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Abstract. Better monitoring, reporting, and verifica-
tion (MRV) of the amount, additionality, and persistence of
the sequestered soil carbon is needed to understand the best
carbon farming practices for different soils and climate con-
ditions, as well as their actual climate benefits or cost ef-
ficiency in mitigating greenhouse gas emissions. This pa-
per presents our Field Observatory Network (FiON) of re-
searchers, farmers, companies, and other stakeholders devel-
oping carbon farming practices. FiON has established a uni-
fied methodology towards monitoring and forecasting agri-
cultural carbon sequestration by combining offline and near-
real-time field measurements, weather data, satellite imagery,
modeling, and computing networks. FiON’s first phase con-
sists of two intensive research sites and 20 voluntary pilot
farms testing carbon farming practices in Finland. To dissem-
inate the data, FiON built a web-based dashboard called the
Field Observatory (v1.0, https://www.fieldobservatory.org/,
last access: 3 February 2022). The Field Observatory is de-
signed as an online service for near-real-time model–data
synthesis, forecasting, and decision support for the farmers
who are able to monitor the effects of carbon farming prac-
tices. The most advanced features of the Field Observatory
are visible on the Qvidja site, which acts as a prototype for

the most recent implementations. Overall, FiON aims to cre-
ate new knowledge on agricultural soil carbon sequestration
and effects of carbon farming practices as well as provide an
MRV tool for decision support.

1 Introduction

Farmers are managing one of the largest carbon stocks on the
planet, with even relatively small additions being important
for climate change mitigation. Accordingly, the international
“soil carbon 4 ‰” initiative aims at raising the soil organic
carbon content by 0.4 % per year by adopting carbon farming
practices (Minasny et al., 2017). Carbon farming practices in-
clude methods such as increasing carbon inputs (soil amend-
ments, cover crops, residue management) and crop rotations.
Such practices not only have the potential to partially refill
the global soil carbon stock that has lost 116 Pg of carbon due
to land cultivation (Sanderman et al., 2017), but they could
also improve soil structure and health as well as increase crop
yields (Merante et al., 2017; Oldfield et al., 2018). Annual
carbon sequestration rates for different management prac-
tices vary from 100 to 1000 kg C ha−1 (Merante et al., 2017;
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Minasny et al., 2017). Detecting sequestration rates in this
range is difficult with traditional empirical soil sampling de-
signs due to large spatial variability of soil carbon content
and small relative changes in the soil carbon stock due to
individual management actions (VandenBygaart and Angers,
2006; Heikkinen et al., 2021). This calls for better monitor-
ing, reporting, and verification (MRV) of the amount, addi-
tionality, and persistence of the sequestered soil carbon due
to carbon farming practices.

Towards this goal, we established the Field Observatory
Network (FiON), a network of researchers, farmers, compa-
nies, and other stakeholders applying carbon farming prac-
tices. FiON has created a unified methodology to monitor
and forecast agricultural carbon sequestration by combin-
ing automated near-real-time field measurements, weather
data, satellite imagery, modeling, and computing networks.
In general, FiON follows the principles of other ecological
observatory networks, such as the National Ecological Ob-
servatory Network (NEON; Keller et al., 2008), the Global
Lake Ecological Observatory Network (GLEON; Hipsey et
al., 2019), and other biodiversity observatory networks (e.g.,
GEO BON; Guerra et al., 2021), that collect long-term eco-
logical data and monitor the effects of climate and land use
change (Elmendorf, 2016; Hinckley et al., 2016; Hipsey et
al., 2019; Keller et al., 2008). The primary purpose of FiON,
however, is to (i) create new knowledge on soil processes,
(ii) to measure, verify, and forecast the carbon sequestra-
tion in agricultural soils, and to (iii) approximate the ef-
fects of carbon farming practices on yield, biomass, and
CO2 flux in near-real time. To achieve this, FiON invested
in the use and development of a community cyberinfrastruc-
ture tool, the Predictive Ecosystem Analyzer (PEcAn, https://
pecanproject.github.io/, last access: 3 February 2022), which
enables synthesizing different data sources and process-
based models, quantifying and partitioning uncertainties, and
operationalizing near-real-time ecological forecasting (Fer et
al., 2021). To disseminate the observations and findings, we
built a free-access online dashboard called the Field Obser-
vatory (v1.0, https://www.fieldobservatory.org/, last access:
3 February 2022). This website serves as a tool to monitor
the impacts of carbon farming practices. The dashboard in-
tegrates data from field sensors, remote sensing, and field
surveys. In this sense, FiON will provide decision support
for the farmers at first hand via the Field Observatory web-
site and in due course via the scientific synthesis informed
by the best available data and models. To serve the research
and other interested communities, the data in the Field Ob-
servatory are publicly available and downloadable from the
website.

In this paper our objectives are to (1) describe data flows
from various manual and automatic measurements in the
Field Observatory, (2) demonstrate 15 d forecasts of carbon
exchange and plant growth towards decision support for the
farmers, and (3) discuss the benefits of the public monitoring
network established by FiON.

First, we introduce the sites included in FiON and describe
the tested carbon farming practices. Next, we describe the
FiON workflow from data collection, processing, and stor-
age to visualization and dissemination through the Field Ob-
servatory website. Finally, we present near-real-time model–
data synthesis, forecasting, and decision support for users.

2 Sites and tested carbon farming practices

The first phase of FiON consists of two intensive agricul-
tural research sites and 20 voluntary farms testing carbon
farming practices (Fig. 1, https://www.fieldobservatory.org/
MapView, last access: 3 February 2022). These 20 farms,
called Advanced Carbon Action (ACA) farms, were selected
out of 100 pilot farms participating in the Carbon Action plat-
form1, through which volunteer farmers test carbon farming
practices (Mattila et al., 2022). Each farm has a test field and
an adjacent, conventionally managed, control field (field 1
and 0 in the Field Observatory, respectively). The additional
carbon farming practices aim to increase carbon stock by
increasing carbon inputs (photosynthesis and soil amend-
ments) or by decreasing carbon decomposition (Minasny et
al., 2017). These practices (Table 1) are cover crops, adaptive
grazing, soil amendments, subsoiling, and ley farming (intro-
ducing a grass crop into rotation). Each farmer made a 5-year
carbon farming plan and took soil samples at the beginning
of the study from GPS-located points in the field. The same
points are monitored annually and also contain real-time soil
sensors.

The 20 ACA farms were selected based on their chosen
practice (four farms per measure), location (appropriate dis-
tances for survey work and an even spread over Finnish farm-
land), and soil type (a mix of clay and sandy soils) (Ta-
ble 2). All of them were included in a soil quality survey in
2019 (Mattila, 2020). Farms with anomalous measurements,
too much organic matter content, or nutrient differences be-
tween the control and treatment plots in the initial phase
of FiON were excluded from ACA farms. FiON includes
two intensive research sites, Qvidja and Ruukki, which are
operated by the Finnish Meteorological Institute (FMI). In
Qvidja, carbon farming practices are tested in three different
fields. In Ruukki, there are no carbon farming practices im-
plemented at the moment. Both sites have eddy covariance
towers, which continuously monitor greenhouse gas fluxes
and weather (see Sect. 3).

1The Carbon Action platform consists of several scientific
projects, with 100 farms committed to 5 years of research activity
and farmer extension services. As of spring 2021, some 600 farmers
are participating in projects related to the topic. Food system com-
panies and organizations are also involved. Carbon Action is led by
BSAG, and the research is coordinated by FMI. More information
can be found at https://carbonaction.org/en/front-page/, last access:
3 February 2022.

Geosci. Instrum. Method. Data Syst., 11, 93–109, 2022 https://doi.org/10.5194/gi-11-93-2022

https://pecanproject.github.io/
https://pecanproject.github.io/
https://www.fieldobservatory.org/
https://www.fieldobservatory.org/MapView
https://www.fieldobservatory.org/MapView
https://carbonaction.org/en/front-page/


O. Nevalainen et al.: Agricultural soil carbon monitoring, reporting, and verification through the FiON 95

Figure 1. Map of Advanced Carbon Action sites (green dots) and intensive sites (blue squares) (a). Eddy covariance tower and radiation
measurement instrumentation at Qvidja (b).

Table 1. Principles of the carbon farming practices tested at the Carbon Action farms.

Carbon farming practice Principles for carbon sequestration

Cover crops Crops planted to lengthen photosynthetically active period, increase carbon inputs from
aboveground and belowground biomass, and reduce leaching of carbon and nutrients.

Adaptive grazing Short grazing and long rest periods to manage grass growth for increased root growth and
increased soil cover.

Soil amendments Exogenous carbon input. High input of organic material may stimulate plant growth through
increased water-holding capacity, nutrients, etc.

Subsoiling Removing physical barriers to root growth by soil loosening. Coupled to a grass crop to stabilize
loosened soil. Increases plant growth and soil aeration and decreases bulk density.

Ley farming Breaking monocropping with perennial grass. Increases photosynthesis, root input, and
diversity.

Grass cultivation Diverse plant species composition, increased cutting height, and organic fertilization.

3 Data collection

FiON combines multiple online and offline data streams
with different temporal frequencies and geographical extent
(Fig. 2, Table 3). These data streams flow into a server where
the data are pre-processed (filtered, gap-filled, formatted)
and model–data analyses are performed through an ecologi-
cal cyberinfrastructure called the Predictive Ecosystem Ana-
lyzer (PEcAn; Fer et al., 2021). All observational and com-
putational outputs are stored in the server and disseminated
through a web-based user interface. In the following sections
we describe each data stream and model–data activity in the
order given in Fig. 2.

3.1 Offline field and lab measurements

At ACA sites, the measurements are done at three georefer-
enced points per field. The points have ca. 30–100 m of dis-
tance from each other and are located on a transect line. The
transect was situated on each field to ensure comparable con-
ditions for both the test and control plots. When placing the
transects, slope, vegetation map, and soil type were used to
ensure the transect covers different management zones in the
field. Annual soil sampling and soil quality measurements
are made within a 10 m radius of these points. All offline
data from ACA sites on soil properties (cation exchange ca-
pacity, pH, organic matter), nutrients (P, K, S, Ca, Mg, Cu,
Zn, B, Mn, Fe, Al, P saturation), soil physical quality (soil
structure, bulk density, porosity, water-holding capacity, in-
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Table 2. Current FiON sites.

Site Site type Soil type Carbon farming practice Species in 2020 Nearest FMI weather station

AE ACA Sandy loam Subsoiling Rye Kauhava airport
KO ACA Silt Subsoiling Silage grass Juupajoki Hyytiälä
KP ACA Clay loam Subsoiling Multi-species ley Pirkkala airport
LA ACA Clay silt Subsoiling Oats Pirkkala airport
JN ACA Fine sand Adaptive grazing Pasture grass Vesanto Sonkari
MI ACA Clay loam Adaptive grazing Pasture grass Lohja Porla
NI ACA Sand till Adaptive grazing Pasture grass Jyväskylä airport AWOS
KI ACA Fine sand Soil amendments Multi-species ley Somero Salkola
LI ACA Clay loam Soil amendments Spring wheat Lohja Porla
PA ACA Clay loam Soil amendments Hay grass Nurmijärvi Röykkä
PI ACA Clay loam Soil amendments Oats Kaarina Yltöinen
MU ACA Clay loam Grass mixture Multi-species ley Somero Salkola
NA ACA Loam Cover crops Peas Vaasa airport
NE ACA Loam Cover crops Oats Kauhava airport
PU ACA Silty clay loam Cover crops Oats Mäntsälä Hirvihaara
SI ACA Clay loam Cover crops Multi-species ley Porvoo Harabacka
AI ACA Silty clay Ley farming Multi-species ley Rauma Pyynpää
JA ACA Clay loam Ley farming Multi-species ley Jokioinen Ilmala
IK ACA Sand till Ley farming Silage grass Seinäjoki Pelmaa
MO ACA Loam Ley farming Barley Hämeenlinna Lammi Pappila
Qvidja Intensive Clay loam Grass cultivation Silage grass Kaarina Yltöinen∗

Ruukki Intensive Organic (peat) – Silage grass Siikajoki Ruukki∗

∗ Intensive sites have their own micrometeorological measurements.

Figure 2. Overview of the FiON data flows.
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Table 3. Summary of data streams reported in FiON. Offline: stored in a public data repository and updated as necessary.

Data type Units Data source Frequency Since Sites Online/
offline

Field activity – Personal
communication∗

Seasonal 2019 All Offline

Farmer
management
actions

– Questionnaire Annual All Offline

Soil C % (ACA),
kg m−2 (Qvidja)

Lab measurements Biannual 2018 All, except
Ruukki

Offline

Soil water-holding
capacity

m3 m−3 Lab measurements Once to
calibrate
sensors

2019 All, except
Ruukki

Offline

Soil nutrients mg kg−1 Lab measurements Biannual 2018 ACA Offline

Bulk density kg dm−3 Lab measurements Annual 2019 ACA Offline

Biomass kg ha−1 Lab measurements Annual 2019 ACA Offline

Soil moisture m3 m−3 ACA soil sensors and
eddy covariance

Half-hourly 2018 (Qvidja),
2019 (Ruukki),
2020 (ACA)

ACA &
Intensive

Online

Soil temperature ◦C ACA soil sensors and
eddy covariance

Half-hourly 2018 (Qvidja),
2019 (Ruukki),
2020 (ACA)

ACA &
Intensive

Online

Electrical
conductivity

µS cm−1 ACA soil sensors Half-hourly 2020 ACA Online

CO2 flux mg m−2 s−1 Eddy covariance Half-hourly 2018 (Qvidja),
2019 (Ruukki)

Intensive Online

Latent and
sensible heat flux

W m−2 Eddy covariance Half-hourly 2018 (Qvidja),
2019 (Ruukki)

Intensive Online

Shortwave
radiation
(incoming and
reflected)

W m−2 Eddy covariance Half-hourly 2018 (Qvidja),
2019 (Ruukki)

Intensive Online

CO2 concentration ppm Eddy covariance Half-hourly 2018 (Qvidja),
2019 (Ruukki)

Intensive Online

Precipitation mm FMI open weather and
eddy covariance

Half-hourly 2018 (Qvidja),
2019 (ACA and
Ruukki)

ACA &
Intensive

Online

Air temperature ◦C FMI open weather and
eddy covariance

Half-hourly 2018 (Qvidja),
2019 (ACA and
Ruukki)

ACA &
Intensive

Online

Relative humidity % FMI open weather and
eddy covariance

Half-hourly 2018 (Qvidja),
2019 (ACA and
Ruukki)

ACA &
Intensive

Online

PAR MJ m−2 d−1

µmol m−2 s−1
Copernicus and eddy
covariance

Daily &
half-hourly

2018 (Qvidja),
2019 (ACA and
Ruukki)

ACA &
Intensive

Online

Leaf area index m2 m−2 Sentinel-2, GEE Min 2 d 2018 (Qvidja),
2019 (ACA and
Ruukki)

All Online

NDVI – Sentinel-2, GEE Min 2 d 2018 (Qvidja),
2019 (ACA and
Ruukki)

All Online

*Online application is under development.
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filtration rate), and biological properties (earthworm counts,
aboveground biomass, percentage plant cover) are presented
in a Zenodo data repository with annual updates (Mattila,
2020; Mattila and Heinonen, 2021). In addition to annual
monitoring, a pre-study soil organic carbon (SOC) sampling
was conducted on the fields in 2018 and will be repeated
in 2023. In these studies, 10 core soil samples 20 cm deep
(14 mm diameter) were collected at a 10 m radius from a geo-
referenced point center and pooled to form a composite sam-
ple. Such samples were taken from each field from the three
measurement points from both the control and carbon farm-
ing fields. Focusing the sampling on georeferenced locations
and using composite sampling reduces the overall sampling
variability and allows tracking relatively small (4 % of back-
ground level) changes in SOC stock (Knebl et al., 2015). The
offline field measurements at the intensive site Qvidja are de-
scribed in Heimsch et al. (2021).

Offline, non-automated, and infrequent data are currently
being curated further for harmonization and reporting in
JavaScript Object Notation (JSON) file formats and In-
ternational Consortium for Agricultural Systems Applica-
tions (ICASA) standards (White et al., 2013). An example
soil carbon measurement data point (16.59± 2.25 kg m−2,
average ±SD) is visualized via Qvidja graphs and avail-
able in the accompanying JSON file (https://data.lit.fmi.fi/
field-observatory/qvidja/ec/events.json, last access: 3 Febru-
ary 2022).

Field activity

All field activity information (e.g., planting, fertilization, har-
vest timing, and amount) is currently received offline through
personal communication. An online application is under de-
velopment for (i) harmonizing historical field data and for
(ii) collecting future field activity data. Accordingly, the ap-
plication is being developed to allow the farmers themselves
to enter these events and related details, and it will be tested
for the first time at the end of the 2021 season. The applica-
tion is written using the Shiny R package (v1.6.0, Chang et
al., 2021), and it automatically produces files in JSON format
using the ICASA standards when possible (https://github.
com/Ottis1/fieldactivity, last access: 3 February 2022). Ex-
amples of historical field activity events (e.g., planting and
tillage) that are prepared through this application are being
made available in the Field Observatory JSON files and vi-
sualized with graphs (Fig. 5).

3.2 Online soil measurements

Since 2020, each ACA site has been provided with four
TEROS-12 soil sensors (METER Group, Inc. USA) (two
sensors per field for control and treatment) measuring vol-
umetric water content, electrical conductivity, and tempera-
ture (Table 3). The automated sensors are located at 75 mm
of depth in two of the three fixed measurement points of each

field. The sensors were connected to third-party data transfer
hardware (Datasense Oy, Finland), which uses a Lora/WAN
network to transmit the data. During the first year, the sen-
sors measured every half hour, but in 2021 measurement
frequency was changed to 1 h. The data are stored on the
service-provider server and pulled to the PEcAn server (no.8)
through the Datasense API. Currently the sensor array in-
cludes 80 TEROS-12 soil sensors, 4 O2 sensors (Apogee In-
struments, SO-120, USA), and 2 CO2 sensors (Vaisala Oy,
G525, Finland) and will be supplemented with weather and
groundwater depth measurements. The soil O2 and CO2 me-
ters are used to track changes in soil microbial activity and to
guide model development.

3.3 Online eddy covariance measurements

Carbon dioxide, evapotranspiration (latent heat), sensible
heat, and momentum fluxes between the ecosystem and at-
mosphere are measured at the intensive study sites in Ruukki
and Qvidja using the micrometeorological eddy covari-
ance (EC) technique. The EC instrumentation at both sites
includes a three-axis sonic anemometer (uSonic-2 Scientific,
METEK GmbH, Elmshorn, Germany) and an enclosed-path
infrared gas analyzer (LI-7200, LI-COR Biosciences, NE,
USA) installed on a tower. The measurement height is 2.3 m
in Qvidja and 3.3 m in Ruukki (2.3 m from 13 to 25 June
2019, 3.1 m from 25 June to 4 November 2019, and 3.3 m
since 5 November 2019). The measurement heights fulfill
guidelines for grasslands and croplands defined by the Inte-
grated Carbon Observation System (ICOS; Sabbatini and Pa-
pale, 2017). For details of the measurement setup in Qvidja,
see Heimsch et al. (2021).

The data from the EC instruments are recorded at a 10 Hz
frequency. Half-hourly turbulent fluxes are calculated by
block-averaging these raw data after applying a double ro-
tation of the coordinate system (McMillen, 1988). The time
lag between the sonic anemometer and gas analyzer sig-
nals is determined based on the cross-correlation analysis
(Rebmann et al., 2012). The gas fluxes are calculated from
the mixing ratios determined with respect to dry air (Webb
et al., 1980). The losses due to high-frequency signal at-
tenuation within the measurement system are compensated
for in the measured fluxes (Laurila et al., 2005). The flux
data are filtered for instrument malfunction and unfavorable
flow conditions according to the following generic valid-
ity criteria: number of spikes in the raw data <100, mean
CO2 mixing ratio >350 ppm, relative stationarity (Foken
and Wichura, 1996) <30 %, and CO2 mixing ratio variance
<15 ppm2 from April to September and <5 ppm2 from Oc-
tober to March. At the Ruukki site, flux data are accepted
from the wind direction sector 135–315◦ (blocks 5, 6, 5 up,
and 6 up) and the sectors 0–90◦ and 330–360◦ (blocks 1–
4). In Qvidja, the wind directions representing the direction
of the experimental site are 0–30◦ and 140–360◦. Periods of
weak turbulence are filtered by applying a site-specific fric-
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tion velocity threshold. The threshold and its uncertainty are
estimated for each site year using the moving-point transi-
tion method (Reichstein et al., 2005) and a bootstrapping ap-
proach (Pastorello et al., 2020). For incomplete years, the es-
timates from the previous year are used. While the flux data
provided online are screened, they will be subject to further
quality control in offline post-processing that will produce
the final datasets distributed for scientific use. These post-
processing procedures include flux footprint analysis and re-
lated data screening for inadequate upwind fetch, i.e., for
cases in which the measured flux does not predominantly
represent the field. Footprints are calculated with respect to
the effective measurement height that takes into account the
varying canopy height and snow depth.

The EC measurements are complemented with support-
ing meteorological observations conducted next to the flux
tower. These include soil moisture, soil temperature at dif-
ferent depths, soil heat flux, photosynthetically active radia-
tion (PAR), global and reflected solar radiation, air tempera-
ture, and precipitation. Half-hourly meteorological and flux
data are transmitted to a server at the FMI, which is then syn-
chronized to the PEcAn server (no.8).

Flux gap filling and uncertainty analysis

The missing CO2 flux (net ecosystem exchange, NEE) data
are gap-filled based on empirical response functions that are
fitted separately for the gross primary production (GPP) and
total ecosystem respiration (ER).

NEE= GPP+ER (1)

Respiration is modeled as a function of air temperature:

ER= R0 · e
E0·

(
1
T0
−

1
Ta−T1

)
, (2)

where R0 is the respiration rate at the reference temperature
of 283.15 K, T0 = 227.13 K, T1 = 56.02 K, E0 is the temper-
ature sensitivity of respiration, and Ta is the measured air
temperature (Lloyd and Taylor, 1994).

GPP is modeled as a function of PAR:

GPP=
α ·PAR ·GPmax

α ·PAR+GPmax
, (3)

where α is the apparent quantum yield and GPmax is the
asymptotic photosynthesis rate in optimal light conditions.

For gap filling, the data are divided into sections based on
the harvest dates, and each section is gap-filled separately.
This is done because fluxes measured before a harvest can-
not be used to predict fluxes after a harvest. First, R0 and E0
are estimated from the nighttime (PAR <20 µmol m−2 s−1)
flux data with a 15 d moving window. If there are fewer than
25 observations, the window size is increased stepwise by
2 d until enough data are obtained. Similarly, α and GPmax
are determined with a 3 d moving window by fitting the PAR

response function to the daytime NEE from which the mod-
eled respiration is subtracted. Finally, gaps in NEE are filled
with modeled NEE, which is the sum of modeled GPP and
modeled ER. Gap-filled values that are determined using fits
from asymmetrical time windows, with possibly biased data,
are flagged and updated when new measurements become
available. Before flux gap filling, the missing air temperature
and PAR data are imputed using linear interpolation if the
gap is not longer than 6 h. Longer gaps are filled using the
mean diel cycle of the data measured within 7 d before or
after the missing data point.

The uncertainty of measured NEE (umeas) is inferred from
the model residuals. For each site year, the measurements are
grouped into 0.2 mg CO2 m−2 s−1 wide bins, and for each bin
the measurement uncertainty is characterized as the standard
deviation of the residuals. The uncertainty of each measured
half-hourly flux is then estimated from the relation between
the measurement uncertainty and the magnitude of the flux
(Richardson et al., 2008). For incomplete years, the relation
from the previous year is used.

The uncertainty of modeled NEE (umod) in Eqs. (1)–(3) is
propagated from the uncertainties of the least-squares fits of
modeled GPP (uGPP) and Reco (uReco) as

umod =
√
uGPP2 + uReco2 . (4)

Finally, the uncertainty related to the friction velocity thresh-
old (uustar) is estimated by filtering the flux data using the
100 different bootstrapped friction velocity thresholds, gap-
filling the 100 differently filtered datasets, and using the stan-
dard deviation of the gap-filled fluxes as an estimate for
uustar.

3.4 FMI open weather data

For all ACA sites, the weather information, namely precip-
itation, air temperature, relative humidity, wind speed, and
wind direction, is retrieved from the nearest FMI weather sta-
tions (Table 2). Weather data are pulled to the PEcAn server
using the fmir R package (https://github.com/mikmart/fmir,
last access: 3 February 2022).

3.5 Satellite data from Google Earth Engine (GEE)

All sites are monitored using remote sensing imagery from
the European Space Agency (ESA) Sentinel-2 satellites. At-
mospherically corrected Level-2A (L2A) Sentinel-2 multi-
spectral data (processed using Sen2Cor software) are re-
trieved using the GEE (https://earthengine.google.com/, last
access: 3 February 2022) cloud data platform. The scene
classification band available in L2A products is used to filter
away image acquisition dates during which the field is cov-
ered by snow, cloud, or cloud shadow. From the Sentinel-2
data, we calculate the normalized difference vegetation in-
dex (NDVI) and the leaf area index (LAI). LAI is calcu-
lated because it is present in and can be assimilated to many
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process-based ecosystem models. NDVI is included in the
Field Observatory mainly for the farmers to whom NDVI is
a more familiar measure compared to LAI. NDVI is calcu-
lated using near-infrared (B8A) and red (B4) bands of the
L2A products. LAI is estimated using the ESA Sentinel Ap-
plication Platform (SNAP) Biophysical Processor neural net-
work algorithm (Weiss and Baret, 2016, https://github.com/
ollinevalainen/satellitetools, last access: 3 February 2022).
The NDVI data are natively available in 10 m resolution,
whereas LAI is resampled to 10 m resolution from its origi-
nal 20 m resolution. The satellite data are updated every 2 d
at most (which is the Sentinel-2 revisit frequency over Fin-
land). In addition, the yearly cumulative NDVI sum is cal-
culated using integration by the trapezoidal rule for all sites
(“NDVI days”). Common starting and ending points for the
active growing season on 31 March and 31 October, respec-
tively, are used to standardize the cumulative NDVI sums be-
tween sites. This standardization improves the comparability
of the cumulative sums between sites by having them all in
the same absolute units. Without standardization the cumu-
lative sums would be influenced by the availability of the
first and last observations of the growing season for a site.
This is determined more by the cloud cover than the actual
start and end of the growing season. To improve within-site
comparison, the cumulative NDVI is computed using dates
when all fields within a site have satellite imagery available.
The NDVI and LAI data are provided to the Field Obser-
vatory user interface in both raster (GeoTIFF) and tabular
form (CSV).

With the tabular data, the average value of pixels within
the field is used to estimate the field-level value. The tabular
data are provided with 90 % confidence intervals by multi-
plying the associated uncertainties by theZ score for the two-
sided 90 % confidence interval (1.645). Non-realistic nega-
tive LAI values are capped to zero. For NDVI the uncer-
tainty is presented as the standard error of the mean (SE)
of the pixels within the field. For the cumulative NDVI sum,
the uncertainties are propagated using the Python uncertain-
ties package (https://pythonhosted.org/uncertainties/, last ac-
cess: 3 February 2022), which automatically computes the
required derivatives and propagates the uncertainties.

The uncertainty for the LAI (uLAI) is estimated by com-
bining the observational uncertainty (SELAI) and the algo-
rithmic uncertainty (ualg) of the LAI estimation:

uLAI =
√

SELAI2 + ualg2 , (5)

where the SELAI is computed as the SE of LAI observations
within the field. The observational uncertainty aims at cap-
turing the uncertainty associated with a particular single ob-
servation (from a specific image on a certain date). It is af-
fected by the variability of the individual pixel values within
the field at that specific date. The ualg is calculated by prop-
agating theoretical individual pixel uncertainties (uti ) to the

calculated average:

ualg = n
−1
√∑n

i=1
u2

ti , (6)

where n is the number of pixels (i.e., sample size) and ut the
reported theoretical root mean square error (RMSE) for the
SNAP LAI algorithm that is 0.89 (Weiss and Baret, 2016)
and constant to all pixels. The artificial increase in n due to
resampling LAI observations from its native 20 m resolution
to 10 m is taken into account, and n is reduced accordingly.

3.6 PAR from Copernicus Atmospheric Monitoring
Service (CAMS)

For the ACA sites, the daily PAR data are derived
from the global irradiation data obtained from the
CAMS through daily queries (http://www.soda-pro.com/
web-services/radiation/cams-radiation-service/, last access:
3 February 2022; Qu et al., 2017). The global daily irradi-
ation (Wh m−2 d−1) is converted to daily PAR (MJ m−2 d−1)
assuming that 50 % of the global irradiation is at PAR range.
The CAMS data are available for each day with a 48 h
time lag. The daily PAR is reported in MJ m−2 d−1, which
is a more convenient unit for a daily value compared to
µmol m−2 s−1 used with 30 min measurement frequency at
intensive sites.

3.7 ECMWF 15 d ensemble weather forecasts

European Centre for Medium-Range Weather Fore-
casts (ECMWF) data are processed by the Finnish Meteo-
rological Institute for every site. This dataset consists of 6 h
2 m temperature (2t variable in ECMWF standards), total
precipitation (tp), relative humidity (r), 10 m U and V wind
components (10u and 10v, respectively), surface pressure
(sp), and surface solar and thermal radiation downward
(ssrd and strd, respectively) values of 51 ensemble members,
with one member as the control forecast and the other 50
having perturbed initial conditions different than the control
to explore the range of uncertainty (Buizza and Richardson,
2017). Weather forecast data are updated every day. Per
ECMWF license agreements, the data are visualized as is,
but the disseminated tabular files are obfuscated.

3.8 Predictive Ecosystem Analyzer (PEcAn) server

All FiON data are pooled in an FMI server where the model–
data integration cyberinfrastructure software PEcAn is in-
stalled and compiled. PEcAn is an ecological informatics
toolbox that consists of process-based models, a workflow
management system, and analytical tools for model–data
synthesis (LeBauer et al., 2013; Dietze et al., 2013). The au-
tomated PEcAn workflow calls a series of modularized tasks
that involve pre-processing of the model inputs, configur-
ing and running the models, post-processing model outputs,
and performing model–data integration analyses. Coupling
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a process-based model to this workflow requires writing a
model package that consists of a few interfacing scripts as
PEcAn adopts intermediate input and output file formats and
applies pre- and post-model run analyses to these standards
(Fer et al., 2021). While there are already many ecosystem
models coupled to PEcAn and its design is general across
process-based models, coupling of more models that can
simulate agricultural ecosystems is in progress. In this study,
we coupled the BASGRA_N model (Basic Grassland Model;
Höglind et al., 2020) to the PEcAn workflow and demon-
strated its use for the Qvidja site (see Sect. 4 on model–data
synthesis). In the future, we will provide model predictions
for all sites through PEcAn.

3.9 Public data storage

To harmonize the data, all tabular data with less than daily
measurement frequency are aggregated to a 30 min interval
(to every hour and half hour) before transferring the data
to the public data storage (Amazon Simple Storage Service,
https://field-observatory.data.lit.fmi.fi/, last access: 3 Febru-
ary 2022). To protect the privacy of the farmers, all data hold-
ing spatial information are transformed for all ACA sites, ex-
cept for site MU (which is operated by Häme University of
Applied Sciences).

3.10 Field Observatory user interface

The Field Observatory user interface (v1.0, https://www.
fieldobservatory.org/, last access: 3 February 2022) allows
viewing general information about the sites as well as the
measurements and carbon farming practices conducted on
them. The website has an interactive map to navigate to site-
specific dashboards. A site view consists of general informa-
tion about the site, an interactive map with satellite imagery
of a specified vegetation parameter, an interactive timeline
for selecting satellite imagery for viewing, and a panel of in-
teractive time series charts (Fig. 3). Each chart comes with a
description of the displayed data. A chart typically contains
multiple time series, and the visibility of each can be toggled.
The user can enable and disable time aggregation and choose
the time aggregation level from predefined options. The time
aggregation is calculated using sliding statistics such as the
mean or sum depending on the data type. Any chart can be
exported as an SVG or a CSV file containing the displayed
data. A global specification file defines a list of charts and
the data source types that can be shown in each chart. Site-
specific specification files are used to define data source types
available for each site and to provide links to the data files.
Specification files are stored in JSON format.

The website is served by Azure services. The map and
site views are based on client-side JavaScript running in the
user’s web browser. Maps have been implemented using the
Mapbox GL JS JavaScript library.

4 Model–data synthesis and decision support

While the current version of the Field Observatory mainly
disseminates observations, one of the main goals of this ap-
plication is to provide accessible near-real-time model–data
synthesis, forecasting, and decision support for the users. We
demonstrate the first application of this service at the Qvidja
grassland site with the grassland model BASGRA_N (Ta-
ble 2). BASGRA_N is developed specifically for northern
climates and for grass types (timothy, Phleum pratense;
meadow fescue, Festuca pratensis) that are the dominating
forage species cultivated at the Qvidja farm, and it is able to
simulate grassland productivity, quality, and greenhouse gas
balance (Höglind et al., 2020).

We coupled BASGRA_N to PEcAn and used PEcAn’s
workflow management system and analytical tools (specif-
ically the Bayesian calibration and state data assimilation
modules) to inform the model with the data. Before employ-
ing them for forecasting and decision support, these mod-
els need to be initialized and calibrated. In other words,
while state data assimilation algorithms can inform model
states and improve predictive performance, the best results
are achieved when the model is calibrated to the site (Huang
et al., 2021). Therefore, we used the field and lab measure-
ments (Sect. 3.1), such as the rooting depth, soil carbon con-
tent, and soil water-holding capacity, to initialize the model
states. Next, using multiple constraints (CO2 flux and LAI
from the eddy covariance tower field, Sect. 3.3), we cali-
brated 20 model parameters using Bayesian numerical meth-
ods through the BayesianTools R package (Hartig et al.,
2019) as implemented in the PEcAn system (Fer et al., 2018;
also, please see Sect. S1 in the Supplement for further de-
tails on the calibration protocol). In calibration, we used the
observations from May 2018 to April 2021. After calibra-
tion model predictions were improved in terms of both un-
certainty reduction and accuracy (Fig. 4). While the model
is calibrated by the EC field data at Qvidja, initial results
show improvement at the nearby Qvidja ACA sites as well
(not shown here, but visible via the Field Observatory LAI
graphs).

Next, we deployed the initialized and calibrated model in
an online, operational, iterative near-term forecasting frame-
work by driving it with the ECMWF ensemble 15 d weather
forecast (Sect. 3.7). From April 2021 onwards, every day
a 15 d ensemble forecast is made from the BASGRA_N
model. As time progresses, each day the CO2 flux forecast
is informed with the observed and gap-filled daily CO2 flux
values within an iterative forecast analysis cycle using the
ensemble adjustment Kalman filter algorithm implemented
in PEcAn (Dietze, 2017). When LAI observations are also
available, they are jointly assimilated with the CO2 flux mea-
surements as well. Although we are currently only assimi-
lating the CO2 flux and LAI observations, related states are
also updated within the model through the analysis step as
the model encodes and simulates relations and covariances
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Figure 3. Two web interface views of the measurement data for site KI: (a) overview and LAI satellite images as well as (b) observed soil
and air temperature and soil moisture. The reader is referred to the website https://www.fieldobservatory.org/ (last access: 3 February 2022)
for additional and more interactive charts. The aerial photo contains data from the National Land Survey of Finland Topographic Database
(November 2020).
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Figure 4. Predicted versus observed comparison before (orange ellipses) and after (purple ellipses) initialization and calibration. Ellipses rep-
resent the 90 % confidence intervals of model ensemble runs with 500 members. After initialization and calibration, the model performance
at Qvidja improved in terms of both accuracy (closer to the 1 : 1 line) and uncertainty reduction (narrower ellipses).

among different ecosystem processes. Among the model out-
put variables, we share the LAI and CO2 flux (Fig. 5), as
well as latent heat and yield potential forecasts, with the users
through the Field Observatory user interface, albeit only for
the Qvidja site for the time being.

While a 15 d forecast has limited applicability within a
cropping cycle, it could be informative for certain field ac-
tivities that may have 1–2 weeks of flexibility, which in re-
turn may have an impact on carbon balance. For instance,
one can simulate alternative scenarios of the timing of the
harvest (e.g., whether to harvest now or delay it; please see
Supplement S2 for a demonstration). It is possible to retro-
spectively explore these cases systematically as both weather
forecasts and model analysis states are archived in the Field
Observatory’s operational iterative forecasting system.

5 Discussion

This paper introduced the Field Observatory Net-
work (FiON) and its unified methodology, leading the
way to monitoring and forecasting the functioning of
agricultural ecosystems, geared towards verification of soil
carbon sequestration. This methodology combines existing
spatially scattered measurements, modeling, and computing
networks and disseminates the model–data computation
outcomes through the Field Observatory user interface.
In the following, we discuss the scientific and practical
contributions of FiON and the Field Observatory, as well as
the future steps planned for both.

5.1 Scientific contribution

FiON adopts state-of-the-art field and laboratory methods,
open data sources, near-real-time satellite imagery process-
ing, and model–data integration cyberinfrastructures – all of
which are needed for a reliable MRV platform. A distinct fea-
ture of FiON is the network of ordinary farms (ACA sites)
to establish baseline trends and verify additional changes.
As the soil carbon pool changes slowly, even after a shift in
management practices, long-term monitoring is needed. The
ACA sites (with control and treatment plots) were specifi-
cally designed for this purpose and will be monitored con-
tinuously for at least the next 5 years, and FiON aspires to
continue even longer. This is an adequate time frame to de-
tect SOC changes because the fastest carbon re-accumulation
occurs in the first 10–20 years depending on soil type, man-
agement practices, climate, and initial SOC (Bossio et al.,
2020), all of which are monitored by FiON. The intensive
and ACA sites provide an important benchmarking opportu-
nity for our model–data synthesis methodology, which will
be applied to all 100 Carbon Action farms.

The PEcAn platform is central to our methodology; it en-
ables synthesizing different data sources and process-based
models, managing observational and model uncertainties,
and near-real-time forecasting. It distinguishes FiON from
observation-only approaches. In addition to potentially hav-
ing practical relevance for improving carbon storage, near-
term agricultural forecasting has benefits for basic carbon
science. Data assimilation methods help dissect model be-
havior and identify research needs (Viskari et al., 2020).
For instance, variability patterns of the best parameter sets
in time and space can be identified by studying model en-
semble members with respect to the analysis states (i.e., our
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Figure 5. The 15 d LAI (a) and CO2 flux (b) forecast at Qvidja. The 90 % confidence intervals for hindcast and forecast are generated by
250 ensemble members, with different combinations of model parameters, initial conditions, and meteorological drivers. Units in the CO2
flux graph are given per second to reflect the measurement frequency; however, observations were aggregated to a daily time step here to
align with the model predictions. The scythe icon indicates a harvest event on 14 June 2021.

best understanding about the system) and may point to pro-
cesses that are unaccounted for in models as well as underly-
ing sources driving variability. If we manage to account for
these variabilities (e.g., adding covariates that explain tem-
poral variability), we could also improve our capability to
model carbon sequestration in the long term. Moreover, near-
term iterative forecasting provides an out-of-sample way of
statistical testing for models that is less prone to overfitting
than in-sample tests, which are more typical in (agro)ecology
wherein models are tested against data that have already been
observed (Dietze et al., 2018). Accordingly, a more in-depth
analysis of the archived Field Observatory forecasting results
and skills is ongoing and will be reported in a future study. In
addition to understanding models better, operational iterative

near-term forecasting also allows us to detect and intervene
when measurements of certain sensors or data streams de-
viate from the assimilated background, and in return it sup-
ports the management of the sensors and data pipelines, re-
sulting in higher-quality datasets. Overall, our 15 d iterative
forecasting system provides continuous quantitative bench-
marking of models and data based on all other available in-
formation, which allows rapid detection and explanation of
changing patterns in the carbon sequestration with the possi-
bility of intervening and making adjustments.

5.2 Practical contribution

The Field Observatory user interface has not only enabled
farmers to monitor impacts of their carbon farming practices,
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but also to connect and compare their own and others’ data
and practices. Features in the user interface are co-created
with the farmers and developed accordingly. For example,
farmers requested to see a cumulative sum of NDVI through
the growing season, which was in return calculated and in-
cluded on the website. Likewise, simple and clear descrip-
tions to interpret each data type have been found to be help-
ful. The gap-filled CO2 fluxes at the intensive study sites have
made it easier to communicate carbon exchanges between
land and the atmosphere and how carbon budget calculations
are done. As a result, the Field Observatory has already been
used in workshops and meetings with stakeholders, as well
as in training and scientific outreach for the Carbon Action
farmers.

One of our aims with this framework is to provide deci-
sion support for the end users. This is effectively offered by
the Field Observatory in terms of feedback; end users can
monitor the impact of their activities in a quantitative manner
to assess and make their decisions in the future accordingly.
Our framework also lays the groundwork for a more explicit
and specific decision support system. Although such func-
tionality is not fully in place yet (but under development),
establishing the operational data assimilation and iterative
forecasting pipeline is a milestone towards this direction.
While the 15 d horizon has limitations with respect to the
span of a production cycle, in the future we are planning to
include seasonal, annual, and longer-term forecasts as well.
However, 15 d forecasts can still provide decision support for
relatively shorter-term and flexible agricultural actions (such
as harvest, irrigation, grazing). With the additional layer of
agricultural forecast on top of the weather forecasting ser-
vices, users are quantitatively informed about the progres-
sion of various ecosystem states and services through these
Field Observatory near-term forecast updates. For example,
sensor or model-based dynamic fertilization strategies have
successfully improved the nitrogen use efficiency of crop-
ping systems (e.g., Sela et al., 2018; Scharf et al., 2011).
Likewise, timing of harvest and the cutting height may af-
fect the overall carbon budget and economic income, and the
plants’ water demand may necessitate a different irrigation
scheme for optimum growth and water usage, all of which
may not readily manifest themselves through weather fore-
casts and observations only. We also acknowledge that such
interventions are potentially easier for grasslands as opposed
to croplands. Nevertheless, our operative iterative near-term
forecasting system enables a framework to explore the im-
pacts of such interventions dynamically, systematically, and
quantitatively and in return devise more reliable and com-
prehensive decision criteria. Overall, the current pipeline is
being developed to improve the model performance and to
be put into an adaptive decision-making framework wherein
alternative scenarios will be simulated with the models to aid
users in their day-to-day operations specific to their manage-
ment structure and goals.

The near-term carbon forecasts have also improved our
communication with stakeholders in general. Reporting
quantitative, specific, and iterative carbon forecasts makes
it possible to convey the idea that predictive carbon science
has the potential to be as successful and common as numer-
ical weather prediction (NWP) as a discipline and as a ser-
vice to society one day. Ecological forecasts provide us with
a standard, quantitative, intuitive, and management-relevant
method and language to develop the right context and tools
for structuring soil carbon sequestration decisions (Petchey
et al., 2015; Dietze et al., 2018). Bringing near-term carbon
forecasts forward further helps describe soil carbon monitor-
ing and modeling as a complex computational problem that
depends on vast amounts of basic scientific research and ob-
servations. It involves a diverse range of actors and organi-
zations and requires efficient communication and continu-
ous transfer of knowledge between these groups, similar to
NWP (Bauer et al., 2015). Not only the similarities but also
the differences between agricultural forecasting and NWP
help clarify and refocus the research needs (e.g., the need
to address the heterogeneity and inherent variability in car-
bon systems). Overall, near-term forecasts help establish this
constructive dynamic between researchers and stakeholders,
which in return helps tackle remaining bottlenecks for im-
proving soil carbon sequestration more efficiently.

There is large interest in adopting and developing the Field
Observatory further. Therefore, the website is under constant
development with new features, and new information about
carbon farming and findings of FiON are increasingly being
made available.

5.3 Avenues for future research and development

We have planned future steps for both FiON and the Field
Observatory. The first step is to add more agricultural mod-
els to PEcAn. This enables us to extend model–data analysis
to all FiON sites where different species and management
practices are involved (i.e., other than grass harvest timing
and amount). Coupling of one such additional model (Simu-
lateur mulTIdisciplinaire pour les Cultures Standard, STICS;
Brisson et al., 1998) to PEcAn has already been completed,
and others are in progress. In the meantime, more sites will
be added to FiON, not only in number but also in type. For
example, with carbon-smart planning, urban vegetation also
has potential to store more carbon. We also study this in
FiON, and consequently urban sites will be added. Another
goal is to include forests and peatlands in FiON, which re-
quires incorporating new process-based models in the FiON
workflow. During the coming years, more field and labora-
tory measurement data will be collected and used to validate
the model estimates and recalibrate the models.

The framework designed by FiON and described in this
paper provides the necessary mechanics to study the appli-
cability and reliability of models to simulate components of
the carbon budget virtually in every field. While scalability
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has been the core idea for the design of this framework since
the beginning, putting it to practical test is the main scien-
tific next step. Currently, a factorial experimental design and
simulation are ongoing wherein the performance of the mod-
els will be tested at multiple sites by informing them with
various data streams. For this, we will start with constraints
that can be made available virtually from everywhere and test
which combinations, if any, can inform models enough to
capture local carbon budget dynamics and components. Such
constraints are, for example, LAI derived from remote sens-
ing, soil moisture provided by inexpensive in situ sensors,
soil properties estimated from global products, and yield. In
this setup, the information contributed by the sites that are
equipped with EC towers will also be tested. For example,
we will perform a factorial experiment at the ACA sites with
and without the models being constrained by EC data at the
intensive sites. As we have additional data streams other than
the mentioned constraint data types (e.g., biomass and soil
C, Table 2) from ACA sites for evaluation, the framework
described in this paper provides the means to carry out such
multi-site in-depth analyses.

The development of the online application to gather field
activity data from farmers is also in progress. The main pur-
pose of this application is to make collection and utilization
of field activity data in visualization and model–data synthe-
sis pipelines easy. In this context, the Field Observatory’s in-
teroperability with commercial farm management informa-
tion systems needs to be studied in order to reduce the num-
ber of times farmers are filling out such information. An ad-
ditional future use of this online application is planned to
enable the farmers to simulate a predefined number of sce-
narios regarding their day-to-day operations by triggering
automated PEcAn workflows – for example, given the next
15 d forecast, they will be able to optimize the timing and
amounts of their field activity. We are also considering utiliz-
ing this online application for additional purposes: (a) com-
piling information from farmers regarding the flexibilities of
their activities as this brings an additional practical constraint
to the development of the model-based decision support sys-
tem, (b) enabling new users to submit electronic requests and
information about their fields to be part of the FiON, and
(c) supporting peer-to-peer learning between farmers (Mat-
tila et al., 2022).

We are currently also investigating the use of satellite data
sources other than Sentinel-2 in retrieving information on
vegetation and soil properties. In addition to satellite im-
agery, drones could be used as a source of remote sensing
data. The current Sentinel-2 data filtering is based on the
cloud detection available in the L2A products. This filtering
approach has produced quite clean time series; some sites
do not have any outliers and some have at maximum one
or two per year. The benefit of our methodology – whereby
we assimilate observations as state variables to process-based
models – is that single outliers, with optimally larger uncer-
tainties, do not have too drastic of an effect on the model pre-

dictions. Nevertheless, we will continue to follow the perfor-
mance of the filtering approach and improve it if necessary.
Finally, the data streams used in data assimilation (to inform
and update forecasts) will be increased, and improvement in
forecasting skills will be analyzed.

6 Conclusions

The Field Observatory Network (FiON) introduced in this
paper is primarily a network of researchers, farmers, compa-
nies, and other stakeholders developing carbon farming prac-
tices. FiON provides a unified methodology to monitor and
forecast agricultural carbon sequestration by combining of-
fline and near-real-time field measurements, weather data,
satellite imagery, modeling, and computing networks. FiON
disseminates data through the Field Observatory user inter-
face (https://www.fieldobservatory.org/, last access: 3 Febru-
ary 2022). For farmers, FiON serves as a monitoring and de-
cision support tool. In contrast to mainstream decision sup-
port tools, FiON also provides the farmers with access to
other carbon farmers’ data in the network. This enables com-
parisons and knowledge transfer between the carbon farmers.

FiON has several analogies to other ecological observa-
tory networks, but unlike these existing networks, FiON is
designed to provide near-real-time information and forecasts
concerning the carbon farming practices and to facilitate
monitoring and verification of carbon sequestration. In this
sense, FiON takes several steps forward from the mainstream
ecological observatory networks known so far.

Code availability. The satellite data processing codes
are available from a public GitHub repository (https:
//github.com/ollinevalainen/satellitetools, last access: 15 February
2022, https://doi.org/10.5281/zenodo.5993292, Nevalainen, 2022).
All PEcAn code is available openly on a GitHub repository
(https://github.com/PecanProject/pecan, last access: 15 February
2022, https://doi.org/10.5281/zenodo.5557914, LeBauer et al.,
2021). Field activity data collection and curation application
code, which is under development, are also available via GitHub
(https://github.com/Ottis1/fo_management_data_input, last access:
15 February 2022, https://doi.org/10.5281/zenodo.6029076, Ku-
usela et al., 2022). The rest of the codes by the authors are not yet
openly available.

Data availability. The data described in this paper can be down-
loaded interactively from the Field Observatory website (https:
//www.fieldobservatory.org, last access: 3 February 2022) or
directly from the data storage at https://doi.org/10.23728/fmi-
b2share.56513f096ca442b19abdef30f63644ed (Nevalainen et al.,
2022). Field measurements conducted at ACA sites in 2019
and 2020 are available from the Zenodo data repository at
https://doi.org/10.5281/ZENODO.3670654 (Mattila, 2020) and
https://doi.org/10.5281/ZENODO.4068271 (Mattila and Heinonen,
2021).
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