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Abstract—Machine and deep learning (DL) offer significant op-
portunities for exploring and monitoring oceans and for tackling
important problems ranging from litter and oil spill detection
to marine biodiversity estimation. Reasonably priced hardware
platforms, in the form of autonomous (AUV) and remote operated
(ROV) underwater vehicles, are also becoming available, fuelling
the growth of data and offering new types of application areas.
DL not only supports emerging applications that harness this
data but offers support for operating such platforms. This
article presents a research vision for DL in the oceans, collating
applications and use cases, identifying opportunities, constraints,
and open research challenges. We conduct experiments on
underwater marine litter detection to demonstrate the benefits
DL can bring to underwater environments. Our results show
that integrating DL in underwater explorations can automate
and scale-up monitoring, and highlight practical challenges in
enabling underwater operations. We also provide a research
roadmap for the path forward.

Index Terms—Pervasive Computing, Underwater Sensing, In-
ternet of Underwater Things, Marine Litter, Sea, Aquatic
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I. INTRODUCTION

The oceans have long contested the role of being the last
frontier for science, and this role holds also for computing
research. Indeed, while other difficult to reach environments
have recently gained significant research momentum, the same
cannot be said for oceans. For example, increasing availability
of satellite data and the emergence of diverse space applica-
tions have resulted in computing for space gaining momentum
whereas estimates suggest that over 90% of the oceans and
seabed still remains unexplored [1]. The difficulty of operating
computing underwater also means that, even when computing
support is available, data from the deep seas remains a scarce
commodity [2].

Despite the difficulty in operating computing underwater,
novel application areas for the oceans are steadily emerging,
paving opportunities for underwater computing platforms to
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Fig. 1: Deep learning applications for oceans include, under-
water pipeline, ship pollution and wildlife monitoring using
underwater computing infrastructure.

support these investigations. Marine scientists and oceanogra-
phers are increasingly using machine learning (ML) techniques
(mostly in the aftermath of their surveys) to analyse under-
water video footage, e.g., for estimating biodiversity and the
condition of the marine ecosystem [3], whereas oil companies
use remote operated underwater vehicles to inspect and mon-
itor pipeline integrity [4]. As these examples also illustrate,
computer vision tends to play a central role in many of the
emerging underwater applications [5]. This is mainly due to
cameras being one of the few sensors that operate unhindered
underwater and that are unobtrusive to marine ecosystems.
The importance of vision-based data not only offers significant
opportunities for harnessing deep learning (DL) but also for
applied ML to support deep sea applications. However, it also
presents constraints on the platforms that operate it and chal-
lenges in ensuring the technique can operate accurately [6].
Currently, the machine learning algorithms typically operate
offline, by analysing footage gathered by divers or remote
operated vessels [3]. With advances in underwater hardware
and DL for constrained devices it should be possible to enable
DL to operate directly as part of the underwater operations. For
example, autonomous underwater vehicles can integrate DL
techniques directly on them, enabling real-time analytics and
applications. Such a development would significantly increase
the scale of deep sea applications, and offer a pathway to
scientific and commercial breakthroughs.



This article presents a research vision for DL in the oceans.
The vision, illustrated in Figure 1, integrates DL directly as
part of underwater operations to offer timely access to data and
insights about the underwater environment. The computing can
either be integrated into (autonomous or remotely operated)
underwater vehicles (AUVs or ROVs) or equipment carried
by people (e.g., dive computers or other portable diving equip-
ment). Realising this vision is currently challenging due to the
constraints and challenges underwater environments pose for
operating computing, and especially DL. We collate different
application areas and hardware and software platforms to
provide an overview of the current research landscape, and to
identify key constraints and open challenges. We also present
proof-of-concept experiments focusing on underwater litter
monitoring to demonstrate the feasibility of using DL under-
water. The results highlight how DL can significantly scale
up underwater monitoring and offer more timely and detailed
insights about the state of underwater environments than what
is currently possible. The article ends with a reflection on the
current research landscape, establishing a roadmap for future
explorations.

II. APPLICATIONS FOR UNDERWATER DEEP LEARNING

Underwater computing has traditionally operated as part
of dedicated sensor networks [4]. Recent years have seen an
increasing shift toward applications that rely on autonomous or
remotely operated vehicles [2] and offline analysis of footage
collected from dedicated underwater operations [3]. DL can
support automated analysis of the data collected through these
techniques and, as envisioned in this paper, even operate
as part of the underwater vehicles that are responsible for
collecting the data [2]. Besides supporting different monitoring
applications, DL can also be used to optimize the operation
of (autonomous or remote operated) underwater vehicles and
other infrastructure such as seabed sensor networks and buoys
integrating computing capabilities. Below, we briefly survey
and analyse current application domains for DL in the oceans.

Marine sciences are increasingly harnessing underwater data,
e.g., to estimate biodiversity or the condition of sensitive
marine areas, such as reefs. Currently, the most common
approach is to collect video footage through dive surveys and
to analyse the data offline. There have been some initiatives
to develop dedicated machine learning models, e.g., using
Support Vector Machines (SVMs) and Convolutional Neural
Networks (CNNs), that can support these tasks. Examples
include the use of machine learning for analysing underwater
audio signals to discriminate whales and dolphins [7] or the
use of DL to identify different fish species [3]. Integrating
such algorithms directly onto underwater vehicles (AUVs or
ROVs) can scale up these surveys and pave the way to semi-
autonomous operations.

Marine litter detection, especially for underwater plastics, is
a key environmental sustainability challenge where computing
support can bring significant benefits [2]. Learning about
marine litter also allows understanding the extent of human
activities and helps to limit activities to be compliant with

wildlife preservation standards. In the literature, there are ef-
forts to develop dedicated DL models for identifying litter, but
these are mostly trained with images taken on the surface and
these models fail to recognise the same objects in underwater
environments. The models should be further challenged by
exposing them to the real underwater setting where they can
be developed as methods to support discriminating individual
marine litter objects [8], [9] which are subject to degradation.
Aquaculture and particularly fish farms can benefit from
DL, e.g., by automatically detecting and analysing salmon
behaviour and classifying fish feeding patterns [10]. Obtaining
sufficient amounts of data, however, is challenging. The lack of
data makes it difficult to fully realise the benefits of DL and
to develop models that could be used to identify abnormal
behaviours or the reasons behind it, or to understand any
sort of disease in the aquaculture. Modelling abnormal fish
behaviour can also reveal information about the environmental
conditions, e.g., detect if the water temperature at some
locations is higher or below than the desired levels.
Underwater structural monitoring in the form of inspecting
underwater pipelines [4], e.g., using magnetic or thermal
sensing, enables identifying cracks and potential damage that
might be difficult to discern with the naked eye. The most
common approach is to navigate ROVs along the pipeline and
have remote operators analyse the data. DL can be used to
augment and automate such analysis and to support leakage
source hunting. This allows coordinating the movements of the
underwater vehicles toward the source of the leakage, enabling
easier and faster detection of the location of the leakage and
reducing the burden on the ROV operators.
AUV and ROV operations can benefit from DL in sev-
eral ways. First, DL can support enhancing the situational-
awareness of AUVs by detecting obstacles and ensuring the
AUVs do not collide or otherwise disturb fauna or sensitive
flora, such as reef ecosystems. For example, DL can support
underwater location-awareness by combining reliable anchor
points with dead reckoning to estimate the path traversed by
the AUVs. Second, DL can improve navigation and enable
autonomous operation for AUVs. For example, AQUA [11]
uses the camera of the AUV to assist navigation whereas
SOAR [12] supports both collision avoidance and path op-
timization. Still, most AUVs use surface-based command and
control systems to determine their location. This limits the
movements of AUVs and the size of the area they can monitor.
Energy Awareness is critical for AUVs and ROVs as under-
water movement is generally highly energy-consuming with
waves and currents further increasing energy drain. Underwa-
ter vehicles rely on energy drainage prediction mechanisms
that determine when the system needs to start surfacing to
avoid losing the vehicle. DL can be used to build power
estimation methods that can take into account a wide range
of operating conditions and better determine the remaining
operating time of the underwater vehicles.

III. SUBMERSIBLE HARDWARE

Integrating the necessary technologies into underwater vehi-
cles is becoming increasing possible, yet existing deployments



have predominantly relied on powerful and expensive hard-
ware components with high processing power and on-board
memory. These existing solutions also require complex infras-
tructure support to sustain the operations over a longer period
of time. Enabling low-cost platforms to integrate the required
technologies and to offer more affordable platforms requires
addressing several research challenges. Indeed, accessing and
using computing resources underwater is highly challenging
and the level of challenge further increases with depth (due to
higher pressure and water density). This section reflects on the
current state of submersible hardware for marine computing
and deep sea exploration whereas the challenges are covered
in Section V.
Deep-sea Monitoring. Deep sea explorations traditionally rely
on static cable connected deep-sea stations or ocean observa-
tories such as NEPTUNE or the European Multidisciplinary
Seafloor Observatory EMSO. These stations are fixed and
connected to a central ground control stations with cables that
provide high bandwidth real-time communication and power
supply between the central and the deep-sea stations. These
solutions have limited scale, and are costly to deploy and to
operate. The alternative is to rely on a mobile platform. For
example, the GEOMAR Modular Lander Systems (GML) [13]
is an autonomous instrument carrier system deployed on the
seafloor that can work for periods of up to 6 to 12 months
without human input. However, these types of platforms are
highly costly and offer limited computing capability.
AUVs and ROVs. While there are increasingly affordable off-
the-shelf AUVs and ROVs for underwater explorations, their
processing tends to be limited to supporting basic and simple
routines so that battery life can be preserved. Examples of
such platforms include the PowerVision series of underwater
vehicles, and the ROVs of BlueRobotics. More advanced plat-
forms that integrate computing support or even necessary tools
for running DL are also available (e.g., HippoCampus [14],
LoCO [15] or the platform proposed by Cadena et al. [16])
but the costs of these platforms are prohibitively high. Indeed,
these platforms are best suited for individual explorations
rather than as a large-scale solution – envisioned in this article.
Hybrid Technologies. Another possibility is to combine un-
derwater operations with surface-based cloud access. The main
benefit of these systems is the availability of powerful process-
ing power through the cloud but this requires connectivity to a
surface-based hub or gateway and limits the maximum depth at
which these systems can operate. Underwater communications
tend to suffer from many failures and poor bandwidth [17], and
marine areas tend to have limited network coverage, which
means the benefits of cloud access come at the cost of unreli-
able communication and high latency. Indeed, these solutions
work best close to shore areas and in calm areas as this ensures
both the underwater and above-surface communication can
operate smoothly.

IV. CASE STUDY: UNDERWATER LITTER DETECTION

Integrating DL directly into underwater platforms has po-
tential for significantly scaling up underwater investigations by
offering access to recently gathered data and insights about the

TABLE I: Deep Litter CNN Model Performance.

Class Accuracy Precision Recall F1-Score Support
Overall 0.80 0.82 0.80 0.80 137
Metal 0.95 0.95 0.95 0.95 24
Plastic 0.87 0.87 0.87 0.87 45
Wood 0.97 0.97 0.97 0.97 13
Other 0.80 0.83 0.80 0.81 55
Median 0.87 0.87 0.87 0.87 45

state of the underwater environment and by reducing human
burden by automating (parts of) the monitoring. This section
demonstrates these benefits through a case study on under-
water litter monitoring. As part of the experiments we also
highlight algorithm and system-level challenges in operating
DL robustly in underwater environments.

A. Litter Classification

Setup. We apply DL-based object detection on the Trash-
ICRA19 annotated trash dataset [8]. We expand the original
labels to include four different litter categories: plastic, wood,
metal, and other. MobileNetv2 with Single-Shot Detection
(SSD) with default hyperparameters was used as the object
recognition architecture due to its lightweight structure and
good object recognition performance. Training was performed
on GPU using TensorFlow 1.15, obtaining the quantized
model, using a batch size of 12 and 50k iterations. No further
data augmentations were considered in these experiments.
Results. Classification results were obtained by comparing the
bounding boxes of the annotations with those obtained with
the DL (MobileNet). We calculate the intersection of unions
(IoU) for the two bounding boxes and consider the detection
successful whenever IoU is at least 50%. The results are
shown in Table I for the different litter categories. The median
of the classification accuracy is 87% for all litter categories
with wood (97%) and metal (95%) being the materials with
the highest accuracy. In images containing multiple litter
objects, the performance drops to 56% and the overall recall
is 60%. Overall, these results show promise in using DL for
detecting, and to an extent also classifying, underwater litter.
This result is encouraging as it suggests that marine litter
detection (and classification) could potentially be automated
instead of relying on human observers or waiting for the data
collection to finish. However, as we next show, there are also
many challenges to extend these systems to operate robustly
in the underwater environment.
Challenges. Figure 2 shows selected results and highlights
both successes and failures in the detection. Close-ups of
individual marine litter categories are generally easy to identify
as can be witnessed from the high confidence rates (see the
close-ups of plastics, paper (other) and metal in Fig. 2a,
2b and 2c). At longer distances, light and water conditions
decrease overall accuracy (Fig. 2d and 2e). The most difficult
issues, however, are complex backgrounds (Fig. 2f) and the
aggregation of sediment on marine debris (Fig. 2g). Another
challenge emerges when multiple objects or object categories
need to be supported (Fig. 2h) as this can cause the model
to be unable to distinguish the individual objects. This may
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Fig. 2: Marine litter classification on existing footage (a) to (h), and during in-the-wild tests (i) to (l).

require more advanced models, e.g., recently there has been
work on Region Based CNNs for marine object detection [9]
but these models require higher computational time and can
thus degrade AUV power autonomy.

B. Deep Learning in Underwater Environments

Setup. We next consider the feasibility of using DL on
underwater platforms by running object recognition on a
custom-build IoT platform. Raspberry Pi 3 microcomputer
with camera module and power bank were placed in a sealed
container (Figure 3a) and transported during a 50 minute
dive. Deep learning model was implemented using TensorFlow
Lite. As the casing contains air, the deployment is positively
buoyant and additional diving weights were used to submerge
it. The device is then made to run continuous object recog-
nition at 15 FPS captured by the camera. We monitor the
CPU’s temperature, performance and RAM utilisation during
the experiment. The same setup is then repeated on the
surface including the container to see what effect (if any) the
underwater environment has on the hardware performance.
Results. We observe that CPU temperature has an early spike
during the underwater operation (Figure 3b), which is expected
due to the lack of air outlet inside the container. Once the
dive submerges deeper, the colder water starts to offer cooling
for the container. In terms of CPU (Figure 3c), the results
show that the performance is similar between the underwater
environment and the surface. The surface-based experiments
present slightly higher CPU rates than the underwater experi-
ments, suggesting that the Raspberry Pi needs to occasionally
throttle the CPU to avoid the risk of overheating. A similar
behaviour is observed in RAM usage (Figure 3d). Overall the
results show that even relatively simple computing platforms,
such as Raspberry Pis or other low-cost micro-controllers,
could be integrated with off-the-shelf AUVs and ROVs to
offer affordable underwater computing platforms. However,
these require better casing and cooling as well as advanced
energy management solutions to ensure the computations do
not hamper the navigation and movement functionality of the
underwater vehicles. Additionally, while the computing power
of embedded hardware is increasing, it remains better suited
for running the models rather than learning them. Thus, there
is also a need for interfaces and solutions that allow easily
deploying DL models on the underwater platforms.

(a) Deployed microsphere for real-time marine litter detection.
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Fig. 3: In-the-wild test for litter classification with prototype
(a), CPU temperature (Celsius) (b), CPU usage (percentage)
(c) and RAM usage (MB) (d).

Challenges. Figure 2 shows selected object recognition results
from the in-the-wild tests. The image quality is significantly
decreased compared to the standalone tests, but overall the
results of object recognition largely mirror those presented in
the previous section. Indeed, the results confirm that back-
ground complexity derived from the diversity of underwater
conditions affects classification accuracy (e.g., turbidity and
sediment in Fig. 2i and Fig. 2j). The experiments also show the
need to use advance models that differentiate multiple objects
in marine environments (e.g., boulders and dive fin in Fig. 2k
and Fig. 2l). Besides improving the DL models, overcoming
these issues may demand having a higher amount of samples
during the training and testing of the model.

V. THE ROAD AHEAD AND CHALLENGES

The results of the experiments demonstrated that underwater
DL can automate operations that currently require significant
manual effort, thus helping to scale up underwater monitor-
ing. By operating the DL directly underwater, it becomes
possible to perform the monitoring in real-time rather than
having to wait for the data to be collected and analysed.



Operating the DL directly on the underwater platforms reduces
communication bandwidth to relay the data, and can reduce
human effort in curating and analysing the data. What makes
the integration of DL into underwater platforms challenging,
however, is the lack of DL models that can be easily adopted
to operate in different underwater environments. Underwater
operations are prone to extreme and changing conditions,
including strong turbulence, different visibility, and differing
water temperatures with particularly those around the freezing
point posing challenges for monitoring. Similarly, turbulence
(e.g., currents), turbidity, sunlight availability, the presence of
marine wildlife, water salinity and other factors all influence
the quality of the images. Also, the platforms themselves
are subject to challenges as they can be attacked by marine
wildlife and are subjected to corrosion and fouling. Below,
we outline key research challenges to establish a path for
the research roadmap ahead. A summary is also presented in
Table II.

A. Technical and Hardware Constraints

To operate in extreme conditions, the effective encasing of
resources is critical. The encasing must protect the resources
from water damage while at the same time it should be
lightweight enough to be easily transported between locations,
e.g., using AUVs. We describe below key requirements to pre-
serve the correct operations of different resources underwater.
Underwater sensing. Currently, data sampling is performed
mostly using cameras. However, image-based solutions are
not sufficient to provide accurate information underwater
objects and a richer set of sensors is needed to capture
more information about the monitored objects. For instance,
a common way to detect material is to rely on spectroscopy,
such as Fourier transform infrared (FTIR) spectroscopy and
Raman spectroscopy (FTR) [18]. Spectroscopic instruments
are difficult to migrate to underwater environments due to
being costly and bulky and (typically) requiring the monitored
objects to be placed between a sensor and a receptor. As
a result, easily portable and lightweight solutions with low
energy profile are required for underwater operations.
Available processing resources. Affordable underwater vehi-
cles only come equipped with limited computing power. While
there have been efforts to build affordable underwater vehicles
that could do heavier processing, these vehicles remain limited.
They do not have sufficient processing capability to manipulate
streams of sensor data and video footage in real-time nor to
run DL – or if they do they are costly and difficult to deploy
at scale. As a result, distributed computing underwater is
required to have high performance while at the same avoiding
an increased processing load for the vehicles. Besides aiding
DL execution with distributed computing power, it could be
possible to train DL models incrementally underwater in a fed-
erated manner. Achieving this requires flexible and transparent
cooperation mechanisms for the underwater vehicles.
Fault tolerance design and operational time. Existing un-
derwater vehicles have limited operational time, surviving at
most 24 hours between recharges. Once computing resources
are submerged in the deep, it is impossible to replace failing,

exhausted or inoperative components without extracting the
resources first. As a result, computing tools need to be
designed to be robust and capable of taking advantage of
different opportunities. For instance, power supplies that feed
the computing resources can rely on tidal energy harvesting
mechanisms, super-capacitors, underwater battery-free sensor
network that use back-scatter technology or offloading com-
puting to surface infrastructure via laser [19] to extend battery
lifetime.

Communication and cooperation. Underwater communica-
tion technologies have limited range, coverage, and band-
width [17]. As a result, multiple communications interfaces
are preferable instead of relying on a single one, e.g., com-
bining acoustic, electromagnetic, and optical. Communication
technologies are sensitive to environmental characteristics such
as salinity, water temperature or currents. In addition, lack
of standards and high resource fragmentation are critical
challenges that limit cooperative operations underwater. Thus,
submerged vehicles or other computing technology mostly
work in isolation. Seamless integration of protocols, com-
munication interfaces, services and processing resources are
necessary to foster distributed cooperation in the underwater
environment.

B. Software Platforms and Marine Datasets

Currently most data collected underwater are analysed pas-
sively on the surface rather than proactively in the underwater
environment. Existing software platforms mostly have been
designed for offline analysis, e.g., there are software platforms
for aiding ecologists such as CurvRank for whales, finFindR
for dolphins, MYDAS for turtles, as well as more generic
platforms such as NNPool [20] or PhotoID Ninja. Despite ef-
fort to perform heavy computations underwater, unfortunately
none of the available systems can provide real-time analysis.

Resource intensive processing in deep sea. While the
surrounding cold water can provide natural cooling for the
encased computing resources, the capacity of the material for
thermal absorption may be not enough to cope with heating
caused due to heavy DL processing. This can result in reduced
processing performance for DL. Distributed processing can
alleviate this issue and offer increased processing capacity.
However, several other challenges have to be addressed first
to enable it.

Advanced autonomy. Currently human effort is required for
underwater deployments. Efficient operational modes of in-
frastructure, e.g., energy-efficient underwater communication,
and separate idle, moderate and high processing modes are
key factors for achieving autonomous, continuous and active
underwater presence through AUVs. This requires mecha-
nisms for self-management, self-configuration, self-healing,
self-optimisation, and self-protection of the AUVs.

Open SDKs and extendible APIs. Existing DL frameworks,
e.g., TensorFlow, can easily be ported into smart devices. How-
ever, using these frameworks underwater is still in its infancy.
A key limitation is that specialised underwater equipment does
not have available open source firmware, e.g., Blue Robotics



TABLE II: Current AUV/ROV underwater technologies, challenges and directions for enabling deep learning deployment.

State-of-the-Art Key Research Challenges Emerging Challenges

Underwater sensing Data sampling approaches are mostly image-
based

Migration of existing sensors for underwater op-
erations

New portable and lightweight sensing solutions
with low energy footprint

Available processing re-
sources

Underwater solutions have limited processing
resources

Augmenting resources with additional infrastruc-
ture

Advanced augmentation of resources with dis-
tributed and collaborative processing

Fault tolerance and oper-
ational time

Components operating underwater depend on op-
erational time and correct functionality

Recovery and replacement of components with-
out extraction from underwater

Multi-modal techniques to provide robust recov-
ery and continuous operations

Communication and co-
operation

Communications suffer from limited coverage
and bandwidth performance. Deployments with
dedicated wires

Adoption of different communication technolo-
gies, including electromagnetic, acoustic and op-
tical

Emerging mature interfaces and better integration
with new communication paradigms, including
5G and 6G

Resource intensive pro-
cessing

Cooling functionality piggybacking environmen-
tal characteristics of the deployment

Design of better encasing to improve thermal
absorption of heavy processing

Emerging approaches reduce thermal overhead
based on distributed processing

Advance autonomy Underwater operations require human support
from experts, e.g., divers

New autonomous functionalities that reduce hu-
man intervention partially, e.g., back to home
routines of UAVs and ROVs

Total autonomy for underwater solutions, e.g.,
self-healing, optimisation, protection and config-
uration

Open SDKs and extend-
able APIs

Existing frameworks are easily ported to smart
and IoT devices

Open firmware to build a wider ecosystems of
solutions

Adoption of a common and reusable platform to
build underwater solutions

Lack of data diversity
and massive datasets

Analysis of data is performed over passive col-
lected measurements

Adoption of static monitoring solutions in differ-
ent aquatic environments, e.g., lakes and rivers

Emerging integration of dynamic monitoring and
collection of data using UAVs and ROVs

is one of the few options that provide open SDK for AUVs
and ROVs. Thus, solutions are tailored for specific cases and
not integrated into broader applications.
Lack of data diversity and massive datasets. The diffi-
culty of conducting underwater explorations constraints the
generation of datasets for research and development purposes.
This is not limited only to oceans, but other aquatic areas,
such as lakes and rivers. Data availability and diversity are
key to generalise DL models that can be applied to different
cases. For instance, DL models to classify water pollution
can work seamlessly in open sea and rivers. Massive dataset
generation can be envisioned by relying on a combination
of data collection techniques such as AUVs, crowdsourcing,
and even aerial imaging. Data diversity is also essential for
ensuring robust DL performance and for developing solutions
that can enhance performance. For example, data augmentation
techniques can improve robustness of DL models in practical
deployments, but they need to be able to capture variations in
the data resulting from the actual deployment environment.

VI. SUMMARY AND CONCLUSION

Deep learning can bring significant benefits to underwater
computing, supporting automated analysis of data in underwa-
ter monitoring and offering a mechanisms to support the opera-
tions of vehicles operating underwater. As hardware platforms
are becoming increasingly affordable and available, the interest
in underwater computing is likely to gather momentum. These
applications are of significant interest to computing researchers
as they offer unique algorithm and system challenges. Using
plastic litter detection as an example application domain,
we presented how embedded DL can increase the scale of
monitoring operation by supporting automated in-situ analysis
while also highlighting algorithmic and system level chal-
lenges in running the detection robustly.
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