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Abstract

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the
pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential
to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification,
therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding
multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics,
proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic
solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease
pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing
to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling,
may help further advance our knowledge of COVID-19.

Keywords: COVID-19, multiomics integration, molecular characteristics, severity, outcome, single-cell omics

Introduction
Coronavirus disease 2019 (COVID-19) was first detected
in China in December 2019, and was subsequently
declared a global pandemic by the World Health Orga-
nization in March 2020 [1–3]. Severe acute respiratory
syndrome (SARS) coronavirus 2 (SARS-CoV-2) is the
etiological driver of COVID-19 [4], representing a major
global health challenge that follows outbreaks of the
Middle East respiratory syndrome CoV (MERS-CoV) and
severe acute respiratory syndrome CoV (SARS-CoV) [2,
3, 5]. SARS-CoV-2 is a positive-sense single-stranded
RNA virus with enveloped virions, which primarily target
the epithelial cells, typically causing respiratory tract
illnesses potentially leading to severe pneumonia and

acute respiratory distress syndrome (ARDS) [2, 6]. As
of September 2021, more than 232 million COVID-19
cases and over 4 million associated fatalities have been
reported affecting 220 countries and territories [7]. The
entire world continues to battle the wave of COVID-
19, although extraordinary efforts to prevent and treat
the disease have been carried out globally to date,
including lockdowns of cities and countries, as well as
the widespread rollout of vaccines, supportive therapy,
and treatment to prevent respiratory failure [8, 9].
SARS-CoV-2-induced COVID-19 in many ways resembles
SARS caused by SARS-CoV given the acute clinical
presentation, although with the addition of previously
unknown peculiar pathogenetic, epidemiological and
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clinical features, thereby adding to the complexity of
COVID-19 pathogenesis [3]. The estimated COVID-19
mortality is approximately 2.3%, lower than that for
SARS (9.5%) and MERS (34.4%) [3], with the risk of COVID-
19 mortality increasing with age and comorbidities,
such that more than 20% of all reported disease-
associated deaths have occurred in nursing homes
in some countries [10]. COVID-19 has been shown to
spread more readily in the community than MERS and
SARS, primarily due to three major factors: (i) a large
proportion of SARS-CoV-2 infected people display mild-
to-no COVID-19 clinical symptoms [11]; (ii) SARS-CoV-2
appears to be contagious prior to symptom onset [12];
(iii) SARS-CoV-2 appears to primarily be transmitted
through aerosols from exhaled air, which can linger
in poorly ventilated areas for several hours, thereby
contributing to so-called super-spreader events [13].
Further considering inconsistencies in the reporting
of data from varying sources, tracing and estimating
the spread of the pandemic remains challenging [10].
The manifestations of COVID-19 exhibit a range of
differences from asymptomatic to exceptionally severe,
with the possibility of presenting multiple systemic
symptoms, including common symptoms such as a fever,
shortness of breath, a persistent dry cough, chills, muscle
pain, headache, a loss of taste or smell, renal dysfunction
and gastrointestinal symptoms [3, 14, 15]. Age- and sex-
related differences in both presentation and severity of
COVID-19 disease are well documented [10, 16]. Multi-
organ damage in COVID-19 patients has also been
reported [1]. Furthermore, elderly COVID-19 patients
with other comorbidities may present with severe
respiratory manifestations [17]. Hence, an increased
and comprehensive understanding of COVID-19 char-
acteristics is crucial to guiding the pandemic response
[10], and integrating multiple data modalities from the
same patients in combination with appropriate patient
stratification may prove advantageous in understanding
COVID-19 disease.

Despite the rapid global scientific response to COVID-
19, disease management and scientific research remain
emergency-level challenges. Evidence indicates that both
viral and host factors play critical roles in COVID-19, with
host factors closely impacting disease severity [18, 19].
Multiomics datasets of high-throughput data, protein
interactions and functional annotation profiling and
approaches may provide a comprehensive understand-
ing of the heterogeneity and diversity of data types and
complex internal relationships in COVID-19. Identifying
these characteristics using multiomics integration
profiling covering specific stages and severities of COVID-
19 disease may lead to a better understanding of specific
virus variant characteristics and individual responses,
disease manifestations and therapeutic opportunities,
all of which facilitate the accurate prediction of patient
outcomes as well as prevention and intervention
in a personalized medicine manner. Moreover, novel
multiomics approaches could contribute to increased

statistical power in small cohorts [20] and reduce the
risk of overfitting statistical analyses. By summarizing
the multiomics integration profiles of COVID-19, we
may identify preventive and therapeutic targets along
with early diagnostic tools, and more effectively predict
critical or severe outcomes, better select drugs, and
further our understanding of comorbid conditions and
the long-term complications associated with COVID-19.
In this review, we summarize the multiomics integration
data published to date, including the integration of
proteome, metabolome, lipidome, transcriptome, inter-
actome, genome, secretome and cytokine, immune-
related signatures and drug omics data to characterize
a range of acute to long-term manifestations of COVID-
19. We first summarize the applications of multiomics-
based molecular characterizations in COVID-19 based
on clinical stages and questions, and then, we group the
major bioinformatics approaches used in multiomics
integration analyses of COVID-19. Finally, we discuss
various trends and challenges, such as the rapid growth
of single-cell omics and network-based approaches. We
argue that the use of multimodality integration situates
COVID-19 within the purview of precision medicine,
potentially improving disease management in the future.

Application of multiomics-based molecular
characterization to COVID-19
A striking feature of COVID-19 is its heterogeneity
[21], involving diverse underlying pathophysiological
processes [22]. Clinical manifestations differ with age,
although populations of all ages are susceptible to
SARS-CoV-2 infection [17]. For instance risk factors for
developing severe respiratory disease include higher
age, male sex, and a number of pre-existing chronic
disease, particularly multi-morbidity [17]; female gender
is a risk factor for the long-term symptoms of fatigue
combined with vagual and/or respiratory dysfunction
associated with post-acute COVID syndrome (PACS),
whereas the majority of previously healthy young
adults, youth and children present with mild or even
asymptomatic disease [23, 24]. Multiple symptoms have
been reported in COVID-19, including but not limited to
fever, cough, myalgia, hemoptysis, diarrhea and olfactory
and taste disorders [25–29]. Multiomics data integration
analyses could contribute to a better understanding
of the molecular intricacy and variations of disease,
providing new opportunities for studying COVID-19 in
a more comprehensive manner given the unprecedented
dimensionality and diversity of data available [30]. In this
review, we highlight investigations of COVID-19 combin-
ing samples from multiple anatomical compartments,
such as blood, bronchoalveolar lavage fluid (BALF),
cell lines, throat swabs and tissues, combined with
analyses from multiple molecular levels, such as DNA,
mRNA, miRNA, proteins and metabolites. In addition,
we provide an overview of how multiomics integration
techniques contributed to the discovery of the molecular
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Figure 1. Applications of the multiomics integration-based molecular characterization of COVID-19. COVID-19, coronavirus disease 2019; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; MERS-CoV, Middle East respiratory syndrome CoV; ICU, intensive care unit; PACS, post-acute COVID
syndrome. Created using BioRender.com.

characteristics of COVID-19, including the virus and
its functions, in addition to disease manifestations,
severity and progression. Specifically, we summarize how
multiple omics data can be applied to address issues
such as predicting patient outcomes, identifying novel
molecular targets for therapeutic interventions, and
providing insights into data on COVID-19 [30] (Figure 1
and Table 1).

Multiomics investigation of SARS-CoV-2
characteristics and host responses
An integrated approach to investigations of SARS-CoV-2
could facilitate the study of complex biological processes
holistically, while the integration of multiomics data
highlights the interrelationships amongst the involved
biomolecules and their functions [30]. As an unbiased
data-driven technique [31], high-throughput omics
can explore the complex characteristics of SARS-
CoV-2 from multiple levels. Hence, multiomics and
subsequent integrated analyses provide an opportunity
to better understand SARS-CoV-2, facilitating insights
into the pathophysiological heterogeneity of COVID-
19 patients. Here, we summarize several examples to
further explain how a multiomics approach helped

advance knowledge of SARS-CoV-2. In this review, we
summarize methods and results from various studies
through an integrative omics approach, clarifying their
ability to address applications in SARS-CoV-2, such as
examining mutations, host responses, infection biology,
transmission characteristics and candidate drugs.

To explore SARS-CoV-2 mutation and host responses

Identifying the characteristics of COVID-19 strains helps
better understand the virus’ successful invasion and
transmission, potentially aiding an understanding of
the population-specific variations leading to a high
rate of SARS-CoV-2 infections [32]. For example, Gupta
et al. [32] presented a global view of the mutational
pattern of SARS-CoV-2 through a multiomics levels
(genome, proteome and interactome) using comparative
genomics and integrated network approach, unveiling
the phylogenic patterns, co-mutational hot spots, func-
tional cross-talk and regulatory interactions in SARS-
CoV-2. Coronaviruses generally mutate to a limited
degree compared to other types of viruses due to the
presence of a high fidelity proofreading function during
RNA replication. However, the high case load worldwide
has resulted in an accumulation of single nucleotide
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polymorphisms (SNPs) resulting in the occurrence of a
number of new variants [32]. The comparative genomics
and integrated network study presented five central
clades (a, b, c, d and e (e1 and e2)), which were identified
and distinguished through co-mutational combinations
in COVID-19. This includes clades d and e2, found only
in the US strains [32]. The 382-nucleotide deletion (�382)
variant of SARS-CoV-2 was presented to the world, and
an observational study using multiomics data clarified
the association between the �382 variant of SARS-CoV-
2 and mild infection [33]. Moreover, van Dorp et al. [34]
reported mutations to SARS-CoV-2 at both the genomic
and protein levels. Yet, a multiomics integration study
showed that around 67% of SNP mutations occurred
at the amino acid level in COVID-19, although the
distribution of SNP mutations and amino acid variations
(AAVs) in the virus were not uniform [32]. In addition, the
proteomic and genomic study identified critical proteins
in COVID-19, whilst high-frequency AAV mutations
were present in these proteins [32]. A mutation in
SARS-CoV-2 proteins inhibits viral penetration to the
host, and multiomics integration studies describe the
viral behavior, the host response, and the virus–host
interaction following SARS-CoV-2 infection [32, 35,
36]. Transcriptomes and a comparative study revealed
disparate host responses against SARS-CoV-2, wherein
innate immunity, interferon and cytokine stimulation
served as key factors in the host-induced response to
COVID-19 [35]. Multiomics results demonstrated that
MYO-5 (A, B and C) proteins served as key host partners
in COVID-19, strongly interacting with viral proteins
(N, S and M) [32]. The viral proteins play critical roles
in conferring SARS-CoV-2 pathogenicity, such as the
presence of CpG dinucleotides in N and Nsp1 proteins,
which may be involved in regulating pathogenesis [32].
Furthermore, virus–host protein interactions play a
critical role in regulating the viral life cycle in COVID-
19, where the generation of protein–protein interactions
revealed that SARS-CoV-2 hijacked and/or altered cellu-
lar processes [36]. Comparative genomics and an inte-
grated network established a host–pathogen interaction
(HPI) model, which could serve as the fundamental basis
for the structure-guided pathogenesis process inside the
host cell in COVID-19 [32]. An multiomics integration
approach described the observed SARS-CoV-2 virus
characteristics and transmission globally, contributing to
the development of tailor-made strategies to COVID-19
[32, 33, 35–37].

To understand SARS-CoV-2 biology and similarities

Compared to single omics research in COVID-19, inte-
grated proteome, transcriptome, interactome and bib-
liome data from COVID-19 research details the bio-
logical factors associated with SARS-CoV-2 infection,
including more enriched processes such as neutrophil
degranulation in the virus [38]. For instance, Barh
et al. [38] integrated multiomics (interactome, proteome,
transcriptome and bibliome profiles) with host genetic

information, ultimately identifying the SAR S-CoV-
2 infection biology, potential drugs and prophylaxis
agents against this virus. Furthermore, that study
demonstrated that the primary interactions of the virus
are related to the innate immune pathways, the host
translation machinery and the Cullin ubiquitin ligase
complex, whereas the critical pathway in SARS-CoV-2
infection is associated with the virus process, mRNA
splicing, cytokine and interferon signaling, and ubiquitin-
mediated proteolysis [38]. Dysregulated metabolomic
and lipidomic profiles in SARS-CoV-2 infection revealed
that the pathogenic redistribution of the lipoprotein is
related to a high risk of atherosclerosis, whilst increased
levels of ketone bodies associate with liver damage [39].
Furthermore, a multiomics integration (transcriptome,
proteome, ubiquitinome and phosphoproteome) study
of SARS-CoV-2 and SARS-CoV identified both distinct
and shared molecular mechanisms in these related
coronaviruses [40]. Notably, the two viruses exhibited
different abilities to modulate both mitochondrial
function and homeostasis through nonstructural protein
2 (NSP2), whilst dysregulating the TGF-β pathway and
autophagy in SARS-CoV-2 respectively refer to the open
reading frame 8 (ORF8) and ORF3, indicative of the
important characteristics of SARS-CoV-2 biology [40]. A
lung-specific protein interactomes study identified the
hub proteins based on the expression data of SARS-
CoV-2 infections, and the hub proteins are merely
associated with MERS and human coronaviruses [41]. In
addition, the multiomics-based identification of SARS-
CoV-2 infection demonstrated that the virus shared
a pathway with other diseases, including other virus-
related diseases (i.e. influenza A, hepatitis virus, human
T-lymphotropic virus 1, the Epstein–Barr virus and
measles) as well as non-virus-related diseases (i.e.
protozoan, bacterial and parasitic) [38]. By clarifying the
biology and similarities of SARS-CoV-2, such findings
could not only promote drugs development to block
multiple infection pathways, but also guide virus- and
host-dependent therapies in COVID-19 [40].

Identification of disease manifestations

To distinguish symptoms of COVID-19

The clinical presentation of COVID-19 consists of asymp-
tomatic and symptomatic patients, but asymptomatic
patients present with positive detections of the nucleic
acid of SARS-CoV-2 and can transmit the virus to
others [11]. A previous study summarized the most
common short-term clinical symptoms of COVID-19,
which included fever, cough, fatigue, dyspnea, sputum,
diarrhea, nasal congestion and emotional disturbances
[42–44]. Multiple pathophysiological processes have been
implicated in the etiology of severe COVID-19 symptoms,
for which integrated omics data could elucidate the
interplay between these mutual processes [36, 45].
Barh et al. [46] identified mild and severe symptoms,
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associated comorbid conditions, and short- and long-
term complications of COVID-19, using a multiomics
(proteome, transcriptome, interactome and bibliome)
based bioinformatics approach, an approach with a
precision exceeding 90%. In the multiomics-associated
prediction model, 36 viral, 53 short-term, 62 short- to
mid-long-term, 194 mid-long-term and 57 congenital
conditions were identified amongst specific conditions
[46]. Using this model, an average of 93% enriched
conditions were identified as associated with COVID-19
[46]. Notably, a dry cough and loss of taste were excluded,
although a cough has been reported as a common clinical
symptom of COVID-19, highlighting the importance of
the comprehensive knowledge needed to capture the
clinical picture of COVID-19 [46]. In addition, a single-
cell multiomics study presented the symptom-related
mechanics of COVID-19, specifically identifying the
relative loss of IgA2 in symptomatic disease [47]. These
multiomics-based results describe symptom-related risk
factors in individuals, thereby helping to fill current gaps
in personalized approaches to COVID-19.

To determine severity in COVID-19

The clinical course of COVID-19 infection is highly
variable in severity, initially falling into four types: mild,
moderate, severe and critical [11]. Multiple symptoms
accompany COVID-19, ranging from mild to critical
[11, 48]. Patients with pneumonia show abnormal chest
CT findings, with severe patients frequently requiring
artificial ventilation [27, 48]. Multiomics research could
provide better insight into the molecular features with
cross-ome correlations further explaining any observed
differences [18]. Quantified transcriptomic, proteomic,
metabolic and lipidemic profiles uncovered correlations
between various biomolecule classes, and allowed for the
further mapping of critical molecular features of COVID-
19, particularly in terms of status and severity [18].
The features were closely correlated to complementary
activation, neutrophil activation and dysregulated lipid
transport in COVID-19 [18]. Anticoagulation strategies
remain contraindicated in COVID-19 with varying
severities, whereas an integrated omics study provided
novel insights into the field and identified a COVID-19
phenotype characterized by hypercoagulation [18]. Su
et al. [37] reported a sharp disease-state shift between
mild and moderate COVID-19 using integrated bulk
and single-cell multiomics data, whereby therapeutic
interventions are likely to be most effective for moderate
cases, including an increase in inflammatory signaling
and a loss of some sets of metabolites and metabolic
processes. Furthermore, multiple unusual immune cell
phenotypes emerged in moderate COVID-19 and ampli-
fied with increasing disease severity [37]. Interestingly,
these novel subsets did not appear with mild COVID-
19, whilst sharp differences emerged when comparing
mild and moderate disease, involving inflammation
signals, immune cell function and plasma metabolite
composition [37]. Another multiomics dataset showed
that tissue-specific proteins and extracellular RNA

(exRNA) expression significantly differed between mild
and severe COVID-19 patients [1]. Proteomic, metabolic,
transcriptomic and cytokine data identified milder
disease symptoms, which accompanied significant T-cell
responses [1], whilst single-cell multiomics data revealed
that circulating follicular helper T-cells accompanied
mild COVID-19 [47]. Moreover, a single-cell multiomics
study also demonstrated an increased level of T-
cells in severe COVID-19, including an increased ratio
of CD8+ effector T-cells to effector memory T-cells
and expanded CD8+ T-cells [47]. Nevertheless, several
biomarkers were identified in severe COVID-19 based on
multiomics studies, such as megakaryocytes, erythroid
cells, plasmablasts and plasma linoleate diols [49, 50].
Thus, identifying features and differences amongst
patients with varying severities of COVID-19 based on all
omics data may prove more effective in understanding
the potential therapeutic targets to modulate and assist
in developing of predictive models of disease severity,
resulting in patient better outcomes [18].

To investigate comorbidity in COVID-19

Hypertension, cardiovascular diseases (CVDs), diabetes
mellitus chronic kidney diseases (CKDs), cancers and
chronic obstructive pulmonary disease (COPD) are
common comorbidities or pre-existing conditions in
COVID-19 associated with worse outcomes [21, 51–
53]. The risk of mortality in COVID-19 increases with
age, gender and comorbidities, whilst age, male gen-
der, shortness of breath, cerebrovascular disease and
COPD were mortality-associated factors [16]. A multi-
country study revealed that survival time from symptom
onset was significantly shorter in elderly versus young
patients, males versus females and patients with versus
patients without comorbidities [16]. Multiomics studies
contributed to identifying the pathway crosstalk between
COVID-19 and comorbidities, helping to clarify these
shared pathways and to identify gene-based targets
for COVID-19 [21]. An integrated omics approach iden-
tified common comorbidities associated with COVID-
19 including multiple systematic diseases or disorders,
such as immune, pulmonary, cardiovascular, metabolic,
liver, kidney and other systems [46]. Similarly, a high-
throughput experimental data and protein interactome
study identified the hub proteins in COVID-19, indicating
the likelihood of symptoms similar to other lung
diseases, such as asthma, COPD and pneumonia [41].
Meanwhile, a network medicine approach indicated
that COVID-19 shared an intermediate inflammatory
molecular profile with asthma [54]. Multiomics inte-
gration studies further identified the pathobiology,
the viral modulated functional hubs of COVID-19
and pathway crosstalk between COVID-19 and other
diseases, specifically considering pre-existing comorbid
conditions [21, 41, 54]. Such findings demonstrated that
COVID-19 shared pathobiology with inflammatory bowel
disease [54], whilst the protein hubs in viral replication
were correlated with hypertension, CVD and diabetes
[41], and pathway crosstalk was identified between

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab485/6447675 by N

ational Library of H
ealth Sciences user on 29 April 2022



8 | Li et al.

COVID-19 and diabetes, hypertension, CVDs and chronic
kidney disease [21]. In addition, a pathway crosstalk was
identified between COVID-19 and cancer [21], whilst the
immune and genomic results demonstrated that a low
triiodothyronine (T3) syndrome could coexist [55]. These
multiomics-based results describe various risk factors
in individuals, improving current gaps in personalized
approaches to COVID-19.

To predict disease progression and outcomes in COVID-19

Multiomics integration data could be used to determine a
biosignature to identify COVID-19 progression, prognos-
tics and predicting outcomes amongst heterogeneous
patients and guide therapeutic interventions. For exam-
ple, multiomics profiles revealed that features of the
stages of seroconversion could be used to stratify COVID-
19 patients and correlate with different pathophysi-
ological states, involving multiple underlying patho-
physiological processes such as hyperinflammation and
thrombotic microangiopathy [22]. Low antibody titers
correlated with hyperactive T-cells, and the depletion of
neutrophils, lymphocytes as well as platelets. Upon sero-
conversion, these biosignatures decrease or fully reverse,
leading to an increase in B-cell subsets [22]. Meanwhile,
D-dimer and hypoalbuminemia increased upon serocon-
version microangiopathy [22]. Moreover, a multiomics
study by Chen et al. [1] using transcriptomic, proteomic
and metabolomic profiles provided the molecular
features of the pathophysiology in disease progression
and clinical outcomes, allowing for the construction of
a COVID-19 prognostic classification model. Integrating
these plasma omics profiles with multiple datasets as
well as the features of expressed genes, proteins, exRNAs
and biochemical parameters as potential biomarkers can
help predict varying prognoses in COVID-19 patients and
stratify those patients into groups [1]. Furthermore, novel
blood biomarkers identified through a multiomics inte-
gration model revealed a clear distinction between a good
and poor prognosis in COVID-19 [1]. For instance, inte-
grating the clinical and proteomics datasets, increased
blood clotting factor levels and a decline in the expres-
sion of the coagulation factor XIII A chain (F13A1) marker
correlated with a poor prognosis in COVID-19 patients [1].
Meanwhile, megakaryocyte and erythroid cell derived
co-expression modules derived from multiomics data
were identified as predictors of fatal outcomes in
COVID-19 [49]. Furthermore, a multiomics transition
study demonstrated fluctuations in red blood cell (RBC)
and hemoglobin (Hb) levels between survivors and
non-survivors [36]. A network analysis revealed a late
juncture in fatal COVID-19 based on the simultaneous
assessment of proteins, transcriptomes and T-cell
receptor sequences, whereby distinct circulating protein
trajectories appeared useful in predicting recovery versus
fatal outcomes [56]. These findings refine our com-
prehensive understanding of the pathophysiology and
clinical progression of COVID-19, and ultimately could be
used to improve COVID-19 interventions and therapies.

Accelerated development of drugs, prevention
tools and therapies for COVID-19
Despite multiple vaccines being widely and globally
deployed, the pandemic continues to progress, and
effective treatment remains largely unavailable. One
of the primary purposes of understanding the charac-
teristics of COVID-19 through multiomics integration
data is to accelerate the development of drugs, vaccines,
prevention tools and therapies for COVID-19. Multiomics
data suggest that a high-frequency amino acid variation
(AAV) in mutations could be considered for the novel
design of a vaccine [32], whilst the clinical impact of
deletions in ORF8 could be used to develop treatments
and vaccines for COVID-19 [33]. Multiomics data with
multiple source integration from patients could drive
multiplex drug repurposing and offer rapid mapping
and drug prioritization for COVID-19 [57]. Specifically,
multiomics integrative analyses with a multiplex drug
repurposing (DR) approach yielded a highly informed
shortlist of drug candidates against COVID-19 and
its causative virus, including drugs aiming to reverse
COVID-19-induced perturbations (e.g. immunomodu-
latory and anti-inflammatory drugs) and compounds
with a direct antiviral activity [57]. For instance, Src
tyrosine kinase inhibitors hold a promising potential
against COVID-19 [57]. Integrated interatomic, proteomic,
transcriptomic and bibliomic profiles showed several
prophylaxis agents (e.g. curcumin, vitamin D and
melatonin) and candidate drugs (e.g. betamethasone
and cyclosporin A) against COVID-19 [38]. A multimodal
data harmonization approach identified a list of 84
drug target candidates and 7 high-confidence targets
as potential starting points for drug therapy and
development in COVID-19 [58], and also presented the
potential candidate in phytocompounds and Chinese
medicine [59, 60]. Meanwhile, multiomics and systems
pharmacological findings revealed 154 compounds that
targeted 13 immune genes involved in diverse signaling
pathways, suggesting novel potential targets for COVID-
19 treatment and prevention [60]. Thus, multivariate
approaches to harmonize multiomics data demonstrated
advantages in developing COVID-19 prevention and
treatment methods, an approach that effectively worked
in other diseases.

Post-acute COVID-19 syndrome (PACS)
characteristics
Mounting evidence suggests that symptoms may last
for months after recovery from the initial COVID-19
infection [9, 61]. Whilst definitions vary with symptoms
persisting for more than 4 to 12 weeks, a condition
termed post-acute COVID syndrome (PACS) [23] or in
some contexts simply long COVID has been defined
[9, 62]. Whereas this group also includes patients with
lingering symptoms after an initially acute severe disease
which required hospitalization, the majority of this
group consists of patients that initially experienced mild
disease with little to no symptoms [25]. The latter group
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typically consists of patients who are young, previously
healthy, and mentally and physically strong [63, 64]. In
addition, the female gender appears to be twice as likely
to develop long COVID as males [24]. The most common
long-term sequelae symptoms include fatigue, dyspnea,
chest pain, recurring fever, neurological complaints,
olfactory dysfunctions, tachycardia, intestinal disorders
and skin manifestations, and possibly unrelated to the
severity of the initial acute infection [9, 24, 62–64]. In
the Coverscan study [65], damage to at least one organ
was observed in 70% of patients, with multiple organ
damage appearing in 25% of patients with long COVID.
Furthermore, long COVID does not appear to consist
of prolonged recovery from the initial infection, but
rather a cyclic condition with fatigue and a recurring
fever exacerbated after activity. The upregulated omics
profiles in COVID-19 might remain switched on, due to
viral RNA remaining active in survivors, suggesting that a
corresponding non-communicable disease may develop
and lead to long-term consequences [46], whilst the long-
term symptoms may change in nature over time [62].
A comprehensive understanding of the characteristics
in post-COVID remains unmet, whereas very limited
multiomics studies in this field have been reported. For
instance, Barh et al. [46] used a multiomics approach to
predict possible long-term complications of COVID-19,
achieving high accuracy of over 90%. A multiomics-based
bioinformatics approach identified the most common
conditions accompanying COVID-19, noting that these
play a potential role in the long-term consequences for
COVID-19 survivors [46]. Hence, multiomics datasets
may truly predict the growing effect of the disease
beyond hospitalization and mortality, and accurately
target care for survivors through the development of
preventive and effective treatments for COVID-19 [9].

Multiomics integration approaches
The development of multiomics integration bioin-
formatics approaches has provided an opportunity
to comprehensively understand a complex disease
involving multiple molecular-level changes and their
interactions, representing an important direction in
systems and precision medicine. In previous reviews,
these approaches could be grouped based on their
purpose: disease subtyping and patient stratification;
diagnostic and prognostic predictive model construction;
and driving insight into disease biology through the
identification of biomarkers, pathways and disease
networks [30]. Such approaches could also be distin-
guished based on algorithms, such as multivariate,
machine learning, network, correlation or similarity
and a fusion of approaches using either multistaged
(linear or sequential integration) or meta-dimensional (or
simultaneous integration) integrative strategies. (Further
details and a comparison of these latter approaches
can be found in reviews presented elsewhere [30, 66,
67]). Given the exceptional heterogeneity and diversity

of multiomics datasets as well as the widespread
availability of external databases, multiomics integration
processes are quite project-oriented and specific. Here,
we summarize several commonly used approaches in
the multiomics molecular characterization of COVID-19
(see Figure 2).

Multivariate analyses
Multivariate analyses such as partial least squares
(PLS) and its extension multi-block PLS are supervised
multivariate analyses seeking predictable features and
attempting to build predictive models for both the
severity and outcomes of COVID-19. Liu et al. [56] built a
logistic PLS model based on changing protein expressions
in a longitudinal cohort to predict fatal outcomes in
COVID-19. Similarly, Chen et al. performed a supervised
PLS on each single omics dataset and multiblock PLS
(DIABLO) to integrate the multiomics dataset, includ-
ing proteome, transcriptomes, translatome, lipidome
and metabolome data. They revealed a harmonized
multimodal signature that can further assist in the
discovery of drug targets [58]. In addition, mixOmics
is a commonly used tool for multiomics integration,
which also includes additional multivariate methods for
future applications [68]. One advantage to multivariate
analysis is its simultaneous ability to select features and
generate predictable models. However, it carries a limited
predictive power when the data are complex, such as
with nonlinear relationships.

Machine learning in predictive models
Machine learning approaches have a higher potential to
construct efficient predictive models for complex and
ambiguous data. Specifically, such approaches could be
used in unsupervised COVID-19 subtyping and patient
stratification, and in constructing supervised diagnostic
and prognostic predictive models. For instance, Overmyer
et al. [18] constructed an ExtraTrees classifier based on
combining four omics datasets of metabolites, lipids,
proteins and transcripts to predict disease severity.
In a study by Song et al. [69], they first selected
significantly differentiated lipids and polar metabolites
comparing healthy and COVID-19 patients, and then
constructed a predictive logistic regression model for
COVID-19 with high accuracy (AUC = 0.975). Similarly,
Chen et al. [1] selected variables and trained prognostic
models using multiple machine learning algorithms,
including the nearest mean classification (NMC), k-
nearest neighbors (KNNs), support vector machine
(SVM) and random forest (RF), through the integration
of clinical measurements, exRNA-seq, mRNA-seq and
proteomics datasets. Relatedly, Shen et al. [70] built an RF
model based on proteomic and metabolomic data from
18 non-severe and 13 severe patients, further prioritizing
22 proteins and 7 metabolites using the mean decrease
in accuracy. Generally, machine-learning approaches
have the advantage of high accuracy, flexible require-
ments and hypotheses related to data distribution, and
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Figure 2. Summary of five categories of multiomics integration strategies and their application in the molecular characterization of COVID-19.
Commonly used multiomics data (left box) are integrated through five categories of integration approaches (middle) to investigate four major
applications in the molecular characterization of COVID-19 (right box). The grey lines from the middle to the right represent the major applications
of approaches for specific purposes. Both network-based and multistaged strategies have been performed for all four applications. Created using
BioRender.com.

high compatibility with data types. Nevertheless, such
approaches require a greater effort to avoid overfitting, a
larger sample size, and further downstream explanations
to link the predictable features or models with biological
insights.

Network-based multiomics integration to
understand COVID-19 infection and the immune
response
Network-based integration approaches have been increas-
ingly applied in multiomics COVID-19 research given
that such approaches match the nature of multilevel,
complex and crosstalk interaction networks involved in
SARS-CoV-2 infection and COVID-19 disease progression.
Network approaches could illustrate and explain inter-
actions amongst multilevel molecules, including DNA,
RNA, protein, metabolites and their interactomes, as well
as cellular interactions and immune responses across
all processes from SARS-CoV-2 exposure to COVID-19
disease and post-COVID syndrome. Terracciano et al.
[71] utilized a multilevel approach to mapping the SARS-
CoV-2–host protein–protein interactome using affinity
purification mass spectrometry with a graphical network

representation combined with the simultaneous analysis
of the host transcriptome, proteome, ubiquitinome
and phospho-proteome following viral infections to
discover host-directed anti-SARS-CoV-2 therapeutics.
Similarly, Zhou et al. [26] incorporated SARS-CoV-2
virus–host protein–protein interactions, transcriptomics
and proteomics into the human interactome to reveal
the underlying pathogenesis. They further investigated
COVID-19-associated disease manifestations by evaluat-
ing the network-based relationships of 64 diseases across
enriched function categories and drug repurposing for
COVID-19 [54]. In addition, Stukalov et al. [40] integrated
the interactomes of both SARS-CoV-2 and SARS-CoV,
examining their influence on the transcriptome, pro-
teome, ubiquitinome and phosphoproteome of a lung-
derived human cell line to identify host permutations
in multilevel proteomics through a network diffusion
approach. Understanding the immune response and
system changes represents an important step to gaining
insight into COVID-19, and identifying predictive and
therapeutic signatures and targets. Additionally, Liu
et al. [56] performed conditional independence network
analysis to create a severity network through the
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identification of direct and indirect associations between
enriched differentially expressed gene sets and a disease
severity metric using a Lasso regression model. The
development of single-cell omics technology allows for
investigating the microenvironment and changes to
the immune cell and their communication. In doing
so, the B-cell receptor (BCR) and T-cell receptor (TCR)
represent the most interesting and useful signatures
for B-cell and T-cell responses and clonotypes. For
example, Stephenson et al. [47] constructed a single-
cell BCR clonotype network using adjacency matrices
computed from the pairwise Levenshtein distance
of the full amino acid sequence alignment for BCRs
contained in every pair of cells from the peripheral
blood mononuclear cells (PBMCs) within each COVID-
19 severity cohort. Based on the clonotype network,
Stephenson et al. [47] discovered some evidence of class
switching within symptomatic COVID-19 groups, but
not in asymptomatic or healthy individuals, whilst also
observing some difference between men and women.
Similarly, Tomazou et al. [57] devised a network-based
integration of multiomics data, combining proteomics
and metabolomics, transcriptomics, genomics and the
pathogen–host network from COVID-19 patients and
a drug repurposing cell line, attempting to prioritize
the most important genes related to COVID-19 (gene–
disease association ranking), subsequently reranking the
identified candidate drugs. Whilst multilevel molecular
and cellular networks have been investigated, there
is enormous potential for network-based multiomics
molecular research in COVID-19. Alongside the molecu-
lar network, a network-based patient similarity network
has proven efficient in identifying disease subtypes and
further predicting and stratifying patients in multiple
cancers and chronic obstructive pulmonary disease.
This line of inquiry represents a candidate for future
research in COVID-19 patient diagnosis and outcome
stratification.

Multistaged sequential integration to identify
disease-related biomarkers, pathways, or
networks
Multistaged sequential approaches are typically used
to integrate parallel analyses from each single-omics
or layer of data. One method involves identifying
differentially expressed signatures or genes from each
single-omics platform, then merging these lists based
on their direct overlap or further enriched downstream
functions or pathways. For example, Chen et al. [1]
identified severity-related multiomics signatures and
their enriched functions and pathways, and then, further
associated potential multi-organ damage based on
tissue-enhanced proteins and functions. Interactome
(both virus–host and human interactome), regulome,
bibliome, gene ontology and pathways are commonly
used external databases, combined in multiomics
research. The more heterogeneous and diverse the
data type, the greater the number of requirements

to the bioinformatics approaches. Barh et al. [38]
developed a strategy including gene set enrichment,
lung-specific protein–drug network and candidate gene
analysis to identify SARS-CoV-2 infection biology and
candidate drugs to counter COVID-19 using interactome,
bibliome, longitudinal proteome and transcriptome data.
A multistaged method could flexibly integrate several
analytical modules based on a specific research question
and require cautious efforts to reproduce results.

Similarity and correlation-based therapeutic
targets and drug selection
The similarity between molecular changes and drug
responses from a diseasome view relies on the basic
premise of similarity or correlation-based analysis in
COVID-19. For instance, Overmyer et al. [18] performed
a cross-ome correlation analysis, correlating plasma
proteins, metabolites and lipids omics data, identifying
clusters further associated with COVID-19 patient status.
Similarly, Song et al. [69] performed a differential
correlation analysis of plasma lipids in mild COVID-
19 cases relative to healthy controls, constructing a
correlation network in mild COVID-19 cases. Su et al.
[37] constructed a COVID-19 severity-dependent cross-
omic interaction network, which included clinical
measurements, plasma metabolomic and proteomic
data. They further resolved an orchestrated response
gene module that correlated with clinical features by
integrating both high-dimensional bulk and single-
cell multiomics profiles across cell types relying on a
surprisal analysis [37]. This module could further char-
acterize coordinated changes to cell types across COVID-
19 patients. Similarity and correlation-based approaches
could fast track links between COVID-19 and existing
findings related to disease mechanisms, therapeutic
targets and drugs from other similar diseases, thereby
accelerating the development of therapeutics as well as
prevention and diagnostic tools for both pre-COVID-19
medical conditions and post-COVID syndrome.

Trends and challenges in multiomics
research on COVID-19
COVID-19 represents a challenging emergency both in
terms of disease management and scientific research.
Multiomics integration molecular characterization of
COVID-19 patients will greatly assist preventive and
personalized medicine efforts. In our review of 32
multiomics studies on COVID-19 published before July
2021 featuring at least two integrated omics datasets,
we identified some trends and challenges in multiomics
research on COVID-19.

Systematic similarity-based association
assumptions to improve understandings
of COVID-19 mechanisms
Similarity-based assumptions, ranging from virus and
disease phenotype to drug response correlation at the
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Figure 3. Illustration of the similarity-based assumptions for the transfer of previous knowledge to multiomics integration in COVID-19. Multiomics
integration from immunomics, secretome, proteome, interactome, transcriptome, metabolome and lipidome amongst others could provide a systematic
understanding of viral infection and COVID-19 disease progression and processes. SARS-CoV-2 is similar to SARS and MERS, as well as other viruses. Based
on their similarities, the virus–host response and potential diagnostic and therapeutic targets derived from multiomics analyses could be transferred
to and prioritized within COVID-19 research. Based on diseasome, given the similarity with known diseases, the candidate genes from diseases similar
to COVID-19 could be analyzed and examined, particularly in relation to a predisposition to disease, comorbidities and in predicting long-COVID and
characterizing patients. Drug similarities in terms of the chemical effects as well in the multiomics-level response could be used to prioritize candidate
drugs and therapeutic targets. Created using BioRender.com.

multiomics level, represent one fundamental hypoth-
esis, which applies previous knowledge to COVID-
19 research (see Figure 3). Briefly, multiomics-level
reflections from immunomics, secretome, proteome,
interactome, transcriptome, metabolome, lipidome and
epigenome amongst others could provide a systematic
understanding of viral infection and COVID-19 disease
progression and processes. In addition, three levels of
similarities could accelerate the transfer of previous
knowledge to multiomics integration in COVID-19.
SARS-CoV-2 is similar to SARS and MERS, as well as
other viruses. Based on their similarities, the virus–
host response and potential diagnostic and therapeutic
targets from multiomics analyses could be transferred to

and prioritized within COVID-19 research. Based on
diseasome as the similarity of known diseases, the
candidate genes from diseases similar to COVID-19
could be analyzed and examined, particularly in relation
to a predisposition to disease, comorbidities, and in
predicting long-COVID and characterizing patients. Drug
similarities in terms of chemical effects as well in the
multiomics-level response could be used to prioritize
candidate drugs and therapeutic targets. Overall, the
knowledge linking and transfer under the systematic
similarity-based assumptions, encompassing virus and
drug similarities, diseasome and multiomics molecular
networks, may accelerate our understanding of COVID-
19 mechanisms.
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Figure 4. Summary of platform co-appearance in 32 multiomics studies of COVID-19. Pie charts of the prevalence of various omics platforms (A) and
biospecimen types (B) that appeared in at least two publications, respectively. C) A network plot of the co-appearance of omics platforms, in which omics
(node) appeared in at least two publications and omics pairs (edge) co-appeared in at least two publications. The size of the nodes corresponds to their
appearance number in these publications (3 to 21). The width of the edge is related to the number of the co-appearances in these publications (2 to
16). Detailed information is available in Supplementary Tables 2–4. PBMCs, peripheral blood mononuclear cells; BALF, bronchoalveolar lavage fluid. Pie
charts and network are created using R version 3.6.0. and Cytoscape version 3.8.2, respectively.

Diversity and complexity of multiomics data and
bioinformatics approaches pose a challenge to
reproducibility
More than ten different kinds of omics or molecular
signatures from over 15 biospecimen types have been
used in the 32 multiomics studies discussed in this
review (omics approach and biospecimen type used
in each publication are detailed are summarized in
Supplementary Tables 2 and 3). Nine of the 12 omics
data types were used in at least 3 of 32 studies, including
proteome, transcriptome, metabolome, interactome,
immunome/signatures, lipidome, secretome/cytokine,
genome and bibliome (Figure 4A). To highlight this
data crossover, we constructed an omics co-appearance
network, consisting of omics (node) that appeared in
at least two publications and omics pairs (edge) that
co-appeared in at least two publications. The size of
nodes and the widths (weights) of edges correspond to
the number of publications in which they were used
(node) and co-appeared (edges), respectively. There are
dense and complex combinations between these omics
datasets. The seven most frequently used biospecimen
types, used in at least two publications are visual-
ized in Figure 4B, including PBMCs (corresponding to
single-cell omics), plasma, serum, blood sample, BALF,
lung sample, leukocyte and red blood cells (excluded
unspecified/multiple recourse such as database and
cell lines). Notably, epigenetics and epigomics play

important roles in SARS-CoV-2 infection and COVID-19
pathogenesis, as discussed in Milad Shirvaliloo’s article,
‘Epigenomics of COVID-19 and the link between DNA
methylation, histone modifications and SARS-CoV-2
infection’ [72]. In multiomics research, Zhao et al. [73]
identified broad cellular effects from SARS-CoV-2 infec-
tion beyond adaptive immune cells through DNA methy-
lome and transcriptome profiles. In addition, Shen et al.
[70] revealed the crosstalk between perturbations taking
place upon infection with SARS-CoV-2 and SARS-CoV
at different levels, whereby multiomics were involved,
including ubiquitinome and phosphoproteome. Multiple
investigative opportunities on COVID-19 multiomics
research exist in different multiomics combinations with
diverse bioinformatics approaches, given the variety of
clinical backgrounds.

One challenge when summarizing the multiomics
data stems from the diversity and the ambiguous
definition of omics data. For example, 32 cytokines
expression levels are referred to as secretome in Su
et al.’s study [37], but McReynolds et al. [50] referred to
these as simply cytokines even though they analyzed
50 cytokines. Here, we grouped data into each omics
type using an inclusive definition, whereby both Su
et al. and McReynolds et al.’s studies are mapped into
secretome/cytokine and both bulk and single-cell omics
are attributed equal importance. It should be noted that
the ambiguous definitions discussed above may have
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given rise to a certain level of inconclusiveness in our
literature mining.

Another layer of challenges inherent in attempts to
summarize such studies lies in the variety and complex-
ity of bioinformatics approaches used. Multiomics inte-
gration is still an emerging and dynamic field, and stan-
dardized or generalized methods regarding the minimal
number of combinations of omics, biospecimen types,
clinical backgrounds, and other data modalities required
to use the terminology, or approaches for mapping to PPI
or pathways exist as of yet. The diversity and complex-
ity in multiomics integration, on the one hand, provide
greater possibilities to improve the statistical power and
molecular depth of COVID-19 investigations, while on the
other hand, the propensity for overfitting and difficulty
in finding matching validation cohort may increase the
difficulty in reproducing multiomics research, as well as
accurately estimating systematic errors and bias overlap
between data collected from different molecular levels
and anatomical locations.

The availability of high-throughput multiomics datasets
both in bulk and at the single-cell level, in combina-
tion with the availability of relatively comprehensive
databases for protein interaction, functional annotation
and molecular pathways offer vast opportunities for
mechanistic interpretations of multiomics integration
networks. Conversely, heterogeneous and diverse data
types with complex internal relationships give rise to
challenges to the computational approaches. Machine
learning approaches along with more recently developed
multiomics integration approaches such as Similarity
Network Fusion [74] and iCluster [75] have proven highly
efficient, but with a high risk of overfitting if the study
design and cohort size is inappropriate for the chosen
method. Another challenge lays in the gaps between
the availability of powerful statistical methods based on
thousands of molecular features, and a lack of matching
clinical and biological explanations.

Single-cell omics analyses in COVID-19
Single-cell omics provides an unprecedented potential
for exploring biological systems also when sample
sizes are scarce, and represents an emerging trend
in COVID-19 research as well as in many other areas
[76]. To name a few, Su et al. [37] performed single-
cell multiomics analyses of PBMCs using whole tran-
scriptome, surface proteins, secreted proteins and TCR
and BCR gene sequence data, and thereby identified
a sharp disease-state shift between mild and mod-
erate COVID-19, suggesting that moderate COVID-
19 may provide the most effective setting for thera-
peutic intervention [37]. Stephenson et al. performed
single-cell transcriptome investigations of the immune
response in COVID-19′ of 130 patients with varying
severities of COVID-19, highlighting the comprehen-
sive landscape of a coordinated immune response
contributing to COVID-19 pathogenesis [47]. In a
longitudinal multiomics COVID-19 study, the authors

employed parallel scRNA-seq, single-cell BCR profil-
ing, bulk mRNA sequencing (RNA-seq), BCR amplicon
sequencing and multicolour flow cytometry from base-
line to follow-up [49]. Through integrations of single-cell-
and bulk sample data, their analysis identified a few hall-
marks of severe COVID-19, such as megakaryocytes, ery-
throid cells and plasmablasts [49]. A more in-depth anal-
ysis on the subject on single-cell analyses in COVID-19 is
provided in a recent review by Huo et al.’s review [77]. The
integration of bulk- and single-cell multiomics also pose
a new set of challenge for bioinformatics algorithms.

The importance of cohort design in multiomics
investigations
In this review, we discuss the current status of and poten-
tial for multiomics integration in COVID-19 research. The
investigations performed to date primarily focused on
predicting SARS-CoV-2 infection and COVID-19 severity.
However, in order to harness the full potential of mul-
tiomics investigations, great care must be places on the
study- and cohort design. We have previously shown that
multiomics integration can increase the statistical power
to classify small sub-groups of patients greatly, reducing
the required group size to reach 95% power from n = 30
for single omics to n = 6 for 5–7-tuple omics integration.
However, this level of statistical power was achieved in
a rather homogeneous cohort (the Karolinska COSMIC
cohort) resulting from very strict exclusion criteria in
terms of co-morbidities, treatments, etc. [20]. In contrast,
many of the COVID-19 studies discussed in this review
were limited to 10–50 subjects, with 3 or fewer omics
platforms included. In order to reach the full statisti-
cal potential in COVID-19 related multiomics integration
studies, cohorts must either be designed strictly with spe-
cific sub-groups of patients and symptoms in mind, ide-
ally collecting samples not only systemically but also at
the site of injury, or with very large numbers. With these
factors met, future breakthroughs may include iden-
tifying preventive and therapeutic targets, early diag-
nostic tools specifically for asymptomatic subjects and
high-risk populations with medical conditions, effective
predictive models of critical and severe outcomes, and
the selection of drugs as well as further understanding
comorbid conditions and the long-term complications
and consequences of COVID-19.

Development of user-friendly tools and database
Many multiomics datasets are available for further anal-
ysis, including several web-based dataset summaries
(https://opendata.ncats.nih.gov/covid19/omics), as well
as analytical and visualization tools, which are friendly
for non-bioinformaticians. These tools help to quickly
apply results and make available original data to the
clinical and research communities. Given the diversity
and complexity of multiomics, we found many studies
associated with several databases or resources, along
with varying depths of procession. Well-processed data
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in an integrated, standardized format will benefit the re-
analysis and re-integration of data. Thus, we developed
an online Shiny App termed ‘Collection of multiomics
datasets in COVID-19’ (available via https://zhougroup.
shinyapps.io/moCOVID/) to aid researchers and clini-
cians in searching COVID-related multiomics investiga-
tions (Table 1 and Supplementary Table 1), as well as a
corresponding downloadable database and online tools.

Conclusions
Like many other complex diseases, COVID-19 is an
umbrella diagnosis with patient outcomes ranging from
asymptomatic, to acute respiratory distress syndromes
and cytokine storms requiring hospitalization and ICU
treatment, to the debilitating long term symptoms of
fatigue, vagal dysfunction, brain fog, postural orthostatic
tachycardia syndrome (POTS), etc., experienced by
patients with PACS. Identification of the molecular
characteristics of this broad range of COVID-19 patients,
powered by multiomics integration studies could offer
a tremendous potential to unravel SARS-CoV-2 patho-
biology, disease progression and resolution, predicting
outcomes, prevention and therapy. Many lessons learned
from multiomics integration in like various cancer
types and respiratory disease can potentially transfer
to COVID-19 research [20, 30, 66, 67]. New multiomics
integration approaches, including multilevel virus–host
interactions, handling of longitudinal data and dynamic
models is needed. User-friendly, open access software
programs and visualization tools are also desirable
to increase accessibility of integration strategies the
to a broader researcher base, beyond highly trained
bioinformaticians, to facilitate efficient implementation
of these results to clinical and biological research.

Key Points

• An increased and comprehensive understanding
of COVID-19 characteristics is crucial to guiding
the pandemic response.

• Identification of the molecular characteristics of
COVID-19 patients from multiomics integration
studies offers tremendous potential to unravel
the puzzles related to SARS-CoV-2 pathobiology
and COVID-19 progression.

• Multiomics integration-based molecular charac-
terizations of COVID-19 could answer multiple
important questions, specifically those related to
disease severity, outcome prediction, prevention
and therapy.

• To date, more than ten types of omics data
and five categories of multiomics integration
approaches have been applied to COVID-19
research, with further research potential and
challenges in the biological and bioinformatics
areas.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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