned<br>1 li<br>Conc (m)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartir<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | istat<br>100000<br>10<br>20000<br>5<br>200<br>500<br>ibb<br>itial D<br>100000<br>10<br>20000<br>10<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iluted DM<br>20000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>20000<br>50<br>2000<br>1000<br>2000<br>2                | SO conc (%<br>20<br>0,2<br>0,1<br>SO conc (%<br>20<br>20<br>0,2               | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO<br>Add 495 uL R10                                              |
| IABLE 1 CON<br>Daporinal<br>Rewolitinib<br>Pevonedistat<br>Pictilisib<br>Midostaurin<br>Sto<br>Drugs: Ruxolitinib,<br>Midostaurin<br>Sto<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Amount (uL)<br>Drugs: Daporinad,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>10<br>200000<br>500<br>10<br>200000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>200000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>20000<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,000<br>0,00000000 | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 50 uL R10 Add 5 uL of diluted drug into well Add 40 uL H2O Add 90 uL 20% DMSO Add 495 uL R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drug: Pevoned<br>1 I<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartiri<br>1 I<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | istat<br>itial D<br>100000<br>20000<br>5<br>200<br>500<br>iub<br>nitial D<br>100000<br>10<br>20000<br>10<br>20000<br>5<br>200<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>2000<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iluted DMS<br>20000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>200<br>1000<br>200<br>1000<br>200<br>1000              | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20<br>0,2               | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO<br>Add 495 uL R10                                              |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nc. 1 v<br>500<br>5000<br>500<br>500<br>500<br>500<br>50<br>50<br>50<br>50<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,00000000          | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0,025   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 495 uL R10 Add 5 uL of diluted drug into well Add 40 uL H2O Add 90 uL 20% DMSO Add 495 uL R10 Add 495 uL R10 Add 5 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>Drug: Quizartin<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>4<br>2<br>Conc (nm)<br>2<br>Conc (nm)<br>Conc (nm)<br>2<br>Conc (nm | istat<br>itial D<br>100000<br>5<br>2000<br>500<br>ib<br>itial D<br>100000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iluted DMS<br>20000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>2000<br>20                                             | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20<br>0,2               | Add 40 ul. 20% DMSO<br>Add 495 ul. R10<br>Add 5 ul. of diluted drug into well<br>Add 40 ul. H2O<br>Add 990 ul. 20% DMSO<br>Add 495 ul. R10<br>Add 5 ul. of diluted drug into well |
| IABLE 1 CON<br>Daporinad<br>Ruxolitinib<br>Pevonedistat<br>Pictilisib<br>Quazirtinib<br>Midostaurin<br>Sto<br>ING<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Amount (uL)<br>Drugs: Daporinad,<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nc. 1 v<br>500<br>5000<br>5000<br>500<br>500<br>500<br>500<br>500<br>10<br>200000<br>10<br>200000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>50<br>2000<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 495 uL R10 Add 5 uL of diluted drug into well Add 40 uL H2O Add 90 uL 20% DMSO Add 495 uL R10 Add 5 uL of diluted drug into well Add 495 uL R10 Add 5 uL of diluted drug into well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drug: Pevoned<br>1 li<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>4<br>Conc (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | istat D<br>100000<br>10<br>20000<br>5<br>2000<br>500<br>iib<br>nitial<br>20000<br>10<br>20000<br>10<br>20000<br>5<br>2000<br>5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iluted DMS<br>20000<br>50<br>2000<br>500<br>1000<br>1000<br>20000<br>50<br>2000<br>200                                    | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20<br>0,2<br>0,2<br>0,2 | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well        |
| IABLE 1 CON<br>Daporinal<br>Pewonedistat<br>Pictilisib<br>Midostaurin<br>Sto<br>Drugs: Ruxolitinib,<br>Midostaurin<br>Sto<br>Drugs: Ruxolitinib,<br>1 Initi<br>Conc (nm) 2<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)<br>Drugs: Daporinad,<br>Amount (uL)<br>Conc (nm)<br>Amount (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nc. 1 v<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>10<br>200000<br>10<br>200000<br>500<br>10<br>20000<br>500<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>2000<br>50<br>50<br>2000<br>50<br>2000<br>50<br>50<br>2000<br>50<br>50<br>2000<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ol. 1 cc<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005                                                                                                                                                                                                                                                                                                                                                                     | Sinc. 2<br>10<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000    | vol. 2         0,025           0,025         0,025           0,025         0,025           0,025         0,025           Vol./well         0   Add 40 uL 20% DMSO Add 500 uL 20% DMSO Add 50 uL and a drug into well Add 40 uL H2O Add 90 uL 20% DMSO Add 495 uL R10 Add 50 uL of diluted drug into well Add 50 uL of diluted drug into well Add 405 uL nto Add 50 | Drug: Pevoned<br>1 I<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>2<br>Conc (nm)<br>Amount (uL)<br>3<br>Conc (nm)<br>Amount (uL)<br>4<br>Conc (nm)<br>Amount (uL)<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | istat<br>itial D<br>10000<br>20000<br>5<br>200<br>500<br>itial D<br>20000<br>10<br>20000<br>10<br>20000<br>5<br>200<br>50<br>200<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>20000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>10<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20<br>2 | iluted DM<br>20000<br>50<br>200<br>500<br>1000<br>1000<br>1000<br>2000<br>50<br>200<br>1000<br>200<br>1000<br>200<br>1000 | 50 conc (%<br>20<br>0,2<br>0,1<br>50 conc (%<br>20<br>20<br>0,2<br>0,1        | Add 40 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well<br>Add 40 uL H2O<br>Add 990 uL 20% DMSO<br>Add 495 uL R10<br>Add 5 uL of diluted drug into well        |

Figure 2. Serial drug dilutions and related calculations. Drug dilutions used for prehashing optimisation and hashing experiments. Calculated with equation  $c_1V_1=c_2V_2$ .





Figure

X

**Figure 3. Quality control of hashtags indicating a specific condition.** Peaks indicating specific hashtag antibody being bound to each condition and being representative of individual conditions.

113



**Figure 4. Cell counts in each condition in the scRNA sequencing.** Cell counts in each condition of the two samples sequenced together. MOLM-14 DMSO and NK-MOLM-14-DMSO conditions have cells pooled from both samples for which higher cell counts can be observed.



**Figure 5. Distribution of tagged cells on a UMAP.** Hashtag-bound cells represented on a UMAP giving indication of how different conditions are portrayed on the transcriptomic landscape.

## Table 1. Drugs screened in the FO5A plates and specific differential drug sensitivity (sDSS) scores obtained for each cell line. Drug compounds, their targets and phase of use together with sDSS scores across all three cell lines.

| Drug compound         | Mechanism/Targets                                   | High phase/Approval status           | MOLM-14<br>sDSS | THP-1<br>sDSS | HEL<br>sDSS |
|-----------------------|-----------------------------------------------------|--------------------------------------|-----------------|---------------|-------------|
| 1-methyl-D-tryptophan | IDO inhibitor                                       | Investigational (Ph 2)               | -1,9            | 9,5           | 0           |
| 4-hydroxytamoxifen    | Estrogen receptor modulator                         | Investigational as a gel preparation | -5,7            | 0             | 0           |
| 8-amino-adenosine     | RNA synthesis inhibitor                             | Probe                                | -0,9            | -1,3          | 2,4         |
| 8-chloro-adenosine    | RNA synthesis inhibitor                             | Investigational (Ph 2)               | -5,7            | -3,4          | -0,4        |
| A-1155463             | Bcl inhibitor                                       | Probe                                | 4,6             | -1,2          | -1          |
| A-1210477             | MCL-1 inhibitor                                     | Probe                                | -1,9            | 2,2           | 1,1         |
| A-1331852             | Bcl inhibitor                                       | Probe                                | 0               | -4,2          | -4,2        |
| A-366                 | G9a/GLP inhibitor                                   | Probe                                | -2,5            | 1             | -7          |
| A-419259              | Src inhibitor                                       | Probe                                | -7,3            | -15,1         | -17,4       |
| ABC294640             | Sphingosine kinase 2 inhibitor                      | Investigational (Ph 2)               | -3,1            | -1            | -0,4        |
| Abemaciclib           | CDK inhibitor                                       | Investigational (Ph 3)               | 4,2             | 0             | -16,3       |
| Abexinostat           | HDAC inhibitor                                      | Investigational (Ph 2)               | 11,3            | -13,4         | -2,5        |
| Abiraterone           | CYP inhibitor                                       | Approved                             | 0,3             | 0,3           | -1,3        |
| ABT-751               | Mitotic inhibitor                                   | Investigational (Ph 2)               | -2,3            | 1             | 0           |
| Acalabrutinib         | BTK inhibitor                                       | Investigational (Ph 3)               | 0               | 0             | -2,3        |
| Acitretin             | Retinoid receptor agonist                           | Approved (non-oncology)              | -0,8            | 0             | 0           |
| Afatinib              | RTK inhibitor                                       | Approved                             | -1,6            | 0             | 0,8         |
| Afuresertib           | AKT inhibitor                                       | Investigational (Ph 2)               | 0               | -0,2          | 0           |
| Aldoxorubicin         | Topoisomerase inhibitor                             | Investigational (Ph 3)               | -2,6            | 1             | 0           |
| Alectinib             | ALK inhibitor                                       | Approved (Japan, US)                 | -3              | 0             | 0           |
| Alisertib             | Aurora inhibitor                                    | Investigational (Ph 3)               | -4,7            | 1,9           | 8,3         |
| Allopurinol           | Xanthine oxidase inhibitor                          | Approved                             | -4,6            | -4,3          | -11,4       |
| Alpelisib             | PI3K inhibitor                                      | Investigational (Ph 2)               | -2,7            | -1,7          | -2,5        |
| Altiratinib           | MET inhibitor                                       | Investigational (Ph 1)               | -15,8           | -3,4          | 0,1         |
| Alvocidib             | CDK inhibitor                                       | Investigational (Ph 2)               | 0,5             | -2,8          | 11,1        |
| Amcasertib            | Cancer stem cell kinase inhibitor                   | Investigational (Ph 2)               | -5,5            | -0,4          | -4,3        |
| AMG-232               | MDM2 inhibitor                                      | Investigational (Ph 2)               | -2,8            | -2,5          | -2,6        |
| AMG-337               | MET inhibitor                                       | Investigational (Ph 2)               | -0,7            | 0             | 0           |
| AMG-925               | FLT3 inhibitor                                      | Probe                                | -6,5            | -1,6          | -10,2       |
| AMG319                | PI3K inhibitor                                      | Investigational (Ph 2)               | 0               | -4,1          | 0           |
| Aminoglutethimide     | Aromatase inhibitor                                 | Approved                             | 1               | 0,5           | -1,9        |
| Amsacrine             | Topoisomerase inhibitor                             | Approved                             | -3,9            | -0,3          | 0,4         |
| Amuvatinib            | Broad range TKI                                     | Investigational (Ph 2)               | 3,4             | -1,8          | 2,1         |
| Anagrelide            | Antithrombotic                                      | Approved                             | 1,7             | 0             | -6,5        |
| Anastrozole           | Aromatase inhibitor                                 | Approved                             | 1,1             | 0,3           | 0           |
| Apalutamide           | AR antagonist                                       | Investigational (Ph 2)               | -3,4            | -5,3          | 0           |
| Apatinib              | VEGFR inhibitor                                     | Investigational (Ph 3)               | -10,5           | -14,4         | -14,7       |
| APR-246               | p53 activator, thioredoxin<br>reductase 1 inhibitor | Investigational (Ph 1)               | 0,7             | 0             | -2,2        |
| AR-42                 | HDAC inhibitor                                      | Investigational (Ph 1)               | -2              | 0             | -6,2        |
| Arsenic(III) oxide    | Reductase inhibitor                                 | Approved                             | 0               | 1,3           | 0           |

| ARV-825      | BET-targeting PROTAC         | Probe                  | -6,7  | 0     | -11   |
|--------------|------------------------------|------------------------|-------|-------|-------|
| Asciminib    | Abl inhibitor                | Investigational (Ph 1) | 0     | 0     | 0     |
| ASP3026      | ALK inhibitor                | Investigational (Ph 1) | -5,3  | -4,7  | -7,9  |
| AT 101       | Bcl inhibitor                | Investigational (Ph 2) | -7,8  | 2,9   | -3,1  |
| AT-406       | XIAP/cIAP1/cIAP2 inhibitor   | Investigational (Ph 1) | 1,7   | 2,6   | -1,3  |
| AT13148      | ROCK/PKA/p7056K inhibitor    | Investigational (Ph 1) | -7,8  | -1,1  | -8,3  |
| AT7519       | CDK inhibitor                | Investigational (Ph 1) | 0     | 1,5   | -2,3  |
| AT9283       | JAK inhibitor                | Investigational (Ph 2) | 1,8   | -8,9  | -2,7  |
| Atorvastatin | Reductase inhibitor          | Approved               | 0,5   | 3,8   | -3    |
| Auranofin    | Antirheumatic agent          | Approved               | 1,6   | -3,3  | -3,1  |
| AVN944       | IMPDH inhibitor              | Investigational (Ph 2) | 5,8   | 3,8   | -2,5  |
| Axitinib     | Broad range TKI              | Approved               | -32,3 | 0     | 0     |
| AZ 3146      | TTK inhibitor                | Probe                  | -5,3  | 4,8   | -11,7 |
| AZ191        | DYRK1A inhibitor             | Probe                  | -8,1  | -5,6  | -13,5 |
| Azacitidine  | Methyl transferase inhibitor | Approved               | -0,2  | 0,1   | -5,7  |
| AZD-1080     | GSK3 inhibitor               | Investigational (Ph 1) | 0     | 0,1   | -4,2  |
| AZD-5363     | AKT inhibitor                | Investigational (Ph 2) | -2,1  | -1,8  | 3     |
| AZD-5438     | CDK inhibitor                | Investigational (Ph 1) | 0,2   | 1,6   | 5,2   |
| AZD-6482     | PI3K inhibitor               | Investigational (Ph 1) | -13,1 | -1    | -2,8  |
| AZD-8186     | PI3K inhibitor               | Investigational (Ph 1) | -8,1  | -3,2  | 0     |
| AZD0156      | ATM inhibitor                | Investigational (Ph 1) | -1,6  | -1,3  | -2,9  |
| AZD1152-HQPA | Aurora inhibitor             | Investigational (Ph 3) | -12,2 | 0     | 0     |
| AZD1208      | PIM inhibitor                | Investigational (Ph 1) | -4,2  | -5,6  | -7    |
| AZD1480      | JAK inhibitor                | Investigational (Ph 1) | -0,2  | 0     | 2     |
| AZD1775      | Wee1 inhibitor               | Investigational (Ph 2) | -4,8  | 2,1   | 8,2   |
| AZD3759      | EGFR Inhibitor               | Investigational (Ph 2) | -1,6  | 0     | 0     |
| AZD3965      | MCT1 inhibitor               | Investigational (Ph 1) | 0     | 0     | 0     |
| AZD4547      | FGFR inhibitor               | Investigational (Ph 2) | 1,1   | 1,1   | 0     |
| AZD6738      | ATR inhibitor                | Investigational (Ph 1) | -3,1  | -7,1  | 0     |
| AZD7545      | PDHK inhibitor               | Probe                  | 2,6   | 4,2   | -3,1  |
| AZD7762      | Chk1 inhibitor               | Investigational (Ph 1) | -4,8  | -4,3  | -16,4 |
| AZD8055      | mTOR inhibitor               | Investigational (Ph 1) | -2,2  | -0,5  | -1,8  |
| Bafetinib    | Abl inhibitor                | Investigational (Ph 2) | -4,6  | -0,9  | 3,2   |
| Baricitinib  | JAK inhibitor                | Approved (EU)          | 8,7   | -10,3 | 3,6   |
| BAY 87-2243  | HIF1alpha inhibitor          | Investigational (Ph 1) | 0     | 0     | 5,1   |
| BAY-1436032  | IDH1 R132H/R132C inhibitor   | Investigational (Ph 1) | -0,6  | 0     | 0,6   |
| BCI          | Dusp6 inhibitor              | Probe                  | -1,5  | -1,3  | -0,4  |
| Belinostat   | HDAC inhibitor               | Approved (US)          | -1,9  | -5,1  | -5,2  |
| Bentamapimod | JNK inhibitor                | Investigational (Ph 1) | -21,4 | 0     | 0     |
| Bexarotene   | Antineoplastic agent         | Approved               | -2,2  | 1,6   | -1,3  |
| BGB-283      | RAF inhibitor                | Investigational (Ph 1) | -1,5  | -2,4  | -1,5  |
| BGB324       | Axl inhibitor                | Investigational (Ph 1) | -3,8  | 0     | 0     |
| BI 2536      | PLK1 inhibitor               | Investigational (Ph 2) | -5,6  | 2,8   | -5,4  |
| Bicalutamide | Nonsteriodal antiandrogen    | Approved               | -0,7  | -1,3  | -1,1  |
| BIIB021      | HSP90 inhibitor              | Investigational (Ph 2) | -4,5  | -2,6  | 2,9   |
| Bimatoprost  | Prostaglandin analog         | Approved               | 0     | 0     | 0     |
| Binimetinib  | MEK inhibitor                | Investigational (Ph 2) | -4    | -7,7  | -5    |
| Birabresib   | BET inhibitor                | Investigational (Ph 2) | -4,6  | -1,1  | -12   |

| Birinapant   | SMAC mimetic                                                                 | Investigational (Ph 2) | -4,2  | 0     | -2,8  |
|--------------|------------------------------------------------------------------------------|------------------------|-------|-------|-------|
| Bleomycin    | Antibiotic                                                                   | Approved               | -0,1  | -0,5  | 0     |
| BMS-754807   | IGF1R inhibitor                                                              | Investigational (Ph 2) | -4,8  | -3,9  | 6,2   |
| BMS-777607   | MET inhibitor                                                                | Investigational (Ph 2) | -1,4  | 0     | -1    |
| BMS-911543   | JAK inhibitor                                                                | Investigational (Ph 1) | -0,7  | 0     | 4,7   |
| BMS863233    | Cdc7 inhibitor                                                               | Investigational (Ph 2) | 1,6   | -3,7  | -4,2  |
| Bortezomib   | Proteasome inhibitor                                                         | Approved               | 0,4   | 9     | 8     |
| Bosutinib    | Abl-Src inhibitor                                                            | Approved               | -1,7  | -1,9  | 13,4  |
| BRD7116      | Leukemic stem cell inhibitor                                                 | Probe                  | 0,4   | -7,1  | -1,5  |
| Brigatinib   | ALK inhibitor                                                                | Approved (US)          | -0,8  | -1,7  | -9,3  |
| Brivanib     | VEGFR inhibitor                                                              | Investigational (Ph 3) | 2,9   | 0     | 0     |
| Bryostatin 1 | PKC activator                                                                | Investigational (Ph 1) | 8,5   | 8     | 0     |
| Buparlisib   | PI3K inhibitor                                                               | Investigational (Ph 2) | -5,2  | -1,2  | 0     |
| BX-912       | PDK1 inhibitor                                                               | Probe                  | -8    | -5,6  | -1,7  |
| C646         | CBP inhibitor                                                                | Probe                  | -0,7  | -0,2  | 0     |
| Cabazitaxel  | Mitotic inhibitor                                                            | Approved               | -2,2  | 1,7   | 8     |
| Cabozantinib | Broad range TKI                                                              | Approved               | -6,4  | 1,5   | 0     |
| Canertinib   | HER inhibitor                                                                | Investigational (Ph 3) | -2,7  | -2,6  | 0     |
| Capecitabine | Synthase inhibitor                                                           | Approved               | 0     | 0     | 0     |
| Capmatinib   | MET inhibitor                                                                | Investigational (Ph 2) | -0,6  | 3,2   | -0,3  |
| Carboplatin  | Antineoplastic agent                                                         | Approved               | 0     | 3,9   | 0,3   |
| Carfilzomib  | Proteasome inhibitor                                                         | Approved               | -3    | 2,3   | 7     |
| CC-115       | mTOR inhibitor                                                               | Investigational (Ph 1) | -5,6  | -0,5  | -7,8  |
| CC-223       | mTOR inhibitor                                                               | Investigational (Ph 2) | -2    | -2,4  | 2,1   |
| CC122        | Immunomodulator                                                              | Investigational (Ph 2) | 0     | 0     | 0     |
| CCT196969    | RAF/Src inhibitor                                                            | Probe                  | 0,2   | -6,1  | -4,3  |
| Cediranib    | Broad range TKI                                                              | Investigational (Ph 3) | -2,7  | 0     | 0     |
| Celecoxib    | COX-2 inhibitor                                                              | Approved               | 3,5   | 7,3   | -1,6  |
| CEP-32496    | B-Raf inhibitor                                                              | Investigational (Ph 2) | 0     | -3,7  | 0     |
| CEP-37440    | ALK inhibitor                                                                | Investigational (Ph 1) | -10,1 | -4,6  | -6,2  |
| Cerdulatinib | JAK/SYK inhibitor                                                            | Investigational (Ph 1) | 0,7   | -26,4 | -14,2 |
| Ceritinib    | ALK inhibitor                                                                | Approved               | -7,1  | -2    | -0,3  |
| Chloroquine  | Antimalaria agent                                                            | Approved               | -7,8  | 2,7   | -13,2 |
| Cilengitide  | alphaVbeta3 integrin inhibitor                                               | Investigational (Ph 3) | 0     | 0     | 0     |
| Cisplatin    | Antineoplastic agent                                                         | Approved               | 0,3   | -0,8  | 2,3   |
| Cladribine   | Antimetabolite                                                               | Approved               | -2,5  | 0,7   | 1,6   |
| Clofarabine  | Antimetabolite                                                               | Approved               | -5    | -0,8  | -15,2 |
| Clomifene    | Estrogen receptor modulator                                                  | Approved               | -2,5  | 0     | -6    |
| Cobimetinib  | MEK inhibitor                                                                | Approved (US)          | 1     | -10   | -0,7  |
| Copanlisib   | PI3K inhibitor                                                               | Investigational (Ph 2) | -7,5  | -9,1  | -3,7  |
| CPI-0610     | BET inhibitor                                                                | Investigational (Ph 1) | 0,1   | 0     | -8,6  |
| CPI-360      | EZH2 inhibitor                                                               | Probe                  | -5,4  | 0     | 0     |
| CPI-613      | pyruvate<br>dehydrogenase/alpha-<br>ketoglutarate dehydrogenase<br>inhibitor | Investigational (Ph 2) | 0     | 0     | 0     |
| Crenolanib   | PDGFR inhibitor                                                              | Investigational (Ph 2) | -1,7  | -0,7  | 8,1   |
| Crizotinib   | ALK inhibitor                                                                | Approved               | 2,7   | 0     | 0,2   |
| CUDC-305     | HSP90 inhibitor                                                              | Investigational (Ph 1) | -3,8  | -1,2  | -3,1  |

| CUDC-907           | HDAC inhibitor                       | Investigational (Ph 2)  | -7,6  | -19,6 | -6,5  |
|--------------------|--------------------------------------|-------------------------|-------|-------|-------|
| Cytarabine         | Antimetabolite                       | Approved                | -0,1  | -3,1  | 0,5   |
| Dabrafenib         | B-Raf inhibitor                      | Approved                | -0,9  | 4,7   | -1,5  |
| Dacomitinib        | HER inhibitor                        | Investigational (Ph 3)  | -1,2  | 0     | 0     |
| Dactinomycin       | DNA/RNA synthesis inhibitor          | Approved                | -9,2  | 1,1   | 0,7   |
| Dactolisib         | mTOR inhibitor                       | Investigational (Ph 2)  | 1     | 1,1   | 3,9   |
| Danusertib         | Aurora inhibitor                     | Investigational (Ph 2)  | -3,4  | 2,7   | 3     |
| Daporinad          | NAMPT inhibitor                      | Investigational (Ph 2)  | 14,9  | 13,7  | 4,2   |
| Darapladib         | phospholipase A2 inhibitor           | Investigational (Ph 3)  | 0     | 0     | 0     |
| Dasatinib          | Broad range TKI                      | Approved                | -9,3  | -12,4 | -17,6 |
| Daunorubicin       | Topoisomerase inhibitor              | Approved                | -4,5  | 0,8   | -2,9  |
| dBET1              | BET-targeting PROTAC                 | Probe                   | -2    | 0,9   | -10,7 |
| Decernotinib       | JAK inhibitor                        | Investigational (Ph 3)  | 1,2   | -5,4  | 1,9   |
| Decitabine         | Methyl transferase inhibitor         | Approved                | -0,7  | 1,3   | -3,1  |
| Deferoxamine       | Iron chelator                        | Approved (non-oncology) | -1    | 0     | -6,2  |
| DEL-22379          | ERK inhibitor                        | Probe                   | -5,5  | -2,4  | -0,2  |
| Dexamethasone      | Glucocorticoid                       | Approved                | 0     | -6    | 0     |
| Digoxin            | Cardiac glycoside                    | Approved (non-oncology) | 0,1   | 1,9   | -2,5  |
| Dinaciclib         | CDK inhibitor                        | Investigational (Ph 3)  | -1,4  | 1,4   | 5,8   |
| Disulfiram(+CuCl2) | alcohol dehydrogenase<br>inhibitor   | Approved (non-oncology) | 2,7   | 0     | -0,3  |
| Docetaxel          | Mitotic inhibitor                    | Approved                | -0,7  | 3,3   | 3,5   |
| Doramapimod        | MAPK inhibitor                       | Investigational (Ph 1)  | -1,6  | -8,5  | 0,5   |
| Dovitinib          | RTK inhibitor                        | Investigational (Ph 3)  | -17,3 | -2,4  | -6,2  |
| Doxorubicin        | Topoisomerase inhibitor              | Approved                | -8,5  | 2,4   | 0     |
| Duvelisib          | PI3K inhibitor                       | Investigational (Ph 3)  | -8    | -3,7  | 0     |
| E7820              | Integrin alpha2 expression inhibitor | Investigational (Ph 2)  | -4,4  | 3,1   | -6,5  |
| Eltanexor          | XPO1/CRM1 inhibitor                  | Investigational (Ph 2)  | -7,2  | -5,9  | -4,6  |
| Enasidenib         | IDH2-R140Q inhibitor                 | Approved (US)           | 0     | -5    | 1,3   |
| Encorafenib        | B-Raf inhibitor                      | Investigational (Ph 2)  | 0,2   | 8,8   | -2,5  |
| ENMD-2076          | Kinase inhibitor                     | Investigational (Ph 2)  | -4,7  | -5,6  | 0     |
| Ensartinib         | ALK inhibitor                        | Investigational (Ph 3)  | -0,1  | -0,4  | 1,7   |
| Entinostat         | HDAC inhibitor                       | Investigational (Ph 2)  | -4,2  | -0,2  | -8,4  |
| Entospletinib      | Syk inhibitor                        | Investigational (Ph 2)  | -33,2 | 0     | -34,8 |
| Entrectinib        | TRK/ROS1/ALK inhibitor               | Investigational (Ph 2)  | -1,8  | -6    | -1,4  |
| Enzalutamide       | AR antagonist                        | Approved                | -4,2  | 0     | 0     |
| Enzastaurin        | PKC inhibitor                        | Investigational (Ph 3)  | -1,6  | 0     | -3,1  |
| Epacadostat        | IDO inhibitor                        | Investigational (Ph 3)  | 0     | -0,1  | 0     |
| Epirubicin         | Topoisomerase inhibitor              | Approved                | -5,4  | -0,4  | -1,1  |
| EPZ-5687           | EZH2 inhibitor                       | Probe                   | -1,6  | 0     | 0     |
| EPZ015666          | PRMT5 inhibitor                      | Probe                   | 0     | -0,1  | 0     |
| EPZ031686          | SMYD3 inhibitor                      | Probe                   | 0     | 0     | 0     |
| Erastin            | VDAC inhibitor                       | Probe                   | -4,2  | 0     | 2,9   |
| Erdafitinib        | FGFR inhibitor                       | Investigational (Ph 2)  | -0,3  | 0     | 3,5   |
| Eribulin           | Mitotic inhibitor                    | Approved                | -7,8  | 2     | 0     |
| Erlotinib          | EGFR Inhibitor                       | Approved                | -5,4  | 0     | -5,4  |
| Etoposide          | Topoisomerase inhibitor              | Approved                | -1,5  | 0,3   | -3,2  |
| Everolimus         | mTORC inhibitor                      | Approved                | -0,8  | -0,7  | -1,3  |

| Exemestane      | Aromatase inhibitor                | Approved                | 1,5   | 0,4   | 0     |
|-----------------|------------------------------------|-------------------------|-------|-------|-------|
| Fedratinib      | JAK inhibitor                      | Investigational (Ph 2)  | -0,8  | -1,9  | -0,2  |
| Filanesib       | KSP/Eg5 inhibitor                  | Investigational (Ph 2)  | -3,3  | -0,2  | 6,7   |
| Filgotinib      | JAK inhibitor                      | Investigational (Ph 2)  | 0     | -9    | 0     |
| Finasteride     | Reductase inhibitor                | Approved                | 0     | 0     | 0     |
| Fingolimod      | Immunomodulator                    | Approved                | -5,1  | -1,9  | -10,2 |
| Floxuridine     | Antimetabolite                     | Approved                | 2     | -3    | 0     |
| Fludarabine     | Antimetabolite                     | Approved                | 0     | -0,4  | 0     |
| Fluorouracil    | Antimetabolite                     | Approved                | 0,8   | 0,8   | 0     |
| Flutamide       | Nonsteriodal antiandrogen          | Approved                | -1,1  | 0     | 0     |
| Foretinib       | Antineoplastic agent               | Investigational (Ph 2)  | -17,3 | -1,7  | 2,8   |
| Fostamatinib    | Syk inhibitor                      | Investigational (Ph 2)  | 0,5   | -0,2  | -4,6  |
| FRAX486         | PAK inhibitor                      | Probe                   | 2     | 3,2   | 16,5  |
| Fulvestrant     | Estrogen receptor modulator        | Approved                | 0     | 0     | 0     |
| Galiellalactone | STAT3-DNA interaction<br>inhibitor | Probe                   | 1,6   | 0,1   | 0     |
| Galunisertib    | TGF-B/Smad inhibitor               | Investigational (Ph 2)  | -0,4  | 0     | 1,5   |
| Gandotinib      | JAK inhibitor                      | Investigational (Ph 2)  | -0,2  | -15,8 | 1,1   |
| Ganetespib      | HSP90 inhibitor                    | Investigational (Ph 3)  | -7,1  | -0,4  | -3,6  |
| GDC-0084        | PI3K/mTOR inhibitor                | Investigational (Ph 1)  | -7,9  | -9    | -6,7  |
| GDC-0623        | MEK inhibitor                      | Investigational (Ph 2)  | -0,8  | -7,4  | -0,9  |
| GDC-0853        | BTK inhibitor                      | Investigational (Ph 2)  | 0     | 0     | 0     |
| GDC-0919        | IDO inhibitor                      | Investigational (Ph 1)  | -2,2  | -0,1  | 0,4   |
| Gedatolisib     | PI3K/mTOR inhibitor                | Investigational (Ph 2)) | 6     | 0,1   | -1    |
| Gefitinib       | Broad range TKI                    | Approved                | -0,3  | 0     | -1,7  |
| Gemcitabine     | Antimetabolite                     | Approved                | -4,7  | 0,1   | 0,4   |
| Gilteritinib    | FLT3/AXL inhibitor                 | Investigational (Ph 2)  | -2,4  | -0,1  | -4,4  |
| Givinostat      | HDAC inhibitor                     | Investigational (Ph 2)  | 2,5   | 0     | -1,3  |
| Glasdegib       | Smo inhibitor                      | Investigational (Ph 2)  | 0     | -2,5  | 0     |
| Glesatinib      | Broad range TKI                    | Investigational (Ph 2)  | -4,6  | -0,5  | 0     |
| GNE-0877        | LRRK2 inhibitor                    | Probe                   | -0,1  | -0,2  | 0     |
| GNE-7915        | LRRK2 inhibitor                    | Probe                   | -2,7  | 0     | -7,1  |
| Golvatinib      | MET/VEGFR inhibitor                | Investigational (Ph 2)  | 1     | 0     | -0,2  |
| Goserelin       | Hormone superagonist               | Approved                | 0     | 0,1   | -1,2  |
| GSK-1070916     | Aurora inhibitor                   | Investigational (Ph 1)  | -3,5  | 0,8   | 0     |
| GSK-2334470     | PDK1 inhibitor                     | Probe                   | -5,8  | -4,6  | -3,7  |
| GSK-461364      | PLK1 inhibitor                     | Investigational (Ph 1)  | -0,9  | -6,5  | -9,6  |
| GSK-690693      | AKT/PKA/PKC inhibitor              | Investigational (Ph 1)  | -7,8  | 0     | -6    |
| GSK-J4          | Histone demethylase inhibitor      | Probe                   | -2,8  | 2,1   | 2,4   |
| GSK2256098      | FAK inhibitor                      | Investigational (Ph 2)  | 0,2   | -6,6  | 0     |
| GSK2636771      | PI3K inhibitor                     | Investigational (Ph 1)  | -2    | -5,9  | 0     |
| GSK2656157      | PERK inhibitor                     | Probe                   | -0,4  | 0     | -2,5  |
| GSK269962       | ROCK inhibitor                     | Probe                   | -12,5 | -2,5  | -24,7 |
| GSK2801         | BAZ2B/A bromodomain<br>inhibitor   | Probe                   | -2,5  | -2,2  | 0     |
| GSK2830371      | Wip1 inhibitor                     | Probe                   | 0,3   | 0     | -1,1  |
| GSK2879552      | LSD1 inhibitor                     | Investigational (Ph 1)  | 3,8   | 0     | -7    |
| GSK343          | EZH2 inhibitor                     | Probe                   | -0,1  | 0     | 0     |
| GSK650394       | SGK inhibitor                      | Probe                   | -3,1  | 1     | -1,5  |

| GSK923295         | CENP-E inhibitor                      | Investigational (Ph 1)  | 0,4   | 3,8   | 0     |
|-------------------|---------------------------------------|-------------------------|-------|-------|-------|
| Hydroxyfasudil    | ROCK inhibitor                        | (Approved Japan)        | 0     | 0,2   | -4,5  |
| Hydroxyurea       | Antineoplastic agent                  | Approved                | 0,1   | -3,4  | 0     |
| I-BET151          | BET inhibitor                         | Probe                   | -3,2  | 0     | -13,7 |
| Ibrutinib         | Btk inhibitor                         | Approved                | -2,5  | -7,3  | 0     |
| Icotinib          | EGFR Inhibitor                        | Investigational (Ph 2)  | -1    | 2,8   | 0     |
| Idarubicin        | Topoisomerase inhibitor               | Approved                | -7,6  | 1,1   | -2,9  |
| Idasanutlin       | p53-MDM2 inhibitor                    | Investigational (Ph 3)  | -2,7  | 0     | -4    |
| Idelalisib        | PI3K inhibitor                        | Approved                | -6,2  | -2,4  | -6,9  |
| Imatinib          | Broad range TKI                       | Approved                | 0     | -1,9  | 0     |
| Imiquimod         | Immunomodulator                       | Approved                | 0     | 0     | 0     |
| Indibulin         | Mitotic inhibitor                     | Investigational (Ph 2)  | 0,6   | 0     | 0     |
| Infigratinib      | FGFR inhibitor                        | Investigational (Ph 1)  | -0,2  | 0     | -0,1  |
| IOX-1             | 2-Oxoglutarate Oxygenase<br>Inhibitor | Probe                   | 4     | 0,5   | -0,1  |
| IOX-2             | PHD2 inhibitor                        | Probe                   | 0     | -6,5  | 0     |
| Ipatasertib       | AKT inhibitor                         | Investigational (Ph 2)  | 0,3   | 3,5   | -2,8  |
| Itraconazole      | Hedgehog signaling inhibitor          | Approved (non-oncology) | 0,5   | 0,3   | -0,5  |
| Ivosidenib        | IDH1 R132H/R132C inhibitor            | Investigational (Ph 3)  | 0     | 0     | 1,9   |
| Ixabepilone       | Mitotic inhibitor                     | Approved                | -2,4  | -3,8  | -3    |
| Ixazomib          | Proteasome inhibitor                  | Approved                | -3,1  | 3,2   | 1,8   |
| JPH203            | LAT1 inhibitor                        | Probe                   | 5,1   | 0     | -0,1  |
| JQ1               | BET inhibitor                         | Probe                   | -7,2  | 5,7   | -12,3 |
| KD025             | ROCK2 inhibitor                       | Investigational (Ph 2)  | 0     | -10,6 | -6,8  |
| KU-60019          | ATM inhibitor                         | Probe                   | -5,5  | -3    | 0     |
| Lapatinib         | Broad range TKI                       | Approved                | -1,9  | -3,8  | -4,8  |
| Larotrectinib     | TRK inhibitor                         | Investigational (Ph 2)  | 0     | 0     | 0     |
| Lasofoxifene      | Estrogen receptor modulator           | Approved                | -2,7  | 0     | -2,4  |
| Lenalidomide      | Immunomodulator                       | Approved                | -3,1  | 0     | 2,1   |
| Lenvatinib        | Broad range TKI                       | Approved (US)           | -3,6  | 0     | 1,1   |
| Letrozole         | Aromatase inhibitor                   | Approved                | 13,1  | 0     | -1,9  |
| Linifanib         | Broad range TKI                       | Investigational (Ph 3)  | -5,8  | 0     | 0     |
| Linsitinib        | IGF1R inhibitor                       | Investigational (Ph 2)  | 0     | 0     | -0,7  |
| Litronesib        | Eg5 inhibitor                         | Investigational (Ph 2)  | -1,2  | 5,7   | 4,2   |
| Lomeguatrib       | Methyl transferase inhibitor          | Investigational (Ph 2)  | -0,6  | -4,7  | 2,6   |
| Lonafarnib        | Farnesyl transferase inhibitor        | Investigational (Ph 3)  | -2,6  | -4,6  | 0,6   |
| Losmapimod        | MAPK inhibitor                        | Investigational (Ph 3)  | 0     | -1,6  | 5,4   |
| Lovastatin        | Reductase inhibitor                   | approved (non-oncology) | -4,3  | 0     | -2,7  |
| Lucitanib         | FGFR1/VEGFR inhibitor                 | Investigational (Ph 2)  | -2,3  | -1,9  | 0,7   |
| Luminespib        | HSP90 inhibitor                       | Investigational (Ph 2)  | -6,9  | 0,2   | -0,5  |
| LY-2584702        | p70S6K inhibitor                      | Investigational (Ph 1)  | -1,7  | 4,1   | 0     |
| LY-2874455        | FGFR inhibitor                        | Investigational (Ph 1)  | -5,2  | -15,2 | -1,2  |
| LY3009120         | RAF inhibitor                         | Investigational (Ph 1)  | -1    | -6,9  | -7,1  |
| LY3023414         | PI3K/mTOR inhibitor                   | Investigational (Ph 2)  | 3     | -6,1  | -2,2  |
| Marimastat        | MMP inhibitor                         | Investigational (Ph 3)  | 0     | -0,4  | -1    |
| Masitinib         | KIT inhibitor                         | Investigational (Ph 3)  | -12,6 | -11,8 | 0     |
| Megestrol acetate | Progestogen                           | Approved                | 0     | 0     | -2,5  |
| Mepacrine         | NF-kB inhibitor, p53 activator        | Approved                | -1,1  | 1,6   | -1,3  |

| Mercaptopurine                                                                                                                                                                                                                                                                                                                                                   | Antimetabolite                                                                                                                                                                                                                                                                                                                                                                                                     | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,1                                                                                                                                                                                                                                                                                                                                                                                                  | -5,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,1                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Merestinib                                                                                                                                                                                                                                                                                                                                                       | MET inhibitor                                                                                                                                                                                                                                                                                                                                                                                                      | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -12,8                                                                                                                                                                                                                                                                                                                                                                                                | -0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,9                                                                                                                                                                                         |
| Metformin                                                                                                                                                                                                                                                                                                                                                        | AMPK activator                                                                                                                                                                                                                                                                                                                                                                                                     | Approved (non-oncology)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                           |
| Methotrexate                                                                                                                                                                                                                                                                                                                                                     | Antimetabolite                                                                                                                                                                                                                                                                                                                                                                                                     | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0,3                                                                                                                                                                                                                                                                                                                                                                                                 | -11,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -15,9                                                                                                                                                                                       |
| Methylprednisolone                                                                                                                                                                                                                                                                                                                                               | Glucocorticoid                                                                                                                                                                                                                                                                                                                                                                                                     | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -30,1                                                                                                                                                                                                                                                                                                                                                                                                | -8,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10,1                                                                                                                                                                                       |
| Midostaurin                                                                                                                                                                                                                                                                                                                                                      | Broad range TKI                                                                                                                                                                                                                                                                                                                                                                                                    | Approved (US)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10                                                                                                                                                                                                                                                                                                                                                                                                  | -4,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                           |
| Milciclib                                                                                                                                                                                                                                                                                                                                                        | CDK inhibitor                                                                                                                                                                                                                                                                                                                                                                                                      | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                                                                                                                                                                                                                                                                                                                                                                   | -5,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10,9                                                                                                                                                                                       |
| Miltefosine                                                                                                                                                                                                                                                                                                                                                      | PI3K/AKT inhibitor                                                                                                                                                                                                                                                                                                                                                                                                 | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5,1                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,3                                                                                                                                                                                        |
| Mitomycin C                                                                                                                                                                                                                                                                                                                                                      | Antineoplastic agent                                                                                                                                                                                                                                                                                                                                                                                               | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                    | 4,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0,2                                                                                                                                                                                        |
| Mitotane                                                                                                                                                                                                                                                                                                                                                         | Antineoplastic agent                                                                                                                                                                                                                                                                                                                                                                                               | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2                                                                                                                                                                                                                                                                                                                                                                                                  | -8,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7,2                                                                                                                                                                                        |
| Mitoxantrone                                                                                                                                                                                                                                                                                                                                                     | Topoisomerase inhibitor                                                                                                                                                                                                                                                                                                                                                                                            | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4,8                                                                                                                                                                                                                                                                                                                                                                                                 | -1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2,1                                                                                                                                                                                        |
| Mivebresib                                                                                                                                                                                                                                                                                                                                                       | BET inhibitor                                                                                                                                                                                                                                                                                                                                                                                                      | Investigational (Ph 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2,2                                                                                                                                                                                                                                                                                                                                                                                                 | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13,6                                                                                                                                                                                       |
| MK-0752                                                                                                                                                                                                                                                                                                                                                          | gamma-secretase/notch<br>inhibitor                                                                                                                                                                                                                                                                                                                                                                                 | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                           |
| MK-2206                                                                                                                                                                                                                                                                                                                                                          | AKT inhibitor                                                                                                                                                                                                                                                                                                                                                                                                      | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,9                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,8                                                                                                                                                                                         |
| MK-8745                                                                                                                                                                                                                                                                                                                                                          | Aurora inhibitor                                                                                                                                                                                                                                                                                                                                                                                                   | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,2                                                                                                                                                                                                                                                                                                                                                                                                  | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,3                                                                                                                                                                                         |
| MK-8776                                                                                                                                                                                                                                                                                                                                                          | CHEK1 inhibitor                                                                                                                                                                                                                                                                                                                                                                                                    | Investigational (Ph 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3,2                                                                                                                                                                                                                                                                                                                                                                                                 | -2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,8                                                                                                                                                                                        |
| ML323                                                                                                                                                                                                                                                                                                                                                            | USP1-UAF1 inhibitor                                                                                                                                                                                                                                                                                                                                                                                                | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3                                                                                                                                                                                                                                                                                                                                                                                                  | -0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,5                                                                                                                                                                                        |
| ML390                                                                                                                                                                                                                                                                                                                                                            | DHODH inhibitor                                                                                                                                                                                                                                                                                                                                                                                                    | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0,4                                                                                                                                                                                        |
| Mocetinostat                                                                                                                                                                                                                                                                                                                                                     | HDAC inhibitor                                                                                                                                                                                                                                                                                                                                                                                                     | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,4                                                                                                                                                                                                                                                                                                                                                                                                 | -1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7,5                                                                                                                                                                                        |
| Molibresib                                                                                                                                                                                                                                                                                                                                                       | BET inhibitor                                                                                                                                                                                                                                                                                                                                                                                                      | Investigational (Ph 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,9                                                                                                                                                                                                                                                                                                                                                                                                 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7,3                                                                                                                                                                                        |
| Momelotinib                                                                                                                                                                                                                                                                                                                                                      | JAK inhibitor                                                                                                                                                                                                                                                                                                                                                                                                      | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,6                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                           |
| Motesanib                                                                                                                                                                                                                                                                                                                                                        | Broad range TKI                                                                                                                                                                                                                                                                                                                                                                                                    | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                    | -7,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8,5                                                                                                                                                                                        |
| Motolimod                                                                                                                                                                                                                                                                                                                                                        | TLR agonist                                                                                                                                                                                                                                                                                                                                                                                                        | Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                    | 1,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |
| MST-312                                                                                                                                                                                                                                                                                                                                                          | Telomerase inhibitor                                                                                                                                                                                                                                                                                                                                                                                               | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10,2                                                                                                                                                                                                                                                                                                                                                                                                | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1,3                                                                                                                                                                                        |
| MST-312<br>Mubritinib                                                                                                                                                                                                                                                                                                                                            | Telomerase inhibitor<br>HER inhibitor                                                                                                                                                                                                                                                                                                                                                                              | Probe<br>Investigational (Ph 1)                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10,2<br>2,6                                                                                                                                                                                                                                                                                                                                                                                         | 3,8<br>-3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,3<br>0,7                                                                                                                                                                                 |
| MST-312<br>Mubritinib<br>Napabucasin                                                                                                                                                                                                                                                                                                                             | Telomerase inhibitor<br>HER inhibitor<br>CSC inhibitor                                                                                                                                                                                                                                                                                                                                                             | Probe<br>Investigational (Ph 1)<br>Investigational (Ph 3)                                                                                                                                                                                                                                                                                                                                                                                                                 | -10,2<br>2,6<br>-8,4                                                                                                                                                                                                                                                                                                                                                                                 | 3,8<br>-3,2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,3<br>0,7<br>-3                                                                                                                                                                           |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax                                                                                                                                                                                                                                                                                                               | Telomerase inhibitor<br>HER inhibitor<br>CSC inhibitor<br>Bcl inhibitor                                                                                                                                                                                                                                                                                                                                            | Probe<br>Investigational (Ph 1)<br>Investigational (Ph 3)<br>Investigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                                       | -10,2<br>2,6<br>-8,4<br>-3,1                                                                                                                                                                                                                                                                                                                                                                         | 3,8<br>-3,2<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1,3<br>0,7<br>-3<br>-1,8                                                                                                                                                                   |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2                                                                                                                                                                                                                                                                                              | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitor                                                                                                                                                                                                                                                                                                                                   | Probe         Investigational (Ph 1)         Investigational (Ph 3)         Investigational (Ph 2)         Probe                                                                                                                                                                                                                                                                                                                                                          | -10,2<br>2,6<br>-8,4<br>-3,1<br>0                                                                                                                                                                                                                                                                                                                                                                    | 3,8<br>-3,2<br>0<br>0<br>-0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,3<br>0,7<br>-3<br>-1,8<br>0                                                                                                                                                              |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod                                                                                                                                                                                                                                                                              | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitor                                                                                                                                                                                                                                                                                                                     | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)                                                                                                                                                                                                                                                                                                                                                                        | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0                                                                                                                                                                                                                                                                                                                                                               | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8                                                                                                                                                         |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine                                                                                                                                                                                                                                                                | Telomerase inhibitor         HER inhibitor         CSC inhibitor         Bcl inhibitor         Necroptosis inhibitor         MAPK inhibitor         Synthase inhibitor                                                                                                                                                                                                                                             | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)Approved                                                                                                                                                                                                                                                                                                                                                                | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9                                                                                                                                                                                                                                                                                                                                                       | 3,8<br>-3,2<br>0<br>-0,8<br>0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4                                                                                                                                                  |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib                                                                                                                                                                                                                                                   | Telomerase inhibitor         HER inhibitor         CSC inhibitor         Bcl inhibitor         Necroptosis inhibitor         MAPK inhibitor         Synthase inhibitor         HER2/EGFR inhibitor                                                                                                                                                                                                                 | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)                                                                                                                                                                                                                                                                                                                                                   | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5                                                                                                                                                                                                                                                                                                                                               | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6                                                                                                                                          |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib                                                                                                                                                                                                                                      | Telomerase inhibitor         HER inhibitor         CSC inhibitor         Bcl inhibitor         Necroptosis inhibitor         MAPK inhibitor         Synthase inhibitor         HER2/EGFR inhibitor         Abl inhibitor                                                                                                                                                                                           | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApproved (US)Approved                                                                                                                                                                                                                                                                                                                                   | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6                                                                                                                                                                                                                                                                                                                                       | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>2<br>-0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0                                                                                                                                     |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib                                                                                                                                                                                                                         | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogen                                                                                                                                                                                                                                          | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApprovedApprovedApprovedApproved                                                                                                                                                                                                                                                                                                                        | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7                                                                                                                                                                                                                                                                                                                               | 3,8<br>-3,2<br>0<br>-0,8<br>0<br>2<br>2<br>-0,6<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3                                                                                                                                |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilutamide<br>Nintedanib                                                                                                                                                                                             | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitor                                                                                                                                                                                                                             | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApproved                                                                                                                                                                                                                                                                                        | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5                                                                                                                                                                                                                                                                                                                       | 3,8<br>-3,2<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7                                                                                                                         |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib                                                                                                                                                                                | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitor                                                                                                                                                                                                               | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApproved                                                                                                                                                                                                                                                        | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7                                                                                                                                                                                                                                                                                                               | 3,8<br>-3,2<br>0<br>-0,8<br>0<br>2<br>2<br>-0,6<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4                                                                                                                 |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib<br>NMS-873                                                                                                                                                                                  | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorp97/VCP inhibitor                                                                                                                                                                                              | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedApprovedProbeProbe                                                                                                                                                                                                                                                                              | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4                                                                                                                                                                                                                                                                                                       | 3,8<br>-3,2<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0                                                                                                            |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541                                                                                                                                                       | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorp97/VCP inhibitorIGF1R inhibitor                                                                                                                                                                               | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApproved (US)ApprovedApprovedApprovedApprovedApprovedProbeInvestigational (Ph 1)                                                                                                                                                                                                                                                                        | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2                                                                                                                                                                                                                                                                                               | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0                                                                                                       |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotamide<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226                                                                                                                                                       | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorIGF1R inhibitorPI3K/mTOR inhibitor                                                                                                                                                              | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)ApprovedApprovedApprovedApprovedApprovedInvestigational (Ph 1)Investigational (Ph 2)                                                                                                                                                                                                                                                               | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2<br>-1                                                                                                                                                                                                                                                                                         | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7                                                                                               |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712                                                                                                                           | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitor                                                                                                                                                              | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApproved (US)ApprovedApprovedApprovedApprovedInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 2)Probe                                                                                                                                                                                                         | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2<br>-1<br>-4,5                                                                                                                                                                                                                                                                                 | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7<br>-0,4                                                                                       |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-CGM097                                                                                                             | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitorp53-MDM2 inhibitor                                                                                                                                            | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)ApprovedApprovedApprovedApprovedApproved (US)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)                                                                                                                                                                              | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2<br>-1<br>-4,5<br>-8,1                                                                                                                                                                                                                                                                         | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7<br>-0,4<br>-2,6                                                                               |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-CGM097<br>NVP-LCL161                                                                                                            | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitorSMAC mimetic                                                                                                                                                  | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApprovedApproved (US)ApprovedApprovedApproved (US)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 2)                                                                                                                                          | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2<br>-1<br>-4,5<br>-8,1<br>-2,5                                                                                                                                                                                                                                                                 | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9<br>-0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7<br>-0,4<br>-2,6<br>-1,1                                                                       |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-CGM097<br>NVP-LCL161<br>NVP-LGK974                                                                                 | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitorSMAC mimeticPORCN inhibitor                                                                                                                                   | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)ApprovedApprovedApproved (US)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)                                                                                                      | $\begin{array}{c c} -10,2 \\ \hline 2,6 \\ \hline -8,4 \\ \hline -3,1 \\ 0 \\ \hline 0 \\ \hline 0 \\ -1,9 \\ \hline -3,5 \\ -2,6 \\ \hline -0,7 \\ -2,6 \\ \hline -0,7 \\ \hline -6,5 \\ \hline -1,7 \\ \hline -1,4 \\ \hline -9,2 \\ \hline -1 \\ \hline -4,5 \\ \hline -8,1 \\ \hline -2,5 \\ \hline -5 \\ \end{array}$                                                                           | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9<br>-0,7<br>-0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7<br>-0,4<br>-2,6<br>-1,1<br>0                                                                  |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-CGM097<br>NVP-LCL161<br>NVP-LGK974<br>NVP-RAF265                                                      | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitorSMAC mimeticPORCN inhibitorC-Raf inhibitor                                                                                                                    | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)ApprovedApproved (US)Approved (US)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 2)Investigational (Ph 1)Investigational (Ph 2)Investigational (Ph 2)Investigational (Ph 2)                          | $\begin{array}{c c} -10,2 \\ \hline 2,6 \\ \hline -8,4 \\ \hline -3,1 \\ \hline 0 \\ \hline 0 \\ \hline -1,9 \\ \hline -3,5 \\ \hline -2,6 \\ \hline -0,7 \\ \hline -6,5 \\ \hline -0,7 \\ \hline -6,5 \\ \hline -1,7 \\ \hline -4,5 \\ \hline -1,4 \\ \hline -9,2 \\ \hline -1 \\ \hline -4,5 \\ \hline -8,1 \\ \hline -2,5 \\ \hline -5 \\ \hline -4 \\ \end{array}$                               | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9<br>-0,7<br>-0,6<br>-2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7<br>-0,4<br>-2,6<br>-1,1<br>0<br>-0,6                                                          |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotinib<br>Nilotamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-BHG712<br>NVP-CGM097<br>NVP-LCL161<br>NVP-LGK974<br>NVP-RAF265<br>NVP-SHP099                          | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitorSMAC mimeticPORCN inhibitorSHP2 inhibitor                                                                                                                     | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)Approved (US)ApprovedApprovedApprovedInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 2)Investigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 2)ProbeProbeInvestigational (Ph 2)Probe                                                    | $\begin{array}{c c} -10,2 \\ \hline 2,6 \\ \hline -8,4 \\ \hline -3,1 \\ \hline 0 \\ \hline 0 \\ \hline -1,9 \\ \hline -3,5 \\ \hline -2,6 \\ \hline -0,7 \\ \hline -6,5 \\ \hline -0,7 \\ \hline -6,5 \\ \hline -1,7 \\ \hline -4,5 \\ \hline -1,7 \\ \hline -1,4 \\ \hline -9,2 \\ \hline -1 \\ \hline -4,5 \\ \hline -8,1 \\ \hline -2,5 \\ \hline -5 \\ \hline -4 \\ \hline -0,8 \\ \end{array}$ | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9<br>-0,7<br>-0,6<br>-2,4<br>-0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,3<br>0,7<br>-3<br>-1,8<br>0<br>8<br>7,4<br>-0,6<br>0<br>3<br>9,7<br>-7,4<br>0<br>0<br>-1,7<br>-0,4<br>-2,6<br>-1,1<br>0<br>-0,6<br>0                                                     |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilotinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-BGT226<br>NVP-BHG712<br>NVP-CGM097<br>NVP-LCL161<br>NVP-LGK974<br>NVP-RAF265<br>NVP-SHP099<br>ODM-201 | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorPI3K/mTOR inhibitorEphB4 inhibitorSMAC mimeticPORCN inhibitorSHP2 inhibitorSHP2 inhibitorAAR antagonist                                                                                         | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)ApprovedApprovedApproved (US)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 3)                                                | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2<br>-1<br>-1,4<br>-9,2<br>-1<br>-4,5<br>-8,1<br>-2,5<br>-5<br>-4<br>-0,8<br>-0,5                                                                                                                                                                                                               | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9<br>-0,7<br>-0,6<br>-2,4<br>-0,4<br>4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{r} -1,3\\ 0,7\\ -3\\ -1,8\\ 0\\ 8\\ 7,4\\ -0,6\\ 0\\ 3\\ 9,7\\ -7,4\\ 0\\ 0\\ -7,4\\ 0\\ 0\\ -1,7\\ -0,4\\ -2,6\\ -1,1\\ 0\\ -0,6\\ 0\\ -0,6\\ 0\\ -6\end{array} $          |
| MST-312<br>Mubritinib<br>Napabucasin<br>Navitoclax<br>Necrostatin 2<br>Neflamapimod<br>Nelarabine<br>Neratinib<br>Nilotinib<br>Nilutamide<br>Nintedanib<br>Niraparib<br>NMS-873<br>NVP-AEW541<br>NVP-BGT226<br>NVP-BHG712<br>NVP-BHG712<br>NVP-CGM097<br>NVP-LCL161<br>NVP-LCL161<br>NVP-LGK974<br>NVP-RAF265<br>NVP-SHP099<br>ODM-201<br>Olaparib               | Telomerase inhibitorHER inhibitorCSC inhibitorBcl inhibitorNecroptosis inhibitorMAPK inhibitorSynthase inhibitorHER2/EGFR inhibitorAbl inhibitorNonsteriodal antiandrogenRTK inhibitorPARP inhibitorIGF1R inhibitorP13K/mTOR inhibitorEphB4 inhibitorSMAC mimeticPORCN inhibitorSHP2 inhibitorAAC mimeticPARP inhibitorAAC mineticPARP inhibitorAAC mineticPARP inhibitorSHP2 inhibitorAR antagonistPARP inhibitor | ProbeInvestigational (Ph 1)Investigational (Ph 3)Investigational (Ph 2)ProbeInvestigational (Ph 2)ApprovedApproved (US)ApprovedApprovedApproved (US)ProbeInvestigational (Ph 1)Investigational (Ph 2)ProbeInvestigational (Ph 2)ProbeInvestigational (Ph 3)Approved | -10,2<br>2,6<br>-8,4<br>-3,1<br>0<br>0<br>-1,9<br>-3,5<br>-2,6<br>-0,7<br>-6,5<br>-1,7<br>-1,4<br>-9,2<br>-1<br>-1,4<br>-9,2<br>-1<br>-4,5<br>-8,1<br>-2,5<br>-5<br>-4<br>-0,8<br>-0,5<br>0,8                                                                                                                                                                                                        | 3,8<br>-3,2<br>0<br>0<br>-0,8<br>0<br>2<br>-0,6<br>0<br>0<br>0<br>-2,2<br>-3<br>1<br>0,6<br>-3,9<br>-0,7<br>-0,6<br>-2,4<br>-0,6<br>-2,4<br>-0,6<br>-2,4<br>-0,6<br>-2,4<br>-0,7<br>-0,6<br>-2,4<br>-0,7<br>-0,6<br>-2,4<br>-0,7<br>-0,6<br>-2,7<br>-0,7<br>-0,6<br>-2,9<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,7<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9<br>-0,9 | $ \begin{array}{r} -1,3\\ 0,7\\ -3\\ -1,8\\ 0\\ 8\\ 7,4\\ -0,6\\ 0\\ 3\\ 9,7\\ -7,4\\ 0\\ 0\\ -7,4\\ 0\\ 0\\ -1,7\\ -0,4\\ -2,6\\ -1,1\\ 0\\ -0,6\\ 0\\ -6\\ 0\\ 0\\ -6\\ 0\\ \end{array} $ |

| Omacetaxine   | Protein synthesis inhibitor  | Approved               | -5,9  | 0,5   | 4,4   |
|---------------|------------------------------|------------------------|-------|-------|-------|
| Omaveloxolone | Nrf2 activator               | Investigational (Ph 2) | 6,7   | 2,9   | -5,1  |
| Omipalisib    | PI3K/mTOR inhibitor          | Investigational (Ph 1) | -7,9  | -9,1  | -7,9  |
| Onalespib     | HSP90 inhibitor              | Investigational (Ph 2) | -5    | -6,1  | -6,5  |
| ONX-0914      | LMP7                         | Probe                  | 1     | 3,3   | 6,5   |
| Oprozomib     | Proteasome inhibitor         | Investigational (Ph 1) | -2,8  | 2,3   | 1,8   |
| Orteronel     | Androgen synthesis inhibitor | Investigational (Ph 3) | 0,6   | 0     | -3,3  |
| Osimertinib   | RTK inhibitor                | Approved               | -7,7  | -1,1  | -7,9  |
| OSU-03012     | PDPK1 inhibitor              | Investigational (Ph 1) | 0     | 0     | 0     |
| OTS-964       | TOPK inhibitor               | Probe                  | -4,1  | -0,2  | 0     |
| OTS167        | MELK inhibitor               | Investigational (Ph 2) | 1,1   | -1,3  | -1,5  |
| Oxaliplatin   | Antineoplastic agent         | Approved               | -1,9  | 4,7   | 1     |
| PAC-1         | procaspase-3 activator       | Investigational (Ph 1) | 0,4   | 0     | -0,9  |
| Paclitaxel    | Mitotic inhibitor            | Approved               | -0,4  | -0,1  | -10,8 |
| Pacritinib    | FLT3/JAK inhibitor           | Investigational (Ph 3) | -8,9  | -3,2  | -5,5  |
| Palbociclib   | CDK inhibitor                | Approved               | -5,1  | -1,8  | -10   |
| Palomid-529   | AKT/mTOR/PI3K inhibitor      | Investigational (Ph 1) | -6,9  | 0     | -4,7  |
| Panobinostat  | HDAC inhibitor               | Approved               | 0,3   | 0     | -3,5  |
| Pazopanib     | Broad range TKI              | Approved               | -5,3  | 0     | -0,5  |
| PCI-34051     | HDAC inhibitor               | Probe                  | -2,9  | 0     | -1,7  |
| PD0325901     | MEK inhibitor                | Investigational (Ph 2) | 0,5   | -12,6 | -4,2  |
| Peficitinb    | JAK inhibitor                | Investigational (Ph 3) | 1     | -5,5  | -0,4  |
| Pemetrexed    | Reductase inhibitor          | Approved               | 3,3   | -1,5  | -4,5  |
| Pentostatin   | Antimetabolite               | Approved               | 3,4   | -5,5  | -8    |
| Perifosine    | AKT inhibitor                | Investigational (Ph 3) | -0,7  | 0,2   | -2,2  |
| Pevonedistat  | NAE inhibitor                | Investigational (Ph 1) | 7,5   | 13,8  | 6,6   |
| Pexidartinib  | Broad range TKI              | Investigational (Ph 3) | -9,9  | 0     | 0     |
| PF-00477736   | Chk1 inhibitor               | Investigational (Ph 1) | -1,1  | -6,8  | -8,8  |
| PF-00562271   | FAK inhibitor                | Investigational (Ph 1) | -7,7  | -7,3  | 0     |
| PF-03758309   | PAK inhibitor                | Investigational (Ph 1) | -5,8  | -4,1  | 0     |
| PF-04708671   | p70S6K inhibitor             | Probe                  | -1,6  | 0     | -3,5  |
| PF-06463922   | ALK inhibitor                | Investigational (Ph 2) | 0     | 0     | 0     |
| PF-3845       | FAAH inhibitor               | Probe                  | 1,5   | -5    | 1,8   |
| PF-4800567    | CK1 inhibitor                | Probe                  | -2,2  | 0     | -0,5  |
| PF-670462     | CK1 inhibitor                | Probe                  | -1,6  | -1    | 0,4   |
| PF06650833    | IRAK4 inhibitor              | Investigational (Ph 2) | 0,7   | 0     | -0,4  |
| PFI-1         | BET inhibitor                | Probe                  | 0     | 0,8   | 0     |
| PH-797804     | MAPK inhibitor               | Investigational (Ph 2) | 0     | -0,2  | 12,9  |
| PHA 408       | IKK-2 inhibitor              | Probe                  | -3,6  | -1,8  | -6,3  |
| Pictilisib    | PI3K inhibitor               | Investigational (Ph 2) | -10,5 | -10,5 | -5    |
| Pilocarpine   | Muscarinic receptor agonist  | Approved               | 0     | 0     | 0     |
| PIM-447       | PIM inhibitor                | Investigational (Ph 1) | 1,3   | -3,2  | -10,4 |
| Pinometostat  | DOT1L inhibitor              | Investigational (Ph 1) | -2    | 0     | -0,3  |
| Pirfenidone   | Antifibrotic                 | Approved               | -2,1  | 0     | 0     |
| Pixantrone    | Topoisomerase inhibitor      | Investigational (Ph 3) | -3    | 2,3   | 0     |
| Plerixafor    | CXCR4 agonist                | Approved               | 0,5   | 4,6   | 0     |
| Plicamycin    | DNA/RNA synthesis inhibitor  | Approved               | 2,4   | 0     | 0     |
| Pomalidomide  | Anti-angiogenic              | Approved               | -8    | 1,3   | 0     |

| Ponatinib     | Broad range TKI                     | Approved                | -7,6  | -3,6  | -4,7  |
|---------------|-------------------------------------|-------------------------|-------|-------|-------|
| Poziotinib    | HER inhibitor                       | Investigational (Ph 2)  | -1,5  | -19,3 | -1,6  |
| Pracinostat   | HDAC inhibitor                      | Investigational (Ph 2)  | 3,1   | 0     | -5    |
| Pravastatin   | Reductase inhibitor                 | Approved (non-oncology) | 0,9   | 2,2   | -1    |
| Prednisolone  | Glucocorticoid                      | Approved                | -14,6 | -12,9 | 0     |
| Prexasertib   | Chk1 inhibitor                      | Investigational (Ph 2)  | 23,8  | -18,5 | 11    |
| PS-1145       | IKK-2 inhibitor                     | Probe                   | 0     | -0,5  | 2,4   |
| PTC-209       | BMI-1 inhibitor                     | Probe                   | -6,5  | -0,2  | 0,6   |
| Quisinostat   | HDAC inhibitor                      | Investigational (Ph 2)  | -0,1  | 0     | -10   |
| Quizartinib   | FLT3 inhibitor                      | Investigational (Ph 3)  | -13,3 | 0     | 0     |
| Rabusertib    | Chk1 inhibitor                      | Investigational (Ph 2)  | 5,8   | -0,4  | -2,6  |
| Radotinib     | BCR-ABL1 inhibitor                  | Investigational (Ph 3)  | 0     | 0     | 0     |
| Ralimetinib   | MAPK inhibitor                      | Investigational (Ph 2)  | -0,7  | -0,1  | 3,5   |
| Raloxifene    | Estrogen receptor modulator         | Approved                | -1,2  | -3,7  | -8,7  |
| Raltitrexed   | Synthase inhibitor                  | Approved                | 10,4  | 0,3   | -10,5 |
| Ravoxertinib  | ERK inhibitor                       | Investigational (Ph 1)  | -0,7  | -5,7  | -6,3  |
| Regorafenib   | B-Raf inhibitor                     | Approved                | -2,1  | -6,3  | 1,6   |
| Resatorvid    | TLR agonist                         | Investigational (Ph 3)  | 0     | 0     | 0     |
| Resiquimod    | TLR agonist                         | Investigational (Ph 2)  | 8     | 0     | 0     |
| Resminostat   | HDAC inhibitor                      | Investigational (Ph 2)  | -4,7  | -5    | -9,4  |
| RGFP966       | HDAC inhibitor                      | Probe                   | -6,9  | 0     | 0     |
| Ribociclib    | CDK inhibitor                       | Approved (US)           | -0,9  | -0,6  | -6,4  |
| Ridaforolimus | mTOR inhibitor                      | Investigational (Ph 3)  | 4,1   | -2,1  | -3,1  |
| Rigosertib    | Ras-Raf interaction inhibitor       | Investigational (Ph 3)  | -6,6  | -0,1  | -14,7 |
| Ripasudil     | ROCK inhibitor                      | Approved (Japan)        | -7,4  | -0,1  | -2,1  |
| RO5126766     | RAF/MEK inhibitor                   | Investigational (Ph 1)  | -0,2  | -2,7  | -0,9  |
| Rociletinib   | EGFR Inhibitor                      | Investigational (Ph 3)  | -3,2  | -4,6  | -5    |
| Rocilinostat  | HDAC inhibitor                      | Investigational (Ph 1)  | 1,7   | -6,1  | -4    |
| Romidepsin    | HDAC inhibitor                      | Approved                | 3,7   | -15,8 | -2,9  |
| Roxadustat    | HIF prolyl hydroxylase<br>inhibitor | Investigational (Ph 2)  | 3,6   | 0     | -0,4  |
| RSL3          | GPX4 inhibitor                      | Probe                   | 3,6   | 0     | -0,1  |
| Ruboxistaurin | PKC inhibitor                       | Investigational (Ph 3)  | -4,6  | -2,2  | -8,9  |
| Rucaparib     | PARP inhibitor                      | Approved (US)           | -2,5  | 1,2   | 0     |
| Ruxolitinib   | JAK inhibitor                       | Approved                | 7,9   | -18   | 0,3   |
| S-63845       | MCL-1 inhibitor                     | Probe                   | -5,9  | -0,1  | 0     |
| Sabutoclax    | Bcl inhibitor                       | Probe                   | -5,2  | 0,1   | -4,5  |
| Salinomycin   | Ionophore                           | Veterinary approval     | -0,6  | 7,8   | 5,7   |
| Sapanisertib  | mTOR inhibitor                      | Investigational (Ph 1)  | 3,5   | -5,3  | -4,8  |
| Sapitinib     | HER inhibitor                       | Investigational (Ph 2)  | -0,3  | 0     | 2     |
| SAR405838     | MDM2 inhibitor                      | Investigational (Ph 1)  | -5,8  | 0,7   | -4    |
| Saracatinib   | Abl-Src inhibitor                   | Investigational (Ph 3)  | -7,3  | 0     | 0     |
| Saridegib     | Hedgehog signaling inhibitor        | Investigational (Ph 2)  | -5,6  | 0     | 0     |
| SB 743921     | Mitotic inhibitor                   | Investigational (Ph 2)  | 7,9   | -1,2  | 9,7   |
| SCH772984     | ERK inhibitor                       | Probe                   | -8,6  | -15,7 | -12,2 |
| Seliciclib    | CDK inhibitor                       | Investigational (Ph 2)  | 1,8   | -1,2  | -1,5  |
| Selinexor     | XPO1/CRM1 inhibitor                 | Investigational (Ph 2)  | -1,6  | -7,6  | -8,4  |
| Selonsertib   | ASK1 inhibitor                      | Investigational (Ph 2)  | -1,4  | 0     | 0     |

| Selumetinib          | MEK inhibitor                         | Investigational (Ph 3)  | -3,8  | -10,2 | -2,9  |
|----------------------|---------------------------------------|-------------------------|-------|-------|-------|
| Senexin B            | CDK inhibitor                         | Probe                   | -4,2  | -0,2  | -2    |
| Sepantronium bromide | Survivin inhibitor                    | Investigational (Ph 2)  | -1    | 2     | -3,8  |
| Serabelisib          | PI3K inhibitor                        | Investigational (Ph 2)  | -11,5 | -1,7  | 0     |
| SGC-CBP30            | CREBBP/EP300 bromodomain<br>inhibitor | Probe                   | -2,3  | -2,7  | -16,3 |
| SGC0946              | DOT1L inhibitor                       | Probe                   | -4,6  | 0     | 1,8   |
| SGI-1776             | PIM inhibitor                         | Investigational (Ph 1)  | -12,6 | -4,9  | -2,7  |
| SH-4-54              | STAT3 inhibitor                       | Probe                   | -1,6  | -5,7  | -3    |
| Silmitasertib        | CSNK2A1 inhibitor                     | Investigational (Ph 2)  | -0,3  | 0,7   | -7,9  |
| Simvastatin          | Reductase inhibitor                   | Approved (non-oncology) | 0     | 2,9   | -0,9  |
| Sirolimus            | mTORC inhibitor                       | Approved                | 1,3   | -0,1  | -3,7  |
| Sitravatinib         | Broad range TKI                       | Investigational (Ph 1)  | -15   | -2,4  | 2,3   |
| SN-38                | Topoisomerase inhibitor               | (Approved)              | -3,4  | -5,6  | -0,4  |
| SNS-032              | CDK inhibitor                         | Investigational (Ph 2)  | -0,3  | 0,1   | 3,5   |
| Sonidegib            | Hedgehog signaling inhibitor          | Approved                | 0     | -0,7  | -0,4  |
| Sonolisib            | PI3K inhibitor                        | Investigational (Ph 2)  | -2,6  | 0     | 0     |
| Sorafenib            | Broad range TKI                       | Approved                | -12,9 | 0     | -1,2  |
| Sotrastaurin         | PKC inhibitor                         | Investigational (Ph 2)  | -1,9  | -4,6  | -15,2 |
| Spebrutinib          | BTK inhibitor                         | Investigational (Ph 2)  | -5,7  | -10,4 | -7,1  |
| StemRegenin 1        | AHR antagonist                        | Probe                   | -1,9  | 0     | -0,2  |
| Sunitinib            | Broad range TKI                       | Approved                | -5,8  | -0,4  | 0     |
| Tacedinaline         | HDAC inhibitor                        | Investigational (Ph 3)  | 0     | 0     | 0     |
| Tacrolimus           | Calcineurin inhibitor                 | Approved                | -0,2  | 0     | 31,2  |
| TAK-285              | HER inhibitor                         | Investigational (Ph 1)  | -1,7  | 0     | -0,4  |
| TAK-530              | RAF inhibitor                         | Investigational (Ph 1)  | -2,1  | -2,6  | 4,8   |
| TAK-901              | Broad range TKI                       | Investigational (Ph 1)  | -3,3  | -3,5  | 0     |
| Taladegib            | Hedgehog signaling inhibitor          | Investigational (Ph 2)  | 3,8   | 0     | 0     |
| Talazoparib          | PARP inhibitor                        | Investigational (Ph 3)  | -1,1  | 0     | 0     |
| Talmapimod           | MAPK inhibitor                        | Investigational (Ph 2)  | -0,5  | -0,4  | 6,5   |
| Tamatinib            | Syk inhibitor                         | Investigational (Ph 1)  | -2,3  | -12,3 | -2,8  |
| Tamoxifen            | Estrogen receptor modulator           | Approved                | 1,6   | -1,3  | -4,2  |
| Tandutinib           | Broad range TKI                       | Investigational (Ph 2)  | -3,2  | 0     | 0     |
| Tanzisertib          | JNK inhibitor                         | Investigational (Ph 2)  | -0,1  | -2,9  | 4,3   |
| Tarenflurbil         | Gamma-secretase inhibitor             | Investigational (Ph 3)  | 0     | 0     | 0     |
| Taselisib            | PI3K inhibitor                        | Investigational (Ph 3)  | -8,9  | -6,2  | -5,1  |
| Tasquinimod          | Immunomodulator                       | Investigational (Ph 3)  | -0,4  | 0     | -4    |
| Tazemetostat         | EZH2 inhibitor                        | Investigational (Ph 2)  | -0,6  | -1,1  | 2     |
| Telatinib            | VEGFR inhibitor                       | Investigational (Ph 2)  | 0,3   | 0,1   | 0     |
| Temozolomide         | Alkylating agent                      | Approved                | 0     | 0,2   | -0,4  |
| Temsirolimus         | mTORC inhibitor                       | Approved                | 7,9   | -0,1  | 0     |
| Teniposide           | Topoisomerase inhibitor               | Approved                | 0     | -0,8  | 1     |
| Tepotinib            | MET inhibitor                         | Investigational (Ph 1)  | 0     | -2,9  | 0     |
| Tesevatinib          | RTK inhibitor                         | Investigational (Ph 2)  | -4    | 0     | -4,2  |
| IEW-7197             | ALK inhibitor                         | Investigational (Ph 1)  | 0     | 0     | 5,6   |
| IG100-115            | PI3K inhibitor                        | Investigational (Ph 2)  | 0,9   | 0     | -0,9  |
| TGR-1202             | PI3K inhibitor                        | Investigational (Ph 3)  | 0,1   | 0     | -5,6  |
| TGX-221              | PI3K inhibitor                        | Probe                   | -2,6  | -5,3  | -8,2  |

| TH588         | MTH1 inhibitor                 | Probe                  | -2,2       | -0,5  | -2,3      |
|---------------|--------------------------------|------------------------|------------|-------|-----------|
| Thalidomide   | Immunosuppressant              | Approved               | -1,3       | -6,6  | -7,2      |
| Thioguanine   | Antimetabolite                 | Approved               | -0,9       | -2,4  | -2,3      |
| THZ2          | CDK inhibitor                  | Probe                  | -13,7      | 0,4   | 1,3       |
| TIC10         | ERK/AKT inhibitor              | Investigational (Ph 2) | -0,4       | 0,1   | 9,7       |
| Tideglusib    | GSK3 inhibitor                 | Investigational (Ph 2) | 0          | -1,4  | 0         |
| Tipifarnib    | Farnesyltransferase inhibitor  | Investigational (Ph 3) | -3,3       | -22   | 3,2       |
| Tirabrutinib  | BTK inhibitor                  | Investigational (Ph 1) | 0          | -7,1  | -3,7      |
| Tivantinib    | MET inhibitor                  | Investigational (Ph 2) | 4          | 0,4   | 5,5       |
| Tivozanib     | VEGFR inhibitor                | Investigational (Ph 3) | -10,9      | 5,8   | 6,3       |
| Tofacitinib   | JAK inhibitor                  | Approved               | 5,7        | -7,6  | 1,2       |
| Topotecan     | Topoisomerase inhibitor        | Approved               | -1         | -1,8  | 1,8       |
| Toremifene    | Estrogen receptor modulator    | Approved               | -2,1       | 0     | -4,8      |
| Tosedostat    | Aminopeptidase inhibitor       | Investigational (Ph 3) | 5,2        | -1,4  | -6,1      |
| Tozasertib    | Aurora inhibitor               | Investigational (Ph 2) | -4,9       | 6,9   | 6,5       |
| TRAM-34       | Ca2+-activated K+ channel      | Probe                  | 0,7        | 2,5   | 0         |
| Tramatinih    | inh.<br>MEK inhibitor          | Approved               | 1 2        | 0.5   | 1.1       |
| Traticolin    |                                | Approved               | -4,3       | -7,5  | -4,4      |
| Trianin       | Retinoic acid receptor agonist | Approved               | -1,/       | 4     | -4,4      |
| Triairibina   |                                | Investigational (Ph 2) | -1,1       | -0,4  | -3,3      |
| Trifluriding  |                                | Approved               | 1,2        | -1,1  | 0         |
| Tubacia       |                                | Approved               | -0,0       | -7,3  | 20        |
|               |                                | Probe                  | -4,4       | 1.0   | 2,0       |
|               |                                | Probe                  | -3,0       | -1,7  | 2,1       |
| Tucatinio     |                                | Investigational (Fn T) | -4,1       | 1,4   | 0         |
|               | Reatoin kinggo inhibitor       | Investigational (Ph 2) | -2,1       | -0,7  | -4,0      |
| UCIN-UI       | ERK inhibitor                  | Investigational (Ph 2) | -4,1       | -3,5  | -3,0<br>F |
|               |                                | Brobo                  | -1,7       | -0,2  | -5        |
|               |                                | Probe                  | -5,6       | 0     | -4,7      |
|               | G9a/GLF inhibitor              | Probe                  | -5         | -0,0  | -4,7      |
|               | G9a/GLP Inhibitor              | Probe                  | 0          | -0,8  | -1,2      |
|               |                                | Probe                  | 5.9        | 0,1   | 0.4       |
|               |                                | house (Dh. 2)          | -5,0       | -1,5  | -0,4      |
| Uprocortib    |                                | Investigational (Ph 2) | 5,5<br>2 1 | -11,1 | 4         |
|               |                                | Investigational (Ph 1) | -2,1       | 0     | -1        |
| Valoroic acid | HDAC inhibitor                 |                        | 0          | -4,0  | 22        |
| Valrubicin    |                                | Approved               | 37         | 0,5   | ۲,۲       |
| Vandotanih    | Broad range TKI                | Approved               | -3,7       | -1,4  | -0        |
| Varesoladib   | Secretory phospholipase A2     | Investigational (Ph 2) | -2,7       | _1 5  | 0,4       |
| Valesplacib   | inhibitor                      |                        | Ŭ          | -1,5  | 0         |
| Varlitinib    | HER2/EGFR inhibitor            | Investigational (Ph 2) | 0          | 2,2   | 0         |
| Vatalanib     | VEGFR inhibitor                | Investigational (Ph 3) | 0          | 0     | -2,9      |
| VE-821        | ATR inhibitor                  | Probe                  | -3,1       | 0     | 0         |
| Veliparib     | PARP inhibitor                 | Investigational (Ph 3) | 0          | -0,5  | -1,4      |
| Vemurafenib   | B-Raf inhibitor                | Approved               | -1         | 0     | 0,3       |
| Venetoclax    | Bcl inhibitor                  | Approved (US)          | -2,8       | 3,4   | -1,7      |
| VER 155008    | HSP70 inhibitor                | Probe                  | 0          | 0,2   | 6,1       |
| Verdinexor    | XPO1/CRM1 inhibitor            | Investigational (Ph 1) | -5,1       | 2,6   | -1,7      |

| Vesatolimod  | TLR agonist                            | Investigational (Ph 2) | 0     | 0    | 0     |
|--------------|----------------------------------------|------------------------|-------|------|-------|
| VGX-1027     | Immunomodulator                        | Investigational (Ph 1) | 0,4   | 0    | 0     |
| Vidofludimus | DHODH inhibitor                        | Investigational (Ph 2) | -10,2 | 0    | -9    |
| Vinblastine  | Mitotic inhibitor                      | Approved               | -0,1  | 5,1  | -2,3  |
| Vincristine  | Mitotic inhibitor                      | Approved               | -0,7  | 1,4  | -0,4  |
| Vinflunine   | Mitotic inhibitor                      | Approved               | -1,6  | 1,3  | 0     |
| Vinorelbine  | Mitotic inhibitor                      | Approved               | -13,6 | -6,3 | -13,2 |
| Vismodegib   | Hedgehog signaling inhibitor           | Approved               | -0,1  | 0    | -0,1  |
| Vistusertib  | mTOR inhibitor                         | Investigational (Ph 2) | 2,4   | 1,2  | -3    |
| VLX1570      | proteasome deubiquitinase<br>inhibitor | Investigational (Ph 2) | -2    | 2,9  | 6,2   |
| Volasertib   | PLK1 inhibitor                         | Investigational (Ph 3) | -2,5  | 0,8  | -4,5  |
| Vorinostat   | HDAC inhibitor                         | Approved               | 1,1   | -3,8 | -2,9  |
| VS-4718      | FAK inhibitor                          | Investigational (Ph 1) | -5,6  | -3,9 | 5,3   |
| WEHI-539     | Bcl inhibitor                          | Probe                  | 0     | -6,1 | 0     |
| XAV-939      | Tankyrase-1 and -2                     | Probe                  | 0     | -0,6 | -1    |
| ZSTK474      | PI3K inhibitor                         | Investigational (Ph 1) | -8,9  | -8,4 | 0     |