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Abstract. Using classifiers for decision making requires well-calibrated
probabilities for estimation of expected utility. Furthermore, knowledge
of the reliability is needed to quantify uncertainty. Outputs of most clas-
sifiers can be calibrated, typically by using isotonic regression that bins
classifier outputs together to form empirical probability estimates. How-
ever, especially for highly imbalanced problems it produces bins with few
samples resulting in probability estimates with very large uncertainty. We
provide a formal method for quantifying the reliability of calibration and
extend isotonic regression to provide reliable calibration with guarantees
for width of credible intervals of the probability estimates. We demon-
strate the method in calibrating purchase probabilities in e-commerce
and achieve significant reduction in uncertainty without compromising
accuracy.
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1 Introduction

Even though classification is in academic contexts often studied in isolation, in
real use the predictions are used for making decisions with associated costs and
benefits. Evaluating task performance requires knowledge of the probability of
each possible class, and for accurate evaluation we need well-calibrated probabil-
ities [10, 22, 20]. A binary classifier is said to be well-calibrated if the empirical
probability (relative frequency) of the positive class p(y = 1|s(x) = x) converges
to the output score s(x) of the classifier at the limit of infinite data.

The definition extends naturally to multi-class problems, but for simplicity
of notation we consider binary problems used e.g. in medical diagnosis [2], credit
scoring [8] and e-commerce [19, 9].

Most classifiers do not directly produce well-calibrated probabilities. Many
methods like deep neural networks with logistic outputs or many decision trees
formally output probabilities, but they are often poorly calibrated in practice
[14, 6], whereas other models like support vector machines output scores that are
larger when the classifier is more certain of the result but do not even attempt to
represent probabilities. The outputs of all such classifiers can be calibrated after
training. Various algorithms have been proposed for this [16, 13, 12, 7] but the
classical method of isotonic regression (IR) [22, 15] remains the most common
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RCIR after one merge

Fig. 1. Isotonic regression (left) calibrates classifier outputs by binning, but the prob-
ability estimates (horizontal lines) are unreliable as shown here using 95% credible
intervals (boxes) on artificial data. Reliably calibrated isotonic regression merges bins
further (right figure shows the result after one merge combining the two bins indicated
by blue), retaining calibration and monotonicity while reducing uncertainty. In this
example the maximum credible interval width decreased by 22% in one step, and on
real data we can often achieve 70-90% reduction in uncertainty while retaining almost
identical accuracy – see Figure 2 for an example.

approach; it works particularly well with large sample sizes and is robust over
different classification problems. For an overview and empirical comparison of
calibration methods in context of neural network classifiers, arguably the most
relevant practical model family today, see [6].

Isotonic regression produces a function that maps the raw scores to well-
calibrated probabilities, but the probabilities are calibrated only for the training
data; each bin is associated with an empirical estimate for the probability but
the algorithm provides no guarantees on the true value. We analyse isotonic re-
gression from a perspective of reliability. We use Bayesian statistics to provide
credible intervals for the true bin probability and observe that in many cases
the credible intervals for IR outputs are extremely wide. This makes the method
fragile and unreliable, even though the probability estimates are unbiased. The
problem occurs in particular in imbalanced classification problems where the
bins capturing the rare positive samples are the most uncertain, causing prob-
lems especially for the samples that are most interesting. As an example, in
e-commerce the task is often to predict customer conversion with rates below
3%, and sometimes as small as 0.2% [3]. Quantifying the uncertainty is also im-
portant for other tasks such as medical diagnostics [20], credit scoring [8], and in
modern portfolio management theory where variance is one of the fundamental
building blocks [18].

To address the high uncertainty of IR, we extend isotonic regression in a
manner that provides reliable estimates, coining the method Reliably Calibrated
Isotonic Regression (RCIR). The goal of the method is to provide well-calibrated
probability estimates that additionally have low variance and probabilistic guar-
antees for maximum deviation, so that in downstream applications we can trust
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the available estimates and handle the uncertainty as necessary. This is achieved
by similar merging process that is at the core of IR, but that now uses uncertainty
reduction measured by credible interval compression as criterion; see Figure 1
for illustration of the concept. The algorithm monotonically improves reliability
by reducing output resolution (the number of bins). We show that significant
improvements in credible interval width can be achieved with negligible loss in
testing set accuracy.

We demonstrate the algorithm on real world data relating to behavioral mod-
eling of online users. We show that for typical binary classification tasks with
class-imbalance, regular isotonic regression produces bins with extremely wide
credible intervals despite relatively large total sample size. Our algorithm com-
presses the credible intervals to a fraction of the original ones without compro-
mising the accuracy of the classifier.

2 Background: Isotonic Regression

To provide sufficient background for the rest of the paper, we start by a recap
of isotonic regression and its limitations.

Assume that we have a binary classifier s(xi) that outputs scores zi cor-
responding to the input features xi for sample i. No assumptions on how the
classifier has been trained is made, but higher scores zi are assumed to more
likely belong to the positive class. The goal of isotonic regression [22] is to cali-
brate the classifier so that the calibrated output, denoted by g(z), matches the
empirical ratio of the positive class among the training samples with the same
output. That is, it seeks to find the function g(z) that maps the arbitrary scores
into actual probabilities of the positive class.

IR finds the function g(·) that minimizes the mean square error (MSE)

L(g) =
1

N

∑
i

(
yi − g(zi)

)2
(1)

under the constraint that g must be monotonic, i.e. g(a) ≥ g(b) for a > b. Here
yi is the dependent variable of sample i. The optimal solution is a piecewise
constant function g that maps score ranges to some positive values. For a binary
class variable y ∈ {0, 1}, these values are well-calibrated probabilities for the
positive class [22]. The range of scores that map to a certain value is called a
bin. At training time, a number of samples with similar scores are assigned to a
bin, and the value (probability estimate) associated with the bin is the relative
frequency of the positive class samples in that bin.

A global optimum of the objective (1) is obtained with the pair-adjacent vi-
olators algorithm [1] that starts by ordering all samples according to score. The
algorithm then goes through all samples adjusting bin boundaries to smooth out
any violations of the monotonicity, terminating when there are none left. Be-
sides minimizing MSE, the result maximizes AUC-ROC [17]. While AUC-ROC
is completely insensitive to calibration, it is an actual measure of refinement, i.e.
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it measures how well positive samples are separated from negative ones. As MSE
can be decomposed into refinement and reliability, we think AUC-ROC together
with a calibration metric is a more comprehensive measure of goodness.

Despite being frequently used, IR has limitations especially in problems with
high class-imbalance. The resolution (the number of bins) of the output is de-
termined solely by the monotonicity criterion with no user control, and for im-
balanced setups some of the bins often contain very few samples [15]. For such
bins there are no guarantees for the empirical estimate to accurately represent
the true probability on test data. Many real-world classification problems are
highly imbalanced so that the class of interest is smaller, and for such problems
IR creates the smallest bins for the high probability samples. This is problematic
because this happens precisely for the samples we care most about. For exam-
ple, the conversion rate in online stores is typically below 3%, as is click-through
rate of ads [3], and the goal is to identify users most likely to take action, yet IR
provides the least reliable estimates exactly for those users.

3 Method

We first describe a formal procedure for inspecting isotonic regression in terms of
reliability of the probability estimates, and then describe a practical algorithm
for improving the reliability by merging bins with too high uncertainty.

3.1 Credible Intervals for Isotonic Regression

Isotonic regression assigns for each bin a single value, which in the case of binary
classification corresponds to the empirical ratio of training samples in the positive
class falling into this bin. This is equivalent to assuming a Bernoulli model

p(y = 1|s(x) = zi) = Bernoulli(θi)

and using maximum likelihood estimator for inferring the parameter θi.
We use Bayesian statistics to characterize the posterior distribution of the

parameter using the conjugate prior Beta(α, β). Straightforward calculus (see,
e.g. [5]) then provides the posterior

p(θi|data) = Beta(ki + α, ni − ki + β) =
θki+α−1 × (1− θ)ni−ki+β−1

B(ki + α− 1, ni − ki + β − 1)
,

where ni indicates the number of samples falling into the ith bin, ki is the
number of samples in the positive class, and B(a, b) is the beta-function. We use
α = β = 1 to indicate uniform prior, but other choices would be equally easy
to implement. We characterize the posterior distribution using highest posterior
density (HPD) credible intervals [11] H(p(·), c) corresponding to the smallest
continuous range of parameter values capturing a given total mass 1− c (where
the confidence level c is often set to 0.05) of the posterior such that for all
θ ∈ H(p(·), c) we have p(θ|data) > p0 for some threshold p0. This range is
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typically not symmetric around the posterior mean, but captures the intuitive
idea of credible alternatives better than central intervals – every point within
the region has higher posterior density than any of the points outside it.

Since the beta distribution is unimodal, we can efficiently find the HPD
interval by binary search in the log domain. Defining the credible interval as
[l, h], we start by making an initial guess for l and find h such that p(θ =
h|data) = p(θ = l|data) and l < h. Here the denominator can be ignored and
the search is fast. We then refine l (and consequently h) using binary search
until the total probability mass within the region is sufficiently close to 1− c.

3.2 Reliably Calibrated Isotonic Regression

The only way of obtaining narrow credible intervals is to guarantee sufficiently
many samples in each bin, but the required number depends on both n and k and
hence we cannot set direct thresholds upfront. We can, however, set a threshold
for the width of the HPD credible interval. This provides us the formal definition
of reliably calibrated isotonic regression (RCIR):

Definition 1. Reliably calibrated isotonic regression: Given a binary clas-
sifier that outputs scores zi for N samples with true classes yi, minimize the
objective

1

N

N∑
i=1

(yi − g(zi))
2

under the constraints that g(·) is a monotonic function and for every distinct
value of g(·) the highest posterior density credible interval at confidence level c
for the estimated class probability p(y = 1|g(zi)) is at most of width d.

A solution to the above problem provides well-calibrated probabilities in the
same sense as regular isotonic regression, but additionally guarantees that the
probability estimates provided for the bins are reliable also for future samples at
a level chosen by the analyst. That is, for any given sample there are probabilistic
guarantees for the estimate to be sufficiently close to the true value.

We will next present a practical approximate algorithm for solving the prob-
lem, but before that we make a general remark that motivates our algorithm. As
described in Section 2, IR both minimizes MSE of the predictions and maximizes
the AUC-ROC; it directly optimizes the former with an algorithm guaranteed
to find the optimal solution under the monotonicity constraint, and the latter
follows from [4]. Since RCIR incorporates additional constraints for the same
objective, IR directly provides a lower bound for MSE and an upper bound for
AUC-ROC for any algorithm solving the problem of Definition 1. This only holds
for training data; the additional constraints may regularize the solution so that
these metrics improve on test data.

3.3 Greedy Optimization Algorithm

We are not aware of an efficient algorithm guaranteed to find the global optimum
of the problem in Definition 1. We can, however, derive a practical algorithm



6 O. Nyberg & A. Klami

that solves it computationally efficiently and produces solutions that for practical
problem instances are very close to optimal. The basic idea is to first solve the
unconstrained IR problem, guaranteed to produce optimal solution without the
additional constraints. We then refine the solution by merging bins with too wide
confidence intervals in such a way that the monotonicity assumption is retained
until all credible intervals are sufficiently narrow.

For each merge we greedily select the bin with the widest confidence interval.
It can be merged either with the bin to its left or its right; both choices retain
monotonicity. As we are already controlling for calibration, we wish to retain as
much of the refinement as possible and hence chose the solution that maximizes
AUC-ROC of the classifier after the merge. That is, we compute AUC-ROC
for both alternative merges and choose the one that decreases the value less,
corresponding to a better classifier.

The full algorithm is provided in Algorithm 1.1 It is a deterministic algorithm
that terminates in a finite number of steps since the number of bins is decreased
by one at every step, and in practice it is computationally efficient due to merely
selecting one bin at a time to be merged until all credible intervals are narrow
enough. We do not have approximation bounds for the algorithm, but as illus-
trated in the empirical experiments the AUC-ROC of the training set of the final
calibrated classifier is often extremely close (in our experiments always within
0.01%) to the AUC-ROC of the IR solution that provides an upper bound, and
hence even if the solution is not optimal it cannot be far from it.

3.4 Parameter Choice

The algorithm has only two parameters, the maximum width d of credible in-
terval for any of the bins and the associated confidence c. For c one can safely
choose a standard value in the order of 0.05. The width parameter d, in turn, has
a natural interpretation in terms of the decision problem since it corresponds
to the maximum error one is willing to accept in probability estimates. We rec-
ommend setting this manually according to the task at hand, but would expect
values between 0.1 and 0.2 to be acceptable in many problems.

In absence of domain knowledge for determining d, it can also be set automat-
ically using cross-validation based on the intuition that good values generalize
well for test samples. To find the optimal value we leave out a set of validation
samples not used for training the classifier or for calibrating it, and evaluate
AUC-ROC of the RCIR model on the validation set after every merge. We then
choose the refinement level that corresponds to the best validation score.

4 Related Work

The value of calibration has clearly been recognized, exemplified e.g. by the ob-
servation that modern deep learning networks are typically poorly calibrated

1 A Python implementation of the algorithm and the data used in the experiments
are available at https://github.com/Trinli/calibration.
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Algorithm 1: Greedy algorithm for reliably calibrated isotonic regres-
sion
Input : Real-valued scores zi provided for N training samples with

class labels yi ∈ {0, 1}, a confidence level c ∈ [0, 1], and
maximum width of credible interval d ∈ [0, 1]

Output : A collection of bins Bk, each characterized by a range of input
values [ak, bk] mapped to the bin, and the associated class
probabilities θk within highest posterior density credible
interval [lk, hk], such that hk − lk ≤ d.

Initialization: Run pair-adjacent violators algorithm to produce initial bins
Bk and estimate the HPD intervals [lk, hk] for all k

while hk − lk > d for any bin k do
Choose k = arg maxhk − lk
Consider merging Bk with Bk−1 to produce new Bj :
begin

Set new input range to [ak−1, bk]
Compute the new HPD interval [lj , hj ]
Compute AUC-ROC for a classifier that replaces bk−1 and bk with bj

end
Consider merging Bk with Bk+1 to produce new Bj :
begin

Set new input range to [ak, bk+1]
Compute the new HPD interval [lj , hj ]
Compute AUC-ROC for a classifier that replaces Bk and Bk+1 with Bj

end
Choose the better of the two alternatives based on AUC-ROC
Replace BK and its chosen neighbor with BJ

end

[6], but arguably has not been receiving sufficient attention [20]. Nevertheless,
in recent years a few calibration methods have been proposed to improve on the
classical choices of isotonic regression, Platt scaling [16], and histogram binning.
We briefly discuss these alternatives here, but note that none of these works
address our main goal, the reliability of the estimates. Instead, they are moti-
vated simply as more accurate calibration methods that explicitly optimize for
calibration accuracy on the training data. Building on our work for IR, it could
be possible to estimate credible intervals also for some of these other methods
and develop generalizations that would optimize also for that.

Bayesian Binning by Quantiles (BBQ) [13] builds on histogram binning, form-
ing an ensemble that combines binning models with different bin widths using
Bayesian weighting for different models. Even though it achieves good calibra-
tion metrics, it has a tendency to underestimate the highest scoring samples in
imbalanced cases due to using bins of constant width. The Ensemble of Near-
Isotonic Regression (ENIR) [12] is also an ensemble with Bayesian weighting
and builds on a variant of isotonic regression that allows small violations to the
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monotonicity constraint and typically achieves better empirical performance. As
ensembles, both BBQ and ENIR are computationally less efficient (though this
is often not a practical issue as training the classifier itself dominates the total
computation) and more difficult to interpret and analyse theoretically. Impor-
tantly, neither of these optimizes for criteria that would account for reliability
of the estimates and they provide no guarantees for it.

The recent scaling-binning calibration method [7] combines Platt scaling and
histogram binning to achieve sample efficiency of the former with theoretical
properties of the latter, achieving good calibration performance for deep neu-
ral networks and focusing in particular on sample complexity. Even though the
method is motivated in part via variance reduction, they do not quantify the re-
liability of the probability estimates either theoretically or empirically, explicitly
leaving finite sample guarantees for future work.

5 Experiments

We illustrate the method on data collected on e-commerce sites, where the clas-
sification problem concerns predicting a particular decision of the user, matching
our eventual use case. For the purpose of this manuscript the specific data sets
are largely irrelevant, as is the underlying classifier since we only access its out-
puts.

We conduct two separate experiments. First we demonstrate the method on
a typical imbalanced binary classification problem, showing how we can obtain
increasingly tighter bounds for the credible intervals with minimal loss in classi-
fication accuracy. The second experiment demonstrates the performance of the
automatic selection of d explained in Section 3.4, removing the only tunable
parameter in Algorithm 1.

5.1 Experiment 1

For this experiment only users that had more than two pageloads were included
resulting in a generous 4.8% positive rate even though the conversion rate for
the entire site is below 1.0%. We used a sample of 200,000 visitors not used to
train the base classifier and randomly selected 1/3 of the data for testing.

Figure 2 illustrates how the method works, by depicting the bins and their
credible intervals for both standard IR and the proposed RCIR for three choices
of d. The reliability of the estimates is dramatically improved compared to reg-
ular IR, yet the refinement is sufficient as we still retain the important bins with
high probability. With excessively small d (bottom right) the calibration further
improves, but too much resolution is lost.

Table 1 quantifies the results using MSE and AUC-ROC evaluated on test
data. The main observations are that standard IR is extremely unreliable having
maximum credible interval width above d = 0.8, and that RCIR can dramatically
improve reliability without compromising accuracy. In particular, for all d ∈
[0.1, 0.3] AUC-ROC decreases by less than 0.004% and MSE increases by less
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Fig. 2. The top left plot shows the result of isotonic regression with 95% credible
intervals for the 45 bins produced. The remaining plots show the results of reliably
calibrated isotonic regression for varying levels of reliability d. For these plots we used
maximum threholds of 0.3, 0.2 and 0.1 (with c = 0.05), and report the actual maximum
width in the plot titles.

than 0.03%. Differences this small are irrelevant in practice, yet we achieve over
an 80% drop in credible interval width while retaining more than half of the
bins. This indicates that the greedy algorithm is able to find a solution that is
almost indistinguishable as a classifier from the original one while providing a
formal reliability guarantee. The accuracy starts to drop noticeably only when
enforcing extremely narrow confidence intervals (d = 0.01).

5.2 Experiment 2

To evaluate the automatic procedure for determining d, we use three different
data sets. The first is the one used in experiment 1, whereas the other two have
slightly higher positive class rates. In all cases the prediction task was the same,
i.e. predicting the conversion probability of a visitor.

Table 2 reports the average results over 30 random splits into training, vali-
dation, and test sets (1/3 for each). We again see that standard IR is unreliable
in all cases, with the largest confidence intervals exceeding 0.65 in all cases. For
binary classification intervals this wide implies the bin provides essentially no
information on true probability. For RCIR the automatic procedure is able to
push the maximum width down to 0.13 or below, achieving always at least an
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Table 1. Goodness of fit for different algorithms demonstrating that tighter credible
interval requirements (reliably calibrated isotonic regression, RCIR, with different val-
ues for d) result naturally in lower number of bins, but do not decrease the overall
performance of the classifier as measured by AUC-ROC and MSE.

Model d Bins AUC-ROC MSE

Uncalibrated classifier - - 0.714878 -
Isotonic regression (0.811400) 45 0.713166 0.0435589
RCIR .30 38 0.713167 0.0435541
RCIR .20 34 0.713138 0.0435429
RCIR .10 28 0.713149 0.0435715
RCIR .05 23 0.712874 0.0436705
RCIR .01 9 0.671561 0.0447910

Table 2. Average results of 30 repeated experiments for every data set with random-
ization. Compared to regular isotonic regression (IR) the proposed reliably calibrated
isotonic regression (RCIR) results in nearly identical AUC-ROC and MSE metrics, but
reduces the maximum credible interval width more than 80%.

Data set 1 Data set 2 Data set 3

Samples [#] 200,000 79,155 200,000
Positive rate [%] 4.799 8.040 7.482

Max credible interval (IR) 0.6586 0.7113 0.6925
AUC-ROC (IR) 0.715180 0.773431 0.760706
MSE (IR) 0.0432544 0.0634838 0.0635181

Bin merges [#] (RCIR) 7.63 11.07 12.47
Max credible interval (RCIR) 0.1266 0.08200 0.04504
AUC-ROC (RCIR) 0.715179 0.773388 0.760740
MSE (RCIR) 0.0433455 0.0644942 0.0678055

80% reduction in credible interval width. Again this happens without sacrificing
accuracy. For AUC-ROC the reduction is always below 0.01% and for the first
two data set MSE increases also less than 2%. For the third one for which we
have the narrowest credible intervals, AUC-ROC actually improves slightly but
MSE worsens slightly more, almost 7%.

6 Conclusion

In many applications classification is just the starting point. The actual goal is
to make a decision e.g. on whether to provide credit to an applicant, whether to
address a potential buyer with marketing activities, what investment instruments
to include in a portfolio, or which treatments to prescribe to a patient. While
the need for well-calibrated probabilities for making justified decisions has been
clearly identified [20, 6] and several practical methods for calibrating arbitrary
classifiers are available, the literature has been ignoring the reliability of the
estimates. The existing methods calibrate the outputs well on training data, but
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do not have guarantees on performance on test data and often have very large
uncertainty.

In this work we showed how the reliability of the calibration can be analysed
using simple statistical analysis and demonstrated it in the context of isotonic
regression [21]. We further extended isotonic regression to provide estimates with
probabilistic guarantees on reliability. As isotonic regression is one of the most
widely applied calibration methods, our results have clear practical value. The
formulation has potential also for follow-up work on extending other calibration
methods to better account for reliability, even though rigorous statistical analysis
will not be trivial for e.g. the ensemble methods [13, 12].

The main conclusion of our work is clear. By explicitly measuring the reli-
ability of calibration and directly optimizing for it, we can improve reliability
without notably affecting accuracy. In most cases the deterioration in accuracy
metrics was less than 1% while the width of the credible intervals was reduced
by 80-90%. Our method guarantees that downstream applications that use in-
dividual predictions for further processing can be sufficiently certain that the
estimate will be close to the true probability. This was achieved with a deter-
ministic algorithm that terminates after a finite number of steps, demonstrated
in practice to perform near optimally even though we lack formal guarantees of
optimality.
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