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Background: Stenosing atherosclerosis in both coronary and carotid arteries can

adversely affect cognition. Also their surgical treatments, coronary artery bypass grafting

(CABG) and carotid endarterectomy (CEA), are associated with cognitive changes, but

the mechanisms of cognitive decline or improvement may not be the same. This study

was designed to compare the cognitive profile and outcome in patients undergoing

surgical treatment for coronary or carotid disease.

Methods: A total of 100 CABG patients and 44 CEA patients were recruited

in two previously reported studies. They were subjected to a comprehensive

neuropsychological examination prior to surgery and in the acute (3–8 days) and stable (3

months) phase after operation. A group of 17 matched healthy controls were assessed

with similar intervals. We used linear mixed models to compare cognitive trajectories

within six functional domains between the CABG, CEA and control groups. Postoperative

cognitive dysfunction (POCD) and improvement (POCI) were determined with the reliable

change index method in comparison with healthy controls.

Results: Before surgery, the CEA patients performed worse than CABG patients or

healthy controls in the domains of executive functioning and processing speed. The

CABG patients exhibited postoperative cognitive dysfunction more often than the CEA

patients inmost cognitive domains in the acute phase but had regained their performance

in the stable phase. The CEA patients showed more marked postoperative improvement

in executive functioning than the CABG group in the acute phase, but the difference did

not reach significance in the stable phase.

Conclusion: Our findings suggest that anterior cerebral dysfunction in CEA patients

impairs preoperative cognition more severely than global brain dysfunction in CABG

patients. However, CEA may have more beneficial effects on cognition than CABG,

specifically in executive functions mainly operated by the prefrontal lobes. In addition,

the results underline that POCD is a heterogeneous condition and dependent on type of

revascularization surgery.

Keywords: coronary artery bypass grafting, atherosclerosis, carotid endarterectomy, cognition,

neuropsychological tests, executive functioning, coronary artery disease, carotid artery disease
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INTRODUCTION

Atherosclerotic disease is nowadays the leading cause of death
worldwide (1). Its most severe consequences are stenoses in the
coronary and carotid arteries. Whereas coronary arteries supply
the heart that circulates blood in the whole body including
the brain, the internal carotid arteries provide circulation
specifically to the anterior parts of the brain and to the eyes.
Atherosclerosis can lead to cognitive deterioration even before
severe consequences such as acute myocardial infarction (AMI)
or cerebral stroke. Chronic heart failure can result in global
reduction of blood circulation in the brain (2) and 19% of
coronary artery disease patients exhibit cognitive impairment
before surgical treatment (3). In a similar vein, carotid artery
stenosis is related to impaired cognition even before stroke
or transient ischemic attack (TIA) (4, 5). These changes may
follow either from hypoperfusion of the anterior parts of the
brain leading to impaired cerebrovascular reactivity (6, 7) and
gradual ischemic changes (8) or from showering of emboli from
carotid plaque (9), ultimately leading to neuronal loss. To date,
cognitive performance in atherosclerotic patients with a primary
symptom-generating lesion in carotid or coronary artery have not
been compared.

Both carotid and coronary artery stenosis can be treated
surgically. In coronary artery bypass grafting (CABG), the
blocked part of the artery is bypassed with a healthy artery
or vein from the body. In carotid endarterectomy (CEA), the
atherosclerotic plaque is removed surgically. Both surgeries
have been associated with cognitive sequelae. According to a
meta-analysis, postoperative cognitive dysfunction (POCD) was
evident in about 43% of CABG patients shortly after surgery,
19% at 4–6 months, 25% at 6–12 months and 40% at 1–5
years after surgery, although prevalence was greatly influenced
by methods used for classification of POCD (3). Regarding
postoperative cognitive improvement (POCI), a few controlled
studies have also showed evidence for improved cognition in
some patients after CABG (10, 11). However, it seems that
the cognitive benefits of CABG are transitory, as improvement
shown 3 years after surgery (11) is lost in longer follow-up
at 6 years (12). CEA, in contrast, has been associated with
approximately similar rates of POCD and POCI: decline in 10–
15% and improvement in about 10% of patients 1–3 months
after the operation (13–19). At 6 months, decline in 22% of
patients (20) and improvement in 33% of patients (21) has
been reported.

Several risk factors for postoperative cognitive decline
have been suggested. A recent meta-analysis identified
preoperative depression, age, longer intraoperative intubation
time and longer postoperative intensive care as risk factors
for POCD after CABG (22). Also other surgery-related
factors, such as using cardiopulmonary bypass, neurotoxicity
of anesthetics, temperature management, embolic load,
neuroinflammation, stress response, cerebral blood flow and
glucose homeostasis, as well as patient-related factors, such
as neurovascular disease, lower education, lower preoperative
cognitive function and female sex in older age have been
suggested as risk factors for POCD after cardiac surgery

(23–25). Specific mechanisms of POCD after CEA include
complications such as intraoperative ischemia (26, 27),
embolization (28) or postoperative hyperperfusion (29).
Postoperative cognitive improvement after CABG has been
suggested to follow from reduced need for medication, better
physical health and quality of life (30). The pathways for
improved cognition after CEA seem more specific: POCI after
CEA has been shown to be associated with improvement of
cerebral perfusion (31), metabolism (17, 18, 32) and cerebral
vasomotor reactivity (33).

Postoperative cognitive impairment after CEA or CABG has
been associated with lower quality of life (34), adverse long-term
cognition (10, 35–37) and higher mortality (35, 38, 39). However,
differences in postoperative cognitive outcome between CABG
and CEA are yet to be investigated.

The aim of this study was to compare the cognitive profile and
outcome in patients undergoing surgical treatment for carotid
or coronary disease in two cohorts from previously reported
studies. Based on our previous findings (10, 38) we hypothesized
that carotid disease causing territorial cerebral hypoperfusion
would be associated with a deeper and more localized cognitive
preoperative deficit in CEA patients and correspondingly
a more pronounced postoperative improvement, whereas
CABG would be associated with a more general short-term
postoperative decline.

MATERIALS AND METHODS

Setting
This study was performed in the Helsinki University Hospital,
Finland. The data comprised of patient groups from two studies
described earlier: the CEA group (13, 38) and the CABG group
(10). Both studies were approved by the ethical committee
of the Helsinki University Hospital and performed according
to the ethical standards of the Declaration of Helsinki. All
participants gave their written informed consent to participate in
the studies. The CEA data was collected between 20.2.1997 and
23.3.2000 in the Departments of Neurology and Cardiovascular
and Thoracic Surgery, Helsinki University Hospital, Finland,
and the CABG data between 2.4.1995 and 29.3.1996 in the
Department of Thoracic and Cardiovascular Surgery, Helsinki
University Hospital, Finland.

Participants
Characteristics of the study groups are shown in Table 1. The
CEA group was enrolled from a larger cohort, the Helsinki
Carotid Endarterectomy Study (HeCES) (40) upon patient
consent as well as availability of imaging facilities and personnel
within the time frames defined in the protocol. The group
consisted of 44 CEA patients who were independent, had
no history of ipsilateral CEA or radiotherapy, no potential
cardiogenic origin of emboli, no major psychiatric diseases
requiring continuous treatment, and had a surgically accessible
symptomatic (TIA or minor stroke, i.e., no need for inpatient
rehabilitation or a deficit that would be expected to limit the
neuropsychological assessment, N = 21) or asymptomatic (N
= 23) unilateral carotid stenosis of at least 70 % in digital
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TABLE 1 | Characteristics of the study population.

Controls (N = 17) CEA patients (N = 44) CABG patients (N = 100) p-value

Age, years 63.6 ± 6.8 63.8 ± 8.8 60.4 ± 8.6 0.08

Sex, male 12 (71%) 28 (64%) 86 (86%) 0.008**

Education class 0.56

Basic level 7 (41%) 23 (52%) 44 (44%)

Middle level 7 (41%) 16 (36%) 48 (48%)

Higher level 3 (18%) 5 (11%) 8 (8%)

Occupation class 0.57

Manual labor 4 (24%) 12 (27%) 39 (39%)

Skilled manual 8 (47%) 20 (46%) 40 (40%)

Non-manual 5 (29%) 12 (27%) 21 (21%)

Diabetes 0 (0%) 8 (18%) 17 (17%) 0.86a

High blood pressure 0 (0%) 24 (55%) 55 (55%) 0.96a

Dyslipidemia 0 (0%) 26 (59%) 53 (53%) 0.50a

Smoking, pack years N/A 27 (30.0) 13 (29.5) 0.009a**

Body mass index N/A 27.1 ± 3.7 27.3 ± 3.6 0.81a

Depressive symptoms

Baseline 2.0 (2.0) 4.0 (6.0) 4.0 (4.0) 1.00a

Acute phase 1.0 (2.8) 4.0 (7.0) 5.0 (5.0) 0.34a

Stable phase 1.5 (2.5) 4.0 (8.0) 3.0 (3.0) 0.27a

Congestive heart disease 0 (0%) 0 (0%) 6 (6%) 0.18

History of CEA 0 (0%) 0 (0%) 0 (0%) 1.00a

History of CABG 0 (0%) 8 (18%) 0 (0%) 0.000a***

History of AMI 0 (0%) 9 (20%) 53 (53%) 0.000a***

History of CABG or AMI 0 (0%) 12 (27%) 53 (53%) 0.004a**

Data are presented as mean ± SD, median (interquartile range) or N (%). p-values are from Kruskal–Wallis test, Mann–Whitney U tests, independent samples t-tests, χ² tests and

Fisher’s exact tests. aThe control group was omitted from statistical tests comparing risk factors, medical history and mood between groups. **p < 0.01, ***p < 0.001. CEA, carotid

endarterectomy; CABG, coronary artery bypass grafting; AMI, acute myocardial infarction; N/A, not applicable.

subtraction angiography (NASCET criteria). Of the patients, 20
were operated on the right side and 24 on the left side.

The CABG group included 103 patients who went through
an elective CABG. Three patients missed both postoperative
assessments and were excluded from the study. The participants
were independent in daily living and exhibited no neurological
disability or cerebrovascular events within 6 months and no
major psychiatric diseases requiring continuous treatment. A
carotid ultrasound was performed prior to operation in order to
preclude a significant carotid stenosis.

The control group included 17 healthy volunteers with no
medications, no signs or history of cardiovascular or neurological
morbidity, no excessive and long-lasting alcohol consumption,
no major psychiatric diseases requiring continuous treatment,
and no family history of neurodegenerative diseases. Age,
sex, and educational and occupational level of the controls
matched with both patient groups (Table 1). We rated education
according to the Finnish educational system in three levels: basic
level (compulsory education requiring 6–9 years of education),
middle level (vocational training, matriculation examination
and/or bachelor’s degree requiring 8–15 years of education),
or higher level (university level master’s degree or higher
requiring a minimum of 16 years of education). Occupational
attainment was scored to three classes: physical or manual labor

workers, skilled manual professionals, and non-manual white
collar workers.

Surgical Procedure
The CEA patients were operated on with standardized
methodology under general anesthesia with routine
hemodynamic and transcranial Doppler monitoring. Due
to stump pressure, shunting was performed in three patients.
A 1.5 Tesla magnetic resonance imaging of the brain was done
on the day before CEA and approximately 4 days and 3–4
months postoperatively.

The CABG patients were operated on with a standard
approach under general anesthesia with cardiopulmonary bypass.
Ischemia time and cardiopulmonary bypass time were recorded.
A membrane oxygenator was used, the perfusion pressure was
kept between 50 and 80 mmHg, the nonpulsatile pump flow was
kept at 2.4 L/min/m2, the and the core temperature was kept
at 35◦C.

Neuropsychological Assessment
The patients were assessed at baseline (1–2 days before surgery),
in the acute phase (CEA patients median 4 days after surgery,
range 3–7; CABG patients median 7 days after surgery, range
6–8) and in the stable phase (CEA patients median 94 days
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TABLE 2 | Neuropsychological test battery.

Learning Auditory verbal learning test (10

words, sum of five trials) (41)

Logical memory subtest of the

Rivermead behavioral memory test

(42)

Rey visual design learning test (15

drawings, sum of five trials) (43)

Delayed memory Delayed recall of the auditory verbal

learning test (41)

Delayed recall of the logical memory

(42)

Delayed recall of the Rey visual

design learning test (43)

Recognition of the Rey visual design

learning test (43)

Working memory Digit span forwards (44)

Digit span backwards (44)

Executive functioning Letter cancellation test (time to

complete) (41)

Trail making test (part B subtracted

with part A, times to complete) (45)

Stroop test (word subtest subtracted

with color subtest, times to complete)

(46)

Verbal categorical fluency (47)

Processing speed Trail making test, part A (time to

complete) (45)

Stroop color subtest (time to

complete) (46)

Motor dexterity Finger tapping, right hand (41)

Finger tapping, left hand (41)

after surgery, range 68–163; CABG patients median 93 days
after surgery, range 80–112). The control group was assessed
approximately at similar intervals (between first and second
assessment median 5 days, range 4–7; between first and third
assessment median 117 days, range 89–180).

Only tests used in both the CEA and CABG studies
were chosen for this comparative study. We arranged the
neuropsychological tests into six functional domains. Parallel
memory test versions were used in repeated measurements in
order to minimize learning effects. The neuropsychological test
battery is show in Table 2.

Risk Factor Assessment
Bodymass index and occurrence of high blood pressure, diabetes,
and dyslipidemia in the patient groups were recorded. Smoking
was assessed in pack-years (smoking years∗amount of cigarette
packs per day). Depressive symptoms were screened at each
neuropsychological assessment with the 13-item version of Beck
Depression Inventory (48).

Statistical Analyses
We performed statistical analyses with IBM SPSS 26
(49). P-values below 0.05 were considered significant.
Neuropsychological test scores were standardized relative

to the controls’ baseline performance and timed z-scores were
inverted. Standardized test scores were then averaged within
each functional domain. All analyses of cognitive functioning
were performed within functional domains.

Differences between symptomatic and asymptomatic CEA
patients, between CEA patients operated on the right or left
side, and between CEA patients with or without a history of
CABG or AMI, were assessed within each functional domain
with Mann–Whitney U tests or independent samples t-tests for
baseline cognitive performance and with χ² tests or Fisher’s exact
tests for POCD and POCI frequencies. Differences between the
control, CEA and CABG groups were assessed with Kruskal–
Wallis test for age and χ² tests or Fisher’s exact tests for sex,
education class and occupation class. Bonferroni corrected z-tests
for independent proportions were used for post-hoc comparison
of sex between groups. Differences between the CEA and CABG
groups were calculated with Mann–Whitney U tests for smoking
and depressive symptoms, independent samples t-test for body
mass index and χ² tests for diabetes, high blood pressure
and dyslipidemia.

We used linearmixedmodels to assess differences in cognition
between groups (CEA, CABG and controls) and interactions
in cognition between group and assessment (baseline, acute
phase and stable phase). Beforehand, reflection and square
root transformation was applied to executive functioning and
reflection and logarithmic transformation to processing speed.
Age, sex and education class were controlled for in the models.
Compound symmetry was chosen for repeated effect covariance
structure based on Bayesian information criteria. Significant
interactions were assessed post-hoc with pairwise comparisons
between groups within each measurement. When no significant
interactions were found, significant main effects of group were
assessed with pairwise comparisons between groups. These post-
hoc analyses were based on estimated marginal means and
Bonferroni corrected.

POCD and POCI were determined based on the reliable
change index in order to take into account normal variation
and practice effects of the control group (50–52) with a cut-
off criterion of ±2. Differences in POCD and POCI frequencies
between patient groups were tested with χ² tests or Fisher’s
exact tests.

We used Bonferroni corrected Friedman tests to assess
changes in depressive symptoms between assessments within
groups. Post-hoc analyses with Wilcoxon signed-rank tests were
conducted with a Bonferroni correction applied and r was used
as an estimate of effect sizes (53).

RESULTS

Baseline Characteristics
Baseline characteristics of the patient and control groups are
shown in Table 1. There were no significant differences in age,
educational level or occupational level between the control and
patient groups (all p-values >0.05 in Kruskal–Wallis test and χ²
tests), but sex differed significantly between groups (χ²(2)= 9.64,
p = 0.008, χ² test). According to post-hoc z-tests, there were no
significant differences in sex between controls and either patient
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group (p-values >0.05), but there were significantly more men in
the CABG group than in the CEA group (p= 0.007).

The CEA group had a longer smoking history than the CABG
group (U (142) = 2793.50, p = 0.009, Mann–Whitney U test).
There were no other differences in cardiovascular risk factors
between the patient groups (all p-values 0.05 in Mann–Whitney
U test, independent samples t-test and χ² tests). No patients in
the CABG group had a history of earlier CEA. In the CEA group,
in total 12 patients had a cardiac history: 9 patients had a previous
AMI and 8 patients a previous CABG.

Differences Within the CEA Group
No clinical strokes were detected in the CEA patients after
operation, but two patients showed minor asymptomatic strokes
in postoperativeMR imaging. Of those patients, one did not show
POCD or POCI in postoperative measurements, whereas one
exhibited POCD in processing speed at the stable phase.

There were no significant differences between symptomatic
and asymptomatic CEA patients in baseline cognitive
performance (Mann–Whitney U tests or independent samples
t-tests) or in POCD or POCI frequencies (χ² tests or Fisher’s
exact tests) within functional domains (all p-values >0.05) in any
cognitive domain.

There were no differences between CEA patients operated on
the right or left side in baseline cognitive performance in any
cognitive domain (p-values >0.05 in Mann–Whitney U tests or
independent samples t-tests). The CEA patients operated on the
right side exhibited POCD in motor dexterity significantly more
often (25% of patients) than patients operated on the left side
(0% of patients) in the stable phase (p = 0.018 in Fisher’s exact
test). Furthermore, the CEA patients operated on the right side
showed POCI in executive functioning significantly more often
than patients operated on the left side both in the acute phase
(right side 30% of patients, left side 4% of patients, p = 0.035
in Fisher’s exact test) and in the stable phase (right side 50% of
patients, left side 13% of patients, p = 0.007 in χ² test). There
were no other differences in POCD or POCI frequencies between
CEA patients operated on the right or left side (p-values >0.05 in
Fisher’s exact tests).

The CEA patients with a history of CABG or AMI performed
significantly poorer at baseline in working memory than patients
without cardiac history [t(42) = 2.40, p = 0.02, independent
samples t-test]. There were no other differences between CEA
patients with or without cardiac history in baseline performance
(Mann–Whitney U tests or independent samples t-tests) or in
POCDor POCI frequencies (Fisher’s exact tests) in any functional
domain (all p-values >0.05).

Differences in Cognitive Performance
Between the Control and Patient Groups
Cognitive performance within groups and cognitive functions is
shown in Table 3 and Figure 1. Linear mixed models showed
an interaction between group (CABG, CEA and control) and
measurement (baseline, acute phase and stable phase) in delayed
memory [F(4,314.13) = 5.17, p < 0.001], executive functioning
[F(4,315.17) = 4.83, p < 0.001] and processing speed [F(4,314.85) =
5.02, p < 0.001].
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FIGURE 1 | Time-course of groupwise cognitive performance in each functional domain expressed as mean z-scores. Error bars reflect standard deviations. CEA,

carotid endarterectomy; CABG, coronary artery bypass grafting.
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TABLE 4 | Cognitive changes at the acute and stable phase.

Acute phase Stable phase

CEA patients CABG patients p-value CEA patients CABG patients p-value

POCD in any domain 10 (23%) 65 (65%) 0.000*** 15 (34%) 46 (46%) 0.183

Learning 3 (7%) 20 (20%) 0.047* 5 (11%) 20 (20%) 0.199

Delayed memory 1 (2%) 21 (21%) 0.004** 3 (7%) 6 (6%) 1.000

Working memory 2 (5%) 8 (8%) 0.724 2 (5%) 13 (13%) 0.149

Executive functioning 5 (11%) 37 (37%) 0.002** 3 (7%) 14 (14%) 0.212

Processing speed 2 (5%) 19 (19%) 0.024* 6 (14%) 6 (6%) 0.189

Motor dexterity 1 (3%) 12 (12%) 0.111 5 (12%) 11 (11%) 1.000

POCI in any domain 9 (21%) 9 (9%) 0.056 17 (39%) 30 (30%) 0.309

Learning 1 (2%) 1 (1%) 0.519 1 (2%) 2 (2%) 1.000

Delayed memory 2 (5%) 0 (0%) 0.093 0 (0%) 4 (4%) 0.312

Working memory 0 (0%) 2 (2%) 1.000 1 (2%) 2 (2%) 1.000

Executive functioning 7 (16%) 4 (4%) 0.035* 13 (30%) 18 (18%) 0.128

Processing speed 1 (2%) 2 (2%) 1.000 1 (2%) 2 (2%) 1.000

Motor dexterity 0 (0%) 1 (1%) 1.000 2 (5%) 6 (6%) 1.000

Data are presented as N (%). p-values are from χ² tests and Fisher’s exact tests. *p < 0.05, **p < 0.01, ***p < 0.001. POCD, postoperative cognitive dysfunction; POCI, postoperative

cognitive improvement, both determined with the reliable change index. CEA, carotid endarterectomy; CABG, coronary artery bypass grafting.

Post-hoc analyses of significant interactions are reported as
follows.At baseline, the CEA group performed significantly worse
than controls in executive functioning [t(256.01) = 0.38, p= 0.003]
and significantly worse than the CABG group in processing speed
[t(232.28) = 0.23, p = 0.02]. In the acute phase, the CABG group
performed worse than controls in delayed memory [t(213.67) =
0.62, p = 0.02] and in executive functioning [t(253.38) = 0.41,
p < 0.001]. The CEA group performed worse than controls
in executive functioning [t(256.01) = 0.33, p = 0.01] and in
processing speed [t(238.55) = 0.37, p = 0.01]. In the stable phase,
the CEA group performed worse than both the CABG group
[t(232.77) = 0.28, p = 0.003] and controls [t(238.55) = 0.42, p =

0.004] in processing speed. Please note that changes in post-
hoc tests of transformed variables, executive functioning and
processing speed, are not absolute but proportional.

There were no interactions between group and measurement
in the other functional domains, but there was a significant
main effect of group in motor dexterity (F(2, 153.58) = 10.79,
p < 0.001). Post-hoc analyses showed that both the CEA group
[t(153.60) = 0.82, p< 0.001] and the CABG group [t(153.02) = 0.59,
p= 0.001] differed significantly from controls in motor dexterity.
There were no significant differences between groups in learning
and working memory.

POCD and POCI Within the Patient Groups
Frequencies of POCD and POCI are shown inTable 4. According
to χ² and Fisher’s exact tests, the CABG patients exhibited POCD
in the acute phase significantly more frequently than the CEA
patients in most functional domains. In the stable phase there
were no significant group differences in POCD frequencies. In
contrast, POCI in executive functioning was more frequent in
the CEA group than the CABG group in the acute phase, but
the difference between groups did not reach significance in the

stable phase. There were no differences in POCI frequency in
other functional domains.

Mood
Depressive symptoms in each group and assessment are shown
in Table 1. There were no significant differences in depressive
symptoms between the patient groups in any assessments (all p-
values >0.05 in Mann–Whitney U tests). There was a significant
change in mood between assessments in the CABG group (χ²
(2) = 32.03, p < 0.001) but not in the control or CEA groups
(p-values >0.05, Friedman tests). According to post-hoc analyses,
depressive symptoms in the CABG group were significantly more
pronounced in the acute phase than at baseline (Z = –3.27, p =

0.010, r= –0.23), whereas depressive symptoms were lower in the
stable phase compared with baseline (Z = –3.43, p = 0.006, r =
–0.24) and with the acute phase (Z = –4.53, p < 0.001, r = –0.33
in Wilcoxon signed-rank tests).

DISCUSSION

The present study was set to explore cognitive differences
between patients receiving surgical treatment for stenosing
atherosclerotic changes in either carotid or coronary arteries. The
results show that carotid patients exhibited more pronounced
cognitive deficits than healthy controls or coronary artery
patients before treatment in the domains of executive functioning
and processing speed. Following surgery, CABG patients showed
more frequent short-term postoperative decline than CEA
patients, indicating that POCD is a heterogeneous condition.
Furthermore, postoperative cognitive improvement in executive
functioning was more pronounced in CEA patients than CABG
patients. Thus, despite worse presurgical cognitive level, CEA
patients seemed to gain more cognitive benefit from surgical
treatment than CABG patients.
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Before surgical treatment, the CEA patients in our study
performed worse than controls in executive functioning and
worse than CABG patients in processing speed, whereas no
differences were detected in other functional domains. The
difference between CABG patients and controls was not
significant. However, the lack of significance was probably due to
a low-power setting as we have previously shown with the same
dataset that also CABG patients perform worse than controls
at baseline (10). Nevertheless, the prominent finding is the
more pronounced presurgical cognitive deficit in several domains
in CEA patients compared with CABG patients, despite the
overall relative similarity of the patient groups and their risk
profiles. Considering the fact that all CEA patients had a high-
grade stenosis, the finding lends support to the hypothesis of
hypoperfusion of the anterior cerebrum playing a notable role
in the cognitive impairment, along with risk factors and the
general vascular disease. The hypothesis is further supported by
the change in executive functions, whose network is to a great
extent subserved by frontal lobes (54), supplied by the carotid
arteries. In contrast, patients suffering from coronary artery
disease exhibit more general deficit with low-output circulation
and amore global cerebral hypoperfusion (2). Our results suggest
that these factors cause generally less cognitive deterioration
whereas carotid disease per se has a greater propensity to affect
cognition, especially executive functioning and processing speed,
in comparison with coronary disease.

The postoperative cognitive paths of CABG and CEA patients
were clearly divergent. On group level, the CABG patients
exhibited cognitive decline of delayed memory and executive
functioning in the acute phase after surgery, but the decline was
no longer detected in a more stable phase of recovery, 3 months
after surgery. Similar results were found on an individual level:
the CABG patients exhibited POCD significantly more often
than the CEA patients in most functional domains (learning,
delayed memory, executive functioning and processing speed) in
the acute phase but not in the stable phase. In contrast, the CEA
patients did not show group-level decline in the acute phase. In
the stable phase, they remained inferior to the CABG patients
in processing speed and also performed worse than healthy
controls, indicating a slight deterioration or lower learning
ability. However, on an individual level, the CEA patients did
not show more marked POCD than the CABG patients in
processing speed or in any other functional domain in either
postoperative phase. Thus, the findings support the greater risk
of cognitive decline in the context of CABG than CEA. The
more general character of the decline following CABG tallies
with the presence of systemic factors such as cerebral perfusion
changes, microembolization or inflammatory reactions (23–25),
which all may contribute to a more serious stress to the brain.
In addition, postoperative pain and sleep disturbances related
to major cardiac surgery could have an effect on cognitive
performance shortly after operation (23, 25) and thus explain
some of the observed differences in cognition between the CABG
and CEA group at the acute phase. The cognitive decline in
CABG patients, however, tends to be reversible, as reported also
previously with the very same dataset (10). Ultimately, the results
underline the fact that POCD is a heterogeneous condition.

Postoperative cognitive improvement was detected in CEA
patients in executive functioning. On group level, some
improvement was observable already shortly after surgery, and
it was more marked in the stable phase, at which time the CEA
patients no longer differed significantly from healthy controls.
Also on an individual level, POCI of executive functioning in the
CEA group was more frequent in the stable phase than in the
acute phase.

Generally, earlier studies have not found differences related
to side of CEA in postoperative cognitive functioning (16, 17,
55, 56). However, in a more detailed domain-specific analysis
we were able to show that POCI of executive functioning was
significantly more frequent in the CEA patients operated on the
right than on the left side in both postoperative assessments. This
finding however likely attributes to the chosen test methods that
tap various aspects of executive functioning, which have been
shown to recruit differential prefrontal regions both on the left
and right side of the brain (57–59).

Comparing between the patient groups, POCI in executive
functioning was significantly more frequent within the CEA than
the CABG group in the acute phase (16% in CEA patients,
4% in CABG patients), but the difference in frequency in the
stable phase (30% in CEA patients, 18% in CABG patients)
was no longer significant. These findings suggest that while
carotid patients show worse preoperative performance than
coronary patients in executive functions, probably due to the
hypoperfusion in the anterior circulation, they also benefit more
from surgical treatment. Indeed, earlier studies have shown that
recovery of cerebral circulation after carotid revascularization
is related to improved cognition (31). However, although the
CEA patients in our study improved gradually in time, resulting
in POCI in as many as roughly a third of patients in the
stable phase after surgery, the difference in frequency of POCI
between CEA and CABG patients decreased in time. This finding
can be explained by recovery from short-term postoperative
deterioration in the CABG group.

There were also differences in postoperative changes in mood
between the patient groups. In accordance with previous findings
(60) we found no changes in depressive symptoms after CEA. In
contrast, there were changes in mood after CABG in the present
study: depressive symptoms were significantly higher in the acute
phase and reduced in the stable phase compared with baseline.
These results are consistent with earlier findings (61) and may
be explained by a drop in general health shortly after major
operation following with positive long-term effects of CABG on
general health. However, improvedmood in the stable phase after
CABG was not accompanied with better cognitive functioning in
our study, whereas CEA was associated with improved cognition
despite no significant changes in mood. Hence, the observed
differential cognitive trajectories after CEA and CABG do not
seem to attribute to changes in mood.

This is the first study to compare cognitive functioning
between atherosclerotic patients undergoing CEA or CABG, to
the best of our knowledge. The study has several strengths,
such as an extensive neuropsychological test battery organized in
several functional domains and estimation of POCD and POCI
in relation to learning effects and normal variation of a control
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group. There are, however, some limitations, most importantly
the restricted sample size resulting in reduced statistical power.
Indeed, some previously reported differences between the CABG
group and controls with the same data (10) did not reach
significance in this study. Considering the restrictions in sample
size, the clear differences between the patient groups in the
present study indicate a rather robust finding.

One limitation is that no direct measure for the cerebral
hypoperfusion was obtained for this study. Still, only high-
grade carotid stenoses were recruited in the CEA group, which
makes the existence of hypoperfusion probable in this group.
Also, the presence of delirium was not assessed in either
patient group and its potential influence on cognitive changes
in the stable phase could not be assessed. Another potential
limitation is that there was no similar assessment of carotid
arteries in the CABG patients or coronary arteries in the
CEA patients. The CABG patients did undergo a screening
carotid ultrasound to preclude a hemodynamically significant
stenosis, which makes the co-existence of severe carotid stenosis
highly improbable in the CABG group. While we cannot
exclude the possibility that some CABG patients had a clinically
insignificant carotid stenosis that could still have some effect
on their cognitive performance (62), our findings suggest that
the cognitive trajectories of atherosclerotic patients are different
in patients with a primary symptom in carotid or coronary
artery. Similarly, we cannot exclude that some CEA patients
also had stenoses in coronary arteries; atherosclerotic disease is
a systemic disease with an effect on the various vascular beds
of the body. The minority of the CEA group that indeed had
a history of earlier cardiac disease performed worse than the
other CEA patients at baseline in working memory, but there
were no significant differences in other functional domains.
Thus, a more severe atherosclerotic disease does not seem to
explain preoperative differences between groups in executive
functioning and processing speed. Furthermore, there were
no differences between CEA patients with or without cardiac
history in POCD or POCI frequencies in any functional domain,
suggesting that the severity of atherosclerotic disease did not
account for the detected postoperative differences in cognition
between the patient groups. Neither were there any differences
in cardiovascular risk factors between the CEA and CABG
groups, apart from longer smoking history in the CEA than
the CABG group. Despite the more frequent smoking and the
potential of a more severe atherosclerotic disease, the CEA group
showed less postoperative cognitive deterioration and greater
improvement than the CABG patients. Hence, the different
cognitive trajectories of the CEA and CABG groups do not seem
attributable to the severity of atherosclerotic disease.

A further limitation in this study is that the CEA group
included both symptomatic (TIA or minor stroke) and
asymptomatic patients. It could be argued that inferior
preoperative cognitive performance or more marked
postoperative improvement in the CEA group compared
with the CABG group would be related to cognitive symptoms
of recent stroke and subsequent spontaneous recovery of stroke
symptoms. The detected strokes in the symptomatic group
were, however, minor with no need for inpatient rehabilitation,

as defined by inclusion criteria, and there were no significant
differences between symptomatic and asymptomatic CEA
patients in either baseline cognitive performance or frequencies
of POCD or POCI in any functional domain. Thus, our results
suggest that the differences between CEA and CABG group
are not related to strokes in the CEA group but are, indeed,
markers for differential cognitive trajectories between carotid
and coronary stenosis patients.

In conclusion, the present study suggests that the cognitive
effects of atherosclerosis are different in CEA and CABG
patients, with a greater and more focal effect in CEA patients.
Furthermore, surgical treatment of carotid and coronary artery
disease leads to differential cognitive paths. CEA patients exhibit
worse presurgical cognitive status but seem to gain more from
surgical treatment than CABG patients. CABG patients, in
contrast, show postoperative cognitive decline more frequently
than CEA patients, but it is mostly transient. Our results
indicate that POCD should not be considered as a unified
phenomenon: instead, it is heterogeneous and dependent on
type of revascularization surgery. In addition, our results suggest
that carotid artery patients are at a greater risk for cognitive
decline than coronary patients preoperatively but may gain more
cognitive benefit from surgery.
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