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Techniques to acquire and analyze biological images are central to life science. However,

the workflow downstream of imaging can be complex and involve several tools, leading

to creation of very specialized scripts and pipelines that are difficult to reproduce by other

users. Although many commercial and open-source software are available, non-expert

users are often challenged by a knowledge gap in setting up analysis pipelines and

selecting correct tools for extracting data from images. Moreover, a significant share

of everyday image analysis requires simple tools, such as precise segmentation, cell

counting, and recording of fluorescent intensities. Hence, there is a need for user-friendly

platforms for everyday image analysis that do not require extensive prior knowledge

on bioimage analysis or coding. We set out to create a bioimage analysis software

that has a straightforward interface and covers common analysis tasks such as object

segmentation and analysis, in a practical, reproducible, and modular fashion. We

envision our software being useful for analysis of cultured cells, histological sections,

and high-content data.
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INTRODUCTION AND RELATED WORK

Analysis of biological processes in quantitative manner through image acquisition has become a
widespread technique used across life sciences (Danuser, 2011). Several computational methods
have been created to analyze various aspects of biological imaging data, as demonstrated by
the numbers of different software available (Levet et al., 2021). Recently, biological questions
and bioimaging have become increasingly multifaceted, and can thus lead to generation of vast
quantities of data and to development of complex and often custom-made scripts and pipelines
(Meijering et al., 2016). There are various efforts and new processing tools created to tackle this
issue, including use of artificial intelligence (AI) and deep learning (DL) assisted methods (Litjens
et al., 2017; Gomez-de-Mariscal et al., 2021; Hallou et al., 2021; Szkalisity et al., 2021; von Chamier
et al., 2021). However, many of these tools require advanced computational expertise or knowledge
in bioimage analysis limiting their use. Nevertheless, bioimage analysis tasks routinely performed
in life science laboratories require basic tools, including accurate object segmentation, intensity
measurements and object classification. Users without in-depth expertise on bioimage analysis
or computer sciences are also often challenged by knowledge gap in creating complex analysis
pipelines or reproducing custom-made pipelines generated by other users (Carpenter et al., 2012).
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Different open-source software including ImageJ, CellProfiler,
Icy, QuPath, and Ilastik (Carpenter et al., 2006; de Chaumont
et al., 2012; Schindelin et al., 2012; Schneider et al., 2012;
Bankhead et al., 2017; Berg et al., 2019) already aim for
straightforward analysis of specific bioimage data. ImageJ and
CellProfiler are perhaps the most established and widely used
image analysis software (Levet et al., 2021). ImageJ, and
especially the Fiji distribution of ImageJ, contain various plug-
ins and scripts for image visualization, processing, and analysis.
Advanced users can readily customize their analysis tools via
scripting, and the analyses can be further automated by users
recording their ownmacros (Schneider et al., 2012), which enable
replicating the analysis features later. Fiji includes several plug-
ins, which are additions to the software and often created for
specialized analysis, such as for tracking of objects or image
processing (Schindelin et al., 2015). While the available number
of tools for ImageJ is large, the choice of appropriate tool
and parameters, and how they are combined in pre- and post-
processing, can be challenging. CellProfiler, in turn is more
modular in its functions, and thus users can easily create specific
analysis pipelines (Carpenter et al., 2006). However, we found
that whereas efficient and reproducible use of these and other
software is uncomplicated for the expert users, there is still a need
for user-friendly software with easy access to bioimage analysis
for novice users. Thus, we sought to develop a software with an
intuitive graphical user-interface, which is easy to operate, and
performs the most common bioimage analysis tasks accurately in
a reproducible andmodular fashion. Special attention was paid to
streamlining the combination of segmentation, cell counting, and
fluorescent intensities measurement, while providing support for
both small and large data sets. We wanted to provide users
with automated protocols including all analysis stages from
pre-processing to the numerical results, that could seamlessly
combine further analysis in a preferred spread sheet program,
and designed the software to contain a wizard feature, which aims
to suggest a suitable protocol for the analysis to help users select
the right tools.

METHODS

Overview
The software is based on Java and presents a graphical user
interface. Themain software window is divided into the left panel
listing all the imported images and their layers, a zoomable main
image panel, a separate zoom image panel for viewing image
details, and a right tabbed panel, containing method parameters
and execution, result panel, and a histogram panel (Figure 1).
Additional information on the usage of the available filters,
protocols, and user interface components and are displayed on
the status bar during mouse hover.

The main functionality is achieved through three main
components: filters, protocols, and counters. Filters are
implementations of general-purpose image processing tools,
such as thresholding, gamma and illumination correction,
blurring, edge detection, and morphological operations. Filters
accept and produce one input and output image. Filters can
be used by the user manually, and they are widely utilized

internally by the protocols. Protocols are combinations of
various subsequently executed filters, additional supplementary
code, and a final counter. They provide a full method for
processing a series of images for a specific task, such as tissue or
nucleus detection and extract numerical data. They accept and
can produce one or more input and output images. Counters
are special functions for outputting only numerical data from
the images into a results table, which can be further saved
as TSV or opened in Excel. Full list of available filters and
protocols with usage descriptions are available in the user guide
(See availability).

Functionality
Various protocols are available via the wizard feature, which aims
to suggest a suitable method by asking the user questions about
the images and the task the user wants to execute. The protocols
and their main settings have been organized into a decision tree,
utilized by the wizard (Figures 2A,B). Relevant questions from
the tree with example images and explanations are presented to
the user in a simple “yes or no”-format, and a suitable protocol
and settings are selected based on the combination of these
choices (Figures 2B,C). This eliminates the need to combine
filters or search for the suitable methods manually.

Parameters, such as nucleus size, background, radiuses and
thresholds required for the protocols are estimated automatically
on the go, and the protocol setup requires mainly user interaction
related to the input images, and subjective values and preferences
such as the desired sensitivity, or removal of dividing cells.
Protocols are suitable for both small and large-scale analyses
and feature memory mapping and multithreading for efficiently
handling a large number of images. There is also a separate
batch processing mode for processing several images without
importing them before processing.

Most of the common scientific image file formats are
supported by Tonga, as the software uses the Bio-Formats
importer by Open Microscopy Environment (OME) (Linkert
et al., 2010). No knowledge of image formats is required from
the user, and the software internally handles imported files
as either 32-bit ARGB-images (8 bits per channel), or as 16-
bit colored grayscale images, converting them as necessary
without user interaction. As the software is currently aimed for
2D images, three-dimensional Z-stack images are automatically
converted into average intensity Z-projections. Imported images
are displayed to the user as a list (Figure 1A; no 2–3), and each
image further consist of separate layers, including all fluorescence
channels, as well as processed versions of the image produced by
the user via filters or protocols. Images can be viewed separately,
or as a combined stack image. Any output from the filters or
protocols is appended to the list of layers for the image, allowing
user to compare the output to the original picture and return to
the previous steps.

Protocols
Presently Tonga offers basic protocols for nuclei detection,
overlapping and touching nuclei separation, and intensity
measurements from fluorescence images, and analysis of tasks
such as cell positivity, dye intensity, double-staining intensity,
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FIGURE 1 | Overview of the Tonga user-interface. (A) Main user-interface of Tonga. 1: Main image panel, 2: List of imported images, 3: List of layers (channels and

processed versions of images) 4: Zoom panel, 5: Tab panel. Dropdown menus for lauching filters, protocols and counting functions. (B) Examples of the content of

the Protocols, Filters, and Results Tab panels.

and intensity around the nucleus. Description of the protocol
steps and basic principles is presented below. Technical details
are available together with the source code, and the usage of the
protocols is described in the user guide (See availability).

Nucleus Detection
Tonga proceeds in nucleus detection in three major steps by
combining area detection and concave point detection (Zafari
et al., 2017) with a concave point pairing algorithm and
secondary mask creation. First, a binarized mask is created from
the original image using a series of difference of Gaussians

(DoG) edge detection with various radiuses, attempting to
identify only the area where the target objects are, and remove
majority of the background. Second, the edges of these detected
areas are traced and any concave points forming sharp corners
are detected. The detected concave points are then connected
to each other with lines, utilizing information of the angle
and direction of the concave point, as well as the location,
proximity, parallelity, and sharpness of the other concave
points in attempt to determine where the cells most likely
overlap. The masks are cut along these connected lines to
separate overlapping objects into individual nuclei. Ultimately,
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FIGURE 2 | Overview of the wizard feature. (A) Wizard can be found and launched from the menu bar. (B) Example of one branch of the wizard decision tree, starting

point indicated by red arrow. (C) Examples of the wizard window helping to select suitable protocol to use. Selections for the analysis made by the user are listed in

the box on the right (highlighted with red box in the right image).

the obtained masks are compared back to the original image, in
attempt to detect any inconsistencies on the edges, improve mask
accuracy, smoothen the mask, and remove unwanted structures,
such as additional nuclear structures such as micronuclei
and holes caused by nucleoli (Kwon et al., 2020). Dividing
and dead cells are removed, per user choice, by detecting
nuclei with deviant texture and morphology compared to the
other nuclei.

Measurements
The final adjusted mask is used as the nucleus area and compared
to the original image for intensity measurements, reported as the
average intensity and as the total sum. Background is estimated
using an average measurement from one or more areas in
the image, which do not produce any signal during the object
detection, due to minimal intensity differences. Cell positivity is
based on a user-set protocol parameter on the level of intensity
required to consider a cell positive.

Modularity
As internally protocols function with an input-output principle
by calling existing filters, counters, or other protocols, together
with supplementary code, creation of new protocols for various

purposes requires only minor code modifications. Implementing
new filters also requires minimally only the code which returns
an output image array, as the filters share the common internal
basic structure, and are executed independently from each
other. Indeed, one of the future areas of development in the
software is to enable users to extend the software functionality
by creating new protocols and loading new filter or counter
classes dynamically.

Cell Culture and Immunofluorescence
Staining
To generate authentic cell culture data to test our segmentation
and intensity measurement data, MCF7, T47D and SKBR-3
breast cancer cell lines (Holliday and Speirs, 2011) (all from
ATCC) were cultured on glass coverslips for 24–48 h. Samples
were fixed with 4% PFA for 10min at room temperature.
After fixation, cells were washed with PBS and permeabilized
with 0.5% Triton-X (Sigma) in PBS for 10min. Next, samples
were washed twice with PBS and non-specific binding sites
were blocked with 10% FCS in PBS for 60min and incubated
120min at RT with primary antibody (ERα, Santa Cruz 1:100)
diluted in blocking solution. Following incubation, samples
were washed three times with PBS and then incubated for
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60min at RT with appropriate Alexa Fluor 594 secondary
antibody (Life Technologies). Finally, samples were washed
for 3 times with PBS followed by counterstaining of nuclei
with Hoechst33342 (Sigma). For detection of proliferating cells,
cells were treated with 10µM 5-ethynyl-2′-deoxyuridine (EdU)
for 2 h and thereafter fixed with 4 % PFA. Immunostaining
to detect EdU positive cells was performed using Click-IT
EdU Alexa Fluor 647 Imaging Kit (ThermoFisher) according
to manufacturer’s instructions. Before mounting, nuclei were
counterstained with Hoechst.

Imaging and Quantitation
Imaging of the stained coverslips was performed using Leica
DM5000b microscope with 20× objective and 2,048 × 2,048,
0.27 µm/pixel resolution. To test our segmentation method,
we prepared MCF7, T47D, and SKBR-3 breast cancer cells
stained with Hoechst for counting of nuclei. Two independent
human observers counted the nuclei in total of 12 independent
images using the Cell Counter function in Fiji. For MCF7 and
T47D cells, the nuclei were also classified as either interphase
nuclei, or as condensed and small nuclei indicative of mitotic or
apoptotic cells.

Comparison With Watershed and StarDist

Segmentation in ImageJ
For comparison with watershed segmentation, the images were
first pre-processed with illumination correction in Tonga, and
then segmented in ImageJ 1.53c by binarizing them with
global thresholding and then processing with the watershed
operation. For comparison with StarDist segmentation (Schmidt
et al., 2018), original RGB images were converted to 8-bit
images in ImageJ 1.53c and then processed with the StarDist
ImageJ/Fiji plugin (https://imagej.net/StarDist) using the built-in
versatile (fluorescent nuclei) model and default settings for post-
processing. Processed images were transferred back to Tonga,
and any objects touching the images edges or being smaller than
500 pixels (MCF7), 300 pixels (T47D), or 100 pixels (SKBR-3)
were removed. The number of segmented areas was counted
using the object counter tool in Tonga. Finally, the number of
dead and dividing cells estimated by Tonga was subtracted from
the total number of objects, to get the number of interphase
nuclei. Bland-Altman plots of the results was calculated and
drawn in Prism 9.

RESULTS

To demonstrate the usage and accuracy of the automated
protocols available in Tonga, we applied segmentation, nuclear
counting, stain positivity, and staining intensity protocols to
various data sets, and compared the results visually or either
to the ground truth numbers or other available methods
outside Tonga.

The nuclear segmentation protocol in Tonga was
demonstrated by analyzing a nuclear count of a set of MCF7,
T47D, and SKBR-3 breast cancer cells (Holliday and Speirs, 2011)
by Tonga and two independent human observers (Figure 3A).
The nuclear counts obtained with Tonga differed 0.1–8% from

the observer average, showing good consistency across the
image set (Supplementary Figures 1A,B). We additionally
demonstrated the segmentation protocol in Tonga using
fluorescence images from a publicly available, ground truth
annotated data set prepared for testing nuclear segmentation
methods (Kromp et al., 2020). The data set includes 2D
fluorescence images of cell lines and cultured primary cells with
varying level of overlapping cells. We segmented 29 images with
normal nuclei from the collection using Tonga and compared
the number of nuclei against the ground truth annotations of the
data sets (Figure 3B). For a fair comparison, we used the same
criteria for nuclei to be included as in the original work (Kromp
et al., 2020), and excluded any nuclei excluded in the ground
truth annotations, as well as nuclei which appeared dead or
dividing. We found that difference between the ground truth and
Tonga was between 0 and 6% across the data set, demonstrating
suitability of the nuclear segmentation and counting protocols
on various data sets and cell types.

To compare the Tonga segmentation protocol with other
existingmethods, we analyzed our own data set using widely used
watershed-based segmentation with binary thresholding, as well
as with state-of-the-art StarDist segmentation method (Schmidt
et al., 2018; Supplementary Figures 1A,B). For unbiased
comparison of only clustered cells, we removed cells with
condensed nuclei and micronuclei from the images. We detected
no systemic differences or bias in nuclear count with Tonga
compared to watershed method or to StarDist when comparing
the difference between the methods using a Bland-Altman plot
(Supplementary Figure 1C). We additionally segmented the
Kromp et al. (2020), data set with both Tonga and StarDist to
further compare these methods. This data set was also segmented
in a similar fashion by Tonga and StarDist, especially when
examining clustered nuclei (Supplemental Figures 1D,E). Thus,
we conclude that the Tonga segmentation protocol functions
comparably to both earlier and state-of-the art methods.

Detection of apoptotic and dividing cells largely depends
on size and morphology of the nuclei that can vary between
different cell types, yet condensed nuclei are indicative of both
processes. Condensed nuclei can be removed from or included
in the segmentation and counting as per user choice. We
demonstrated using theMCF7 cell line that condensed nuclei can
be accurately recognized in Tonga using an automated protocol
(Figure 3C). The final numeric output from the segmentation
and counting protocols is displayed to the user in the Results table
(Figure 3D).

Next, we demonstrated intensity measurements in nuclei
in conjunction to nuclear segmentation of nuclei. Measuring
of immunofluorescence staining intensity can be used for
instance to quantitate number of positive or negative cells
in a population, and thus we analyzed MCF7 cells treated
with EdU as indication of proliferation (Figure 4A). Images
were first segmented using the Hoechst nuclear stain channel,
whereafter an intensity threshold on channel with background
corrected EdU staining was set manually to determine, which
nuclei were positive. Cells exhibiting staining intensity below
the selected threshold were determined negative, and above
the threshold positive (Figure 4A, marked in gray and white,
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FIGURE 3 | Nuclear segmentation protocols. (A) Example images of MCF7 and T47D breast cancer cells with nuclear stain (Hoechst) and corresponding

segmentation masks by Tonga. Graph shows quantitation of round nuclei in 12 independent images. Counting was performed manually by two observers, and

compared to count by Tonga. (B) Example images of Kromp et al. (2020) data set and the final segmentation results created in Tonga. Graph shows nuclear count of

29 images by Tonga compared to the ground truth. (C) Example image of MCF7 with nuclear stain (Hoechst). Dividing and apoptotic cells indicated by orange

arrowheads in the original image are removed from the final results. (D) Numeric output from the nuclear segmentation protocol shown in the results tab.

respectively). When comparing the segmentation mask and
original image, it is clear the precision of the original
segmentation mask is critical for accurate determination of
positive and negative cells (Figure 4A). Furthermore, the masks

generated by the segmentation protocol appear in the list of
layers in the software, which makes it straightforward for the
users to examine the data and compare it to the original
images.
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FIGURE 4 | Intensity measurement protocols. (A) MCF7 cells stained with nuclear stain (Hoechst) and to detect EdU (white) incorporated cells. To quantitate EdU

positive cells, nuclei are segmented using the Hoechst channel and a threshold is set to determine positive staining. In final results image nuclei that are negative for

EdU staining are marked gray, and positive nuclei white. Comparison to original image shows overlay of segmentation mask marked with positive (red) and negative

(blue) nuclei (B) MCF7 cells immunostained with ERα antibody (red), segmented using nuclear stain channel (Hoechst) and measured for intensity of the staining.

Immunofluorescence intensity is indicated with the color slider (white–low intensity, red–high intensity). (C) Numeric output of the intensity measurement protocol

shown in the results tab.

Combination of segmentation and measuring of
immunofluorescence staining intensity can also be used to
quantitate the full dynamic range of a nuclear stain (Figure 4B).
To establish this with our method, MCF7 cells, known to exhibit
positive staining (Comsa et al., 2015), were immunostained with
antibody against estrogen receptor a (ERα). From the images,
nuclei were segmented using the Hoechst channel, and intensity
measured from the channel with ERα staining and taking into
consideration both the stain intensity and the area of the nucleus.

The final mask shows the segmented nuclei overlaid with color
ranging from white to red, indicative of the immunostaining
intensity (white—low, red—high; Figure 4B), and the final
numeric results are displayed in the results-table (Figure 4C).
Our results show that the color corresponds accurately with the
brightness of the staining in the original image. These examples
demonstrate the suitability of the automated protocols in Tonga
for recording immunostaining intensity within nuclei either for
quantitative or qualitative analysis.
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DISCUSSION

Being user-friendly, modular, and validated are among the key
components for a bioimage analysis program to be widely usable
for the bioscience community (Carpenter et al., 2012; Levet et al.,
2021). Here we describe a validated open-source image analysis
software Tonga, which we have developed with the purpose of
being practical for everyday image analysis tasks. We paid special
attention to the user interface being intuitive, thus making the
software straightforward to use and accessible also for users
without in-depth knowledge of image analysis. We additionally
aimed to develop the software modular and automatic, that
combining different analysis tasks would be uncomplicated and
analyses would require minimal set up. Therefore, we added the
Wizard feature, which helps users to choose the right protocol for
their analyses.

We acknowledge there are several excellent open-source
software available for variety of complex image analysis tasks
(Levet et al., 2021). When developing our software, we especially
concentrated on constructing a toolbox for everyday image
analysis needs of users that often include segmentation and
recording intensity measurements from immunofluorescence
images. We show that the protocols we have developed for these
analysis work equally well compared to for instance watershed
-based algorithms and to deep-learning based methods such as
StarDist (Schmidt et al., 2018), especially when nuclei are located
close to each other or in aggregates. Moreover, we show our
protocols can be effectively used to detect dead and dividing cells
and used together with measurement of immunofluorescence
staining intensity.

In the future we aim to expand the toolbox with other
protocols, including detection and segmentation of tissues
and measurement of fluorescence and histochemical stain
intensity from histological slides, as well as object detection
and segmentation from phase contrast images. The latter would
provide analysis tools for example for organoid cultures, and for
smaller particles such as organelles within the cell. Furthermore,
we are planning to enable a feature in Tonga, where users
can integrate their own filters and protocols as a part of the
software, to better customize pipelines for their specific needs.
As Tonga can analyze several images at a given time, we
envision it will be advantageous for large scale image analyses,
but also for quick analysis of smaller scale set-up experiments.
We believe that the existing features, as well as the future

modifications, enable users of different levels operate the system

effectively leading to improved access to image analyses and
data reproducibility.
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