Linear l^{2} decoupling through multilinear estimates

Aapo Laukkarinen

21.04.2022

HELSINGIN YLIOPISTO - HELSINGFORS UNIVERSITET - UNIVERSITY OF HELSINKI

Tiedekunta/Osasto - Fakultet/Sektion - Faculty Faculty of Science		Laitos - Institution - DepartmentDepartment of Mathematics and Statistics
Tekijä - Författare - Author Aapo Laukkarinen		
Työn nimi - Arbetets titel - Title Linear l^{2} decoupling through multilinear estimates		
Oppiaine - Läroämne - Subject Mathematics		
Työn laji - Arbetets art - Level Master's thesis	Aika - Datum - Month and year April 2022	Sivumäärä - Sidoantal - Number of pages 120 pages

In this thesis we study the article by J. Bourgain and C. Demeter called A study guide for the l^{2} decoupling theorem. In particular, we hope to give an in detail exposition to certain results from the aforementioned research article so that this text combined with the master's thesis $O n$ the l^{2} decoupling theorem by Jaakko Sinko covers the l^{2} decoupling theorem comprehensively in the range $2 \leq p \leq \frac{2 n}{n-1}$. The results in this text also self-sufficiently motivate the use of the extension operator and explain why it is possible to prove linear decouplings with multilinear estimates.
We begin the thesis by giving the basic notation and highlighting some useful results from analysis and linear algebra that are later used in the thesis.
In the second chapter we introduce and prove a certain multilinear Kakeya inequality, which asserts an upper bound for the overlap of neighbourhoods of nearly axis parallel lines in \mathbb{R}^{n} that point in different directions. In the next chapter this is applied to prove a multilinear cube inflation inequality, which is one of the main mechanisms in the proof of the l^{2} decoupling theorem.
In the fourth chapter we study two forms of linear decoupling. One that is defined by an extension operator and one that defined via Fourier restriction. The main result of this chapter is that the former is strong enough to produce decoupling inequalities that are of the latter form.
The fifth chapter is reserved for comparing linear and multilinear decouplings. Here we use the main result of the previous chapter to prove that multilinear estimates can produce linear decouplings, if the lower dimensional decoupling constant is somehow contained. This paves the way for the induction proof of the l^{2} decoupling theorem.

Contents

1 Introduction 2
1.1 Preface 2
1.2 Notation 4
1.3 Preliminary results 7
2 Multilinear Kakeya inequality 20
2.1 Statement of the inequality 20
2.2 Angle reduction 21
2.3 Axis parallel case 24
2.4 Proof of Multilinear Kakeya inequality 26
2.5 Some generalizations 30
3 Multilinear decoupling device 35
3.1 Extension operator for the paraboloid and weight functions 35
3.2 Cube inflation 42
4 Equivalent formulations of linear decoupling 60
4.1 The linear decoupling constant 60
4.2 Decoupling via Fourier restriction 64
5 Linear versus multilinear decouplings 89
5.1 Multilinear decoupling constant 89
5.2 Estimating $\|E g\|_{L^{p}\left(w_{B, E}\right)}$ when the lower dimensional decoupling constant is under control 91
5.3 Reverse decoupling constant inequality 111

Chapter 1

Introduction

1.1 Preface

Decoupling is a powerful Fourier analytic tool with many applications in number theory, partial differential equations and geometric measure theory. In a general setting we have possibly infinite elements $\left(x_{i}\right)_{i \in I}$ in a normed space $\left(X,\|\cdot\|_{X}\right)$ and we study the smallest constant $C_{d e c}$ that satisfies

$$
\left\|\sum_{i \in I} x_{i}\right\|_{X} \leq C_{d e c}\left(\sum_{i \in I}\left\|x_{i}\right\|_{X}^{q}\right)^{\frac{1}{q}}
$$

A common example of this is when X is the space of square integrable functions, $q=2$ and x_{j} have disjointly supported Fourier transforms. In this case using orthogonality one can deduce an equality $\left\|\sum_{i \in I} x_{i}\right\|_{X}=\left(\sum_{i \in I}\left\|x_{i}\right\|_{X}^{2}\right)^{\frac{1}{2}}$. A natural question is to ask what happens in the absence of Hilbert space orthogonality, i.e., in the case $X=L^{p}$ and $q=2$. This particular case is called $l^{2}\left(L^{p}\right)$ decoupling or for the sake of brevity l^{2} decoupling. The l^{2} decoupling theorem is a theorem that yields an upper bound for a certain l^{2} decoupling constant and this bound is sharp up to $\delta^{-\varepsilon}$ losses.

The first instance of decoupling was by Thomas Wolff. In the year 2000 Wolff published an article [17], where he proved a sharp $l^{p} L^{p}$ decoupling inequality for the cone and used it to get local smoothing estimates on L^{p}. In a more resent context decoupling was strongly developed by Jean Bourgain in 2013 in his paper [4], where he combined an induction on scales argument with multilinear restriction to prove the l^{2} decoupling theorem in the range $2 \leq p \leq \frac{2 n}{n-1}$. Two years later the ground breaking l^{2} decoupling theorem for the full range $2 \leq p \leq \frac{2(n+1)}{n-1}$ was proven by Jean Bourgain and Ciprian Demeter in [6]. Possibly the most remarkable application is from [8], where l^{2} decoupling is used to prove the eighty-year-old main conjecture in Vinogradov's mean value theorem. This result is an
upper bound for the number of solutions to a certain system of Diophantine equations. Other resent works include connections to the Riemann zeta function [3] and connections to the Schrödinger equation [7] and [10]. In the year 2020 Demeter published a book [9] that covers decoupling in a broad range of generality.

The main objective of this thesis is to provide a highly detailed exposition to chapters 8 and 9 from the article [5] A study guide to the l^{2} decoupling theorem published in 2017 by Jean Bourgain and Ciprian Demeter. Along the way we will also shed some light to chapter 5 of the same article. The intention is that the details presented in this thesis makes the results more accessible for beginners. The only thing that we will leave uninformed is how can one reduce the equation of the line L in chapter 8 of [5]. This text combined with the Master thesis of Jaakko Sinko [14] covers the l^{2} decoupling theorem exhaustively in the range $2 \leq p \leq \frac{2 n}{n-1}$ excluding only the aforementioned reduction. In other words, only the final chapter of [5] is left uninvestigated.

In addition to the in-depth details, noteworthy contributions of this thesis include: construction of tempered distributions and Schwartz functions used in the proofs, steps needed to be taken from the multilinear Kakeya inequality of [11] so that one gets the multilinear Kakeya inequality from [5] and careful treatment of Fourier transforms of non-integrable functions so that we will not need heuristics like $\widehat{E_{Q} g}(\lambda)$ (see chapter 9 of [5]).

We begin the thesis by equipping ourselves with results from functional analysis, linear algebra and real analysis. This includes the construction of Schwartz functions and tempered distributions used in the later proofs of the thesis.

In the second chapter we will present and prove the multilinear Kakeya inequality, which is an upper bound on the overlap properties of certain neighbourhoods of lines in \mathbb{R}^{n}.

We will start the third chapter by presenting the extension operator E_{Q} and the weight functions $w_{B, E}$. Then we will use the multilinear Kakeya inequality from the previous chapter to prove a multilinear cube inflation inequality.

In the fourth chapter we define the linear decoupling constant and consider the relations between two different formulations of linear l^{2} decoupling. This chapter includes a decoupling inequality that makes use of Fourier restriction.

The fifth and final chapter is about comparing linear and multilinear decouplings. We will start this by introducing the multilinear decoupling constant. The thesis is finalized with a reverse decoupling constant inequality that makes use of the Fourier restriction decoupling from the previous section.

To summarize the argument of the article [5] A study guide to the l^{2} decoupling theorem, two types of mechanisms are used to decouple. The first is $l^{2} L^{2}$ decoupling, which is proved using the Hilbert space properties of L^{2} and the second is cube inflation, which relies on the multilinear Kakeya inequality. These two mechanisms are combined to make a
multiscale inequality, which is used to estimate the multilinear decoupling constant. These multilinear estimates can be turned into linear decouplings via the reverse decoupling constant inequality, which is proved using an alternative formulation of linear decoupling. In this thesis we cover the Multilinear Kakeya inequality and the cube inflation result. We also study the alternative form of linear decoupling and use it to prove the reverse decoupling constant inequality. The masters thesis of Jaakko Sinko [14] covers the $l^{2} L^{2}$ decoupling and the application of all these results to get the l^{2} decoupling theorem in the slightly truncated range $2 \leq p \leq \frac{2 n}{n-1}$.

I am very grateful to my thesis supervisor Professor Tuomas Hytönen for introducing me to the topic and for patiently answering the questions that I had.

1.2 Notation

For the natural numbers we include zero and denote $\mathbb{N}=\{0,1, \ldots\}$ and $\mathbb{N}_{+}=\{1,2, \ldots\}$. Throughout this text $n \in \mathbb{N}_{+}$. Often we restrict n to be even bigger, if the notation does not otherwise make sense, for example, whenever we denote \mathbb{R}^{n-1}, we assume that $n \geq 2$.

Throughout this text we write $A \lesssim B$, if $A \leq C B$ for some fixed constant $0<C<\infty$. We also write $A \sim B$, if $B \lesssim A \lesssim B$. When the constant C is associated with this notation, it is called implicit. Furthermore, we denote $A \lesssim_{p_{1}, \cdots, p_{n}} B$, when we allow the implicit constant to depend on the parameters $\left\{p_{1}, \cdots, p_{n}\right\}$. However, we let the implicit constant depend on dimension n and the Lebesque index p. These can be considered as fixed parameters and thus we will in general not write $\lesssim_{n, p}$.

Cubes have a big role in the later chapters of this thesis. In order to make unique partitions of cubes into smaller cubes, we make a restriction that throughout the cubes that appear in the statement of the theorems, lemmas, propositions and definitions have side length in $2^{\mathbb{Z}}$. These cubes are usually noted by B, Q, Δ, q. However, in proofs we might construct cubes that have arbitrary side lengths. The notation $B\left(c_{B}, R\right)$ means that the center of the cube is c_{B} and the side length is R. By $\operatorname{Part}_{\alpha}(Q)$ we denote the unique partition of a cube Q into cubes of side length α. All cubes will have sides that are parallel to the coordinate axes. This means that we can uniquely define a cube using only the center and side length. The weight function associated to a cube $B=B\left(c_{B}, R\right)$ is defined by

$$
w_{B, E}(x):=\left(1+\frac{\mid x-c_{B}}{R}\right)^{-E} .
$$

Since B is reserved for cubes, we will denote the euclidean ball in \mathbb{R}^{n} centered at x with radius r by $B_{\circ}^{n}(x, r)$. The Euclidean norm is denoted simply by $|\cdot|$, i.e., for $x \in \mathbb{R}^{n}$ we write $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$.

For a set S, we denote $c S$ by the dilation of S by a factor of c around its center, where $c \in \mathbb{R}_{+}$.

We define $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ to be the projection map that forgets the j-th coordinate, i.e.,

$$
\pi_{j}\left(x_{1}, \ldots, x_{n}\right):=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)
$$

For a discrete set A, we denote the cardinality of A with $\# A$. When we are mentioning measurability whilst not explicitly introducing a measure, we are considering the Lebesque measure in \mathbb{R}^{n} which we denote by m_{n}. If there is no risk of confusion, we might also use $|\cdot|$ instead of m_{n}.

For a function $g: Q \rightarrow \mathbb{C}$ the extension operator E_{Q} is defined by the formula

$$
E_{Q} g(x):=\int_{Q} g(\xi) e\left(x_{1} \xi_{1}+\cdots+x_{n-1} \xi_{n-1}+|\xi|^{2} x_{n}\right) \mathrm{d} \xi .
$$

For averaged integrals we use notations

$$
f_{\Omega} f \mathrm{~d} m_{n}:=\frac{1}{m_{n}(\Omega)} \int_{\Omega} f \mathrm{~d} m_{n}=\frac{1}{|\Omega|} \int_{\Omega} f \mathrm{~d} m_{n}
$$

For a measurable set $\Omega \subset \mathbb{R}^{n}$ and a measurable function f, we write

$$
\|f\|_{L^{p}(\Omega)}:=\left(\int_{\Omega}|f|^{p} \mathrm{~d} m_{n}\right)^{\frac{1}{p}}, \quad 0<p<\infty
$$

and

$$
\|f\|_{L^{\infty}(\Omega)}:=\inf \left\{c>0: m_{n}(\{x \in \Omega:|f(x)|>c\})=0\right\}
$$

If $\Omega=\mathbb{R}^{n}$, then we also use $\|f\|_{p}=\|f\|_{L^{p}(\Omega)}$. We characterize the L^{p}-spaces by

$$
L^{p}(\Omega):=\left\{f: \Omega \rightarrow \mathbb{C} \text { measurable : }\|f\|_{L^{p}(\Omega)}<\infty\right\}, \quad 0<p \leq \infty
$$

The local L^{p}-spaces are denoted by

$$
L_{l o c}^{p}(\Omega):=\left\{f: \Omega \rightarrow \mathbb{C} \text { measurable }:\|f\|_{L^{p}(K)}<\infty, \forall K \subset \Omega \text { compact }\right\}, \quad 0<p \leq \infty .
$$

Other variants of L^{p} norms we use include

$$
\begin{aligned}
\|f\|_{L_{\sharp}^{p}(B)} & :=\left(\frac{1}{m_{n}(B)} \int_{B}|f(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
\|f\|_{L^{p}\left(w_{B, E}\right)} & :=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w_{B, E}(x) \mathrm{d} x\right)^{\frac{1}{p}}
\end{aligned}
$$

and

$$
\|f\|_{L_{\sharp}^{p}\left(w_{B, E}\right)}:=\left(\frac{1}{m_{n}(B)} \int_{\mathbb{R}^{n}}|f(x)|^{p} w_{B, E}(x) \mathrm{d} x\right)^{\frac{1}{p}} .
$$

For a sequence $\left(a_{i}\right)_{i \in I}$, we write

$$
\left\|\left(a_{i}\right)_{i \in I}\right\|_{l^{p}}:=\left\|a_{i}\right\|_{l^{p}}:=\left(\sum_{i \in I}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad 0<p<\infty .
$$

If there is no risk of confusion, we will also write $\left\|a_{i}\right\|_{p}=\left\|a_{i}\right\|_{l^{p}}$.
For the operator norm of a linear operator $L: V \rightarrow W$ between normed spaces $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$, we use the notation

$$
\|L\|_{o p}:=\inf \left\{c>0:\|L v\|_{W} \leq c\|v\|_{V} \text { for all } v \in V\right\}
$$

We also reserve the notation $\langle\cdot, \cdot\rangle$ for functionals. For a functional T and a function ϕ, the expression $\langle T, \phi\rangle$ stands for the value that T sends ϕ to.

A multi-index is a sequence of natural numbers $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The norm of a multi-index is defined by $|\alpha|:=\sum_{i=1}^{n} \alpha_{i}$ and we have the following notations $x^{\beta}:=$ $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}, \partial^{\alpha}:=\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} \cdots \partial_{n}^{\alpha_{n}},\binom{\alpha}{\gamma}:=\prod_{i=1}^{n}\binom{\alpha_{i}}{\gamma_{i}}$ and $\gamma \leq \alpha \Leftrightarrow \gamma_{i} \leq \alpha_{i}$, $\forall i$.

The class of Schwartz test functions is

$$
\mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right): \sup _{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha} \varphi(x)\right|<\infty \quad \forall N \in \mathbb{N}\right\},
$$

where

$$
C^{\infty}\left(\mathbb{R}^{n}\right):=\left\{\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C}: \partial^{\alpha} \varphi \text { exists and is continuous for all } \alpha \in \mathbb{N}^{n}\right\} .
$$

Furthermore, the topology of the space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is induced by the collection of seminorms

$$
p_{N}(\varphi):=\sup _{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha} \varphi(x)\right| .
$$

The space of continuous linear mappings from $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to \mathbb{C} is denoted by $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. We also call the elements of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ tempered distributions.

Throughout the thesis we will write $e(t):=e^{2 \pi i t}$, where $t \in \mathbb{R}$.
For an integrable function f the convention of Fourier transform we use is

$$
\widehat{f}(\xi):=\mathcal{F} f(\xi):=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x} \mathrm{~d} x=\int_{\mathbb{R}^{n}} f(x) e(-\xi \cdot x) \mathrm{d} x
$$

We use the same notations \widehat{f} and $\mathcal{F} f$ in the general case where f is a tempered distribution. The analogous inverse Fourier transform is denoted by \check{f} and $\mathcal{F}^{-1} f$.

1.3 Preliminary results

In this section, we present and recall some general results that highlight the techniques we use to prove the results in this text.

Proposition 1.1. Let L be a linear operator $L: V \rightarrow W$ between normed spaces $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$, where $V \neq\{0\}$. For the operator norms

$$
\begin{aligned}
\|L\|_{S} & :=\sup \left\{\|L v\|_{W}: v \in V, \quad\|v\|_{V}=1\right\} \\
\|L\|_{B} & :=\sup \left\{\|L v\|_{W}: v \in V,\|v\|_{V} \leq 1\right\} \\
\|L\|_{F} & :=\sup \left\{\frac{\|L v\|_{W}}{\|v\|_{V}}: v \in V,\|v\|_{V} \neq 0\right\}
\end{aligned}
$$

we have

$$
\|L\|_{o p}=\|L\|_{S}=\|L\|_{B}=\|L\|_{F}
$$

Proof. The properties of supremum directly gives us that $\|L\|_{S} \leq\|L\|_{B}$. If $\|v\|_{V} \leq 1$ and $\|v\|_{V} \neq 0$, then $\|L v\|_{W} \leq \frac{\|L v\|_{W}}{\|v\|_{V}} \leq\|L\|_{F}$. Furthermore, $\|v\|_{V}=0$ implies $\|L v\|_{W}=0$. Thus we have $\|L\|_{B} \leq\|L\|_{F}$. Also if $\|v\|_{V} \neq 0$, then linearity implies that $\frac{\|L v\|_{W}}{\|v\|_{V}}=$ $\left\|L\left(\frac{v}{\|v\|_{V}}\right)\right\|_{W} \leq\|L\|_{S}$ and hence $\|L\|_{F} \leq\|L\|_{S}$. Combining these arguments we get that $\|L\|_{S}=\|L\|_{B}=\|L\|_{F}$.

Now it suffices to show that $\|L\|_{o p}=\|L\|_{F}$. We know that $\|L\|_{F} \geq \frac{\|L v\|_{W}}{\|v\|_{V}} \Leftrightarrow\|L v\|_{W} \leq$ $\|L\|_{F}\|v\|_{V}$ and hence $\|L\|_{F} \geq\|L\|_{o p}$. For the other direction notice that for all $\varepsilon>0$ there exists $v^{\prime} \in V$, such that $\|L\|_{o p} \geq \frac{\left\|L v^{\prime}\right\|_{W}}{\left\|v^{\prime}\right\|_{V}} \geq\|L\|_{F}-\varepsilon$. Letting $\varepsilon \rightarrow 0$ gives us $\|L\|_{o p} \geq\|L\|_{F}$ and we are done.

The following lemma gives us a quick way to check that a bounded operator is bilipschitz.

Lemma 1.2. Let L be a bounded linear operator $L: V \rightarrow W$ between normed spaces $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$. If the inverse operator L^{-1} exists and is bounded, then both L and L^{-1} are K-bilipschitz with $K=\max \left\{\|L\|_{o p},\left\|L^{-1}\right\|_{o p}\right\}$.

Proof. Since L and L^{-1} are bounded, we have $\|L\|_{\mathrm{op}}<\infty$ and $\left\|L^{-1}\right\|_{\mathrm{op}}<\infty$. Thus

$$
\begin{aligned}
& \|u\|_{V}=\left\|L^{-1} L u\right\|_{V} \leq\left\|L^{-1}\right\|_{o p}\|L u\|_{W} \leq\left\|L^{-1}\right\|_{o p}\|L\|_{o p}\|u\|_{V} \\
\Leftrightarrow & \frac{\|u\|_{V}}{\left\|L^{-1}\right\|_{o p}} \leq\|L u\|_{W} \leq\|L\|_{o p}\|u\|_{V} \\
\Rightarrow & \frac{1}{\max \left\{\|L\|_{o p},\left\|L^{-1}\right\|_{o p}\right\}}\|u\|_{V} \leq\|L u\|_{W} \leq \max \left\{\|L\|_{o p},\left\|L^{-1}\right\|_{o p}\right\}\|u\|_{V}
\end{aligned}
$$

and similarly

$$
\frac{1}{\max \left\{\|L\|_{o p},\left\|L^{-1}\right\|_{o p}\right\}}\left\|u^{\prime}\right\|_{W} \leq\left\|L^{-1} u^{\prime}\right\|_{V} \leq \max \left\{\|L\|_{o p},\left\|L^{-1}\right\|_{o p}\right\}\left\|u^{\prime}\right\|_{W}
$$

In chapter 2 we will use singular value decomposition to estimate the operator norms of a certain linear transformation. We refer to [15] chapter 5 section 6 for the proof of the following well known result.

Theorem 1.3 (Singular value decomposition). An $n \times m$ matrix M can be factored as

$$
M=U \Sigma V^{\top}
$$

where U is an $n \times n$ orthogonal matrix and V is an $m \times m$ orthogonal matrix and Σ is a $n \times m$ diagonal matrix with non-negative entries. The number of positive entries in Σ is the same as the rank of M.

The next theorem generalizes the regular Hölder inequality for multiple products.
Theorem 1.4 (Generalized Hölder inequality). Assume that $\left.\left.p_{1}, \ldots, p_{n+1} \in\right] 0, \infty\right]$ are such that

$$
\sum_{j=1}^{n} \frac{1}{p_{j}}=\frac{1}{p_{n+1}}
$$

Then, for all measurable functions f_{1}, \ldots, f_{n}, we have

$$
\left\|\prod_{j=1}^{n} f_{j}\right\|_{p_{n+1}} \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{p_{j}}
$$

Proof. Let $\left.p_{i} \in\right] 0, \infty[$, for $i=1,2, \ldots, n$. We proceed by induction on the number of products n. Assume that $n=1$, we now have

$$
\frac{1}{p_{1}}=\frac{1}{p_{2}} \Leftrightarrow p_{2}=p_{1}
$$

Thus we immediately get

$$
\left\|f_{1}\right\|_{p_{2}}=\left\|f_{1}\right\|_{p_{1}}
$$

For the general case $n=k$ assume that the inequality holds for $n=k-1$ i.e., for

$$
\sum_{j=1}^{k-1} \frac{1}{p_{j}}=\frac{1}{q_{k}}
$$

we have

$$
\left\|\prod_{j=1}^{k-1} f_{j}\right\|_{q_{k}} \leq \prod_{j=1}^{k-1}\left\|f_{j}\right\|_{p_{j}}
$$

Since

$$
\frac{1}{\frac{p_{k}}{p_{k+1}}}+\frac{1}{\frac{q_{k}}{p_{k+1}}}=\frac{p_{k+1}}{p_{k}}+\frac{p_{k+1}}{q_{k}}=p_{k+1}\left(\frac{1}{p_{k}}+\frac{1}{q_{k}}\right)=p_{k+1}\left(\sum_{j=1}^{k} \frac{1}{p_{j}}\right)=1
$$

we can use $\frac{p_{k}}{p_{k+1}}, \frac{q_{k}}{p_{k+1}}$ as Hölder conjugates. Thus

$$
\begin{aligned}
\left\|\prod_{j=1}^{k} f_{j}\right\|_{p_{k+1}}=\left(\left\|\prod_{j=1}^{k} f_{j}^{p_{k+1}}\right\|_{1}\right)^{\frac{1}{p_{k+1}}} & \leq\left(\left\|\prod_{j=1}^{k-1} f_{j}^{p_{k+1}}\right\|_{\frac{q_{k}}{p_{k+1}}}\left\|f_{k}^{p_{k+1}}\right\|_{\frac{p_{k}}{p_{k+1}}}\right)^{\frac{1}{p_{k+1}}} \\
& =\left\|\prod_{j=1}^{k-1} f_{j}\right\|\left\|_{q_{k}}\right\| f_{k}\left\|_{p_{k}} \leq \prod_{j=1}^{k}\right\| f_{j} \|_{p_{j}}
\end{aligned}
$$

Lastly, assume that $p_{i}=\infty$ for $i \in I$, where I is an arbitrary subset of $\{1, \ldots, n\}$. Now we have

$$
\sum_{i \notin I} \frac{1}{p_{i}}=\frac{1}{p_{n+1}}
$$

and hence the problem reduces to the previous case

$$
\left\|\prod_{j=1}^{n} f_{j}\right\|_{p_{n+1}} \leq \prod_{i \in I}\left\|f_{i}\right\|_{\infty}\left\|\prod_{i \notin I} f_{i}\right\|_{p_{n+1}} \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{p_{j}}
$$

and we are done.
Note that the same proof can be done for sequences $a_{k, 1}, \ldots, a_{k, n} \in \mathbb{C}^{\mathbb{N}}$ when $\left.p_{i} \in\right] 0, \infty[$, for $i=1, \ldots, n+1$.

The following is a simple yet effective upper bound for Schwartz test functions.
Lemma 1.5. Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $s>0$. Then there exists an index $N=N(s) \in \mathbb{N}$ such that

$$
|\varphi(x)| \lesssim_{s, p_{N}(\varphi)} \frac{1}{(1+|x|)^{s}}
$$

for all $x \in \mathbb{R}^{n}$.
Proof. If $|x| \leq 1$, then

$$
(1+|x|)^{s}|\varphi(x)| \leq 2^{s}|\varphi(x)| \lesssim_{s} p_{0}(\varphi) \leq p_{N}(\varphi) \sim_{p_{N}(\varphi)} 1
$$

If $|x|>1$, then choose $N=\lceil s\rceil$ and calculate

$$
\begin{aligned}
(1+|x|)^{s}|\varphi(x)| & \leq\left(1+|x|^{2}\right)^{s}|\varphi(x)| \\
& \leq\left(1+|x|^{2}\right)^{N}|\varphi(x)| \\
& \leq p_{N}(\varphi) \lesssim p_{N}(\varphi)
\end{aligned}
$$

Remark 1.6. By the definition of $\mathcal{S}\left(\mathbb{R}^{n}\right)$, the dependence on $p_{N}(\varphi)$ in lemma 1.5 is harmless as long as φ does not depend on anything critical. For contrast, the Schwartz function in lemma 1.8 is dependent on a critical variable and hence lemma 1.5 is not enough to give the estimate in lemma 1.8 part b.

Next we will prove the existence of an important Schwartz function. The following bump function will be used in most of the Schwartz function constructions in this thesis. In some cases, we can also find a uniform estimate for the Fourier transform of the product of this function and a polynomial.

Lemma 1.7. Let $K \subset \mathbb{R}^{n}$ be compact, $V \subset \mathbb{R}^{n}$ open and $K \subset V$. If V is bounded, then there exists a function $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, such that

$$
|f| \leq 1, \quad \operatorname{Supp}(f) \subset V \quad \text { and } \quad f=1 \text { on } K
$$

Proof. Define $\varepsilon=\frac{d(K, \partial V)}{2}$ and $U_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: d(K, x)<\varepsilon\right\}$. Consider the function $h \in C^{\infty}(\mathbb{R})$ that is defined by $h(x)=e^{-\frac{1}{x}} \mathbb{1}(x>0)$. We define $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\eta(x)=\frac{h\left(1-|x|^{2}\right)}{\int_{B_{o}^{n}(0,1)} h\left(1-|t|^{2}\right) \mathrm{d} t}
$$

and $\eta_{\varepsilon}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\eta_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} \eta\left(\frac{x}{\varepsilon}\right) .
$$

Now $\eta_{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right), \operatorname{Supp}\left(\eta_{\varepsilon}\right) \subset B_{\circ}^{n}(0, \varepsilon)$ and $\left\|\eta_{\varepsilon}\right\|_{1}=1$. All that is left is to check that

$$
f(x)=\mathbb{1}_{U_{\varepsilon}} * \eta_{\varepsilon}(x)=\int_{U_{\varepsilon}} \eta_{\varepsilon}(x-y) \mathrm{d} y
$$

is the desired function.
By the dominated convergence theorem we can differentiate under the integral sign to see that f is smooth. For every $x \in \mathbb{R}^{n}$, we have

$$
|f(x)| \leq\left\|\eta_{\varepsilon}\right\|_{1}=1
$$

If $x \notin V$ and $y \in U_{\varepsilon}$, then $|x-y|>\varepsilon$ and thus

$$
f(x)=\int_{U_{\varepsilon}} \eta_{\varepsilon}(x-y) \mathrm{d} y=\int_{U_{\varepsilon}} 0 \mathrm{~d} y=0 .
$$

Furthermore, if $x \in K$, then we have that $B_{\circ}^{n}(0, \varepsilon) \subset\left\{x-y: y \in U_{\varepsilon}\right\}=: x-U_{\varepsilon}$ and thus

$$
f(x)=\int_{U_{\varepsilon}} \eta_{\varepsilon}(x-y) \mathrm{d} y=\int_{x-U_{\varepsilon}} \eta_{\varepsilon}(z) \mathrm{d} z=\int_{B_{0}^{n}(0, \varepsilon)} \eta_{\varepsilon}(z) \mathrm{d} z=\left\|\eta_{\varepsilon}\right\|_{1}=1 .
$$

Lemma 1.8. Assume that $a=e^{-c}$, for some $c \sim 1$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function that is supported in]-a, a[(see lemma 1.7 for the existence of such f) and define $g(x)=$ $f(x) x^{k}$, where $k \in \mathbb{N}$. Then we have
(a) $\left\|\frac{\mathrm{d}^{j}}{\mathrm{~d} x^{j}} g\right\|_{\infty} \lesssim_{j} 1$,
(b) $|\widehat{g}(\xi)| \lesssim_{M}(1+|\xi|)^{-M}$, for all $M>0$.

Particularly, the above estimates are uniform with respect to k.
Proof. Note that for $k=0$, the results follow from lemma 1.5. Thus we can assume that $k \in \mathbb{N}_{+}$and hence $a<k$.
(a) By the Leibniz formula for differentiation of products, we have

$$
\begin{aligned}
\frac{\mathrm{d}^{j}}{\mathrm{~d} x^{j}} g(x) & =\sum_{l=0}^{j}\binom{j}{l} \frac{\mathrm{~d}^{l}}{\mathrm{~d} x^{l}} x^{k} \frac{\mathrm{~d}^{j-l}}{\mathrm{~d} x^{j-l}} f(x) \\
& =\sum_{l=0}^{\min (j, k)}\binom{j}{l} \frac{\mathrm{~d}^{l}}{\mathrm{~d} x^{l}} x^{k} \frac{\mathrm{~d}^{j-l}}{\mathrm{~d} x^{j-l}} f(x) \\
& =\sum_{l=0}^{\min (j, k)}\binom{j}{l} \frac{k!}{(k-l)!} x^{k-l} \frac{\mathrm{~d}^{j-l}}{\mathrm{~d} x^{j-l}} f(x) .
\end{aligned}
$$

Taking L^{∞} norms from both sides leads to

$$
\begin{aligned}
\left\|\frac{\mathrm{d}^{j}}{\mathrm{~d} x^{j}} g\right\|_{\infty} & \leq \sum_{l=0}^{\min (j, k)}\binom{j}{l} \frac{k!}{(k-l)!} a^{k-l}\left\|\frac{\mathrm{~d}^{j-l}}{\mathrm{~d} x^{j-l}} f\right\|_{\infty} \\
& \leq \sum_{l=0}^{\min (j, k)} j!k^{l} a^{k-l} \sup _{0 \leq m \leq j}\left\|\frac{\mathrm{~d}^{m}}{\mathrm{~d} x^{m}} f\right\|_{\infty} \\
& \sim_{j} \sum_{l=0}^{\min (j, k)} \frac{k^{j} a^{k}}{k^{j-l} a^{l}} \\
& \leq \sum_{l=0}^{\min (j, k)} \frac{k^{j} a^{k}}{a^{j-l} a^{l}} \\
& \leq(j+1) \frac{k^{j} a^{k}}{a^{j}} \sim_{j} k^{j} a^{k-j} .
\end{aligned}
$$

The L'Hospital rule applied j times yields

$$
\lim _{k \rightarrow \infty} k^{j} a^{k-j}=\lim _{k \rightarrow \infty} \frac{k^{j}}{a^{j} a^{-k}}=\lim _{k \rightarrow \infty} \frac{j!}{(-a \ln a)^{j} a^{-k}}=\frac{j!}{(-a \ln a)^{j}} \lim _{k \rightarrow \infty} a^{k}=0
$$

which implies that there exists a real number k_{*} that maximizes the function $k \mapsto$ $k^{j} a^{k-j}$ on $\left[0, \infty\left[\right.\right.$. A routine analysis of zeros of the derivatives reveals that $k_{*}=$ $-\frac{j}{\ln a}=\frac{j}{c}$. Hence

$$
\left\|\frac{\mathrm{d}^{j}}{\mathrm{~d} x^{j}}\right\|_{\infty} \lesssim j k_{*}^{j} a^{k_{*}-j}=\left(\frac{j}{c}\right)^{j} e^{c j-j} \sim_{j} 1
$$

We have now proven the first part.
(b) If $|y| \leq 1$, then

$$
(1+|y|)^{M}|\widehat{g}(y)| \leq 2^{M}|\widehat{g}(y)| \sim_{M}|\widehat{g}(y)| \leq\|g\|_{1} \sim 1 .
$$

If $|y|>1$, then repeated integration by parts and part (a) yields

$$
\begin{aligned}
(1+|y|)^{M}|\widehat{g}(y)| & \lesssim M|y|^{M}|\widehat{g}(y)| \\
& =\left|\int_{\mathbb{R}} g(x) y^{M} e^{2 \pi i x y} \mathrm{~d} x\right| \\
& =\left|\int_{-1}^{1} g(x) y^{M} e^{2 \pi i x y} \mathrm{~d} x\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\int_{-1}^{1} \frac{\mathrm{~d} g(x)}{\mathrm{d} x} y^{M} \frac{e^{-2 \pi i x y}}{-2 \pi i y} \mathrm{~d} x\right| \\
& \vdots \\
& =\left|\int_{-1}^{1} \frac{\mathrm{~d}^{\lceil M\rceil} g(x)}{\mathrm{d} x^{\lceil M\rceil}} y^{M} \frac{e^{-2 \pi i x y}}{(-2 \pi i y)^{\lceil M\rceil}} \mathrm{d} x\right| \\
& \leq\left\|\frac{\mathrm{d}^{\lceil M\rceil} g}{\mathrm{~d} x^{\lceil M\rceil}}\right\|_{\infty}\left|y^{M-\lceil M\rceil} \int_{-1}^{1} \frac{e^{-2 \pi i x y}}{(-2 \pi i)^{\lceil M\rceil}} \mathrm{d} x\right| \\
& \leq\left\|\frac{\mathrm{d}^{\lceil M\rceil} g}{\mathrm{~d} x^{\Gamma M\rceil}}\right\|_{\infty}\left|\int_{-1}^{1} \frac{e^{-2 \pi i x y}}{(-2 \pi i)^{\lceil M\rceil}} \mathrm{d} x\right| \\
& \lesssim M\left|\int_{-1}^{1} \frac{e^{-2 \pi i x y}}{(-2 \pi i)^{\lceil M\rceil}} \mathrm{d} x\right| \leq \frac{2}{(2 \pi)^{\lceil M\rceil}} \leq 1
\end{aligned}
$$

and we are done.

Note that essentially the same proof gives us lemma 1.8 part b for the inverse Fourier operator.

If $\Omega \subset \mathbb{R}^{n}, f \in L_{l o c}^{1}(\Omega)$ and $\varphi: \Omega \rightarrow \mathbb{C}$ is a compactly supported smooth function, then T_{f} is a functional that is defined by the formula

$$
\begin{equation*}
\left\langle T_{f}, \varphi\right\rangle:=\int_{\Omega} f(x) \varphi(x) \mathrm{d} x . \tag{1.9}
\end{equation*}
$$

When we are discussing distributions the symbol f will stand for T_{f}.
Remark 1.10. If $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then in formula (1.9) it is not enough to say that f is locally integrable. However, if $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then (1.9) defines a continuous linear mapping from $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to \mathbb{C}, i.e., the linear mapping is a tempered distribution.

The following result states that formula (1.9) is an injection in $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$. We will use this to convert distributional equalities into classical ones. The result is true also in $L_{l o c}^{1}(\Omega)$, but we will not need this.

Lemma 1.11. Let $f, g \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then $\langle f, \varphi\rangle=\langle g, \varphi\rangle$ for every compactly supported smooth function φ implies that $f(x)=g(x)$ for almost every $x \in \mathbb{R}^{n}$.

Proof. We choose $\varphi_{x}(y)=\eta_{\varepsilon}(x-y)$, where η_{ε} is the standard mollifier defined in the
proof of lemma 1.7.

$$
\begin{aligned}
\left\langle f, \varphi_{x}\right\rangle & =\int_{\mathbb{R}^{n}} f(y) \varphi_{x}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{n}} f(y) \eta_{\varepsilon}(x-y) \mathrm{d} y \\
& =f * \eta_{\varepsilon}(x) .
\end{aligned}
$$

We also have

$$
\lim _{\varepsilon \rightarrow 0}\left\|f * \eta_{\varepsilon}-f\right\|_{L^{1}(K)}=0
$$

for every compact $K \subset \mathbb{R}^{n}$. In particular, this is true for K_{i}, where $\left(K_{i}\right)_{i \in \mathbb{N}}$ is a compact exhaustion of \mathbb{R}^{n}. Then there exists a subsequence ε_{1} such that $f * \eta_{\varepsilon_{1}} \rightarrow f$ almost everywhere in K_{1}. For this sequence we have

$$
\lim _{\varepsilon_{1} \rightarrow 0}\left\|f * \eta_{\varepsilon_{1}}-f\right\|_{L^{1}\left(K_{2}\right)}=0
$$

and hence there exists a subsequence ε_{2} of ε_{1} of such that $f * \eta_{\varepsilon_{2}} \rightarrow f$ almost everywhere in $K_{2} \supset K_{1}$. Continuing this inductively yields that there exists a subsequence ε_{n} such that $f * \eta_{\varepsilon_{n}} \rightarrow f$ almost everywhere in K_{i} for all $i \in \mathbb{N}$ and hence we also have $f * \eta_{\varepsilon_{n}} \rightarrow f$ almost everywhere in \mathbb{R}^{n}.

On the other hand we similarly have $g * \eta_{\varepsilon} \rightarrow g$ almost everywhere along a subsequence $\varepsilon_{n_{j}}$ of the sequence ε_{n}. Since the limit of a subsequence equals the limit of the original sequence, we now get that for almost every $x \in \mathbb{R}^{n}$, we have

$$
f(x) \leftarrow f * \eta_{\varepsilon_{n_{j}}}(x)=g * \eta_{\varepsilon_{n_{j}}}(x) \rightarrow g(x) .
$$

Thus we must have $f(x)=g(x)$ for almost every $x \in \mathbb{R}^{n}$.
The next two lemmas are slightly generalized versions of well known results. The first is a generalized version of the Fourier inversion formula.

Lemma 1.12. Let $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $\widehat{f} \in L^{1}\left(\mathbb{R}^{n}\right)$. Then we have

$$
f(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e(\xi \cdot x) \mathrm{d} \xi
$$

for almost every $x \in \mathbb{R}^{n}$.
Proof. Since $\widehat{f} \in L^{1}\left(\mathbb{R}^{n}\right)$ we know that the expression

$$
\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e(x \cdot \xi) \mathrm{d} \xi
$$

converges to a continuous function f_{1}. Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and calculate by Fubini's theorem that

$$
\begin{aligned}
\left\langle\mathcal{F}^{-1} \widehat{f}, \varphi\right\rangle & =\left\langle\widehat{f}, \mathcal{F}^{-1} \varphi\right\rangle \\
& =\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \int_{\mathbb{R}^{n}} \varphi(x) e(\xi \cdot x) \mathrm{d} x \mathrm{~d} \xi \\
& =\int_{\mathbb{R}^{n}} \varphi(x) \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e(\xi \cdot x) \mathrm{d} \xi \mathrm{~d} x \\
& =\int_{\mathbb{R}^{n}} f_{1}(x) \varphi(x) \mathrm{d} x \\
& =\left\langle f_{1}, \varphi\right\rangle .
\end{aligned}
$$

Thus f_{1} is the distributional inverse Fourier transform of \widehat{f}. This combined with the Fourier inverse formula of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ gives that

$$
\langle f, \varphi\rangle=\left\langle f_{1}, \varphi\right\rangle .
$$

Now lemma 1.11 yields that $f=f_{1}$ almost everywhere in the classical sense. Thus we have proven the inversion formula

$$
f(x)=f_{1}(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e(x \cdot \xi) \mathrm{d} \xi
$$

for almost every $x \in \mathbb{R}^{n}$.
In the second generalization we weaken the assumptions of the convolution theorem.
Lemma 1.13. Let $\varphi, \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
\langle\mathcal{F}(f * \varphi), \phi\rangle=\langle\widehat{f} \widehat{\varphi}, \phi\rangle .
$$

Proof. Denote $R \varphi(x):=\varphi(-x)$. The Fourier inversion formula implies that

$$
\begin{equation*}
R \varphi(x)=\mathcal{F}(\widehat{\varphi})(x) \tag{1.14}
\end{equation*}
$$

Furthermore, Fubini's theorem and the above equality gives

$$
\mathcal{F}(\widehat{\eta} * \widehat{\psi})=\mathcal{F}(\widehat{\eta}) \mathcal{F}(\widehat{\psi})=R(\eta) R(\psi)=R(\eta \psi)=\mathcal{F}(\mathcal{F}(\eta \psi)), \quad \text { for all } \eta, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Taking inverse Fourier transforms from both sides yields

$$
\widehat{\eta} * \widehat{\psi}=\mathcal{F}(\eta \psi), \quad \text { for all } \eta, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Plugging $\eta=\widehat{\varphi}$ and $\psi=\phi$ to the above equation yields

$$
\begin{equation*}
\mathcal{F}(\widehat{\varphi}) * \widehat{\phi}=\mathcal{F}(\widehat{\varphi} \phi) \tag{1.15}
\end{equation*}
$$

Now using Fubini's theorem, (1.14) and (1.15) we can calculate that

$$
\begin{aligned}
\langle\mathcal{F}(f * \varphi), \phi\rangle & =\langle f * \varphi, \widehat{\phi}\rangle \\
& =\int_{\mathbb{R}^{n}} f * \varphi(x) \widehat{\phi}(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y) \varphi(x-y) \widehat{\phi}(x) \mathrm{d} y \mathrm{~d} x \\
& =\int_{\mathbb{R}^{n}} f(y) \int_{\mathbb{R}^{n}} \varphi(x-y) \widehat{\phi}(x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}^{n}} f(y) R \varphi * \widehat{\phi}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{n}} f(y) \mathcal{F}(\widehat{\varphi}) * \widehat{\phi}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{n}} f(y) \mathcal{F}(\widehat{\varphi} \phi)(y) \mathrm{d} y \\
& =\langle f, \mathcal{F}(\widehat{\varphi} \phi)\rangle=\langle\widehat{f}, \widehat{\varphi} \phi\rangle=\langle\widehat{f} \widehat{\varphi}, \phi\rangle .
\end{aligned}
$$

Lastly, we will aim to prove the existence of two different kinds of tempered distributions and then calculate their Fourier transforms. However, before we can do this, we need a result which gives us a way to check for the continuity of a linear mapping from $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to itself. We will give the result without proof.

Theorem 1.16. A linear mapping $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{S}\left(\mathbb{R}^{n}\right)$ is continuous if and only if for every $N \in \mathbb{N}$ there exists a number $M \in \mathbb{N}$ and a constant $C_{N, M}$ such that

$$
p_{N}(T f) \leq C_{N, M} p_{M}(f)
$$

The proof of the above result can be found in [1] theorem 12.2 .
Let $\tau_{h} f(x)=f(x+h)$, where f is a function. If the following integrals converge, then a change of variables gives

$$
\int_{\mathbb{R}^{n}} f(x+h) \phi(x) \mathrm{d} x=\int_{\mathbb{R}^{n}} f(x) \phi(x-h) \mathrm{d} x .
$$

If f, g and ϕ are functions, then we have

$$
\int_{\mathbb{R}^{n}} g(x) f(x) \phi(x) \mathrm{d} x=\int_{\mathbb{R}^{n}} f(x) g(x) \phi(x) \mathrm{d} x .
$$

This motivates the following lemma.
Lemma 1.17. Let $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Assume also that for every multi-index α there exists constants M_{α} and C_{α} such that

$$
\begin{equation*}
\left|\partial^{\alpha} g(x)\right| \leq C_{\alpha}\left(1+|x|^{2}\right)^{M_{\alpha}} . \tag{1.18}
\end{equation*}
$$

Then the functionals $g f$ and $\tau_{h} f$ defined by

$$
\langle g f, \phi\rangle:=\langle f, g \phi\rangle
$$

and

$$
\left\langle\tau_{h} f, \phi\right\rangle:=\left\langle f, \tau_{-h} \phi\right\rangle
$$

respectively, are continuous in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, i.e., they are a tempered distributions.
Proof. Since $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, it suffices to show that the mappings

$$
\phi \mapsto g \phi
$$

and

$$
\phi \mapsto \tau_{-h} \phi
$$

are continuous in the Schwartz space topology. We start with the first mapping. Applying the Leibniz rule for differentiation and (1.18) gives

$$
\begin{aligned}
p_{N}(g \phi) & =\sup _{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha}(g(x) \phi(x))\right| \\
& =\sup _{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N}\left|\sum_{\gamma \leq \alpha}\binom{\alpha}{\gamma} \partial^{\gamma} g(x) \partial^{\alpha-\gamma} \phi(x)\right| \\
& \leq \sup _{|\alpha| \leq N} \sum_{\gamma \leq \alpha}\binom{\alpha}{\gamma} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\gamma} g(x)\right|\left|\partial^{\alpha-\gamma} \phi(x)\right| \\
& \leq \sup _{|\alpha| \leq N} \sum_{\gamma \leq \alpha}\binom{\alpha}{\gamma} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N+M} C\left|\partial^{\alpha-\gamma} \phi(x)\right| \\
& \leq \sup _{|\alpha| \leq N} \sum_{\gamma \leq \alpha}\binom{\alpha}{\gamma} C p_{N+M}(\phi)=C_{N} p_{N+M}(\phi),
\end{aligned}
$$

where $M:=\max _{|\alpha| \leq N} M_{\alpha}, C:=\max _{|\alpha| \leq N} C_{\alpha}$ and $C_{N}=2^{N} C$.
For the second mapping we calculate

$$
\begin{aligned}
p_{N}\left(\tau_{-h} \phi\right) & =\sup _{|\alpha| \leq N x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha} \phi(x-h)\right| \\
& =\sup _{|\alpha| \leq N x \in \mathbb{R}^{n}}\left(1+|h+x-h|^{2}\right)^{N}\left|\partial^{\alpha} \phi(x-h)\right| \\
& \leq \sup _{|\alpha| \leq N x \in \mathbb{R}^{n}}\left(1+2|h|^{2}+2|x-h|^{2}\right)^{N}\left|\partial^{\alpha} \phi(x-h)\right| \\
& \leq \sup _{|\alpha| \leq N x \in \mathbb{R}^{n}}\left(2\left(1+2|h|^{2}\right)+2\left(1+2|h|^{2}\right)|x-h|^{2}\right)^{N}\left|\partial^{\alpha} \phi(x-h)\right| \\
& =2^{N}\left(1+2|h|^{2}\right)^{N} \sup _{|\alpha| \leq N x \in \mathbb{R}^{n}}\left(1+|x-h|^{2}\right)^{N}\left|\partial^{\alpha} \phi(x-h)\right| \\
& =C_{N, h} p_{N}(\phi),
\end{aligned}
$$

where $C_{N, h}:=2^{N}\left(1+2|h|^{2}\right)^{N}$. An application of theorem 1.16 concludes the proof of the lemma.

Define $e_{h}(x):=e(x \cdot h)$ and notice that by the above lemma we have $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \Rightarrow$ $e_{h} f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Next we calculate the Fourier transforms of $\tau_{h} f$ and $e_{h} f$.

Lemma 1.19. Assume that f is a tempered distribution. Then

$$
\widehat{\tau_{h} f}=e_{h} \widehat{f} \quad \text { and } \quad \widehat{e_{h} f}=\tau_{-h} \widehat{f}
$$

Proof. Let $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. We calculate that

$$
\begin{equation*}
\left.\widehat{\tau_{h} f}, \phi\right\rangle=\left\langle\tau_{h} f, \widehat{\phi}\right\rangle=\left\langle f, \tau_{-h} \widehat{\phi}\right\rangle \tag{1.20}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\tau_{-h} \widehat{\phi}(x) & =\int_{\mathbb{R}^{n}} \phi(\xi) e(-(x-h) \cdot \xi) \mathrm{d} \xi \\
& =\int_{\mathbb{R}^{n}} \phi(\xi) e_{h}(\xi) e(-x \cdot \xi) \mathrm{d} \xi=\widehat{e_{h} \phi}(x)
\end{aligned}
$$

and plugging this into (1.20) gives

$$
\left\langle\widehat{\tau_{h} f}, \phi\right\rangle=\left\langle f, \widehat{e_{h} \phi}\right\rangle=\left\langle\widehat{f}, e_{h} \phi\right\rangle=\left\langle e_{h} \widehat{f}, \phi\right\rangle
$$

and since $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ was arbitrary, we have proven the left side equation.

For the right side equation we calculate

$$
\begin{equation*}
\left\langle\widehat{e_{h} f}, \phi\right\rangle=\left\langle e_{h} f, \widehat{\phi}\right\rangle=\left\langle f, e_{h} \widehat{\phi}\right\rangle \tag{1.21}
\end{equation*}
$$

and by a change of variables we have

$$
\begin{align*}
e_{h} \widehat{\phi}(x) & =\int_{\mathbb{R}^{n}} \phi(\xi) e(-\xi \cdot x) e(x \cdot h) \mathrm{d} \xi \\
& =\int_{\mathbb{R}^{n}} \phi(\xi) e(-x \cdot(\xi-h)) \mathrm{d} \xi \\
& =\int_{\mathbb{R}^{n}} \phi(\xi+h) e(-x \cdot \xi) \mathrm{d} \xi=\widehat{\tau_{h} \phi}(x) . \tag{1.22}
\end{align*}
$$

Combining (1.21) and (1.22) gives

$$
\left\langle\widehat{e_{h} f}, \phi\right\rangle=\left\langle f, \widehat{\tau_{h} \phi}\right\rangle=\left\langle\widehat{f}, \tau_{h} \phi\right\rangle=\left\langle\tau_{-h} \widehat{f}, \phi\right\rangle
$$

and we are done since $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ was arbitrary.

Chapter 2

Multilinear Kakeya inequality

In this chapter we give the statement of multilinear Kakeya inequality and prove it. Heuristically, the multilinear Kakeya inequality is a geometric estimate about the overlap of almost axis parallel cylindrical tubes in \mathbb{R}^{n} pointing in various directions. Roughly, the inequality conveys that the tubes pointing in different directions cannot overlap excessively.

This estimate was originally proven, in a slightly more general setting, by Bennett, Carberry and Tao in [2]. The result was sharpened in [12] by Larry Guth to cover the whole range of the former conjecture. In [12] techniques from algebraic topology are applied to show that theorem 2.1 holds without the multiplier S^{ε}. However, in order to prove the l^{2} decoupling theorem from [5] the version that we will prove is equally useful.

This chapter will mainly follow the more elementary approach of the paper [11] by Larry Guth called A short proof of the multilinear Kakeya inequality and every formulation for theorems, lemmas and corollaries (excluding corollary 2.15) will be taken from [11]. The formulation of corollary 2.15 is from [5].

2.1 Statement of the inequality

We will first construct the cylindrical tubes that we discussed earlier. In order to do this, we consider lines $l_{j, a}$ in \mathbb{R}^{n}. Here $j \in\{1, \ldots, n\}$ tells us which axis the line is nearly parallel to and $a=1, \ldots, N_{j}$, where N_{j} is the number of lines that are nearly parallel to x_{j}-axis. Now the tubes $T_{j, a}$ are given by the indicator function of the 1-neighbourhood of the line $l_{j, a}$, i.e.,

$$
T_{j, a}(x):=\mathbb{1}\left\{x \in \mathbb{R}^{n}: d\left(x, l_{j, a}\right) \leq 1\right\} .
$$

Now we can establish the statement of multilinear Kakeya inequality.

Theorem 2.1 (Multilinear Kakeya inequality). Let $Q_{S} \subset \mathbb{R}^{n}$ be an arbitrary cube of side length S. Suppose that each line $l_{j, a}$ in \mathbb{R}^{n} makes an angle of at most $\frac{1}{10 n}$ with the x_{j}-axis. Then for any $\varepsilon>0$ and any $S \geq 1$, the following inequality holds

$$
\begin{equation*}
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \lesssim_{\varepsilon} S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}} \tag{2.2}
\end{equation*}
$$

Figure 2.1: An example of the contribution of overlapping tubes on left-hand side of the multilinear Kakeya inequality in \mathbb{R}^{2}. The left-hand side equates to the sum of the weighted areas of the colorful regions.

2.2 Angle reduction

The strategy for proving theorem 2.1 is reducing the angle from $\frac{1}{10 n}$ to an even smaller angle δ. This motivates the following theorem.

Theorem 2.3. For every $\varepsilon>0$, there exists some $\delta \sim_{\varepsilon} 1$ such that the following holds. Suppose that each line $l_{j, a}$ in \mathbb{R}^{n} makes an angle of at most δ with the x_{j}-axis. Then for
any $S \geq 1$ and any cube Q_{S} of side length S, we have

$$
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \lesssim_{\varepsilon} S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
$$

First we show that theorem 2.3 implies theorem 2.1. Let e_{j} be unit vector in the x_{j} direction, and let $S_{j} \subset \mathbb{S}^{n-1}$ be the e_{j} centered spherical cap of radius $\frac{1}{10 n}$, i.e., $S_{j}:=\{x \in$ $\left.\mathbb{S}^{n-1}:\left|x-e_{j}\right| \leq \frac{1}{10 n}\right\}$. If the direction vector of a line $l_{j, a}$ hits S_{j}, then we write $l_{j, a} \in S_{j}$. By the assumptions of theorem 2.1, we have that $l_{j, a} \in S_{j}$. For a given $\varepsilon>0$, we choose such a $\delta>0$ that satisfies theorem 2.3. We cover the cap S_{j} with smaller caps $S_{j, \beta_{j}}$ of radius $\frac{\delta}{2}$. We also make the covering so that the number of caps $S_{j, \beta_{j}}$ is at most a constant dependent only on ε. This is possible since our choice of δ will essentially depend only on ε. We want to break the left-hand side of the inequality (2.2) into contributions from different caps $S_{j, \beta_{j}}$. Denote

$$
A_{j, \beta_{j}}:=\left\{a \in\left\{1, \ldots, N_{j}\right\}: l_{j, a} \in S_{j, \beta_{j}}\right\} .
$$

By concavity, we have the following inequality

$$
\begin{align*}
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & =\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{\beta_{j}} \sum_{a \in A_{j, \beta_{j}}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& \leq \int_{Q_{S}} \prod_{j=1}^{n} \sum_{\beta_{j}}\left(\sum_{a \in A_{j, \beta_{j}}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x . \tag{2.4}
\end{align*}
$$

We abbreviate

$$
Y_{j, \beta_{j}}(x):=\sum_{a \in A_{j, \beta_{j}}} T_{j, a}(x)
$$

Now by (2.4) and the distributive law we have

$$
\begin{aligned}
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & \leq \int_{Q_{S}} \prod_{j=1}^{n} \sum_{\beta_{j}} Y_{j, \beta_{j}}(x)^{\frac{1}{n-1}} \mathrm{~d} x \\
& =\int_{Q_{S}}\left(\sum_{\beta_{1}} Y_{1, \beta_{1}}(x)^{\frac{1}{n-1}}\right) \cdots\left(\sum_{\beta_{n}} Y_{n, \beta_{n}}(x)^{\frac{1}{n-1}}\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{align*}
& =\int_{Q_{S}} \sum_{\beta_{1}} \cdots \sum_{\beta_{n}} Y_{1, \beta_{1}}(x)^{\frac{1}{n-1}} \cdots Y_{n, \beta_{n}}(x)^{\frac{1}{n-1}} \mathrm{~d} x \\
& =\int_{Q_{S}} \sum_{\beta_{1}, \ldots, \beta_{n}} \prod_{j=1}^{n} Y_{j, \beta_{j}}(x)^{\frac{1}{n-1}} \\
& =\sum_{\beta_{1}, \ldots, \beta_{n}} \int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a \in A_{j, \beta_{j}}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \tag{2.5}
\end{align*}
$$

Now we want to control (2.5) with theorem 2.3. If $S_{j, \beta_{j}}$ contains e_{j}, then theorem 2.3 applies directly. If not, then we make a linear transformation L that maps the center of $S_{j, \beta_{j}}$ to e_{j} for every $j \in\{1, \ldots, n\}$. This implies the assumptions of theorem 2.3. We claim that this transformation distorts the lengths of vectors at most by a factor of 2 .

Denote the center of $S_{j, \beta_{j}}$ with $v_{j, \beta_{j}}$ and define $M:=\left[v_{1, \beta_{1}} \ldots v_{n, \beta_{n}}\right] \in \mathbb{R}^{n \times n}$. Now M defines a linear mapping such that $M e_{j}=v_{j, \beta_{j}}$. For $x=\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} e_{i}$ we have

$$
\begin{align*}
|M x| & \geq|x|-|M x-x|=|x|-\left|\sum_{i=1}^{n} x_{i} M e_{i}-x_{i} e_{i}\right| \\
& =|x|-\left|\sum_{i=1}^{n} x_{i} v_{i, \beta_{i}}-x_{i} e_{i}\right| \geq|x|-\sum_{i=1}^{n}\left|x_{i}\right|\left|v_{i, \beta_{i}}-e_{i}\right| \\
& \geq|x|-\frac{1}{10 n}\left(\sum_{i=1}^{n} 1^{2}\right)^{\frac{1}{2}}|x| \geq|x|\left(1-\frac{1}{10 \sqrt{n}}\right) \geq \frac{1}{2}|x| . \tag{2.6}
\end{align*}
$$

In the third to last inequality we used the Cauchy-Schwarz inequality and the fact that $\left|v_{j, \beta_{j}}-e_{j}\right| \leq \frac{1}{10 n}$.

From (2.6) we see that $\operatorname{Ker} M=\{0\}$ and hence the inverse map $L=M^{-1}$ exists and is also a bijection. By the bijectivity of L, we have

$$
|L y|=|x| \leq 2|M x|=2|y|, \quad \text { for all } y \in \mathbb{R}^{n} .
$$

We have now shown that the transformation L distorts the lengths of vectors at most by a factor of 2 and hence volumes are distorted at most by a factor of 2^{n}.

Thus we can estimate (2.5) further using theorem 2.3

$$
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq \sum_{\beta_{1}, \ldots, \beta_{n}} \int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a \in A_{j, \beta_{j}}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x
$$

$$
\begin{aligned}
& \lesssim_{\varepsilon} \sum_{\beta_{1}, \ldots, \beta_{n}} S^{\varepsilon} \prod_{j=1}^{n}\left(\# A_{j, \beta_{j}}\right)^{\frac{1}{n-1}} \\
& =S^{\varepsilon} \sum_{\beta_{1}, \ldots, \beta_{n}}\left(\# A_{1, \beta_{1}}\right)^{\frac{1}{n-1}} \cdots\left(\# A_{n, \beta_{n}}\right)^{\frac{1}{n-1}} \\
& =S^{\varepsilon} \prod_{j=1}^{n} \sum_{\beta_{j}}\left(\# A_{j, \beta_{j}}\right)^{\frac{1}{n-1}} .
\end{aligned}
$$

Using Hölder inequality for sequences with conjugates $\frac{n-1}{n-2}$ and $n-1$ gives

$$
\begin{aligned}
S^{\varepsilon} \prod_{j=1}^{n} \sum_{\beta_{j}}\left(\# A_{j, \beta_{j}}\right)^{\frac{1}{n-1}} & \leq S^{\varepsilon} \prod_{j=1}^{n}\left(\sum_{\beta_{j}} \# A_{j, \beta_{j}}\right)^{\frac{1}{n-1}}\left(\sum_{\beta_{j}} 1^{\frac{n-1}{n-2}}\right)^{\frac{n-2}{n-1}} \\
& \lesssim \varepsilon S^{\varepsilon} \prod_{j=1}^{n}\left(\sum_{\beta_{j}} \# A_{j, \beta_{j}}\right)^{\frac{1}{n-1}}=S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
\end{aligned}
$$

In the last inequality we used the fact that the number of caps $S_{j, \beta_{j}}$ is at most a constant that depends only on ε.

2.3 Axis parallel case

Before proving the angle reducted case, we will study the case where every line is exactly parallel to one of the coordinate axes. In this case the multilinear Kakeya inequality follows from the so called Loomis-Whitney inequality. Our proof for the Loomis-Whitney inequality will follow the argument from section 6.1 of [9].

Theorem 2.7 (Loomis-Whitney inequality). Suppose that $f_{j}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ are measurable functions. Then the following inequality holds

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\pi_{j}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}^{\frac{1}{n-1}}
$$

Proof. Let $h: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ be a function. We know that $\int h \leq \int|h|$ and $\|h\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}=$ $\||h|\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}$. Thus we can assume that f_{j} are non-negative. Furthermore, it suffices to prove that for measurable non-negative $g_{j}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} g_{j}\left(\pi_{j}(x)\right) \mathrm{d} x \leq \prod_{j=1}^{n}\left\|g_{j}\right\|_{L^{n-1}\left(\mathbb{R}^{n-1}\right)} \tag{2.8}
\end{equation*}
$$

since plugging $g_{j}=f_{j}^{\frac{1}{n-1}}$ to (2.8) gives us the result. We start proving (2.8) from the base case $n=2$. Applying Tonelli's theorem we have

$$
\int_{\mathbb{R}^{2}} \prod_{j=1}^{2} g_{j}\left(\pi_{j}(x)\right) \mathrm{d} x=\int_{\mathbb{R}^{2}} g_{1}\left(x_{2}\right) g_{2}\left(x_{1}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=\prod_{j=1}^{2}\left\|g_{j}\right\|_{L^{1}(\mathbb{R})} .
$$

Now assume that the theorem holds for $n=k-1$, that is, for measurable $g_{j}^{\prime}: \mathbb{R}^{k-2} \rightarrow \mathbb{R}$ we have

$$
\int_{\mathbb{R}^{k-1}} \prod_{j=1}^{k-1} g_{j}^{\prime}\left(\pi_{j}(x)\right) \mathrm{d} x \leq \prod_{j=1}^{k-1}\left\|g_{j}^{\prime}\right\|_{L^{k-2}\left(\mathbb{R}^{k-2}\right)}
$$

Now for the general case $n=k$ we define

$$
h\left(x_{1}, \ldots, x_{k-1}\right)=\int_{\mathbb{R}} \prod_{j=1}^{k-1} g_{j}\left(\pi_{j}(x)\right) \mathrm{d} x_{k} .
$$

Now applying the Hölder inequality with $p=k-1$ and $q=\frac{k-1}{k-2}$, we get

$$
\begin{align*}
\int_{\mathbb{R}^{k}} \prod_{j=1}^{k} g_{j}\left(\pi_{j}(x)\right) \mathrm{d} x & =\int_{\mathbb{R}^{k-1}} h\left(x_{1}, \ldots, x_{k-1}\right) g_{k}\left(\pi_{k}(x)\right) \mathrm{d} x_{k-1} \ldots \mathrm{~d} x_{1} \\
& \leq\|h\|_{L^{k-2}\left(\mathbb{R}^{k-1}\right)}\left\|g_{k}\right\|_{L^{k-1}\left(\mathbb{R}^{k-1}\right)} . \tag{2.9}
\end{align*}
$$

We briefly denote $x_{j}^{*}:=\pi_{j}\left(x_{1}, \ldots, x_{k-1}\right)$. By using the generalized Hölder inequality with conjugates $p_{k}=1$ and $p_{j}=k-1$ for all $j \in\{1, \ldots, k-1\}$ and the induction hypothesis on the functions defined by

$$
g_{j}^{\prime}\left(x_{j}^{*}\right):=\left(\int_{\mathbb{R}} g_{j}\left(\pi_{j}(x)\right)^{k-1} \mathrm{~d} x_{k}\right)^{\frac{1}{k-2}}
$$

we get

$$
\begin{aligned}
\|h\|_{\substack{\frac{k-1}{k-2} \\
L^{k-1}\left(\mathbb{R}^{k-1}\right)}} & =\int_{\mathbb{R}^{k-1}}\left(\int_{\mathbb{R}^{k-1}} \prod_{j=1}^{k-1} g_{j}\left(\pi_{j}(x)\right) \mathrm{d} x_{k}\right)^{\frac{k-1}{k-2}} \mathrm{~d} x_{k-1} \ldots \mathrm{~d} x_{1} \\
& =\int_{\mathbb{R}^{k-1}}\left\|\prod_{j=1}^{k-1} g_{j} \circ \pi_{j}\left(x_{1}, \ldots, x_{k-1}, \cdot\right)\right\|_{L^{1}(\mathbb{R})}^{\frac{k-1}{k-2}} \mathrm{~d} x_{k-1} \ldots \mathrm{~d} x_{1} \\
& \leq \int_{\mathbb{R}^{k-1}} \prod_{j=1}^{k-1}\left\|g_{j} \circ \pi_{j}\left(x_{1}, \ldots, x_{k-1}, \cdot\right)\right\|_{L^{k-1}(\mathbb{R})}^{\frac{k-1}{k-2}} \mathrm{~d} x_{k-1} \ldots \mathrm{~d} x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{k-1}} \prod_{j=1}^{k-1}\left(\int_{\mathbb{R}} g_{j}\left(\pi_{j}(x)\right)^{k-1} \mathrm{~d} x_{k}\right)^{\frac{1}{k-2}} \mathrm{~d} x_{k-1} \ldots \mathrm{~d} x_{1} \\
& =\int_{\mathbb{R}^{k-1}} \prod_{j=1}^{k-1} g_{j}^{\prime}\left(x_{j}^{*}\right) \mathrm{d} x_{k-1} \ldots \mathrm{~d} x_{1} \leq \prod_{j=1}^{k-1}\left\|g_{j}^{\prime}\right\|_{L^{k-2}\left(\mathbb{R}^{k-2}\right)} .
\end{aligned}
$$

On the last line we used the induction hypothesis. Thus we have

$$
\begin{align*}
\|h\|_{L^{k-1}\left(\mathbb{R}^{k-1}\right)} & \leq \prod_{j=1}^{k-1}\left\|g_{j}^{\prime}\right\|_{L^{k-2}\left(\mathbb{R}^{k-2}\right)}^{\frac{k-2}{k-1}} \\
& =\prod_{j=1}^{k-1}\left(\int_{\mathbb{R}^{k-2}} g_{j}^{\prime}\left(x_{j}^{*}\right)^{k-2} \mathrm{~d} x_{j}^{*}\right)^{\frac{1}{k-1}} \\
& =\prod_{j=1}^{k-1}\left(\int_{\mathbb{R}^{k-1}} g_{j}\left(\pi_{j}(x)\right)^{k-1} \mathrm{~d} \pi_{j}(x)\right)^{\frac{1}{k-1}}=\prod_{j=1}^{k-1}\left\|g_{j}\right\|_{L^{k-1}\left(\mathbb{R}^{k-1}\right)} . \tag{2.10}
\end{align*}
$$

Finally plugging (2.10) to (2.9), we get the desired result.

If the line $l_{j, a}$ is parallel to the x_{j}-axis, then the other coordinates in lines $l_{j, a}$ are constant and we can define $l_{j, a}$ with y_{a} for some $y_{a} \in \mathbb{R}^{n-1}$. Thus

$$
\begin{aligned}
T_{j, a}(x) & =\mathbb{1}\left\{x \in \mathbb{R}^{n}: d\left(x, l_{j, a}\right) \leq 1\right\} \\
& =\mathbb{1}\left\{x \in \mathbb{R}^{n}: d\left(\pi_{j}(x), y_{a}\right) \leq 1\right\}=\mathbb{1}_{B_{o}^{n-1}\left(y_{a}, 1\right)}\left(\pi_{j}(x)\right) .
\end{aligned}
$$

Applying the Loomis-Whitney inequality with $f_{j}\left(\pi_{j}(x)\right)=\sum_{a=1}^{N_{j}} T_{j, a}(x)$ gives

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & =\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}^{\frac{1}{n-1}} \mathrm{~d} x \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}^{\frac{1}{n-1}} \\
& =\left|B_{\circ}^{n-1}(0,1)\right|^{\frac{n}{n-1}} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}} \sim \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
\end{aligned}
$$

2.4 Proof of Multilinear Kakeya inequality

Now that we have proven the inequality for axis parallel tubes, all that is left, is to control the effect that happens when the tubes have a small tilt in them. We consider
the sequence of scales $\left\{\delta^{-1}, \delta^{-2}, \ldots\right\}$. The idea is to use these scales to work our way up to the arbitrary scale S. To set up this argument, we need to generalize our tubes a bit. We define

$$
T_{j, a, W}:=\mathbb{1}\left\{x \in \mathbb{R}^{n}: d\left(x, l_{j, a}\right) \leq W\right\} \text { and } f_{j, W}:=\sum_{a=1}^{N_{j}} T_{j, a, W} .
$$

The next lemma will give us a tool to jump between scales.
Lemma 2.11. Suppose that $l_{j, a}$ are lines with angle at most δ from the x_{j}-axis. If $S \geq$ $\delta^{-1} W$ and Q_{S} is any cube of side length S, then

$$
\int_{Q_{S}} \prod_{j=1}^{n} f_{j, W}(x)^{\frac{1}{n-1}} \mathrm{~d} x \leq C_{n} \delta^{n} \int_{Q_{S}} \prod_{j=1}^{n} f_{j, \delta-1}(x)^{\frac{1}{n-1}} \mathrm{~d} x .
$$

Proof. We divide Q_{S} into subcubes Q of side length between $\frac{1}{20 n} \delta^{-1} W$ and $\frac{1}{10 n} \delta^{-1} W$. It suffices to prove the lemma for each Q. Since the side length of Q is at most $\frac{1}{10 n} \delta^{-1} W$ and the angle between one of the coordinate axes and $l_{j, a}$ is at most δ, we can cover any tube $T_{j, a, W}$ in Q with an axis parallel tube $\widetilde{T}_{j, a, 2 W}$ in Q (see figure 2.2), i.e., $T_{j, a, W}(x) \leq$ $\widetilde{T}_{j, a, 2 W}(x)$ for all $x \in Q$. This implies

Figure 2.2: Covering an almost axis parallel tube with an axis parallel tube in \mathbb{R}^{2}. This can also be interpreted as a projection from higher dimensions.

$$
\int_{Q} \prod_{j=1}^{n} f_{j, W}(x)^{\frac{1}{n-1}} \mathrm{~d} x=\int_{Q} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j, Q}} T_{j, a, W}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq \int_{Q} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j, Q}} \widetilde{T}_{j, a, 2 W}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x
$$

where $N_{j, Q}$ is the number of tubes $T_{j, a, W}$ that intersect Q. Now since the tubes $\widetilde{T}_{j, a, 2 W}$ are axis parallel, we can use the Loomis-Whitney inequality as in section 2.3 to get

$$
\begin{aligned}
\int_{Q} \prod_{j=1}^{n} \sum_{a=1}^{N_{j, Q}}\left(\widetilde{T}_{j, a, 2 W}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & \leq \prod_{j=1}^{n}\left\|\sum_{a=1}^{N_{j, Q}} \widetilde{T}_{j, a, 2 W}(x)\right\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}^{\frac{1}{n-1}} \\
& =\left|B_{\circ}^{n-1}(0,2 W)\right|^{\frac{n}{n-1}} \prod_{j=1}^{n} N_{j, Q}^{\frac{1}{n-1}} \\
& =C_{n}\left(W^{n-1}\right)^{\frac{n}{n-1}} \prod_{j=1}^{n} N_{j, Q}^{\frac{1}{n-1}}=C_{n} W^{n} \prod_{j=1}^{n} N_{j, Q}^{\frac{1}{n-1}} .
\end{aligned}
$$

Since the side length of Q is at most $\frac{1}{10 n} \delta^{-1} W$, it follows that the diameter of Q is at most $\frac{1}{10 \sqrt{n}} \delta^{-1} W$. Thus if $T_{j, a, W}$ intersects Q, then $T_{j, a, \delta^{-1} W}$ is identically 1 in Q and therefore

$$
N_{j, Q} \leq \sum_{a=1}^{N_{j}} T_{j, a, \delta^{-1} W}(x), \quad \text { for } x \in Q,
$$

which implies that

$$
\begin{aligned}
C_{n} W^{n} \prod_{j=1}^{n} N_{j, Q}^{\frac{1}{n-1}} & \leq C_{n} W^{n} f_{Q} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a, \delta^{-1} W}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& \leq \frac{C_{n} W^{n}}{\left(\frac{1}{20 n} \delta^{-1} W\right)^{n}} \int_{Q} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a, \delta^{-1} W}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& =C_{n}^{\prime} \delta^{n} \int_{Q} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a, \delta^{-1} W}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& =C_{n}^{\prime} \delta^{n} \int_{Q} \prod_{j=1}^{n} f_{j, \delta-1}(x)^{\frac{1}{n-1}} \mathrm{~d} x .
\end{aligned}
$$

Now we are ready for the proof of theorem 2.3.

Proof of theorem 2.3. Suppose first that $S=\delta^{-M}$, where $M \in \mathbb{N}_{+}$. Using lemma 2.11 repeatedly we get

$$
\begin{aligned}
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}\right)^{\frac{1}{n-1}} & =\int_{Q_{S}} \prod_{j=1}^{n} f_{j, 1}^{\frac{1}{n-1}} \leq C_{n} \delta^{n} \int_{Q_{S}} \prod_{j=1}^{n} f_{j, \delta}^{\frac{1}{n-1}} \\
& \leq C_{n}^{2} \delta^{2 n} \int_{Q_{S}} \prod_{j=1}^{n} f_{j, \delta-2}^{\frac{1}{n-1}} \leq \cdots \\
& \leq C_{n}^{M} \delta^{M n} \int_{Q_{S}} \prod_{j=1}^{n} f_{j, \delta-M}^{\frac{1}{n-1}}=C_{n}^{M} f_{Q_{S}} \prod_{j=1}^{n} f_{j, \delta-M}^{\frac{1}{n-1}}
\end{aligned}
$$

Since $f_{j, \delta^{-M}} \leq N_{j}$, we know that

$$
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}\right)^{\frac{1}{n-1}} \leq C_{n}^{M} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
$$

To control the C_{n}^{M} term, we calculate

$$
S=\delta^{-M} \Leftrightarrow \ln S=M \ln \delta^{-1} \Leftrightarrow M=\frac{\ln S}{\ln \delta^{-1}}
$$

and therefore

$$
C_{n}^{M}=e^{\ln \left(C_{n}^{M}\right)}=e^{M \ln C_{n}}=\left(e^{\ln S}\right)^{\frac{\ln C_{n}}{\ln \delta^{-1}}}=S^{\frac{\ln C_{n}}{\ln \delta^{-1}}} .
$$

We choose a small enough $\delta=\delta(\varepsilon)$ so that $\frac{\ln C_{n}}{\ln \delta^{-1}} \leq \varepsilon$. For $S=\delta^{-M}$, we have now proven that

$$
\int_{Q S} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
$$

For an arbitrary $S \geq 1$, we chose an integer $M \geq 0$ such that $\delta^{-M} \leq S \leq \delta^{-M-1}$ and cover Q_{S} with cubes Q_{δ} of side length δ^{-M}. Denote set of cubes Q_{δ} by F_{Q}. Since $\# F_{Q} \leq\left(\delta^{-1}\right)^{n} \lesssim \varepsilon 1$, we get

$$
\begin{aligned}
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & \leq \sum_{Q_{\delta} \in F_{Q}} \int_{Q_{\delta}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& \leq \sum_{Q_{\delta} \in F_{Q}}\left(\delta^{-M}\right)^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}} \lesssim_{\varepsilon} S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
\end{aligned}
$$

2.5 Some generalizations

We make two minor generalizations of theorem 2.1. One argument adds weights on each tube and the other generalizes the angle restriction. We also present a result that we are going to use in chapter 3. This third result follows directly from the first two corollaries.

Corollary 2.12. Let $Q_{S}, l_{j, a}$ and $T_{j, a}$ be as in theorem 2.1. Suppose also that $w_{j, a} \geq 0$ are numbers. Define

$$
f_{j}(x):=\sum_{a=1}^{N_{j}} w_{j, a} T_{j, a}(x) .
$$

Then for any $\varepsilon>0$ and any $S \geq 1$, we have

$$
\int_{Q_{S}} \prod_{j=1}^{n} f_{j}(x)^{\frac{1}{n-1}} \mathrm{~d} x \lesssim_{\varepsilon} S^{\varepsilon} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} w_{j, a}\right)^{\frac{1}{n-1}}
$$

Proof. Since the tubes in theorem 2.1 do not have to be distinct, we have the result for positive integer weights by including tubes multiple times. For rational weights, we scale the theorem in the following way. Consider weights $w_{j, a}=\frac{m_{j, a}}{k_{j, a}}$, where $k_{j, a}, m_{j, a} \in \mathbb{N}_{+}$for each $a=\left\{1, \ldots, N_{j}\right\}$ and $j=\{1, \ldots, n\}$. Since the theorem holds for integer weights, we know that

$$
\begin{aligned}
\int_{Q_{S}} \prod_{j=1}^{n}\left(\left(m_{j, 1} \prod_{i \neq 1} k_{j, i}\right) T_{j, 1}(x)+\ldots\right. & \left.+\left(m_{j, N_{j}} \prod_{i \neq N_{j}} k_{j, i}\right) T_{j, N_{j}}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& \lesssim_{\varepsilon} S^{\varepsilon} \prod_{j=1}^{n}\left(m_{j, 1} \prod_{i \neq 1} k_{j, i}+\cdots+m_{j, N_{j}} \prod_{i \neq N_{j}} k_{j, i}\right)^{\frac{1}{n-1}} .
\end{aligned}
$$

Now dividing both sides by $\prod_{j=1}^{n} \prod_{i=1}^{N_{j}} k_{j, i}^{\frac{1}{n-1}}$, we get the result for rational weights. Since both sides are continuous with respect to the weights and the rationals are a dense subset of \mathbb{R}, the result follows for non-negative real weights.

This next corollary gives us a more general condition for the angle of the lines.
Corollary 2.13. Let $l_{j, a}, T_{j, a}$ and Q_{S} be as in theorem 2.1. Let $S_{j} \subset \mathbb{S}^{n-1}$ and suppose that $l_{j, a} \in S_{j}$. Suppose that for any vectors $v_{j} \in S_{j}$, we have $\left|\operatorname{det}\left(\left[v_{1}, \ldots, v_{n}\right]\right)\right| \geq \nu$, where
$0<\nu<1$. Then for any $\varepsilon>0$ and any $S \geq 1$, we have

$$
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \lesssim_{\varepsilon, \nu} S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}} .
$$

Proof. This result follows from theorem 2.3 with a similar argument to the one in section 2.2. We cover S_{j} with caps $S_{j, \beta}$ of small radius $\rho>0$. We can choose that the number of caps is $\lesssim_{\varepsilon, \nu} 1$. We pick a sequence of caps $S_{1, \beta_{1}}, \ldots, S_{n, \beta_{n}}$ and change coordinates so that the center $v_{j, \beta_{j}}$ of $S_{j, \beta_{j}}$ is mapped to the standard basis vector e_{j} for each $j=\{1, \ldots, n\}$.

Define M and L similarly as in section 2.2. First we show that $\|M\|_{o p} \leq \sqrt{n}$. For $x=\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} e_{i}$, applying the Cauchy-Schwarz inequality we have

$$
|M x|=\left|\sum_{i=1}^{n} x_{i} M e_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|M e_{i}\right|=\sum_{i=1}^{n}\left|x_{i}\right| \cdot 1 \leq|x|\left(\sum_{i=1}^{n} 1^{2}\right)^{\frac{1}{2}}=\sqrt{n}|x| .
$$

Thus $\|M\|_{o p} \leq \sqrt{n}$.
By the singular value decomposition we can write $M=U \Sigma V^{\top}$ and $L=V \Sigma^{-1} U^{\top}$, where U and V are orthogonal matrices and Σ is a diagonal matrix that has entries $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, where $\sigma_{j}>0$ for each $j \in\{1, \ldots, n\}$. Since for an orthogonal matrix O we can compute

$$
|O v|=\sqrt{v^{\top} O^{\top} O v}=\sqrt{v^{\top} v}=|v|, \quad \text { for all } v \in \mathbb{R}^{n}
$$

we get

$$
\begin{aligned}
\sup _{x \neq 0} \frac{|M x|}{|x|}=\sup _{x \neq 0} \frac{\left|U \Sigma V^{\top} x\right|}{|x|} & =\sup _{x \neq 0} \frac{\left|\Sigma V^{\top} x\right|}{|x|} \\
=\sup _{y \neq 0} \frac{|\Sigma y|}{|V y|} & =\sup _{y \neq 0} \frac{|\Sigma y|}{|y|} \\
& =\sup _{z=1}|\Sigma z|
\end{aligned}=\max \left\{\sigma_{j}: j \in\{1, \ldots, n\}\right\}
$$

and similarly

$$
\|L\|_{o p}=\max \left\{\frac{1}{\sigma_{j}}: j \in\{1, \ldots, n\}\right\}
$$

We can also compute

$$
|\operatorname{det}(M)|=\left|\operatorname{det}(U) \operatorname{det}(\Sigma) \operatorname{det}\left(V^{\top}\right)\right|=|\operatorname{det}(\Sigma)|=\sigma_{1} \cdots \sigma_{n}
$$

Since $\|M\|_{o p} \leq \sqrt{n}$, we have that $\sigma_{j} \leq \sqrt{n}$ for each $j \in\{1, \ldots, n\}$. Thus for every $j \in\{1, \ldots, n\}$, we have

$$
\begin{gathered}
\nu \leq|\operatorname{det}(M)|=\sigma_{1} \cdots \sigma_{n} \leq n^{\frac{n-1}{2}} \sigma_{j} \\
\Rightarrow \frac{1}{\sigma_{j}} \leq \nu^{-1} n^{\frac{n-1}{2}}
\end{gathered}
$$

Hence,

$$
\|L\|_{o p}=\max \left\{\frac{1}{\sigma_{j}}: j \in\{1, \ldots, n\}\right\} \lesssim \nu^{-1}
$$

We have now shown that $\|L\|_{o p} \lesssim \nu^{-1}$. If we choose $\rho \leq n^{-\frac{n-1}{2}} \nu \delta$, then the image of $S_{j, \beta}$ in the new coordinates is contained in a cap of radius δ as in theorem 2.3. Now summing over different choices of caps $S_{1, \beta_{1}}, \ldots, S_{n, \beta_{n}}$ and applying theorem 2.3, we get the desired result

$$
\int_{Q_{S}} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \lesssim_{\varepsilon, \nu} S^{\varepsilon} \prod_{j=1}^{n} N_{j}^{\frac{1}{n-1}}
$$

Remark 2.14. Notice that the same proof can be done with rectangular 1-tubes, i.e.,

$$
T_{j, a}(x)=\mathbb{1}\left\{x \in \mathbb{R}^{n}: d_{\max }\left(l_{j, a}, x\right) \leq 1\right\},
$$

where $d_{\max }\left(l_{j, a}, x\right)=\inf \left\{\max _{j}\left|x_{j}-y_{j}\right|: y \in l_{j, a}\right\}$. In the proof of the next corollary we will use this definition of $T_{j, a}{ }^{j}$.
Corollary 2.15. Let $R \in 2^{\mathbb{N}_{+}}, c \sim 1, \varepsilon>0$ and $0<\nu<1$. Consider n families \mathcal{P}_{j} of rectangular tiles P in \mathbb{R}^{n} having the following properties.

1. Each P has $n-1$ side lengths equal to \sqrt{R} and one side length equal to R which points in the direction of the unit vector v_{P}.
2. For each $P_{i} \in \mathcal{P}_{i}$, we have $\left|\operatorname{det}\left(\left[v_{P_{1}}, \ldots, v_{P_{n}}\right]\right)\right| \geq \nu$.
3. All tiles are subsets of a fixed cube $B_{c R}$ that has a side length of $c R$.

Then we have

$$
f_{B_{c R}}\left(\prod_{j=1}^{n} F_{j}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \lesssim \nu, \varepsilon R^{\varepsilon} \prod_{j=1}^{n}\left(f_{B_{c R}} F_{j}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x
$$

for all functions F_{j} of the form

$$
F_{j}(x)=\sum_{P \in \mathcal{P}_{j}} c_{P} \mathbb{1}_{P}(x), \quad c_{P} \geq 0
$$

Proof. We can cover each tile P with $(\sqrt{R})^{n-1}$ essentially disjoint tubes $T_{j, a}$ that are parallel to the longest side of the tile. The weights of the tubes are chosen so that the tubes that are covering a tile have the same weight as the tile. This means that there are $R^{\frac{n-1}{2}}$ tubes $T_{j, a}$ with weight $w_{j, a}=c_{P}$.

Now applying the previous corollaries, we have

$$
\begin{aligned}
\int_{B_{c R}}\left(\prod_{j=1}^{n} \sum_{P \in \mathcal{P}_{j}} c_{P} \mathbb{1}_{P}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & \leq \int_{B_{c R}}\left(\prod_{j=1}^{n} \sum_{a=1}^{N_{j}} w_{j, a} T_{j, a}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& \lesssim_{\nu, \varepsilon} R^{\varepsilon} \prod_{j=1}^{n}\left(\sum_{a=1}^{N_{j}} w_{j, a}\right)^{\frac{1}{n-1}} \\
& =R^{\varepsilon} \prod_{j=1}^{n}\left(R^{\frac{n-1}{2}} \sum_{P \in \mathcal{P}_{j}} c_{P}\right)^{\frac{1}{n-1}} \\
& =R^{\varepsilon} \prod_{j=1}^{n}\left(R^{-1} \sum_{P \in \mathcal{P}_{j}} R^{\frac{n+1}{2}} c_{P}\right)^{\frac{1}{n-1}} \\
& =R^{\varepsilon} R^{-\frac{n}{n-1}} \prod_{j=1}^{n}\left(\sum_{P \in \mathcal{P}_{j}} m_{n}(P) c_{P}\right)^{\frac{1}{n-1}} \\
& =R^{\varepsilon} R^{-\frac{n}{n-1}} \prod_{j=1}^{n}\left(\int_{B_{c R}} \sum_{P \in \mathcal{P}_{j}} c_{P} \mathbb{1}_{P}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} .
\end{aligned}
$$

Multiplying both sides with $m_{n}\left(B_{c R}\right)^{-1}$, we get

$$
\begin{aligned}
f_{B_{c R}}\left(\prod_{j=1}^{n} F_{j}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & \lesssim_{\nu, \varepsilon} R^{\varepsilon} R^{-\frac{n}{n-1}} \frac{1}{m_{n}\left(B_{c R}\right)} \prod_{j=1}^{n}\left(\int_{B_{c R}} \sum_{P \in \mathcal{P}_{j}} c_{P} \mathbb{1}_{P}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} \\
& =R^{\varepsilon} R^{-\frac{n}{n-1}} m_{n}\left(B_{c R}\right)^{\frac{1}{n-1}} \prod_{j=1}^{n}\left(f_{B_{c R}} \sum_{P \in \mathcal{P}_{j}} c_{P} \mathbb{1}_{P}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} \\
& \sim R^{\varepsilon} R^{-\frac{n}{n-1}} R^{\frac{n}{n-1}} \prod_{j=1}^{n}\left(f_{B_{c R}} F_{j}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} \\
& =R^{\varepsilon} \prod_{j=1}^{n}\left(f_{B_{c R}} F_{j}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} .
\end{aligned}
$$

In the first equality we used

$$
a \prod_{j=1}^{n} b^{\frac{1}{n-1}}=\prod_{j=1}^{n}\left(a^{\frac{n-1}{n}} b\right)^{\frac{1}{n-1}}=\prod_{j=1}^{n}\left(a^{\frac{-1}{n}} a b\right)^{\frac{1}{n-1}}=a^{\frac{-1}{(n-1)}} \prod_{j=1}^{n}(a b)^{\frac{1}{n-1}}
$$

with $a=\frac{1}{m_{n}\left(B_{c R}\right)}$ and $b=\int_{B_{c R}} \sum_{P \in \mathcal{P}_{j}} c_{P} \mathbb{1}_{P}(x) \mathrm{d} x$.

Chapter 3

Multilinear decoupling device

The main objective of this chapter is theorem 3.15, which we call cube inflation. This result is a multilinear estimate that can be used to create multilinear decouplings. In the first section we study the extension operator E_{Q} and particular weight functions $w_{B, E}$ that will be central in the rest of the thesis. The second section, where we prove theorem 3.15 , follows the ninth chapter from [5]. The strategy for proving theorem 3.15 will rely on dyadic pigeonholing and the multilinear Kakeya inequality. As seen in the tenth chapter of [5] and in more detail in the seventh and eight chapter of [14] this multilinear estimate can be paired with $l^{2} L^{2}$ decoupling to create a partial decoupling that is used to estimate a certain decoupling constant.

3.1 Extension operator for the paraboloid and weight functions

Before we can dive into multilinear decouplings, we must first look at a few definitions that are essential for the l^{2} decoupling theorem. Let \mathbb{P}^{n-1} be a paraboloid in \mathbb{R}^{n} that is defined

$$
\mathbb{P}^{n-1}:=\left\{\left(\xi,|\xi|^{2}\right): \xi \in[0,1]^{n-1}\right\} .
$$

Notice that now $\pi_{n}\left[\mathbb{P}^{n-1}\right]=[0,1]^{n-1}$.
Definition 3.1. Let $0<\nu<1$. Cubes $Q_{1}, \ldots, Q_{n} \subset[0,1]^{n-1}$ are called ν-transverse, if the n-dimensional parallelepiped, that is spanned by unit normal vectors $n\left(P_{i}\right)$, has volume greater than ν, for each $P_{i} \in \mathbb{P}^{n-1}$ with $\pi_{n}\left(P_{i}\right) \in Q_{i}$.

In this chapter the above definition works as way to check the determinant condition of the multilinear Kakeya inequality from corollary 2.15. If cubes Q_{1}, \ldots, Q_{n} are ν -
transverse, then tiles that have long sides pointing in the direction of the unit normal vectors $n\left(P_{i}\right)$ satisfy the second condition from corollary 2.15 .

Inspired by the ν-transverse definition, we will now calculate the unit normal vectors of \mathbb{P}^{n-1}. The surface \mathbb{P}^{n-1} is parametrized by the zeros of the function $F(\xi, z)=z-|\xi|^{2}$, where $\xi \in \mathbb{R}^{n-1}$ and $z \in \mathbb{R}$. Now the gradient of F gives us the upward unit normal vectors

$$
n\left(P_{i}\right)=\frac{\nabla F}{|\nabla F|}=\frac{\left(-2 \xi_{1}, \ldots,-2 \xi_{n-1}, 1\right)}{\sqrt{\sum_{j=1}^{n}\left(-2 \xi_{j}\right)^{2}+1}}=\frac{\left(-2 \xi_{1}, \ldots,-2 \xi_{n-1}, 1\right)}{\sqrt{4|\xi|^{2}+1}}
$$

Next we will present and study the extension operator and the weight functions. Recall that $e(t)=e^{2 \pi i t}$, where $t \in \mathbb{R}$.

Definition 3.2. Let $Q \subset[0,1]^{n-1}$ be a cube and $g: Q \rightarrow \mathbb{C}$. We also stipulate that $g \in L^{1}(Q)$. Now we define

$$
E_{Q} g(x)=\int_{Q} g(\xi) e\left(x_{1} \xi_{1}+\cdots+x_{n-1} \xi_{n-1}+|\xi|^{2} x_{n}\right) \mathrm{d} \xi
$$

From the integrability condition of g we immediately get that $E_{Q} g \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Indeed, $\left|E_{Q} g(x)\right| \leq\|g\|_{L^{1}(Q)}<\infty$.

Definition 3.3. Let B be a cube in \mathbb{R}^{n} centered at c_{B} and with side length R. The associated weight function for B is defined

$$
w_{B, E}(x)=\frac{1}{\left(1+\frac{\left|x-c_{B}\right|}{R}\right)^{E}},
$$

where $x \in \mathbb{R}^{n}$ and $E \in \mathbb{R}$.
The exponent E is chosen so that $w_{B, E}$ satisfies various integrability conditions and it turns out that those conditions are fulfilled with $E \geq 100 n$ and we will assume this inequality for the rest of the thesis (we might also at times explicitly assume smaller lower bounds). The implicit constants will often harmlessly depend on E. As E is a fixed number, we will write \lesssim_{E} as \lesssim for the rest of the thesis. Also in this chapter we will write $w_{B, E}=w_{B}$.
Remark 3.4. If $x \in B$, then $w_{B}(x) \sim 1$. Indeed, if $x \in B$, then $\left|x-c_{B}\right| \leq \sqrt{n} \frac{R}{2} \sim R$. Hence

$$
w_{B}(x)=\left(1+\frac{\left|x-c_{B}\right|}{R}\right)^{-E} \gtrsim 2^{-E} \sim 1
$$

and it always holds that $w_{B}(x) \leq 1$.

We recall the notations

$$
\begin{aligned}
& \|f\|_{L_{\sharp}^{p}(B)}=\left(\frac{1}{m_{n}(B)} \int_{B}|f(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}, \\
& \|f\|_{L^{p}\left(w_{B}\right)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w_{B}(x) \mathrm{d} x\right)^{\frac{1}{p}}
\end{aligned}
$$

and

$$
\|f\|_{L_{\sharp}^{p}\left(w_{B}\right)}=\left(\frac{1}{m_{n}(B)} \int_{\mathbb{R}^{n}}|f(x)|^{p} w_{B}(x) \mathrm{d} x\right)^{\frac{1}{p}} .
$$

Since $E_{Q} g$ is essentially bounded, we have $\left\|E_{Q} g\right\|_{L_{\sharp}^{p}(B)}<\infty$. Using the following lemma one can easily prove that $\left\|E_{Q} g\right\|_{L^{p}\left(w_{B}\right)}$ and $\left\|E_{Q} g\right\|_{L_{\sharp}^{p}\left(w_{B}\right)}$ are also finite.
Lemma 3.5. Let $E>n$. For all cubes $B=B\left(c_{B}, R\right)$ in \mathbb{R}^{n}, we have

$$
\int_{\mathbb{R}^{n}} w_{B}(x) \mathrm{d} x \sim R^{n} .
$$

Proof. We can write

$$
\int_{\mathbb{R}^{n}} w_{B}(x) \mathrm{d} x=\int_{\left|x-c_{B}\right| \leq R} w_{B}(x) \mathrm{d} x+\sum_{k=1}^{\infty} \int_{2^{k-1} R<\left|x-c_{B}\right| \leq 2^{k} R} w_{B}(x) \mathrm{d} x .
$$

We will treat the cases separately. Now

$$
\int_{\left|x-c_{B}\right| \leq R} w_{B}(x) \mathrm{d} x \leq \int_{\left|x-c_{B}\right| \leq R} 1 \mathrm{~d} x \sim R^{n}
$$

and for every $k \in \mathbb{N}_{+}$, we have

$$
\begin{aligned}
\int_{2^{k-1} R<\left|x-c_{B}\right| \leq 2^{k} R} w_{B}(x) \mathrm{d} x & =\int_{2^{k-1}<\left|x-c_{B}\right| \leq 2^{k} R} \frac{1}{\left(1+\frac{\left|x-c_{B}\right|}{R}\right)^{E}} \mathrm{~d} x \\
& \leq \frac{1}{\left(1+2^{k-1}\right)^{E}} \int_{\left|x-c_{B}\right| \leq 2^{k} R} 1 \mathrm{~d} x \\
& \leq \frac{1}{\left(2^{k-1}\right)^{E}} \int_{\left|x-c_{B}\right| \leq 2^{k} R} 1 \mathrm{~d} x \\
& \sim \frac{1}{2^{k E}} \int_{\left|x-c_{B}\right| \leq 2^{k} R} 1 \mathrm{~d} x \\
& \sim \frac{2^{k n}}{2^{k E}} R^{n}=2^{k(n-E)} R^{n} .
\end{aligned}
$$

We have now shown that

$$
\int_{\mathbb{R}^{n}} w_{B}(x) \mathrm{d} x \lesssim R^{n}\left(1+\sum_{k=1}^{\infty} 2^{k(n-E)}\right) \sim R^{n}
$$

The other direction is a straightforward calculation

$$
R^{n} \sim 2^{-E} R^{n} \sim \int_{\left|x-c_{B}\right| \leq R} 2^{-E} \mathrm{~d} x \leq \int_{\left|x-c_{B}\right| \leq R}\left(1+\frac{\left|x-c_{B}\right|}{R}\right)^{-E} \mathrm{~d} x \leq \int_{\mathbb{R}^{n}} w_{B}(x) \mathrm{d} x .
$$

Integration of a weight function over an integration domain that is restricted to a dilated cube can be estimated with another weight function.

Lemma 3.6. Let $c_{n} \sim 1$ and $S \geq R>0$. For all cubes $B^{\prime}=B^{\prime}\left(c_{B^{\prime}}, S\right)$ in \mathbb{R}^{n} we have

$$
R^{-n} \int_{c_{n} B^{\prime}} w_{B(u, R)}(x) \mathrm{d} x \lesssim w_{B^{\prime}}(u),
$$

for all $u \in \mathbb{R}^{n}$.
Proof. If $\left|c_{B^{\prime}}-u\right| \leq \sqrt{n} c_{n} S$, then $w_{B^{\prime}}(u)=\left(1+\frac{\left|c_{B^{\prime}}-u\right|}{S}\right)^{-E} \geq\left(1+\sqrt{n} c_{n}\right)^{-E} \sim 1$. Now lemma 3.5 gives

$$
R^{-n} \int_{c_{n} B^{\prime}} w_{B(u, R)}(x) \mathrm{d} x \leq R^{-n} \int_{\mathbb{R}^{n}} w_{B(u, R)}(x) \mathrm{d} x \sim 1 \lesssim w_{B^{\prime}}(u)
$$

as wanted.
If $\left|c_{B^{\prime}}-u\right|>\sqrt{n} c_{n} S$, then we write

$$
\begin{align*}
R^{-n} \int_{c_{n} B^{\prime}} w_{B(u, R)}(x) \mathrm{d} x & =R^{-n} \int_{B\left(c_{B^{\prime}}, c_{n} S\right)}\left(1+\frac{|x-u|}{R}\right)^{-E} \mathrm{~d} x \\
& =R^{-n} \int_{B\left(0, c_{n} S\right)}\left(1+\frac{\left|y+c_{B^{\prime}}-u\right|}{R}\right)^{-E} \mathrm{~d} y . \tag{3.7}
\end{align*}
$$

Since $|y| \leq \sqrt{n} \frac{c_{n}}{2} S \leq \sqrt{n} c_{n} S<\left|c_{B^{\prime}}-u\right|$, we have

$$
\frac{\left|y+c_{B^{\prime}}-u\right|}{R} \leq \frac{\left(\left|c_{B^{\prime}}-u\right|+|y|\right)}{R} \leq 2 \frac{\left|c_{B^{\prime}}-u\right|}{R}
$$

and since $\frac{1}{2}\left|c_{B^{\prime}}-u\right|>\sqrt{n} \frac{c_{n}}{2} S \geq|y|$, we have

$$
\frac{\left|y+c_{B^{\prime}}-u\right|}{R} \geq \frac{\left(\left|c_{B^{\prime}}-u\right|-|y|\right)}{R} \geq \frac{1}{2} \frac{\left|c_{B^{\prime}}-u\right|}{R} .
$$

We have shown

$$
\frac{\left|x+c_{B^{\prime}}-u\right|}{R} \sim \frac{\left|c_{B^{\prime}}-u\right|}{R},
$$

which implies

$$
\frac{\left|x+c_{B^{\prime}}-u\right|}{R}+1 \sim \frac{\left|c_{B^{\prime}}-u\right|}{R}+1 .
$$

Furthermore, since $\frac{\left|c_{B^{\prime}}-u\right|}{R}>\sqrt{n} c_{n} \frac{S}{R} \gtrsim 1$, we have

$$
\frac{\left|c_{B^{\prime}}-u\right|}{R}+1 \sim \frac{\left|c_{B^{\prime}}-u\right|}{R} .
$$

Now we get

$$
\left(1+\frac{\left|x+c_{B^{\prime}}-u\right|}{R}\right)^{-E} \sim\left(1+\frac{\left|c_{B^{\prime}}-u\right|}{R}\right)^{-E} \sim\left(\frac{\left|c_{B^{\prime}}-u\right|}{R}\right)^{-E}
$$

and for the integral

$$
\begin{aligned}
R^{-n} \int_{B\left(0, c_{n} S\right)}\left(1+\frac{\left|x+c_{B^{\prime}}-u\right|}{R}\right)^{-E} \mathrm{~d} x & \sim R^{-n}\left(\frac{\left|c_{B^{\prime}}-u\right|}{R}\right)^{-E} \int_{B\left(0, c_{n} S\right)} \mathrm{d} x \\
& \sim R^{E-n} S^{n}\left|c_{B^{\prime}}-u\right|^{-E} \\
& \leq S^{E}\left|c_{B^{\prime}}-u\right|^{-E} \\
& =\left(\frac{\left|c_{B^{\prime}}-u\right|}{S}\right)^{-E} \sim w_{B^{\prime}}(u) .
\end{aligned}
$$

Combining the above estimate with (3.7) gives us the result.
Lemma 3.8. Let $B=B\left(c_{B}, R\right)$. If $y \in B(x, R)$, then $w_{B}(y) \sim w_{B}(x)$.
Proof. By symmetry, it suffices to show that $w_{B}(y) \lesssim w_{B}(x)$.
Since $y \in B(x, R)$, we have

$$
\begin{aligned}
w_{B}(x) & =\left(1+\frac{\left|x-c_{B}\right|}{R}\right)^{-E} \\
& \geq\left(1+\frac{|x-y|}{R}+\frac{\left|y-c_{B}\right|}{R}\right)^{-E} \\
& \geq\left(2+\frac{\left|y-c_{B}\right|}{R}\right)^{-E} \\
& \sim\left(1+\frac{\left|y-c_{B}\right|}{R}\right)^{-E}=w_{B}(y) .
\end{aligned}
$$

The proofs for both of the inequalities in the following lemma can be found in [14] lemma 4.2.1. We will give a slightly different approach to the first inequality.

Lemma 3.9. Let $B=B\left(c_{B}, R\right)$ be a cube in \mathbb{R}^{n}. Let \mathcal{B} be an essential partition of \mathbb{R}^{n} with cubes $B^{\prime}=B^{\prime}\left(c_{B^{\prime}}, R\right)$. Then

$$
\begin{equation*}
w_{B}(x) \lesssim \sum_{B^{\prime} \in \mathcal{B}} \mathbb{1}_{B^{\prime}}(x) w_{B}\left(c_{B^{\prime}}\right) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{B^{\prime} \in \mathcal{B}} w_{B^{\prime}}(x) w_{B}\left(c_{B^{\prime}}\right) \lesssim w_{B}(x) . \tag{3.11}
\end{equation*}
$$

Proof. Let $x \in \mathbb{R}^{n}$. Since \mathcal{B} is an essential partition of \mathbb{R}^{n}, there exists $B_{x}^{\prime} \in \mathcal{B}$ such that $x \in B_{x}^{\prime}$. By lemma 3.8 we have

$$
w_{B}(x) \sim w_{B}\left(c_{B_{x}^{\prime}}\right) \leq \sum_{B^{\prime} \in \mathcal{B}} \mathbb{1}_{B^{\prime}}(x) w_{B}\left(c_{B^{\prime}}\right) .
$$

Lemma 3.12. Let $E>n$. Then

$$
\mathbb{1}_{B} \lesssim \sum_{\Delta \in \mathcal{B}} w_{\Delta} \lesssim w_{B},
$$

for all cubes $B=B(c, R)$ and all essential partitions \mathcal{B} of B with cubes Δ of side length R^{\prime}, where $0<R^{\prime} \leq R$.

Proof. Proof can be found in [14] lemmas 4.1.1. and 4.1.5.
A covering \mathcal{B} is finitely overlapping, if $\sum_{B \in \mathcal{B}} \mathbb{1}_{B} \lesssim 1$. Lemma 3.9 is also true for finitely overlapping covers \mathcal{B} and lemma 3.12 holds true when the cover is finitely overlapping and the cubes in the covering intersect with the original cube B. Working with essential partitions will only harmlessly restrict the side lengths of the partition cubes in future arguments.

Lastly, we estimate a single variable convolution of a one dimensional weight function and an n-dimensional weight function.

Lemma 3.13. Let $B:=B\left(c_{B}, R\right) \subset \mathbb{R}^{n}$ and $B^{1}(0, R) \subset \mathbb{R}^{1}$, then for $x \in \mathbb{R}^{n}$ we have

$$
R^{-1} \int_{\mathbb{R}} w_{B^{1}(0, R)}\left(x_{n}-y\right) w_{B}\left(\pi_{n}(x), y\right) \mathrm{d} y \lesssim w(x)
$$

Proof. Throughout the proof we will use

$$
\int_{\mathbb{R}}(1+|z|)^{-E} \mathrm{~d} z=\frac{2}{E-1} \sim 1 .
$$

We will first assume that c_{B} is the origin. Now it suffices to show that

$$
\begin{equation*}
R^{-1} \int_{\mathbb{R}}\left(1+\frac{\left|x_{n}-y\right|}{R}\right)^{-E}\left(1+\frac{\left|\left(\pi_{n}(x), y\right)\right|}{R}\right)^{-E}\left(1+\frac{|x|}{R}\right)^{E} \mathrm{~d} y \lesssim 1 . \tag{3.14}
\end{equation*}
$$

We denote $x_{R}:=\frac{x}{R}$ and change variables twice $z=\frac{y}{R}$ and $z^{\prime}=\left(x_{R}\right)_{n}-z$ to get

$$
\begin{aligned}
R^{-1} \int_{\mathbb{R}}\left(1+\frac{\left|x_{n}-y\right|}{R}\right)^{-E} & \left(1+\frac{\left|\left(\pi_{n}(x), y\right)\right|}{R}\right)^{-E}\left(1+\frac{|x|}{R}\right)^{E} \mathrm{~d} y \\
& =\int_{\mathbb{R}}\left(1+\left|\left(x_{R}\right)_{n}-z\right|\right)^{-E}\left(1+\left|\left(\pi_{n}\left(x_{R}\right), z\right)\right|\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \\
& \left.=\int_{\mathbb{R}}\left(1+\left|z^{\prime}\right|\right)^{-E}\left(1+\mid x_{R}-z_{n}^{\prime}\right) \mid\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z^{\prime}
\end{aligned}
$$

where $z_{n}^{\prime}:=\left(0, \ldots, 0, z^{\prime}\right) \subset \mathbb{R}^{n}$. If $\left|x_{R}\right| \leq 1$, then

$$
\left.\int_{\mathbb{R}}\left(1+\left|z^{\prime}\right|\right)^{-E}\left(1+\mid x_{R}-z_{n}^{\prime}\right) \mid\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z^{\prime} \leq 2^{E} \int_{\mathbb{R}}\left(1+\left|z^{\prime}\right|\right)^{-E} \mathrm{~d} z^{\prime} \sim 1
$$

and (3.14) follows. We can now assume that $\left|x_{R}\right|>1$ and write

$$
\int_{\mathbb{R}}=\int_{\left|x_{R}-z_{n}^{\prime}\right|>\frac{\left|x_{R}\right|}{2}}+\int_{\left.\left|x_{R}-z_{n}^{\prime}\right| \leq \frac{\left|x_{R}\right|}{2} \right\rvert\,}
$$

We can straightforwardly estimate the first integral

$$
\begin{aligned}
I_{1} & \left.: \left.=\int_{\left|x_{R}-z_{n}^{\prime}\right|>\frac{\left|x_{R}\right|}{2}}\left(1+\left|z^{\prime}\right|\right)^{-E}\left(1+\mid x_{R}-z_{n}^{\prime}\right) \right\rvert\,\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z^{\prime} \\
& \leq \frac{\left(1+\left|x_{R}\right|\right)^{E}}{\left(1+\frac{\left|x_{R}\right|}{2}\right)^{E}} \int_{\left|x_{R}-z_{n}^{\prime}\right|>\frac{\left|x_{R}\right|}{2}}\left(1+\left|z^{\prime}\right|\right)^{-E} \mathrm{~d} z^{\prime} \\
& \leq 2^{-E} \int_{\mathbb{R}}\left(1+\left|z^{\prime}\right|\right)^{-E} \mathrm{~d} z^{\prime} \sim 1 .
\end{aligned}
$$

For the second integral we have $\left|x_{R}-z_{n}^{\prime}\right| \leq \frac{\left|x_{R}\right|}{2}$ and thus

$$
\left|z^{\prime}\right| \geq\left|x_{R}\right|-\left|x_{R}-z_{n}^{\prime}\right| \geq \frac{\left|x_{R}\right|}{2}
$$

Now we get

$$
\begin{aligned}
I_{2} & \left.: \left.=\int_{\left|x_{R}-z_{n}^{\prime}\right| \leq \frac{\left|x_{R}\right|}{2}}\left(1+\left|z^{\prime}\right|\right)^{-E}\left(1+\mid x_{R}-z_{n}^{\prime}\right) \right\rvert\,\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z^{\prime} \\
& \left.\left.\leq \frac{\left(1+\left|x_{R}\right|\right)^{E}}{\left(1+\frac{\left|x_{R}\right|}{2}\right)^{E}} \int_{\mathbb{R}}\left(1+\mid x_{R}-z_{n}^{\prime}\right) \right\rvert\,\right)^{-E} \mathrm{~d} z^{\prime} \\
& \left.\leq 2^{-E} \int_{\mathbb{R}}\left(1+\mid\left(x_{R}\right)_{n}-z^{\prime}\right) \mid\right)^{-E} \mathrm{~d} z^{\prime} \\
& \left.=2^{-E} \int_{\mathbb{R}}(1+\mid z) \mid\right)^{-E} \mathrm{~d} z \sim 1
\end{aligned}
$$

We have now proven that for $\left|x_{R}\right|>1$ we have

$$
\left.\int_{\mathbb{R}}\left(1+\left|z^{\prime}\right|\right)^{-E}\left(1+\mid x_{R}-z_{n}^{\prime}\right) \mid\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z^{\prime}=I_{1}+I_{2} \lesssim 2 \sim 1
$$

and again (3.14) follows. This ends the proof for the case where c_{B} is the origin.
For the general case we change variables and apply the origin centered version

$$
\begin{aligned}
R^{-1} \int_{\mathbb{R}} w_{B^{1}(0, R)}\left(x_{n}-y\right) & w_{B}\left(\pi_{n}(x), y\right) \mathrm{d} y \\
& =R^{-1} \int_{\mathbb{R}} w_{B^{1}(0, R)}\left(x_{n}-y\right) w_{B(\overline{0}, R)}\left(\left(\pi_{n}(x), y\right)-c_{B}\right) \mathrm{d} y \\
& =R^{-1} \int_{\mathbb{R}} w_{B^{1}(0, R)}\left(x_{n}-\left(c_{B}\right)_{n}-y^{\prime}\right) w_{B(\overline{0}, R)}\left(\pi_{n}(x)-\pi_{n}\left(c_{B}\right), y^{\prime}\right) \mathrm{d} y^{\prime} \\
& \lesssim w_{B(\overline{0}, R)}\left(x-c_{B}\right)=w_{B}(x)
\end{aligned}
$$

3.2 Cube inflation

The multilinear Kakeya inequality is central in the proof of the following key result which gives us a tool to make decouplings. The result is not strictly speaking a decoupling since the cubes $Q_{i, 1}$ under the paraboloid \mathbb{P}^{n-1} are unaffected. However, the scale of the cubes associated to the weights increases from δ^{-1} to δ^{-2}. In many texts, see for example theorem 6.6 in [8], similar inequalities are referred to as ball inflation. Since we are dealing with cubes, it is sensible to call the following result cube inflation.

Theorem 3.15. Let $p \geq \frac{2 n}{n-1}, \varepsilon \in(0, \infty)$ and $\delta \in 2^{-\mathbb{N}_{+}}$. Consider ν-transverse cubes $Q_{1}, \ldots, Q_{n} \subset[0,1]^{n-1}$. Let B be an arbitrary cube with side length δ^{-2} and let \mathcal{B} be the unique partition of B into cubes of side length δ^{-1}, i.e., $\mathcal{B}=\operatorname{Part}_{\delta^{-1}}(B)$. Then for each $g \in L^{1}\left([0,1]^{n-1}\right)$ we have

$$
\left.\left.\begin{array}{rl}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod _ { i = 1 } ^ { n } \left(\sum_{Q_{i, 1} \in \operatorname{Part}_{\delta}\left(Q_{i}\right)}\left\|E_{Q_{i, 1}} g\right\|_{L_{\sharp}^{p(n-1)}}^{2}\left(w_{\Delta}\right)\right.\right.
\end{array}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} .
$$

We will begin with a lemma
Lemma 3.16. Consider the cubes $B=B\left(c_{B}, \delta^{-2}\right)$ and $Q=Q\left(c_{Q}, \delta\right)$. Furthermore, let \mathcal{T}_{Q} be a covering of B that consists of pairwise disjoint mutually parallel tiles $T_{Q} \subset 4 B$. They are rectangles with $n-1$ short sides of length δ^{-1} and one longer side of length δ^{-2}, pointing in the direction of the normal $n\left(c_{Q}\right)$ to the paraboloid \mathbb{P}^{n-1} at c_{Q}. Let $T_{Q}(x)$ be the tile containing x. Define also

$$
F_{Q}(x)=\sup _{y \in(1+\sqrt{n}) T_{Q}(x)}\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B}\left(y, \delta^{-1}\right)\right)}, \quad \text { for } \quad x \in \bigcup_{T_{Q} \in \mathcal{T}_{Q}} T_{Q} .
$$

Then we have

$$
\begin{equation*}
\left\|F_{Q}\right\|_{L_{\sharp}^{q}(4 B)}^{q} \lesssim\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B}\right)}^{q} . \tag{3.17}
\end{equation*}
$$

Proof. First we show that we may assume that $Q=\left[-\frac{\delta}{2}, \frac{\delta}{2}\right]^{n-1}=: Q_{0}$. We define

$$
L=\left[\begin{array}{cc}
\mathbb{I}_{n-1} & 2 \sigma \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

where $\mathbf{0}=(0, \ldots, 0) \in \mathbb{R}^{n-1}, \mathbb{I}_{n-1}$ is the unit matrix in $\mathbb{R}^{n-1 \times n-1}$ and $\sigma \in \mathbb{R}^{n-1}$ satisfies $Q=Q_{0}+\sigma$. We also notice that

$$
L u=\left(u_{1}+2 \sigma_{1} u_{n}, \ldots, u_{n-1}+2 \sigma_{n-1} u_{n}, u_{n}\right) .
$$

The inverse of L is

$$
L^{-1}=\left[\begin{array}{cc}
\mathbb{I}_{n-1} & -2 \sigma \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

and we have $|\operatorname{det} L|=1=\left|\operatorname{det} L^{-1}\right|$. Now we can compute

$$
\begin{aligned}
\left|E_{Q} g(u)\right| & =\left|\int_{Q} g(\xi) e\left(\left(\xi,|\xi|^{2}\right) \cdot u\right) \mathrm{d} \xi\right| \\
& =\left|\int_{Q_{0}} g(\xi+\sigma) e\left(\left(\xi+\sigma,|\xi+\sigma|^{2}\right) \cdot u\right) \mathrm{d} \xi\right| \\
& =\left|\int_{Q_{0}} g(\xi+\sigma) e\left((\xi+\sigma) \cdot \pi_{n}(u)+\left(|\xi|^{2}+2 \xi \cdot \sigma+|\sigma|^{2}\right) u_{n}\right) \mathrm{d} \xi\right| \\
& =\left|\int_{Q_{0}} g(\xi+\sigma) e\left(\left(\sigma,|\sigma|^{2}\right) \cdot u+\xi \cdot \pi_{n}(u)+2 \xi \cdot \sigma u_{n}+|\xi|^{2} u_{n}\right) \mathrm{d} \xi\right| \\
& =\left|\int_{Q_{0}} g(\xi+\sigma) e\left(\left(\sigma,|\sigma|^{2}\right) \cdot u+\xi \cdot\left(\pi_{n}(u)+2 \sigma u_{n}\right)+|\xi|^{2} u_{n}\right) \mathrm{d} \xi\right| \\
& =\left|e\left(\left(\sigma,|\sigma|^{2}\right) \cdot u\right) \int_{Q_{0}} g(\xi+\sigma) e\left(\left(\xi,|\xi|^{2}\right) \cdot L u\right) \mathrm{d} \xi\right| \\
& =\left|\int_{Q_{0}} g(\xi+\sigma) e\left(\left(\xi,|\xi|^{2}\right) \cdot L u\right) \mathrm{d} \xi\right|=\left|E_{Q_{0}} G(L u)\right|
\end{aligned}
$$

and hence

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|E_{Q} g(u)\right|^{q} w_{B\left(y, \delta^{-1}\right)}(u) \mathrm{d} u=\int_{\mathbb{R}^{n}}\left|E_{Q_{0}} G(v)\right|^{q} w_{B(y, \delta-1)}\left(L^{-1} v\right) \mathrm{d} v \tag{3.18}
\end{equation*}
$$

where $G(u):=g(u+\sigma)$.
For any $x \in \mathbb{R}^{n}$, we know that

$$
|L x|=\left|x+\left(2 x_{n} \sigma, 0\right)\right| \leq|x|+2\left|x_{n}\right||\sigma| \leq(1+2|\sigma|)|x| \leq 3 \sqrt{n-1}|x|
$$

and similarly $\left\|L^{-1}\right\|_{o p} \leq 3 \sqrt{n-1}$. Thus by lemma 1.2 , the operator L is bilipschitz and we have $\left|y-L^{-1} v\right| \sim\left|L\left(y-L^{-1} v\right)\right|=|L y-v|$. This implies that

$$
\begin{align*}
w_{B\left(y, \delta^{-1}\right)}\left(L^{-1} v\right) & =\left(1+\delta\left|y-L^{-1} v\right|\right)^{-E} \\
& \sim(1+\delta|L y-v|)^{-E}=w_{B\left(L y, \delta^{-1}\right)}(v) \tag{3.19}
\end{align*}
$$

Plugging (3.19) to (3.18), we get

$$
\int_{\mathbb{R}^{n}}\left|E_{Q} g(u)\right|^{q} w_{B\left(y, \delta^{-1}\right)}(u) \mathrm{d} u \sim \int_{\mathbb{R}^{n}}\left|E_{Q_{0}} G(v)\right|^{q} w_{B\left(L y, \delta^{-1}\right)}(v) \mathrm{d} v,
$$

which is equivalent with

$$
\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B(y, \delta-1)}\right)} \sim\left\|E_{Q_{0}} G\right\|_{L_{\sharp}^{q}\left(w_{B(L y, \delta-1)}\right)} .
$$

Recalling our calculations of the unit normal vectors of \mathbb{P}^{n-1}, we have $n\left(c_{Q}\right)=\frac{(-2 \sigma, 1)}{\sqrt{1+4|\sigma|^{2}}}$ and $L\left(n\left(c_{Q}\right)\right)=\frac{1}{\sqrt{1+4|\sigma|^{2}}} e_{n}=\frac{1}{\sqrt{1+4|\sigma|^{2}}} n\left(c_{Q_{0}}\right)$. Recall also that T_{Q} is a $\delta^{-2} \times\left(\delta^{-1}\right)^{n-1}$ tile where the longest side is parallel to $n\left(c_{Q}\right)$. Thus $L\left(T_{Q}\right)$ is a parallelepiped with longest side parallel to $n\left(c_{Q_{0}}\right)$. Since $\|L\|_{o p} \leq 3 \sqrt{n-1}$ and for any $a, b \in(1+\sqrt{n}) T_{Q}(x)$ we have

$$
|a-b| \leq \sqrt{(n-1)\left((1+\sqrt{n}) \delta^{-1}\right)^{2}+\left((1+\sqrt{n}) \delta^{-2}\right)^{2}} \leq(\sqrt{n}+n) \delta^{-2}
$$

we get that

$$
|L(a-b)| \leq\|L\|_{o p}|a-b| \leq 3\left(n^{\frac{3}{2}}+n\right) \delta^{-2} .
$$

Since $6 n^{\frac{3}{2}} \geq 3 n^{\frac{3}{2}}+3 n+\frac{1}{2}$ holds for $n \geq 2$, the above deduction and $L\left(T_{Q}(x)\right) \cap T_{Q_{0}}(L x) \neq \varnothing$ imply that $L\left((1+\sqrt{n}) T_{Q}(x)\right) \subset 12 n^{\frac{3}{2}} T_{Q_{0}}(L x)$. See figure 3.1 below for the worst case scenario in \mathbb{R}^{2}.

Figure 3.1: Containment of $L\left((1+\sqrt{n}) T_{Q}(x)\right)$ with a dilation of $\left.T_{Q_{0}}(L x)\right)$ in \mathbb{R}^{2}. The lengths are from the n-dimensional case.

Now we can estimate

$$
\begin{aligned}
F_{Q}(x) & =\sup _{y \in(1+\sqrt{n}) T_{Q}(x)}\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B}\left(y, \delta^{-1}\right)\right)} \\
& \sim \sup _{y \in(1+\sqrt{n}) T_{Q}(x)}\left\|E_{Q_{0}} G\right\|_{L_{\sharp}^{q}\left(w_{B}\left(L y, \delta^{-1}\right)\right)} \\
& =\sup _{y \in L\left((1+\sqrt{n}) T_{Q}(x)\right)}\left\|E_{Q_{0}} G\right\|_{L_{\sharp}^{q}\left(w_{B}\left(y, \delta^{-1}\right)\right)} \\
& \leq \sup _{y \in 12 n^{\frac{3}{2}} T_{Q_{0}}(L x)}\left\|E_{Q_{0}} G\right\|_{L_{\sharp}^{q}\left(w_{B}\left(y, \delta^{-1}\right)\right)}=: F_{0}(L x)
\end{aligned}
$$

and thus on the left-hand side of (3.17) we get

$$
\int_{4 B}\left|F_{Q}(x)\right|^{q} \mathrm{~d} x \lesssim \int_{4 B}\left|F_{0}(L x)\right|^{q} \mathrm{~d} x=\int_{L(4 B)}\left|F_{0}(y)\right|^{q} \mathrm{~d} y \leq \int_{12 n B^{\prime}}\left|F_{0}(y)\right|^{q} \mathrm{~d} y
$$

where $B^{\prime}:=B\left(L\left(c_{B}\right), \delta^{-2}\right)$. Furthermore, we can change variables back on right-hand side of (3.17) to see that

$$
\begin{aligned}
\left\|E_{Q_{0}} G\right\|_{L_{\sharp}^{q}\left(w_{B^{\prime}}\right)}^{q} & =\frac{1}{m_{n}\left(B^{\prime}\right)} \int_{\mathbb{R}^{n}}\left|E_{Q_{0}} G(v)\right|^{q} w_{B^{\prime}}(v) \mathrm{d} v \\
& =\frac{1}{m_{n}\left(B^{\prime}\right)} \int_{\mathbb{R}^{n}}\left|E_{Q} g(u)\right|^{q} w_{B^{\prime}}(L u) \mathrm{d} u \\
& \sim \frac{1}{m_{n}(B)} \int_{\mathbb{R}^{n}}\left|E_{Q} g(u)\right|^{q} w_{B}(u) \mathrm{d} u=\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B}\right)}^{q} .
\end{aligned}
$$

Hence in order to prove the lemma, it suffices to prove

$$
\begin{equation*}
\left\|F_{0}\right\|_{L_{\sharp}^{q}\left(12 n B^{\prime}\right)}^{q} \lesssim\left\|E_{Q_{0}} G\right\|_{L_{\sharp}^{q}\left(w_{B^{\prime}}\right)}^{q} . \tag{3.20}
\end{equation*}
$$

We will abuse notation by writing $Q=Q_{0}, g=G$ and $F_{0}=F_{Q}$. We fix $x \in \mathbb{R}^{n}$ and let $y \in 12 n^{\frac{3}{2}} T_{Q}(x)$. The reduction of Q implies that $T_{Q}(x)$ has sides parallel to the coordinate axes and the longest side is parallel to the x_{n}-axis. This means that $y=x+y^{\prime}$ with $\left|y_{j}^{\prime}\right| \lesssim \delta^{-1}$ for $1 \leq j<n$ and $\left|y_{n}^{\prime}\right| \lesssim \delta^{-2}$. For the rest of the proof we simplify notation by writing $\widetilde{a}:=\pi_{n}(a)$, for $a \in \mathbb{R}^{n}$. Now we change variables twice to get

$$
\begin{aligned}
\left\|E_{Q} g\right\|_{L^{q}\left(w_{B\left(y, \delta^{-1}\right)}\right)}^{q} & =\int_{\mathbb{R}^{n}}\left|E_{Q} g(z)\right|^{q} w_{B\left(y, \delta^{-1}\right)}(z) \mathrm{d} z \\
& =\int_{\mathbb{R}^{n}}\left|E_{Q} g(u+y)\right|^{q} w_{B\left(y, \delta^{-1}\right)}(y+u) \mathrm{d} u
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{n}}\left|E_{Q} g(u+y)\right|^{q} w_{B\left(0, \delta^{-1}\right)}(u) \mathrm{d} u \\
& =\int_{\mathbb{R}^{n}}\left|E_{Q} g\left(x_{1}+u_{1}+y_{1}^{\prime}, \ldots, x_{n}+u_{n}+y_{n}^{\prime}\right)\right|^{q} w_{B\left(0, \delta^{-1}\right)}(u) \mathrm{d} u \\
& =\int_{\mathbb{R}^{n}}\left|E_{Q} g\left(\widetilde{x}+\widetilde{u}, x_{n}+u_{n}+y_{n}^{\prime}\right)\right|^{q} w_{B\left(0, \delta^{-1}\right)}\left(\widetilde{u}-\widetilde{y^{\prime}}, u_{n}\right) \mathrm{d} u .
\end{aligned}
$$

Furthermore, by triangle inequality

$$
\left.\delta \mid\left(\widetilde{u}-\widetilde{y^{\prime}}\right), u_{n}\right)|\leq \delta| u|+\delta| \widetilde{y^{\prime}}|\leq \delta| u\left|+\delta \sum_{j=1}^{n-1}\right| y_{j}^{\prime}|\lesssim \delta| u \mid+1
$$

and

$$
\delta|u|=\delta\left|\left(\widetilde{u}-\widetilde{y^{\prime}}+\widetilde{y^{\prime}}, u_{n}\right)\right| \leq \delta\left|\left(\widetilde{u}-\widetilde{y^{\prime}}, u_{n}\right)\right|+\delta\left|\widetilde{y^{\prime}}\right| \lesssim \delta\left|\left(\widetilde{u}-\widetilde{y^{\prime}}, u_{n}\right)\right|+1 .
$$

Hence

$$
\begin{aligned}
1+\delta|u| & \sim 1+\delta\left|\left(\widetilde{u}-\widetilde{y^{\prime}}, u_{n}\right)\right| \\
\Leftrightarrow w_{B\left(0, \delta^{-1}\right)}(u) & \sim w_{B\left(0, \delta^{-1}\right)}\left(\widetilde{u}-\widetilde{y^{\prime}}, u_{n}\right)
\end{aligned}
$$

and so we have

$$
\begin{align*}
\left\|E_{Q} g\right\|_{L^{q}\left(w_{B(y, \delta-1)}\right)}^{q} & \sim \int_{\mathbb{R}^{n}}\left|E_{Q} g\left(\widetilde{x}+\widetilde{u}, x_{n}+u_{n}+y_{n}^{\prime}\right)\right|^{q} w_{B\left(0, \delta^{-1}\right)}(u) \mathrm{d} u \\
3.21) & =\int_{\mathbb{R}^{n}}\left|E_{Q} g\left(x_{1}+u_{1}, \ldots, x_{n-1}+u_{n-1}, x_{n}+u_{n}+y_{n}^{\prime}\right)\right|^{q} w_{B\left(0, \delta^{-1}\right)}(u) \mathrm{d} u . \tag{3.21}
\end{align*}
$$

Now we may write

$$
\begin{aligned}
\left|E_{Q} g\left(\widetilde{x}+\widetilde{u}, x_{n}+u_{n}+y_{n}^{\prime}\right)\right| & =\left|\int_{Q} g(\lambda) e\left(\left(\widetilde{x}+\widetilde{u}, x_{n}+u_{n}+y_{n}^{\prime}\right) \cdot\left(\lambda,|\lambda|^{2}\right)\right) \mathrm{d} \lambda\right| \\
& =\left|\int_{Q} g(\lambda) e\left((x+u) \cdot\left(\lambda,|\lambda|^{2}\right)\right) e\left(y_{n}^{\prime}|\lambda|^{2}\right) \mathrm{d} \lambda\right| \\
& \left.=\left.\left|\int_{Q} g(\lambda) e\left((x+u) \cdot\left(\lambda,|\lambda|^{2}\right)\right) \sum_{k=0}^{\infty} \frac{\left(2 \pi i y_{n}^{\prime}\right)^{k}}{k!}\right| \lambda\right|^{2 k} \mathrm{~d} \lambda \right\rvert\, \\
& \left.=\left.\sum_{k=0}^{\infty} \frac{(2 \pi)^{k}\left|y_{n}^{\prime}\right|^{k}}{k!}\left|\int_{Q} g(\lambda) e\left((x+u) \cdot\left(\lambda,|\lambda|^{2}\right)\right)\right| \lambda\right|^{2 k} \mathrm{~d} \lambda \right\rvert\,
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\lesssim \sum_{k=0}^{\infty} \frac{(2 \pi)^{k}\left(\delta^{-2}\right)^{k}}{k!}\left|\int_{Q} g(\lambda) e\left((x+u) \cdot\left(\lambda,|\lambda|^{2}\right)\right)\right| \lambda\right|^{2 k} \mathrm{~d} \lambda \right\rvert\, \\
& =\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!}\left|\int_{Q} g(\lambda) e\left((x+u) \cdot\left(\lambda,|\lambda|^{2}\right)\right)\left(\frac{|\lambda|^{2}}{n \delta^{2}}\right)^{k} \mathrm{~d} \lambda\right| \\
& =\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!}\left|M_{k}\left(E_{Q} g\right)(x+u)\right| . \tag{3.22}
\end{align*}
$$

We were able to interchange the series and integral due to dominated convergence theorem. Above we denoted

$$
M_{k}\left(E_{Q} g\right)(z):=\int_{Q} g(\lambda) e\left(z \cdot\left(\lambda,|\lambda|^{2}\right)\right) m_{k}\left(\frac{|\lambda|^{2}}{n \delta^{2}}\right) \mathrm{d} \lambda
$$

where $z \in \mathbb{R}^{n}$ and $m_{k}(t)=t^{k} \mathbb{1}_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(t)$. We were able to insert the cutoff since $\lambda \in Q=$ $\left[-\frac{\delta}{2}, \frac{\delta}{2}\right]^{n-1}$ implies that

$$
|\lambda|^{2} \leq \sum_{j=1}^{n-1} \frac{\delta^{2}}{4}=\frac{\delta^{2}(n-1)}{4} \leq \frac{\delta^{2} n}{2} \Leftrightarrow \frac{|\lambda|^{2}}{n \delta^{2}} \leq \frac{1}{2}
$$

Plugging (3.22) to (3.21) we get

$$
\begin{aligned}
\left\|E_{Q} g\right\|_{L^{q}\left(w_{B\left(y, \delta^{-1}\right)}\right)}^{q} & \lesssim \sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!} \int_{\mathbb{R}^{n}}\left|M_{k}\left(E_{Q} g\right)(x+u)\right|^{q} w_{B\left(0, \delta^{-1}\right)}(u) \mathrm{d} u \\
& =\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!} \int_{\mathbb{R}^{n}}\left|M_{k}\left(E_{Q} g\right)(u)\right|^{q} w_{B\left(0, \delta^{-1}\right)}(u-x) \mathrm{d} u \\
& =\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!} \int_{\mathbb{R}^{n}}\left|M_{k}\left(E_{Q} g\right)(u)\right|^{q} w_{B\left(x, \delta^{-1}\right)}(u) \mathrm{d} u \\
& =\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!}\left\|M_{k}\left(E_{Q} g\right)\right\|_{L^{q}\left(w_{B\left(x, \delta^{-1}\right)}^{q}\right)}^{q} .
\end{aligned}
$$

Multiplying by δ^{n}, taking supremums over $y \in 12 n^{\frac{3}{2}} T_{Q}(x)$ and mean value integrating
both sides we get

$$
\begin{aligned}
\left\|F_{Q}\right\|_{L_{\sharp}^{q}\left(12 n B^{\prime}\right)}^{q} & \lesssim \sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!} \delta^{n} f_{12 n B^{\prime}}\left\|M_{k}\left(E_{Q} g\right)\right\|_{L^{q}\left(w_{B(x, \delta-1)}\right)}^{q} \mathrm{~d} x \\
& =\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!} \frac{\delta^{n}}{m_{n}\left(12 n B^{\prime}\right)} \int_{\mathbb{R}^{n}}\left|M_{k}\left(E_{Q} g\right)(u)\right|^{q} \int_{12 n B^{\prime}} w_{B\left(x, \delta^{-1}\right)}(u) \mathrm{d} x \mathrm{~d} u \\
& \sim \sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!} \frac{1}{m_{n}\left(B^{\prime}\right)} \int_{\mathbb{R}^{n}}\left|M_{k}\left(E_{Q} g\right)(u)\right|^{q} \delta^{n} \int_{12 n B^{\prime}} w_{B\left(x, \delta^{-1}\right)}(u) \mathrm{d} x \mathrm{~d} u .
\end{aligned}
$$

The equality above is due to Tonelli's theorem. Notice that $w_{B\left(x, \delta^{-1}\right)}(u)=w_{B\left(u, \delta^{-1}\right)}(x)$ and by lemma 3.6 we have

$$
\delta^{n} \int_{12 n B^{\prime}} w_{B\left(u, \delta^{-1}\right)}(x) \mathrm{d} x \lesssim w_{B^{\prime}}(u),
$$

for all $u \in \mathbb{R}^{n}$. Plugging this into (3.23) yields

$$
\begin{equation*}
\left\|F_{Q}\right\|_{L_{\sharp}^{q}\left(12 n B^{\prime}\right)}^{q} \lesssim \sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!}\left\|M_{k}\left(E_{Q} g\right)\right\|_{L_{\sharp}^{q}\left(w_{B^{\prime}}\right)}^{q} . \tag{3.24}
\end{equation*}
$$

We can replace the function m_{k} with a compactly supported smooth function m_{k}^{*} that is defined by

$$
m_{k}^{*}(t)=t^{k} b(t)
$$

where $b \in \mathcal{S}(\mathbb{R})$ satisfies $b=1$ on $K=\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\left.\operatorname{supp}(b) \subset V=\right]-\frac{3}{4}, \frac{3}{4}[$. See lemma (1.7) for the existence of such b. By lemma 1.8, we have

$$
\begin{equation*}
\left|\widetilde{m_{k}^{*}}\left(x_{n}\right)\right| \lesssim M\left(1+\left|x_{n}\right|\right)^{-M}, \quad \text { for all } M>0 \tag{3.25}
\end{equation*}
$$

where the implicit constant is independent of k.
Let M_{k}^{*} be the operator that is like M_{k} with the exception that m_{k} is replaced by m_{k}^{*}. We can now apply Fourier inversion formula, change of variables and Fubini to write

$$
\begin{aligned}
\left|M_{k}\left(E_{Q} g\right)(x)\right| & =\left|M_{k}^{*}\left(E_{Q} g\right)(x)\right| \\
& =\left|\int_{Q} g(\lambda) e\left(x \cdot\left(\lambda,|\lambda|^{2}\right)\right) m_{k}^{*}\left(\frac{|\lambda|^{2}}{n \delta^{2}}\right) \mathrm{d} \lambda\right| \\
& =\left|\int_{Q} g(\lambda) e\left(x \cdot\left(\lambda,|\lambda|^{2}\right)\right) \int_{\mathbb{R}} e\left(-\frac{|\lambda|^{2}}{n \delta^{2}} z\right) \widetilde{m_{k}^{*}}(z) \mathrm{d} z \mathrm{~d} \lambda\right| \\
& =\left|\int_{Q} g(\lambda) e\left(x \cdot\left(\lambda,|\lambda|^{2}\right)\right) n \delta^{2} \int_{\mathbb{R}} e\left(-|\lambda|^{2} y\right) \widetilde{m_{k}^{*}}\left(n \delta^{2} y\right) \mathrm{d} y \mathrm{~d} \lambda\right|
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left|\int_{\mathbb{R}} \int_{Q} g(\lambda) e\left(x \cdot\left(\lambda,|\lambda|^{2}\right)\right) e\left(-|\lambda|^{2} y\right) \mathrm{d} \lambda \delta^{2} \widetilde{m_{k}^{*}}\left(n \delta^{2} y\right) \mathrm{d} y\right| \\
& =\left|\int_{\mathbb{R}} E_{Q} g\left(\widetilde{x}, x_{n}-y\right) \delta^{2} \widetilde{m_{k}^{*}}\left(n \delta^{2} y\right) \mathrm{d} y\right| \\
& \leq \int_{\mathbb{R}}\left|E_{Q} g\left(\widetilde{x}, x_{n}-y\right)\right| h_{\delta^{2}}(y) \mathrm{d} y=\left|E_{Q} g\right| \odot h_{\delta^{2}}(x),
\end{aligned}
$$

where \odot denotes the convolution with respect to the last variable x_{n} and $h_{\delta^{2}}\left(x_{n}\right):=$ $\delta^{2}\left|\widetilde{m_{k}^{*}}\left(n \delta^{2} x_{n}\right)\right|$. We can normalize $h_{\delta^{2}}$ with

$$
c:=\frac{1}{n}\left\|\widetilde{m_{k}^{*}}\right\|_{1} \lesssim \frac{1}{n} \int_{\mathbb{R}}(1+|x|)^{-2} \mathrm{~d} x \leq \frac{1}{n} \int_{\mathbb{R}}\left(1+x^{2}\right)^{-1} \mathrm{~d} x=\frac{\pi}{n} \sim 1,
$$

so that $\int_{\mathbb{R}} h_{\delta^{2}} / c=1$ and use the Jensen inequality to get

$$
\begin{aligned}
\left|M_{k}\left(E_{Q} g\right)(x)\right|^{q} & \lesssim\left(\left|E_{Q} g\right| \odot h_{\delta^{2}}(x)\right)^{q} \\
& =\left(c\left|E_{Q} g\right| \odot \frac{h_{\delta^{2}}(x)}{c}\right)^{q} \\
& \leq c^{q}\left|E_{Q} g\right|^{q} \odot \frac{h_{\delta^{2}}(x)}{c} \lesssim\left|E_{Q} g\right|^{q} \odot h_{\delta^{2}}(x) .
\end{aligned}
$$

We recall that $B^{\prime}=B\left(L\left(c_{B}\right), \delta^{-2}\right)$. Then we multiply both sides with $w_{B^{\prime}}$ and integrate to get

$$
\left\|M_{k}\left(E_{Q} g\right)\right\|_{L^{q}\left(w_{B^{\prime}}\right)}^{q} \lesssim \int_{\mathbb{R}^{n}}\left|E_{Q} g\right|^{q} \odot h_{\delta^{2}}(x) w_{B^{\prime}}(x) \mathrm{d} x .
$$

Using Fubini's theorem we can write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|E_{Q} g\right|^{q} \odot h_{\delta^{2}}(x) w_{B^{\prime}}(x) \mathrm{d} x & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} h_{\delta^{2}}\left(x_{n}-y\right) w_{B^{\prime}}(x) \mathrm{d} y \mathrm{~d} x \\
& =\int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} \int_{\mathbb{R}} h_{\delta^{2}}\left(x_{n}-y\right) w_{B^{\prime}}(x) \mathrm{d} x_{n} \mathrm{~d}(\widetilde{x}, y)
\end{aligned}
$$

and equation (3.25) with $M=E$ allows us to write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} & \int_{\mathbb{R}} h_{\delta^{2}}\left(x_{n}-y\right) w_{B^{\prime}}(x) \mathrm{d} x_{n} \mathrm{~d}(\widetilde{x}, y) \\
& \lesssim \int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} \delta^{2} \int_{\mathbb{R}}\left(1+n \delta^{2}\left|x_{n}-y\right|\right)^{-E} w_{B^{\prime}}(x) \mathrm{d} x_{n} \mathrm{~d}(\widetilde{x}, y) \\
& \leq \int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} \delta^{2} \int_{\mathbb{R}}\left(1+\delta^{2}\left|y-x_{n}\right|\right)^{-E} w_{B^{\prime}}(x) \mathrm{d} x_{n} \mathrm{~d}(\widetilde{x}, y) \\
& =\int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} \delta^{2} \int_{\mathbb{R}} w_{B^{1}\left(0, \delta^{-2}\right)}\left(y-x_{n}\right) w_{B^{\prime}}(x) \mathrm{d} x_{n} \mathrm{~d}(\widetilde{x}, y) .
\end{aligned}
$$

By lemma 3.13 we have

$$
\delta^{2} \int_{\mathbb{R}} w_{B^{1}\left(0, \delta^{-2}\right)}\left(y-x_{n}\right) w_{B^{\prime}}(x) \mathrm{d} x_{n} \lesssim w_{B^{\prime}}(\widetilde{x}, y)
$$

and this means that we have

$$
\int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} \int_{\mathbb{R}^{2}} h_{\delta^{2}}\left(x_{n}-y\right) w_{B^{\prime}}(x) \mathrm{d} x_{n} \mathrm{~d}(\widetilde{x}, y) \lesssim \int_{\mathbb{R}^{n}}\left|E_{Q} g(\widetilde{x}, y)\right|^{q} w_{B^{\prime}}(\widetilde{x}, y) \mathrm{d}(\widetilde{x}, y) .
$$

Merging our recent estimates, we have

$$
\left\|M_{k}\left(E_{Q} g\right)\right\|_{L^{q}\left(w_{B^{\prime}}\right)}^{q} \lesssim\left\|E_{Q} g\right\|_{L^{q}\left(w_{B^{\prime}}\right)}^{q} .
$$

Finally, combining this with (3.24) we get

$$
\left\|F_{Q}\right\|_{L_{\sharp}^{q}\left(12 n B^{\prime}\right)}^{q} \lesssim \sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!}\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B^{\prime}}\right)} \sim\left\|E_{Q} g\right\|_{L_{\sharp}^{q}\left(w_{B^{\prime}}\right)},
$$

which is exactly (3.20). The last relation is due to $\sum_{k=0}^{\infty} \frac{(2 n \pi)^{k}}{k!}=e^{2 \pi n}$.
Now we are ready to prove theorem 3.15.
Proof of theorem 3.15. To make notions more bearable, we abbreviate

$$
\begin{aligned}
\sum_{Q_{i, 1}} & :=\sum_{Q_{i, 1} \in \operatorname{Part}_{\delta}\left(Q_{i}\right)}, \\
q & :=\frac{p(n-1)}{n}, \\
e\left(Q_{i, 1}, B\right) & :=\left\|E_{Q_{i, 1} g} g\right\|_{L_{\sharp}^{q}\left(w_{B}\right)}
\end{aligned}
$$

and

$$
e_{i}^{*}:=\max _{Q_{i, 1} \in \operatorname{Part}_{\delta}\left(Q_{i}\right)} e\left(Q_{i, 1}, B\right) .
$$

Let $C=C(n, p) \in \mathbb{N}_{+}$. The idea is to use dyadic pigeonholing to restrict the cubes $Q_{i, 1}$. We notice that each cube $Q_{i, 1}$ satisfies either

$$
\begin{equation*}
e\left(Q_{i, 1}, B\right) \leq \delta^{C} e_{i}^{*} \tag{3.26}
\end{equation*}
$$

or

$$
\begin{equation*}
2^{k} \delta^{C} e_{i}^{*}<e\left(Q_{i, 1}, B\right) \leq 2^{k+1} \delta^{C} e_{i}^{*}, \quad \text { for some } k \in \mathbb{N} . \tag{3.27}
\end{equation*}
$$

Since $e\left(Q_{i, 1}, B\right) \leq e_{i}^{*}$ always holds, we can forget each k that satisfies $2^{k} \delta^{C} \geq 1$. Since

$$
2^{k} \delta^{C}<1 \quad \Leftrightarrow \quad \log _{2}\left(2^{k} \delta^{C}\right)<0 \quad \Leftrightarrow \quad k-C \log _{2} \delta^{-1}<0 \quad \Leftrightarrow \quad k<C \log _{2} \delta^{-1}=: A
$$

we now know that (3.27) is equivalent with

$$
e_{i}^{*} 2^{-k^{\prime}-1}<e\left(Q_{i, 1}, B\right) \leq 2^{-k^{\prime}} e_{i}^{*}, \quad k^{\prime} \in\{0,1, \ldots, A-1\} .
$$

We denote

$$
b_{-1, i}(\Delta):=\sum_{\substack{Q_{i, 1} \\ e\left(Q_{i, 1}, B\right) \leq \delta^{C} e_{i}^{*}}} e\left(Q_{i, 1}, \Delta\right)^{2}
$$

for each $i=1, \ldots, n$ and

$$
b_{k, i}(\Delta):=\sum_{\substack{Q_{i, 1} \\ e_{i}^{*} 2^{-k-1}<e\left(Q_{i, 1}, B\right) \leq 2^{-k} e_{i}^{*}}} e\left(Q_{i, 1}, \Delta\right)^{2}
$$

for each $i=1, \ldots, n$ and $k=0, \ldots, A-1$. Thus we have

$$
\begin{aligned}
\sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2}= & \sum_{\substack{Q_{i, 1} \\
e\left(Q_{i, 1}, B\right) \leq \delta^{C} e_{i}^{*}}} e\left(Q_{i, 1}, \Delta\right)^{2} \\
& +\sum_{k=0}^{A-1} \sum_{\substack{Q_{i, 1} \\
e_{i}^{*} 2^{-k-1}<e\left(Q_{i, 1}, B\right) \leq 2^{-k} e_{i}^{*}}} e\left(Q_{i, 1}, \Delta\right)^{2} \\
= & \sum_{k=-1}^{A-1} b_{k, i}(\Delta)
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}}=\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{k=-1}^{A-1} b_{k, i}(\Delta)\right)^{\frac{p}{2 n}} \tag{3.28}
\end{equation*}
$$

By the distributive law we calculate

$$
\begin{aligned}
\prod_{i=1}^{n} \sum_{k=-1}^{A-1} b_{k, i}(\Delta) & =\left(\sum_{k_{1}=-1}^{A-1} b_{k_{1}, 1}(\Delta)\right) \cdots\left(\sum_{k_{n}=-1}^{A-1} b_{k_{n}, n}(\Delta)\right) \\
& =\sum_{k_{1}=-1}^{A-1} \cdots \sum_{k_{n}=-1}^{A-1} b_{k_{1}, 1}(\Delta) \cdots b_{k_{n}, n}(\Delta) \\
& =: \sum_{\vec{k} \in K} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta),
\end{aligned}
$$

where on the last line we denoted $\vec{k}:=\left(k_{1}, \ldots, k_{n}\right)$ and $K:=\{-1,0,1, \ldots, A-1\}^{n}$. If $\frac{p}{2 n} \leq 1$, then convexity yields

$$
\begin{aligned}
\sum_{\Delta \in \mathcal{B}}\left(\sum_{\vec{k} \in K} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} & \leq \sum_{\Delta \in \mathcal{B}} \sum_{\vec{k} \in K}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} \\
& =\sum_{\vec{k} \in K} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} \\
& \leq(1+A)^{n} \max _{\vec{k} \in K} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}}
\end{aligned}
$$

If $\frac{p}{2 n}>1$, then Hölder inequality with conjugates $\frac{p}{2 n}$ and $\frac{p}{p-2 n}$ gives

$$
\begin{aligned}
\sum_{\Delta \in \mathcal{B}}\left(\sum_{\vec{k} \in K} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} & \leq \sum_{\Delta \in \mathcal{B}}\left[\left(\sum_{\vec{k} \in K} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)^{\frac{p}{2 n}}\right)^{\frac{2 n}{p}}\left(\sum_{\vec{k} \in K} 1\right)^{1-\frac{2 n}{p}}\right]^{\frac{p}{2 n}} \\
& =\sum_{\Delta \in \mathcal{B}} \sum_{\vec{k} \in K}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}}\left(\sum_{\vec{k} \in K} 1\right)^{\frac{p}{2 n}-1} \\
& \leq(1+A)^{\frac{p}{2}-n} \sum_{\Delta \in \mathcal{B}} \sum_{\vec{k} \in K}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} \\
& \leq(1+A)^{\frac{p}{2}} \max _{\vec{k} \in K} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}}
\end{aligned}
$$

Overall we now have

$$
\sum_{\Delta \in \mathcal{B}}\left(\sum_{\vec{k} \in K} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} \leq(1+A)^{\max \left\{\frac{p}{2}, n\right\}} \max _{\vec{k} \in K} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}}
$$

and plugging the above to (3.28) gives that

$$
\begin{aligned}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} & \leq(1+A)^{\max \left\{\frac{p}{2}, n\right\}} \frac{1}{\# \mathcal{B}} \max _{\vec{k} \in K} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} \\
& \lesssim \varepsilon \delta^{-\varepsilon} \frac{1}{\# \mathcal{B}} \max _{\vec{k} \in K} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}}
\end{aligned}
$$

Thus we see that in order to prove the theorem, it suffices to show that for each combination $\vec{k}=\left(k_{1}, \ldots, k_{n}\right) \in K=\{-1,0,1, \ldots, A-1\}^{n}$ we have

$$
\begin{equation*}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)^{\frac{p}{2 n}} \lesssim_{\varepsilon, \nu} \delta^{-\varepsilon}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} \tag{3.29}
\end{equation*}
$$

In order to show (3.29), we will consider two cases.

1. At least one $k_{i}=-1$.
2. Every index k_{i} is non-negative.

In the first case say $k_{j}=-1$. We notice that for each $\Delta \in \mathcal{B}$ and each $Q_{i, 1}$, we have

$$
\begin{aligned}
\delta^{\frac{n}{q}} e\left(Q_{i, 1}, \Delta\right) & =\delta^{\frac{n}{q}}\left(\delta^{n} \int_{\mathbb{R}^{n}}\left|E_{Q_{i, 1}} g(x)\right|^{q} w_{\Delta}(x) \mathrm{d} x\right)^{\frac{1}{q}} \\
& \lesssim \delta^{\frac{n}{q}}\left(\delta^{n} \int_{\mathbb{R}^{n}}\left|E_{Q_{i, 1}} g(x)\right|^{q} w_{B}(x) \mathrm{d} x\right)^{\frac{1}{q}}=e\left(Q_{i, 1}, B\right),
\end{aligned}
$$

where we used $w_{\Delta}(x) \lesssim w_{B}(x)$, which is an immediate corollary of lemma 3.12. For the cubes $Q_{i, 1}^{\prime}$ in $b_{k_{j}, j}$, the above calculation combined with (3.26) gives

$$
\max _{\Delta \in \mathcal{B}} e\left(Q_{j, 1}^{\prime}, \Delta\right) \lesssim \delta^{C-\frac{n}{q}} e_{j}^{*}
$$

and for each $Q_{i, 1}$ we have

$$
\max _{\Delta \in \mathcal{B}} e\left(Q_{i, 1}, \Delta\right) \lesssim \delta^{-\frac{n}{q}} e_{i}^{*}
$$

Hence

$$
b_{k_{j}, j}=\sum_{\substack{Q_{j, 1} \\ e\left(Q_{j, 1}, B\right) \leq \delta^{C} e_{j}^{*}}} e\left(Q_{j, 1}, \Delta\right)^{2} \leq \delta^{2 C-\frac{2 n}{q}-n}\left(e_{j}^{*}\right)^{2}
$$

and for $i \neq j$

$$
b_{k_{i}, i} \leq \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2} \leq \delta^{-\frac{2 n}{q}-n}\left(e_{i}^{*}\right)^{2}
$$

Above we used the fact that the number of cubes $Q_{i, 1}$ is less or equal to δ^{-n}. Thus by choosing $C \geq \frac{n}{p}\left(\frac{n p}{q}+\frac{n p}{2}\right)=\frac{n^{3}}{p(n-1)}+\frac{n^{2}}{2}$ we get

$$
\begin{aligned}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} b_{k_{i}, i}(\Delta)\right)^{\frac{p}{2 n}} & \leq \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\delta^{2 C-\frac{2 n}{q}-n}\left(e_{j}^{*}\right)^{2} \prod_{i \neq j} \delta^{-\frac{2 n}{q}-n}\left(e_{i}^{*}\right)^{2}\right)^{\frac{p}{2 n}} \\
& =\delta^{C \frac{p}{n}-\frac{n p}{q}-n \frac{p}{2}}\left(\prod_{i=1}^{n}\left(e_{i}^{*}\right)^{2}\right)^{\frac{p}{2 n}} \\
& \leq \delta^{C \frac{p}{n}-\frac{n p}{q}-\frac{n p}{2}}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} \\
& \leq\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}}
\end{aligned}
$$

If more indices k_{i} are equal to -1 , then we are able to choose a smaller C. This ends the proof for the first case.

For the second case let $N_{k, i}$ be the number of cubes $Q_{i, 1}$ in $b_{k, i}$. We denote the set of these cubes by $B_{k, i}$ and abbreviate $\sum_{Q_{i, 1}}=\sum_{Q_{i, 1} \in B_{k, i}}$. If $p=\frac{2 n}{n-1}$, then $q=\frac{\frac{2 n}{n-1}(n-1)}{n}=2$ and $\frac{p}{2 n}=\frac{1}{n-1}$, so we immediately have

$$
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)^{\frac{p}{2 n}}=\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}}
$$

$$
=\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}}
$$

If $p>\frac{2 n}{n-1}$, then we can use Hölder inequality on $e\left(Q_{i, 1}, \Delta\right)^{2}$ with conjugates $p^{\prime}:=\frac{p(n-1)}{p(n-1)-2 n}$ and $q^{\prime}:=\frac{p(n-1)}{2 n}$. This gives us

$$
\begin{gathered}
\left\|e\left(Q_{i, 1}, \Delta\right)^{2}\right\|_{l_{1}} \leq\|1\|_{l_{p^{\prime}}}\left\|e\left(Q_{i, 1}, \Delta\right)^{2}\right\|_{l_{q^{\prime}}}=N_{k, i}^{\frac{1}{p^{\prime}}}\left\|e\left(Q_{i, 1}, \Delta\right)^{2}\right\|_{l_{q^{\prime}}} \\
\Leftrightarrow
\end{gathered}
$$

$$
\begin{equation*}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left\|e\left(Q_{i, 1}, \Delta\right)^{2}\right\|_{l_{1}}^{\frac{1}{2}}\right)^{\frac{p}{n}} \leq\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2 p^{\prime}}}\right)^{\frac{p}{n}} \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left\|e\left(Q_{i, 1}, \Delta\right)^{2}\right\|_{l_{q^{\prime}}}^{\frac{1}{2}}\right)^{\frac{p}{n}} \tag{3.30}
\end{equation*}
$$

where we denoted $\left\|e\left(Q_{i, 1}, \Delta\right)^{2}\right\|_{l_{r}}:=\left(\sum_{Q_{i, 1}}\left(e\left(Q_{i, 1}, \Delta\right)^{2}\right)^{r}\right)^{\frac{1}{r}}$ for $1 \leq r<\infty$. We notice that (3.30) is equivalent with

$$
\begin{align*}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)^{\frac{p}{2 n}} & =\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} \\
& \leq\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}} \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} . \tag{3.31}
\end{align*}
$$

Next we want to control the expression

$$
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}}
$$

In order to estimate to above expression, we will recreate the setting of lemma 3.16. For each cube $Q_{i, 1}$ centered at $c_{Q_{i, 1}}$, we cover B with a family $\mathcal{T}_{Q_{i, 1}}$ of pairwise disjoint, mutually parallel tiles $T_{Q_{i, 1}}$. They are rectangles with $n-1$ short sides of length δ^{-1} and one longer side of length δ^{-2}, pointing in the direction of the normal $n\left(c_{Q_{i, 1}}\right)$ to the paraboloid \mathbb{P}^{n-1} at $c_{Q_{i, 1}}$. Moreover, we know that these tiles are inside the cube $4 B$. We let $T_{Q_{i, 1}}(x)$ be the tile containing x.

We define

$$
F_{Q}(x)=\sup _{y \in(1+\sqrt{n}) T_{Q}(x)} e\left(Q, B\left(y, \delta^{-1}\right)\right), \quad \text { for } x \in \bigcup_{T_{Q} \in \mathcal{T}_{Q}} T_{Q} .
$$

Assume that $x \in \Delta$. Recall that Δ is a cube of side length δ^{-1} and thus the diameter of Δ is $\sqrt{n} \delta^{-1}$. Since $x \in \Delta \cap T_{Q}(x)$, we now have $c_{\Delta} \in(1+\sqrt{n}) T_{Q}(x)$ (see figure 3.2).
$(1+\sqrt{n}) T_{Q}(x)$

Figure 3.2: Inclusion $c_{\Delta} \in(1+\sqrt{n}) T_{Q}(x)$ in \mathbb{R}^{2} for the worst case scenario. Lengths are from the n-dimensional case.

This implies $e(Q, \Delta) \leq F_{Q}(x)$, which means that

$$
\begin{aligned}
& \left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \leq\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \\
\Rightarrow & \left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \leq f_{\Delta}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
\Rightarrow & \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \leq \sum_{\Delta \in \mathcal{B}} f_{\Delta}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
\Leftrightarrow & \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \leq \frac{1}{\# \mathcal{B}} \frac{1}{m_{n}(\Delta)} \int_{B}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
\Leftrightarrow & \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \leq \frac{1}{|B|} \int_{B}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
\Rightarrow & \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \lesssim f_{4 B}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x .
\end{aligned}
$$

Moreover, the function $F_{Q_{i, 1}}^{q}$ is constant on each tile $T_{Q_{i, 1}} \in \mathcal{F}_{Q_{i, 1}}$. Indeed, if $x, z \in T_{Q_{i, 1}}$, then $T_{Q_{i, 1}}(x)=T_{Q_{i, 1}}(z)$. Since the cubes Q_{1}, \ldots, Q_{n} are ν-transverse, we can utilize
the multilinear Kakeya inequality from corollary 2.15 applied to the functions $F_{i}(x)=$ $\sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)$ to get

$$
\begin{aligned}
f_{4 B}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x & \lesssim_{\varepsilon, \nu} \delta^{-\varepsilon} \prod_{i=1}^{n}\left(f_{4 B} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} \\
& =\delta^{-\varepsilon}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} f_{4 B} F_{Q_{i, 1}}^{q}(x) \mathrm{d} x\right)^{\frac{1}{n-1}}
\end{aligned}
$$

An application of lemma 3.16 gives

$$
\left\|F_{Q_{i, 1}}\right\|_{L_{\sharp}^{q}(4 B)}^{q} \lesssim e\left(Q_{i, 1}, B\right)^{q}
$$

and hence

$$
\delta^{-\varepsilon}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} f_{4 B} F_{Q_{i, 1}}^{q}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} \lesssim \delta^{-\varepsilon}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{q}\right)^{\frac{1}{n-1}}
$$

Combining the estimates, starting from (3.31), leads to

$$
\begin{align*}
\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}} \prod_{i=1}^{n} b_{k_{i}, i}(\Delta)^{\frac{p}{2 n}} & =\frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} \\
& \leq\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}} \frac{1}{\# \mathcal{B}} \sum_{\Delta \in \mathcal{B}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, \Delta\right)^{q}\right)^{\frac{1}{n-1}} \\
& \lesssim\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}} f_{4 B}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} F_{Q_{i, 1}}^{q}(x)\right)^{\frac{1}{n-1}} \mathrm{~d} x \\
& \lesssim \varepsilon \varepsilon, \nu \\
& \lesssim \delta^{-\varepsilon}\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} f_{4 B} F_{Q_{i, 1}}^{q}(x) \mathrm{d} x\right)^{\frac{1}{n-1}} \tag{3.32}\\
& \left.\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{q}\right)^{\frac{1}{n-1}} .
\end{align*}
$$

Recalling the restriction on the cubes $Q_{i, 1}$, for a cube $Q \in B_{k, i}$, we have

$$
2^{-k_{i}-1} e_{i}^{*}<e(Q, B) \leq 2^{-k_{i}} e_{i}^{*} \Rightarrow e(Q, B) \sim 2^{-k_{i}} e_{i}^{*}
$$

and thus

$$
\begin{aligned}
\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{q}\right)^{\frac{1}{n-1}} & \sim\left(\prod_{i=1}^{n} N_{k, i}^{\frac{1}{2}-\frac{1}{q}}\right)^{\frac{p}{n}}\left(\prod_{i=1}^{n} \sum_{Q_{i, 1}}\left(2^{-k_{i}} e_{i}^{*}\right)^{q}\right)^{\frac{1}{n-1}} \\
& =\left(\prod_{i=1}^{n} N_{k, i}^{\frac{p}{2 n}-\frac{1}{n-1}}\right)\left(\prod_{i=1}^{n} N_{k, i}\left(2^{-k_{i}} e_{i}^{*}\right)^{q}\right)^{\frac{1}{n-1}} \\
& =\left(\prod_{i=1}^{n} N_{k, i}^{\frac{p}{2 n}}\left(\prod_{i=1}^{n}\left(2^{-k_{i}} e_{i}^{*}\right)^{\frac{p}{n}}\right)\right. \\
& =\prod_{i=1}^{n}\left(N_{k, i}^{\frac{1}{2}} 2^{-k_{i}} e_{i}^{*}\right)^{\frac{p}{n}} \\
& =\prod_{i=1}^{n}\left(\left(N_{k, i}\left(2^{-k_{i}} e_{i}^{*}\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} \\
& =\prod_{i=1}^{n}\left(\left(\sum_{Q_{i, 1}}\left(2^{-k_{i}} e_{i}^{*}\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}} \\
& \sim\left(\prod_{i=1}^{n}\left(\sum_{Q_{i, 1}} e\left(Q_{i, 1}, B\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{p}{n}}
\end{aligned}
$$

which we can plug into (3.32) and (3.29) follows for the second case. This ends the proof of the theorem.

Chapter 4

Equivalent formulations of linear decoupling

We will begin this chapter by defining the linear decoupling constant $\operatorname{Dec}_{n}(\delta, p, E)$ that is associated to the extension operator E_{Q}. In literature regarding decoupling, an alternative formulation is often used, where the decoupling constant is defined without E_{Q} and the decoupling is done using Fourier restriction. For the sake of exposition, let the decoupling constant related to the alternative formulation be $\operatorname{Dec}_{n}(\mathcal{F})$. The main result of this chapter (theorem 4.27) shows that these two formulations are essentially equivalent in the sense that an upper bound for $\operatorname{Dec}_{n}(\delta, p, E)$ will imply an upper bound for $\operatorname{Dec}_{n}(\mathcal{F})$. This motivates the use of the extension operator E_{Q} and the associated decoupling constant. Another motivation for theorem 4.27 is that in the fifth chapter we will use it to prove an important reverse decoupling constant inequality.

4.1 The linear decoupling constant

In this section we will define the linear decoupling constant and introduce a lemma that we will use to simplify the proofs of decoupling inequalities. Throughout the rest of the thesis we will assume that $\delta \in 4^{-\mathbb{N}}$.

Definition 4.1. For $p \geq 2$, let $\operatorname{Dec}_{n}(\delta, p, E)=\operatorname{Dec}(\delta, p, E)$ be the smallest constant that satisfies

$$
\begin{equation*}
\|E g\|_{L^{p}\left(w_{B, E}\right)} \leq \operatorname{Dec}(\delta, p, E)\left(\sum_{Q \in \operatorname{Part} \sqrt{\delta}\left([0,1]^{n-1}\right)}\left\|E_{Q} g\right\|_{L^{p}\left(w_{B, E}\right)}^{2}\right)^{\frac{1}{2}} \tag{4.2}
\end{equation*}
$$

for each cube B with side length δ^{-1}.

The exact statement of the l^{2} decoupling theorem is that if $2 \leq p \leq \frac{2(n+1)}{n-1}$, then we have $\operatorname{Dec}(\delta, p, E) \lesssim \varepsilon \delta^{-\varepsilon}$. In contrast, it is a straightforward application of Minkowski's inequality and Cauchy-Schwarz inequality to show that $\delta^{-\frac{n-1}{4}}$ is a constant that satisfies the inequality in the definition. With a little more work one can comfortably show that the decoupling constant $\operatorname{Dec}(\delta, p, E)$ is well defined. Together these results imply that $\operatorname{Dec}(\delta, p, E) \leq \delta^{-\frac{n-1}{4}}$. The details of these computations can be found in [14] section 2.6.

Next we will look at a lemma which can be used to simplify the inequalities that are of the form (4.2).

Lemma 4.3. Fix $E>n$ and $R>0$. Let \mathcal{W} be the space of non-negative integrable functions on \mathbb{R}^{n}. Assume that operators $O_{1}, O_{2}: \mathcal{W} \rightarrow[0, \infty]$ satisfy the following four properties:
(W1) $O_{1}\left(\mathbb{1}_{B}\right) \lesssim O_{2}\left(w_{B, E}\right)$ for all cubes B of side length R.
(W2) $O_{1}\left(\sum_{i=1}^{\infty} \alpha_{i} u_{i}\right) \leq \sum_{i=1}^{\infty} \alpha_{i} O_{1}\left(u_{i}\right)$ for all $u_{i} \in \mathcal{W}$ and $\alpha_{i}>0$ such that $\sum_{i=1}^{\infty} \alpha_{i} u_{i} \in \mathcal{W}$.
(W3) $O_{2}\left(\sum_{i=1}^{\infty} \alpha_{i} u_{i}\right) \geq \sum_{i=1}^{\infty} \alpha_{i} O_{2}\left(u_{i}\right)$ for all $u_{i} \in \mathcal{W}$ and $\alpha_{i}>0$ such that $\sum_{i=1}^{\infty} \alpha_{i} u_{i} \in \mathcal{W}$.
(W4) If $u \leq v$, then $O_{i}(u) \leq O_{i}(v)$, where $i=1,2$.
Then

$$
O_{1}\left(w_{B, E}\right) \lesssim O_{2}\left(w_{B, E}\right)
$$

for all cubes B with side length R.
Proof. This is a relatively immediate consequence of lemma 3.9 after we check that the implicit constants do not affect the operators too much. Hence, we will begin with proving that the operators preserve scalar multiplication, i.e.,

$$
\begin{equation*}
O_{i}(\alpha u)=\alpha O_{i}(u) \tag{4.4}
\end{equation*}
$$

where $\alpha>0, u \in \mathcal{W}$ and $i=1,2$.
By (W2) and (W3), we have

$$
O_{1}(0)=O_{1}\left(\sum_{i=2}^{\infty}\left(\frac{1}{2}\right)^{i} \cdot 0\right) \leq \frac{1}{2} O_{1}(0)
$$

and

$$
O_{2}(0)=O_{2}\left(\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i} \cdot 0\right) \geq 2 O_{2}(0) .
$$

Thus $O_{i}(0)=0$ or $O_{i}(0)=\infty$. If $O_{2}(0)=\infty$, then by (W_{4}) we have $O_{2}\left(w_{B, E}\right)=\infty$ and the result is trivial. If $O_{1}(0)=\infty$, then by (W_{4}) and ($W 1$) we again have $O_{2}\left(w_{B, E}\right)=\infty$.

We can now assume that $O_{1}(0)=0=O_{2}(0)$. This means that setting $u_{i}=0$ for $i>1$ in (W2) gives us $O_{1}(\alpha u) \leq \alpha O_{1}(u)$ for all $u \in \mathcal{W}$ and $\alpha>0$. Applying this twice, we get

$$
O_{1}(\alpha u) \leq \alpha O_{1}(u)=\alpha O_{1}\left(\alpha^{-1} \alpha u\right) \leq O_{1}(\alpha u) \Leftrightarrow O_{1}(\alpha u)=\alpha O_{1}(u) .
$$

Similar calculations for O_{2} proves (4.4). Clearly (4.4) and (W4) shows that $u \lesssim v$ implies $O_{i}(u) \lesssim O_{i}(v)$. Now applying inequalities (3.10) and (3.11) of lemma 3.9, gives us

$$
\begin{align*}
O_{1}\left(w_{B, E}\right) & \lesssim O_{1}\left(\sum_{B^{\prime} \in \mathcal{B}} w_{B, E}\left(c_{B^{\prime}}\right) \mathbb{1}_{B^{\prime}}(x)\right) \tag{3.10}\\
& \leq \sum_{B^{\prime} \in \mathcal{B}} w_{B, E}\left(c_{B^{\prime}}\right) O_{1}\left(\mathbb{1}_{B^{\prime}}(x)\right) \tag{W2}\\
& \lesssim \sum_{B^{\prime} \in \mathcal{B}} w_{B, E}\left(c_{B^{\prime}}\right) O_{2}\left(w_{B^{\prime}, E}(x)\right) \tag{W1}\\
& \leq O_{2}\left(\sum_{B^{\prime} \in \mathcal{B}} w_{B, E}\left(c_{B^{\prime}}\right) w_{B^{\prime}, E}(x)\right) \tag{W3}\\
& \lesssim O_{2}\left(w_{B, E}\right) \tag{3.11}
\end{align*}
$$

The main interest of lemma 4.3 is that if f, f_{1}, f_{2}, \ldots are measurable and $v \in \mathcal{W}$, then

$$
O_{1}(v):=\|f\|_{L^{p}(v)}^{p} \quad \text { with } p \geq 1
$$

and

$$
O_{2}(v):=\left(\sum_{j \in \mathbb{N}_{+}}\left\|f_{j}\right\|_{L^{p}(v)}^{2}\right)^{\frac{p}{2}} \quad \text { with } p \geq 2
$$

satisfy conditions (W2), (W3) and (W4). Indeed, both satisfy (W4) by the increasing nature of the integral. Condition (W2) follows from the monotone convergence theorem

$$
\begin{aligned}
O_{1}\left(\sum_{i=1}^{\infty} \alpha_{i} u_{i}\right) & =\int_{\mathbb{R}^{n}}|f|^{p} \lim _{k \rightarrow \infty} \sum_{i=1}^{k} \alpha_{i} u_{i} \mathrm{~d} m_{n} \\
& =\lim _{k \rightarrow \infty} \sum_{i=1}^{k} \alpha_{i} \int_{\mathbb{R}^{n}}|f|^{p} u_{i} \mathrm{~d} m_{n}=\sum_{i=1}^{\infty} \alpha_{i} O_{1}\left(u_{i}\right) .
\end{aligned}
$$

We briefly denote $s:=\sum_{i=1}^{\infty} \alpha_{i} u_{i}$. For condition (W3) note that similarly as above we have

$$
\left\|\left(f_{j}\right)^{p}\right\|_{L^{1}(s)}=\sum_{i=1}^{\infty}\left\|\left(f_{j}\right)^{p}\right\|_{L^{1}\left(\alpha_{i} u_{i}\right)} .
$$

Using this we write

$$
\begin{equation*}
O_{2}(s)=\left(\sum_{j \in \mathbb{N}_{+}}\left\|f_{j}\right\|_{L^{p}(s)}^{2}\right)^{\frac{p}{2}}=\left(\sum_{j \in \mathbb{N}_{+}}\left\|\left(f_{j}\right)^{p}\right\|_{L^{1}(s)}^{\frac{2}{p}}\right)^{\frac{p}{2}}=\left\|\sum_{i=1}^{\infty}\right\|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(\alpha_{i} u_{i}\right)}\right\|_{l^{\frac{2}{p}}} . \tag{4.5}
\end{equation*}
$$

The monotone convergence theorem for series and the continuity of the functions $x \rightarrow x^{a}$, where $a>0$, imply that

$$
\left\|\sum_{i=1}^{\infty}\right\|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(\alpha_{i} u_{i}\right)}\right\|_{l^{\frac{2}{p}}}=\lim _{k \rightarrow \infty}\left\|\sum_{i=1}^{k}\right\|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(\alpha_{i} u_{i}\right)}\right\|_{l^{\frac{2}{p}}} .
$$

Note that $\frac{2}{p} \leq 1$. Combining the above with (4.5) and applying Minkovski's inequality in $l^{\frac{2}{p}}$ we get

$$
\begin{aligned}
O_{2}(s) & =\lim _{k \rightarrow \infty}\left\|\sum_{i=1}^{k}\right\|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(\alpha_{i} u_{i}\right)}\right\|_{l^{\frac{2}{p}}} \\
& \geq \lim _{k \rightarrow \infty} \sum_{i=1}^{k}\| \|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(\alpha_{i} u_{i}\right)}\right\|_{l^{\frac{2}{p}}} \\
& =\sum_{i=1}^{\infty}\| \|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(\alpha_{i} u_{i}\right)}\right\|_{l^{\frac{2}{p}}} \\
& =\sum_{i=1}^{\infty} \alpha_{i}\| \|\left(f_{j}\right)^{p}\left\|_{L^{1}\left(u_{i}\right)}\right\|_{l^{\frac{2}{p}}} \\
& =\sum_{i=1}^{\infty} \alpha_{i}\left(\sum_{j \in \mathbb{N}_{+}}\left\|\left(f_{j}\right)^{p}\right\|_{L^{1}\left(u_{i}\right)}^{\frac{2}{p}}\right)^{\frac{p}{2}} \\
& =\sum_{i=1}^{\infty} \alpha_{i}\left(\sum_{j \in \mathbb{N}_{+}}\left\|f_{j}\right\|_{L^{p}\left(u_{i}\right)}^{2}\right)^{\frac{p}{2}}=\sum_{i=1}^{\infty} \alpha_{i} O_{2}\left(u_{i}\right),
\end{aligned}
$$

which is (W3). We have now shown that in order to prove

$$
\|f\|_{L^{p}\left(w_{B, E}\right)}^{p} \lesssim\left(\sum_{j \in \mathbb{N}_{+}}\left\|f_{j}\right\|_{L^{p}\left(w_{B, E}\right)}^{2}\right)^{\frac{p}{2}}
$$

by lemma 4.3 it suffices to prove

$$
\|f\|_{L^{p}(B)}^{p} \lesssim\left(\sum_{j \in \mathbb{N}_{+}}\left\|f_{j}\right\|_{L^{p}\left(w_{B, E}\right)}^{2}\right)^{\frac{p}{2}}
$$

Lastly we note the immediate fact that if some operators satisfy (W2) and (W4) or (W3) and (W4), then positive linear combinations of these operators also satisfy (W2) and (W4) or (W3) and (W4) respectively.

4.2 Decoupling via Fourier restriction

In this section we will show how to decouple a function using its Fourier restriction and the linear decoupling constant associated to E_{Q}. The main idea is to divide the Fourier support of a function f into disjoint sets A and use the Fourier restrictions of f into A to form a decoupling inequality.

Definition 4.6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a function that has an integrable Fourier transform. Then the Fourier restriction of f to R is defined by

$$
f_{R}(x):=\int_{R} \widehat{f}(\xi) e(x \cdot \xi) \mathrm{d} \xi .
$$

In the above definition we allow that $\widehat{f} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is a distribution that is defined by an integrable function f^{*} with the formula $\phi \mapsto \int \phi f^{*}$. In this case we abuse notation by $\widehat{f}(\xi):=f^{*}(\xi)$.

The Fourier restriction decoupling will work for functions that are Fourier supported in a specific neighbourhood of the paraboloid \mathbb{P}^{n-1}.

Definition 4.7. For a number $r \in] 0,1\left[\right.$ and a cube $Q \subset[0,1]^{n-1}$ the r-neighbourhood of \mathbb{P}^{n-1} above Q is

$$
N_{r}(Q):=\left\{\left(\xi_{1}, \xi_{2}, \ldots \xi_{n-1}, \xi_{1}^{2}+\cdots+\xi_{n-1}^{2}+t\right):\left(\xi_{1}, \ldots, \xi_{n-1}\right) \in Q \text { and } 0 \leq t \leq r\right\} .
$$

Before we tackle the decoupling, we will introduce four lemmas. The first lemma is about breaking the n-dimensional weight function into products of one dimensional weight functions.

Lemma 4.8. Let $B_{R}:=B(c, R) \subset \mathbb{R}^{n}$ and $W \geq 0$. Then

$$
w_{B_{R}, W}(x) \leq \prod_{i=1}^{n}\left(1+\frac{\left|x_{i}-c_{i}\right|}{R}\right)^{-W_{i}}
$$

where $W_{i} \geq 0$ and $\sum_{i=1}^{n} W_{i} \leq W$.
Proof. The proof is a straightforward calculation

$$
\begin{aligned}
w_{B_{R}, W}(x)=\left(1+\frac{|x-c|}{R}\right)^{-W} & \leq\left(1+\frac{\sqrt{\sum_{j=1}^{n}\left(x_{j}-c_{j}\right)^{2}}}{R}\right)^{-\sum_{i=1}^{n} W_{i}} \\
& =\prod_{i=1}^{n}\left(1+\frac{\sqrt{\sum_{j=1}^{n}\left(x_{j}-c_{j}\right)^{2}}}{R}\right)^{-W_{i}} \\
& \leq \prod_{i=1}^{n}\left(1+\frac{\left|x_{i}-c_{i}\right|}{R}\right)^{-W_{i}} .
\end{aligned}
$$

Then we introduce a lemma that allows us to write the weight function as a convolution of two weight functions when the cubes are centered at the origin.

Lemma 4.9. Let $B_{R}:=B(0, R) \subset \mathbb{R}^{n}$ and $E>n$. For $0<R^{\prime} \leq R$ we have

$$
\begin{equation*}
w_{B_{R}, E} *\left(\frac{1}{\left(R^{\prime}\right)^{n}} w_{B_{R^{\prime}}, E}\right)(x) \lesssim w_{B_{R}, E}(x) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{n} w_{B_{R}, E}(x) \lesssim \mathbb{1}_{B_{R}} * w_{B_{R}, E}(x) . \tag{4.11}
\end{equation*}
$$

Proof. We will first prove (4.10). Throughout the proof we will use

$$
\int_{\mathbb{R}^{n}}(1+|z|)^{-E} \mathrm{~d} z \sim 1
$$

which is a consequence of lemma 3.5. The above calculation uses the assumption $E>n$. The idea of the proof is exactly same as in lemma 3.13. Let $x_{R}=\frac{x}{R}$. By a change of variables $z=\frac{y}{R^{\prime}}$ we can write

$$
\begin{aligned}
\frac{w_{B_{R}, E} *\left(\frac{1}{\left(R^{\prime}\right)^{n}} w_{B_{R^{\prime}}, E}\right)(x)}{w_{B_{R}, E}(x)} & =\frac{1}{\left(R^{\prime}\right)^{n}} \int_{\mathbb{R}^{n}}\left(1+\frac{|x-y|}{R}\right)^{-E}\left(1+\frac{|y|}{R^{\prime}}\right)^{-E}\left(1+\frac{|x|}{R}\right)^{E} \mathrm{~d} y \\
& =\int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E}(1+|z|)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z
\end{aligned}
$$

Thus it suffices to prove

$$
\int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E}(1+|z|)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \lesssim 1 .
$$

If $\left|x_{R}\right| \leq 1$, then

$$
\int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E}(1+|z|)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \leq 2^{E} \int_{\mathbb{R}^{n}}(1+|z|)^{-E} \mathrm{~d} z \sim 1 .
$$

We will now assume that $\left|x_{R}\right|>1$ and bisect the integral

$$
\int_{\mathbb{R}^{n}}=\int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right|>\frac{\left|x_{R}\right|}{2}}+\int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right| \leq \frac{\left|x_{R}\right|}{2}}
$$

For the first integral we have

$$
\begin{aligned}
I_{1}:=\int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right|>\frac{\left|x_{R}\right|}{2}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E} & (1+|z|)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \\
& \leq \frac{\left(1+\left|x_{R}\right|\right)^{E}}{\left(1+\frac{\left|x_{R}\right|}{2}\right)^{E}} \int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right|>\frac{\left|x_{R}\right|}{2}}(1+|z|)^{-E} \mathrm{~d} z \\
& \leq 2^{E} \int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right|>\frac{\left|x_{R}\right|}{2}}(1+|z|)^{-E} \mathrm{~d} z \\
& \lesssim \int_{\mathbb{R}^{n}}(1+|z|)^{-E} \mathrm{~d} z \sim 1 .
\end{aligned}
$$

In the second region of integration we have $\left|x_{R}-\frac{z R^{\prime}}{R}\right| \leq \frac{\left|x_{R}\right|}{2}$, which implies

$$
\left|z \frac{R^{\prime}}{R}\right| \geq\left|x_{R}\right|-\left|x_{R}-\frac{z R^{\prime}}{R}\right| \geq \frac{\left|x_{R}\right|}{2} \Leftrightarrow|z| \geq \frac{R}{2 R^{\prime}}\left|x_{R}\right| .
$$

Thus

$$
\begin{aligned}
& I_{2}:=\int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right| \leq \frac{\left|x_{R}\right|}{2}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E}(1+|z|)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \\
& \leq \frac{\left(1+\left|x_{R}\right|\right)^{E}}{\left(1+\frac{R}{2 R^{\prime}}\left|x_{R}\right|\right)^{E}} \int_{\left|x_{R}-\frac{z R^{\prime}}{R}\right| \leq \frac{\left|x_{R}\right|}{2}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E} \mathrm{~d} z \\
& \leq \frac{\left(1+\left|x_{R}\right|\right)^{E}}{\left(\frac{R}{2 R^{\prime}}\left|x_{R}\right|\right)^{E}} \int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E} \mathrm{~d} z \\
&=\left(\frac{2 R^{\prime}}{R}\right)^{E} \frac{\left(1+\left|x_{R}\right|\right)^{E}}{\left(\left|x_{R}\right|\right)^{E}} \int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E} \mathrm{~d} z \\
& \sim\left(\frac{R^{\prime}}{R}\right)^{E} \int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E} \mathrm{~d} z \\
&=\left(\frac{R^{\prime}}{R}\right)^{E}\left(\frac{R}{R^{\prime}}\right)^{n} \int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-u\right|\right)^{-E} \mathrm{~d} u \\
&=\left(\frac{R^{\prime}}{R}\right)^{E-n} \int_{\mathbb{R}^{n}}(1+|v|)^{-E} \mathrm{~d} v \lesssim 1 .
\end{aligned}
$$

We have now shown that for $\left|x_{R}\right|>1$ we have

$$
\int_{\mathbb{R}^{n}}\left(1+\left|x_{R}-\frac{z R^{\prime}}{R}\right|\right)^{-E}(1+|z|)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z=I_{1}+I_{2} \lesssim 2 \sim 1 .
$$

This ends the proof of (4.10).
In order to show (4.11) we again let $x_{R}:=\frac{x}{R}$. A change of variables $z=\frac{y}{R}$ allows us to write

$$
\begin{aligned}
\frac{\mathbb{1}_{B_{R}} * w_{B_{R}, E}(x)}{R^{n} w_{B_{R}, E}(x)} & =\frac{1}{R^{n}} \int_{B_{R}}\left(1+\frac{|x-y|}{R}\right)^{-E}\left(1+\frac{|x|}{R}\right)^{E} \mathrm{~d} y \\
& =\int_{B_{1}}\left(1+\left|x_{R}-z\right|\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \\
& \geq \int_{B_{1}}\left(1+\left|x_{R}\right|+|z|\right)^{-E}\left(1+\left|x_{R}\right|\right)^{E} \mathrm{~d} z \\
& \geq\left(\frac{1+\left|x_{R}\right|}{1+\frac{\sqrt{n}}{2}+\left|x_{R}\right|}\right)^{E} \\
& =\left(1+\frac{\sqrt{n}}{2}\right)^{-E}\left(\frac{1+\left|x_{R}\right|}{1+\frac{\left|x_{R}\right|}{1+\frac{\sqrt{n}}{2}}}\right)^{E}
\end{aligned}
$$

$$
\geq\left(1+\frac{\sqrt{n}}{2}\right)^{-E} \sim 1
$$

Multiplying both sides by $R^{n} w_{B_{R}, E}(x)$ proves (4.11).

Lemma 4.9 immediately yields the following corollary.

Corollary 4.12. Let f be measurable and $B_{R}:=B(0, R)$. For $1 \leq p<\infty$ and $E>n$ we have

$$
\|f\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p} \sim \int_{\mathbb{R}^{n}}\|f\|_{L_{\sharp}^{p}(B(y, R))}^{p} w_{B_{R}, E}(y) \mathrm{d} y .
$$

Proof. By applying Tonelli's theorem, remark 3.4 and (4.10) with $R^{\prime}=R$ we can write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\|f\|_{L_{\sharp}^{p}(B(y, R))}^{p} w_{B_{R}, E}(y) \mathrm{d} y & =\int_{\mathbb{R}^{n}} \frac{1}{R^{n}} \int_{\mathbb{R}^{n}}|f(x)|^{p} \mathbb{1}_{B_{R}}(x-y) w_{B_{R}, E}(y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}^{n}}|f(x)|^{p} \frac{1}{R^{n}} \mathbb{1}_{B_{R}} * w_{B_{R}, E}(x) \mathrm{d} x \\
& \lesssim \int_{\mathbb{R}^{n}}|f(x)|^{p} \frac{1}{R^{n}} w_{B_{R}, E} * w_{B_{R}, E}(x) \mathrm{d} x \\
& \lesssim\|f\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p}
\end{aligned}
$$

For the other direction we apply (4.11) to get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\|f\|_{L_{\sharp}^{p}(B(y, R))}^{p} w_{B_{R}, E}(y) \mathrm{d} y & =\int_{\mathbb{R}^{n}}|f(x)|^{p} \frac{1}{R^{n}} \mathbb{1}_{B_{R}} * w_{B_{R}, E}(x) \mathrm{d} x \\
& \gtrsim\|f\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p}
\end{aligned}
$$

For the following two lemmas we will restrict the dimension to $n=2$. This reduction is justified by the fact that the results will be used only in this case. Furthermore, the reduction should only simplify the notation.

Lemma 4.13. Let $E>n, W \geq 2 E+p+1, l \in \mathbb{N}$ and $R \geq 1$. Assume that B_{R} is cube of side length R that is centered at the origin and let f be a Schwartz function in \mathbb{R}^{2} that satisfies the derivative bound

$$
\begin{equation*}
\left\|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} f\right\|_{\infty} \lesssim_{a, b}\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|\right)^{a} R^{b} \tag{4.14}
\end{equation*}
$$

for some integers $a, b>E$.

Assume also that f is supported in a set S that satisfies $m_{2}(S) \lesssim R^{-\frac{3}{2}}$ and $|f(\xi)| \leq 1$. Then

$$
\begin{equation*}
\left\|\mathcal{F}^{-1} f\right\|_{L^{1}\left(\mathbb{R}^{2}\right)} \lesssim 1+R^{-1}\left|y_{2}\right| \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} f\right| *\left(R^{-2} \mathbb{1}_{B_{R}}\right)\left(y_{1}-x_{1},-x_{2}\right)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y \lesssim w_{B_{R}, E}(x) \tag{4.16}
\end{equation*}
$$

for all $x \in \mathbb{R}^{2}$.
Proof. The first step is to show

$$
\begin{equation*}
\left|\mathcal{F}^{-1} f(x)\right| \lesssim R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-E} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-E} \tag{4.17}
\end{equation*}
$$

An application of this and lemma 3.5 with $n=1$ gives us

$$
\left\|\mathcal{F}^{-1} f\right\|_{L^{1}\left(\mathbb{R}^{2}\right)} \lesssim \int_{\mathbb{R}^{2}} R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}\left(1+R^{-1}\left|y_{2}\right|\right)}\right)^{-E} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-E} \mathrm{~d} x \sim 1+R^{-1}\left|y_{2}\right|
$$

In order to show (4.17) we will consider four cases. If $\left|x_{1}\right|>R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|$ and $\left|x_{2}\right|>R$, then utilizing (4.14) and the fact that f is supported in a set of area $\lesssim R^{-\frac{3}{2}}$, multiple integration by parts gives us

$$
\begin{aligned}
\left|\mathcal{F}^{-1} f(x)\right| & =\left|\int_{\mathbb{R}^{2}} f(\xi) e^{2 \pi i\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)} \mathrm{d} \xi\right| \\
& =\left|\int_{\mathbb{R}^{2}} \partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b}(f(\xi)) \frac{e^{2 \pi i\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)}}{\left(2 \pi i x_{1}\right)^{a}\left(2 \pi i x_{2}\right)^{b}} \mathrm{~d} \xi\right| \\
& \lesssim a, b \frac{1}{\left|x_{1}\right|^{\mid a}\left|x_{2}\right|^{b}}\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|\right)^{a} R^{b} R^{-\frac{3}{2}} \\
& =R^{-\frac{1}{2}} \frac{\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|\right)^{a}}{\left|x_{1}\right|^{a}} R^{-1} \frac{R^{b}}{\left|x_{2}\right|^{b}} \\
& =R^{-\frac{1}{2}}\left(\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-a} R^{-1}\left(\frac{\left|x_{2}\right|}{R}\right)^{-b} \\
& \sim_{a, b} R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-a} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-b} .
\end{aligned}
$$

If $\left|x_{1}\right| \leq R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|$ and $\left|x_{2}\right| \leq R$, then we can directly estimate

$$
\begin{aligned}
\left|\mathcal{F}^{-1} f(x)\right| & =\left|\int_{\mathbb{R}^{2}} f(\xi) e^{2 \pi i\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)} \mathrm{d} \xi\right| \\
& \leq \int_{\mathbb{R}^{2}}|f(\xi)| \mathrm{d} \xi \\
& \lesssim R^{-\frac{3}{2}} \\
& \sim_{a, b} R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-a} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-b} .
\end{aligned}
$$

If $\left|x_{1}\right|>R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|$ and $\left|x_{2}\right| \leq R$, then we integrate by parts with respect to ξ_{1} and estimate ξ_{2} directly to get

$$
\begin{aligned}
&\left|\mathcal{F}^{-1} f(x)\right|=\left|\int_{\mathbb{R}^{2}} f(\xi) e^{2 \pi i\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)} \mathrm{d} \xi\right| \\
&=\left|\int_{\mathbb{R}^{2}} \partial_{\xi_{1}}^{a}(f(\xi)) \frac{e^{2 \pi i\left(x_{1} s+x_{2} t\right)}}{\left(2 \pi i x_{1}\right)^{a}} \mathrm{~d} \xi\right| \\
& \lesssim a \frac{\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|\right)^{a}}{\left|x_{1}\right|^{a}} R^{-\frac{3}{2}} \\
& \lesssim a, b \\
& R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-a} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-b} .
\end{aligned}
$$

Similarly if $\left|x_{1}\right| \leq R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|$ and $\left|x_{2}\right|>R$, then

$$
\begin{aligned}
\left|\mathcal{F}^{-1} f(x)\right| & =\left|\int_{\mathbb{R}^{2}} f(\xi) e^{2 \pi i\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)} \mathrm{d} \xi\right| \\
& =\left|\int_{\mathbb{R}^{2}} \partial_{\xi_{2}}^{b}(f(\xi)) \frac{e^{2 \pi i\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)}}{\left(2 \pi i x_{2}\right)^{b}} \mathrm{~d} \xi\right| \\
& \lesssim b \frac{R^{b}}{\left|x_{2}\right|^{b}} R^{-\frac{3}{2}} \\
& \lesssim a, b R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-a} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-b} .
\end{aligned}
$$

We have proven that

$$
\left|\mathcal{F}^{-1} f(x)\right| \lesssim_{a, b} R^{-\frac{1}{2}}\left(1+\frac{\left|x_{1}\right|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-a} R^{-1}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-b} .
$$

Since $a, b>E$, the above gives (4.17).
Then we prove (4.16). Let $I_{r}=\left[-\frac{r}{2}, \frac{r}{2}\right]$ for $r>0$ and recall that $B_{R}=I_{R} \times I_{R}$. Define functions $\phi_{1}, \phi_{2}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ by $\phi_{1}(z):=R^{-\frac{1}{2}}\left(1+\frac{|z|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-E}$ and $\phi_{2}(z):=$ $R^{-1} w_{I_{R}, E}(z)$. Now (4.17) can be written as

$$
\begin{equation*}
\left|\mathcal{F}^{-1} f(x)\right| \lesssim \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \tag{4.18}
\end{equation*}
$$

Note also that $\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1}=w_{I_{R}, 1-p}\left(y_{2}\right)$. Using (4.18) and lemma 4.9 we get

$$
\begin{align*}
\int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} f\right| & *\left(R^{-2} \mathbb{1}_{B_{R}}\right)\left(y_{1}-x_{1},-x_{2}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \phi_{2} *\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right)\left(-x_{2}\right) \int_{\mathbb{R}^{2}} \phi_{1} *\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right)\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \phi_{2} *\left(\frac{1}{R} w_{I_{R}, E}\right)\left(-x_{2}\right) \int_{\mathbb{R}^{2}} \phi_{1} *\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right)\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \frac{1}{R} w_{I_{R}, E}\left(x_{2}\right) \int_{\mathbb{R}^{2}} \phi_{1} *\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right)\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y . \tag{4.19}
\end{align*}
$$

Next we will show that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \phi_{1} *\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right)\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \lesssim R w_{I_{R}, E}\left(x_{1}\right) . \tag{4.20}
\end{equation*}
$$

We will consider three regions

$$
\begin{aligned}
& U_{1}:=\left\{y:\left|y_{2}\right| \leq R\right\}, \\
& U_{2}:=\bigcup_{k=1}^{R^{\frac{1}{2}}-1}\left\{y: k R<\left|y_{2}\right| \leq(k+1) R\right\} \text { and } \\
& U_{3}:=\bigcup_{k \geq 0}\left\{y: 2^{k} R^{\frac{3}{2}}<\left|y_{2}\right| \leq 2^{k+1} R^{\frac{3}{2}}\right\} .
\end{aligned}
$$

Note that for $a \geq 1$ and $b \geq 0$, we have

$$
\begin{equation*}
\left(1+\frac{b}{a}\right)^{-E} \leq a^{E}(1+b)^{-E} \tag{4.21}
\end{equation*}
$$

In the first region we have

$$
\phi_{1}(z)=R^{-\frac{1}{2}}\left(1+\frac{|z|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-E} \leq 2^{E} R^{-\frac{1}{2}}\left(1+\frac{|z|}{R^{\frac{1}{2}}}\right)^{-E} \sim \frac{1}{R^{\frac{1}{2}}} w_{I_{\sqrt{R}}, E}(z)
$$

for all $z \in \mathbb{R}$. Using this and lemma 4.9 with $R^{\prime}=R^{\frac{1}{2}}$ gives

$$
\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) \lesssim \frac{1}{R} w_{I_{R}, E} *\left(\frac{1}{R^{\frac{1}{2}}} w_{I_{\sqrt{R}}, E}\right)\left(y_{1}-x_{1}\right) \lesssim \frac{1}{R} w_{I_{R}, E}\left(y_{1}-x_{1}\right)
$$

Recall that $W \geq 2 E+p+1>E+p+2$. Now an application of lemma 4.8 with $W_{1}=E$ and $W_{2}=p+2$ and lemma 4.9 with $R^{\prime}=R$ yields

$$
\begin{aligned}
\int_{U_{1}} \phi_{1} *\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) & \left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& =\int_{U_{1}}\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \int_{U_{1}} \frac{1}{R} w_{I_{R}, E}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \leq \int_{U_{1}} \frac{1}{R} w_{I_{R}, E}\left(x_{1}-y_{1}\right) w_{I_{R}, E}\left(y_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{I_{R}, p+2}\left(y_{2}\right) \mathrm{d} y \\
& \leq \int_{\mathbb{R}^{2}} \frac{1}{R} w_{I_{R}, E}\left(x_{1}-y_{1}\right) w_{I_{R}, E}\left(y_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{I_{R}, p+2}\left(y_{2}\right) \mathrm{d} y \\
& =w_{I_{R}, E} *\left(\frac{1}{R} w_{I_{R}, E}\right)\left(x_{1}\right) \int_{\mathbb{R}} w_{I_{R}, 3}\left(y_{2}\right) \mathrm{d} y_{2} \\
& \lesssim w_{I_{R}, E}\left(x_{1}\right) \int_{\mathbb{R}} w_{I_{R}, 3}\left(y_{2}\right) \mathrm{d} y_{2} \sim R w_{I_{R}, E}\left(x_{1}\right) .
\end{aligned}
$$

The last relation is an application of lemma 3.5.
For the second region we note that for each $k \in\left[1, R^{\frac{1}{2}}\left[\right.\right.$ and y such that $k R<\left|y_{2}\right| \leq$ $(k+1) R$, we have

$$
\phi_{1}(z)=R^{-\frac{1}{2}}\left(1+\frac{|z|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-E} \leq R^{-\frac{1}{2}}\left(1+\frac{|z|}{R^{\frac{1}{2}}(2+k)}\right)^{-E} \lesssim R^{-\frac{1}{2}} w_{I_{k \sqrt{R}}, E}(z)
$$

for all $z \in \mathbb{R}$. Therefore lemma 4.9 with $R^{\prime}=k R^{\frac{1}{2}}$ gives

$$
\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) \lesssim \frac{k}{R} w_{I_{R}, E} *\left(\frac{1}{k R^{\frac{1}{2}}} w_{I_{k \sqrt{R}}, E}\right)\left(y_{1}-x_{1}\right) \lesssim \frac{k}{R} w_{I_{R}, E}\left(y_{1}-x_{1}\right) .
$$

Similarly as in the first region we now have

$$
\begin{aligned}
& \int_{U_{2}}\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
&=\sum_{k=1}^{R^{\frac{1}{2}-1}} \int_{k R<\left|y_{2}\right| \leq(k+1) R}\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \sum_{k=1}^{R^{\frac{1}{2}}-1} \frac{k}{R} \int_{k R<\left|y_{2}\right| \leq(k+1) R} w_{I_{R}, E}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \leq \sum_{k=1}^{R^{\frac{1}{2}-1}} \frac{k}{R} w_{I_{R}, E} * w_{I_{R}, E}\left(x_{1}\right) \int_{k R<\left|y_{2}\right| \leq(k+1) R} w_{I_{R}, 3}\left(y_{2}\right) \mathrm{d} y_{2} \\
& \lesssim \sum_{k=1}^{R^{\frac{1}{2}-1}} k w_{I_{R}, E}\left(x_{1}\right) \int_{k R<\left|y_{2}\right| \leq(k+1) R}\left(1+R^{-1}\left|y_{2}\right|\right)^{-3} \mathrm{~d} y_{2} \\
& \leq \sum_{k=1}^{R^{\frac{1}{2}-1}} k w_{I_{R}, E}\left(x_{1}\right) \int_{k R<\left|y_{2}\right| \leq(k+1) R} k^{-3} \mathrm{~d} y_{2} \\
& \sim \sum_{k=1}^{R^{\frac{1}{2}-1}} \frac{R}{k^{2}} w_{I_{R}, E}\left(x_{1}\right) \\
&=R w_{I_{R}, E}\left(x_{1}\right) \sum_{k=1}^{R^{\frac{1}{2}}-1} \frac{1}{k^{2}} \\
& \leq R w_{I_{R}, E}\left(x_{1}\right) \frac{6}{\pi^{2}} \sim R w_{I_{R}, E}\left(x_{1}\right) .
\end{aligned}
$$

Finally, for the last region we note that for each $k \geq 0$ and y such that $2^{k} R^{\frac{3}{2}}<\left|y_{2}\right| \leq$ $2^{k+1} R^{\frac{3}{2}}$, we have

$$
\phi_{1}(z)=R^{-\frac{1}{2}}\left(1+\frac{|z|}{R^{\frac{1}{2}}+R^{-\frac{1}{2}}\left|y_{2}\right|}\right)^{-E} \leq R^{-\frac{1}{2}}\left(1+\frac{|z|}{R\left(1+2^{k}\right)}\right)^{-E} \lesssim R^{-\frac{1}{2}} w_{I_{2^{k}}, ~}, ~(z)
$$

for all $z \in \mathbb{R}$. Lemma 4.9 with $2^{k} R$ as the bigger side length and R as the smaller side length gives that

$$
\mathbb{1}_{I_{R}} *\left(\frac{1}{R} \phi_{1}\right)\left(y_{1}-x_{1}\right) \lesssim R^{-\frac{1}{2}}\left(\frac{1}{R} w_{I_{R}, E}\right) * w_{I_{2^{k} R}, E}\left(y_{1}-x_{1}\right) \lesssim R^{-\frac{1}{2}} w_{I_{2^{k} R}, E}\left(y_{1}-x_{1}\right) .
$$

Since $W \geq 2 E+p+1$, we can apply lemma 4.8 with $W_{1}=E$ and $W_{2}=E+p+1$. This and a similar use of lemma 4.9 as above yields

$$
\begin{aligned}
& \int_{U_{3}}\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
&=\sum_{k=0}^{\infty} \int_{2^{k} R^{\frac{3}{2}<\left|y_{2}\right| \leq 2^{k+1} R^{\frac{3}{2}}}}\left(\frac{1}{R} \mathbb{1}_{I_{R}}\right) * \phi_{1}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \sum_{k=0}^{\infty} \int_{2^{k} R^{\frac{3}{2}<\left|y_{2}\right| \leq 2^{k+1} R^{\frac{3}{2}}}} R^{-\frac{1}{2}} w_{I_{2^{k} R}, E}\left(y_{1}-x_{1}\right) w_{I_{R}, 1-p}\left(y_{2}\right) w_{B_{R}, W}(y) \mathrm{d} y \\
& \leq \sum_{k=0}^{\infty} R^{-\frac{1}{2}} w_{I_{2^{k} R}, E} * w_{I_{R}, E}\left(x_{1}\right) \int_{2^{k} R^{\frac{3}{2}<\left|y_{2}\right| \leq 2^{k+1} R^{\frac{3}{2}}}} w_{I_{R}, E+2}\left(y_{2}\right) \mathrm{d} y_{2} \\
& \lesssim \sum_{k=0}^{\infty} R^{\frac{1}{2}} w_{I_{2^{k} R}, E}\left(x_{1}\right) \int_{2^{k} R^{\frac{3}{2}}<\left|y_{2}\right| \leq 2^{k+1} R^{\frac{3}{2}}}\left(1+\frac{\left|y_{2}\right|}{R}\right)^{-E-2} \mathrm{~d} y_{2} \\
& \leq \sum_{k=0}^{\infty} R^{\frac{1}{2}} w_{I_{2^{k} R}, E}\left(x_{1}\right) 2^{k} R^{\frac{3}{2}}\left(2^{k} R^{\frac{1}{2}}\right)^{-E-2} \\
&=\sum_{k=0}^{\infty} w_{I_{2^{k} R_{R}}, E}\left(x_{1}\right)\left(2^{k}\right)^{-E-1} R^{-\frac{E-2}{2}} \\
& \leq \sum_{k=0}^{\infty} w_{I_{R}, E}\left(x_{1}\right) 2^{E k} 2^{-E k-k} R^{-\frac{E-2}{2}} \\
&=R^{-\frac{E-2}{2}} w_{I_{R}, E}\left(x_{1}\right) \sum_{k=0}^{\infty} 2^{-k} \lesssim R w_{I_{R}, E}\left(x_{1}\right) .
\end{aligned}
$$

In the second to last inequality we used (4.21). This ends the proof of (4.20).
Plugging (4.20) to (4.19) yields

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} f\right| *\left(R^{-2} \mathbb{1}_{B_{R}}\right)\left(y_{1}-x_{1},-x_{2}\right) w_{I_{R}, 1-p}\left(y_{2}\right) & w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim\left(1+\frac{\left|x_{1}\right|}{R}\right)^{-E}\left(1+\frac{\left|x_{2}\right|}{R}\right)^{-E} \\
& =\left(1+\frac{\left|x_{1}\right|}{R}+\frac{\left|x_{2}\right|}{R}+\frac{\left|x_{1} x_{2}\right|}{R}\right)^{-E} \\
& \leq\left(1+\frac{\left|x_{1}\right|}{R}+\frac{\left|x_{2}\right|}{R}\right)^{-E} \\
& \sim\left(1+\frac{|x|}{R}\right)^{-E}=w_{B_{R}, E}(x),
\end{aligned}
$$

which concludes the proof of the lemma.
Lastly, we will give an example of a function that satisfies the conditions of the previous lemma. See lemmas (1.7) and (1.8) for the existence of the functions η and M_{l} in the following lemma.

Lemma 4.22. Let $b, l \in \mathbb{N}$ and let a be an even integer. Let $C>0$ be a constant, $R \geq 1$, $y \in \mathbb{R}$ and let $m_{l, R}$ be a function in \mathbb{R}^{2} that is defined by

$$
m_{l, R}(\xi)=e\left(\xi_{1}^{2} y\right) M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right) \eta\left(R \xi_{2}\right) \eta\left(R^{\frac{1}{2}} \xi_{1}\right)
$$

where η is a compactly supported smooth function that satisfies $|\eta| \leq 1$ and is equal to 1 on $[0,1+C]$ and M_{l} is a compactly supported smooth function that agrees with the function $x \mapsto x^{l}$ on $\left[0, \frac{1}{2}\right]$. Furthermore, we stipulate that $\left|M_{l}\right| \leq 1$ and the derivative bound

$$
\left\|\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} M_{l}\right\|_{\infty} \lesssim_{k} 1
$$

holds for all $k \in \mathbb{N}$.
Then $m_{2}\left(\operatorname{supp}\left(m_{l, R}\right)\right) \lesssim R^{-\frac{3}{2}}$ and

$$
\left\|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} m_{l, R}\right\|_{\infty} \lesssim a, b\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}|y|\right)^{a} R^{b}
$$

uniformly over l.
Proof. The measure of the support arises naturally from the fact that $m_{1}(\operatorname{supp}(\eta)) \sim 1$. We will first look at the more general case where $a \in \mathbb{N}$. We will begin with showing by induction that

$$
\partial_{\xi_{1}}^{a} M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)=\left\{\begin{array}{l}
R^{\frac{a+1}{2}} \xi_{1} \sum_{k=0}^{\frac{a-1}{2}} c_{a, k} M_{l}^{\left(k+\frac{a+1}{2}\right)}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)\left(R \xi_{1}^{2}\right)^{k}, \quad \text { if } a \text { is odd }, \tag{4.23}\\
R^{\frac{a}{2}} \sum_{k=0}^{\frac{a}{2}} c_{a, k} M_{l}^{\left(k+\frac{a}{2}\right)}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)\left(R \xi_{1}^{2}\right)^{k}, \quad \text { if } a \text { is even },
\end{array}\right.
$$

where $c_{a, k}$ are constants.
Denote $A(\xi):=\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}$ and notice that $\partial_{\xi_{1}} A(\xi)=-\frac{R \xi_{1}}{C}$. For the base of our induction we calculate

$$
\partial_{\xi_{1}} M_{l}(A(\xi))=M_{l}^{\prime}(A(\xi))\left(-\frac{R \xi_{1}}{C}\right)=R \xi_{1}\left(-\frac{1}{C} M_{l}^{\prime}(A(\xi))\right) .
$$

Now assume (4.23) when $a=2 r$, where $r \in \mathbb{N}$. Let $\widetilde{a}:=a+1$, then

$$
\begin{aligned}
\partial_{\xi_{1}}^{\widetilde{a}} M_{l}(A(\xi))=\partial_{\xi_{1}}^{2 r+1} M_{l}(A(\xi)) & =\partial_{\xi_{1}}\left(\partial_{\xi_{1}}^{2 r} M_{l}(A(\xi))\right) \\
& =\partial_{\xi_{1}}\left(R^{\frac{a}{2}} \sum_{k=0}^{\frac{a}{2}} c_{a, k} M_{l}^{\left(k+\frac{a}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}\right) \\
& =R^{r} \sum_{k=0}^{r} c_{a, k} \partial_{\xi_{1}}\left(M_{l}^{(k+r)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}\right) .
\end{aligned}
$$

We calculate the derivative inside the sum

$$
\begin{aligned}
\partial_{\xi_{1}}\left(M_{l}^{(k+r)}\right. & \left.(A(\xi))\left(R \xi_{1}^{2}\right)^{k}\right) \\
& =M_{l}^{(k+r+1)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}\left(-\frac{R \xi_{1}}{C}\right)+M_{l}^{(k+r)}(A(\xi)) 2 k R^{k} \xi_{1}^{2 k-1} \\
& =M_{l}^{\left(k+\frac{\tilde{a}-1}{2}+1\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}\left(-\frac{R \xi_{1}}{C}\right)+2 k M_{l}^{\left(k+\frac{\tilde{a}-1}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k-1} R \xi_{1} \\
& =R \xi_{1}\left(\left(-\frac{1}{C}\right) M_{l}^{\left(k+\frac{\tilde{\alpha}+1}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}+2 k M_{l}^{\left(k-1+\frac{\tilde{a}+1}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k-1}\right) .
\end{aligned}
$$

Plugging the above to (4.24) gives us

$$
\begin{aligned}
\partial_{\xi_{1}}^{\tilde{a}} M_{l}(A(\xi)) & =R^{r+1} \xi_{1} \sum_{k=0}^{r} c_{a, k}^{\prime} M_{l}^{\left(k+\frac{\tilde{a}+1}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k} \\
& =R^{\frac{\tilde{a}+1}{2}} \xi_{1} \sum_{k=0}^{\frac{\tilde{\alpha}-1}{2}} c_{a, k}^{\prime} M_{l}^{\left(k+\frac{\tilde{a}+1}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k},
\end{aligned}
$$

as wanted. If we assume (4.23) for $a=2 r+1$, then

$$
\begin{align*}
\partial_{\xi_{1}}^{\tilde{a}} M_{l}(A(\xi)) & =\partial_{\xi_{1}}\left(R^{\frac{a+1}{2}} \xi_{1} \sum_{k=0}^{\frac{a-1}{2}} c_{a, k} M_{l}^{\left(k+\frac{a+1}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}\right) \\
& =R^{\frac{\tilde{\tau}}{\frac{\tilde{\alpha}}{2}}-1} \sum_{k=0} c_{a, k} \partial_{\xi_{1}}\left(M_{l}^{\left(k+\frac{\tilde{\sigma}}{2}\right)}(A(\xi)) R^{k} \xi_{1}^{2 k+1}\right) . \tag{4.25}
\end{align*}
$$

Again we calculate the derivative inside the sum

$$
\begin{aligned}
\partial_{\xi_{1}}\left(M_{l}^{\left(k+\frac{\tilde{\sigma}}{2}\right)}\right. & \left.(A(\xi)) R^{k} \xi_{1}^{2 k+1}\right) \\
& =M_{l}^{\left(k+\frac{\tilde{2}}{2}+1\right)}(A(\xi))\left(-\frac{R \xi_{1}}{C}\right) R^{k} \xi_{1}^{2 k+1}+(2 k+1) M_{l}^{\left(k+\frac{\tilde{\sigma}}{2}\right)}(A(\xi)) R^{k} \xi_{1}^{2 k} \\
& =\left(-\frac{1}{C}\right) M_{l}^{\left(k+1+\frac{\tilde{\tilde{2}}}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k+1}+(2 k+1) M_{l}^{\left(k+\frac{\tilde{\sigma}}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k} \\
& =-\frac{1}{C} G(k+1)+(2 k+1) G(k),
\end{aligned}
$$

where

$$
G(k):=M_{l}^{\left(k+\frac{\tilde{\alpha}}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}
$$

Plugging this to (4.25) we get

$$
\partial_{\xi_{1}}^{\tilde{a}} M_{l}(A(\xi))=R^{\frac{\tilde{a}}{2}} \sum_{k=0}^{\frac{\tilde{a}}{2}-1} c_{a, k}\left(-\frac{1}{C} G(k+1)+(2 k+1) G(k)\right)
$$

Notice that in the first term G we have $1 \leq k+1 \leq \frac{\widetilde{a}}{2}$ and in the second term G we have $0 \leq k \leq \frac{\tilde{a}}{2}-1$ and hence we can write

$$
\partial_{\xi_{1}}^{\tilde{a}} M_{l}(A(\xi))=R^{\frac{\tilde{\alpha}}{2}} \sum_{k=0}^{\frac{\tilde{\tilde{a}}}{2}} c_{a, k}^{\prime} G(k)=R^{\frac{\tilde{\alpha}}{2}} \sum_{k=0}^{\frac{\tilde{\tilde{a}}}{2}} c_{a, k}^{\prime} M_{l}^{\left(k+\frac{\tilde{\tilde{a}}}{2}\right)}(A(\xi))\left(R \xi_{1}^{2}\right)^{k}
$$

which ends the proof of (4.23). Now we go back to the case where a is even. From (4.23) we get

$$
\begin{equation*}
\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)=R^{\frac{a}{2}+b} \sum_{k=0}^{\frac{a}{2}} c_{a, b, k} M_{l}^{\left(k+\frac{a}{2}+b\right)}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)\left(R \xi_{1}^{2}\right)^{k} \tag{4.26}
\end{equation*}
$$

where $c_{a, b, k}$ are constants. Note that $\eta\left(R \xi_{1}^{2}\right) \neq 0$ implies $R \xi_{1}^{2} \lesssim 1$ and in this case the derivative bound of M_{l} and (4.26) assert that

$$
\sup _{\xi \in \mathbb{R}^{2}}\left|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)\right| \lesssim a, b R^{\frac{a}{2}+b} \leq\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}|y|\right)^{a} R^{b} .
$$

A similar calculation shows that

$$
\partial_{\xi_{1}}^{a} e\left(\xi_{1}^{2} y\right)=\left\{\begin{array}{l}
e\left(\xi_{1}^{2} y\right) y^{\frac{a+1}{2}} \xi_{1} \sum_{k=0}^{\frac{a-1}{2}} c_{a, k}\left(\xi_{1}^{2} y\right)^{k}, \text { if } a \text { is odd }, \\
e\left(\xi_{1}^{2} y\right) y^{\frac{a}{2}} \sum_{k=0}^{\frac{a}{2}} c_{a, k}\left(\xi_{1}^{2} y\right)^{k}, \text { if } a \text { is even. }
\end{array}\right.
$$

and hence

$$
\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} e\left(\xi_{1}^{2} y\right)=0 .
$$

If $|y| \leq R$, then for even a we have

$$
\sup _{\xi \in \mathbb{R}^{2}}\left|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} e\left(\xi_{1}^{2} y\right)\right| \lesssim a|y|^{\frac{a}{2}} \leq R^{\frac{a}{2}} \leq\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}|y|\right)^{a} R^{b}
$$

If $|y|>R$, then in the support of η for even a we have

$$
\sup _{\xi \in \mathbb{R}^{2}}\left|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} e\left(\xi_{1}^{2} y\right)\right| \lesssim a\left|y \xi_{1}\right|^{a} \lesssim\left(R^{-\frac{1}{2}}|y|\right)^{a} \leq\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}|y|\right)^{a} R^{b} .
$$

The other two terms are easy

$$
\partial_{\xi_{1}}^{a} \eta\left(R^{\frac{1}{2}} \xi_{1}\right)=\eta^{(a)}\left(R^{\frac{1}{2}} \xi_{1}\right) R^{\frac{a}{2}}, \quad \partial_{\xi_{2}}^{b} \eta\left(R \xi_{2}\right)=\eta^{(b)}\left(R \xi_{2}\right) R^{b}
$$

and

$$
\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} \eta\left(R^{\frac{1}{2}} \xi_{1}\right)=\partial_{\xi_{2}}^{a} \partial_{\xi_{2}}^{b} \eta\left(R \xi_{1}\right)=0 .
$$

Thus

$$
\sup _{\xi \in \mathbb{R}^{2}}\left|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} \eta\left(R^{\frac{1}{2}} \xi_{1}\right)\right| \lesssim b R^{\frac{a}{2}} \leq\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}|y|\right)^{a} R^{b}
$$

and

$$
\sup _{\xi \in \mathbb{R}^{2}}\left|\partial_{\xi_{1}}^{a} \partial_{\xi_{2}}^{b} \eta\left(R \xi_{2}\right)\right| \lesssim_{a} R^{b} \leq\left(R^{\frac{1}{2}}+R^{-\frac{1}{2}}|y|\right)^{a} R^{b}
$$

Now the Leibniz rule for differentiation of products gives us the result.
Now we are ready to get to the meat of this chapter.
Theorem 4.27. Let $C>0$ be a constant, $R \in 4^{\mathbb{N}}$ and $p \geq 2$. Let $\Gamma_{n}(E)$ be a large enough constant depending on E and n. Then the following statement is true for every $W \geq \Gamma_{n}(E)$. For each $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ with an integrable Fourier transform supported in $N_{\frac{C}{R}}\left([0,1]^{n-1}\right)$ and for each cube $B_{R} \subset \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\|f\|_{L^{p}\left(w_{B_{R}, E}\right)} \lesssim \operatorname{Dec}_{n}\left(R^{-1}, p, W\right)\left(\sum_{Q \in \operatorname{Part}_{R^{-\frac{1}{2}}}^{\left([0,1]^{n-1}\right)}}\left\|f_{N_{\frac{C}{R}}(Q)}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \tag{4.28}
\end{equation*}
$$

Again, we will reduce the dimension to $n=2$. However, this should only simplify the notation. In this case $\Gamma_{2}(E)=2 E+p+1$ will suffice.

Proof. By lemma 4.3 it suffices to prove the inequality (4.28) with $\|E g\|_{L^{p}\left(B_{R}\right)}$ on the lefthand side. We may also assume that B_{R} is centered at the origin. Indeed, we translate the center $c_{B_{R}}$ to the origin

$$
\begin{aligned}
\|f\|_{L^{p}\left(B_{R}\right)} & =\left(\int_{B_{R}}|f(x)|^{p} \mathrm{~d} x\right)^{p} \\
& =\left(\int_{B(0, R)}\left|f\left(x+c_{B_{R}}\right)\right|^{p} \mathrm{~d} x\right)^{p}=\left\|\tau_{c_{B_{R}}} f\right\|_{L^{p}\left(w_{B(0, R), E}\right)}
\end{aligned}
$$

where $\tau_{h} f(x):=f(x+h)$, for $h \in \mathbb{R}^{2}$. On the right-hand side of (4.28) we would then have

$$
\begin{equation*}
\operatorname{Dec}_{n}\left(R^{-1}, p, W\right)\left(\sum_{Q \in \operatorname{Part}_{R^{-\frac{1}{2}}}\left([0,1]^{n-1}\right)}\left\|\left(\tau_{c_{B_{R}}} f\right)_{N_{\frac{C}{R}}(Q)}\right\|_{L^{p}\left(w_{B(0, R), E}\right)}^{2}\right)^{\frac{1}{2}} \tag{4.29}
\end{equation*}
$$

Since by lemma 1.21 we have $\widehat{\tau_{c_{B_{R}}} f}=e_{c_{B_{R}}} \widehat{f} \in L^{1}$, the Fourier restriction becomes

$$
\left(\tau_{c_{B_{R}}} f\right)_{N_{\frac{C}{R}}(Q)}(x)=\int_{N_{\frac{C}{R}}(Q)} \widehat{f}(\xi) e\left(\left(x+c_{B_{R}}\right) \cdot \xi\right) \mathrm{d} \xi=f_{N_{\mathbb{R}}(Q)}\left(x+c_{B_{R}}\right)
$$

and translating $B(0, R)$ back to B_{R} gives

$$
\begin{aligned}
\left\|\left(\tau_{c_{B_{R}}} f\right)_{N_{\mathbb{C}}(Q)}\right\|_{L^{p}\left(w_{B(0, R), E}\right)} & =\int_{\mathbb{R}^{2}}\left|f_{N_{\bar{C}}(Q)}\left(x+c_{B_{R}}\right)\right|^{p} w_{B(0, R), E}(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{2}}\left|f_{N_{\mathbb{C}}(Q)}(x)\right|^{p} w_{B_{R}, E}(x) \mathrm{d} x=\left\|f_{N_{\Gamma}(Q)}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}
\end{aligned}
$$

and plugging this to (4.29) gives us the wanted result.
We now assume that B_{R} is centered at the origin. In order to bring out the decoupling constant, we must rewrite the function f by using $E g$ with some function g. By lemma 1.12 we have

$$
f(x)=\int_{\mathbb{R}^{2}} \widehat{f}(\xi) e(x \cdot \xi) \mathrm{d} \xi=\int_{N_{\frac{C}{R}}([0,1])} \widehat{f}(\xi) e(x \cdot \xi) \mathrm{d} \xi
$$

for almost every $x \in \mathbb{R}^{2}$.
A change of variables $\left(\xi_{1}, \xi_{2}\right)=\left(s, s^{2}+t\right)$ allows us to write

$$
\int_{N_{\frac{C}{R}}([0,1])} \widehat{f}(\xi) e(x \cdot \xi) \mathrm{d} \xi=\int_{0}^{1} \int_{0}^{\frac{C}{R}} \widehat{f}\left(s, s^{2}+t\right) e\left(s x_{1}+s^{2} x_{2}\right) e\left(t x_{2}\right) \mathrm{d} t \mathrm{~d} s
$$

Using Taylor expansion we write

$$
e\left(x_{2} t\right)=\sum_{j=0}^{\infty} \frac{\left(i 2 \pi x_{2} t\right)^{j}}{j!}=\sum_{j=0}^{\infty} \frac{(i 2 \pi C)^{j}}{j!}\left(\frac{2 x_{2}}{R}\right)^{j}\left(\frac{R t}{2 C}\right)^{j}
$$

and hence for almost every $x \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
f(x) & =\sum_{j=0}^{\infty} \frac{(i 4 \pi C)^{j}}{j!}\left(\frac{x_{2}}{R}\right)^{j} \int_{0}^{1} \int_{0}^{\frac{C}{R}} \widehat{f}\left(s, s^{2}+t\right) e\left(s x_{1}+s^{2} x_{2}\right)\left(\frac{R t}{2 C}\right)^{j} \mathrm{~d} t \mathrm{~d} s \\
& =\sum_{j=0}^{\infty} \frac{(i 4 \pi C)^{j}}{j!}\left(\frac{x_{2}}{R}\right)^{j} \int_{0}^{1} \int_{0}^{\frac{C}{R}} \widehat{f}\left(s, s^{2}+t\right)\left(\frac{R t}{2 C}\right)^{j} \mathrm{~d} t e\left(s x_{1}+s^{2} x_{2}\right) \mathrm{d} s .
\end{aligned}
$$

The above implies that for almost every $x \in B_{R}$ we can write

$$
|f(x)| \leq \sum_{j=0}^{\infty} \frac{(4 \pi C)^{j}}{j!}\left|E g_{j}(x)\right|,
$$

where

$$
g_{j}(s)=\int_{0}^{\frac{C}{R}} \widehat{f}\left(s, s^{2}+t\right)\left(\frac{R t}{2 C}\right)^{j} \mathrm{~d} t
$$

Then we use the definition of the decoupling constant to write

$$
\begin{aligned}
\|f\|_{L^{p}\left(B_{R}\right)} & \leq \sum_{j=0}^{\infty} \frac{(4 \pi C)^{j}}{j!}\left\|E g_{j}\right\|_{L^{p}\left(B_{R}\right)} \lesssim \sum_{j=0}^{\infty} \frac{(4 \pi C)^{j}}{j!}\left\|E g_{j}\right\|_{L^{p}\left(w_{B_{R}, W}\right)} \\
& \leq \operatorname{Dec}_{2}\left(R^{-1}, p, W\right) \sum_{j=0}^{\infty} \frac{(4 \pi C)^{j}}{j!}\left(\sum_{Q \in \operatorname{Part}_{R^{-\frac{1}{2}}}([0,1])}\left\|E_{Q} g_{j}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

If we can prove

$$
\begin{equation*}
\left\|E_{Q} g_{j}\right\|_{L^{p}\left(w_{B_{R}}, W\right)} \lesssim\left\|f_{N_{R}(Q)}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}, \tag{4.30}
\end{equation*}
$$

for all $j \geq 0$, then we are done. Indeed, then we would have

$$
\begin{aligned}
\|f\|_{L^{p}\left(B_{R}\right)} & \lesssim \operatorname{Dec}_{2}\left(R^{-1}, p, W\right) \sum_{j=0}^{\infty} \frac{(4 \pi C)^{j}}{j!}\left(\sum_{\left.Q \in \operatorname{Part}_{R^{-\frac{1}{2}}(}(00,1]\right)}\left\|E_{Q} g_{j}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{2}\right)^{\frac{1}{2}} \\
& \lesssim \operatorname{Dec}_{2}\left(R^{-1}, p, W\right) \sum_{j=0}^{\infty} \frac{(4 \pi C)^{j}}{j!}\left(\sum_{Q \in \operatorname{Part}_{R^{-\frac{1}{2}}}([0,1])}\left\|f_{N_{C}(Q)}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
& =e^{4 \pi C} \operatorname{Dec}_{2}\left(R^{-1}, p, W\right)\left(\sum_{Q \in \operatorname{Part}_{R^{-\frac{1}{2}}}([0,1])}\left\|f_{N_{C}(Q)}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
& \sim \operatorname{Dec}_{2}\left(R^{-1}, p, W\right)\left(\sum_{Q \in \operatorname{Part}_{R^{-\frac{1}{2}}}([0,1])}\left\|f_{N_{\frac{C}{R}}(Q)}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

We will denote $Q_{0}:=\left[0, R^{-\frac{1}{2}}\right]$. The original Q is of the form $Q=\left[u, u+R^{-\frac{1}{2}}\right]$, for $u \in\left[0,1-R^{-\frac{1}{2}}\right]$. We will now try to write the left-hand side of (4.30) using Q_{0}. We calculate

$$
\begin{aligned}
\left|E_{Q} g_{j}(x)\right| & =\left|\int_{u}^{u+R^{-\frac{1}{2}}} g_{j}(s) e\left(s x_{1}+s^{2} x_{2}\right) \mathrm{d} s\right| \\
& =\left|\int_{0}^{R^{-\frac{1}{2}}} g_{j}(s+u) e\left((s+u) x_{1}+(s+u)^{2} x_{2}\right) \mathrm{d} s\right| \\
& =\left|e\left(u x_{1}+u^{2} x_{2}\right) \int_{0}^{R^{-\frac{1}{2}}} g_{j}(s+u) e\left(s x_{1}+\left(s^{2}+2 s u\right) x_{2}\right) \mathrm{d} s\right| \\
& =\left|\int_{0}^{R^{-\frac{1}{2}}} g_{j}(s+u) e\left(s\left(x_{1}+2 u x_{2}\right)+s^{2} x_{2}\right) \mathrm{d} s\right| \\
& =\left|\int_{Q_{0}} g_{j, u}(s) e\left(s\left(x_{1}+2 u x_{2}\right)+s^{2} x_{2}\right) \mathrm{d} s\right|=\left|E_{Q_{0}} g_{j, u}(L x)\right|
\end{aligned}
$$

where $g_{j, u}(s):=g_{j}(s+u)$ and $L:=\left[\begin{array}{cc}1 & 2 u \\ 0 & 1\end{array}\right]$. Notice that det $L=1$ and $L^{-1}:=\left[\begin{array}{cc}1 & -2 u \\ 0 & 1\end{array}\right]$. For $x \in \mathbb{R}^{n}$, we have $|L x| \leq 3|x|$ and $\left|L^{-1} x\right| \leq 3|x|$. Thus lemma 1.2 gives us that L^{-1} is

3-bilipschitz. Now since B_{R} is centered at the origin, a change of variables gives that

$$
\begin{align*}
\left\|E_{Q} g_{j}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{p} & =\left\|\left(E_{Q_{0}} g_{j, u}\right) \circ L\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{p} \\
& =\int_{\mathbb{R}^{2}}\left|E_{Q_{0}} g_{j, u}(L x)\right|^{p} w_{B_{R}, W}(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{2}}\left|E_{Q_{0}} g_{j, u}(x)\right|^{p} w_{B_{R}, W}\left(L^{-1} x\right) \mathrm{d} x \\
& \sim \int_{\mathbb{R}^{2}}\left|E_{Q_{0}} g_{j, u}(x)\right|^{p} w_{B_{R}, W}(x) \mathrm{d} x=\left\|E_{Q_{0}} g_{j, u}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{p} \tag{4.31}
\end{align*}
$$

and by corollary 4.12 we have that

$$
\begin{equation*}
\left\|E_{Q_{0}} g_{j, u}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{p} \sim \int_{\mathbb{R}^{2}}\left\|E_{Q_{0}} g_{j, u}\right\|_{L_{\sharp}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y . \tag{4.32}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
E_{Q_{0}} g_{j, u}(x) & =\int_{Q_{0}} \int_{0}^{\frac{C}{R}} \widehat{f}\left(s+u,(s+u)^{2}+t\right)\left(\frac{R t}{2 C}\right)^{j} e\left(s x_{1}+s^{2} x_{2}\right) \mathrm{d} t \mathrm{~d} s \\
& =\int_{Q_{0}} \int_{0}^{\frac{C}{R}} \widehat{f}\left(s+u, s^{2}+t+2 s u+u^{2}\right)\left(\frac{R t}{2 C}\right)^{j} e\left(s x_{1}+s^{2} x_{2}\right) \mathrm{d} t \mathrm{~d} s \\
4.33) & =\int_{N_{C}\left(Q_{0}\right)} \widehat{f}\left(\xi_{1}+u, \xi_{2}+2 \xi_{1} u+u^{2}\right)\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{j} e\left(\left(\xi_{1}^{2}-\xi_{2}\right) x_{2}\right) e(x \cdot \xi) \mathrm{d} \xi .
\end{aligned}
$$

We denote $r:=\left(u, u^{2}\right)$ and $L_{r}(\xi):=L^{\top} \xi+r$ and note that

$$
\left(\xi_{1}+u, \xi_{2}+2 \xi_{1} u+u^{2}\right)=L_{r}(\xi) .
$$

We also denote $\widehat{h}(\xi):=\widehat{f} \circ L_{r}(\xi)$, which means that

$$
\widehat{f}\left(\xi_{1}+u, \xi_{2}+2 \xi_{1} u+u^{2}\right)=\widehat{h}(\xi)
$$

Combining this with (4.33) we get

$$
\begin{equation*}
E_{Q_{0}} g_{j, u}(x)=\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi)\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{j} e\left(\left(\xi_{1}^{2}-\xi_{2}\right) x_{2}\right) e(x \cdot \xi) \mathrm{d} \xi \tag{4.34}
\end{equation*}
$$

For $x \in B(y, R)$ we write

$$
e\left(\left(\xi_{1}^{2}-\xi_{2}\right) x_{2}\right)=e\left(\left(\xi_{1}^{2}-\xi_{2}\right) y_{2}\right) e\left(\left(\xi_{1}^{2}-\xi_{2}\right)\left(x_{2}-y_{2}\right)\right)
$$

and another Taylor expansion for $e\left(\left(\xi_{1}^{2}-\xi_{2}\right)\left(x_{2}-y_{2}\right)\right)$ gives

$$
\begin{aligned}
e\left(\left(\xi_{1}^{2}-\xi_{2}\right)\left(x_{2}-y_{2}\right)\right) & =\sum_{k=0}^{\infty} \frac{\left(-i 2 \pi\left(x_{2}-y_{2}\right)\left(\xi_{2}-\xi_{1}^{2}\right)\right)^{k}}{k!} \\
& =\sum_{k=0}^{\infty} \frac{(-i 2 \pi C)^{k}}{k!}\left(\frac{2\left(x_{2}-y_{2}\right)}{R}\right)^{k}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{k}
\end{aligned}
$$

and plugging this into (4.34) yields that for $x \in B(y, R)$ we have

$$
\left|E_{Q_{0}} g_{j, u}(x)\right| \leq \sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!}\left|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi)\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{j+k} e\left(\left(\xi_{1}^{2}-\xi_{2}\right) y_{2}\right) e(x \cdot \xi) \mathrm{d} \xi\right| .
$$

Recall the notation $e(x \cdot \xi)=e_{\xi}(x)$. Taking $L_{\sharp}^{p}(B(y, R))$ norms from both sides gives

$$
\left\|E_{Q_{0}} g_{j, u}\right\|_{L_{\sharp}^{p}(B(y, R))}^{p}
$$

$$
\begin{equation*}
\leq \sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi)\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{j+k} e\left(\left(\xi_{1}^{2}-\xi_{2}\right) y_{2}\right) e_{\xi} \mathrm{d} \xi\right\|_{L_{\sharp}^{p}(B(y, R))}^{p} \tag{4.35}
\end{equation*}
$$

We denote $l:=j+k$. Next we will show that

$$
\begin{aligned}
& \int_{N_{\bar{K}}\left(Q_{0}\right)} \widehat{h}(\xi)\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{l} e\left(\left(\xi_{1}^{2}-\xi_{2}\right) y_{2}\right) e(x \cdot \xi) \mathrm{d} \xi \\
& (4.36)=\int_{N_{\bar{K}}\left(Q_{0}\right)} \widehat{h}(\xi) e\left(\xi_{1}^{2} y_{2}\right) M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right) \eta\left(R \xi_{2}\right) \eta\left(R^{\frac{1}{2}} \xi_{1}\right) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi,
\end{aligned}
$$

where η is a compactly supported smooth function that is equal to 1 on $[0,1+C]$ and M_{l} is a compactly supported smooth function that agrees with the function $x \mapsto x^{l}$ on $\left[0, \frac{1}{2}\right]$ and satisfies the derivative bound

$$
\left\|\frac{\mathrm{d}^{a}}{\mathrm{~d} x^{a}} M_{l}\right\|_{\infty} \lesssim_{a} 1 .
$$

Recall lemma 1.8 for the existence of such functions M_{l}. Note that if $\xi \in N_{\frac{C}{R}}\left(Q_{0}\right)=$ $\left\{\xi: \xi_{1} \in\left[0, R^{-\frac{1}{2}}\right], \xi_{1}^{2} \leq \xi_{2} \leq \xi_{1}^{2}+\frac{C}{R}\right\}$, then we have

$$
0 \leq \frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C} \leq \frac{1}{2}
$$

$$
0 \leq R^{\frac{1}{2}} \xi_{1} \leq 1
$$

and

$$
0 \leq R \xi_{2} \leq R \xi_{1}^{2}+C \leq 1+C
$$

This means that we are able to replace $\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)^{l}$ with $M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right)$ and insert the function $\eta\left(R \xi_{2}\right) \eta\left(R^{\frac{1}{2}} \xi_{1}\right)$ into the integrand on the left-hand side of (4.36). Then writing

$$
e\left(\left(\xi_{1}^{2}-\xi_{2}\right) y_{2}\right) e(x \cdot \xi)=e\left(\xi_{1}^{2} y_{2}\right) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right)
$$

gives us (4.36).
Denote $m_{l}(\xi):=e\left(\xi_{1}^{2} y_{2}\right) M_{l}\left(\frac{R\left(\xi_{2}-\xi_{1}^{2}\right)}{2 C}\right) \eta\left(R \xi_{2}\right) \eta\left(R^{\frac{1}{2}} \xi_{1}\right)$. Plugging (4.36) to (4.35) yields

$$
\left\|E_{Q_{0}} g_{j, u}\right\|_{L_{\sharp}^{p}(B(y, R))}^{p} \leq \sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{\sharp, x}^{p}(B(y, R))}^{p}
$$

where the extra x on the subscript of the norm on the right-hand side indicates that the integration is done over the variable x. Plugging this to (4.32) and applying monotone convergence theorem gives

$$
\begin{aligned}
& \left\|E_{Q_{0}} g_{j, u}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{p} \\
& \sim \int_{\mathbb{R}^{n}}\left\|E_{Q_{0}} g_{j, u}\right\|_{L_{\sharp}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \\
& \quad \leq \int_{\mathbb{R}^{2}} \sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{\sharp, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!} \int_{\mathbb{R}^{2}}\left\|\int_{N_{\overparen{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{t, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \tag{4.37}
\end{equation*}
$$

Denote $H:=h_{N_{\frac{C}{R}}}\left(Q_{0}\right)$. We aim to prove

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{\sharp, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \lesssim\|H\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p}, \tag{4.38}
\end{equation*}
$$

uniformly over $l \geq 0$. We start by applying Fourier inversion theorem, Fubini's theorem and a change of variables to write

$$
\begin{aligned}
\int_{N_{\mathbb{C}}\left(Q_{0}\right)} & \widehat{h} \\
& =\int_{N_{C}(\xi)}\left(m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right. \\
& =\int_{\mathbb{R}^{2}} \int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \int_{\mathbb{R}^{2}} \widehat{m_{l}}(\gamma) e\left(\gamma \cdot\left(\left(x_{1}, x_{2}-y_{2}\right)+\gamma\right)\right) \mathrm{d} \xi \widehat{m_{l}}(\gamma) \mathrm{d} \gamma \\
& =\int_{\mathbb{R}^{2}} H\left(\left(x_{1}, x_{2}-y_{2}\right)+\gamma\right) \widehat{m_{l}}(\gamma) \mathrm{d} \gamma \\
& =\int_{\mathbb{R}^{2}} H\left(\left(x_{1}, x_{2}-y_{2}\right)-\gamma\right) \widehat{m_{l}}(-\gamma) \mathrm{d} \gamma \\
& =\int_{\mathbb{R}^{2}} H\left(\left(x_{1}, x_{2}-y_{2}\right)-\gamma\right) \mathcal{F}^{-1} m_{l}(\gamma) \mathrm{d} \gamma \\
& =H * \mathcal{F}^{-1} m_{l}\left(x_{1}, x_{2}-y_{2}\right) .
\end{aligned}
$$

Now we have

$$
\begin{align*}
\int_{\mathbb{R}^{2}} \| \int_{N_{\mathbb{R}}\left(Q_{0}\right)} & \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi \|_{L_{\sharp, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \\
& \left.=\int_{\mathbb{R}^{2}} \| H * \mathcal{F}^{-1} m_{l}\left(x_{1}, x_{2}-y_{2}\right)\right) \|_{L_{\sharp, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|H * \mathcal{F}^{-1} m_{l}\left(x_{1}, x_{2}-y_{2}\right)\right|^{p} \mathbb{1}_{B(y, R)}(x) \mathrm{d} x R^{-2} w_{B_{R}, W}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|H * \mathcal{F}^{-1} m_{l}\left(x_{1}, x_{2}-y_{2}\right)\right|^{p} \mathbb{1}_{B_{R}}(x-y) \mathrm{d} x R^{-2} w_{B_{R}, W}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|H * \mathcal{F}^{-1} m_{l}(x)\right|^{p} \mathbb{1}_{B_{R}}\left(x_{1}-y_{1}, x_{2}\right) \mathrm{d} x R^{-2} w_{B_{R}, W}(y) \mathrm{d} y . \tag{4.39}
\end{align*}
$$

The last equality above is due to change of variables. Hölder inequality with p and $p^{\prime}:=\frac{p}{p-1}$ as conjugates gives

$$
\begin{aligned}
\left|H * \mathcal{F}^{-1} m_{l}(x)\right| & \leq \int_{\mathbb{R}^{2}}|H(x-\eta)|\left|\mathcal{F}^{-1} m_{l}(\eta)\right| \mathrm{d} \eta \\
& =\int_{\mathbb{R}^{2}}|H(x-\eta)|\left|\mathcal{F}^{-1} m_{l}(\eta)\right|^{\frac{1}{p}}\left|\mathcal{F}^{-1} m_{l}(\eta)\right|^{\frac{1}{p}} \mathrm{~d} \eta
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\int_{\mathbb{R}^{2}}|H(x-\eta)|^{p}\left|\mathcal{F}^{-1} m_{l}(\eta)\right| \mathrm{d} \eta\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} m_{l}(\eta)\right|\right)^{\frac{1}{p^{\prime}}} \\
& =\left(\int_{\mathbb{R}^{2}}|H(x-\eta)|^{p}\left|\mathcal{F}^{-1} m_{l}(\eta)\right| \mathrm{d} \eta\right)^{\frac{1}{p}}\left\|\mathcal{F}^{-1} m_{l}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}^{\frac{p-1}{p}}
\end{aligned}
$$

Now (4.15) from lemma 4.13 gives

$$
\begin{aligned}
\left|H * \mathcal{F}^{-1} m_{l}(x)\right|^{p} & \leq|H|^{p} *\left|\mathcal{F}^{-1} m_{l}\right|(x)\left\|\mathcal{F}^{-1} m_{l}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}^{p-1} \\
& \lesssim|H|^{p} *\left|\mathcal{F}^{-1} m_{l}\right|(x)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} .
\end{aligned}
$$

Plugging this to (4.39) and applying Tonelli's theorem results in

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{\sharp, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \\
& \quad \leq \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}|H|^{p} *\left|\mathcal{F}^{-1} m_{l}\right|(x) \mathbb{1}_{B_{R}}\left(x_{1}-y_{1}, x_{2}\right) \mathrm{d} x R^{-2}\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y
\end{aligned}
$$

$$
\begin{align*}
= & \int_{\mathbb{R}^{2}}|H(\eta)|^{p} \tag{4.40}\\
& \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} m_{l}(x-\eta)\right| R^{-2} \mathbb{1}_{B_{R}}\left(x_{1}-y_{1}, x_{2}\right)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y \mathrm{~d} x \mathrm{~d} \eta
\end{align*}
$$

By change of variables $\eta^{\prime}=x-\eta$, symmetry of $\mathbb{1}_{B_{R}}$ and Tonelli's theorem, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} m_{l}(x-\eta)\right| R^{-2} \mathbb{1}_{B_{R}}\left(x_{1}-y_{1}, x_{2}\right)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y \mathrm{~d} x \\
= & \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} m_{l}\left(\eta^{\prime}\right)\right| R^{-2} \mathbb{1}_{B_{R}}\left(\eta-\left(y_{1}, 0\right)+\eta^{\prime}\right)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y \mathrm{~d} \eta^{\prime} \\
= & \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} m_{l}\left(\eta^{\prime}\right)\right| R^{-2} \mathbb{1}_{B_{R}}\left(-\eta+\left(y_{1}, 0\right)-\eta^{\prime}\right)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y \mathrm{~d} \eta^{\prime} \\
= & \int_{\mathbb{R}^{2}}\left|\mathcal{F}^{-1} m_{l}\right| *\left(R^{-2} \mathbb{1}_{B_{R}}\right)\left(y_{1}-\eta_{1},-\eta_{2}\right)\left(1+R^{-1}\left|y_{2}\right|\right)^{p-1} w_{B_{R}, W}(y) \mathrm{d} y \\
\lesssim & w_{B_{R}, E}(\eta),
\end{aligned}
$$

where the last line is justified by lemma 4.13. Note that here we also needed lemma 4.22 to know that the assumptions of lemma 4.13 are satisfied. Plugging the above to (4.40)
gives us

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{\sharp, x}^{p}(B(y, R))}^{p} & w_{B_{R}, W}(y) \mathrm{d} y \\
& \lesssim \int_{\mathbb{R}^{2}}|H(\eta)|^{p} w_{B_{R}, E}(\eta) \mathrm{d} \eta,
\end{aligned}
$$

which is exactly (4.38).
Now using (4.31), (4.37) and (4.38) we can write

$$
\begin{aligned}
& \left\|E_{Q} g_{j}\right\|_{L^{p}\left(w_{B_{R}, W}\right)}^{p} \\
& \quad \lesssim \sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!} \int_{\mathbb{R}^{2}}\left\|\int_{N_{\frac{C}{R}}\left(Q_{0}\right)} \widehat{h}(\xi) m_{l}(\xi) e\left(\xi_{1} x_{1}+\xi_{2}\left(x_{2}-y_{2}\right)\right) \mathrm{d} \xi\right\|_{L_{\sharp, x}^{p}(B(y, R))}^{p} w_{B_{R}, W}(y) \mathrm{d} y \\
& \quad \lesssim \sum_{k=0}^{\infty} \frac{(4 \pi C)^{k}}{k!}\|H\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p} \\
& \quad=e^{4 \pi C}\left\|h_{N_{\frac{C}{R}\left(Q_{0}\right)}}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p} \\
& \\
& \sim\left\|h_{N_{\frac{C}{R}\left(Q_{0}\right)}}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{p}
\end{aligned}
$$

All that is left from the proof of (4.30) and simultaneously the theorem is

$$
\left\|h_{N_{\frac{C}{R}\left(Q_{0}\right)}}\right\|_{L^{p}\left(w_{B_{R}, E}\right)} \sim\left\|f_{N_{\frac{C}{R}(Q)}}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}
$$

We translate Q_{0} back to Q

$$
\begin{aligned}
h_{N_{\frac{C}{R}\left(Q_{0}\right)}}(x) & =\int_{N_{\frac{C}{R}\left(Q_{0}\right)}} \widehat{h}(\xi) e(x \cdot \xi) \mathrm{d} \xi \\
& =\int_{0}^{R^{-\frac{1}{2}}} \int_{0}^{\frac{C}{R}} \widehat{h}\left(s, s^{2}+t\right) e\left(x \cdot\left(s, s^{2}+t\right)\right) \mathrm{d} t \mathrm{~d} s \\
& =\int_{u}^{u+R^{-\frac{1}{2}}} \int_{0}^{\frac{C}{R}} \widehat{h}\left(s-u,(s-u)^{2}+t\right) e\left(x \cdot\left(s-u,(s-u)^{2}+t\right)\right) \mathrm{d} t \mathrm{~d} s \\
& =\int_{N_{\frac{C}{R}(Q)}} \widehat{h}\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right) e\left(x \cdot\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right)\right) \mathrm{d} \xi \\
& =e\left(x \cdot\left(-u, u^{2}\right)\right) \int_{N_{\frac{C}{R}(Q)}} \widehat{h}\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right) e\left(x \cdot\left(\xi_{1}, \xi_{2}-2 u \xi_{1}\right)\right) \mathrm{d} \xi
\end{aligned}
$$

$$
\begin{align*}
& =e\left(x \cdot\left(-u, u^{2}\right)\right) \int_{N_{C}(Q)} \widehat{h}\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right) e\left(\left(x_{1}-2 u x_{2}, x_{2}\right) \cdot \xi\right) \mathrm{d} \xi \\
& =e\left(x \cdot\left(-u, u^{2}\right)\right) \int_{N_{\frac{C}{R}(Q)}} \widehat{h}\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right) e\left(L^{-1} x \cdot \xi\right) \mathrm{d} \xi \tag{4.41}
\end{align*}
$$

Recall that $L=\left[\begin{array}{cc}1 & 2 u \\ 0 & 1\end{array}\right], r=\left(u, u^{2}\right)$ and $L_{r}(\xi)=L^{\top} \xi+r$. Thus

$$
\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right)=\left(L^{-1}\right)^{\top} \xi-\left(L^{-1}\right)^{\top} r=L_{r}^{-1}(\xi) .
$$

Since we also defined $\widehat{h}=\widehat{f} \circ L_{r}$, we now have

$$
\widehat{h}\left(\xi_{1}-u, \xi_{2}-2 u \xi_{1}+u^{2}\right)=\widehat{f} \circ L_{r} \circ L_{r}^{-1}(\xi)=\widehat{f}(\xi)
$$

Combining the above with (4.41) we get

$$
\left|h_{N_{\frac{C}{R}\left(Q_{0}\right)}}(x)\right|=\left|\int_{N_{\frac{C}{R}(Q)}} \widehat{f}(\xi) e\left(L^{-1} x \cdot \xi\right) \mathrm{d} \xi\right|=\left|f_{N_{\frac{C}{R}(Q)}}\left(L^{-1} x\right)\right|
$$

and a familiar calculation using the fact that L is 3 -bilipschitz and B_{R} is centered at the origin gives

$$
\left\|h_{N_{\frac{C}{R}\left(Q_{0}\right)}}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}=\left\|f_{N_{\frac{C}{R}(Q)}} \circ L^{-1}\right\|_{L^{p}\left(w_{B_{R}, E}\right)} \sim\left\|f_{N_{\frac{C}{k}(Q)}}\right\|_{L^{p}\left(w_{B_{R}, E}\right)}
$$

as needed. This concludes the proof of theorem 4.27.

Chapter 5

Linear versus multilinear decouplings

We will compare linear and multilinear decouplings. In order to do this, we need to present the multilinear decoupling constant. We will see that it is straightforward to dominate this new decoupling constant with the linear decoupling constant. Naturally, one may ponder whether some kind of reverse inequality exists and the main aspiration of this chapter is to prove that such an inequality does indeed exist. The reverse inequality turns out to be possible, if the lower dimensional linear decoupling constant is under control. The second section is dedicated to estimating $\|E g\|_{L^{p}\left(w_{B, E}\right)}$ when this condition holds. The greatest motivator for the reverse inequality is that it provides an important step in the proof of the l^{2} decoupling theorem.

5.1 Multilinear decoupling constant

In this section we will introduce the multilinear decoupling constant and show the easier decoupling constant inequality which indicates that the linear decoupling constant dominates the multilinear one.

Definition 5.1. For $p \geq 2, \delta \in 4^{-\mathbb{N}}, m \in \mathbb{N}_{+}$and $0<\nu<1$, let $\operatorname{Dec}_{n}(\delta, p, \nu, m, E)=$ $\operatorname{Dec}(\delta, p, \nu, m, E)$ be the smallest constant that satisfies

$$
\begin{align*}
\left(\sum_{\Delta \in \operatorname{Part}_{\mu^{-1}}(B)}\right. & \left.\left(\prod_{i=1}^{n}\left\|E_{Q_{i}} g\right\|_{L^{p}\left(w_{\Delta, 10 E)}\right)}^{p}\right)^{\frac{1}{n}}\right)^{\frac{1}{p}} \\
& \leq \operatorname{Dec}(\delta, p, \nu, m, E)\left(\prod_{i=1}^{n} \sum_{q_{i} \in \operatorname{Part}_{\sqrt{\delta}}\left(Q_{i}\right)}\left\|E_{q_{i}} g\right\|_{L^{p}\left(w_{B, E}\right)}^{2}\right)^{\frac{1}{2 n}} \tag{5.2}
\end{align*}
$$

for each cube B with side length δ^{-1} and all ν-transverse cubes $Q_{i} \subset[0,1]^{n-1}$ with equal side lengths μ satisfying $\mu \geq \delta^{2^{-m}}$.

Notice that in addition to the decoupling, the scale of the cube related to the weight function is inflated similarly as in the cube inflation inequality of theorem 3.15. Notice also that the lower bound on the size of μ is more significant than the minimal lower bound $\mu \geq \sqrt{\delta}$ that is required for the partition $\operatorname{Part}_{\sqrt{\delta}}\left(Q_{i}\right)$ to make sense. The lower bound $\mu \geq \delta^{2^{-m}}$ is used later in the proof of the l^{2} decoupling theorem, where a similar estimation is done for $\operatorname{Part}_{\delta^{2}-m}\left(Q_{i}\right)$. This restriction is not needed in the results of this thesis.

We will show that when the parameters δ, p, ν, m, E and μ satisfy the assumptions from definition 5.1, we have that

$$
\begin{equation*}
\operatorname{Dec}(\delta, p, \nu, m, E) \lesssim \operatorname{Dec}\left(\frac{\delta}{\mu^{2}}, p, 3 E\right) \tag{5.3}
\end{equation*}
$$

The sequence version of the generalized Hölder inequality from theorem 1.4 with

$$
p_{i}=\left\{\begin{array}{l}
p_{i}=1, \quad 1 \leq i \leq n \\
p_{i}=\frac{1}{n}, \quad i=n+1
\end{array}\right.
$$

applied to the sequences $b_{j}:=a_{k, j}$ gives us

$$
\begin{equation*}
\sum_{k=1}^{K} \prod_{j=1}^{n} a_{k, j}^{\frac{1}{n}}=\left\|\prod_{j=1}^{n} b_{j}\right\|_{l^{\frac{1}{n}}}^{\frac{1}{n}} \leq \prod_{j=1}^{n}\left\|b_{j}\right\|_{l^{1}}^{\frac{1}{n}}=\prod_{j=1}^{n}\left(\sum_{k=1}^{K} a_{k, j}\right)^{\frac{1}{n}} \tag{5.4}
\end{equation*}
$$

for $0 \leq a_{k, j}<\infty$. With the assumptions of definition 5.1 we have

$$
\begin{equation*}
\left\|E_{Q_{i}} g\right\|_{L^{p}\left(w_{B, E}\right)} \leq \operatorname{Dec}\left(\frac{\delta}{\mu^{2}}, p, 3 E\right)\left(\sum_{q_{i} \in \operatorname{Part}_{\sqrt{\delta}}\left(Q_{i}\right)}\left\|E_{q_{i}} g\right\|_{L^{p}\left(w_{B, E}\right)}^{2}\right)^{\frac{1}{2}} \tag{5.5}
\end{equation*}
$$

A detailed proof for the above linear decoupling inequality can be found in [14] chapter 5 proposition 5.2.3. Now applying (5.4), lemma 3.12 and (5.5) we get

$$
\begin{aligned}
&\left(\sum_{\Delta \in \operatorname{Part}_{\mu^{-1}}(B)}\left(\prod_{i=1}^{n}\left\|E_{Q_{i}} g\right\|_{L^{p}\left(w_{\Delta, 10 E}\right)}^{p}\right)^{\frac{1}{n}}\right)^{\frac{1}{p}} \\
& \leq\left(\prod_{i=1}^{n}\left(\sum_{\Delta \in \operatorname{Part}_{\mu^{-1}}(B)}\left\|E_{Q_{i}} g\right\|_{L^{p}\left(w_{\Delta, 10 E}\right)}^{p}\right)^{\frac{1}{n}}\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\prod_{i=1}^{n}\left(\left\|E_{Q_{i}} g\right\|_{L^{p}\left(\sum_{\Delta \in \operatorname{Part}_{\mu^{-1}}(B)} w_{\Delta, 10 E)}\right.}^{p}\right)^{\frac{1}{p}}\right)^{\frac{1}{n}} \\
& \lesssim\left(\prod_{i=1}^{n}\left\|E_{Q_{i}} g\right\|_{L^{p}\left(w_{B, 10 E)}\right.}\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{i=1}^{n} \operatorname{Dec}\left(\frac{\delta}{\mu^{2}}, p, 3 E\right)\left(\sum_{q_{i} \in \operatorname{Part}_{\sqrt{\delta}\left(Q_{i}\right)}}\left\|E_{q_{i}} g\right\|_{L^{p}\left(w_{B, 10 E}\right)}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{n}} \\
& =\operatorname{Dec}\left(\frac{\delta}{\mu^{2}}, p, 3 E\right)\left(\prod_{i=1}^{n} \sum_{q_{i} \in \operatorname{Part}_{\sqrt{\delta}\left(Q_{i}\right)}}\left\|E_{q_{i}} g\right\|_{L^{p}\left(w_{B, 10 E}\right)}^{2}\right)^{\frac{1}{2 n}}
\end{aligned}
$$

which gives us (5.3). This fact implies that the multilinear decoupling constant is well defined.

5.2 Estimating $\|E g\|_{L^{p}\left(w_{B, E}\right)}$ when the lower dimensional decoupling constant is under control

This section is devoted to a collection of inequalities that we will use in the final section to prove the reverse decoupling constant inequality. Before we present these inequalities, we will introduce two lemmas. The first lemma will aid in discovering ν-transverse cubes.
Lemma 5.6. If $P_{j}=\left(\xi^{(j)},\left\|\xi^{(j)}\right\|^{2}\right) \in \mathbb{P}^{n-1}$ for $j=1, \ldots, n$, then the volume V_{P} of a parallelepiped spanned by the unit normal vectors $n\left(P_{j}\right)$ is comparable to the volume V_{s} of the $(n-1)$-simplex with vertices $\xi^{(j)} \in[0,1]^{n-1}$. In particular, we have

$$
\frac{1}{(4 n+1)^{\frac{n}{2}}} V_{s} \leq \frac{1}{2^{n-1}(n-1)!} V_{P} \leq V_{s}
$$

Proof. We refer to [16] for the proof of the fact that the volume of an $(n-1)$-simplex is given by

$$
V_{s}=\frac{1}{(n-1)!}\left|\operatorname{det}\left(\left[\begin{array}{ccc}
\xi^{(1)} & \cdots & \xi^{(n)} \\
1 & \cdots & 1
\end{array}\right]\right)\right| .
$$

The volume of the parallelepiped is

$$
V_{P}=\left|\operatorname{det}\left(\left[n\left(P_{1}\right) \cdots n\left(P_{n}\right)\right]\right)\right|=\left|\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{2 \xi^{(1)}}{c_{1}} & \cdots & -\frac{2 \xi^{(n)}}{c_{n}} \\
\frac{1}{c_{1}} & \cdots & \frac{1}{c_{n}}
\end{array}\right]\right)\right|
$$

where $c_{j}=\sqrt{4\left\|\xi^{(j)}\right\|^{2}+1}$ for every $j=1, \ldots, n$. First we can extract the multiplier -2 out of the first $n-1$ rows and get

$$
V_{P}=\left|\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{2 \xi^{(1)}}{c_{1}} & \cdots & -\frac{2 \xi^{(n)}}{c_{n}} \\
\frac{1}{c_{1}} & \cdots & \frac{1}{c_{n}}
\end{array}\right]\right)\right|=2^{n-1}\left|\operatorname{det}\left(\left[\begin{array}{ccc}
\frac{\xi^{(1)}}{c_{1}} & \cdots & \frac{\xi^{(n)}}{c_{n}} \\
\frac{1}{c_{1}} & \cdots & \frac{1}{c_{n}}
\end{array}\right]\right)\right| .
$$

Then we extract the constants c_{j} out of the columns and derive that

$$
V_{P}=2^{n-1}\left|\operatorname{det}\left(\left[\begin{array}{ccc}
\xi^{(1)} & \cdots & \xi^{(n)} \\
1 & \cdots & 1
\end{array}\right]\right)\right| \prod_{j=1}^{n} \frac{1}{c_{j}}=2^{n-1}(n-1)!V_{s} \prod_{j=1}^{n} \frac{1}{c_{j}} .
$$

Since $\xi^{(j)} \in[0,1]^{n-1}$, we have $1 \leq c_{j} \leq \sqrt{4 n+1}$ for every $j=1, \ldots, n$. Thus

$$
\frac{2^{n-1}(n-1)!}{(4 n+1)^{\frac{n}{2}}} V_{s} \leq V_{P} \leq 2^{n-1}(n-1)!V_{s}
$$

and dividing the inequalities with $2^{n-1}(n-1)$! gives us the wanted result.
The following lemma can be seen as manifestation of the uncertainty principle, which asserts that the extension operator is constant at scale K when the frequency is supported on a scale K^{-1}.

Lemma 5.7. Let B_{K} be a cube of side length K and $\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{n-1}\right)$. Then

$$
\sup _{x \in B_{K}}\left|E_{\alpha} g(x)\right| \lesssim\left(\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(x)\right|^{p} w_{B_{K}, 10 E}(x) \mathrm{d} x\right)^{\frac{1}{p}} .
$$

Proof. By lemma 1.7 there exists a Schwartz function f that is 1 on the cube $B(0,3 n)$. Let φ be the inverse Fourier transform of f. Now we have that $\widehat{\varphi}=1$ on $B(0,3 n)$. We define

$$
\varphi_{K}(x)=\frac{1}{K^{n}} \varphi\left(\frac{x}{K}\right) e\left(x \cdot z_{\alpha}\right)=\frac{1}{\left|B_{K}\right|} \varphi\left(\frac{x}{K}\right) e\left(x \cdot z_{\alpha}\right),
$$

where $z_{\alpha}=\left(c_{\alpha},\left|c_{\alpha}\right|^{2}\right)$ and c_{α} is the center of the cube α. Now by change of variables

$$
\begin{aligned}
\widehat{\varphi_{K}}(\xi) & =\int_{\mathbb{R}^{n}} \varphi_{K}(x) e(-x \cdot \xi) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \frac{1}{K^{n}} \varphi\left(\frac{x}{K}\right) e\left(x \cdot z_{\alpha}\right) e(-x \cdot \xi) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \varphi(y) e\left(K y \cdot z_{\alpha}\right) e(-K y \cdot \xi) \mathrm{d} y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{n}} \varphi(y) e\left(-K y \cdot\left(\xi-z_{\alpha}\right)\right) \mathrm{d} y \\
& =\widehat{\varphi}\left(K\left(\xi-z_{\alpha}\right)\right)=\widehat{\varphi}\left(\frac{\xi-z_{\alpha}}{K^{-1}}\right) .
\end{aligned}
$$

Hence $\widehat{\varphi}=1$ on $B\left(z_{\alpha}, 3 n K^{-1}\right)$.
We arque that the support of the Fourier transfrom of $E_{\alpha} g$ is in $B\left(z_{\alpha}, 3 n K^{-1}\right)$. Let $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. We apply Fubini's theorem and Fourier inversion theorem to calculate that

$$
\begin{aligned}
\left\langle\widehat{E_{\alpha}} g, \phi\right\rangle=\left\langle E_{\alpha} g, \widehat{\phi}\right\rangle & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n-1}} \mathbb{1}_{\alpha}(\xi) g(\xi) e\left(x \cdot\left(\xi,|\xi|^{2}\right)\right) \widehat{\phi}(x) \mathrm{d} \xi \mathrm{~d} x \\
& =\int_{\mathbb{R}^{n-1}} \mathbb{1}_{\alpha}(\xi) g(\xi) \int_{\mathbb{R}^{n}} \widehat{\phi}(x) e\left(x \cdot\left(\xi,|\xi|^{2}\right)\right) \mathrm{d} x \mathrm{~d} \xi \\
& =\int_{\mathbb{R}^{n-1}} \mathbb{1}_{\alpha}(\xi) g(\xi) \phi\left(\xi,|\xi|^{2}\right) \mathrm{d} \xi .
\end{aligned}
$$

Now we see that

$$
\operatorname{supp}\left(\widehat{E_{\alpha} g}\right) \subset\left\{\left(\xi,|\xi|^{2}\right) \in \mathbb{R}^{n}: \xi \in \alpha\right\}
$$

For $\xi \in \alpha$ we have

$$
\left|\left(\xi,|\xi|^{2}\right)-z_{\alpha}\right| \leq\left|\xi-c_{\alpha}\right|+\left||\xi|^{2}-\left|c_{\alpha}\right|^{2}\right| \leq \sqrt{n-1} K^{-1}+\left||\xi|^{2}-\left|c_{\alpha}\right|^{2}\right|
$$

and

$$
\begin{aligned}
\left||\xi|^{2}-\left|c_{\alpha}\right|^{2}\right| & \leq \sum_{i=1}^{n-1}\left|\xi_{i}^{2}-\left(c_{\alpha}\right)_{i}^{2}\right| \\
& =\sum_{i=1}^{n-1}\left|\left(\xi_{i}-\left(c_{\alpha}\right)_{i}\right)\left(\xi_{i}+\left(c_{\alpha}\right)_{i}\right)\right| \\
& \leq \sum_{i=1}^{n-1} K^{-1}\left|\xi_{i}+\left(c_{\alpha}\right)_{i}\right| \\
& \leq K^{-1} \sum_{i=1}^{n-1}\left(\left|\xi_{i}\right|+\left|\left(c_{\alpha}\right)_{i}\right|\right) \\
& \leq 2(n-1) K^{-1} .
\end{aligned}
$$

Thus we have

$$
\operatorname{supp}\left(\widehat{E_{\alpha} g}\right) \subset B\left(z_{\alpha}, 3 n K^{-1}\right)
$$

This means that by lemma 1.13 we have $\widehat{E_{\alpha} g * \varphi_{K}}=\widehat{E_{\alpha} g} \widehat{\varphi_{K}}=\widehat{E_{\alpha} g}$ which implies $E_{\alpha} g * \varphi_{K}=E_{\alpha} g$ in the distributional sense. Since the functions $E_{\alpha} g * \varphi_{K}$ and $E_{\alpha} g$ are
continuous, lemma 1.11 implies that we also have $E_{\alpha} g * \varphi_{K}=E_{\alpha} g$ in the classical sense. Then applying lemma 1.5 with $s=10 E$, we get

$$
\begin{align*}
\left|E_{\alpha} g(x)\right| & =\left|\int_{\mathbb{R}^{n}} E_{\alpha} g(y) \varphi_{K}(x-y) \mathrm{d} y\right| \\
& =\frac{1}{\left|B_{K}\right|}\left|\int_{\mathbb{R}^{n}} E_{\alpha} g(y) \varphi\left(\frac{x-y}{K}\right) e\left((x-y) \cdot z_{\alpha}\right) \mathrm{d} y\right| \\
& \leq \frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(y)\right|\left|\varphi\left(\frac{x-y}{K}\right)\right| \mathrm{d} y \\
& \lesssim \frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(y)\right|\left(1+\frac{|x-y|}{K}\right)^{-10 E} \mathrm{~d} y . \tag{5.8}
\end{align*}
$$

For $x \in B_{K}$, we can apply lemma 3.8 to get

$$
\left(1+\frac{|x-y|}{K}\right)^{-10 E}=w_{B_{K}, 10 E}\left(y+c_{B_{K}}-x\right) \sim w_{B_{K}, 10 E}(y)
$$

and plugging this to (5.8) gives that for all $x \in B_{K}$, we have

$$
\begin{equation*}
\left|E_{\alpha} g(x)\right| \lesssim \frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(y)\right| w_{B_{K}, 10 E}(y) \mathrm{d} y . \tag{5.9}
\end{equation*}
$$

An application of Hölder inequality with coefficients p and p^{\prime} yields

$$
\begin{aligned}
\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}} & \left|E_{\alpha} g(y)\right| w_{B_{K}, 10 E}(y) \mathrm{d} y \\
& =\int_{\mathbb{R}^{n}} \frac{\left|E_{\alpha} g(y)\right| w_{B_{K}, 10 E}(y)^{\frac{1}{p}}}{\left|B_{K}\right|^{\frac{1}{p}}} \frac{w_{B_{K}, 10 E}(y)^{\frac{1}{p^{\prime}}}}{\left|B_{K}\right|^{\frac{1}{p}}} \mathrm{~d} y \\
& \leq\left(\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(y)\right|^{p} w_{B_{K}, 10 E}(y) \mathrm{d} y\right)^{\frac{1}{p}}\left(\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}} w_{B_{K}, 10 E}(y) \mathrm{d} y\right)^{\frac{1}{p^{\prime}}} \\
& \sim\left(\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(y)\right|^{p} w_{B_{K}, 10 E}(y) \mathrm{d} y\right)^{\frac{1}{p}}
\end{aligned}
$$

The last relation is due to lemma 3.5. Combining this with (5.9) gives us

$$
\sup _{x \in B_{K}}\left|E_{\alpha} g\right| \lesssim\left(\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{n}}\left|E_{\alpha} g(y)\right|^{p} w_{B_{K}, 10 E}(y) \mathrm{d} y\right)^{\frac{1}{p}}
$$

as wanted.

For the rest of this section we will restrict the dimension to $n=3$. At the end of this chapter we will discuss the distinctions in the proofs for other dimensions. A key step in the proof of the reverse decoupling constant inequality is the following proposition which gives us an estimate on the left-hand side of (4.2) when the lower dimensional linear decoupling constant is bounded by any negative power of the scale δ.

Proposition 5.10. Let $p \geq 2, g \in L^{1}\left([0,1]^{2}\right)$ and assume $\operatorname{Dec}_{2}\left(\delta, p, \Gamma_{2}(10 E)\right) \lesssim_{\varepsilon} \delta^{-\varepsilon}$. Then there exists a constant C and C_{ε} such that for each $m \geq 1$ and each $R \geq K^{2^{m}}$ such that $\frac{R}{K} \in \mathbb{N}$, we have

$$
\begin{aligned}
\|E g\|_{L^{p}\left(w_{B_{R}, E}\right)} \leq & C_{\varepsilon} K^{\varepsilon}\left[\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}\right] \\
& +K^{C} \operatorname{Dec}_{3}\left(R^{-1}, p, K^{-2}, m, E\right)\left(\sum_{\left.\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}\left([0,1]^{2}\right)}\left\|E_{\Delta} g\right\|_{L^{p}\left(w_{\left.B_{R}, E\right)}\right)}^{2}\right)^{\frac{1}{2}} .} .\right.
\end{aligned}
$$

Proof. By lemma 4.3 it suffices to prove the inequality with $\|E g\|_{L^{p}\left(B_{R}\right)}$ on the left-hand side. Cover B_{R} with a family $\operatorname{Part}_{K}\left(B_{R}\right)$ of cubes in \mathbb{R}^{3} with side length K. For each $\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)$ and each $B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)$ we define

$$
c_{\alpha}\left(B_{K}\right)=\left(\frac{1}{\left|B_{K}\right|} \int_{\mathbb{R}^{3}}\left|E_{\alpha} g(x)\right|^{p} w_{B_{K}, 10 E}(x) \mathrm{d} x\right)^{\frac{1}{p}}
$$

Note that lemma 5.7 gives us that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{3}}\left|E_{\alpha} g(x)\right| \lesssim c_{\alpha}\left(B_{K}\right) \tag{5.11}
\end{equation*}
$$

Let $\alpha^{*}:=\alpha^{*}\left(B_{K}\right) \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)$ be the square that maximizes $c_{\alpha}\left(B_{K}\right)$. Let L be a line in the $\left(\xi_{1}, \xi_{2}\right)$ plane and define

$$
S_{L}=\left\{\left(\xi_{1}, \xi_{2}\right) \in[0,1]^{2}: \operatorname{dist}\left(\mathrm{L},\left(\xi_{1}, \xi_{2}\right)\right) \leq \frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{~K}}\right\}
$$

Define also

$$
S_{\mathrm{big}}=\left\{\alpha: c_{\alpha}\left(B_{K}\right) \geq K^{-2} c_{\alpha^{*}}\left(B_{K}\right)\right\} .
$$

We will show that for each $B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)$ there exists a line $L=L\left(B_{K}\right) \subset \mathbb{R}^{2}$ such that for all $x \in B_{K}$

$$
\begin{align*}
|E g(x)| \leq & \\
& C_{1} c_{\alpha^{*}}\left(B_{K}\right) \tag{5.12}\\
& +K^{C_{2}} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text { transverse }}}\left(\prod_{i=1}^{3} c_{\alpha_{i}}\left(B_{K}\right)\right)^{\frac{1}{3}} \tag{5.13}\\
& +\left|\sum_{\alpha \subset S_{L}} E_{\alpha} g(x)\right| \tag{5.14}
\end{align*}
$$

where C_{1} and C_{2} are constants. Define $U_{\alpha^{*}}:=\left\{\alpha \in S_{\text {big }}: \operatorname{dist}\left(\alpha, \alpha^{*}\right) \geq \frac{10}{K}\right\}$. We distinguish three scenarios

1. $U_{\alpha^{*}}$ is empty.
2. $U_{\alpha^{*}}$ is not empty and there exists an $\alpha \in S_{\text {big }}$ that intersects the complement of S_{L}.
3. $U_{\alpha^{*}}$ is not empty and all $\alpha \in S_{\text {big }}$ are in S_{L}.

Clearly these scenarios cover all possible situations.
In the first scenario we do not need S_{L}. We can directly bound $|E g(x)|$ with (5.12) as follows

$$
\begin{aligned}
|E g(x)| & \leq \sum_{\alpha}\left|E_{\alpha} g(x)\right| \\
& =\sum_{\alpha \in S_{\mathrm{big}}}\left|E_{\alpha} g(x)\right|+\sum_{\alpha \notin S_{\mathrm{big}}}\left|E_{\alpha} g(x)\right| \\
& \leq C^{\prime}\left(\sum_{\alpha \in S_{\mathrm{big}}} c_{\alpha}\left(B_{K}\right)+\sum_{\alpha \notin S_{\mathrm{big}}} c_{\alpha}\left(B_{K}\right)\right) \\
& \leq C^{\prime}\left(\sum_{\alpha \in S_{\mathrm{big}}} c_{\alpha^{*}}\left(B_{K}\right)+\sum_{\alpha \notin S_{\mathrm{big}}} K^{-2} c_{\alpha^{*}}\left(B_{K}\right)\right) \\
& \leq C^{\prime}\left(23^{2} c_{\alpha^{*}}\left(B_{K}\right)+K^{2} K^{-2} c_{\alpha^{*}}\left(B_{K}\right)\right) \\
& =530 C^{\prime} c_{\alpha^{*}}\left(B_{K}\right),
\end{aligned}
$$

where C^{\prime} is the maximum of the implicit constants from the estimates of the form (5.11).

Now we assume that $U_{\alpha^{*}}$ is not empty. Then the line L is determined by centers of the squares α_{1} and α_{2} that are furthest apart among all possible pairs in $S_{\text {big }}$. Since $U_{\alpha^{*}}$ is not empty, the distance between these squares is at least $\frac{10}{K}$.

We claim that in the second scenario (5.13) suffices. To show this we let α_{3} be a square that intersects the complement of S_{L}. Let T be a triangle that is determined by three points that are in different squares α_{i}. The area of the triangle has the lower bound

$$
m_{2}(T) \geq \frac{1}{2} \frac{10}{K}\left(\frac{C_{L}}{K}-\frac{\sqrt{2}}{K}\right)=\frac{5\left(C_{L}-\sqrt{2}\right)}{K^{2}} .
$$

An application of lemma 5.6 shows that choosing $C_{L}>\sqrt{2}+\frac{9}{10}$ gives us that α_{1}, α_{2} and α_{3} are K^{-2}-transverse. Now

$$
|E g(x)| \leq \sum_{\alpha}\left|E_{\alpha} g(x)\right| \leq C^{\prime}\left(\sum_{\alpha} c_{\alpha^{*}}\left(B_{K}\right)\right)=C^{\prime} K^{2} c_{\alpha^{*}}\left(B_{K}\right) \leq C^{\prime} K^{4} c_{\alpha_{i}}\left(B_{K}\right)
$$

for $i=1,2,3$. Multiplying both sides with respect to i and taking a cube roots and maximums gives us

$$
|E g(x)| \leq C^{\prime} K^{4} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\ K^{-2} \text {-transerse }}}\left(\prod_{i=1}^{3} c_{\alpha_{i}}\left(B_{K}\right)\right)^{\frac{1}{3}}
$$

Since $\log _{K}\left(C^{\prime}\right) \leq \log _{2}\left(C^{\prime}\right)$ for all $C^{\prime} \geq 1$, we get

$$
\begin{aligned}
|E g(x)| & \leq C^{\prime} K^{4} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transverse }}}\left(\prod_{i=1}^{3} c_{\alpha_{i}}\left(B_{K}\right)\right)^{\frac{1}{3}} \\
& =K^{\log _{K}\left(C^{\prime}\right)+4} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transverse }}}\left(\prod_{i=1}^{3} c_{\alpha_{i}}\left(B_{K}\right)\right)^{\frac{1}{3}} \\
& \leq K^{\log _{2}\left(C^{\prime}\right)+4} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transerse }}}\left(\prod_{i=1}^{3} c_{\alpha_{i}}\left(B_{K}\right)\right)^{\frac{1}{3}}
\end{aligned}
$$

as wanted.

In the third scenario (5.12) and (5.14) will suffice. Indeed,

$$
\begin{aligned}
|E g(x)| & =\left|\sum_{\alpha} E_{\alpha} g(x)\right| \\
& \leq\left|\sum_{\alpha \subset S_{L}} E_{\alpha} g(x)\right|+\sum_{\alpha \notin S_{\text {big }}}\left|E_{\alpha} g(x)\right| \\
& \leq\left|\sum_{\alpha \subset S_{L}} E_{\alpha} g(x)\right|+C^{\prime}\left(\sum_{\alpha \notin S_{\text {big }}} c_{\alpha}\left(B_{K}\right)\right) \\
& \leq\left|\sum_{\alpha \subset S_{L}} E_{\alpha} g(x)\right|+C^{\prime}\left(\sum_{\alpha \notin S_{\text {big }}} K^{-2} c_{\alpha^{*}}\left(B_{K}\right)\right) \\
& \leq\left|\sum_{\alpha \subset S_{L}} E_{\alpha} g(x)\right|+C^{\prime} c_{\alpha^{*}}\left(B_{K}\right) .
\end{aligned}
$$

Next we are going to prove that (5.12)-(5.14) implies

$$
\begin{align*}
& \|E g\|_{L^{p}\left(B_{K}\right)} \lesssim_{\varepsilon} \\
& K^{\varepsilon}\left[\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}+\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}^{\left([0,1]^{2}\right)}}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}\right] \\
& +K^{C_{2}} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transerse }}}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}\right)^{\frac{1}{3}} . \tag{5.15}
\end{align*}
$$

In the first case scenario we have

$$
\begin{aligned}
&|E g(x)| \leq C_{1} c_{\alpha^{*}}\left(B_{K}\right) \\
& \Rightarrow\|E g\|_{L^{p}\left(B_{K}\right)}=\left(\int_{B_{K}}|E g(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \leq C_{1}\left|B_{K}\right|^{\frac{1}{p}} c_{\alpha^{*}}\left(B_{K}\right)=C_{1}\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} \\
& \Leftrightarrow\|E g\|_{L^{p}\left(B_{K}\right)} \leq C_{1}\left(\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}} \\
& \Rightarrow \quad\|E g\|_{L^{p}\left(B_{K}\right)} \leq C_{1}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}([0,1])^{2}}}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

The second scenario yields

$$
\begin{gathered}
|E g(x)| \leq K^{C_{2}} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transverse }}}\left(\prod_{i=1}^{3} c_{\alpha_{i}}\left(B_{K}\right)\right)^{\frac{1}{3}} \\
\Leftrightarrow|E g(x)| \leq K^{C_{2}}\left|B_{K}\right|^{-\frac{1}{p}} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transverse }}}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}\right)^{\frac{1}{3}} \\
\Rightarrow\|E g\|_{L^{p}\left(B_{K}\right)} \leq K^{C_{2}} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transverse }}}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}\right)^{\frac{1}{3}} .
\end{gathered}
$$

For the third scenario we translate B_{K} so that it is centered in the origin. Then on the left side of (5.15) we have

$$
\int_{B_{K}}|E g(t)|^{p} \mathrm{~d} t=\int_{\left[-\frac{K}{2}, \frac{K}{2}\right]^{3}}\left|E g\left(u+c_{B_{K}}\right)\right|^{p} \mathrm{~d} u
$$

and changing the variables back on the right-hand side of (5.15) yields

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}\left|E_{\alpha} g\left(u+c_{B_{K}}\right)\right|^{p} w_{\left[-\frac{K}{2}, \frac{K}{2}\right]^{3}, 10 E}(u) \mathrm{d} u & =\int_{\mathbb{R}^{2}}\left|E_{\alpha} g(t)\right|^{p} w_{\left[-\frac{K}{2}, \frac{K}{2}\right]^{3}, 10 E}\left(t-c_{B_{K}}\right) \mathrm{d} u \\
& =\int_{\mathbb{R}^{2}}\left|E_{\alpha} g(t)\right|^{p} w_{B_{K}, 10 E}(t) \mathrm{d} t
\end{aligned}
$$

Thus we may assume that $B_{K}=\left[-\frac{K}{2}, \frac{K}{2}\right]^{3}$. We then calculate that

$$
\begin{aligned}
|E g(x)| & \leq\left|\sum_{\alpha \subset S_{L}} E_{\alpha} g(x)\right|+C^{\prime} c_{\alpha^{*}}\left(B_{K}\right) \\
\Rightarrow \quad\|E g\|_{L^{p}\left(B_{K}\right)} & \leq\left\|\sum_{\alpha \subset S_{L}} E_{\alpha} g\right\|_{L^{p}\left(B_{K}\right)}+C^{\prime}\left|B_{K}\right|^{\frac{1}{p}} c_{\alpha^{*}}\left(B_{K}\right) .
\end{aligned}
$$

Identically as in the first scenario we have

$$
C^{\prime}\left|B_{K}\right|^{\frac{1}{p}} c_{\alpha^{*}}\left(B_{K}\right) \leq C^{\prime}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}([0,1])^{2}}}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}
$$

All that is left is to control the term $\left\|\sum_{\alpha \subset S_{L}} E_{\alpha} g\right\|_{L^{p}\left(B_{K}\right)}$ with the right-hand side of (5.15).

We will assume that $L=\left\{\xi: \xi_{2}=0\right\}$. This is essentially the same assumption as in [5]. Unfortunately, we will take this simplification of notation as granted and leave out the details of the general case.

We cover S_{L} by pairwise disjoint rectangles U that have side lengths $C_{L} K^{-1}$ and $K^{-\frac{1}{2}}$, with the longer side parallel to L. Denote $\widetilde{S}_{L}:=\bigcup_{\alpha \subset S_{L}} \alpha$ and $\widetilde{g}=g \mathbb{1}_{\widetilde{S}_{L}}$. These simplify the notation as we can write $\sum_{\alpha \subset S_{L}} E_{\alpha} g=E_{S_{L}} \widetilde{g}$. Next we will prove the following claim.

$$
\begin{equation*}
\text { Claim: } \quad\left\|E_{S_{L}} \widetilde{g}\right\|_{L^{p}\left(B_{K}\right)} \lesssim K^{\varepsilon}\left(\sum_{U}\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{\left.B_{K}, 10 E\right)}\right)}^{2}\right)^{\frac{1}{2}} \tag{5.16}
\end{equation*}
$$

In order to prove this claim, we will apply theorem 4.27 in the lower dimension $n=2$. The lower dimensional decoupling constant that arises from theorem 4.27 will be contained by assumption. Thus the idea is to find a lower dimensional function that satisfies the assumptions of theorem 4.27 and is somehow similar to $E_{S_{L}} \widetilde{g}$.

We study the following change of variables

$$
(s, t)=\left(\xi_{1}, \xi_{1}^{2}+\xi_{2}^{2}\right) \Leftrightarrow\left(\xi_{1}, \xi_{2}\right)=\left(s, \sqrt{t-s^{2}}\right) .
$$

The Jacobian determinant of this transformation is

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
\frac{\partial\left(\sqrt{t-s^{2}}\right)}{\partial s} & \frac{1}{2 \sqrt{t-s^{2}}}
\end{array}\right]\right)=\frac{1}{2 \sqrt{t-s^{2}}}
$$

and hence we can write

$$
\begin{aligned}
E_{S_{L}} \widetilde{g}(x) & =\int_{\mathbb{R}^{2}} \widetilde{g}(\xi) e\left(x \cdot\left(\xi,|\xi|^{2}\right)\right) \mathrm{d} \xi \\
& =\int_{\mathbb{R}^{2}} \widetilde{g}\left(s, \sqrt{t-s^{2}}\right) e\left(x \cdot\left(s, \sqrt{t-s^{2}}, t\right)\right) \frac{1}{2 \sqrt{t-s^{2}}} \mathrm{~d}(s, t) \\
& =\int_{\mathbb{R}^{2}} \widetilde{g}\left(s, \sqrt{t-s^{2}}\right) e\left(\sqrt{t-s^{2}} x_{2}\right) \frac{1}{2 \sqrt{t-s^{2}}} e\left(s x_{1}+t x_{3}\right) \mathrm{d}(s, t) .
\end{aligned}
$$

Note that in the above equalities the information about the area of integration is included in the function \widetilde{g}. Denote $E_{A} \widetilde{g}_{x_{2}}\left(x_{1}, x_{3}\right):=E_{A} \widetilde{g}\left(x_{1}, x_{2}, x_{3}\right)$, where A is a set. From the above calculation we see that for a fixed x_{2} the inverse Fourier transform of the function $g_{x_{2}}^{*}$, that is defined by

$$
(s, t) \mapsto \widetilde{g}\left(s, \sqrt{t-s^{2}}\right) e\left(\sqrt{t-s^{2}} x_{2}\right) \frac{1}{2 \sqrt{t-s^{2}}}
$$

is $E_{S_{L}} \widetilde{g}_{x_{2}}$. Thus the Fourier inverse formula of $\mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ gives that $\mathcal{F}\left(E_{S_{L}} \widetilde{g}_{x_{2}}\right)=g_{x_{2}}^{*}$, which is supported in the set

$$
\left\{(s, t):\left(s, \sqrt{t-s^{2}}\right) \in \widetilde{S}_{L}\right\}
$$

We have

$$
S_{L}=\left\{(s, r):|r| \leq \frac{C_{L}}{K}\right\}
$$

and hence we get

$$
\sqrt{t-s^{2}} \leq \frac{C_{L}}{K} \Leftrightarrow s^{2} \leq t \leq s^{2}+\left(\frac{C_{L}}{K}\right)^{2}
$$

which implies that $(s, t) \in N_{\left(\frac{C_{L}}{K}\right)^{2}}([0,1])$, i.e., the Fourier transform of $E_{S_{L}} \widetilde{g}_{x_{2}}$ is supported in $N_{\left(\frac{C_{L}}{K}\right)^{2}}([0,1])$. This means that theorem 4.27 yields

$$
\begin{aligned}
& \left\|E_{S_{L}} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(\widetilde{B}_{K}\right)} \lesssim \\
& \operatorname{Dec}_{2}\left(K^{-1}, p, \Gamma_{2}(10 E)\right)\left(\sum_{Q \in \operatorname{Part}_{K^{-\frac{1}{2}}([0,1])}}\left\|\left(E_{S_{L}} \widetilde{g}_{x_{2}}\right)_{N_{\left(\frac{C_{L}}{K}\right)^{2}}(Q)}\right\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}},
\end{aligned}
$$

where we denoted $\widetilde{B}_{K}:=\left[-\frac{K}{2}, \frac{K}{2}\right]^{2}$ in the $\left(x_{1}, x_{3}\right)$ plane. Next we calculate the Fourier restriction

$$
\begin{aligned}
&\left(E_{S_{L}} \widetilde{g}_{x_{2}}\right)_{N}\left(\frac{C_{L}}{K}\right)^{2}(Q)\left(x_{1}, x_{3}\right) \\
&=\int_{N\left(\frac{C_{L}}{K}\right)^{2}(Q)} \widetilde{g}\left(s, \sqrt{t-s^{2}}\right) e\left(\sqrt{t-s^{2}} x_{2}\right) \frac{1}{2 \sqrt{t-s^{2}}} e\left(s x_{1}+t x_{3}\right) \mathrm{d}(s, t) \\
& \quad=\int_{Q} \int_{0}^{\frac{C_{L}}{K}} \widetilde{g}\left(\xi_{1}, \xi_{2}\right) e\left(\xi_{2} x_{2}\right) e\left(\xi_{1} x_{1}+|\xi|^{2} x_{3}\right) \mathrm{d} \xi_{2} \mathrm{~d} \xi_{1} \\
& \quad=\int_{U} \widetilde{g}\left(\xi_{1}, \xi_{2}\right) e\left(x \cdot\left(\xi,|\xi|^{2}\right)\right) \mathrm{d} \xi=E_{U} \widetilde{g}_{x_{2}}\left(x_{1}, x_{3}\right),
\end{aligned}
$$

where $U=\left\{\left(\xi_{1}, \xi_{2}\right): \xi_{1} \in Q, \xi_{2} \in\left[0, \frac{C_{L}}{K}\right]\right\}$. We now have proven

$$
\left\|E_{S_{L}} \widetilde{g} x_{2}\right\|_{L^{p}\left(\widetilde{B}_{K}\right)} \lesssim \operatorname{Dec}_{2}\left(K^{-1}, p, \Gamma_{2}(10 E)\right)\left(\sum_{U}\left\|E_{U} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(w_{\widetilde{B}_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}
$$

which by assumption implies

$$
\begin{equation*}
\left\|E_{S_{L}} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(\widetilde{B}_{K}\right)} \lesssim_{\varepsilon} K^{\varepsilon}\left(\sum_{U}\left\|E_{U} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}} \tag{5.17}
\end{equation*}
$$

Raising the left-hand side of (5.17) to the power p and integrating over $x_{2} \in\left[-\frac{K}{2}, \frac{K}{2}\right]$ gives

$$
\int_{-\frac{K}{2}}^{\frac{K}{2}}\left\|E_{S_{L}} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(\widetilde{B}_{K}\right)}^{p} \mathrm{~d} x_{2}=\left\|E_{S_{L}} \widetilde{g}\right\|_{L^{p}\left(B_{K}\right)}^{p}
$$

and applying Minkovski's inequality in $L^{\frac{p}{2}}$ we see that the same procedure on the righthand side gives

$$
\begin{aligned}
K^{\varepsilon p} \int_{-\frac{K}{2}}^{\frac{K}{2}}\left(\sum_{U}\left\|E_{U} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{2}\right)^{\frac{p}{2}} \mathrm{~d} x_{2} & =K^{\varepsilon p}\left\|\sum_{U}\right\| E_{U} \widetilde{g}_{x_{2}}\left\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{2}\right\|_{L^{\frac{p}{2}}\left(\left[-\frac{K}{2}, \frac{K}{2}\right]\right)}^{\frac{p}{2}} \\
& \leq K^{\varepsilon p}\left(\sum_{U}\| \| E_{U} \widetilde{g}_{x_{2}}\left\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{2}\right\|_{L^{\frac{p}{2}\left(\left[-\frac{K}{2}, \frac{K}{2}\right]\right)}}\right)^{\frac{p}{2}} \\
& =K^{\varepsilon p}\left(\sum_{U}\| \| E_{U} \widetilde{g}_{x_{2}}\left\|_{L^{p}\left(w_{\widetilde{B}_{K}, 10 E}\right.}^{p}\right\|_{L^{1}\left(\left[-\frac{K}{2}, \frac{K}{2}\right]\right)}^{\frac{p}{p}}\right)^{\frac{p}{2}} .
\end{aligned}
$$

By lemma 3.8, we have $w_{\tilde{B}_{K}, 10 E}\left(x_{1}, x_{3}\right)=w_{B_{K}, 10 E}\left(x_{1}, 0, x_{3}\right) \sim w_{B_{K}, 10 E}\left(x_{1}, x_{2}, x_{3}\right)$ for $x_{2} \in\left[-\frac{K}{2}, \frac{K}{2}\right]$ and thus

$$
\begin{aligned}
&\left\|\left\|E_{U} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}^{p}\right)}^{p}\right\|_{L^{1}\left(\left[-\frac{K}{2}, \frac{K}{2}\right]\right)} \\
&=\int_{-\frac{K}{2}}^{\frac{K}{2}} \int_{\mathbb{R}^{2}}\left|E_{U} \widetilde{g}\left(x_{1}, x_{2}, x_{3}\right)\right|^{p} w_{\widetilde{B}_{K}, 10 E}\left(x_{1}, x_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{3} \mathrm{~d} x_{2} \\
&=\int_{\mathbb{R}^{3}}\left|E_{U} \widetilde{g}\left(x_{1}, x_{2}, x_{3}\right)\right|^{p} \mathbb{1}_{\left[-\frac{K}{2}, \frac{K}{2}\right]}\left(x_{2}\right) w_{\widetilde{B}_{K}, 10 E}\left(x_{1}, x_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \\
& \lesssim \int_{\mathbb{R}^{3}}\left|E_{U} \widetilde{g}(x)\right|^{p} w_{B_{K}, 10 E}(x) \mathrm{d} x=\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p} .
\end{aligned}
$$

Thus the procedure modifies the right-hand side of (5.17) to

$$
\begin{aligned}
K^{\varepsilon p} \int_{-\frac{K}{2}}^{\frac{K}{2}}\left(\sum_{U}\left\|E_{U} \widetilde{g}_{x_{2}}\right\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{2}\right)^{\frac{p}{2}} \mathrm{~d} x_{2} & \leq K^{\varepsilon p}\left(\sum_{U}\| \| E_{U} \widetilde{g}_{x_{2}}\left\|_{L^{p}\left(w_{\tilde{B}_{K}, 10 E}\right)}^{p}\right\|_{L^{1}\left(\left[-\frac{K}{2}, \frac{K}{2}\right]\right)}^{\frac{2}{p}}\right)^{\frac{p}{2}} \\
& \lesssim K^{\varepsilon p}\left(\sum_{U}\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right.}^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

This proves our claim

$$
\left\|E_{S_{L}} \widetilde{g}\right\|_{L^{p}\left(B_{K}\right)} \lesssim_{\varepsilon} K^{\varepsilon}\left(\sum_{U}\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}
$$

In order to get (5.15) in the third scenario, we still need to estimate the expression $\left(\sum_{U}\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}$ further. Let V be the unique square in $\operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)$ that covers U. By the restriction on the line L, we have $U \cap \widetilde{S}_{L}=U$ and thus we can write

$$
E_{U} \widetilde{g}(x)=E_{U} g(x)=E_{V} g(x)-E_{V \backslash U} .
$$

By Minkovski's inequalities in L^{p} and l^{2} we get

$$
\left(\sum_{U}\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{V}\left\|E_{V} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}+\left(\sum_{V \backslash U}\left\|E_{V \backslash U} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}
$$

Since every V is in $\operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)$, we can trivially estimate the first term

$$
\left(\sum_{V}\left\|E_{V} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{\beta \in \operatorname{Part}}^{K_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}
$$

For the second term we divide the rectangles $V \backslash U$ into squares $V^{\prime} \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)$ by using Minkovski's inequality

$$
\left\|E_{V \backslash U}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} \leq \sum_{V^{\prime}}\left\|E_{V^{\prime}}\right\|_{L^{p}\left(w_{B_{K}}, 10 E\right)} .
$$

For each $V \backslash U$ we need $K^{\frac{1}{2}}\left(K^{\frac{1}{2}}-C_{L}\right)$ squares V^{\prime}. Since $(V \backslash U) \cap S_{L}=\varnothing$, we have $V^{\prime} \notin S_{\text {big }}$ and hence we can estimate further

$$
\begin{aligned}
\left\|E_{V \backslash U}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} & \leq \sum_{V^{\prime}}\left\|E_{V^{\prime}}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} \\
& \leq \sum_{V^{\prime}} K^{-2}\left\|E_{\alpha^{*}}\right\|_{L^{p}\left(w_{B_{K}}, 10 E\right.} \\
& \leq K^{-1}\left\|E_{\alpha^{*}}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} .
\end{aligned}
$$

Since the number of rectangles $V \backslash U$ is $K^{\frac{1}{2}}$, we get

$$
\begin{aligned}
\left(\sum_{V \backslash U}\left\|E_{V \backslash U} g\right\|_{L^{p}\left(w_{B_{K}}, 10 E\right)}^{2}\right)^{\frac{1}{2}} & \leq \sum_{V \backslash U}\left\|E_{V \backslash U} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} \\
& \leq \sum_{V \backslash U} K^{-1}\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} \\
& =K^{-\frac{1}{2}}\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} \\
& \leq\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\sum_{U}\left\|E_{U} \widetilde{g}\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}} & \leq\left(\sum_{V}\left\|E_{V} g\right\|_{L^{p}\left(w_{\left.B_{K}, 10 E\right)}\right.}^{2}\right)^{\frac{1}{2}}+\left(\sum_{V \backslash U}\left\|E_{V \backslash U} g\right\|_{L^{p}\left(w_{B_{K}}, 10 E\right)}^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}+\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)} .
\end{aligned}
$$

We conclude that (5.15) holds in the third scenario as

$$
\begin{aligned}
& \|E g\|_{L^{p}\left(B_{K}\right)} \leq\left\|\sum_{\alpha \subset S_{L}} E_{\alpha} g\right\|_{L^{p}\left(B_{K}\right)}+C^{\prime}\left\|E_{\alpha^{*}} g\right\|_{L^{p}\left(w_{\left.B_{K}, 10 E\right)}\right)} \\
& \lesssim_{\varepsilon} K^{\varepsilon}\left[\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}+\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}([0,1])^{2}}}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{2}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

and we are done proving (5.15).

Using $w_{B_{K}, 10 E} \leq w_{B_{K}, E}$, inequality (5.15) implies

$$
\begin{align*}
\|E g\|_{L^{p}\left(B_{K}\right)} & \lesssim_{\varepsilon} \\
K^{\varepsilon}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, E}\right)}^{2}\right)^{\frac{1}{2}} & +K^{\varepsilon}\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{K}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
.18) \quad & +K^{C_{2}} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
K^{-2} \text {-transverse }}}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}\right)^{\frac{1}{3}} . \tag{5.18}
\end{align*}
$$

Raising the left-hand side of the above inequality to the power p, summing over $B_{K} \in$ $\operatorname{Part}_{K}\left(B_{R}\right)$ and then raising it to the power $\frac{1}{p}$ gives

$$
\begin{equation*}
\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\|E g\|_{L^{p}\left(B_{K}\right)}^{p}\right)^{\frac{1}{p}}=\|E g\|_{L^{p}\left(B_{R}\right)} . \tag{5.19}
\end{equation*}
$$

For the first term on the right-hand side the same process gives

$$
\begin{aligned}
& K^{\varepsilon}\left(\sum _ { B _ { K } \in \operatorname { P a r t } _ { K } (B _ { R }) } \left(\sum_{\left.\left.\alpha \in \operatorname{Part}_{K^{-1}\left([0,]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, E}\right)}^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}}} \quad \begin{array}{l}
\quad=K^{\varepsilon}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}\left([0,1]^{2}\right)}}\left(\int_{\mathbb{R}^{3}}\left|E_{\alpha} g(x)\right|^{p} w_{B_{K}, E} \mathrm{~d} x\right)^{\frac{2}{p}}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} \\
\quad=K^{\varepsilon}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left\|\int_{\mathbb{R}^{3}}\left|E_{\alpha} g(x)\right|^{p} w_{B_{K}, E}(x) \mathrm{d} x\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
\quad \leq K^{\varepsilon}\left(\left\|\int_{\mathbb{R}^{3}}\left|E_{\alpha} g(x)\right|^{p} \sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)} w_{B_{K}, E}(x) \mathrm{d} x\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
\quad \lesssim K^{\varepsilon}\left(\left\|\int_{\mathbb{R}^{3}}\left|E_{\alpha} g(x)\right|^{p} w_{B_{R}, E}(x) \mathrm{d} x\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
\quad=K^{\varepsilon}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{\left.B_{R}, E\right)}^{2}\right.}^{2}\right)^{\frac{1}{2}}
\end{array} .\right.\right.
\end{aligned}
$$

The first inequality is due to Minkovski's inequality in $l^{\frac{2}{p}}$ and the second inequality is justified by lemma 3.12. The second term is dealt identically. Thus

$$
\begin{aligned}
& K^{\varepsilon}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{K}, E}\right)}^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} \\
& \lesssim K^{\varepsilon}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}\left([0,1]^{2}\right)}}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{array}{r}
K^{\varepsilon}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{K}, E}\right)}^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} \\
\lesssim K^{\varepsilon}\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}^{\left([0,1]^{2}\right)}}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \tag{5.21}
\end{array}
$$

For the third term we calculate that

$$
\begin{aligned}
K^{C_{2}}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)} \max _{K_{1}-\alpha_{2}, \alpha_{3}}^{-2 \text { transverse }}(\right. & \left.\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p}\right)^{\frac{1}{3}}\right)^{\frac{1}{p}} \\
& \leq K^{C_{2}}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)} \sum_{\alpha_{i}}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p}\right)^{\frac{1}{3}}\right)^{\frac{1}{p}} \\
& =K^{C_{2}}\left(\sum_{\alpha_{i}} \sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p}\right)^{\frac{1}{3}}\right)^{\frac{1}{p}} \\
& \leq \sum_{\alpha_{i}} K^{C_{2}}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p}\right)^{\frac{1}{3}}\right)^{\frac{1}{p}}
\end{aligned}
$$

where the sum is taken over all K^{-2}-transverse triples that are in $\operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)$. Then
by (5.2) we have

$$
\begin{aligned}
& \left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p}\right)^{\frac{1}{3}}\right)^{\frac{1}{p}} \\
& \quad \leq \operatorname{Dec}_{3}\left(R^{-1}, p, K^{-2}, m, E\right)\left(\prod_{i=1}^{3} \sum_{q_{i} \in \operatorname{Part}_{R^{-\frac{1}{2}}}\left(\alpha_{i}\right)}\left\|E_{q_{i}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{6}} .
\end{aligned}
$$

Since $\alpha_{i} \subset[0,1]^{2}$, we have

$$
\sum_{q_{i} \in \operatorname{Part}_{R^{-\frac{1}{2}}}^{\alpha_{i}}}\left\|E_{q_{i}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2} \leq \sum_{\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}}^{\left([0,1]^{2}\right)}} \| E_{\Delta g \|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}}
$$

and thus we further have

$$
\begin{aligned}
& K^{C_{2}}\left(\sum_{B_{K} \in \operatorname{Part}_{K}\left(B_{R}\right)} \max _{\substack{\alpha_{1}, \alpha_{2}, \alpha_{3} \\
-\text {-transerse }}}\left(\prod_{i=1}^{3}\left\|E_{\alpha_{i}} g\right\|_{L^{p}\left(w_{B_{K}, 10 E}\right)}^{p}\right)^{\frac{1}{3}}\right)^{\frac{1}{p}} \\
& \quad \leq \sum_{\alpha_{i}} K^{C_{2}} \operatorname{Dec}_{3}\left(R^{-1}, p, K^{-2}, m, E\right)\left(\sum_{\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\Delta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq K^{C_{2}+6} \operatorname{Dec}_{3}\left(R^{-1}, p, K^{-2}, m, E\right)\left(\sum_{\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\Delta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

The last inequality is due to the fact that $\# \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)=K^{2}$.
Combining (5.19), (5.20), (5.21) and (5.22) means that (5.18) becomes the inequality in the proposition once we stipulate that C_{ε} is the maximum of all of the implicit constants in the argument and $C=C_{2}+6$.

The following is analogous to proposition 5.10 for smaller partitioning cubes. This will allow us to iterate the scale of the partitioning cubes from big to small, which will give us the main argument for the proof of theorem 5.27.

Proposition 5.23. Let $\tau \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)$, where $\delta \geq R^{-\frac{1}{2}} K^{2^{m-1}}$. Assume that for all $\delta^{\prime}<1$, we have $\operatorname{Dec}_{2}\left(\delta^{\prime}, p, \Gamma_{2}(10 E)\right) \lesssim_{\varepsilon} \delta^{\prime-\varepsilon}$. Then if $R \geq K^{2^{m}}$ and $\frac{R}{K} \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|E_{\tau} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)} \leq & C_{\varepsilon} K^{\varepsilon}\left(\left(\sum_{\alpha \in \operatorname{Part}_{\delta K^{-1}(\tau)}}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\sum_{\beta \in \operatorname{Part}_{\delta K^{-\frac{1}{2}}}(\tau)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}\right) \\
& +K^{C} \operatorname{Dec}_{3}\left(\left(R \delta^{2}\right)^{-1}, p, K^{-2}, m, 3 E\right)\left(\sum_{\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}}(\tau)}\left\|E_{\Delta} g\right\|_{L^{p}\left(w_{\left.B_{R}, E\right)}^{2}\right.}^{2}\right)^{\frac{1}{2}},
\end{aligned}
$$

where the constants C and C_{ε} are independent of δ, R, τ and K.
The idea is to extend the parabola over τ to the whole parabola \mathbb{P}^{2} via an affine transformation. In [5], this technique is referred to as parabolic rescaling.
Proof. We write $\tau=a+[0, \delta]^{2}$, for some $a \in \mathbb{R}^{2}$. We consider a change of variables $\xi^{\prime}=\frac{\xi-a}{\delta}$. Notice that the image of τ in this mapping is $[0,1]^{2}$. Hence, using the fact that $|c+b|^{2}=|c|^{2}+|b|^{2}+2 c \cdot b$, for $c, b \in \mathbb{R}^{n}$, gives

$$
\begin{aligned}
\left|E_{\tau} g(x)\right| & =\left|\int_{\tau} g(\xi) e\left(x \cdot\left(\xi,|\xi|^{2}\right)\right) \mathrm{d} \xi\right| \\
& =\left|\delta^{2} \int_{[0,1]^{2}} g\left(\xi^{\prime} \delta+a\right) e\left(x \cdot\left(\xi^{\prime} \delta+a,\left|\xi^{\prime} \delta+a\right|^{2}\right)\right) \mathrm{d} \xi^{\prime}\right| \\
& =\left|e\left(x \cdot\left(a,|a|^{2}\right)\right) \delta^{2} \int_{[0,1]^{2}} g\left(\xi^{\prime} \delta+a\right) e\left(x \cdot\left(\xi_{1}^{\prime} \delta, \xi_{2}^{\prime} \delta, \delta^{2}\left|\xi^{\prime}\right|^{2}+2 \delta a \cdot \xi\right)\right) \mathrm{d} \xi^{\prime}\right| \\
& =\left|\delta^{2} \int_{[0,1]^{2}} g\left(\xi^{\prime} \delta+a\right) e\left(x_{1} \xi_{1}^{\prime} \delta+x_{2} \xi_{2}^{\prime} \delta+x_{3}\left(\delta^{2}\left|\xi^{\prime}\right|^{2}+\sum_{i=1}^{2} 2 \delta a_{i} \xi_{i}^{\prime}\right)\right) \mathrm{d} \xi^{\prime}\right| \\
& =\left|\delta^{2} \int_{[0,1]^{2}} g\left(\xi^{\prime} \delta+a\right) e\left(\sum_{i=1}^{2} \xi_{i}^{\prime} \delta\left(x_{i}+2 a_{i} x_{3}\right)+x_{3} \delta^{2}\left|\xi^{\prime}\right|^{2}\right) \mathrm{d} \xi^{\prime}\right| \\
& =\left|\delta^{2} \int_{[0,1]^{2}} g\left(\xi^{\prime} \delta+a\right) e\left(\left(\left(x_{1}+2 a_{1} x_{3}\right) \delta,\left(x_{2}+2 a_{2} x_{3}\right) \delta, \delta^{2} x_{3}\right) \cdot\left(\xi^{\prime},\left|\xi^{\prime}\right|^{2}\right)\right) \mathrm{d} \xi^{\prime}\right| \\
.24) & =: \delta^{2}\left|E g^{\prime}(T x)\right| .
\end{aligned}
$$

In the last line we denoted $g^{\prime}(\xi):=g(\xi \delta+a)$ and $T x:=\left(\left(x_{1}+2 a_{1} x_{3}\right) \delta,\left(x_{2}+2 a_{2} x_{3}\right) \delta, \delta^{2} x_{3}\right)$. Note that the Jacobian determinant of T is δ^{4}.

Then we cover the image of B_{R} under T with a pairwise disjoint family of cubes B^{\prime} with side length $\delta^{2} R$ that satisfy

$$
\mathbb{1}_{T\left(B_{R}\right)}(x) \lesssim \sum_{B^{\prime}} w_{B^{\prime}, 3 E}(x) \lesssim w_{B_{R}, E}\left(T^{-1} x\right) .
$$

The proof of the existence of the above covering can be found in [14] section 5.2 lemma 5.2.2. Now we change variables to get

$$
\begin{aligned}
\left\|E_{\tau} g\right\|_{L^{p}\left(B_{R}\right)} & =\delta^{2}\left(\int_{B_{R}}\left|E g^{\prime}(T x)\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& =\delta^{2}\left(\delta^{-4} \int_{T\left(B_{R}\right)}\left|E g^{\prime}(y)\right|^{p} \mathrm{~d} y\right)^{\frac{1}{p}} \\
& \lesssim \delta^{2-\frac{4}{p}}\left(\int_{\mathbb{R}^{3}}\left|E g^{\prime}(y)\right|^{p} \sum_{B^{\prime}} w_{B^{\prime}, 3 E}(y) \mathrm{d} y\right)^{\frac{1}{p}} \\
& =\delta^{2-\frac{4}{p}}\left(\sum_{B^{\prime}}\left\|E g^{\prime}\right\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Since $\delta \geq R^{-\frac{1}{2}} K^{2^{m-1}} \Leftrightarrow \delta^{2} R \geq K^{2^{m}}$, proposition 5.10 yields

$$
\begin{aligned}
& \left\|E g^{\prime}\right\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)} \leq C_{\varepsilon} K^{\varepsilon}\left(\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g^{\prime}\right\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{2}\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\sum_{\beta \in \operatorname{Part}_{K^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\beta} g^{\prime}\right\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{2}\right)^{\frac{1}{2}}\right) \\
& +K^{C} \operatorname{Dec}_{3}\left(\left(\delta^{2} R\right)^{-1}, p, K^{-2}, m, 3 E\right)\left(\sum_{\Delta \in \operatorname{Part}{ }_{\left(\delta^{2} R\right)^{-\frac{1}{2}}}\left([0,1]^{2}\right)}\left\|E_{\Delta} g^{\prime}\right\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Remark 5.26. In the above inequality we must choose $\Gamma_{2}(10 E)$ to be at least $60 E+, p+1$. This comes from the fact that we must apply theorem 4.27 with the weight exponent being $30 E$ and thus in lemma 4.13 we need $W \geq 60 E+p+1$.

Plugging the first term into (5.25) gives

$$
\begin{aligned}
& \delta^{2-\frac{4}{p}}\left(\sum_{B^{\prime}} C_{\varepsilon}^{p} K^{\varepsilon p}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)}\left\|E_{\alpha} g^{\prime}\right\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} \\
&=C_{\varepsilon} K^{\varepsilon} \delta^{2-\frac{4}{p}}\left(\sum_{B^{\prime}}\| \| E_{\alpha} g^{\prime}\left\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{p}\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
& \leq C_{\varepsilon} K^{\varepsilon} \delta^{2-\frac{4}{p}}\left(\left\|\sum_{B^{\prime}}\right\| E_{\alpha} g^{\prime}\left\|_{L^{p}\left(w_{B^{\prime}, 3 E}\right)}^{p}\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
&=C_{\varepsilon} K^{\varepsilon} \delta^{2-\frac{4}{p}}\left(\| \| E_{\alpha} g^{\prime}\left\|_{L^{p}\left(\sum_{B^{\prime}} w_{B^{\prime}, 3 E}\right)}^{p}\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
& \lesssim C_{\varepsilon} K^{\varepsilon} \delta^{2-\frac{4}{p}}\left(\| \| E_{\alpha} g^{\prime}\left\|_{L^{p}\left(w_{\left.B_{R}, E^{\circ} T^{-1}\right)}^{p}\right)}\right\|_{l^{\frac{2}{p}}}\right)^{\frac{1}{p}} \\
&=C_{\varepsilon} K^{\varepsilon} \delta^{2-\frac{4}{p}}\left(\sum_{\alpha \in \operatorname{Part}_{K^{-1}\left([0,1]^{2}\right)}}\left\|E_{\alpha} g^{\prime}\right\|_{L^{p}\left(w_{\left.B_{R}, E^{\circ} T^{-1}\right)}^{2}\right)} .\right.
\end{aligned}
$$

Then changing the variables back gives

$$
\begin{aligned}
\delta^{2-\frac{4}{p}}\left\|E_{\alpha} g^{\prime}\right\|_{L^{p}\left(w_{B_{R}, E} \circ T^{-1}\right)} & =\delta^{2}\left(\int_{\mathbb{R}^{3}}\left|E_{\alpha} g^{\prime}(y)\right|^{p} w_{B_{R}, E}\left(T^{-1} y\right) \delta^{-4} \mathrm{~d} y\right)^{\frac{1}{p}} \\
& =\delta^{2}\left(\int_{\mathbb{R}^{3}}\left|E_{\alpha} g^{\prime}(T x)\right|^{p} w_{B_{R}, E}(x) \mathrm{d} x\right)^{\frac{1}{p}}
\end{aligned}
$$

and as $\xi \mapsto \xi \delta+a$ maps cubes in $\operatorname{Part}_{K^{-1}}\left([0,1]^{2}\right)$ into cubes in $\operatorname{Part}_{\delta K^{-1}}(\tau)$, we get similarly as in (5.24) that

$$
\begin{aligned}
\delta^{2}\left|E_{\alpha} g^{\prime}(T x)\right| & =\left|\delta^{2} \int_{\alpha} g\left(\xi^{\prime} \delta+a\right) e\left(T x \cdot\left(\xi^{\prime},\left|\xi^{\prime}\right|^{2}\right)\right) \mathrm{d} \xi^{\prime}\right| \\
& =\left|\int_{\alpha^{\prime}} g(\xi) e\left(x \cdot\left(\xi,|\xi|^{2}\right)\right) \mathrm{d} \xi\right|=\left|E_{\alpha^{\prime}} g(x)\right|,
\end{aligned}
$$

where $\alpha^{\prime} \in \operatorname{Part}_{\delta K^{-1}}(\tau)$.

The same deduction applies to the other two terms and thus we have shown that

$$
\begin{aligned}
\left\|E_{\tau} g\right\|_{L^{p}\left(B_{R}\right)} \leq & C_{\varepsilon} K^{\varepsilon}\left(\left(\sum_{\alpha \in \operatorname{Part}_{\delta K^{-1}}(\tau)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\sum_{\beta \in \operatorname{Part}_{\delta K^{-\frac{1}{2}}}(\tau)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right.}^{2}\right)^{\frac{1}{2}}\right) \\
& +K^{C} \operatorname{Dec}_{3}\left(\left(R \delta^{2}\right)^{-1}, p, K^{-2}, m, 3 E\right)\left(\sum_{\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}}(\tau)}\left\|E_{\Delta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and now lemma 4.3 gives us the result.

5.3 Reverse decoupling constant inequality

In section 5.1 we showed that one can dominate the multilinear decoupling constant with the linear decoupling constant. In this section we will show the following reverse inequality which states that we can somehow dominate the linear decoupling constant with the multilinear decoupling constant. The proof is essentially multiple iterations of proposition 5.23 and careful accounting of the additional coefficients that arise from the iteration. The same proof applies in all dimensions as long as propositions 5.10 and 5.23 have analogous counterparts in \mathbb{R}^{n} for $n \neq 3$.

Theorem 5.27. Let $E \geq 100 n$ and $\varepsilon>0$. Let also $\Gamma_{n}(E)$ be a large enough constant dependent on E and n. Assume that one of the following holds

- $n=2$.
- $n \geq 3$ and $\operatorname{Dec}_{n-1}\left(\delta, p, \Gamma_{n-1}(10 E)\right) \lesssim_{\varepsilon, E} \delta^{-\varepsilon}$.

Then for each $0<\nu<1$, such that $\frac{R}{\nu^{-\frac{1}{2}}} \in \mathbb{N}$, there exists a function $\epsilon(\nu)=\epsilon(\nu, p, E)$ with $\lim _{\nu \rightarrow 0} \epsilon(\nu)=0$ and a constant $C_{\nu, m}$ such that for each $m \geq 1$, we have

$$
\operatorname{Dec}_{n}\left(R^{-1}, p, E\right) \leq C_{\nu, m} R^{\epsilon(\nu)}\left(1+\sup _{\substack{1 \leq R^{\prime} \leq R \\ E^{*} \in\{E, 3 E\}}} \operatorname{Dec}_{n}\left(R^{\prime-1}, p, \nu, m, E^{*}\right)\right)
$$

for each $R \geq \nu^{-2^{m-1}}$.

The harmless restriction of $\frac{R}{\nu^{-\frac{1}{2}}} \in \mathbb{N}$ comes from working with essential partitions in lemma 3.12 (see the end of the proof of proposition 5.10 on the bottom of page 105 and the top of page 106). With finitely overlapping covers this restriction is not needed. Note also that theorem 5.27 is custom made for the induction proof of the l^{2} decoupling theorem. For $n \geq 3$ we assume an inequality which is similar to the l^{2} decoupling theorem in the lower dimensional space \mathbb{R}^{n-1}. We will prove the theorem for $n=3$.
Proof. Let $K=\nu^{-\frac{1}{2}}$ and $R \geq K^{2^{m}}=\nu^{-2^{m-1}}$. Our plan is to iterate proposition 5.23 starting from scale $\delta=1$ until we reach scales $\delta=R^{-\frac{1}{2}} K^{2^{m-1}}$ and $\delta=R^{-\frac{1}{2}} K^{2^{m-1}-\frac{1}{2}}$. Each iteration lowers the scale from δ to at least $\delta K^{-\frac{1}{2}}$. This gives us intuition to the fact that we must iterate at most $M:=\log _{K} R-2^{m}$ times since

$$
K^{-\frac{M}{2}}=\left(K^{-\frac{1}{2}}\right)^{\log _{K} R-2^{m}}=\frac{1}{\left(K^{\frac{1}{2}}\right)^{\log _{K} R}} K^{2^{m-1}}=\frac{1}{\left(K^{\log _{K} R}\right)^{\frac{1}{2}}} K^{2^{m-1}}=R^{-\frac{1}{2}} K^{2^{m-1}}
$$

We note that $M \geq 0$, since by assumption we have $R^{-\frac{1}{2}} K^{2^{m-1}}=\left(R^{-1} K^{2^{m}}\right)^{\frac{1}{2}} \leq 1$ and $K>1$. We denote $\operatorname{MDec}_{3}(\delta):=\sup _{E^{*} \in\{E, 3 E\}} \operatorname{Dec}_{3}\left(\delta, p, K^{-2}, m, E^{*}\right)$ and

$$
I_{\delta}(Q):=\left(\sum_{\alpha \in \operatorname{Part}_{\delta} Q}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}
$$

where Q is a cube. Furthermore denote $I_{\delta}\left([0,1]^{2}\right):=I_{\delta}$. Now we can use proposition 5.10 to write

$$
\begin{align*}
\|E g\|_{L^{p}\left(w_{B_{R}, E}\right)} & \leq C_{\varepsilon} K^{\varepsilon}\left(I_{K^{-1}}+I_{K^{-\frac{1}{2}}}\right)+K^{C} \operatorname{Dec}_{3}\left(R^{-1}, p, K^{-2}, m, E\right) I_{R^{-\frac{1}{2}}} \\
& \leq C_{\varepsilon} K^{\varepsilon}\left(I_{K^{-1}}+I_{K^{-\frac{1}{2}}}\right)+K^{C} \operatorname{MDec}_{3}\left(R^{-1}\right) I_{R^{-\frac{1}{2}}} . \tag{5.28}
\end{align*}
$$

We want to retain the $I_{R^{-\frac{1}{2}}}$ terms so we will use proposition 5.23 to $\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{\left.B_{R}, E\right)}\right.}$ in the terms $I_{K^{-1}}$ and $I_{K^{-\frac{1}{2}}}$.

For an arbitrary scale $\delta \geq R^{-\frac{1}{2}} K^{2^{m-1}}$ proposition 5.23 and the Minkovski's inequality of l^{2} gives that

$$
\begin{gathered}
I_{\delta}=\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)}\left\|E_{\alpha} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
\leq\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)}\left[C_{\varepsilon} K^{\varepsilon}\left(I_{\delta K^{-1}}(\alpha)+I_{\delta K^{-\frac{1}{2}}}(\alpha)\right)+K^{C} \operatorname{MDec}_{3}\left(R^{-1} \delta^{-2}\right) I_{R^{-\frac{1}{2}}}(\alpha)\right]^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

$$
\begin{aligned}
\leq\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)} C_{\varepsilon}^{2} K^{2 \varepsilon} I_{\delta K^{-1}}(\alpha)^{2}\right)^{\frac{1}{2}} & +\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)} C_{\varepsilon}^{2} K^{2 \varepsilon} I_{\delta K^{-\frac{1}{2}}}(\alpha)^{2}\right)^{\frac{1}{2}} \\
& +\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)} K^{2 C} \operatorname{MDec}_{3}\left(R^{-1} \delta^{-2}\right)^{2} I_{R^{-\frac{1}{2}}}(\alpha)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and for every scale $\delta^{\prime} \leq \delta$, we have the following property

$$
\begin{aligned}
\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)} I_{\delta^{\prime}}(\alpha)^{2}\right)^{\frac{1}{2}} & =\left(\sum_{\alpha \in \operatorname{Part}_{\delta}\left([0,1]^{2}\right)} \sum_{\alpha^{\prime} \in \operatorname{Part}_{\delta^{\prime}} \alpha}\left\|E_{\alpha^{\prime}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
& =\left(\sum_{\alpha^{\prime} \in \operatorname{Part}_{\delta^{\prime}}\left([0,1]^{2}\right)}\left\|E_{\alpha^{\prime}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}=I_{\delta^{\prime}} .
\end{aligned}
$$

Since $C_{\varepsilon} K^{\varepsilon} \geq 1$, we now get

$$
\begin{equation*}
I_{\delta} \leq C_{\varepsilon} K^{\varepsilon}\left(I_{\delta K^{-1}}+I_{\delta K^{-\frac{1}{2}}}+K^{C} \operatorname{MDec}_{3}\left(R^{-1} \delta^{-2}\right) I_{R^{-\frac{1}{2}}}\right) \tag{5.29}
\end{equation*}
$$

for every scale $\delta \geq R^{-\frac{1}{2}} K^{2^{m-1}}=K^{-\frac{M}{2}}$. We note that since $1 \geq \delta \geq R^{-\frac{1}{2}} K^{2^{m-1}}$ we have $R^{-1} \leq R^{-1} \delta^{-2} \leq K^{-2^{m}} \leq 1$ and thus we may estimate

$$
\operatorname{MDec}_{3}\left(R^{-1} \delta^{-2}\right) \leq \sup _{1 \leq R^{\prime} \leq R} \operatorname{MDec}_{3}\left(\left(R^{\prime}\right)^{-1}\right)=: \text { MDec }
$$

Now (5.29) simplifies to

$$
\begin{equation*}
I_{\delta} \leq C_{\varepsilon} K^{\varepsilon}\left(I_{\delta K^{-1}}+I_{\delta K^{-\frac{1}{2}}}+K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \tag{5.30}
\end{equation*}
$$

for each $\delta \geq R^{-\frac{1}{2}} K^{2^{m-1}}=K^{-\frac{M}{2}}$.
The problem with the above estimate is that the lower bound for the scale δ brings technical difficulties to the argument. To get rid of these difficulties we will look for an inequality that holds also with smaller scales than $K^{-\frac{M}{2}}$. The following is a simplification of the authors original argument that was suggested by T. Hytönen. To facilitate this argument, we denote

$$
I_{R^{*}}:=\max \left\{I_{K^{-\frac{M}{2}}}, I_{K^{-\frac{M+1}{2}}}\right\}=\max \left\{I_{R^{-\frac{1}{2}} K^{2^{m-1}}}, I_{R^{-\frac{1}{2}} K^{2^{m-1}-\frac{1}{2}}}\right\}
$$

and

$$
J_{\delta}:= \begin{cases}I_{\delta}, & \text { if } \delta>K^{-\frac{M}{2}}, \\ I_{R^{*}}, & \text { if } \delta \leq K^{-\frac{M}{2}},\end{cases}
$$

for each $\delta=K^{-\frac{N}{2}}$, where $N \in \mathbb{N}$. We now claim that (5.30) implies

$$
\begin{equation*}
J_{\delta} \leq C_{\varepsilon} K^{\varepsilon}\left(J_{\delta K^{-1}}+J_{\delta K^{-\frac{1}{2}}}+K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \tag{5.31}
\end{equation*}
$$

To show this, we consider four cases. If $K^{-1} \delta>K^{-\frac{M}{2}}$, then all J terms in (5.31) coincide with the corresponding I terms and (5.30) is exactly (5.31). If $\delta \leq K^{-\frac{M}{2}}$, then all J terms in (5.31) are equal to $I_{R^{*}}$ and (5.31) is clear, since $C_{\varepsilon} K^{\varepsilon} \geq 1$. Now it only remains to consider $\delta \in\left\{K^{-\frac{M}{2}+\frac{1}{2}}, K^{-\frac{M}{2}+1}\right\}$. If $\delta=K^{-\frac{M}{2}+1}$, then

$$
J_{\delta}=I_{\delta}, \quad J_{\delta K^{-\frac{1}{2}}}=I_{\delta K^{-\frac{1}{2}}}, \quad J_{\delta K^{-1}}=I_{R^{*}} \geq I_{K^{-\frac{M}{2}}}=I_{\delta K^{-1}}
$$

so that from (5.30) we get (5.31). Lastly, if $\delta=K^{-\frac{M}{2}+\frac{1}{2}}$, then

$$
J_{\delta}=I_{\delta}, \quad J_{\delta K^{-\frac{1}{2}}}=I_{R^{*}} \geq I_{K^{-\frac{M}{2}}}=I_{\delta K^{-\frac{1}{2}}}, \quad J_{\delta K^{-1}}=I_{R^{*}} \geq I_{K^{-\frac{M+1}{2}}}=I_{\delta K^{-1}}
$$

and again from (5.30) we get (5.31). This concludes the proof of (5.31).
Let us stress the fact that in (5.31) there is no lower bound for δ, which means that it is best to iterate (5.31). Let us note that $\operatorname{Part}_{1}\left([0,1]^{2}\right)=\left\{[0,1]^{2}\right\}$ and hence

$$
I_{1}=\|E g\|_{L^{p}\left(w_{B_{R}, E}\right)}
$$

If $M>0$, then $J_{1}=I_{1}$. If $M=0$, then $J_{1}=I_{R^{*}}=\max \left\{I_{1}, I_{K^{-\frac{1}{2}}}\right\} \geq I_{1}$. Thus in any case, we have

$$
I_{1} \leq J_{1} .
$$

At each iteration the scale decreases by a small step of $K^{-\frac{1}{2}}$, a big step of K^{-1} or it jumps to the scale $R^{-\frac{1}{2}}$. The terms of this last type is no linger iterated, but new such terms are generated at each iteration. After $N \leq M$ iterations we may end up in one of the following scenarios. We may have taken $s \leq N$ iterations with small step $K^{-\frac{1}{2}}$ and $N-s$ iterations with big step K^{-1}, resulting in a final scale $K^{-\frac{s}{2}} K^{-N+s}=K^{-\left(N-\frac{s}{2}\right)}$. The possible order of such iterations may have occurred in $\binom{N}{s}$ different ways. On the other hand, after any number of small step and large step iterations before the scales $K^{-\frac{M}{2}}$ and $K^{-\frac{M+1}{2}}$, there is a possibility of taking a jump to the scale $R^{-\frac{1}{2}}$ as the last iteration. Note also that both small step and large step iterations produce a factor $C_{\varepsilon} K^{\varepsilon}$, whereas a jump to the scale $R^{-\frac{1}{2}}$ (which can only happen once, as the last iteration) produces the factor $K^{C} \mathrm{MDec}$.

Figure 5.1: The iteration tree that describes how the scale decreases with every iteration.

Estimating the possible routes of iteration, we are led to the following bound

$$
\begin{equation*}
J_{1} \leq\left(C_{\varepsilon} K^{\varepsilon}\right)^{N}\left(\sum_{s=0}^{N}\binom{N}{s} J_{K^{-\left(N-\frac{s}{2}\right)}}+2^{N} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \tag{5.32}
\end{equation*}
$$

for each $N \in \mathbb{N}$. While we have already sketched the combinatorial reasons behind the above estimate, let us still provide a rigorous proof by induction on N.

Base case $\mathbf{N}=\mathbf{0}$: In this case (5.32) reduces to

$$
J_{1} \leq J_{1}+K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}
$$

which is trivially true.
The induction step: We assume that (5.32) holds for some $N \geq 0$. Since $\sum_{s=0}^{N}\binom{N}{s}=2^{N}$, an application of (5.31) gives that

$$
\begin{aligned}
\sum_{s=0}^{N}\binom{N}{s} J_{K^{-\left(N-\frac{s}{2}\right)}} \leq & C_{\varepsilon} K^{\varepsilon} \sum_{s=0}^{N}\binom{N}{s}\left(J_{K^{-\left(N+1-\frac{s}{2}\right)}}+J_{K^{-\left(N+\frac{1}{2}-\frac{s}{2}\right)}}+K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \\
= & C_{\varepsilon} K^{\varepsilon}\left[\sum_{s=0}^{N}\binom{N}{s}\left(J_{K^{-\left(N+1-\frac{s}{2}\right)}}+J_{K^{-\left(N+\frac{1}{2}-\frac{s}{2}\right)}}\right)\right. \\
& \left.+\sum_{s=0}^{N}\binom{N}{s} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right]
\end{aligned}
$$

$$
\begin{equation*}
=C_{\varepsilon} K^{\varepsilon}\left[\sum_{s=0}^{N}\binom{N}{s}\left(J_{K^{-\left(N+1-\frac{s}{2}\right)}}+J_{K^{-\left(N+\frac{1}{2}-\frac{s}{2}\right)}}\right)+2^{N} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right] . \tag{5.33}
\end{equation*}
$$

Furthermore, we have

$$
\sum_{s=0}^{N}\binom{N}{s} J_{K^{-\left(N+\frac{1}{2}-\frac{s}{2}\right)}}=\sum_{s=0}^{N}\binom{N}{s} J_{K^{-\left(N+1-\frac{s+1}{2}\right)}}=\sum_{t=1}^{N+1}\binom{N}{t-1} J_{K^{-\left(N+1-\frac{t}{2}\right)}} .
$$

Thus by denoting $\binom{N}{-1}=\binom{N}{N+1}=0$ and applying Pascal's formula $\binom{N}{s}+\binom{N}{s-1}=\binom{N+1}{s}$, we get

$$
\begin{aligned}
\sum_{s=0}^{N}\binom{N}{s}\left(J_{K^{-\left(N+1-\frac{s}{2}\right)}}+J_{K^{-\left(N+\frac{1}{2}-\frac{s}{2}\right)}}\right) & =\sum_{s=0}^{N+1}\left[\binom{N}{s}+\binom{N}{s-1}\right] J_{K^{-\left(N+1-\frac{s}{2}\right)}} \\
& =\sum_{s=0}^{N+1}\binom{N+1}{s} J_{K^{-\left(N+1-\frac{s}{2}\right)}}
\end{aligned}
$$

Substituting this into (5.33) yields

$$
\sum_{s=0}^{N}\binom{N}{s} J_{K^{-\left(N-\frac{s}{2}\right)}} \leq C_{\varepsilon} K^{\varepsilon}\left[\sum_{s=0}^{N+1}\binom{N+1}{s} J_{K^{-\left(N+1-\frac{s}{2}\right)}}+2^{N} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right] .
$$

This combined with the induction assumption and $C_{\varepsilon} K^{\varepsilon} \geq 1$ results in

$$
\begin{aligned}
& J_{1} \leq\left(C_{\varepsilon} K^{\varepsilon}\right)^{N}\left(\sum_{s=0}^{N}\binom{N}{s} J_{K^{-\left(N-\frac{s}{2}\right)}}+2^{N} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \\
& \leq\left(C_{\varepsilon} K^{\varepsilon}\right)^{N}\left(C _ { \varepsilon } K ^ { \varepsilon } \left[\sum_{s=0}^{N+1}\binom{N+1}{s} J_{K^{-\left(N+1-\frac{s}{2}\right)}}\right.\right. \\
&\left.\left.+2^{N} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right]+2^{N} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \\
& \leq\left(C_{\varepsilon} K^{\varepsilon}\right)^{N+1}\left(\sum_{s=0}^{N+1}\binom{N+1}{s} J_{K^{-\left(N+1-\frac{s}{2}\right)}}+2^{N+1} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) .
\end{aligned}
$$

This concludes the proof of (5.32) by induction.

By choosing $N=M$ in (5.32), we have $N-\frac{s}{2}=M-\frac{s}{2} \geq M-\frac{M}{2}=\frac{M}{2}$ and hence all J terms on the right-hand side of (5.32) are equal to $I_{R^{*}}$. This means that we get

$$
\begin{align*}
I_{1} \leq J_{1} & \leq\left(C_{\varepsilon} K^{\varepsilon}\right)^{M}\left(\sum_{s=0}^{M}\binom{M}{s} I_{R^{*}}+2^{M} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \\
& =\left(C_{\varepsilon} K^{\varepsilon}\right)^{M}\left(2^{M} I_{R^{*}}+2^{M} K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \\
& =\left(2 C_{\varepsilon} K^{\varepsilon}\right)^{M}\left(I_{R^{*}}+K^{C} \operatorname{MDec} I_{R^{-\frac{1}{2}}}\right) \tag{5.34}
\end{align*}
$$

Recall that $I_{R^{*}}=\max \left\{I_{R^{-\frac{1}{2}} K^{2 m-1}}, I_{R^{-\frac{1}{2}} K^{2^{m-1}-\frac{1}{2}}}\right\}$. Next we will show that

$$
\begin{equation*}
I_{R^{*}} \leq K^{2^{m-1}} I_{R^{-\frac{1}{2}}} . \tag{5.35}
\end{equation*}
$$

An application of Minkovski's inequality and Cauchy-Schwartz inequality gives

$$
\begin{aligned}
\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)} & \leq \sum_{\beta^{\prime} \in \operatorname{Part}_{R^{-\frac{1}{2}}} \beta}\left\|E_{\beta^{\prime}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)} \\
& \leq\left(\sum_{\beta^{\prime} \in \operatorname{Part}_{R^{-\frac{1}{2}}} \beta} 1\right)^{\frac{1}{2}}\left(\sum_{\beta^{\prime} \in \operatorname{Part}_{R^{-\frac{1}{2}}} \beta}\left\|E_{\beta^{\prime}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
& =K^{2^{m-1}}\left(\sum_{\beta^{\prime} \in \operatorname{Part}_{R^{-\frac{1}{2}}} \beta}\left\|E_{\beta^{\prime}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $\beta \subset[0,1]^{2}$ is a cube of side length $R^{-\frac{1}{2}} K^{2^{m-1}}$. Thus

$$
\begin{aligned}
I_{R^{-\frac{1}{2}} K^{2 m-1}} & =\left(\sum_{\beta \in \operatorname{Part}_{R^{-\frac{1}{2}}}^{K^{2 m-1}}\left([0,1]^{2}\right)}\left\|E_{\beta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{\left.\beta \in \operatorname{Part}_{R^{-\frac{1}{2}} K_{K^{2 m-1}}\left([0,1]^{2}\right)} K^{2^{m}} \sum_{\beta^{\prime} \in \operatorname{Part}_{R^{-\frac{1}{2}}} \beta}\left\|E_{\beta^{\prime}} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)}\right)^{\frac{1}{2}} \\
& =K^{2^{m-1}}\left(\sum_{\left.\Delta \in \operatorname{Part}_{R^{-\frac{1}{2}}\left([0,1]^{2}\right)}\left\|E_{\Delta} g\right\|_{L^{p}\left(w_{B_{R}, E}\right)}^{2}\right)=K^{2^{m-1}} I_{R^{-\frac{1}{2}}} .} .\right.
\end{aligned}
$$

For the smaller scale $\delta=R^{-\frac{1}{2}} K^{2^{m-1}-\frac{1}{2}}$ we similarly have

$$
I_{R^{-\frac{1}{2}} K^{2 m-1}-\frac{1}{2}} \leq K^{2^{m-1}-\frac{1}{2}} I_{R^{-\frac{1}{2}}} \leq K^{2^{m-1}} I_{R^{-\frac{1}{2}}} .
$$

We have now shown (5.35) and plugging it to (5.34) gives

$$
\begin{align*}
\|E g\|_{L^{p}\left(w_{B_{R}, E}\right)}=I_{1} & \leq\left(2 C_{\varepsilon} K^{\varepsilon}\right)^{M}\left(K^{2^{m-1}} I_{R^{-\frac{1}{2}}}+K^{C} \mathrm{MDec}_{R^{-\frac{1}{2}}}\right) \\
& \leq\left(2 C_{\varepsilon} K^{\varepsilon}\right)^{M} K^{2^{m-1}+C}(1+\mathrm{MDec}) I_{R^{-\frac{1}{2}}} \tag{5.36}
\end{align*}
$$

Recall that $K=\nu^{-\frac{1}{2}}$ and $M=\log _{K} R-2^{m}$. Using this we calculate that

$$
\begin{align*}
\left(2 C_{\varepsilon} K^{\varepsilon}\right)^{M} K^{2^{m-1}+C} & \leq\left(2 C_{\varepsilon} K^{\varepsilon}\right)^{\log _{K} R} \nu^{-2^{m-2}-\frac{C}{2}} \\
& =R^{\log _{K}\left(2 C_{\varepsilon}\right)+\varepsilon} \nu^{-2^{m-2}-\frac{C}{2}} \\
& =R^{-2 \log _{\nu}\left(2 C_{\varepsilon}\right)+\varepsilon} \nu^{-2^{m-2}-\frac{C}{2}} . \tag{5.37}
\end{align*}
$$

The first equality is justified by

$$
C^{\log _{K} R}=\left(K^{\log _{K} C}\right)^{\log _{K} R}=\left(K^{\log _{K} R}\right)^{\log _{K} C}=R^{\log _{K} C}, \quad C>0
$$

and the last equality is due to the change of base formula of the logarithm

$$
\log _{K} C=\log _{\nu^{-\frac{1}{2}}} C=\frac{\log _{\nu} C}{\log _{\nu} \nu^{-\frac{1}{2}}}=-2 \log _{\nu} C, \quad C>0
$$

Recall that we denoted MDec $=\sup _{1 \leq R^{\prime} \leq R} \operatorname{MDec}_{3}\left(\left(R^{\prime}\right)^{-1}\right)$. Plugging (5.37) to (5.36) gives us

$$
\|E g\|_{L^{p}\left(w_{B_{R}, E}\right)} \leq C_{\nu, m} R^{\epsilon(\nu)}\left(1+\sup _{1 \leq R^{\prime} \leq R} \operatorname{MDec}_{3}\left(\left(R^{\prime}\right)^{-1}\right)\right) I_{R^{-\frac{1}{2}}},
$$

where we choose $C_{\nu, m}=\nu^{-2^{m-2}-\frac{C}{2}}$ and $\epsilon(\nu)=-2 \log _{\nu}\left(2 C_{\varepsilon}\right)+\varepsilon$. It remains to check that $\lim _{\nu \rightarrow 0} \epsilon(\nu)=0$. Since ε is arbitrary, it suffices to check that $\log _{\nu}\left(2 C_{\varepsilon}\right) \rightarrow 0$ as $\nu \rightarrow 0$. This follows directly from the change of base formula

$$
\log _{\nu}\left(2 C_{\varepsilon}\right)=\frac{\ln 2 C_{\varepsilon}}{\ln \nu} \underset{\nu \rightarrow 0}{\longrightarrow} 0 .
$$

As a recap, the proof of theorem 5.27 for $n=3$ utilized the fact that the contribution coming from the squares β that exist near a line can be controlled by a lower dimensional decoupling constant $\operatorname{Dec}_{2}(\delta, p) \lesssim \varepsilon \delta^{-\varepsilon}$ via the Fourier support decoupling theorem 4.27. When $n \geq 4$, the contribution coming from the cubes near a hyperplane H in $[0,1]^{n-1}$ will be similarly controlled by $\operatorname{Dec}_{n-1}(\delta, p)$. This is due to the fact that the maximum and minimum curvatures of the paraboloid over H are comparable to 1 uniformly over the hyperplanes H. When $n=2$ there is no such lower dimensional contribution.

Bibliography

[1] Astala, K. and Saksman, E. Fourier Analysis I and II, Lecture notes, University of Helsinki, delivered march 2020.
[2] Bennett, J., Carberry, A. and Tao T. On the multilinear restriction and Kakeya conjectures, Acta Mathematica, 196(2), 2006, 261-302.
[3] Bourgain, J., Decoupling, exponential sums and the Riemann zeta function, Journal of the American Mathematical Society, 30(1), 2017, 205-224.
[4] Bourgain, J. Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces, Israel Journal of Mathematics, 193(1), 2013, 441-458.
[5] Bourgain, J. and Demeter, C. A study guide for the l^{2} decoupling theorem, Chinese Annals of Mathematics, Series B, 38B(1), 2017, 173-200.
[6] Bourgain, J. and Demeter, C. The proof of the l^{2} decoupling conjecture, Annals of Mathematics, 182(2), 2015, 351-389.
[7] Du, X., Guth, L. and Li., X. A sharp Schrödinger maximal estimate in \mathbb{R}^{2}, Annals of Mathematics, 186(2), 2017, 607-640.
[8] Bourgain, J., Demeter, C. and Guth, L. Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three, Annals of mathematics, 184(2), 2016, 633-682.
[9] Demeter, C. Fourier Restriction, Decoupling and Applications, Cambridge University Press, 2020.
[10] Deng, Y., Germain, P. and Guth, L. Strichartz estimates for the Schrödinger equation on irrational tori, Journal of Functional Analysis, 273(9), 2017, 2846-2869.
[11] Guth, L. A short proof of the multilinear Kakeya inequality, Mathematical Proceedings of the Cambridge Philosophical Society, 158(1), 2015, 147-153.
[12] Guth, L. The endpoint case of the Bennettt-Carbery-Tao multilinear Kakeya conjecture, Acta Mathematica, 205(2), 2010, 263-286.
[13] Li, Z. Decoupling for the parabola and connections to efficient congruencing, Doctoral dissertation, University of California, 2019.
[14] Sinko, J. On the l^{2} decoupling theorem, Master's thesis, University of Helsinki Department of Mathematics and Statistics, 2020.
[15] Shores, T. Applied Linear Algebra and Matrix Analysis, Springer, 2007.
[16] Stein, P. A Note on the Volume of a Simplex, The American Mathematical Monthly, 73(3), 1966, 299-301.
[17] Wolff, T., Local smoothing type estimates on L^{p} for large p, Geometric and functional analysis, $\mathbf{1 0}(5), 2000,1237-1288$.

