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Abstract

Set-point viral load (SPVL), a common measure of human immunodeficiency virus (HIV)-1 virulence, is partially determined by viral
genotype. Epidemiological evidence suggests that this viral property has been under stabilising selection, with a typical optimum for
the virus between 104 and 105 copies of viral RNA perml. Herewe aimed to detect transmission fitness differences between viruses from
individuals with different SPVLs directly from phylogenetic trees inferred fromwhole-genome sequences. We used the local branching
index (LBI) as a proxy for transmission fitness. We found that LBI is more sensitive to differences in infectiousness than to differences in
the duration of the infectious state. By analysing subtype-B samples from the Bridging the Evolution and Epidemiology of HIV in Europe
project, we inferred a significant positive relationship between SPVL and LBI up to approximately 105 copies/ml, with some evidence
for a peak around this value of SPVL. This is evidence of selection against low values of SPVL in HIV-1 subtype-B strains, likely related
to lower infectiousness, and perhaps a peak in the transmission fitness in the expected range of SPVL. The less prominent signatures
of selection against higher SPVL could be explained by an inherent limit of the method or the deployment of antiretroviral therapy.

Key words: HIV-1; between-host evolution; tansmission fitness; set-point viral load.

1. Introduction
At the end of 2020, an estimated 38million people worldwide were
living with human immunodeficiency virus (HIV), with roughly
73per cent of these individuals accessing antiretroviral therapy
(ART; www.unaids.org). For many, HIV has become a manageable
chronic condition, thanks to the treatment becoming increasingly

accessible through healthcare policies and infrastructural devel-
opments. However, much work remains to end the acquired
immune deficiency syndrome (AIDS) epidemic as a global health

threat. Ongoing transmission in under-surveyed key populations

still feeds into the epidemic (Nduva et al. 2020). Therefore,
understanding the risk factors for transmission, including viral
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2 Virus Evolution

genetic ones, is paramount for the control and mitigation of the
epidemic.

Untreated HIV infections progress in three stages: acute,
chronic, and AIDS stage (Alizon et al. 2010). In the chronic stage,
a relatively stable viral count per unit volume of plasma blood is
established in the viral host (de Wolf et al. 1997). Viral load gradu-
ally increases during the chronic stage (O’Brien et al. 1998; Sabin
et al. 2000) and accelerates during the final stage of AIDS. The rel-
atively stable viral load over the chronic stage is termed set-point
viral load (SPVL), which varies between individuals from 102 to
106 copies/ml (Bonhoeffer et al. 2003; Fraser et al. 2014). SPVL has
been observed to correlate with disease progression in the absence
of treatment, with higher viral loads leading to more rapid pro-
gression to AIDS (Fraser et al. 2007, 2014). While host genetics (e.g.
human leukocyte antigen (HLA) system) and other environmental
factors contribute to the variation of SPVL between individuals,
viral genetics have been found to account for a third of the her-
itability of SPVL with data from both European (Blanquart et al.
2017; Bertels et al. 2018; Mitov and Stadler 2018) and sub-Saharan
African cohorts (Hollingsworth et al. 2010; Lingappa et al. 2013;
Yue et al. 2013).

SPVL is a proxy for the amount of circulating virus within an
infected individual and therefore determines the potential infec-
tiousness of the individual. SPVL can also be viewed as a reflec-
tion of the burden imposed on an infected individual’s immune
system, which affects the duration of the chronic stage of the
infection in the absence of treatment. During the chronic stage,
the combined effect of infectiousness and duration of infectious-
ness on the average number of transmissions can be summarised
in a single-peaked landscape for the transmission potential as a
function of SPVL (Fraser et al. 2007). Surveillance data showed
an approximately lognormal distribution for SPVL, with the most
common values being those expected to have the greatest trans-
mission potential, suggesting a selective process acting to balance
infectiousness and duration of chronic stage to maximise trans-
mission potential. By comparing viral loads of infected individuals
found to be in transmission clusters against non-clustermembers,
Wertheim et al. showed that higher viral loads at diagnosis are
selected among HIV transmission networks in the USA (Wertheim
et al. 2019).

In classical epidemiological terms, the transmission potential
of a pathogen is related to its basic reproductive number within
a given population. With genetic data and phylogenetic meth-
ods, the transmission potential can be calculated in different
ways (Faria et al. 2018). Phylogenetic trees are commonly used
to reconstruct relationships between sequences from samples of
pathogens in calendar time or molecular time. Signals extracted
from phylogenies have proven useful in inferring the fitness of the
sampled organisms (Neher, Russell, and Shraiman 2014). Specif-
ically, fitness estimated from phylogenies of sequences across
time can inform evolutionary trajectories of genotypes present in
an asexual pathogen population, as demonstrated in retrospec-
tive predictions of circulating influenza A/H3N2 strains (Neher,
Russell, and Shraiman 2014). One method developed to achieve
this is the local branching index (LBI), which calculates the inte-
grated exponentially discounted tree length surrounding a focal
node/tip with a timescale parameter (τ ) denoting the tree neigh-
bourhood within which fitness is ‘remembered’ (Neher, Russell,
and Shraiman 2014). In other words, the LBI will be larger at a
focal node/tip when the tree branches more frequently near this
node/tip, and a larger rate of branching reflects a higher transmis-
sion fitness of the viral genotype represented by the focal node/tip
compared to other parts of the tree.

In this study, using LBI, we demonstrated the signal of selec-
tion on transmission fitness among HIV-1 subtype-B genotypes
from individuals with different SPVLs. Powered by a large sam-
ple size from the Bridging the Evolution and Epidemiology of
HIV in Europe (BEEHIVE) project and the stringent selection cri-
teria in procuring these samples (Blanquart et al. 2017), we show
that transmission fitness varies with SPVL (P-value=0.009), with
our central estimate for the variation being an increase until a
peak of approximately 105 copies/ml. This relationship holds true
for all sliding windows across the HIV-1 genome, except for the
last 1,500 bp. The relationship between transmission fitness and
SPVL higher than ∼105 copies/ml is confounded by methodolog-
ical and epidemiological factors. Interpreting LBI in terms of a
viral birth–death epidemic/phylodynamic model, we show that
variation in LBI is more sensitive to variation in lineage birth rate
(infectiousness) at shorter timescales, while accounting for varia-
tion in lineage death rates (duration of infectious state) at longer
timescales.

2. Methods
2.1 Data
The data set we analysed consists of N=1,927 whole-genome
subtype-B consensus sequences from the BEEHIVE project,
collected across European cohorts. Viral RNA was manually
extracted from samples (Cornelissen et al. 2017) and then reverse
transcribed and amplified using primers to define four overlapping
amplicons spanning the whole genome, which were fragmented
and sequenced with Illumina MiSeq or HiSeq platforms (Gall et al.
2012). Whole-genome consensus sequences were reconstructed
from the resulting short-read data using Iterative Virus Assembler
(Hunt et al. 2015) and shiver (Wymant et al. 2018). Sequence sub-
types were determined using the COMET software (Struck et al.
2014) and validated using phylogenetic tree placement methods
(Blanquart et al. 2017). SPVLs were single measurements of viral
load performed on the same sample used for sequencing, with
samples taken between 6 and 24months after seroconversion.
Thismeasure of viral load during the set-pointwindowof infection
was previously shown to have a greater heritability than an aver-
age of multiple measurements taken at different times (Blanquart
et al. 2017).

To avoid the uneven representation of the epidemic caused by
inconsistent sampling, we restricted our regression analysis data
set to contain only samples from the period 2000–12 (see Sup-
plement Figure 1), during which the sampling distribution was
relatively constant. We also excluded samples with viral load
measured as less than 1,000 copies/ml, given that there are bio-
logically induced experimental limits to accurate reporting and
detection of low viral load samples. This filter not only increased
our confidence in the SPVL measurements used in the regression,
but also removed the potential bias on LBI estimations caused by
lower genomic coverage for low viral load samples, which may
potentially lead to noisier measurement of the viral genotype and
therefore longer terminal branches.

2.2 Phylogenetic inference
We created a multiple-sequence alignment by merging individ-
ual pairwise alignments between each sample’s whole-genome
consensus sequence and the HXB2 reference genome. We also
took sliding-window subsets of this whole-genome alignment,
with a width of approximately 1,000 bp with ∼500-bp overlap. All
alignments were used to build maximum-likelihood trees using
IQ-TREE (Nguyen et al. 2015), with the substitution model general
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L. Zhao et al. 3

Figure 1. Example tree coloured with LBI values along branches and
nodes, showing higher LBI values for more frequently branching regions
of the tree.

time reversible model+F+R4. Time calibration was done using
treedater (Volz and Frost 2017), with the year of sampling for each
sequence. When the year of sampling was unavailable, we used
the year of seroconversion.

2.3 Transmission fitness computations
We computed the LBI (Neher, Russell, and Shraiman 2014)
for each tip of the time-calibrated trees, using an approach
adapted from Equations 17–19 of Neher, Russell, and Shraiman
(2014) (available at github.com/BDI-pathogens/hiv_spvl_fitness/).
We used the recommended timescale parameter (τ ) (Neher,
Russell, and Shraiman 2014), namely 0.0625 multiplied by the
mean cophenetic distance of tips in the phylogeny, correspond-
ing to τ = 4.42 years for the tree in this study. An example tree
coloured with LBI values is shown in Fig. 1. We also varied τ

in sensitivity analyses. To compute a z-score for the LBI while
accounting for the uneven availability of samples in different
years, we permuted the branching patterns of time-calibrated
trees 1,000 times while keeping the coalescent events and the year
of samples constant (Dearlove and Frost 2015). We used the LBI
values from all permuted trees to calculate the z-score of the raw
LBI values for each tip in the non-permuted tree.

We also converted raw LBI estimates for the subset ofN=1,542
samples from men who have sex with men (MSM) into lineage
birth and death rates. To infer lineage birth rates β, we assume a
fixed death rate of δ0 = 0.15/year inferred by maximum likelihood
from the tree sliced between 2000 and 2012 and then we inter-
pret changes in the LBI as changes in β according to the equation
for birth–death models (see ‘Interpretation of LBI under a birth–
death model’). For a large tree with β− δ << 1/τ , the relation can
be expressed analytically:

β =
1+ τδ0

τ

(
1−

τ

ILB

)

where ILB denotes the LBI value, β is the lineage birth rate, δ0
is the lineage death rate, and τ is the LBI timescale parame-
ter. Here however we solve numerically the exact relation (see
Supplementary File 1) assuming a finite tree with root in 1995
and tips until 2012. In principle, lineage death rates δ may
be inferred similarly by assuming a fixed birth rate of β0 =

0.14/year also inferred bymaximum likelihood and then interpret-
ing changes in LBI as changes in δ, but their inference is noisier
andmore prone to biases, as well as less relevant for the results in
this paper.

2.4 Regression of LBI and SPVL
Gaussian process regressions—a non-parametric regression/
smoothing approach based on a Gaussian process prior—were
applied to normalised quantile-transformed z-scores of LBI esti-
mations and corresponding quantile-transformed SPVL measure-
ments. The squared exponential covariance function was used:

Σ= k
(
xi,xj

)
= σ2exp

(
−
(
xi − xj

)2
2l2

)

with length parameter (l2) 0.15, variance in data (σ2) 0.5, and
variance in noise 0.5. A permutation test was used to assess the
significance of the existence of some relationship between LBI and
SPVL: the variance of the regression curve calculated from the true
data was compared with the right tail of the distribution of vari-
ances of the regression curves calculated from 1,000 permutations
of the normalised quantile-transformed z-score of LBI values. This
defines the P-value for the null hypothesis, namely that LBI is
independent of SPVL.

3. Results
3.1 Relationship between transmission potential
and SPVL
We applied Gaussian process regression to our proxy of trans-
mission fitness (i.e. normalised quantile-transformed z-score of
LBI values) and quantile-transformed SPVL measurements. The
regression trend showed a clear increase in transmission fitness
with increasing SPVL until approximately 105 copies/ml. As SPVL
increases beyond 105 copies/mL, the results showed some evi-
dence for a peak and a decline in transmission fitness and then
remained constant over the largest SPVL values (Fig. 2). The exis-
tence of a non-constant relation between LBI and SPVL is signifi-
cant by permutation (P=0.009) (Supplementary Figures 2–3). We
further investigated if LBI differed by transmission mode and sex.
The subsets of samples for heterosexual males (N=111), hetero-
sexual females (N=107), and injecting drug users (IDUs; N=105)
did not produce significant trends, probably due to limited sta-
tistical power (Fig. 2). N=1,542 samples were from MSM; these
made up the majority of the full data set (N=1,927), and the rela-
tionship between SPVL and LBI for this subset of samples was
unsurprisingly similar to that of the full data set (P=0.001).

To test if the relationship holds true throughout the genome,
we divided the genome into 17 overlapping windows roughly 1,000
bases wide. For each window we inferred a phylogeny, calculated
transmission fitness at the tips, and estimated the relationship
of transmission fitness against SPVL. All windows except the last
two (P=0.12 and P=0.18) showed agreementwith the global trend
(P<0.048) (Fig. 3). The region that did not show significant signa-
tures of the relationship (last 1,500 bp) includes partial sequences
of tat, rev, and gp41 genes and the entire nef gene. Viral replica-
tive fitness is a direct contributing factor to transmission fitness
of HIV-1. While mutations in gag, pol, and env genes directly affect
viral replicative fitness, changes in nef do so less (Claiborne et al.
2015, reviewed in: Biesinger and Kimata 2008). Therefore, nef
may be under less selective pressure for enhancing transmission
fitness.

3.2 Interpretation of LBI under a birth–death
model
The LBI at a given point in a tree (such as a tip) is calculated as
the length of the whole tree, exponentially discounting contribu-
tions with increasing distance from that point. The LBI timescale
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4 Virus Evolution

Figure 2. Relationship of transformed LBI and log10 SPVL for all samples and subsets of different modes of transmission and sex. Solid lines and
shading are posterior mean and 95per cent confidence interval. Subsets include MSM, heterosexual females, heterosexual males, and IDUs. The full
data set and the subset of MSM samples both showed a significant relationship between transformed LBI and SPVL.

τ corresponds to the size of the relevant surrounding tree neigh-
bourhood (i.e. 1/τ is the rate at which distance is discounted).
Under a birth–deathmodel for a well-sampled, slowly varying epi-
demic (β− δ << 1/τ ), the expected LBI ILB is related to the lineage
birth rate β and the lineage death rate δ by the following relation:

ILB =
1+

1/τ − (β− δ)
.

This result is not valid for a fast-growing epidemic nor if the
intensity of sampling changes with time; see a detailed derivation
in Supplementary File 1 for these scenarios.

In comparison to the conventional transmission potential or
basic reproductive number (R0), we show that LBI is unequally
affected by the lineage birth and death rates. Since LBI is related
to tree branching processes, it is more sensitive to lineage birth
than to lineage death as shown in Fig. 4. Specifically, the differ-
ence in LBI between two tips differing in lineage birth rate by ∆β

and differing in lineage death rate by ∆δ is approximately:

∆ILB =
I2LB

1+ τδ

[
∆β−

(
1−

τ

ILB

)
∆δ

]
=

I2LB
1+ τδ

[
∆β−

τβ

1+ τδ
∆δ

]
.

The contribution of the variation in δ is suppressed compared
to the contribution of the variation in β, especially for large val-
ues of LBI. In other words, while LBI is one measure of fitness, it
is more sensitive to the infectiousness and less sensitive to the
duration of the infectious state 1/δ. This can be contrasted with
other measures of fitness, such as the growth rate r= β− δ or the
transmission potential TP= β/δ, which aremore balanced in their
sensitivity to infectiousness and duration of infectiousness. The
larger the parameter τ is, the stronger the correlation between
the difference in LBI between two lineages and the difference in
their transmission potential, since ∆TP= 1

δ

[
∆β− β

δ
∆δ
]
.

In order to test the sensitivity of LBI to the lineage death
rate, we varied the timescale parameter τ from 3 to 15 years. An
increasing proportion of lineage deaths is taken into account by
LBI estimations when τ is larger, thus enhancing sensitivity to
the lineage death rate. In fact, we observe the effect of finite
lifespan of lineages inside the phylogeny, i.e. the duration of the
infectious state, on the curves (Fig. 5). Although these relation-
ships are only significant for τ ≤5years (P = 0.001–0.019) for our
data set, a downward bending trend for higher viral loads started
to appear as the value of τ increased. This is consistent with
the expected shape of the fitness landscape for SPVL and to the
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L. Zhao et al. 5

Figure 3. Trends of transformed LBI and log10 SPVL estimated from
sliding-window alignment built phylogenies across the HIV-1 B genome
(note that window widths and coordinates are approximate). Lines are
posterior mean values. Shadings are 95per cent confidence intervals.

Figure 4. Effect of local lineage birth and death rates on LBI.

idea that different values of τ are sensitive to different factors
relating to transmission fitness and SPVL. In the context of HIV-1
subtype-B phylogenies, LBI estimates are a proxy for infectious-
ness (i.e. lineage birth rates) at shorter timescales but capture
signatures of selection against high SPVL (i.e. higher lineage death
rates) at longer timescales.

3.3 Lineage birth rates among samples from
MSM
For the subset of MSM, we translated the LBI into lineage birth
rates using the relationships mentioned in ‘Methods’, showing
the result as a function of SPVL in Fig. 6. The difference in
lineage birth rate between intermediate SPVL=104.75 and low
SPVL=103 is approximately 0.0184 per year [0.007–0.029]. Inter-
preting selection against low SPVL as a result of selection against
low infectiousness, this implies an approximate selection coef-
ficient per generation around s≈−∆β/β ≈−0.2 against low
SPVL.

Figure 5. Relationship between transformed LBI and log10 SPVL fitted to
different LBI timescales (τ ). Lines are posterior means of each fitting,
with gradually lighter colours as τ increases.

Figure 6. Relationship of lineage birth rate and log10 SPVL among
samples from MSM. Line and shading are the posterior mean and 95per
cent confidence interval.

4. Discussion
We demonstrated that phylogenetic signals can be used to infer
transmission fitness of subtype-B HIV-1 viral genotypes and pro-
vided the first direct evidence of a relationship (P=0.009, per-
mutation test) between transmission fitness and SPVL. Transmis-
sion fitness is positively correlated with SPVL, until a peak value
between 104 and 105 copies/ml. At values of SPVL greater than
this peak, transmission fitness may decline, although this is only
weakly supported by our results, partly due to a lack of samples
with high SPVL and difficulties inherent to the method to detect
differences in death rates. In Fraser et al. (2007), the transmission
potential, defined as the expected number of people one infected
individual could infect during the chronic stage of infection, is the
product of transmission rate or infectiousness and the duration
of infectious period. For HIV-1 subtype B, the transmission poten-
tial is relatively low for individuals with low and high SPVL and
high for individual cases with intermediate SPVL. Our application
of LBI reproduced this pattern using phylogenetic information,
showing selection against low SPVL and possible stabilising selec-
tion for SPVL around 104–105 copies of viral RNA/ml. One study
concluded that the US epidemic is selecting for high viral loads,
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6 Virus Evolution

which are becoming more common over time (Wertheim et al.
2019). Yet we have seen a decline in viral load (Supplementary
Figure 4) for our period of study in European samples, which was
also reported in other publications (Pantazis et al. 2014). There
could be key differences in what is being selected in these two
regional epidemics.

Both theory and analysis demonstrate that LBI can be used
to estimate transmission fitness using phylogenetic relationships
within a tree. The main assumption for this approach is a pan-
mictic population, without well-defined subpopulations with dif-
ferent coalescent rates. This assumption is not strictly respected
for HIV in Europe, but it should not affect our analysis because
the dependence of LBI on SPVL should be similar across countries.
However, the suggested value for the LBI timescale parameter τ

for our subtype-B tree (4.42 years) effectively constrains the signal
of transmission fitness to this time span before and after the sam-
ple was taken, and accounting for exponentially less extending to
the future or into the past. Although we do not know the decay-
ing time for transmission fitness for particular HIV genotypes, the
timescale parameter is much smaller than the typical duration of
HIV infections and therefore constrains the sensitivity of LBI infer-
ence of selection on duration of infectious state. In fact, about half
of individuals living with HIV in Europe are late presenters (Late
presentersworking group in COHERE in EuroCoord et al. 2015) who
usually live with the infection for more than 4.42 years; therefore,
LBI calculations considered a smaller proportion of lineage death
events of sampled individuals from the branching patterns of the
tree.

In order to estimate relative transmission fitness, LBI implicitly
assumes the data captured lineage births and deaths within the
specified time period (i.e. a large τ ), while in HIV infections and
transmissions this is not true. Interpreting LBI in the framework
of birth–death models, it is more sensitive to relative changes in
birth rate or infectiousness in HIV than death rate, at least for
death rates <1/τ , while transmission potential is affected by both
equally. When we increase the value of timescale τ used for LBI,
relative differences in LBI become a better proxy for relative differ-
ences in transmission potential, as the contribution of increased
lineage death rates starts to appear by the gradual drop of trans-
mission potential with higher viral load samples. The timescale
parameter τ may also change the shape of the regression curve
for other reasons. It might magnify the variance in estimations
for the relatively low number of samples for high SPVL, causing a
noticeable change. Also, the increase in τ means the focal point
of LBI calculations shift from evolutionary history close to the tip
in the tree (the sample) to taking into account a longer time span
further away from the tip. This effect may depend on how long
transmission fitness is maintained by the viral genome through
time, which in turn depends on the viral genome’s opportunity
to generate new mutations and the interplay between genomic
epistasis.

The trends we observed agree with previous modelling results,
which found that the transmission potential of HIV-1 subtype B
is lower for both low and high SPVLs and highest at intermediate
viral loads. However, these estimates were based upon data from
untreated individuals (Fraser et al. 2007), and with the current
data set, treatment must be considered. If we approximate the
effect of ART as reducing infectiousness to zero from the moment
of diagnosis and assume the time of diagnosis is before AIDS and
independent of SPVL, then the average duration of the infectious
state will be independent of SPVL. Transmission potential, which
is the product of infectiousness and the duration of the infectious
state, is then governed by infectiousness alone. The BEEHIVE data

set is a combined European cohorts data set, where ART coverage
is above 70per cent for the sampling years of our data points (CAS-
CADE ∼100per cent (Stirrup et al. 2018), Netherlands HIV moni-
toring annual reports 78.3–85per cent (Stichting HIV Monitoring
Annual Report 2003–2012), and Swiss HIV Cohort Study 70–90per
cent (SHCS 2021)). For BEEHIVE, only individuals with samples
obtained soon after a known time of seroconversion are included,
to avoid biases related to their stage of infection. However, time
to ART initiation for individuals in the European cohorts varied
from immediately to several years post seroconversion. Variation
in the time from infection to ART can be decomposed into varia-
tion in the time from infection to diagnosis (Wolbers et al. 2008;
van Sighem et al. 2015) and variation in the time from diagno-
sis to treatment (Boender et al. 2018). During our study period
ART guidelines changed, including a CD4 count threshold change
around 2008 (Wilkin and Gulick 2008), and only since 2019 has
immediate ART been recommended for people living with HIV
in Europe (EACS 2019). With a high proportion of individuals on
ART and the variation in treatment start time, individuals within
the population have variable duration of infectious state, and this
can change the relationship between transmission potential and
high SPVL (Supplementary Figure 5 andmethod in Supplementary
File 2). Early access to ART will also confound the relationship
between the transmission potential and SPVL by increasing the
proportion of transmissions during the acute phase of the infec-
tion. Before a policy of immediate ART initiation upon entry to
care, individuals with higher viral load have a faster progression
to the treatment initiation (Mellors et al. 1997), and thus these
viral strains are more likely to be removed from the transmission
network than those of individuals with low viral load. Clearly,
further detailed modelling is needed to characterise and infer
the effects of treatment on the landscape of HIV-1 transmission
potential.

Many characteristics of individual HIV cases contribute to the
transmission potential of the virus, and some of these links may
be obscure or highly heterogeneous; therefore, it is important we
identify a proficient candidate characteristic to infer transmission
potential. By knowing which genotypes have a higher transmis-
sion potential, better epidemic preparedness can be achieved. Our
study took a step back and inferred general transmission fitness
patterns made possible with a large data set from the European
HIV cohorts and demonstrated a practical application of LBI to
detect selection on a continuous phenotype. The relationship we
observed between LBI and SPVL enabled a better understanding of
evolutionary selection pressure on transmission fitness. The appli-
cation of this phylogeny-based method should also be expanded
to other viruses and other phenotypes as well, not limited to
SPVL.

Data availability
The tree used for the analyses is available in newick format at
github.com/BDI-pathogens/hiv_spvl_fitness.

Supplementary data
Supplementary data is available at Virus Evolution online.
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