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Chapter 1

Introduction

1.1 Preface
Decoupling is a powerful Fourier analytic tool with many applications in number theory,
partial differential equations and geometric measure theory. In a general setting we have
possibly infinite elements (xi)i∈I in a normed space (X, ‖ · ‖X) and we study the smallest
constant Cdec that satisfies

‖
∑
i∈I

xi‖X ≤ Cdec(
∑
i∈I

‖xi‖qX)
1
q .

A common example of this is when X is the space of square integrable functions, q = 2
and xj have disjointly supported Fourier transforms. In this case using orthogonality
one can deduce an equality ‖

∑
i∈I xi‖X = (

∑
i∈I ‖xi‖2

X)
1
2 . A natural question is to ask

what happens in the absence of Hilbert space orthogonality, i.e., in the case X = Lp

and q = 2. This particular case is called l2(Lp) decoupling or for the sake of brevity l2
decoupling. The l2 decoupling theorem is a theorem that yields an upper bound for a
certain l2 decoupling constant and this bound is sharp up to δ−ε losses.

The first instance of decoupling was by Thomas Wolff. In the year 2000 Wolff published
an article [17], where he proved a sharp lpLp decoupling inequality for the cone and used it
to get local smoothing estimates on Lp. In a more resent context decoupling was strongly
developed by Jean Bourgain in 2013 in his paper [4], where he combined an induction
on scales argument with multilinear restriction to prove the l2 decoupling theorem in the
range 2 ≤ p ≤ 2n

n−1
. Two years later the ground breaking l2 decoupling theorem for the full

range 2 ≤ p ≤ 2(n+1)
n−1

was proven by Jean Bourgain and Ciprian Demeter in [6]. Possibly
the most remarkable application is from [8], where l2 decoupling is used to prove the
eighty-year-old main conjecture in Vinogradov’s mean value theorem. This result is an
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upper bound for the number of solutions to a certain system of Diophantine equations.
Other resent works include connections to the Riemann zeta function [3] and connections
to the Schrödinger equation [7] and [10]. In the year 2020 Demeter published a book [9]
that covers decoupling in a broad range of generality.

The main objective of this thesis is to provide a highly detailed exposition to chapters
8 and 9 from the article [5] A study guide to the l2 decoupling theorem published in
2017 by Jean Bourgain and Ciprian Demeter. Along the way we will also shed some
light to chapter 5 of the same article. The intention is that the details presented in this
thesis makes the results more accessible for beginners. The only thing that we will leave
uninformed is how can one reduce the equation of the line L in chapter 8 of [5]. This text
combined with the Master thesis of Jaakko Sinko [14] covers the l2 decoupling theorem
exhaustively in the range 2 ≤ p ≤ 2n

n−1
excluding only the aforementioned reduction. In

other words, only the final chapter of [5] is left uninvestigated.
In addition to the in-depth details, noteworthy contributions of this thesis include:

construction of tempered distributions and Schwartz functions used in the proofs, steps
needed to be taken from the multilinear Kakeya inequality of [11] so that one gets the
multilinear Kakeya inequality from [5] and careful treatment of Fourier transforms of
non-integrable functions so that we will not need heuristics like ÊQg(λ) (see chapter 9 of
[5]).

We begin the thesis by equipping ourselves with results from functional analysis, lin-
ear algebra and real analysis. This includes the construction of Schwartz functions and
tempered distributions used in the later proofs of the thesis.

In the second chapter we will present and prove the multilinear Kakeya inequality,
which is an upper bound on the overlap properties of certain neighbourhoods of lines in
Rn.

We will start the third chapter by presenting the extension operator EQ and the weight
functions wB,E. Then we will use the multilinear Kakeya inequality from the previous
chapter to prove a multilinear cube inflation inequality.

In the fourth chapter we define the linear decoupling constant and consider the rela-
tions between two different formulations of linear l2 decoupling. This chapter includes a
decoupling inequality that makes use of Fourier restriction.

The fifth and final chapter is about comparing linear and multilinear decouplings. We
will start this by introducing the multilinear decoupling constant. The thesis is finalized
with a reverse decoupling constant inequality that makes use of the Fourier restriction
decoupling from the previous section.

To summarize the argument of the article [5] A study guide to the l2 decoupling theorem,
two types of mechanisms are used to decouple. The first is l2L2 decoupling, which is
proved using the Hilbert space properties of L2 and the second is cube inflation, which
relies on the multilinear Kakeya inequality. These two mechanisms are combined to make a
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multiscale inequality, which is used to estimate the multilinear decoupling constant. These
multilinear estimates can be turned into linear decouplings via the reverse decoupling
constant inequality, which is proved using an alternative formulation of linear decoupling.
In this thesis we cover the Multilinear Kakeya inequality and the cube inflation result.
We also study the alternative form of linear decoupling and use it to prove the reverse
decoupling constant inequality. The masters thesis of Jaakko Sinko [14] covers the l2L2

decoupling and the application of all these results to get the l2 decoupling theorem in the
slightly truncated range 2 ≤ p ≤ 2n

n−1
.

I am very grateful to my thesis supervisor Professor Tuomas Hytönen for introducing
me to the topic and for patiently answering the questions that I had.

1.2 Notation
For the natural numbers we include zero and denote N = {0, 1, . . . } and N+ = {1, 2, . . . }.
Throughout this text n ∈ N+. Often we restrict n to be even bigger, if the notation does
not otherwise make sense, for example, whenever we denote Rn−1, we assume that n ≥ 2.

Throughout this text we write A . B, if A ≤ CB for some fixed constant 0 < C <∞.
We also write A ∼ B, if B . A . B. When the constant C is associated with this
notation, it is called implicit. Furthermore, we denote A .p1,··· ,pn B, when we allow the
implicit constant to depend on the parameters {p1, · · · , pn}. However, we let the implicit
constant depend on dimension n and the Lebesque index p. These can be considered as
fixed parameters and thus we will in general not write .n,p.

Cubes have a big role in the later chapters of this thesis. In order to make unique
partitions of cubes into smaller cubes, we make a restriction that throughout the cubes
that appear in the statement of the theorems, lemmas, propositions and definitions have
side length in 2Z. These cubes are usually noted by B,Q,∆, q. However, in proofs we
might construct cubes that have arbitrary side lengths. The notation B(cB, R) means
that the center of the cube is cB and the side length is R. By Partα(Q) we denote the
unique partition of a cube Q into cubes of side length α. All cubes will have sides that
are parallel to the coordinate axes. This means that we can uniquely define a cube using
only the center and side length. The weight function associated to a cube B = B(cB, R)
is defined by

wB,E(x) :=

(
1 +
|x− cB
R

)−E
.

Since B is reserved for cubes, we will denote the euclidean ball in Rn centered at x
with radius r by Bn

◦ (x, r). The Euclidean norm is denoted simply by | · |, i.e., for x ∈ Rn

we write |x| = (
∑n

i=1 x
2
i )

1
2 .
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For a set S, we denote cS by the dilation of S by a factor of c around its center, where
c ∈ R+.

We define πj : Rn → Rn−1 to be the projection map that forgets the j-th coordinate,
i.e.,

πj(x1, . . . , xn) := (x1, . . . , xj−1, xj+1, . . . , xn).

For a discrete set A, we denote the cardinality of A with #A. When we are mentioning
measurability whilst not explicitly introducing a measure, we are considering the Lebesque
measure in Rn which we denote by mn. If there is no risk of confusion, we might also use
| · | instead of mn.

For a function g : Q→ C the extension operator EQ is defined by the formula

EQg(x) :=

ˆ
Q

g(ξ)e(x1ξ1 + · · ·+ xn−1ξn−1 + |ξ|2xn) dξ.

For averaged integrals we use notations 
Ω

f dmn :=
1

mn(Ω)

ˆ
Ω

f dmn =
1

|Ω|

ˆ
Ω

f dmn.

For a measurable set Ω ⊂ Rn and a measurable function f , we write

‖f‖Lp(Ω) :=

(ˆ
Ω

|f |p dmn

) 1
p

, 0 < p <∞

and

‖f‖L∞(Ω) := inf{c > 0 : mn({x ∈ Ω : |f(x)| > c}) = 0}.

If Ω = Rn, then we also use ‖f‖p = ‖f‖Lp(Ω). We characterize the Lp-spaces by

Lp(Ω) := {f : Ω→ C measurable : ‖f‖Lp(Ω) <∞}, 0 < p ≤ ∞.

The local Lp-spaces are denoted by

Lploc(Ω) := {f : Ω→ C measurable : ‖f‖Lp(K) <∞, ∀K ⊂ Ω compact}, 0 < p ≤ ∞.

Other variants of Lp norms we use include

‖f‖Lp] (B) :=

(
1

mn(B)

ˆ
B

|f(x)|p dx

) 1
p

,

‖f‖Lp(wB,E) :=

(ˆ
Rn
|f(x)|pwB,E(x) dx

) 1
p
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and

‖f‖Lp] (wB,E) :=

(
1

mn(B)

ˆ
Rn
|f(x)|pwB,E(x) dx

) 1
p

.

For a sequence (ai)i∈I , we write

‖(ai)i∈I‖lp := ‖ai‖lp :=

(∑
i∈I

|ai|p
) 1

p

, 0 < p <∞.

If there is no risk of confusion, we will also write ‖ai‖p = ‖ai‖lp .
For the operator norm of a linear operator L : V → W between normed spaces (V, ‖·‖V )

and (W, ‖ · ‖W ), we use the notation

‖L‖op := inf{c > 0 : ‖Lv‖W ≤ c‖v‖V for all v ∈ V }.

We also reserve the notation 〈·, ·〉 for functionals. For a functional T and a function
φ, the expression 〈T, φ〉 stands for the value that T sends φ to.

A multi-index is a sequence of natural numbers (α1, . . . , αn) ∈ Nn. The norm of
a multi-index is defined by |α| :=

∑n
i=1 αi and we have the following notations xβ :=

xβ1

1 x
β2

2 · · · xβnn , ∂α := ∂α1
1 ∂α2

2 · · · ∂αnn ,
(
α
γ

)
:=
∏n

i=1

(
αi
γi

)
and γ ≤ α⇔ γi ≤ αi, ∀i.

The class of Schwartz test functions is

S(Rn) := {ϕ ∈ C∞(Rn) : sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |∂αϕ(x)| <∞ ∀N ∈ N},

where

C∞(Rn) := {ϕ : Rn → C : ∂αϕ exists and is continuous for all α ∈ Nn}.

Furthermore, the topology of the space S(Rn) is induced by the collection of seminorms

pN(ϕ) := sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |∂αϕ(x)|.

The space of continuous linear mappings from S(Rn) to C is denoted by S ′(Rn). We
also call the elements of S ′(Rn) tempered distributions.

Throughout the thesis we will write e(t) := e2πit, where t ∈ R.
For an integrable function f the convention of Fourier transform we use is

f̂(ξ) := Ff(ξ) :=

ˆ
Rn
f(x)e−2πiξ·x dx =

ˆ
Rn
f(x)e(−ξ · x) dx.

We use the same notations f̂ and Ff in the general case where f is a tempered distribution.
The analogous inverse Fourier transform is denoted by qf and F−1f .
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1.3 Preliminary results
In this section, we present and recall some general results that highlight the techniques
we use to prove the results in this text.

Proposition 1.1. Let L be a linear operator L : V → W between normed spaces (V, ‖·‖V )
and (W, ‖ · ‖W ), where V 6= {0}. For the operator norms

‖L‖S := sup{‖Lv‖W : v ∈ V, ‖v‖V = 1},
‖L‖B := sup{‖Lv‖W : v ∈ V, ‖v‖V ≤ 1},

‖L‖F := sup{‖Lv‖W
‖v‖V

: v ∈ V, ‖v‖V 6= 0},

we have
‖L‖op = ‖L‖S = ‖L‖B = ‖L‖F .

Proof. The properties of supremum directly gives us that ‖L‖S ≤ ‖L‖B. If ‖v‖V ≤ 1 and
‖v‖V 6= 0, then ‖Lv‖W ≤ ‖Lv‖W

‖v‖V
≤ ‖L‖F . Furthermore, ‖v‖V = 0 implies ‖Lv‖W = 0.

Thus we have ‖L‖B ≤ ‖L‖F . Also if ‖v‖V 6= 0, then linearity implies that ‖Lv‖W‖v‖V
=

‖L( v
‖v‖V

)‖W ≤ ‖L‖S and hence ‖L‖F ≤ ‖L‖S. Combining these arguments we get that
‖L‖S = ‖L‖B = ‖L‖F .

Now it suffices to show that ‖L‖op = ‖L‖F . We know that ‖L‖F ≥ ‖Lv‖W
‖v‖V

⇔ ‖Lv‖W ≤
‖L‖F‖v‖V and hence ‖L‖F ≥ ‖L‖op. For the other direction notice that for all ε > 0 there
exists v′ ∈ V , such that ‖L‖op ≥ ‖Lv′‖W

‖v′‖V
≥ ‖L‖F −ε. Letting ε→ 0 gives us ‖L‖op ≥ ‖L‖F

and we are done.

The following lemma gives us a quick way to check that a bounded operator is bilips-
chitz.

Lemma 1.2. Let L be a bounded linear operator L : V → W between normed spaces
(V, ‖ · ‖V ) and (W, ‖ · ‖W ). If the inverse operator L−1 exists and is bounded, then both L
and L−1 are K-bilipschitz with K = max{‖L‖op, ‖L−1‖op}.

Proof. Since L and L−1 are bounded, we have ‖L‖op <∞ and ‖L−1‖op <∞. Thus

‖u‖V = ‖L−1Lu‖V ≤ ‖L−1‖op‖Lu‖W ≤ ‖L−1‖op‖L‖op‖u‖V

⇔ ‖u‖V
‖L−1‖op

≤ ‖Lu‖W ≤ ‖L‖op‖u‖V

⇒ 1

max{‖L‖op, ‖L−1‖op}
‖u‖V ≤ ‖Lu‖W ≤ max{‖L‖op, ‖L−1‖op}‖u‖V
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and similarly

1

max{‖L‖op, ‖L−1‖op}
‖u′‖W ≤ ‖L−1u′‖V ≤ max{‖L‖op, ‖L−1‖op}‖u′‖W .

In chapter 2 we will use singular value decomposition to estimate the operator norms
of a certain linear transformation. We refer to [15] chapter 5 section 6 for the proof of the
following well known result.

Theorem 1.3 (Singular value decomposition). An n×m matrix M can be factored as

M = UΣV >,

where U is an n× n orthogonal matrix and V is an m×m orthogonal matrix and Σ is a
n×m diagonal matrix with non-negative entries. The number of positive entries in Σ is
the same as the rank of M .

The next theorem generalizes the regular Hölder inequality for multiple products.

Theorem 1.4 (Generalized Hölder inequality). Assume that p1, . . . , pn+1 ∈ ]0,∞] are
such that

n∑
j=1

1

pj
=

1

pn+1

.

Then, for all measurable functions f1, . . . , fn, we have∥∥∥ n∏
j=1

fj

∥∥∥
pn+1

≤
n∏
j=1

‖fj‖pj .

Proof. Let pi ∈ ]0,∞[, for i = 1, 2, . . . , n. We proceed by induction on the number of
products n. Assume that n = 1, we now have

1

p1

=
1

p2

⇔ p2 = p1.

Thus we immediately get
‖f1‖p2 = ‖f1‖p1 .

For the general case n = k assume that the inequality holds for n = k − 1 i.e., for

k−1∑
j=1

1

pj
=

1

qk

8



we have ∥∥∥ k−1∏
j=1

fj

∥∥∥
qk
≤

k−1∏
j=1

‖fj‖pj .

Since
1
pk
pk+1

+
1
qk
pk+1

=
pk+1

pk
+
pk+1

qk
= pk+1

(
1

pk
+

1

qk

)
= pk+1

(
k∑
j=1

1

pj

)
= 1,

we can use pk
pk+1

, qk
pk+1

as Hölder conjugates. Thus

∥∥∥ k∏
j=1

fj

∥∥∥
pk+1

=

(∥∥∥ k∏
j=1

f
pk+1

j

∥∥∥
1

) 1
pk+1

≤

(∥∥∥ k−1∏
j=1

f
pk+1

j

∥∥∥
qk
pk+1

‖fpk+1

k ‖ pk
pk+1

) 1
pk+1

=
∥∥∥ k−1∏
j=1

fj

∥∥∥
qk
‖fk‖pk ≤

k∏
j=1

‖fj‖pj .

Lastly, assume that pi = ∞ for i ∈ I, where I is an arbitrary subset of {1, . . . , n}.
Now we have ∑

i/∈I

1

pi
=

1

pn+1

and hence the problem reduces to the previous case∥∥∥ n∏
j=1

fj

∥∥∥
pn+1

≤
∏
i∈I

‖fi‖∞
∥∥∥∏
i/∈I

fi

∥∥∥
pn+1

≤
n∏
j=1

‖fj‖pj

and we are done.

Note that the same proof can be done for sequences ak,1, . . . , ak,n ∈ CN when pi ∈ ]0,∞[,
for i = 1, . . . , n+ 1.

The following is a simple yet effective upper bound for Schwartz test functions.

Lemma 1.5. Let ϕ ∈ S(Rn) and s > 0. Then there exists an index N = N(s) ∈ N such
that

|ϕ(x)| .s,pN (ϕ)
1

(1 + |x|)s
,

for all x ∈ Rn.

Proof. If |x| ≤ 1, then

(1 + |x|)s|ϕ(x)| ≤ 2s|ϕ(x)| .s p0(ϕ) ≤ pN(ϕ) ∼pN (ϕ) 1.
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If |x| > 1, then choose N = dse and calculate

(1 + |x|)s|ϕ(x)| ≤ (1 + |x|2)s|ϕ(x)|
≤ (1 + |x|2)N |ϕ(x)|
≤ pN(ϕ) .pN (ϕ) 1.

Remark 1.6. By the definition of S(Rn), the dependence on pN(ϕ) in lemma 1.5 is harmless
as long as ϕ does not depend on anything critical. For contrast, the Schwartz function in
lemma 1.8 is dependent on a critical variable and hence lemma 1.5 is not enough to give
the estimate in lemma 1.8 part b.

Next we will prove the existence of an important Schwartz function. The following
bump function will be used in most of the Schwartz function constructions in this thesis.
In some cases, we can also find a uniform estimate for the Fourier transform of the product
of this function and a polynomial.

Lemma 1.7. Let K ⊂ Rn be compact, V ⊂ Rn open and K ⊂ V . If V is bounded, then
there exists a function f ∈ S(Rn), such that

|f | ≤ 1, Supp(f) ⊂ V and f = 1 on K.

Proof. Define ε = d(K,∂V )
2

and Uε := {x ∈ Rn : d(K, x) < ε}. Consider the function
h ∈ C∞(R) that is defined by h(x) = e−

1
x1(x > 0). We define η : Rn → R by

η(x) =
h(1− |x|2)´

Bn◦ (0,1)
h(1− |t|2) dt

and ηε : Rn → R by

ηε(x) :=
1

εn
η(
x

ε
).

Now ηε ∈ C∞(Rn), Supp(ηε) ⊂ Bn
◦ (0, ε) and ‖ηε‖1 = 1. All that is left is to check that

f(x) = 1Uε ∗ ηε(x) =

ˆ
Uε

ηε(x− y) dy

is the desired function.
By the dominated convergence theorem we can differentiate under the integral sign to

see that f is smooth. For every x ∈ Rn, we have

|f(x)| ≤ ‖ηε‖1 = 1.
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If x /∈ V and y ∈ Uε, then |x− y| > ε and thus

f(x) =

ˆ
Uε

ηε(x− y) dy =

ˆ
Uε

0 dy = 0.

Furthermore, if x ∈ K, then we have that Bn
◦ (0, ε) ⊂ {x− y : y ∈ Uε} =: x−Uε and thus

f(x) =

ˆ
Uε

ηε(x− y) dy =

ˆ
x−Uε

ηε(z) dz =

ˆ
Bn◦ (0,ε)

ηε(z) dz = ‖ηε‖1 = 1.

Lemma 1.8. Assume that a = e−c, for some c ∼ 1. Let f : R→ R be a smooth function
that is supported in ]−a, a[ (see lemma 1.7 for the existence of such f) and define g(x) =
f(x)xk, where k ∈ N. Then we have

(a) ‖ dj

dxj
g‖∞ .j 1,

(b) |ĝ(ξ)| .M (1 + |ξ|)−M , for all M > 0.

Particularly, the above estimates are uniform with respect to k.

Proof. Note that for k = 0, the results follow from lemma 1.5. Thus we can assume that
k ∈ N+ and hence a < k.

(a) By the Leibniz formula for differentiation of products, we have

dj

dxj
g(x) =

j∑
l=0

(
j

l

)
dl

dxl
xk

dj−l

dxj−l
f(x)

=

min(j,k)∑
l=0

(
j

l

)
dl

dxl
xk

dj−l

dxj−l
f(x)

=

min(j,k)∑
l=0

(
j

l

)
k!

(k − l)!
xk−l

dj−l

dxj−l
f(x).

Taking L∞ norms from both sides leads to

11



∥∥∥∥ dj

dxj
g

∥∥∥∥
∞
≤

min(j,k)∑
l=0

(
j

l

)
k!

(k − l)!
ak−l

∥∥∥∥ dj−l

dxj−l
f

∥∥∥∥
∞

≤
min(j,k)∑
l=0

j! klak−l sup
0≤m≤j

∥∥∥∥ dm

dxm
f

∥∥∥∥
∞

∼j
min(j,k)∑
l=0

kjak

kj−lal

≤
min(j,k)∑
l=0

kjak

aj−lal

≤ (j + 1)
kjak

aj
∼j kjak−j.

The L’Hospital rule applied j times yields

lim
k→∞

kjak−j = lim
k→∞

kj

aja−k
= lim

k→∞

j!

(−a ln a)ja−k
=

j!

(−a ln a)j
lim
k→∞

ak = 0,

which implies that there exists a real number k∗ that maximizes the function k 7→
kjak−j on [0,∞[. A routine analysis of zeros of the derivatives reveals that k∗ =
− j

ln a
= j

c
. Hence ∥∥∥∥ dj

dxj
g

∥∥∥∥
∞

.j k
j
∗ a

k∗−j =

(
j

c

)j
ecj−j ∼j 1.

We have now proven the first part.

(b) If |y| ≤ 1, then

(1 + |y|)M |ĝ(y)| ≤ 2M |ĝ(y)| ∼M |ĝ(y)| ≤ ‖g‖1 ∼ 1.

If |y| > 1, then repeated integration by parts and part (a) yields

(1 + |y|)M |ĝ(y)| .M |y|M |ĝ(y)|

=

∣∣∣∣ˆ
R
g(x)yMe2πixy dx

∣∣∣∣
=

∣∣∣∣ˆ 1

−1

g(x)yMe2πixy dx

∣∣∣∣
12



=

∣∣∣∣ˆ 1

−1

dg(x)

dx
yM

e−2πixy

−2πiy
dx

∣∣∣∣
...

=

∣∣∣∣ˆ 1

−1

ddMeg(x)

dxdMe
yM

e−2πixy

(−2πiy)dMe
dx

∣∣∣∣
≤
∥∥∥∥ ddMeg

dxdMe

∥∥∥∥
∞

∣∣∣∣yM−dMe ˆ 1

−1

e−2πixy

(−2πi)dMe
dx

∣∣∣∣
≤
∥∥∥∥ ddMeg

dxdMe

∥∥∥∥
∞

∣∣∣∣ˆ 1

−1

e−2πixy

(−2πi)dMe
dx

∣∣∣∣
.M

∣∣∣∣ˆ 1

−1

e−2πixy

(−2πi)dMe
dx

∣∣∣∣ ≤ 2

(2π)dMe
≤ 1

and we are done.

Note that essentially the same proof gives us lemma 1.8 part b for the inverse Fourier
operator.

If Ω ⊂ Rn, f ∈ L1
loc(Ω) and ϕ : Ω → C is a compactly supported smooth function,

then Tf is a functional that is defined by the formula

(1.9) 〈Tf , ϕ〉 :=

ˆ
Ω

f(x)ϕ(x) dx.

When we are discussing distributions the symbol f will stand for Tf .

Remark 1.10. If ϕ ∈ S(Rn), then in formula (1.9) it is not enough to say that f is locally
integrable. However, if f ∈ Lp(Rn), then (1.9) defines a continuous linear mapping from
S(Rn) to C, i.e., the linear mapping is a tempered distribution.

The following result states that formula (1.9) is an injection in L1
loc(Rn). We will

use this to convert distributional equalities into classical ones. The result is true also in
L1
loc(Ω), but we will not need this.

Lemma 1.11. Let f, g ∈ L1
loc(Rn). Then 〈f, ϕ〉 = 〈g, ϕ〉 for every compactly supported

smooth function ϕ implies that f(x) = g(x) for almost every x ∈ Rn.

Proof. We choose ϕx(y) = ηε(x − y), where ηε is the standard mollifier defined in the

13



proof of lemma 1.7.

〈f, ϕx〉 =

ˆ
Rn
f(y)ϕx(y) dy

=

ˆ
Rn
f(y)ηε(x− y) dy

= f ∗ ηε(x).

We also have
lim
ε→0
‖f ∗ ηε − f‖L1(K) = 0,

for every compact K ⊂ Rn. In particular, this is true for Ki, where (Ki)i∈N is a compact
exhaustion of Rn. Then there exists a subsequence ε1 such that f ∗ ηε1 → f almost
everywhere in K1. For this sequence we have

lim
ε1→0
‖f ∗ ηε1 − f‖L1(K2) = 0

and hence there exists a subsequence ε2 of ε1 of such that f ∗ ηε2 → f almost everywhere
in K2 ⊃ K1. Continuing this inductively yields that there exists a subsequence εn such
that f ∗ηεn → f almost everywhere in Ki for all i ∈ N and hence we also have f ∗ηεn → f
almost everywhere in Rn.

On the other hand we similarly have g∗ηε → g almost everywhere along a subsequence
εnj of the sequence εn. Since the limit of a subsequence equals the limit of the original
sequence, we now get that for almost every x ∈ Rn, we have

f(x)← f ∗ ηεnj (x) = g ∗ ηεnj (x)→ g(x).

Thus we must have f(x) = g(x) for almost every x ∈ Rn.

The next two lemmas are slightly generalized versions of well known results. The first
is a generalized version of the Fourier inversion formula.

Lemma 1.12. Let f ∈ L∞(Rn) and f̂ ∈ L1(Rn). Then we have

f(x) =

ˆ
Rn
f̂(ξ)e(ξ · x) dξ

for almost every x ∈ Rn.

Proof. Since f̂ ∈ L1(Rn) we know that the expression
ˆ
Rn
f̂(ξ)e(x · ξ) dξ

14



converges to a continuous function f1. Let ϕ ∈ S(Rn) and calculate by Fubini’s theorem
that

〈F−1f̂ , ϕ〉 = 〈f̂ ,F−1ϕ〉

=

ˆ
Rn
f̂(ξ)

ˆ
Rn
ϕ(x)e(ξ · x) dx dξ

=

ˆ
Rn
ϕ(x)

ˆ
Rn
f̂(ξ)e(ξ · x) dξ dx

=

ˆ
Rn
f1(x)ϕ(x) dx

= 〈f1, ϕ〉.

Thus f1 is the distributional inverse Fourier transform of f̂ . This combined with the
Fourier inverse formula of S ′(Rn) gives that

〈f, ϕ〉 = 〈f1, ϕ〉.

Now lemma 1.11 yields that f = f1 almost everywhere in the classical sense. Thus we
have proven the inversion formula

f(x) = f1(x) =

ˆ
Rn
f̂(ξ)e(x · ξ) dξ,

for almost every x ∈ Rn.

In the second generalization we weaken the assumptions of the convolution theorem.

Lemma 1.13. Let ϕ, φ ∈ S(Rn) and f ∈ L∞(Rn). Then

〈F(f ∗ ϕ), φ〉 = 〈f̂ ϕ̂, φ〉.

Proof. Denote Rϕ(x) := ϕ(−x). The Fourier inversion formula implies that

(1.14) Rϕ(x) = F(ϕ̂)(x).

Furthermore, Fubini’s theorem and the above equality gives

F
(
η̂ ∗ ψ̂

)
= F(η̂)F(ψ̂) = R(η)R(ψ) = R(ηψ) = F(F(ηψ)), for all η, ψ ∈ S(Rn).

Taking inverse Fourier transforms from both sides yields

η̂ ∗ ψ̂ = F(ηψ), for all η, ψ ∈ S(Rn).

15



Plugging η = ϕ̂ and ψ = φ to the above equation yields

(1.15) F(ϕ̂) ∗ φ̂ = F(ϕ̂φ).

Now using Fubini’s theorem, (1.14) and (1.15) we can calculate that

〈F(f ∗ ϕ), φ〉 = 〈f ∗ ϕ, φ̂〉

=

ˆ
Rn
f ∗ ϕ(x)φ̂(x) dx

=

ˆ
Rn

ˆ
Rn
f(y)ϕ(x− y)φ̂(x) dy dx

=

ˆ
Rn
f(y)

ˆ
Rn
ϕ(x− y)φ̂(x) dx dy

=

ˆ
Rn
f(y)Rϕ ∗ φ̂(y) dy

=

ˆ
Rn
f(y)F(ϕ̂) ∗ φ̂(y) dy

=

ˆ
Rn
f(y)F(ϕ̂φ)(y) dy

= 〈f,F(ϕ̂φ)〉 = 〈f̂ , ϕ̂φ〉 = 〈f̂ ϕ̂, φ〉.

Lastly, we will aim to prove the existence of two different kinds of tempered distri-
butions and then calculate their Fourier transforms. However, before we can do this, we
need a result which gives us a way to check for the continuity of a linear mapping from
S(Rn) to itself. We will give the result without proof.

Theorem 1.16. A linear mapping T : S(Rn) 7→ S(Rn) is continuous if and only if for
every N ∈ N there exists a number M ∈ N and a constant CN,M such that

pN(Tf) ≤ CN,MpM(f).

The proof of the above result can be found in [1] theorem 12.2.

Let τhf(x) = f(x+ h), where f is a function. If the following integrals converge, then
a change of variables gives

ˆ
Rn
f(x+ h)φ(x) dx =

ˆ
Rn
f(x)φ(x− h) dx.

16



If f, g and φ are functions, then we have
ˆ
Rn
g(x)f(x)φ(x) dx =

ˆ
Rn
f(x)g(x)φ(x) dx.

This motivates the following lemma.

Lemma 1.17. Let f ∈ S ′(Rn), φ ∈ S(Rn) and g ∈ C∞(Rn). Assume also that for every
multi-index α there exists constants Mα and Cα such that

(1.18) |∂αg(x)| ≤ Cα(1 + |x|2)Mα .

Then the functionals gf and τhf defined by

〈gf, φ〉 := 〈f, gφ〉

and
〈τhf, φ〉 := 〈f, τ−hφ〉

respectively, are continuous in S ′(Rn), i.e., they are a tempered distributions.

Proof. Since f ∈ S ′(Rn), it suffices to show that the mappings

φ 7→ gφ

and
φ 7→ τ−hφ

are continuous in the Schwartz space topology. We start with the first mapping. Applying
the Leibniz rule for differentiation and (1.18) gives

pN(gφ) = sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |∂α (g(x)φ(x)) |

= sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |
∑
γ≤α

(
α

γ

)
∂γg(x)∂α−γφ(x)|

≤ sup
|α|≤N

∑
γ≤α

(
α

γ

)
sup
x∈Rn

(1 + |x|2)N |∂γg(x)||∂α−γφ(x)|

≤ sup
|α|≤N

∑
γ≤α

(
α

γ

)
sup
x∈Rn

(1 + |x|2)N+MC|∂α−γφ(x)|

≤ sup
|α|≤N

∑
γ≤α

(
α

γ

)
CpN+M(φ) = CNpN+M(φ),
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where M := max
|α|≤N

Mα, C := max
|α|≤N

Cα and CN = 2NC.

For the second mapping we calculate

pN(τ−hφ) = sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |∂αφ(x− h)|

= sup
|α|≤N

sup
x∈Rn

(1 + |h+ x− h|2)N |∂αφ(x− h)|

≤ sup
|α|≤N

sup
x∈Rn

(1 + 2|h|2 + 2|x− h|2)N |∂αφ(x− h)|

≤ sup
|α|≤N

sup
x∈Rn

(
2(1 + 2|h|2) + 2(1 + 2|h|2)|x− h|2

)N
|∂αφ(x− h)|

= 2N(1 + 2|h|2)N sup
|α|≤N

sup
x∈Rn

(1 + |x− h|2)N |∂αφ(x− h)|

= CN,h pN(φ),

where CN,h := 2N(1 + 2|h|2)N . An application of theorem 1.16 concludes the proof of the
lemma.

Define eh(x) := e(x · h) and notice that by the above lemma we have f ∈ S ′(Rn) ⇒
ehf ∈ S ′(Rn). Next we calculate the Fourier transforms of τhf and ehf .

Lemma 1.19. Assume that f is a tempered distribution. Then

τ̂hf = ehf̂ and êhf = τ−hf̂ .

Proof. Let φ ∈ S(Rn). We calculate that

〈τ̂hf, φ〉 = 〈τhf, φ̂〉 = 〈f, τ−hφ̂〉.(1.20)

On the other hand we have

τ−hφ̂(x) =

ˆ
Rn
φ(ξ)e(−(x− h) · ξ) dξ

=

ˆ
Rn
φ(ξ)eh(ξ)e(−x · ξ) dξ = êhφ(x)

and plugging this into (1.20) gives

〈τ̂hf, φ〉 = 〈f, êhφ〉 = 〈f̂ , ehφ〉 = 〈ehf̂ , φ〉

and since φ ∈ S(Rn) was arbitrary, we have proven the left side equation.
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For the right side equation we calculate

〈êhf, φ〉 = 〈ehf, φ̂〉 = 〈f, ehφ̂〉(1.21)

and by a change of variables we have

ehφ̂(x) =

ˆ
Rn
φ(ξ)e(−ξ · x)e(x · h) dξ

=

ˆ
Rn
φ(ξ)e(−x · (ξ − h)) dξ

=

ˆ
Rn
φ(ξ + h)e(−x · ξ) dξ = τ̂hφ(x).(1.22)

Combining (1.21) and (1.22) gives

〈êhf, φ〉 = 〈f, τ̂hφ〉 = 〈f̂ , τhφ〉 = 〈τ−hf̂ , φ〉

and we are done since φ ∈ S(Rn) was arbitrary.
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Chapter 2

Multilinear Kakeya inequality

In this chapter we give the statement of multilinear Kakeya inequality and prove it.
Heuristically, the multilinear Kakeya inequality is a geometric estimate about the overlap
of almost axis parallel cylindrical tubes in Rn pointing in various directions. Roughly,
the inequality conveys that the tubes pointing in different directions cannot overlap ex-
cessively.

This estimate was originally proven, in a slightly more general setting, by Bennett,
Carberry and Tao in [2]. The result was sharpened in [12] by Larry Guth to cover the
whole range of the former conjecture. In [12] techniques from algebraic topology are
applied to show that theorem 2.1 holds without the multiplier Sε. However, in order to
prove the l2 decoupling theorem from [5] the version that we will prove is equally useful.

This chapter will mainly follow the more elementary approach of the paper [11] by
Larry Guth called A short proof of the multilinear Kakeya inequality and every formulation
for theorems, lemmas and corollaries (excluding corollary 2.15) will be taken from [11].
The formulation of corollary 2.15 is from [5].

2.1 Statement of the inequality
We will first construct the cylindrical tubes that we discussed earlier. In order to do this,
we consider lines lj,a in Rn. Here j ∈ {1, . . . , n} tells us which axis the line is nearly
parallel to and a = 1, . . . , Nj, where Nj is the number of lines that are nearly parallel to
xj-axis. Now the tubes Tj,a are given by the indicator function of the 1-neighbourhood of
the line lj,a, i.e.,

Tj,a(x) := 1{x ∈ Rn : d(x, lj,a) ≤ 1}.

Now we can establish the statement of multilinear Kakeya inequality.
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Theorem 2.1 (Multilinear Kakeya inequality). Let QS ⊂ Rn be an arbitrary cube of side
length S. Suppose that each line lj,a in Rn makes an angle of at most 1

10n
with the xj-axis.

Then for any ε > 0 and any S ≥ 1, the following inequality holds

(2.2)
ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx .ε S
ε

n∏
j=1

N
1

n−1

j .

1

1

2

2
4

T1,1

T1,2
T2,1

and
T2,2

T2,3

Figure 2.1: An example of the contribution of overlapping tubes on left-hand side of the
multilinear Kakeya inequality in R2. The left-hand side equates to the sum of the weighted
areas of the colorful regions.

2.2 Angle reduction
The strategy for proving theorem 2.1 is reducing the angle from 1

10n
to an even smaller

angle δ. This motivates the following theorem.

Theorem 2.3. For every ε > 0, there exists some δ ∼ε 1 such that the following holds.
Suppose that each line lj,a in Rn makes an angle of at most δ with the xj-axis. Then for
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any S ≥ 1 and any cube QS of side length S, we have

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx .ε S
ε

n∏
j=1

N
1

n−1

j .

First we show that theorem 2.3 implies theorem 2.1. Let ej be unit vector in the xj
direction, and let Sj ⊂ Sn−1 be the ej centered spherical cap of radius 1

10n
, i.e., Sj := {x ∈

Sn−1 : |x− ej| ≤ 1
10n
}. If the direction vector of a line lj,a hits Sj, then we write lj,a ∈ Sj.

By the assumptions of theorem 2.1, we have that lj,a ∈ Sj . For a given ε > 0, we choose
such a δ > 0 that satisfies theorem 2.3. We cover the cap Sj with smaller caps Sj,βj of
radius δ

2
. We also make the covering so that the number of caps Sj,βj is at most a constant

dependent only on ε. This is possible since our choice of δ will essentially depend only
on ε. We want to break the left-hand side of the inequality (2.2) into contributions from
different caps Sj,βj . Denote

Aj,βj := {a ∈ {1, . . . , Nj} : lj,a ∈ Sj,βj}.

By concavity, we have the following inequality

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx =

ˆ
QS

n∏
j=1

∑
βj

∑
a∈Aj,βj

Tj,a(x)

 1
n−1

dx

≤
ˆ
QS

n∏
j=1

∑
βj

 ∑
a∈Aj,βj

Tj,a(x)

 1
n−1

dx.(2.4)

We abbreviate
Yj,βj(x) :=

∑
a∈Aj,βj

Tj,a(x).

Now by (2.4) and the distributive law we have

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx ≤
ˆ
QS

n∏
j=1

∑
βj

Yj,βj(x)
1

n−1 dx

=

ˆ
QS

(∑
β1

Y1,β1(x)
1

n−1

)
· · ·

(∑
βn

Yn,βn(x)
1

n−1

)
dx
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=

ˆ
QS

∑
β1

· · ·
∑
βn

Y1,β1(x)
1

n−1 · · ·Yn,βn(x)
1

n−1 dx

=

ˆ
QS

∑
β1,...,βn

n∏
j=1

Yj,βj(x)
1

n−1

=
∑

β1,...,βn

ˆ
QS

n∏
j=1

 ∑
a∈Aj,βj

Tj,a(x)

 1
n−1

(2.5)

Now we want to control (2.5) with theorem 2.3. If Sj,βj contains ej, then theorem 2.3
applies directly. If not, then we make a linear transformation L that maps the center of
Sj,βj to ej for every j ∈ {1, . . . , n}. This implies the assumptions of theorem 2.3. We
claim that this transformation distorts the lengths of vectors at most by a factor of 2.

Denote the center of Sj,βj with vj,βj and define M := [v1,β1 . . . vn,βn ] ∈ Rn×n. Now M
defines a linear mapping such that Mej = vj,βj . For x = (x1, . . . , xn) =

∑n
i=1 xiei we have

|Mx| ≥ |x| − |Mx− x| = |x| − |
n∑
i=1

xiMei − xiei|

= |x| − |
n∑
i=1

xivi,βi − xiei| ≥ |x| −
n∑
i=1

|xi||vi,βi − ei|

≥ |x| − 1

10n

(
n∑
i=1

12

) 1
2

|x| ≥ |x|
(

1− 1

10
√
n

)
≥ 1

2
|x|.(2.6)

In the third to last inequality we used the Cauchy-Schwarz inequality and the fact that
|vj,βj − ej| ≤ 1

10n
.

From (2.6) we see that KerM = {0} and hence the inverse map L = M−1 exists and
is also a bijection. By the bijectivity of L, we have

|Ly| = |x| ≤ 2|Mx| = 2|y|, for all y ∈ Rn.

We have now shown that the transformation L distorts the lengths of vectors at most by
a factor of 2 and hence volumes are distorted at most by a factor of 2n.

Thus we can estimate (2.5) further using theorem 2.3

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx ≤
∑

β1,...,βn

ˆ
QS

n∏
j=1

 ∑
a∈Aj,βj

Tj,a(x)

 1
n−1

dx
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.ε

∑
β1,...,βn

Sε
n∏
j=1

(#Aj,βj)
1

n−1

= Sε
∑

β1,...,βn

(#A1,β1)
1

n−1 · · · (#An,βn)
1

n−1

= Sε
n∏
j=1

∑
βj

(#Aj,βj)
1

n−1 .

Using Hölder inequality for sequences with conjugates n−1
n−2

and n− 1 gives

Sε
n∏
j=1

∑
βj

(#Aj,βj)
1

n−1 ≤ Sε
n∏
j=1

∑
βj

#Aj,βj

 1
n−1
∑

βj

1
n−1
n−2

n−2
n−1

.ε S
ε

n∏
j=1

∑
βj

#Aj,βj

 1
n−1

= Sε
n∏
j=1

N
1

n−1

j

In the last inequality we used the fact that the number of caps Sj,βj is at most a constant
that depends only on ε.

2.3 Axis parallel case
Before proving the angle reducted case, we will study the case where every line is exactly
parallel to one of the coordinate axes. In this case the multilinear Kakeya inequality
follows from the so called Loomis-Whitney inequality. Our proof for the Loomis-Whitney
inequality will follow the argument from section 6.1 of [9].

Theorem 2.7 (Loomis-Whitney inequality). Suppose that fj : Rn−1 → R are measurable
functions. Then the following inequality holds

ˆ
Rn

n∏
j=1

fj(πj(x))
1

n−1 dx ≤
n∏
j=1

‖fj‖
1

n−1

L1(Rn−1).

Proof. Let h : Rn−1 → R be a function. We know that
´
h ≤

´
|h| and ‖h‖L1(Rn−1) =

‖|h|‖L1(Rn−1). Thus we can assume that fj are non-negative. Furthermore, it suffices to
prove that for measurable non-negative gj : Rn−1 → R, we have

(2.8)
ˆ
Rn

n∏
j=1

gj(πj(x)) dx ≤
n∏
j=1

‖gj‖Ln−1(Rn−1),
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since plugging gj = f
1

n−1

j to (2.8) gives us the result. We start proving (2.8) from the base
case n = 2. Applying Tonelli’s theorem we have

ˆ
R2

2∏
j=1

gj(πj(x)) dx =

ˆ
R2

g1(x2)g2(x1) dx1 dx2 =
2∏
j=1

‖gj‖L1(R).

Now assume that the theorem holds for n = k − 1, that is, for measurable g′j : Rk−2 → R
we have ˆ

Rk−1

k−1∏
j=1

g′j(πj(x)) dx ≤
k−1∏
j=1

‖g′j‖Lk−2(Rk−2).

Now for the general case n = k we define

h(x1, . . . , xk−1) =

ˆ
R

k−1∏
j=1

gj(πj(x)) dxk.

Now applying the Hölder inequality with p = k − 1 and q = k−1
k−2

, we get

ˆ
Rk

k∏
j=1

gj(πj(x)) dx =

ˆ
Rk−1

h(x1, . . . , xk−1)gk(πk(x)) dxk−1 . . . dx1

≤ ‖h‖
L
k−1
k−2 (Rk−1)

‖gk‖Lk−1(Rk−1).(2.9)

We briefly denote x∗j := πj(x1, . . . , xk−1). By using the generalized Hölder inequality with
conjugates pk = 1 and pj = k − 1 for all j ∈ {1, . . . , k − 1} and the induction hypothesis
on the functions defined by

g′j(x
∗
j) :=

(ˆ
R
gj(πj(x))k−1 dxk

) 1
k−2

,

we get

‖h‖
k−1
k−2

L
k−1
k−2 (Rk−1)

=

ˆ
Rk−1

(ˆ
R

k−1∏
j=1

gj(πj(x)) dxk

) k−1
k−2

dxk−1 . . . dx1

=

ˆ
Rk−1

∥∥∥ k−1∏
j=1

gj ◦ πj(x1, . . . , xk−1, ·)
∥∥∥ k−1
k−2

L1(R)
dxk−1 . . . dx1

≤
ˆ
Rk−1

k−1∏
j=1

‖gj ◦ πj(x1, . . . , xk−1, ·)‖
k−1
k−2

Lk−1(R)
dxk−1 . . . dx1
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=

ˆ
Rk−1

k−1∏
j=1

(ˆ
R
gj(πj(x))k−1 dxk

) 1
k−2

dxk−1 . . . dx1

=

ˆ
Rk−1

k−1∏
j=1

g′j(x
∗
j) dxk−1 . . . dx1 ≤

k−1∏
j=1

‖g′j‖Lk−2(Rk−2).

On the last line we used the induction hypothesis. Thus we have

‖h‖
L
k−1
k−2 (Rk−1)

≤
k−1∏
j=1

‖g′j‖
k−2
k−1

Lk−2(Rk−2)

=
k−1∏
j=1

(ˆ
Rk−2

g′j(x
∗
j)
k−2 dx∗j

) 1
k−1

=
k−1∏
j=1

(ˆ
Rk−1

gj(πj(x))k−1 dπj(x)

) 1
k−1

=
k−1∏
j=1

‖gj‖Lk−1(Rk−1).(2.10)

Finally plugging (2.10) to (2.9), we get the desired result.

If the line lj,a is parallel to the xj-axis, then the other coordinates in lines lj,a are
constant and we can define lj,a with ya for some ya ∈ Rn−1. Thus

Tj,a(x) = 1{x ∈ Rn : d(x, lj,a) ≤ 1}
= 1{x ∈ Rn : d (πj(x), ya) ≤ 1} = 1Bn−1

◦ (ya,1)(πj(x)).

Applying the Loomis-Whitney inequality with fj(πj(x)) =
∑Nj

a=1 Tj,a(x) gives

ˆ
Rn

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx =

ˆ
Rn

n∏
j=1

f
1

n−1

j dx ≤
n∏
j=1

‖fj‖
1

n−1

L1(Rn−1)

=|Bn−1
◦ (0, 1)|

n
n−1

n∏
j=1

N
1

n−1

j ∼
n∏
j=1

N
1

n−1

j .

2.4 Proof of Multilinear Kakeya inequality
Now that we have proven the inequality for axis parallel tubes, all that is left, is to
control the effect that happens when the tubes have a small tilt in them. We consider
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the sequence of scales {δ−1, δ−2, . . . }. The idea is to use these scales to work our way up
to the arbitrary scale S. To set up this argument, we need to generalize our tubes a bit.
We define

Tj,a,W := 1{x ∈ Rn : d(x, lj,a) ≤ W} and fj,W :=

Nj∑
a=1

Tj,a,W .

The next lemma will give us a tool to jump between scales.

Lemma 2.11. Suppose that lj,a are lines with angle at most δ from the xj-axis. If S ≥
δ−1W and QS is any cube of side length S, then

ˆ
QS

n∏
j=1

fj,W (x)
1

n−1 dx ≤ Cnδ
n

ˆ
QS

n∏
j=1

fj,δ−1W (x)
1

n−1 dx.

Proof. We divide QS into subcubes Q of side length between 1
20n
δ−1W and 1

10n
δ−1W . It

suffices to prove the lemma for each Q. Since the side length of Q is at most 1
10n
δ−1W

and the angle between one of the coordinate axes and lj,a is at most δ, we can cover any
tube Tj,a,W in Q with an axis parallel tube T̃j,a,2W in Q (see figure 2.2), i.e., Tj,a,W (x) ≤
T̃j,a,2W (x) for all x ∈ Q. This implies

≤ 1
10nδ

−1W

Tj,a,W

T̃j,a,2W

4W =
≤ 2W

cos(δ) (
1

20nδ
−1 sin(δ) + 1) ≤ 4W

Figure 2.2: Covering an almost axis parallel tube with an axis parallel tube in R2. This
can also be interpreted as a projection from higher dimensions.

ˆ
Q

n∏
j=1

fj,W (x)
1

n−1 dx =

ˆ
Q

n∏
j=1

Nj,Q∑
a=1

Tj,a,W (x)

 1
n−1

dx ≤
ˆ
Q

n∏
j=1

Nj,Q∑
a=1

T̃j,a,2W (x)

 1
n−1

dx,
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where Nj,Q is the number of tubes Tj,a,W that intersect Q. Now since the tubes T̃j,a,2W
are axis parallel, we can use the Loomis-Whitney inequality as in section 2.3 to get

ˆ
Q

n∏
j=1

Nj,Q∑
a=1

(
T̃j,a,2W (x)

) 1
n−1

dx ≤
n∏
j=1

∥∥∥Nj,Q∑
a=1

T̃j,a,2W (x)
∥∥∥ 1
n−1

L1(Rn−1)

= |Bn−1
◦ (0, 2W )|

n
n−1

n∏
j=1

N
1

n−1

j,Q

= Cn
(
W n−1

) n
n−1

n∏
j=1

N
1

n−1

j,Q = CnW
n

n∏
j=1

N
1

n−1

j,Q .

Since the side length of Q is at most 1
10n
δ−1W , it follows that the diameter of Q is at most

1
10
√
n
δ−1W . Thus if Tj,a,W intersects Q, then Tj,a,δ−1W is identically 1 in Q and therefore

Nj,Q ≤
Nj∑
a=1

Tj,a,δ−1W (x), for x ∈ Q,

which implies that

CnW
n

n∏
j=1

N
1

n−1

j,Q ≤ CnW
n

 
Q

n∏
j=1

 Nj∑
a=1

Tj,a,δ−1W (x)

 1
n−1

dx

≤ CnW
n

( 1
20n
δ−1W )n

ˆ
Q

n∏
j=1

 Nj∑
a=1

Tj,a,δ−1W (x)

 1
n−1

dx

= C ′nδ
n

ˆ
Q

n∏
j=1

 Nj∑
a=1

Tj,a,δ−1W (x)

 1
n−1

dx

= C ′nδ
n

ˆ
Q

n∏
j=1

fj,δ−1W (x)
1

n−1 dx.

Now we are ready for the proof of theorem 2.3.
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Proof of theorem 2.3. Suppose first that S = δ−M , where M ∈ N+. Using lemma 2.11
repeatedly we get

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a

 1
n−1

=

ˆ
QS

n∏
j=1

f
1

n−1

j,1 ≤ Cnδ
n

ˆ
QS

n∏
j=1

f
1

n−1

j,δ−1

≤ C2
nδ

2n

ˆ
QS

n∏
j=1

f
1

n−1

j,δ−2 ≤ · · ·

≤ CM
n δ

Mn

ˆ
QS

n∏
j=1

f
1

n−1

j,δ−M
= CM

n

 
QS

n∏
j=1

f
1

n−1

j,δ−M

Since fj,δ−M ≤ Nj, we know that

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a

 1
n−1

≤ CM
n

n∏
j=1

N
1

n−1

j .

To control the CM
n term, we calculate

S = δ−M ⇔ lnS = M ln δ−1 ⇔M =
lnS

ln δ−1

and therefore

CM
n = eln(CMn ) = eM lnCn = (elnS)

lnCn
ln δ−1 = S

lnCn
ln δ−1 .

We choose a small enough δ = δ(ε) so that lnCn
ln δ−1 ≤ ε. For S = δ−M , we have now proven

that ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx ≤ Sε
n∏
j=1

N
1

n−1

j .

For an arbitrary S ≥ 1, we chose an integer M ≥ 0 such that δ−M ≤ S ≤ δ−M−1

and cover QS with cubes Qδ of side length δ−M . Denote set of cubes Qδ by FQ. Since
#FQ ≤ (δ−1)n .ε 1, we get

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx ≤
∑
Qδ∈FQ

ˆ
Qδ

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx

≤
∑
Qδ∈FQ

(δ−M)ε
n∏
j=1

N
1

n−1

j .ε S
ε

n∏
j=1

N
1

n−1

j .
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2.5 Some generalizations
We make two minor generalizations of theorem 2.1. One argument adds weights on each
tube and the other generalizes the angle restriction. We also present a result that we are
going to use in chapter 3. This third result follows directly from the first two corollaries.

Corollary 2.12. Let QS, lj,a and Tj,a be as in theorem 2.1. Suppose also that wj,a ≥ 0
are numbers. Define

fj(x) :=

Nj∑
a=1

wj,aTj,a(x).

Then for any ε > 0 and any S ≥ 1, we have

ˆ
QS

n∏
j=1

fj(x)
1

n−1 dx .ε S
ε

n∏
j=1

 Nj∑
a=1

wj,a

 1
n−1

.

Proof. Since the tubes in theorem 2.1 do not have to be distinct, we have the result for
positive integer weights by including tubes multiple times. For rational weights, we scale
the theorem in the following way. Consider weights wj,a =

mj,a
kj,a

, where kj,a,mj,a ∈ N+ for
each a = {1, . . . , Nj} and j = {1, . . . , n}. Since the theorem holds for integer weights, we
know that

ˆ
QS

n∏
j=1

((
mj,1

∏
i 6=1

kj,i

)
Tj,1(x) + . . . +

(
mj,Nj

∏
i 6=Nj

kj,i

)
Tj,Nj(x)

 1
n−1

dx

.ε S
ε

n∏
j=1

mj,1

∏
i 6=1

kj,i + · · ·+mj,Nj

∏
i 6=Nj

kj,i

 1
n−1

.

Now dividing both sides by
∏n

j=1

∏Nj
i=1 k

1
n−1

j,i , we get the result for rational weights. Since
both sides are continuous with respect to the weights and the rationals are a dense subset
of R, the result follows for non-negative real weights.

This next corollary gives us a more general condition for the angle of the lines.

Corollary 2.13. Let lj,a, Tj,a and QS be as in theorem 2.1. Let Sj ⊂ Sn−1 and suppose
that lj,a ∈ Sj. Suppose that for any vectors vj ∈ Sj, we have | det([v1, . . . , vn])| ≥ ν, where
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0 < ν < 1. Then for any ε > 0 and any S ≥ 1, we have

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx .ε,ν S
ε

n∏
j=1

N
1

n−1

j .

Proof. This result follows from theorem 2.3 with a similar argument to the one in section
2.2. We cover Sj with caps Sj,β of small radius ρ > 0. We can choose that the number of
caps is .ε,ν 1. We pick a sequence of caps S1,β1 , . . . , Sn,βn and change coordinates so that
the center vj,βj of Sj,βj is mapped to the standard basis vector ej for each j = {1, . . . , n}.

Define M and L similarly as in section 2.2. First we show that ‖M‖op ≤
√
n. For

x = (x1, . . . , xn) =
∑n

i=1 xiei, applying the Cauchy-Schwarz inequality we have

|Mx| = |
n∑
i=1

xiMei| ≤
n∑
i=1

|xi||Mei| =
n∑
i=1

|xi| · 1 ≤ |x|

(
n∑
i=1

12

) 1
2

=
√
n|x|.

Thus ‖M‖op ≤
√
n.

By the singular value decomposition we can write M = UΣV > and L = V Σ−1U>,
where U and V are orthogonal matrices and Σ is a diagonal matrix that has entries
{σ1, . . . , σn}, where σj > 0 for each j ∈ {1, . . . , n}. Since for an orthogonal matrix O we
can compute

|Ov| =
√
v>O>Ov =

√
v>v = |v|, for all v ∈ Rn,

we get

sup
x 6=0

|Mx|
|x|

= sup
x 6=0

|UΣV >x|
|x|

= sup
x 6=0

|ΣV >x|
|x|

= sup
y 6=0

|Σy|
|V y|

= sup
y 6=0

|Σy|
|y|

= sup
z=1
|Σz| = max{σj : j ∈ {1, . . . , n}}

and similarly

‖L‖op = max{ 1

σj
: j ∈ {1, . . . , n}}.

We can also compute

| det(M)| = | det(U) det(Σ) det(V >)| = | det(Σ)| = σ1 · · ·σn.
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Since ‖M‖op ≤
√
n, we have that σj ≤

√
n for each j ∈ {1, . . . , n}. Thus for every

j ∈ {1, . . . , n}, we have

ν ≤ | det(M)| = σ1 · · · σn ≤ n
n−1

2 σj

⇒ 1

σj
≤ ν−1n

n−1
2 .

Hence,

‖L‖op = max{ 1

σj
: j ∈ {1, . . . , n}} . ν−1.

We have now shown that ‖L‖op . ν−1. If we choose ρ ≤ n−
n−1

2 νδ, then the image
of Sj,β in the new coordinates is contained in a cap of radius δ as in theorem 2.3. Now
summing over different choices of caps S1,β1 , . . . , Sn,βn and applying theorem 2.3, we get
the desired result

ˆ
QS

n∏
j=1

 Nj∑
a=1

Tj,a(x)

 1
n−1

dx .ε,ν S
ε

n∏
j=1

N
1

n−1

j .

Remark 2.14. Notice that the same proof can be done with rectangular 1-tubes, i.e.,

Tj,a(x) = 1{x ∈ Rn : dmax(lj,a, x) ≤ 1},

where dmax(lj,a, x) = inf

{
max
j
|xj − yj| : y ∈ lj,a

}
. In the proof of the next corollary we

will use this definition of Tj,a.

Corollary 2.15. Let R ∈ 2N+, c ∼ 1, ε > 0 and 0 < ν < 1. Consider n families Pj of
rectangular tiles P in Rn having the following properties.

1. Each P has n − 1 side lengths equal to
√
R and one side length equal to R which

points in the direction of the unit vector vP .

2. For each Pi ∈ Pi, we have | det([vP1 , . . . , vPn ])| ≥ ν.

3. All tiles are subsets of a fixed cube BcR that has a side length of cR.
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Then we have

 
BcR

(
n∏
j=1

Fj(x)

) 1
n−1

dx .ν,ε R
ε

n∏
j=1

( 
BcR

Fj(x)

) 1
n−1

dx

for all functions Fj of the form

Fj(x) =
∑
P∈Pj

cP1P (x), cP ≥ 0.

Proof. We can cover each tile P with
(√

R
)n−1

essentially disjoint tubes Tj,a that are
parallel to the longest side of the tile. The weights of the tubes are chosen so that the
tubes that are covering a tile have the same weight as the tile. This means that there are
R

n−1
2 tubes Tj,a with weight wj,a = cP .
Now applying the previous corollaries, we have

ˆ
BcR

 n∏
j=1

∑
P∈Pj

cP1P (x)

 1
n−1

dx ≤
ˆ
BcR

 n∏
j=1

Nj∑
a=1

wj,aTj,a(x)

 1
n−1

dx

.ν,ε R
ε

n∏
j=1

 Nj∑
a=1

wj,a

 1
n−1

= Rε

n∏
j=1

Rn−1
2

∑
P∈Pj

cP

 1
n−1

= Rε

n∏
j=1

R−1
∑
P∈Pj

R
n+1

2 cP

 1
n−1

= RεR−
n
n−1

n∏
j=1

∑
P∈Pj

mn(P )cP

 1
n−1

= RεR−
n
n−1

n∏
j=1

ˆ
BcR

∑
P∈Pj

cP1P (x) dx

 1
n−1

.
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Multiplying both sides with mn(BcR)−1, we get

 
BcR

(
n∏
j=1

Fj(x)

) 1
n−1

dx .ν,ε R
εR−

n
n−1

1

mn(BcR)

n∏
j=1

ˆ
BcR

∑
P∈Pj

cP1P (x) dx

 1
n−1

= RεR−
n
n−1mn(BcR)

1
n−1

n∏
j=1

 
BcR

∑
P∈Pj

cP1P (x) dx

 1
n−1

∼ RεR−
n
n−1R

n
n−1

n∏
j=1

( 
BcR

Fj(x) dx

) 1
n−1

= Rε

n∏
j=1

( 
BcR

Fj(x) dx

) 1
n−1

.

In the first equality we used

a
n∏
j=1

b
1

n−1 =
n∏
j=1

(a
n−1
n b)

1
n−1 =

n∏
j=1

(a
−1
n ab)

1
n−1 = a

−1
(n−1)

n∏
j=1

(ab)
1

n−1

with a = 1
mn(BcR)

and b =
´
BcR

∑
P∈Pj cP1P (x) dx.
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Chapter 3

Multilinear decoupling device

The main objective of this chapter is theorem 3.15, which we call cube inflation. This
result is a multilinear estimate that can be used to create multilinear decouplings. In the
first section we study the extension operator EQ and particular weight functions wB,E
that will be central in the rest of the thesis. The second section, where we prove theorem
3.15, follows the ninth chapter from [5]. The strategy for proving theorem 3.15 will rely on
dyadic pigeonholing and the multilinear Kakeya inequality. As seen in the tenth chapter
of [5] and in more detail in the seventh and eight chapter of [14] this multilinear estimate
can be paired with l2L2 decoupling to create a partial decoupling that is used to estimate
a certain decoupling constant.

3.1 Extension operator for the paraboloid and weight
functions

Before we can dive into multilinear decouplings, we must first look at a few definitions
that are essential for the l2 decoupling theorem. Let Pn−1 be a paraboloid in Rn that is
defined

Pn−1 := {(ξ, |ξ|2) : ξ ∈ [0, 1]n−1}.

Notice that now πn[Pn−1] = [0, 1]n−1.

Definition 3.1. Let 0 < ν < 1. Cubes Q1, . . . , Qn ⊂ [0, 1]n−1 are called ν-transverse,
if the n-dimensional parallelepiped, that is spanned by unit normal vectors n(Pi), has
volume greater than ν, for each Pi ∈ Pn−1 with πn(Pi) ∈ Qi.

In this chapter the above definition works as way to check the determinant condition
of the multilinear Kakeya inequality from corollary 2.15. If cubes Q1, . . . , Qn are ν-
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transverse, then tiles that have long sides pointing in the direction of the unit normal
vectors n(Pi) satisfy the second condition from corollary 2.15.

Inspired by the ν-transverse definition, we will now calculate the unit normal vectors
of Pn−1. The surface Pn−1 is parametrized by the zeros of the function F (ξ, z) = z − |ξ|2,
where ξ ∈ Rn−1 and z ∈ R. Now the gradient of F gives us the upward unit normal
vectors

n(Pi) =
∇F
|∇F |

=
(−2ξ1, . . . ,−2ξn−1, 1)√∑n

j=1(−2ξj)2 + 1
=

(−2ξ1, . . . ,−2ξn−1, 1)√
4|ξ|2 + 1

.

Next we will present and study the extension operator and the weight functions. Recall
that e(t) = e2πit, where t ∈ R.

Definition 3.2. Let Q ⊂ [0, 1]n−1 be a cube and g : Q → C. We also stipulate that
g ∈ L1(Q). Now we define

EQg(x) =

ˆ
Q

g(ξ)e(x1ξ1 + · · ·+ xn−1ξn−1 + |ξ|2xn) dξ.

From the integrability condition of g we immediately get that EQg ∈ L∞(Rn). Indeed,
|EQg(x)| ≤ ‖g‖L1(Q) <∞.

Definition 3.3. Let B be a cube in Rn centered at cB and with side length R. The
associated weight function for B is defined

wB,E(x) =
1(

1 + |x−cB |
R

)E ,
where x ∈ Rn and E ∈ R.

The exponent E is chosen so that wB,E satisfies various integrability conditions and
it turns out that those conditions are fulfilled with E ≥ 100n and we will assume this
inequality for the rest of the thesis (we might also at times explicitly assume smaller
lower bounds). The implicit constants will often harmlessly depend on E. As E is a fixed
number, we will write .E as . for the rest of the thesis. Also in this chapter we will write
wB,E = wB.

Remark 3.4. If x ∈ B, then wB(x) ∼ 1. Indeed, if x ∈ B, then |x − cB| ≤
√
nR

2
∼ R.

Hence

wB(x) =

(
1 +
|x− cB|

R

)−E
& 2−E ∼ 1

and it always holds that wB(x) ≤ 1.
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We recall the notations

‖f‖Lp] (B) =

(
1

mn(B)

ˆ
B

|f(x)|p dx

) 1
p

,

‖f‖Lp(wB) =

(ˆ
Rn
|f(x)|pwB(x) dx

) 1
p

and

‖f‖Lp] (wB) =

(
1

mn(B)

ˆ
Rn
|f(x)|pwB(x) dx

) 1
p

.

Since EQg is essentially bounded, we have ‖EQg‖Lp] (B) < ∞. Using the following lemma
one can easily prove that ‖EQg‖Lp(wB) and ‖EQg‖Lp] (wB) are also finite.

Lemma 3.5. Let E > n. For all cubes B = B(cB, R) in Rn, we haveˆ
Rn
wB(x) dx ∼ Rn.

Proof. We can write
ˆ
Rn
wB(x) dx =

ˆ
|x−cB |≤R

wB(x) dx+
∞∑
k=1

ˆ
2k−1R<|x−cB |≤2kR

wB(x) dx.

We will treat the cases separately. Nowˆ
|x−cB |≤R

wB(x) dx ≤
ˆ
|x−cB |≤R

1 dx ∼ Rn

and for every k ∈ N+, we haveˆ
2k−1R<|x−cB |≤2kR

wB(x) dx =

ˆ
2k−1<|x−cB |≤2kR

1(
1 + |x−cB |

R

)E dx

≤ 1

(1 + 2k−1)E

ˆ
|x−cB |≤2kR

1 dx

≤ 1

(2k−1)E

ˆ
|x−cB |≤2kR

1 dx

∼ 1

2kE

ˆ
|x−cB |≤2kR

1 dx

∼ 2kn

2kE
Rn = 2k(n−E)Rn.
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We have now shown that
ˆ
Rn
wB(x) dx . Rn

(
1 +

∞∑
k=1

2k(n−E)

)
∼ Rn

The other direction is a straightforward calculation

Rn ∼ 2−ERn ∼
ˆ
|x−cB |≤R

2−E dx ≤
ˆ
|x−cB |≤R

(1 +
|x− cB|

R
)−E dx ≤

ˆ
Rn
wB(x) dx.

Integration of a weight function over an integration domain that is restricted to a
dilated cube can be estimated with another weight function.

Lemma 3.6. Let cn ∼ 1 and S ≥ R > 0. For all cubes B′ = B′(cB′ , S) in Rn we have

R−n
ˆ
cnB′

wB(u,R)(x) dx . wB′(u),

for all u ∈ Rn.

Proof. If |cB′ − u| ≤
√
ncnS, then wB′(u) = (1 +

|cB′−u|
S

)−E ≥ (1 +
√
ncn)−E ∼ 1. Now

lemma 3.5 gives

R−n
ˆ
cnB′

wB(u,R)(x) dx ≤ R−n
ˆ
Rn
wB(u,R)(x) dx ∼ 1 . wB′(u)

as wanted.
If |cB′ − u| >

√
ncnS, then we write

R−n
ˆ
cnB′

wB(u,R)(x) dx = R−n
ˆ
B(cB′ , cnS)

(1 +
|x− u|
R

)−E dx

= R−n
ˆ
B(0, cnS)

(1 +
|y + cB′ − u|

R
)−E dy.(3.7)

Since |y| ≤
√
n cn

2
S ≤
√
ncnS < |cB′ − u|, we have

|y + cB′ − u|
R

≤ (|cB′ − u|+ |y|)
R

≤ 2
|cB′ − u|

R

and since 1
2
|cB′ − u| >

√
n cn

2
S ≥ |y|, we have

|y + cB′ − u|
R

≥ (|cB′ − u| − |y|)
R

≥ 1

2

|cB′ − u|
R

.
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We have shown
|x+ cB′ − u|

R
∼ |cB

′ − u|
R

,

which implies
|x+ cB′ − u|

R
+ 1 ∼ |cB

′ − u|
R

+ 1.

Furthermore, since |cB′−u|
R

>
√
ncn

S
R
& 1, we have

|cB′ − u|
R

+ 1 ∼ |cB
′ − u|
R

.

Now we get

(1 +
|x+ cB′ − u|

R
)−E ∼ (1 +

|cB′ − u|
R

)−E ∼ (
|cB′ − u|

R
)−E

and for the integral

R−n
ˆ
B(0, cnS)

(1 +
|x+ cB′ − u|

R
)−E dx ∼ R−n(

|cB′ − u|
R

)−E
ˆ
B(0, cnS)

dx

∼ RE−nSn|cB′ − u|−E

≤ SE|cB′ − u|−E

= (
|cB′ − u|

S
)−E ∼ wB′(u).

Combining the above estimate with (3.7) gives us the result.

Lemma 3.8. Let B = B(cB, R). If y ∈ B(x,R), then wB(y) ∼ wB(x).

Proof. By symmetry, it suffices to show that wB(y) . wB(x).
Since y ∈ B(x,R), we have

wB(x) =

(
1 +
|x− cB|

R

)−E
≥
(

1 +
|x− y|
R

+
|y − cB|

R

)−E
≥
(

2 +
|y − cB|

R

)−E
∼
(

1 +
|y − cB|

R

)−E
= wB(y).
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The proofs for both of the inequalities in the following lemma can be found in [14]
lemma 4.2.1. We will give a slightly different approach to the first inequality.

Lemma 3.9. Let B = B(cB, R) be a cube in Rn. Let B be an essential partition of Rn

with cubes B′ = B′(cB′ , R). Then

(3.10) wB(x) .
∑
B′∈B

1B′(x)wB(cB′)

and

(3.11)
∑
B′∈B

wB′(x)wB(cB′) . wB(x).

Proof. Let x ∈ Rn. Since B is an essential partition of Rn, there exists B′x ∈ B such that
x ∈ B′x. By lemma 3.8 we have

wB(x) ∼ wB(cB′x) ≤
∑
B′∈B

1B′(x)wB(cB′).

Lemma 3.12. Let E > n. Then

1B .
∑
∆∈B

w∆ . wB,

for all cubes B = B(c, R) and all essential partitions B of B with cubes ∆ of side length
R′, where 0 < R′ ≤ R.

Proof. Proof can be found in [14] lemmas 4.1.1. and 4.1.5.

A covering B is finitely overlapping, if
∑

B∈B 1B . 1. Lemma 3.9 is also true for finitely
overlapping covers B and lemma 3.12 holds true when the cover is finitely overlapping
and the cubes in the covering intersect with the original cube B. Working with essential
partitions will only harmlessly restrict the side lengths of the partition cubes in future
arguments.

Lastly, we estimate a single variable convolution of a one dimensional weight function
and an n-dimensional weight function.

Lemma 3.13. Let B := B(cB, R) ⊂ Rn and B1(0, R) ⊂ R1, then for x ∈ Rn we have

R−1

ˆ
R
wB1(0,R)(xn − y)wB(πn(x), y) dy . w(x).
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Proof. Throughout the proof we will use
ˆ
R
(1 + |z|)−E dz =

2

E − 1
∼ 1.

We will first assume that cB is the origin. Now it suffices to show that

(3.14) R−1

ˆ
R
(1 +

|xn − y|
R

)−E(1 +
|(πn(x), y)|

R
)−E(1 +

|x|
R

)E dy . 1.

We denote xR := x
R
and change variables twice z = y

R
and z′ = (xR)n − z to get

R−1

ˆ
R
(1 +

|xn − y|
R

)−E(1 +
|(πn(x), y)|

R
)−E(1 +

|x|
R

)E dy

=

ˆ
R
(1 + |(xR)n − z|)−E(1 + |(πn(xR), z)|)−E(1 + |xR|)E dz

=

ˆ
R
(1 + |z′|)−E(1 + |xR − z′n)|)−E(1 + |xR|)E dz′,

where z′n := (0, . . . , 0, z′) ⊂ Rn. If |xR| ≤ 1, then
ˆ
R
(1 + |z′|)−E(1 + |xR − z′n)|)−E(1 + |xR|)E dz′ ≤ 2E

ˆ
R
(1 + |z′|)−E dz′ ∼ 1

and (3.14) follows. We can now assume that |xR| > 1 and write
ˆ
R

=

ˆ
|xR−z′n|>

|xR|
2

+

ˆ
|xR−z′n|≤

|xR|
2

.

We can straightforwardly estimate the first integral

I1 :=

ˆ
|xR−z′n|>

|xR|
2

(1 + |z′|)−E(1 + |xR − z′n)|)−E(1 + |xR|)E dz′

≤ (1 + |xR|)E

(1 + |xR|
2

)E

ˆ
|xR−z′n|>

|xR|
2

(1 + |z′|)−E dz′

≤ 2−E
ˆ
R
(1 + |z′|)−E dz′ ∼ 1.

For the second integral we have |xR − z′n| ≤
|xR|

2
and thus

|z′| ≥ |xR| − |xR − z′n| ≥
|xR|

2
.
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Now we get

I2 :=

ˆ
|xR−z′n|≤

|xR|
2

(1 + |z′|)−E(1 + |xR − z′n)|)−E(1 + |xR|)E dz′

≤ (1 + |xR|)E

(1 + |xR|
2

)E

ˆ
R
(1 + |xR − z′n)|)−E dz′

≤ 2−E
ˆ
R
(1 + |(xR)n − z′)|)−E dz′

= 2−E
ˆ
R
(1 + |z)|)−E dz ∼ 1.

We have now proven that for |xR| > 1 we have
ˆ
R
(1 + |z′|)−E(1 + |xR − z′n)|)−E(1 + |xR|)E dz′ = I1 + I2 . 2 ∼ 1

and again (3.14) follows. This ends the proof for the case where cB is the origin.
For the general case we change variables and apply the origin centered version

R−1

ˆ
R
wB1(0,R)(xn − y)wB(πn(x), y) dy

= R−1

ˆ
R
wB1(0,R)(xn − y)wB(0,R)((πn(x), y)− cB) dy

= R−1

ˆ
R
wB1(0,R)(xn − (cB)n − y′)wB(0,R)(πn(x)− πn(cB), y′) dy′

. wB(0,R)(x− cB) = wB(x).

3.2 Cube inflation
The multilinear Kakeya inequality is central in the proof of the following key result which
gives us a tool to make decouplings. The result is not strictly speaking a decoupling
since the cubes Qi,1 under the paraboloid Pn−1 are unaffected. However, the scale of the
cubes associated to the weights increases from δ−1 to δ−2. In many texts, see for example
theorem 6.6 in [8], similar inequalities are referred to as ball inflation. Since we are dealing
with cubes, it is sensible to call the following result cube inflation.
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Theorem 3.15. Let p ≥ 2n
n−1

, ε ∈ (0,∞) and δ ∈ 2−N+. Consider ν-transverse cubes
Q1, . . . , Qn ⊂ [0, 1]n−1. Let B be an arbitrary cube with side length δ−2 and let B be the
unique partition of B into cubes of side length δ−1, i.e., B = Partδ−1(B). Then for each
g ∈ L1([0, 1]n−1) we have

1

#B
∑
∆∈B

 n∏
i=1

 ∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2

L
p(n−1)
n

] (w∆)

 1
2


p
n

.ε,ν δ
−ε

 n∏
i=1

 ∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2

L
p(n−1)
n

] (wB)

 1
2


p
n

.

We will begin with a lemma

Lemma 3.16. Consider the cubes B = B(cB, δ
−2) and Q = Q(cQ, δ). Furthermore, let

TQ be a covering of B that consists of pairwise disjoint mutually parallel tiles TQ ⊂ 4B.
They are rectangles with n− 1 short sides of length δ−1 and one longer side of length δ−2,
pointing in the direction of the normal n(cQ) to the paraboloid Pn−1 at cQ. Let TQ(x) be
the tile containing x. Define also

FQ(x) = sup
y∈(1+

√
n)TQ(x)

‖EQg‖Lq] (wB(y,δ−1)), for x ∈
⋃

TQ∈TQ

TQ.

Then we have

(3.17) ‖FQ‖qLq] (4B)
. ‖EQg‖qLq] (wB)

.

Proof. First we show that we may assume that Q = [− δ
2
, δ

2
]n−1 =: Q0. We define

L =

[
In−1 2σ
0> 1

]
,

where 0 = (0, . . . , 0) ∈ Rn−1, In−1 is the unit matrix in Rn−1×n−1 and σ ∈ Rn−1 satisfies
Q = Q0 + σ. We also notice that

Lu = (u1 + 2σ1un, . . . , un−1 + 2σn−1un, un).

The inverse of L is
L−1 =

[
In−1 −2σ
0> 1

]
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and we have | detL| = 1 = | detL−1|. Now we can compute

|EQg(u)| =
∣∣∣∣ˆ
Q

g(ξ)e
(
(ξ, |ξ|2) · u

)
dξ

∣∣∣∣
=

∣∣∣∣ˆ
Q0

g(ξ + σ)e
(
(ξ + σ, |ξ + σ|2) · u

)
dξ

∣∣∣∣
=

∣∣∣∣ˆ
Q0

g(ξ + σ)e
(
(ξ + σ) · πn(u) +

(
|ξ|2 + 2ξ · σ + |σ|2

)
un
)

dξ

∣∣∣∣
=

∣∣∣∣ˆ
Q0

g(ξ + σ)e
(
(σ, |σ|2) · u+ ξ · πn(u) + 2ξ · σun + |ξ|2un

)
dξ

∣∣∣∣
=

∣∣∣∣ˆ
Q0

g(ξ + σ)e
(
(σ, |σ|2) · u+ ξ · (πn(u) + 2σun) + |ξ|2un

)
dξ

∣∣∣∣
=

∣∣∣∣e((σ, |σ|2) · u
) ˆ

Q0

g(ξ + σ)e
(
(ξ, |ξ|2) · Lu

)
dξ

∣∣∣∣
=

∣∣∣∣ˆ
Q0

g(ξ + σ)e
(
(ξ, |ξ|2) · Lu

)
dξ

∣∣∣∣ = |EQ0G(Lu)|

and hence

(3.18)
ˆ
Rn
|EQg(u)|qwB(y,δ−1)(u) du =

ˆ
Rn
|EQ0G(v)|qwB(y,δ−1)(L

−1v) dv

where G(u) := g(u+ σ).
For any x ∈ Rn, we know that

|Lx| = |x+ (2xnσ, 0)| ≤ |x|+ 2|xn||σ| ≤ (1 + 2|σ|)|x| ≤ 3
√
n− 1|x|

and similarly ‖L−1‖op ≤ 3
√
n− 1. Thus by lemma 1.2, the operator L is bilipschitz and

we have |y − L−1v| ∼ |L(y − L−1v)| = |Ly − v|. This implies that

wB(y,δ−1)(L
−1v) =

(
1 + δ|y − L−1v|

)−E
∼ (1 + δ|Ly − v|)−E = wB(Ly,δ−1)(v).(3.19)

Plugging (3.19) to (3.18), we get
ˆ
Rn
|EQg(u)|qwB(y,δ−1)(u) du ∼

ˆ
Rn
|EQ0G(v)|qwB(Ly,δ−1)(v) dv,

which is equivalent with

‖EQg‖Lq] (wB(y,δ−1))
∼ ‖EQ0G‖Lq] (wB(Ly,δ−1))

.
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Recalling our calculations of the unit normal vectors of Pn−1, we have n(cQ) = (−2σ,1)√
1+4|σ|2

and L(n(cQ)) = 1√
1+4|σ|2

en = 1√
1+4|σ|2

n(cQ0). Recall also that TQ is a δ−2 × (δ−1)n−1 tile

where the longest side is parallel to n(cQ). Thus L(TQ) is a parallelepiped with longest
side parallel to n(cQ0). Since ‖L‖op ≤ 3

√
n− 1 and for any a, b ∈ (1 +

√
n)TQ(x) we have

|a− b| ≤
√

(n− 1)((1 +
√
n)δ−1)2 + ((1 +

√
n)δ−2)2 ≤ (

√
n+ n)δ−2,

we get that
|L(a− b)| ≤ ‖L‖op|a− b| ≤ 3(n

3
2 + n)δ−2.

Since 6n
3
2 ≥ 3n

3
2 +3n+ 1

2
holds for n ≥ 2, the above deduction and L(TQ(x))∩TQ0(Lx) 6= ∅

imply that L((1 +
√
n)TQ(x)) ⊂ 12n

3
2TQ0(Lx). See figure 3.1 below for the worst case

scenario in R2.

3(n
3
2 + n)δ−2 ≥

δ−2

2 =

≤ (3n+ 3
√
n)δ−1

= δ−1

2

TQ0(Lx))

L((1 +
√
n)TQ(x))

Figure 3.1: Containment of L((1 +
√
n)TQ(x)) with a dilation of TQ0(Lx)) in R2. The

lengths are from the n-dimensional case.
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Now we can estimate

FQ(x) = sup
y∈(1+

√
n)TQ(x)

‖EQg‖Lq] (wB(y,δ−1))

∼ sup
y∈(1+

√
n)TQ(x)

‖EQ0G‖Lq] (wB(Ly,δ−1))

= sup
y∈L((1+

√
n)TQ(x))

‖EQ0G‖Lq] (wB(y,δ−1))

≤ sup
y∈12n

3
2 TQ0

(Lx)

‖EQ0G‖Lq] (wB(y,δ−1)) =: F0(Lx)

and thus on the left-hand side of (3.17) we get
ˆ

4B

|FQ(x)|q dx .
ˆ

4B

|F0(Lx)|q dx =

ˆ
L(4B)

|F0(y)|q dy ≤
ˆ

12nB′
|F0(y)|q dy,

where B′ := B
(
L(cB), δ−2

)
. Furthermore, we can change variables back on right-hand

side of (3.17) to see that

‖EQ0G‖
q
Lq] (wB′ )

=
1

mn(B′)

ˆ
Rn
|EQ0G(v)|qwB′(v) dv

=
1

mn(B′)

ˆ
Rn
|EQg(u)|qwB′(Lu) du

∼ 1

mn(B)

ˆ
Rn
|EQg(u)|qwB(u) du = ‖EQg‖qLq] (wB)

.

Hence in order to prove the lemma, it suffices to prove

(3.20) ‖F0‖qLq] (12nB′)
. ‖EQ0G‖

q
Lq] (wB′ )

.

We will abuse notation by writing Q = Q0, g = G and F0 = FQ. We fix x ∈ Rn

and let y ∈ 12n
3
2TQ(x). The reduction of Q implies that TQ(x) has sides parallel to the

coordinate axes and the longest side is parallel to the xn-axis. This means that y = x+ y′

with |y′j| . δ−1 for 1 ≤ j < n and |y′n| . δ−2. For the rest of the proof we simplify
notation by writing ã := πn(a), for a ∈ Rn. Now we change variables twice to get

‖EQg‖qLq(wB(y,δ−1))
=

ˆ
Rn
|EQg(z)|qwB(y,δ−1)(z) dz

=

ˆ
Rn
|EQg(u+ y)|qwB(y,δ−1)(y + u) du
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=

ˆ
Rn
|EQg(u+ y)|qwB(0,δ−1)(u) du

=

ˆ
Rn
|EQg(x1 + u1 + y′1, . . . , xn + un + y′n)|qwB(0,δ−1)(u) du

=

ˆ
Rn
|EQg(x̃+ ũ, xn + un + y′n)|qwB(0,δ−1)(ũ− ỹ′, un) du.

Furthermore, by triangle inequality

δ|(ũ− ỹ′), un)| ≤ δ|u|+ δ|ỹ′| ≤ δ|u|+ δ

n−1∑
j=1

|y′j| . δ|u|+ 1

and

δ|u| = δ|(ũ− ỹ′ + ỹ′, un)| ≤ δ|(ũ− ỹ′, un)|+ δ|ỹ′| . δ|(ũ− ỹ′, un)|+ 1.

Hence

1 + δ|u| ∼ 1 + δ|(ũ− ỹ′, un)|
⇔ wB(0,δ−1)(u) ∼ wB(0,δ−1)(ũ− ỹ′, un)

and so we have

‖EQg‖qLq(wB(y,δ−1))
∼
ˆ
Rn
|EQg(x̃+ ũ, xn + un + y′n)|qwB(0,δ−1)(u) du

=

ˆ
Rn
|EQg(x1 + u1, . . . , xn−1 + un−1, xn + un + y′n)|qwB(0,δ−1)(u) du.(3.21)

Now we may write

|EQg(x̃+ ũ, xn + un + y′n)| =
∣∣∣∣ˆ
Q

g(λ)e
(
(x̃+ ũ, xn + un + y′n) · (λ, |λ|2)

)
dλ

∣∣∣∣
=

∣∣∣∣ˆ
Q

g(λ)e
(
(x+ u) · (λ, |λ|2)

)
e(y′n|λ|2) dλ

∣∣∣∣
=

∣∣∣∣∣
ˆ
Q

g(λ)e
(
(x+ u) · (λ, |λ|2)

) ∞∑
k=0

(2πiy′n)k

k!
|λ|2k dλ

∣∣∣∣∣
=
∞∑
k=0

(2π)k|y′n|k

k!

∣∣∣∣ˆ
Q

g(λ)e
(
(x+ u) · (λ, |λ|2)

)
|λ|2k dλ

∣∣∣∣
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.
∞∑
k=0

(2π)k(δ−2)k

k!

∣∣∣∣ˆ
Q

g(λ)e
(
(x+ u) · (λ, |λ|2)

)
|λ|2k dλ

∣∣∣∣
=
∞∑
k=0

(2nπ)k

k!

∣∣∣∣∣
ˆ
Q

g(λ)e
(
(x+ u) · (λ, |λ|2)

)( |λ|2
nδ2

)k
dλ

∣∣∣∣∣
=
∞∑
k=0

(2nπ)k

k!
|Mk(EQg)(x+ u)| .(3.22)

We were able to interchange the series and integral due to dominated convergence theorem.
Above we denoted

Mk(EQg)(z) :=

ˆ
Q

g(λ)e
(
z · (λ, |λ|2)

)
mk

(
|λ|2

nδ2

)
dλ,

where z ∈ Rn and mk(t) = tk1[− 1
2
, 1
2

](t). We were able to insert the cutoff since λ ∈ Q =

[− δ
2
, δ

2
]n−1 implies that

|λ|2 ≤
n−1∑
j=1

δ2

4
=
δ2(n− 1)

4
≤ δ2n

2
⇔ |λ|

2

nδ2
≤ 1

2
.

Plugging (3.22) to (3.21) we get

‖EQg‖qLq(wB(y,δ−1))
.

∞∑
k=0

(2nπ)k

k!

ˆ
Rn
|Mk(EQg)(x+ u)|qwB(0,δ−1)(u) du

=
∞∑
k=0

(2nπ)k

k!

ˆ
Rn
|Mk(EQg)(u)|qwB(0,δ−1)(u− x) du

=
∞∑
k=0

(2nπ)k

k!

ˆ
Rn
|Mk(EQg)(u)|qwB(x,δ−1)(u) du

=
∞∑
k=0

(2nπ)k

k!
‖Mk(EQg)‖qLq(wB(x,δ−1))

.

Multiplying by δn, taking supremums over y ∈ 12n
3
2TQ(x) and mean value integrating
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both sides we get

‖FQ‖qLq] (12nB′)
.

∞∑
k=0

(2nπ)k

k!
δn
 

12nB′
‖Mk(EQg)‖qLq(wB(x,δ−1))

dx

=
∞∑
k=0

(2nπ)k

k!

δn

mn(12nB′)

ˆ
Rn
|Mk(EQg)(u)|q

ˆ
12nB′

wB(x,δ−1)(u) dx du

∼
∞∑
k=0

(2nπ)k

k!

1

mn(B′)

ˆ
Rn
|Mk(EQg)(u)|qδn

ˆ
12nB′

wB(x,δ−1)(u) dx du.(3.23)

The equality above is due to Tonelli’s theorem. Notice that wB(x,δ−1)(u) = wB(u,δ−1)(x)
and by lemma 3.6 we have

δn
ˆ

12nB′
wB(u,δ−1)(x) dx . wB′(u),

for all u ∈ Rn. Plugging this into (3.23) yields

(3.24) ‖FQ‖qLq] (12nB′)
.

∞∑
k=0

(2nπ)k

k!
‖Mk(EQg)‖q

Lq] (wB′ )
.

We can replace the function mk with a compactly supported smooth function m∗k that
is defined by

m∗k(t) = tkb(t),

where b ∈ S(R) satisfies b = 1 on K = [−1
2
, 1

2
] and supp(b) ⊂ V =

]
−3

4
, 3

4

[
. See lemma

(1.7) for the existence of such b. By lemma 1.8, we have

(3.25) ||m∗k(xn)| .M (1 + |xn|)−M , for all M > 0,

where the implicit constant is independent of k.
Let M∗

k be the operator that is like Mk with the exception that mk is replaced by m∗k.
We can now apply Fourier inversion formula, change of variables and Fubini to write

|Mk(EQg)(x)| = |M∗
k (EQg)(x)|

=

∣∣∣∣ˆ
Q

g(λ)e
(
x · (λ, |λ|2)

)
m∗k

(
|λ|2

nδ2

)
dλ

∣∣∣∣
=

∣∣∣∣ˆ
Q

g(λ)e
(
x · (λ, |λ|2)

) ˆ
R
e

(
−|λ|

2

nδ2
z

)
|m∗k (z) dz dλ

∣∣∣∣
=

∣∣∣∣ˆ
Q

g(λ)e
(
x · (λ, |λ|2)

)
nδ2

ˆ
R
e(−|λ|2y) |m∗k

(
nδ2y

)
dy dλ

∣∣∣∣
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∼
∣∣∣∣ˆ

R

ˆ
Q

g(λ)e
(
x · (λ, |λ|2)

)
e(−|λ|2y) dλ δ2

|m∗k
(
nδ2y

)
dy

∣∣∣∣
=

∣∣∣∣ˆ
R
EQg(x̃, xn − y)δ2

|m∗k
(
nδ2y

)
dy

∣∣∣∣
≤
ˆ
R
|EQg(x̃, xn − y)|hδ2(y) dy = |EQg| � hδ2(x),

where � denotes the convolution with respect to the last variable xn and hδ2(xn) :=

δ2||m∗k (nδ2xn) |. We can normalize hδ2 with

c :=
1

n
‖|m∗k‖1 .

1

n

ˆ
R
(1 + |x|)−2 dx ≤ 1

n

ˆ
R
(1 + x2)−1 dx =

π

n
∼ 1,

so that
´
R hδ2/c = 1 and use the Jensen inequality to get

|Mk(EQg)(x)|q .
(
|EQg| � hδ2(x)

)q
=

(
c |EQg| �

hδ2(x)

c

)q
≤ cq|EQg|q �

hδ2(x)

c
. |EQg|q � hδ2(x).

We recall that B′ = B(L(cB), δ−2). Then we multiply both sides with wB′ and integrate
to get

‖Mk(EQg)‖qLq(wB′ ) .
ˆ
Rn
|EQg|q � hδ2(x)wB′(x) dx.

Using Fubini’s theorem we can writeˆ
Rn
|EQg|q � hδ2(x)wB′(x) dx =

ˆ
Rn

ˆ
R
|EQg(x̃, y)|qhδ2(xn − y)wB′(x) dy dx

=

ˆ
Rn
|EQg(x̃, y)|q

ˆ
R
hδ2(xn − y)wB′(x) dxn d(x̃, y)

and equation (3.25) with M = E allows us to writeˆ
Rn
|EQg(x̃, y)|q

ˆ
R
hδ2(xn − y)wB′(x) dxn d(x̃, y)

.
ˆ
Rn
|EQg(x̃, y)|qδ2

ˆ
R
(1 + nδ2|xn − y|)−EwB′(x) dxn d(x̃, y)

≤
ˆ
Rn
|EQg(x̃, y)|qδ2

ˆ
R
(1 + δ2|y − xn|)−EwB′(x) dxn d(x̃, y)

=

ˆ
Rn
|EQg(x̃, y)|qδ2

ˆ
R
wB1(0,δ−2)(y − xn)wB′(x) dxn d(x̃, y).
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By lemma 3.13 we have

δ2

ˆ
R
wB1(0,δ−2)(y − xn)wB′(x) dxn . wB′(x̃, y)

and this means that we haveˆ
Rn
|EQg(x̃, y)|q

ˆ
R
hδ2(xn − y)wB′(x) dxn d(x̃, y) .

ˆ
Rn
|EQg(x̃, y)|qwB′(x̃, y) d(x̃, y).

Merging our recent estimates, we have

‖Mk(EQg)‖qLq(wB′ ) . ‖EQg‖
q
Lq(wB′ )

.

Finally, combining this with (3.24) we get

‖FQ‖qLq] (12nB′)
.

∞∑
k=0

(2nπ)k

k!
‖EQg‖Lq] (wB′ ) ∼ ‖EQg‖Lq] (wB′ ),

which is exactly (3.20). The last relation is due to
∑∞

k=0
(2nπ)k

k!
= e2πn.

Now we are ready to prove theorem 3.15.

Proof of theorem 3.15. To make notions more bearable, we abbreviate∑
Qi,1

:=
∑

Qi,1∈Partδ(Qi)

,

q :=
p(n− 1)

n
,

e(Qi,1, B) := ‖EQi,1g‖Lq] (wB)

and
e∗i := max

Qi,1∈Partδ(Qi)
e(Qi,1, B).

Let C = C(n, p) ∈ N+. The idea is to use dyadic pigeonholing to restrict the cubes Qi,1.
We notice that each cube Qi,1 satisfies either

(3.26) e(Qi,1, B) ≤ δCe∗i

or

(3.27) 2kδCe∗i < e(Qi,1, B) ≤ 2k+1δCe∗i , for some k ∈ N.
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Since e(Qi,1, B) ≤ e∗i always holds, we can forget each k that satisfies 2kδC ≥ 1. Since

2kδC < 1 ⇔ log2(2kδC) < 0 ⇔ k − C log2 δ
−1 < 0 ⇔ k < C log2 δ

−1 =: A,

we now know that (3.27) is equivalent with

e∗i 2
−k′−1 < e(Qi,1, B) ≤ 2−k

′
e∗i , k′ ∈ {0, 1, . . . , A− 1}.

We denote
b−1,i(∆) :=

∑
Qi,1

e(Qi,1,B)≤δCe∗i

e(Qi,1,∆)2

for each i = 1, . . . , n and

bk,i(∆) :=
∑
Qi,1

e∗i 2−k−1<e(Qi,1,B)≤2−ke∗i

e(Qi,1,∆)2

for each i = 1, . . . , n and k = 0, . . . , A− 1. Thus we have∑
Qi,1

e(Qi,1,∆)2 =
∑
Qi,1

e(Qi,1,B)≤δCe∗i

e(Qi,1,∆)2

+
A−1∑
k=0

∑
Qi,1

e∗i 2−k−1<e(Qi,1,B)≤2−ke∗i

e(Qi,1,∆)2

=
A−1∑
k=−1

bk,i(∆)

This implies that

1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)2

 1
2


p
n

=
1

#B
∑
∆∈B

(
n∏
i=1

A−1∑
k=−1

bk,i(∆)

) p
2n

.(3.28)
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By the distributive law we calculate

n∏
i=1

A−1∑
k=−1

bk,i(∆) =

(
A−1∑
k1=−1

bk1,1(∆)

)
· · ·

(
A−1∑
kn=−1

bkn,n(∆)

)

=
A−1∑
k1=−1

· · ·
A−1∑
kn=−1

bk1,1(∆) · · · bkn,n(∆)

=:
∑
~k∈K

n∏
i=1

bki,i(∆),

where on the last line we denoted ~k := (k1, . . . , kn) and K := {−1, 0, 1, . . . , A− 1}n.
If p

2n
≤ 1, then convexity yields

∑
∆∈B

∑
~k∈K

n∏
i=1

bki,i(∆)


p

2n

≤
∑
∆∈B

∑
~k∈K

(
n∏
i=1

bki,i(∆)

) p
2n

=
∑
~k∈K

∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

≤ (1 + A)nmax
~k∈K

∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

.

If p
2n
> 1, then Hölder inequality with conjugates p

2n
and p

p−2n
gives

∑
∆∈B

∑
~k∈K

n∏
i=1

bki,i(∆)


p

2n

≤
∑
∆∈B


∑
~k∈K

n∏
i=1

bki,i(∆)
p

2n

 2n
p
∑
~k∈K

1

1− 2n
p


p

2n

=
∑
∆∈B

∑
~k∈K

(
n∏
i=1

bki,i(∆)

) p
2n

∑
~k∈K

1


p

2n
−1

≤ (1 + A)
p
2
−n
∑
∆∈B

∑
~k∈K

(
n∏
i=1

bki,i(∆)

) p
2n

≤ (1 + A)
p
2 max
~k∈K

∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

.
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Overall we now have

∑
∆∈B

∑
~k∈K

n∏
i=1

bki,i(∆)


p

2n

≤ (1 + A)max{ p
2
,n}max

~k∈K

∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

and plugging the above to (3.28) gives that

1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)2

 1
2


p
n

≤ (1 + A)max{ p
2
,n} 1

#B
max
~k∈K

∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

.ε δ
−ε 1

#B
max
~k∈K

∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

.

Thus we see that in order to prove the theorem, it suffices to show that for each combi-
nation ~k = (k1, . . . , kn) ∈ K = {−1, 0, 1, . . . , A− 1}n we have

(3.29)
1

#B
∑
∆∈B

n∏
i=1

bki,i(∆)
p

2n .ε,ν δ
−ε

 n∏
i=1

∑
Qi,1

e(Qi,1, B)2

 1
2


p
n

In order to show (3.29), we will consider two cases.

1. At least one ki = −1.

2. Every index ki is non-negative.

In the first case say kj = −1. We notice that for each ∆ ∈ B and each Qi,1, we have

δ
n
q e(Qi,1,∆) = δ

n
q

(
δn
ˆ
Rn
|EQi,1g(x)|qw∆(x) dx

) 1
q

. δ
n
q

(
δn
ˆ
Rn
|EQi,1g(x)|qwB(x) dx

) 1
q

= e(Qi,1, B),

where we used w∆(x) . wB(x), which is an immediate corollary of lemma 3.12. For the
cubes Q′i,1 in bkj ,j, the above calculation combined with (3.26) gives

max
∆∈B

e(Q′j,1,∆) . δC−
n
q e∗j
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and for each Qi,1 we have
max
∆∈B

e(Qi,1,∆) . δ−
n
q e∗i .

Hence
bkj ,j =

∑
Qj,1

e(Qj,1,B)≤δCe∗j

e(Qj,1,∆)2 ≤ δ2C− 2n
q
−n(e∗j)

2

and for i 6= j

bki,i ≤
∑
Qi,1

e(Qi,1,∆)2 ≤ δ−
2n
q
−n(e∗i )

2.

Above we used the fact that the number of cubes Qi,1 is less or equal to δ−n. Thus by
choosing C ≥ n

p
(np
q

+ np
2

) = n3

p(n−1)
+ n2

2
we get

1

#B
∑
∆∈B

(
n∏
i=1

bki,i(∆)

) p
2n

≤ 1

#B
∑
∆∈B

(
δ2C− 2n

q
−n(e∗j)

2
∏
i 6=j

δ−
2n
q
−n(e∗i )

2

) p
2n

= δC
p
n
−np

q
−n p

2

(
n∏
i=1

(e∗i )
2

) p
2n

≤ δC
p
n
−np

q
−np

2

 n∏
i=1

∑
Qi,1

e(Qi,1, B)2

 1
2


p
n

≤

 n∏
i=1

∑
Qi,1

e(Qi,1, B)2

 1
2


p
n

.

If more indices ki are equal to −1, then we are able to choose a smaller C. This ends the
proof for the first case.

For the second case let Nk,i be the number of cubes Qi,1 in bk,i. We denote the set of

these cubes by Bk,i and abbreviate
∑

Qi,1
=
∑

Qi,1∈Bk,i . If p = 2n
n−1

, then q =
2n
n−1

(n−1)

n
= 2

and p
2n

= 1
n−1

, so we immediately have

1

#B
∑
∆∈B

n∏
i=1

bki,i(∆)
p

2n =
1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)2

 1
2


p
n
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=
1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

.

If p > 2n
n−1

, then we can use Hölder inequality on e(Qi,1,∆)2 with conjugates p′ := p(n−1)
p(n−1)−2n

and q′ := p(n−1)
2n

. This gives us

‖e(Qi,1,∆)2‖l1 ≤ ‖1‖lp′‖e(Qi,1,∆)2‖lq′ = N
1
p′

k,i‖e(Qi,1,∆)2‖lq′
⇔

1

#B
∑
∆∈B

(
n∏
i=1

‖e(Qi,1,∆)2‖
1
2
l1

) p
n

≤

(
n∏
i=1

N
1

2p′

k,i

) p
n

1

#B
∑
∆∈B

(
n∏
i=1

‖e(Qi,1,∆)2‖
1
2
lq′

) p
n

,(3.30)

where we denoted ‖e(Qi,1,∆)2‖lr :=
(∑

Qi,1
(e(Qi,1,∆)2)

r
) 1
r for 1 ≤ r < ∞. We notice

that (3.30) is equivalent with

1

#B
∑
∆∈B

n∏
i=1

bki,i(∆)
p

2n =
1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)2

 1
2


p
n

≤

(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n

1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

.(3.31)

Next we want to control the expression

1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

.

In order to estimate to above expression, we will recreate the setting of lemma 3.16.
For each cube Qi,1 centered at cQi,1 , we cover B with a family TQi,1 of pairwise disjoint,
mutually parallel tiles TQi,1 . They are rectangles with n − 1 short sides of length δ−1

and one longer side of length δ−2, pointing in the direction of the normal n(cQi,1) to the
paraboloid Pn−1 at cQi,1 . Moreover, we know that these tiles are inside the cube 4B. We
let TQi,1(x) be the tile containing x.

We define

FQ(x) = sup
y∈(1+

√
n)TQ(x)

e(Q,B(y, δ−1)), for x ∈
⋃

TQ∈TQ

TQ.
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Assume that x ∈ ∆. Recall that ∆ is a cube of side length δ−1 and thus the diameter of
∆ is

√
nδ−1. Since x ∈ ∆ ∩ TQ(x), we now have c∆ ∈ (1 +

√
n)TQ(x) (see figure 3.2).

∆

TQ(x)

(1 +
√
n)TQ(x)

x = ( 12 +
√
n
2 )δ−1

Figure 3.2: Inclusion c∆ ∈ (1 +
√
n)TQ(x) in R2 for the worst case scenario. Lengths are

from the n-dimensional case.

This implies e(Q,∆) ≤ FQ(x), which means that n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

≤

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

⇒

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

≤
 

∆

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx

⇒
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

≤
∑
∆∈B

 
∆

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx

⇔ 1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

≤ 1

#B
1

mn(∆)

ˆ
B

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx

⇔ 1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

≤ 1

|B|

ˆ
B

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx

⇒ 1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

.
 

4B

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx.

Moreover, the function F q
Qi,1

is constant on each tile TQi,1 ∈ FQi,1 . Indeed, if x, z ∈ TQi,1 ,
then TQi,1(x) = TQi,1(z). Since the cubes Q1, . . . , Qn are ν-transverse, we can utilize
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the multilinear Kakeya inequality from corollary 2.15 applied to the functions Fi(x) =∑
Qi,1

F q
Qi,1

(x) to get

 
4B

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx .ε,ν δ
−ε

n∏
i=1

 
4B

∑
Qi,1

F q
Qi,1

(x) dx

 1
n−1

= δ−ε

 n∏
i=1

∑
Qi,1

 
4B

F q
Qi,1

(x) dx

 1
n−1

.

An application of lemma 3.16 gives

‖FQi,1‖
q
Lq] (4B)

. e(Qi,1, B)q

and hence

δ−ε

 n∏
i=1

∑
Qi,1

 
4B

F q
Qi,1

(x) dx

 1
n−1

. δ−ε

 n∏
i=1

∑
Qi,1

e(Qi,1, B)q

 1
n−1

.

Combining the estimates, starting from (3.31), leads to

1

#B
∑
∆∈B

n∏
i=1

bki,i(∆)
p

2n =
1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)2

 1
2


p
n

≤

(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n

1

#B
∑
∆∈B

 n∏
i=1

∑
Qi,1

e(Qi,1,∆)q

 1
n−1

.

(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n  

4B

 n∏
i=1

∑
Qi,1

F q
Qi,1

(x)

 1
n−1

dx

.ε,ν δ
−ε

(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n

 n∏
i=1

∑
Qi,1

 
4B

F q
Qi,1

(x) dx

 1
n−1

. δ−ε

(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n

 n∏
i=1

∑
Qi,1

e(Qi,1, B)q

 1
n−1

.(3.32)
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Recalling the restriction on the cubes Qi,1, for a cube Q ∈ Bk,i, we have

2−ki−1e∗i < e(Q,B) ≤ 2−kie∗i ⇒ e(Q,B) ∼ 2−kie∗i

and thus(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n

 n∏
i=1

∑
Qi,1

e(Qi,1, B)q

 1
n−1

∼

(
n∏
i=1

N
1
2
− 1
q

k,i

) p
n

 n∏
i=1

∑
Qi,1

(2−kie∗i )
q

 1
n−1

=

(
n∏
i=1

N
p

2n
− 1
n−1

k,i

)(
n∏
i=1

Nk,i (2
−kie∗i )

q

) 1
n−1

=

(
n∏
i=1

N
p

2n
k,i

)(
n∏
i=1

(2−kie∗i )
p
n

)

=
n∏
i=1

(
N

1
2
k,i2
−kie∗i

) p
n

=
n∏
i=1

((
Nk,i (2

−kie∗i )
2
) 1

2

) p
n

=
n∏
i=1

(∑
Qi,1

(2−kie∗i )
2
) 1

2


p
n

∼

 n∏
i=1

∑
Qi,1

e(Qi,1, B)2

 1
2


p
n

,

which we can plug into (3.32) and (3.29) follows for the second case. This ends the proof
of the theorem.
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Chapter 4

Equivalent formulations of linear
decoupling

We will begin this chapter by defining the linear decoupling constant Decn(δ, p, E) that is
associated to the extension operator EQ. In literature regarding decoupling, an alternative
formulation is often used, where the decoupling constant is defined without EQ and the
decoupling is done using Fourier restriction. For the sake of exposition, let the decoupling
constant related to the alternative formulation be Decn(F). The main result of this
chapter (theorem 4.27) shows that these two formulations are essentially equivalent in the
sense that an upper bound for Decn(δ, p, E) will imply an upper bound for Decn(F). This
motivates the use of the extension operator EQ and the associated decoupling constant.
Another motivation for theorem 4.27 is that in the fifth chapter we will use it to prove an
important reverse decoupling constant inequality.

4.1 The linear decoupling constant
In this section we will define the linear decoupling constant and introduce a lemma that
we will use to simplify the proofs of decoupling inequalities. Throughout the rest of the
thesis we will assume that δ ∈ 4−N.

Definition 4.1. For p ≥ 2, let Decn(δ, p, E) = Dec(δ, p, E) be the smallest constant that
satisfies

(4.2) ‖Eg‖Lp(wB,E) ≤ Dec(δ, p, E)

 ∑
Q∈Part√δ([0,1]n−1)

‖EQg‖2
Lp(wB,E)

 1
2

,

for each cube B with side length δ−1.
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The exact statement of the l2 decoupling theorem is that if 2 ≤ p ≤ 2(n+1)
n−1

, then we
have Dec(δ, p, E) .ε δ

−ε. In contrast, it is a straightforward application of Minkowski’s
inequality and Cauchy-Schwarz inequality to show that δ−

n−1
4 is a constant that satisfies

the inequality in the definition. With a little more work one can comfortably show that
the decoupling constant Dec(δ, p, E) is well defined. Together these results imply that
Dec(δ, p, E) ≤ δ−

n−1
4 . The details of these computations can be found in [14] section 2.6.

Next we will look at a lemma which can be used to simplify the inequalities that are
of the form (4.2).

Lemma 4.3. Fix E > n and R > 0. Let W be the space of non-negative integrable
functions on Rn. Assume that operators O1, O2 : W → [0,∞] satisfy the following four
properties:

(W1) O1(1B) . O2(wB,E) for all cubes B of side length R.

(W2) O1(
∑∞

i=1 αiui) ≤
∑∞

i=1 αiO1(ui) for all ui ∈ W and αi > 0 such that
∑∞

i=1 αiui ∈ W.

(W3) O2(
∑∞

i=1 αiui) ≥
∑∞

i=1 αiO2(ui) for all ui ∈ W and αi > 0 such that
∑∞

i=1 αiui ∈ W.

(W4) If u ≤ v, then Oi(u) ≤ Oi(v), where i = 1, 2.

Then
O1(wB,E) . O2(wB,E)

for all cubes B with side length R.

Proof. This is a relatively immediate consequence of lemma 3.9 after we check that the
implicit constants do not affect the operators too much. Hence, we will begin with proving
that the operators preserve scalar multiplication, i.e.,

(4.4) Oi(αu) = αOi(u)

where α > 0, u ∈ W and i = 1, 2.
By (W2 ) and (W3 ), we have

O1(0) = O1(
∞∑
i=2

(
1

2
)i · 0) ≤ 1

2
O1(0)

and

O2(0) = O2(
∞∑
i=0

(
1

2
)i · 0) ≥ 2O2(0).
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Thus Oi(0) = 0 or Oi(0) =∞. If O2(0) =∞, then by (W4 ) we have O2(wB,E) =∞ and
the result is trivial. If O1(0) =∞, then by (W4 ) and (W1 ) we again have O2(wB,E) =∞.

We can now assume that O1(0) = 0 = O2(0). This means that setting ui = 0 for i > 1
in (W2 ) gives us O1(αu) ≤ αO1(u) for all u ∈ W and α > 0. Applying this twice, we get

O1(αu) ≤ αO1(u) = αO1(α−1αu) ≤ O1(αu)⇔ O1(αu) = αO1(u).

Similar calculations for O2 proves (4.4). Clearly (4.4) and (W4) shows that u . v implies
Oi(u) . Oi(v). Now applying inequalities (3.10) and (3.11) of lemma 3.9, gives us

O1(wB,E) . O1

(∑
B′∈B

wB,E(cB′)1B′(x)

)
(3.10)

≤
∑
B′∈B

wB,E(cB′)O1(1B′(x)) (W2)

.
∑
B′∈B

wB,E(cB′)O2(wB′,E(x)) (W1)

≤ O2

(∑
B′∈B

wB,E(cB′)wB′,E(x)

)
(W3)

. O2(wB,E). (3.11)

The main interest of lemma 4.3 is that if f, f1, f2, . . . are measurable and v ∈ W , then

O1(v) := ‖f‖pLp(v) with p ≥ 1

and

O2(v) :=

∑
j∈N+

‖fj‖2
Lp(v)


p
2

with p ≥ 2

satisfy conditions (W2 ), (W3 ) and (W4 ). Indeed, both satisfy (W4 ) by the increasing
nature of the integral. Condition (W2 ) follows from the monotone convergence theorem

O1(
∞∑
i=1

αiui) =

ˆ
Rn
|f |p lim

k→∞

k∑
i=1

αiui dmn

= lim
k→∞

k∑
i=1

αi

ˆ
Rn
|f |pui dmn =

∞∑
i=1

αiO1(ui).
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We briefly denote s :=
∑∞

i=1 αiui. For condition (W3 ) note that similarly as above we
have

‖(fj)p‖L1(s) =
∞∑
i=1

‖(fj)p‖L1(αiui).

Using this we write

O2(s) =

∑
j∈N+

‖fj‖2
Lp(s)


p
2

=

∑
j∈N+

‖(fj)p‖
2
p

L1(s)


p
2

=

∥∥∥∥∥
∞∑
i=1

‖(fj)p‖L1(αiui)

∥∥∥∥∥
l
2
p

.(4.5)

The monotone convergence theorem for series and the continuity of the functions x→ xa,
where a > 0, imply that∥∥∥∥∥

∞∑
i=1

‖(fj)p‖L1(αiui)

∥∥∥∥∥
l
2
p

= lim
k→∞

∥∥∥∥∥
k∑
i=1

‖(fj)p‖L1(αiui)

∥∥∥∥∥
l
2
p

.

Note that 2
p
≤ 1. Combining the above with (4.5) and applying Minkovski’s inequality in

l
2
p we get

O2(s) = lim
k→∞

∥∥∥∥∥
k∑
i=1

‖(fj)p‖L1(αiui)

∥∥∥∥∥
l
2
p

≥ lim
k→∞

k∑
i=1

∥∥‖(fj)p‖L1(αiui)

∥∥
l
2
p

=
∞∑
i=1

∥∥‖(fj)p‖L1(αiui)

∥∥
l
2
p

=
∞∑
i=1

αi
∥∥‖(fj)p‖L1(ui)

∥∥
l
2
p

=
∞∑
i=1

αi

∑
j∈N+

‖(fj)p‖
2
p

L1(ui)


p
2

=
∞∑
i=1

αi

∑
j∈N+

‖fj‖2
Lp(ui)


p
2

=
∞∑
i=1

αiO2(ui),
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which is (W3 ). We have now shown that in order to prove

‖f‖pLp(wB,E) .

∑
j∈N+

‖fj‖2
Lp(wB,E)


p
2

,

by lemma 4.3 it suffices to prove

‖f‖pLp(B) .

∑
j∈N+

‖fj‖2
Lp(wB,E)


p
2

.

Lastly we note the immediate fact that if some operators satisfy (W2 ) and (W4 ) or (W3 )
and (W4 ), then positive linear combinations of these operators also satisfy (W2 ) and
(W4 ) or (W3 ) and (W4 ) respectively.

4.2 Decoupling via Fourier restriction
In this section we will show how to decouple a function using its Fourier restriction and
the linear decoupling constant associated to EQ. The main idea is to divide the Fourier
support of a function f into disjoint sets A and use the Fourier restrictions of f into A to
form a decoupling inequality.

Definition 4.6. Let f : Rn → C be a function that has an integrable Fourier transform.
Then the Fourier restriction of f to R is defined by

fR(x) :=

ˆ
R

f̂(ξ)e(x · ξ) dξ.

In the above definition we allow that f̂ ∈ S ′(Rn) is a distribution that is defined by
an integrable function f ∗ with the formula φ 7→

´
φf ∗. In this case we abuse notation by

f̂(ξ) := f ∗(ξ).
The Fourier restriction decoupling will work for functions that are Fourier supported

in a specific neighbourhood of the paraboloid Pn−1.

Definition 4.7. For a number r ∈ ]0, 1[ and a cube Q ⊂ [0, 1]n−1 the r-neighbourhood of
Pn−1 above Q is

Nr(Q) := {(ξ1, ξ2, . . . ξn−1, ξ
2
1 + · · ·+ ξ2

n−1 + t) : (ξ1, . . . , ξn−1) ∈ Q and 0 ≤ t ≤ r}.
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Before we tackle the decoupling, we will introduce four lemmas. The first lemma is
about breaking the n-dimensional weight function into products of one dimensional weight
functions.

Lemma 4.8. Let BR := B(c, R) ⊂ Rn and W ≥ 0. Then

wBR,W (x) ≤
n∏
i=1

(
1 +
|xi − ci|

R

)−Wi

,

where Wi ≥ 0 and
∑n

i=1Wi ≤ W .

Proof. The proof is a straightforward calculation

wBR,W (x) =

(
1 +
|x− c|
R

)−W
≤

1 +

√∑n
j=1(xj − cj)2

R

−
∑n
i=1Wi

=
n∏
i=1

1 +

√∑n
j=1(xj − cj)2

R

−Wi

≤
n∏
i=1

(
1 +
|xi − ci|

R

)−Wi

.

Then we introduce a lemma that allows us to write the weight function as a convolution
of two weight functions when the cubes are centered at the origin.

Lemma 4.9. Let BR := B(0, R) ⊂ Rn and E > n. For 0 < R′ ≤ R we have

(4.10) wBR,E ∗
(

1

(R′)n
wBR′ ,E

)
(x) . wBR,E(x)

and

(4.11) RnwBR,E(x) . 1BR ∗ wBR,E(x).

Proof. We will first prove (4.10). Throughout the proof we will use
ˆ
Rn

(1 + |z|)−E dz ∼ 1,
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which is a consequence of lemma 3.5. The above calculation uses the assumption E > n.
The idea of the proof is exactly same as in lemma 3.13. Let xR = x

R
. By a change of

variables z = y
R′

we can write

wBR,E ∗
(

1
(R′)n

wBR′ ,E

)
(x)

wBR,E(x)
=

1

(R′)n

ˆ
Rn

(1 +
|x− y|
R

)−E(1 +
|y|
R′

)−E(1 +
|x|
R

)E dy

=

ˆ
Rn

(1 + |xR −
zR′

R
|)−E(1 + |z|)−E(1 + |xR|)E dz.

Thus it suffices to prove
ˆ
Rn

(1 + |xR −
zR′

R
|)−E(1 + |z|)−E(1 + |xR|)E dz . 1.

If |xR| ≤ 1, then
ˆ
Rn

(1 + |xR −
zR′

R
|)−E(1 + |z|)−E(1 + |xR|)E dz ≤ 2E

ˆ
Rn

(1 + |z|)−E dz ∼ 1.

We will now assume that |xR| > 1 and bisect the integral
ˆ
Rn

=

ˆ
|xR− zR

′
R
|> |xR|

2

+

ˆ
|xR− zR

′
R
|≤ |xR|

2

.

For the first integral we have

I1 :=

ˆ
|xR− zR

′
R
|> |xR|

2

(1 + |xR −
zR′

R
|)−E(1 + |z|)−E(1 + |xR|)E dz

≤ (1 + |xR|)E

(1 + |xR|
2

)E

ˆ
|xR− zR

′
R
|> |xR|

2

(1 + |z|)−E dz

≤ 2E
ˆ
|xR− zR

′
R
|> |xR|

2

(1 + |z|)−E dz

.
ˆ
Rn

(1 + |z|)−E dz ∼ 1.

In the second region of integration we have |xR − zR′

R
| ≤ |xR|

2
, which implies

|zR
′

R
| ≥ |xR| − |xR −

zR′

R
| ≥ |xR|

2
⇔ |z| ≥ R

2R′
|xR|.
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Thus

I2 :=

ˆ
|xR− zR

′
R
|≤ |xR|

2

(1 + |xR −
zR′

R
|)−E(1 + |z|)−E(1 + |xR|)E dz

≤ (1 + |xR|)E(
1 + R

2R′
|xR|

)E ˆ
|xR− zR

′
R
|≤ |xR|

2

(1 + |xR −
zR′

R
|)−E dz

≤ (1 + |xR|)E(
R

2R′
|xR|

)E ˆ
Rn

(1 + |xR −
zR′

R
|)−E dz

=

(
2R′

R

)E
(1 + |xR|)E

(|xR|)E
ˆ
Rn

(1 + |xR −
zR′

R
|)−E dz

∼
(
R′

R

)E ˆ
Rn

(1 + |xR −
zR′

R
|)−E dz

=

(
R′

R

)E (
R

R′

)n ˆ
Rn

(1 + |xR − u|)−E du

=

(
R′

R

)E−n ˆ
Rn

(1 + |v|)−E dv . 1.

We have now shown that for |xR| > 1 we haveˆ
Rn

(1 + |xR −
zR′

R
|)−E(1 + |z|)−E(1 + |xR|)E dz = I1 + I2 . 2 ∼ 1.

This ends the proof of (4.10).
In order to show (4.11) we again let xR := x

R
. A change of variables z = y

R
allows us

to write

1BR ∗ wBR,E(x)

RnwBR,E(x)
=

1

Rn

ˆ
BR

(
1 +
|x− y|
R

)−E (
1 +
|x|
R

)E
dy

=

ˆ
B1

(1 + |xR − z|)−E (1 + |xR|)E dz

≥
ˆ
B1

(1 + |xR|+ |z|)−E (1 + |xR|)E dz

≥

(
1 + |xR|

1 +
√
n

2
+ |xR|

)E

= (1 +

√
n

2
)−E

 1 + |xR|
1 + |xR|

1+
√
n

2

E
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≥ (1 +

√
n

2
)−E ∼ 1.

Multiplying both sides by RnwBR,E(x) proves (4.11).

Lemma 4.9 immediately yields the following corollary.

Corollary 4.12. Let f be measurable and BR := B(0, R). For 1 ≤ p <∞ and E > n we
have

‖f‖pLp(wBR,E) ∼
ˆ
Rn
‖f‖p

Lp] (B(y,R))
wBR,E(y) dy.

Proof. By applying Tonelli’s theorem, remark 3.4 and (4.10) with R′ = R we can write
ˆ
Rn
‖f‖p

Lp] (B(y,R))
wBR,E(y) dy =

ˆ
Rn

1

Rn

ˆ
Rn
|f(x)|p1BR(x− y)wBR,E(y) dx dy

=

ˆ
Rn
|f(x)|p 1

Rn
1BR ∗ wBR,E(x) dx

.
ˆ
Rn
|f(x)|p 1

Rn
wBR,E ∗ wBR,E(x) dx

. ‖f‖pLp(wBR,E).

For the other direction we apply (4.11) to get
ˆ
Rn
‖f‖p

Lp] (B(y,R))
wBR,E(y) dy =

ˆ
Rn
|f(x)|p 1

Rn
1BR ∗ wBR,E(x) dx

& ‖f‖pLp(wBR,E).

For the following two lemmas we will restrict the dimension to n = 2. This reduction
is justified by the fact that the results will be used only in this case. Furthermore, the
reduction should only simplify the notation.

Lemma 4.13. Let E > n, W ≥ 2E + p + 1, l ∈ N and R ≥ 1. Assume that BR is cube
of side length R that is centered at the origin and let f be a Schwartz function in R2 that
satisfies the derivative bound

(4.14) ‖∂aξ1∂
b
ξ2
f‖∞ .a,b

(
R

1
2 +R−

1
2 |y2|

)a
Rb,

for some integers a, b > E.
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Assume also that f is supported in a set S that satisfies m2(S) . R−
3
2 and |f(ξ)| ≤ 1.

Then

(4.15) ‖F−1f‖L1(R2) . 1 +R−1|y2|

and

(4.16)
ˆ
R2

|F−1f | ∗
(
R−2

1BR

)
(y1 − x1,−x2)(1 +R−1|y2|)p−1wBR,W (y) dy . wBR,E(x),

for all x ∈ R2.

Proof. The first step is to show

(4.17) |F−1f(x)| . R−
1
2

(
1 +

|x1|
R

1
2 +R−

1
2 |y2|

)−E
R−1

(
1 +
|x2|
R

)−E
.

An application of this and lemma 3.5 with n = 1 gives us

‖F−1f‖L1(R2) .
ˆ
R2

R−
1
2

(
1 +

|x1|
R

1
2 (1 +R−1|y2|)

)−E
R−1

(
1 +
|x2|
R

)−E
dx ∼ 1 +R−1|y2|.

In order to show (4.17) we will consider four cases. If |x1| > R
1
2 + R−

1
2 |y2| and |x2| > R,

then utilizing (4.14) and the fact that f is supported in a set of area . R−
3
2 , multiple

integration by parts gives us

|F−1f(x)| =
∣∣∣∣ˆ

R2

f(ξ)e2πi(x1ξ1+x2ξ2) dξ

∣∣∣∣
=

∣∣∣∣ˆ
R2

∂aξ1∂
b
ξ2

(f(ξ))
e2πi(x1ξ1+x2ξ2)

(2πix1)a(2πix2)b
dξ

∣∣∣∣
.a,b

1

|x1|a|x2|b
(
R

1
2 +R−

1
2 |y2|

)a
RbR−

3
2

= R−
1
2

(
R

1
2 +R−

1
2 |y2|

)a
|x1|a

R−1 Rb

|x2|b

= R−
1
2

(
|x1|

R
1
2 +R−

1
2 |y2|

)−a
R−1

(
|x2|
R

)−b
∼a,b R−

1
2

(
1 +

|x1|
R

1
2 +R−

1
2 |y2|

)−a
R−1

(
1 +
|x2|
R

)−b
.
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If |x1| ≤ R
1
2 +R−

1
2 |y2| and |x2| ≤ R, then we can directly estimate

|F−1f(x)| =
∣∣∣∣ˆ

R2

f(ξ)e2πi(x1ξ1+x2ξ2) dξ

∣∣∣∣
≤
ˆ
R2

|f(ξ)| dξ

. R−
3
2

∼a,b R−
1
2

(
1 +

|x1|
R

1
2 +R−

1
2 |y2|

)−a
R−1

(
1 +
|x2|
R

)−b
.

If |x1| > R
1
2 + R−

1
2 |y2| and |x2| ≤ R, then we integrate by parts with respect to ξ1 and

estimate ξ2 directly to get

|F−1f(x)| =
∣∣∣∣ˆ

R2

f(ξ)e2πi(x1ξ1+x2ξ2) dξ

∣∣∣∣
=

∣∣∣∣ˆ
R2

∂aξ1(f(ξ))
e2πi(x1s+x2t)

(2πix1)a
dξ

∣∣∣∣
.a

(
R

1
2 +R−

1
2 |y2|

)a
|x1|a

R−
3
2

.a,b R
− 1

2

(
1 +

|x1|
R

1
2 +R−

1
2 |y2|

)−a
R−1

(
1 +
|x2|
R

)−b
.

Similarly if |x1| ≤ R
1
2 +R−

1
2 |y2| and |x2| > R, then

|F−1f(x)| =
∣∣∣∣ˆ

R2

f(ξ)e2πi(x1ξ1+x2ξ2) dξ

∣∣∣∣
=

∣∣∣∣ˆ
R2

∂bξ2(f(ξ))
e2πi(x1ξ1+x2ξ2)

(2πix2)b
dξ

∣∣∣∣
.b

Rb

|x2|b
R−

3
2

.a,b R
− 1

2

(
1 +

|x1|
R

1
2 +R−

1
2 |y2|

)−a
R−1

(
1 +
|x2|
R

)−b
.

We have proven that

|F−1f(x)| .a,b R
− 1

2

(
1 +

|x1|
R

1
2 +R−

1
2 |y2|

)−a
R−1

(
1 +
|x2|
R

)−b
.
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Since a, b > E, the above gives (4.17).
Then we prove (4.16). Let Ir = [− r

2
, r

2
] for r > 0 and recall that BR = IR × IR.

Define functions φ1, φ2 : R → R≥0 by φ1(z) := R−
1
2

(
1 + |z|

R
1
2 +R−

1
2 |y2|

)−E
and φ2(z) :=

R−1wIR,E(z). Now (4.17) can be written as

(4.18) |F−1f(x)| . φ1(x1)φ2(x2).

Note also that (1 +R−1|y2|)p−1 = wIR,1−p(y2). Using (4.18) and lemma 4.9 we get
ˆ
R2

|F−1f | ∗
(
R−2

1BR

)
(y1 − x1,−x2)wIR,1−p(y2)wBR,W (y) dy

. φ2 ∗
(

1

R
1IR

)
(−x2)

ˆ
R2

φ1 ∗
(

1

R
1IR

)
(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

. φ2 ∗
(

1

R
wIR,E

)
(−x2)

ˆ
R2

φ1 ∗
(

1

R
1IR

)
(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

.
1

R
wIR,E(x2)

ˆ
R2

φ1 ∗
(

1

R
1IR

)
(y1 − x1)wIR,1−p(y2)wBR,W (y) dy.(4.19)

Next we will show that

(4.20)
ˆ
R2

φ1 ∗
(

1

R
1IR

)
(y1 − x1)wIR,1−p(y2)wBR,W (y) dy . RwIR,E(x1).

We will consider three regions

U1 := {y : |y2| ≤ R},

U2 :=
R

1
2−1⋃
k=1

{y : kR < |y2| ≤ (k + 1)R} and

U3 :=
⋃
k≥0

{y : 2kR
3
2 < |y2| ≤ 2k+1R

3
2}.

Note that for a ≥ 1 and b ≥ 0, we have

(4.21) (1 +
b

a
)−E ≤ aE(1 + b)−E.

In the first region we have

φ1(z) = R−
1
2

(
1 +

|z|
R

1
2 +R−

1
2 |y2|

)−E
≤ 2ER−

1
2

(
1 +
|z|
R

1
2

)−E
∼ 1

R
1
2

wI√R,E(z),
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for all z ∈ R. Using this and lemma 4.9 with R′ = R
1
2 gives(

1

R
1IR

)
∗ φ1(y1 − x1) .

1

R
wIR,E ∗

(
1

R
1
2

wI√R,E

)
(y1 − x1) .

1

R
wIR,E(y1 − x1)

Recall that W ≥ 2E + p+ 1 > E + p+ 2. Now an application of lemma 4.8 with W1 = E
and W2 = p+ 2 and lemma 4.9 with R′ = R yields

ˆ
U1

φ1 ∗
(

1

R
1IR

)
(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

=

ˆ
U1

(
1

R
1IR

)
∗ φ1(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

.
ˆ
U1

1

R
wIR,E(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

≤
ˆ
U1

1

R
wIR,E(x1 − y1)wIR,E(y1)wIR,1−p(y2)wIR,p+2(y2) dy

≤
ˆ
R2

1

R
wIR,E(x1 − y1)wIR,E(y1)wIR,1−p(y2)wIR,p+2(y2) dy

= wIR,E ∗
(

1

R
wIR,E

)
(x1)

ˆ
R
wIR,3(y2) dy2

. wIR,E(x1)

ˆ
R
wIR,3(y2) dy2 ∼ RwIR,E(x1).

The last relation is an application of lemma 3.5.
For the second region we note that for each k ∈ [1, R

1
2 [ and y such that kR < |y2| ≤

(k + 1)R, we have

φ1(z) = R−
1
2

(
1 +

|z|
R

1
2 +R−

1
2 |y2|

)−E
≤ R−

1
2

(
1 +

|z|
R

1
2 (2 + k)

)−E
. R−

1
2wIk√R,E(z),

for all z ∈ R. Therefore lemma 4.9 with R′ = kR
1
2 gives(

1

R
1IR

)
∗ φ1(y1 − x1) .

k

R
wIR,E ∗

(
1

kR
1
2

wIk√R,E

)
(y1 − x1) .

k

R
wIR,E(y1 − x1).
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Similarly as in the first region we now have
ˆ
U2

(
1

R
1IR

)
∗ φ1(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

=
R

1
2−1∑
k=1

ˆ
kR<|y2|≤(k+1)R

(
1

R
1IR

)
∗ φ1(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

.
R

1
2−1∑
k=1

k

R

ˆ
kR<|y2|≤(k+1)R

wIR,E(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

≤
R

1
2−1∑
k=1

k

R
wIR,E ∗ wIR,E(x1)

ˆ
kR<|y2|≤(k+1)R

wIR,3(y2) dy2

.
R

1
2−1∑
k=1

k wIR,E(x1)

ˆ
kR<|y2|≤(k+1)R

(1 +R−1|y2|)−3 dy2

≤
R

1
2−1∑
k=1

k wIR,E(x1)

ˆ
kR<|y2|≤(k+1)R

k−3 dy2

∼
R

1
2−1∑
k=1

R

k2
wIR,E(x1)

= RwIR,E(x1)
R

1
2−1∑
k=1

1

k2

≤ RwIR,E(x1)
6

π2
∼ RwIR,E(x1).

Finally, for the last region we note that for each k ≥ 0 and y such that 2kR
3
2 < |y2| ≤

2k+1R
3
2 , we have

φ1(z) = R−
1
2

(
1 +

|z|
R

1
2 +R−

1
2 |y2|

)−E
≤ R−

1
2

(
1 +

|z|
R(1 + 2k)

)−E
. R−

1
2wI

2kR
,E(z),

for all z ∈ R. Lemma 4.9 with 2kR as the bigger side length and R as the smaller side
length gives that

1IR ∗
(

1

R
φ1

)
(y1 − x1) . R−

1
2

(
1

R
wIR,E

)
∗ wI

2kR
,E(y1 − x1) . R−

1
2wI

2kR
,E(y1 − x1).
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Since W ≥ 2E + p+ 1, we can apply lemma 4.8 with W1 = E and W2 = E + p+ 1. This
and a similar use of lemma 4.9 as above yieldsˆ

U3

(
1

R
1IR

)
∗ φ1(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

=
∞∑
k=0

ˆ
2kR

3
2<|y2|≤2k+1R

3
2

(
1

R
1IR

)
∗ φ1(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

.
∞∑
k=0

ˆ
2kR

3
2<|y2|≤2k+1R

3
2

R−
1
2wI

2kR
,E(y1 − x1)wIR,1−p(y2)wBR,W (y) dy

≤
∞∑
k=0

R−
1
2wI

2kR
,E ∗ wIR,E(x1)

ˆ
2kR

3
2<|y2|≤2k+1R

3
2

wIR,E+2(y2) dy2

.
∞∑
k=0

R
1
2wI

2kR
,E(x1)

ˆ
2kR

3
2<|y2|≤2k+1R

3
2

(1 +
|y2|
R

)−E−2 dy2

≤
∞∑
k=0

R
1
2wI

2kR
,E(x1)2kR

3
2 (2kR

1
2 )−E−2

=
∞∑
k=0

wI
2kR

,E(x1)(2k)−E−1R−
E−2

2

≤
∞∑
k=0

wIR,E(x1)2Ek2−Ek−kR−
E−2

2

= R−
E−2

2 wIR,E(x1)
∞∑
k=0

2−k . RwIR,E(x1).

In the second to last inequality we used (4.21). This ends the proof of (4.20).
Plugging (4.20) to (4.19) yieldsˆ

R2

|F−1f | ∗
(
R−2

1BR

)
(y1 − x1,−x2)wIR,1−p(y2)wBR,W (y) dy

. (1 +
|x1|
R

)−E(1 +
|x2|
R

)−E

= (1 +
|x1|
R

+
|x2|
R

+
|x1x2|
R

)−E

≤ (1 +
|x1|
R

+
|x2|
R

)−E

∼ (1 +
|x|
R

)−E = wBR,E(x),
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which concludes the proof of the lemma.

Lastly, we will give an example of a function that satisfies the conditions of the previous
lemma. See lemmas (1.7) and (1.8) for the existence of the functions η and Ml in the
following lemma.

Lemma 4.22. Let b, l ∈ N and let a be an even integer. Let C > 0 be a constant, R ≥ 1,
y ∈ R and let ml,R be a function in R2 that is defined by

ml,R(ξ) = e(ξ2
1y)Ml(

R(ξ2 − ξ2
1)

2C
)η(Rξ2)η(R

1
2 ξ1),

where η is a compactly supported smooth function that satisfies |η| ≤ 1 and is equal to 1 on
[0, 1 + C] and Ml is a compactly supported smooth function that agrees with the function
x 7→ xl on [0, 1

2
]. Furthermore, we stipulate that |Ml| ≤ 1 and the derivative bound∥∥∥∥ dk

dxk
Ml

∥∥∥∥
∞

.k 1

holds for all k ∈ N.
Then m2(supp(ml,R)) . R−

3
2 and

‖∂aξ1∂
b
ξ2
ml,R‖∞ .a,b

(
R

1
2 +R−

1
2 |y|
)a
Rb,

uniformly over l.

Proof. The measure of the support arises naturally from the fact that m1(supp(η)) ∼ 1.
We will first look at the more general case where a ∈ N. We will begin with showing by
induction that

∂aξ1Ml

(
R(ξ2 − ξ2

1)

2C

)
=

R
a+1

2 ξ1

∑a−1
2

k=0 ca,kM
(k+a+1

2 )
l

(
R(ξ2−ξ2

1)

2C

)
(Rξ2

1)k, if a is odd,

R
a
2

∑a
2
k=0 ca,kM

(k+a
2 )

l

(
R(ξ2−ξ2

1)

2C

)
(Rξ2

1)k, if a is even,

(4.23)

where ca,k are constants.
Denote A(ξ) :=

R(ξ2−ξ2
1)

2C
and notice that ∂ξ1A(ξ) = −Rξ1

C
. For the base of our induction

we calculate

∂ξ1Ml(A(ξ)) = M ′
l (A(ξ))

(
−Rξ1

C

)
= Rξ1

(
− 1

C
M ′

l (A(ξ))

)
.
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Now assume (4.23) when a = 2r, where r ∈ N. Let ã := a+ 1, then

∂ãξ1Ml(A(ξ)) = ∂2r+1
ξ1

Ml(A(ξ)) = ∂ξ1
(
∂2r
ξ1
Ml(A(ξ))

)
= ∂ξ1

R a
2

a
2∑

k=0

ca,kM
(k+a

2 )
l (A(ξ))(Rξ2

1)k


= Rr

r∑
k=0

ca,k∂ξ1

(
M

(k+r)
l (A(ξ))(Rξ2

1)k
)
.(4.24)

We calculate the derivative inside the sum

∂ξ1

(
M

(k+r)
l (A(ξ))(Rξ2

1)k
)

=M
(k+r+1)
l (A(ξ))(Rξ2

1)k
(
−Rξ1

C

)
+M

(k+r)
l (A(ξ))2kRkξ2k−1

1

=M
(k+ ã−1

2
+1)

l (A(ξ))(Rξ2
1)k
(
−Rξ1

C

)
+ 2kM

(k+ ã−1
2

)

l (A(ξ))(Rξ2
1)k−1Rξ1

=Rξ1

((
− 1

C

)
M

(k+ ã+1
2

)

l (A(ξ))(Rξ2
1)k + 2kM

(k−1+ ã+1
2

)

l (A(ξ))(Rξ2
1)k−1

)
.

Plugging the above to (4.24) gives us

∂ãξ1Ml(A(ξ)) = Rr+1ξ1

r∑
k=0

c′a,kM
(k+ ã+1

2 )
l (A(ξ))(Rξ2

1)k

= R
ã+1

2 ξ1

ã−1
2∑

k=0

c′a,kM
(k+ ã+1

2 )
l (A(ξ))(Rξ2

1)k,

as wanted. If we assume (4.23) for a = 2r + 1, then

∂ãξ1Ml(A(ξ)) = ∂ξ1

R a+1
2 ξ1

a−1
2∑

k=0

ca,kM
(k+a+1

2
)

l (A(ξ))(Rξ2
1)k


= R

ã
2

ã
2
−1∑
k=0

ca,k∂ξ1

(
M

(k+ ã
2

)

l (A(ξ))Rkξ2k+1
1

)
.(4.25)
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Again we calculate the derivative inside the sum

∂ξ1

(
M

(k+ ã
2

)

l (A(ξ))Rkξ2k+1
1

)
= M

(k+ ã
2

+1)

l (A(ξ))

(
−Rξ1

C

)
Rkξ2k+1

1 + (2k + 1)M
(k+ ã

2
)

l (A(ξ))Rkξ2k
1

=

(
− 1

C

)
M

(k+1+ ã
2

)

l (A(ξ))(Rξ2
1)k+1 + (2k + 1)M

(k+ ã
2

)

l (A(ξ))(Rξ2
1)k

=: − 1

C
G(k + 1) + (2k + 1)G(k),

where
G(k) := M

(k+ ã
2

)

l (A(ξ))(Rξ2
1)k.

Plugging this to (4.25) we get

∂ãξ1Ml(A(ξ)) = R
ã
2

ã
2
−1∑
k=0

ca,k

(
− 1

C
G(k + 1) + (2k + 1)G(k)

)
Notice that in the first term G we have 1 ≤ k + 1 ≤ ã

2
and in the second term G we have

0 ≤ k ≤ ã
2
− 1 and hence we can write

∂ãξ1Ml(A(ξ)) = R
ã
2

ã
2∑

k=0

c′a,kG(k) = R
ã
2

ã
2∑

k=0

c′a,kM
(k+ ã

2 )
l (A(ξ))(Rξ2

1)k

which ends the proof of (4.23). Now we go back to the case where a is even. From (4.23)
we get

∂aξ1∂
b
ξ2
Ml

(
R(ξ2 − ξ2

1)

2C

)
= R

a
2

+b

a
2∑

k=0

ca,b,kM
(k+a

2
+b)

l

(
R(ξ2 − ξ2

1)

2C

)
(Rξ2

1)k(4.26)

where ca,b,k are constants. Note that η(Rξ2
1) 6= 0 implies Rξ2

1 . 1 and in this case the
derivative bound of Ml and (4.26) assert that

sup
ξ∈R2

∣∣∣∣∂aξ1∂bξ2Ml

(
R(ξ2 − ξ2

1)

2C

)∣∣∣∣ .a,b R
a
2

+b ≤
(
R

1
2 +R−

1
2 |y|
)a
Rb.

A similar calculation shows that

∂aξ1e(ξ
2
1y) =

{
e(ξ2

1y)y
a+1

2 ξ1

∑a−1
2

k=0 ca,k(ξ
2
1y)k, if a is odd,

e(ξ2
1y)y

a
2

∑a
2
k=0 ca,k(ξ

2
1y)k, if a is even.
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and hence
∂aξ1∂

b
ξ2
e(ξ2

1y) = 0.

If |y| ≤ R, then for even a we have

sup
ξ∈R2

∣∣∂aξ1∂bξ2e(ξ2
1y)
∣∣ .a |y|

a
2 ≤ R

a
2 ≤

(
R

1
2 +R−

1
2 |y|
)a
Rb.

If |y| > R, then in the support of η for even a we have

sup
ξ∈R2

∣∣∂aξ1∂bξ2e(ξ2
1y)
∣∣ .a |yξ1|a . (R−

1
2 |y|)a ≤

(
R

1
2 +R−

1
2 |y|
)a
Rb.

The other two terms are easy

∂aξ1η(R
1
2 ξ1) = η(a)(R

1
2 ξ1)R

a
2 , ∂bξ2η(Rξ2) = η(b)(Rξ2)Rb

and
∂aξ1∂

b
ξ2
η(R

1
2 ξ1) = ∂aξ2∂

b
ξ2
η(Rξ1) = 0.

Thus
sup
ξ∈R2

∣∣∣∂aξ1∂bξ2η(R
1
2 ξ1)

∣∣∣ .b R
a
2 ≤

(
R

1
2 +R−

1
2 |y|
)a
Rb

and
sup
ξ∈R2

∣∣∂aξ1∂bξ2η(Rξ2)
∣∣ .a R

b ≤
(
R

1
2 +R−

1
2 |y|
)a
Rb.

Now the Leibniz rule for differentiation of products gives us the result.

Now we are ready to get to the meat of this chapter.

Theorem 4.27. Let C > 0 be a constant, R ∈ 4N and p ≥ 2. Let Γn(E) be a large
enough constant depending on E and n. Then the following statement is true for every
W ≥ Γn(E). For each f ∈ L∞(Rn) with an integrable Fourier transform supported in
NC

R
([0, 1]n−1) and for each cube BR ⊂ Rn we have

(4.28) ‖f‖Lp(wBR,E) . Decn(R−1, p,W )

 ∑
Q∈Part

R
− 1

2
([0,1]n−1)

‖fNC
R

(Q)‖2
Lp(wBR,E)


1
2

.

Again, we will reduce the dimension to n = 2. However, this should only simplify the
notation. In this case Γ2(E) = 2E + p+ 1 will suffice.

78



Proof. By lemma 4.3 it suffices to prove the inequality (4.28) with ‖Eg‖Lp(BR) on the left-
hand side. We may also assume that BR is centered at the origin. Indeed, we translate
the center cBR to the origin

‖f‖Lp(BR) =

(ˆ
BR

|f(x)|p dx

)p
=

(ˆ
B(0,R)

|f(x+ cBR)|p dx

)p
= ‖τcBRf‖Lp(wB(0,R),E),

where τhf(x) := f(x + h), for h ∈ R2. On the right-hand side of (4.28) we would then
have

Decn(R−1, p,W )

 ∑
Q∈Part

R
− 1

2
([0,1]n−1)

‖(τcBRf)NC
R

(Q)‖2
Lp(wB(0,R),E)


1
2

.(4.29)

Since by lemma 1.21 we have τ̂cBRf = ecBR f̂ ∈ L
1, the Fourier restriction becomes

(τcBRf)NC
R

(Q)(x) =

ˆ
NC
R

(Q)

f̂(ξ)e((x+ cBR) · ξ) dξ = fNC
R

(Q)(x+ cBR)

and translating B(0, R) back to BR gives

‖(τcBRf)NC
R

(Q)‖Lp(wB(0,R),E) =

ˆ
R2

|fNC
R

(Q)(x+ cBR)|pwB(0,R),E(x) dx

=

ˆ
R2

|fNC
R

(Q)(x)|pwBR,E(x) dx = ‖fNC
R

(Q)‖Lp(wBR,E)

and plugging this to (4.29) gives us the wanted result.
We now assume that BR is centered at the origin. In order to bring out the decoupling

constant, we must rewrite the function f by using Eg with some function g. By lemma
1.12 we have

f(x) =

ˆ
R2

f̂(ξ)e(x · ξ) dξ =

ˆ
NC
R

([0,1])

f̂(ξ)e(x · ξ) dξ,

for almost every x ∈ R2.
A change of variables (ξ1, ξ2) = (s, s2 + t) allows us to write

ˆ
NC
R

([0,1])

f̂(ξ)e(x · ξ) dξ =

ˆ 1

0

ˆ C
R

0

f̂(s, s2 + t)e(sx1 + s2x2)e(tx2) dt ds.
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Using Taylor expansion we write

e(x2t) =
∞∑
j=0

(i2πx2t)
j

j!
=
∞∑
j=0

(i2πC)j

j!

(
2x2

R

)j (
Rt

2C

)j
and hence for almost every x ∈ R2, we have

f(x) =
∞∑
j=0

(i4πC)j

j!

(x2

R

)j ˆ 1

0

ˆ C
R

0

f̂(s, s2 + t)e(sx1 + s2x2)

(
Rt

2C

)j
dt ds

=
∞∑
j=0

(i4πC)j

j!

(x2

R

)j ˆ 1

0

ˆ C
R

0

f̂(s, s2 + t)

(
Rt

2C

)j
dt e(sx1 + s2x2) ds.

The above implies that for almost every x ∈ BR we can write

|f(x)| ≤
∞∑
j=0

(4πC)j

j!
|Egj(x)|,

where

gj(s) =

ˆ C
R

0

f̂(s, s2 + t)

(
Rt

2C

)j
dt.

Then we use the definition of the decoupling constant to write

‖f‖Lp(BR) ≤
∞∑
j=0

(4πC)j

j!
‖Egj‖Lp(BR) .

∞∑
j=0

(4πC)j

j!
‖Egj‖Lp(wBR,W )

≤ Dec2(R−1, p,W )
∞∑
j=0

(4πC)j

j!

 ∑
Q∈Part

R
− 1

2
([0,1])

‖EQgj‖2
Lp(wBR,W )


1
2

.

If we can prove

(4.30) ‖EQgj‖Lp(wBR,W ) . ‖fNC
R

(Q)‖Lp(wBR,E),

for all j ≥ 0, then we are done. Indeed, then we would have
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‖f‖Lp(BR) . Dec2(R−1, p,W )
∞∑
j=0

(4πC)j

j!

 ∑
Q∈Part

R
− 1

2
([0,1])

‖EQgj‖2
Lp(wBR,W )


1
2

. Dec2(R−1, p,W )
∞∑
j=0

(4πC)j

j!

 ∑
Q∈Part

R
− 1

2
([0,1])

‖fNC
R

(Q)‖2
Lp(wBR,E)


1
2

= e4πC Dec2(R−1, p,W )

 ∑
Q∈Part

R
− 1

2
([0,1])

‖fNC
R

(Q)‖2
Lp(wBR,E)


1
2

∼ Dec2(R−1, p,W )

 ∑
Q∈Part

R
− 1

2
([0,1])

‖fNC
R

(Q)‖2
Lp(wBR,E)


1
2

.

We will denote Q0 := [0, R−
1
2 ]. The original Q is of the form Q = [u, u + R−

1
2 ], for

u ∈ [0, 1 − R−
1
2 ]. We will now try to write the left-hand side of (4.30) using Q0. We

calculate

|EQgj(x)| =

∣∣∣∣∣∣
ˆ u+R−

1
2

u

gj(s)e(sx1 + s2x2) ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ R−

1
2

0

gj(s+ u)e((s+ u)x1 + (s+ u)2x2) ds

∣∣∣∣∣∣
=

∣∣∣∣∣e(ux1 + u2x2)

ˆ R−
1
2

0

gj(s+ u)e(sx1 + (s2 + 2su)x2) ds

∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ R−

1
2

0

gj(s+ u)e(s(x1 + 2ux2) + s2x2) ds

∣∣∣∣∣∣
=

∣∣∣∣ˆ
Q0

gj,u(s)e(s(x1 + 2ux2) + s2x2) ds

∣∣∣∣ = |EQ0gj,u(Lx)| ,

where gj,u(s) := gj(s+u) and L :=

[
1 2u
0 1

]
. Notice that detL = 1 and L−1 :=

[
1 −2u
0 1

]
.

For x ∈ Rn, we have |Lx| ≤ 3|x| and |L−1x| ≤ 3|x|. Thus lemma 1.2 gives us that L−1 is
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3-bilipschitz. Now since BR is centered at the origin, a change of variables gives that

‖EQgj‖pLp(wBR,W ) = ‖(EQ0gj,u) ◦ L‖
p
Lp(wBR,W )

=

ˆ
R2

|EQ0gj,u(Lx)|pwBR,W (x) dx

=

ˆ
R2

|EQ0gj,u(x)|pwBR,W (L−1x) dx

∼
ˆ
R2

|EQ0gj,u(x)|pwBR,W (x) dx = ‖EQ0gj,u‖
p
Lp(wBR,W )(4.31)

and by corollary 4.12 we have that

(4.32) ‖EQ0gj,u‖
p
Lp(wBR,W ) ∼

ˆ
R2

‖EQ0gj,u‖
p
Lp] (B(y,R))

wBR,W (y) dy.

Notice that

EQ0gj,u(x) =

ˆ
Q0

ˆ C
R

0

f̂(s+ u, (s+ u)2 + t)

(
Rt

2C

)j
e(sx1 + s2x2) dt ds

=

ˆ
Q0

ˆ C
R

0

f̂(s+ u, s2 + t+ 2su+ u2)

(
Rt

2C

)j
e(sx1 + s2x2) dt ds

=

ˆ
NC
R

(Q0)

f̂(ξ1 + u, ξ2 + 2ξ1u+ u2)

(
R(ξ2 − ξ2

1)

2C

)j
e((ξ2

1 − ξ2)x2)e(x · ξ) dξ.(4.33)

We denote r := (u, u2) and Lr(ξ) := L>ξ + r and note that

(ξ1 + u, ξ2 + 2ξ1u+ u2) = Lr(ξ).

We also denote ĥ(ξ) := f̂ ◦ Lr(ξ), which means that

f̂(ξ1 + u, ξ2 + 2ξ1u+ u2) = ĥ(ξ).

Combining this with (4.33) we get

(4.34) EQ0gj,u(x) =

ˆ
NC
R

(Q0)

ĥ(ξ)

(
R(ξ2 − ξ2

1)

2C

)j
e((ξ2

1 − ξ2)x2)e(x · ξ) dξ

For x ∈ B(y,R) we write

e((ξ2
1 − ξ2)x2) = e((ξ2

1 − ξ2)y2)e((ξ2
1 − ξ2)(x2 − y2))
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and another Taylor expansion for e((ξ2
1 − ξ2)(x2 − y2)) gives

e((ξ2
1 − ξ2)(x2 − y2)) =

∞∑
k=0

(−i2π(x2 − y2)(ξ2 − ξ2
1))k

k!

=
∞∑
k=0

(−i2πC)k

k!

(
2(x2 − y2)

R

)k (
R(ξ2 − ξ2

1)

2C

)k
and plugging this into (4.34) yields that for x ∈ B(y,R) we have

|EQ0gj,u(x)| ≤
∞∑
k=0

(4πC)k

k!

∣∣∣∣∣∣
ˆ
NC
R

(Q0)

ĥ(ξ)

(
R(ξ2 − ξ2

1)

2C

)j+k
e((ξ2

1 − ξ2)y2)e(x · ξ) dξ

∣∣∣∣∣∣ .
Recall the notation e(x · ξ) = eξ(x). Taking Lp] (B(y,R)) norms from both sides gives

‖EQ0gj,u‖
p
Lp] (B(y,R))

≤
∞∑
k=0

(4πC)k

k!

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)

(
R(ξ2 − ξ2

1)

2C

)j+k
e((ξ2

1 − ξ2)y2)eξ dξ

∥∥∥∥∥∥
p

Lp] (B(y,R))

.(4.35)

We denote l := j + k. Next we will show that
ˆ
NC
R

(Q0)

ĥ(ξ)

(
R(ξ2 − ξ2

1)

2C

)l
e((ξ2

1 − ξ2)y2)e(x · ξ) dξ

=

ˆ
NC
R

(Q0)

ĥ(ξ)e(ξ2
1y2)Ml

(
R(ξ2 − ξ2

1)

2C

)
η(Rξ2)η(R

1
2 ξ1)e(ξ1x1 + ξ2(x2 − y2)) dξ,(4.36)

where η is a compactly supported smooth function that is equal to 1 on [0, 1 +C] and Ml

is a compactly supported smooth function that agrees with the function x 7→ xl on [0, 1
2
]

and satisfies the derivative bound ∥∥∥∥ da

dxa
Ml

∥∥∥∥
∞

.a 1.

Recall lemma 1.8 for the existence of such functions Ml. Note that if ξ ∈ NC
R

(Q0) =

{ξ : ξ1 ∈ [0, R−
1
2 ], ξ2

1 ≤ ξ2 ≤ ξ2
1 + C

R
}, then we have

0 ≤ R(ξ2 − ξ2
1)

2C
≤ 1

2
,
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0 ≤ R
1
2 ξ1 ≤ 1

and
0 ≤ Rξ2 ≤ Rξ2

1 + C ≤ 1 + C.

This means that we are able to replace
(
R(ξ2−ξ2

1)

2C

)l
with Ml

(
R(ξ2−ξ2

1)

2C

)
and insert the

function η(Rξ2)η(R
1
2 ξ1) into the integrand on the left-hand side of (4.36). Then writing

e((ξ2
1 − ξ2)y2)e(x · ξ) = e(ξ2

1y2)e(ξ1x1 + ξ2(x2 − y2))

gives us (4.36).
Denote ml(ξ) := e(ξ2

1y2)Ml

(
R(ξ2−ξ2

1)

2C

)
η(Rξ2)η(R

1
2 ξ1). Plugging (4.36) to (4.35) yields

‖EQ0gj,u‖
p
Lp] (B(y,R))

≤
∞∑
k=0

(4πC)k

k!

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

,

where the extra x on the subscript of the norm on the right-hand side indicates that the
integration is done over the variable x. Plugging this to (4.32) and applying monotone
convergence theorem gives

‖EQ0gj,u‖
p
Lp(wBR,W )

∼
ˆ
Rn
‖EQ0gj,u‖

p
Lp] (B(y,R))

wBR,W (y) dy

≤
ˆ
R2

∞∑
k=0

(4πC)k

k!

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy

=
∞∑
k=0

(4πC)k

k!

ˆ
R2

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy.

(4.37)

Denote H := hNC
R

(Q0). We aim to prove

ˆ
R2

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy . ‖H‖pLp(wBR,E),

(4.38)
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uniformly over l ≥ 0. We start by applying Fourier inversion theorem, Fubini’s theorem
and a change of variables to writeˆ

NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

=

ˆ
NC
R

(Q0)

ĥ(ξ)e(ξ1x1 + ξ2(x2 − y2))

ˆ
R2

m̂l(γ)e(γ · ξ) dγ dξ

=

ˆ
R2

ˆ
NC
R

(Q0)

ĥ(ξ)e
(
ξ · ((x1, x2 − y2) + γ)

)
dξ m̂l(γ) dγ

=

ˆ
R2

H((x1, x2 − y2) + γ)m̂l(γ) dγ

=

ˆ
R2

H((x1, x2 − y2)− γ)m̂l(−γ) dγ

=

ˆ
R2

H((x1, x2 − y2)− γ)F−1ml(γ) dγ

=H ∗ F−1ml(x1, x2 − y2).

Now we have

ˆ
R2

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy

=

ˆ
R2

∥∥H ∗ F−1ml(x1, x2 − y2))
∥∥p
Lp],x(B(y,R))

wBR,W (y) dy

=

ˆ
R2

ˆ
R2

|H ∗ F−1ml(x1, x2 − y2)|p1B(y,R)(x) dxR−2wBR,W (y) dy

=

ˆ
R2

ˆ
R2

|H ∗ F−1ml(x1, x2 − y2)|p1BR(x− y) dxR−2wBR,W (y) dy

=

ˆ
R2

ˆ
R2

|H ∗ F−1ml(x)|p1BR(x1 − y1, x2) dxR−2wBR,W (y) dy.(4.39)

The last equality above is due to change of variables. Hölder inequality with p and
p′ := p

p−1
as conjugates gives

|H ∗ F−1ml(x)| ≤
ˆ
R2

|H(x− η)||F−1ml(η)| dη

=

ˆ
R2

|H(x− η)||F−1ml(η)|
1
p |F−1ml(η)|

1
p′ dη
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≤
(ˆ

R2

|H(x− η)|p|F−1ml(η)| dη
) 1

p
(ˆ

R2

|F−1ml(η)|
) 1

p′

=

(ˆ
R2

|H(x− η)|p|F−1ml(η)| dη
) 1

p

‖F−1ml‖
p−1
p

L1(R2).

Now (4.15) from lemma 4.13 gives

|H ∗ F−1ml(x)|p ≤ |H|p ∗ |F−1ml|(x) ‖F−1ml‖p−1
L1(R2)

. |H|p ∗ |F−1ml|(x) (1 +R−1|y2|)p−1.

Plugging this to (4.39) and applying Tonelli’s theorem results in

ˆ
R2

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy

≤
ˆ
R2

ˆ
R2

|H|p ∗ |F−1ml|(x)1BR(x1 − y1, x2) dxR−2(1 +R−1|y2|)p−1wBR,W (y) dy

=

ˆ
R2

|H(η)|p
(4.40)

ˆ
R2

ˆ
R2

|F−1ml(x− η)|R−2
1BR(x1 − y1, x2)(1 +R−1|y2|)p−1wBR,W (y) dy dx dη.

By change of variables η′ = x− η, symmetry of 1BR and Tonelli’s theorem, we get
ˆ
R2

ˆ
R2

|F−1ml(x− η)|R−2
1BR(x1 − y1, x2)(1 +R−1|y2|)p−1wBR,W (y) dy dx

=

ˆ
R2

ˆ
R2

|F−1ml(η
′)|R−2

1BR(η − (y1, 0) + η′)(1 +R−1|y2|)p−1wBR,W (y) dy dη′

=

ˆ
R2

ˆ
R2

|F−1ml(η
′)|R−2

1BR(−η + (y1, 0)− η′)(1 +R−1|y2|)p−1wBR,W (y) dy dη′

=

ˆ
R2

|F−1ml| ∗
(
R−2

1BR

)
(y1 − η1,−η2)(1 +R−1|y2|)p−1wBR,W (y) dy

.wBR,E(η),

where the last line is justified by lemma 4.13. Note that here we also needed lemma 4.22
to know that the assumptions of lemma 4.13 are satisfied. Plugging the above to (4.40)
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gives us

ˆ
R2

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy

.
ˆ
R2

|H(η)|pwBR,E(η) dη,

which is exactly (4.38).
Now using (4.31), (4.37) and (4.38) we can write

‖EQgj‖pLp(wBR,W )

.
∞∑
k=0

(4πC)k

k!

ˆ
R2

∥∥∥∥∥∥
ˆ
NC
R

(Q0)

ĥ(ξ)ml(ξ)e(ξ1x1 + ξ2(x2 − y2)) dξ

∥∥∥∥∥∥
p

Lp],x(B(y,R))

wBR,W (y) dy

.
∞∑
k=0

(4πC)k

k!
‖H‖pLp(wBR,E)

= e4πC‖hNC
R

(Q0)
‖pLp(wBR,E)

∼ ‖hNC
R

(Q0)
‖pLp(wBR,E).

All that is left from the proof of (4.30) and simultaneously the theorem is

‖hNC
R

(Q0)
‖Lp(wBR,E) ∼ ‖fNC

R
(Q)
‖Lp(wBR,E).

We translate Q0 back to Q

hNC
R

(Q0)
(x) =

ˆ
NC
R

(Q0)

ĥ(ξ)e(x · ξ) dξ

=

ˆ R−
1
2

0

ˆ C
R

0

ĥ(s, s2 + t)e(x · (s, s2 + t)) dt ds

=

ˆ u+R−
1
2

u

ˆ C
R

0

ĥ(s− u, (s− u)2 + t)e(x · (s− u, (s− u)2 + t)) dt ds

=

ˆ
NC
R

(Q)

ĥ(ξ1 − u, ξ2 − 2uξ1 + u2)e(x · (ξ1 − u, ξ2 − 2uξ1 + u2)) dξ

= e(x · (−u, u2))

ˆ
NC
R

(Q)

ĥ(ξ1 − u, ξ2 − 2uξ1 + u2)e(x · (ξ1, ξ2 − 2uξ1)) dξ
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= e(x · (−u, u2))

ˆ
NC
R

(Q)

ĥ(ξ1 − u, ξ2 − 2uξ1 + u2)e((x1 − 2ux2, x2) · ξ) dξ

= e(x · (−u, u2))

ˆ
NC
R

(Q)

ĥ(ξ1 − u, ξ2 − 2uξ1 + u2)e(L−1x · ξ) dξ.(4.41)

Recall that L =

[
1 2u
0 1

]
, r = (u, u2) and Lr(ξ) = L>ξ + r. Thus

(ξ1 − u, ξ2 − 2uξ1 + u2) = (L−1)>ξ − (L−1)>r = L−1
r (ξ).

Since we also defined ĥ = f̂ ◦ Lr, we now have

ĥ(ξ1 − u, ξ2 − 2uξ1 + u2) = f̂ ◦ Lr ◦ L−1
r (ξ) = f̂(ξ).

Combining the above with (4.41) we get

|hNC
R

(Q0)
(x)| =

∣∣∣∣∣∣
ˆ
NC
R

(Q)

f̂(ξ)e(L−1x · ξ) dξ

∣∣∣∣∣∣ =
∣∣∣fNC

R
(Q)

(L−1x)
∣∣∣

and a familiar calculation using the fact that L is 3-bilipschitz and BR is centered at the
origin gives

‖hNC
R

(Q0)
‖Lp(wBR,E) = ‖fNC

R
(Q)
◦ L−1‖Lp(wBR,E) ∼ ‖fNC

R
(Q)
‖Lp(wBR,E)

as needed. This concludes the proof of theorem 4.27.
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Chapter 5

Linear versus multilinear decouplings

We will compare linear and multilinear decouplings. In order to do this, we need to present
the multilinear decoupling constant. We will see that it is straightforward to dominate
this new decoupling constant with the linear decoupling constant. Naturally, one may
ponder whether some kind of reverse inequality exists and the main aspiration of this
chapter is to prove that such an inequality does indeed exist. The reverse inequality turns
out to be possible, if the lower dimensional linear decoupling constant is under control.
The second section is dedicated to estimating ‖Eg‖Lp(wB,E) when this condition holds.
The greatest motivator for the reverse inequality is that it provides an important step in
the proof of the l2 decoupling theorem.

5.1 Multilinear decoupling constant
In this section we will introduce the multilinear decoupling constant and show the eas-
ier decoupling constant inequality which indicates that the linear decoupling constant
dominates the multilinear one.

Definition 5.1. For p ≥ 2, δ ∈ 4−N, m ∈ N+ and 0 < ν < 1, let Decn(δ, p, ν,m,E) =
Dec(δ, p, ν,m,E) be the smallest constant that satisfies ∑

∆∈Partµ−1 (B)

(
n∏
i=1

‖EQig‖
p
Lp(w∆,10E)

) 1
n


1
p

≤ Dec(δ, p, ν,m,E)

 n∏
i=1

∑
qi∈Part√δ(Qi)

‖Eqig‖2
Lp(wB,E)

 1
2n

,(5.2)
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for each cube B with side length δ−1 and all ν-transverse cubes Qi ⊂ [0, 1]n−1 with equal
side lengths µ satisfying µ ≥ δ2−m .

Notice that in addition to the decoupling, the scale of the cube related to the weight
function is inflated similarly as in the cube inflation inequality of theorem 3.15. Notice
also that the lower bound on the size of µ is more significant than the minimal lower
bound µ ≥

√
δ that is required for the partition Part√δ(Qi) to make sense. The lower

bound µ ≥ δ2−m is used later in the proof of the l2 decoupling theorem, where a similar
estimation is done for Partδ2−m (Qi). This restriction is not needed in the results of this
thesis.

We will show that when the parameters δ, p, ν,m,E and µ satisfy the assumptions
from definition 5.1, we have that

(5.3) Dec(δ, p, ν,m,E) . Dec(
δ

µ2
, p, 3E).

The sequence version of the generalized Hölder inequality from theorem 1.4 with

pi =

{
pi = 1, 1 ≤ i ≤ n

pi = 1
n
, i = n+ 1

applied to the sequences bj := ak,j gives us

(5.4)
K∑
k=1

n∏
j=1

a
1
n
k,j = ‖

n∏
j=1

bj‖
1
n

l
1
n
≤

n∏
j=1

‖bj‖
1
n

l1 =
n∏
j=1

(
K∑
k=1

ak,j

) 1
n

,

for 0 ≤ ak,j <∞. With the assumptions of definition 5.1 we have

‖EQig‖Lp(wB,E) ≤ Dec(
δ

µ2
, p, 3E)

 ∑
qi∈Part√δ(Qi)

‖Eqig‖2
Lp(wB,E)

 1
2

.(5.5)

A detailed proof for the above linear decoupling inequality can be found in [14] chapter 5
proposition 5.2.3. Now applying (5.4), lemma 3.12 and (5.5) we get ∑

∆∈Partµ−1 (B)

(
n∏
i=1

‖EQig‖
p
Lp(w∆,10E)

) 1
n


1
p

≤

 n∏
i=1

 ∑
∆∈Partµ−1 (B)

‖EQig‖
p
Lp(w∆,10E)

 1
n


1
p
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=

(
n∏
i=1

(
‖EQig‖

p
Lp(
∑

∆∈Part
µ−1 (B) w∆,10E)

) 1
p

) 1
n

.

(
n∏
i=1

‖EQig‖Lp(wB,10E)

) 1
n

≤

 n∏
i=1

Dec(
δ

µ2
, p, 3E)

 ∑
qi∈Part√δ(Qi)

‖Eqig‖2
Lp(wB,10E)

 1
2


1
n

= Dec(
δ

µ2
, p, 3E)

 n∏
i=1

∑
qi∈Part√δ(Qi)

‖Eqig‖2
Lp(wB,10E)

 1
2n

,

which gives us (5.3). This fact implies that the multilinear decoupling constant is well
defined.

5.2 Estimating ‖Eg‖Lp(wB,E) when the lower dimensional
decoupling constant is under control

This section is devoted to a collection of inequalities that we will use in the final section
to prove the reverse decoupling constant inequality. Before we present these inequalities,
we will introduce two lemmas. The first lemma will aid in discovering ν-transverse cubes.

Lemma 5.6. If Pj = (ξ(j), ‖ξ(j)‖2) ∈ Pn−1 for j = 1, . . . , n, then the volume VP of a
parallelepiped spanned by the unit normal vectors n(Pj) is comparable to the volume Vs of
the (n− 1)-simplex with vertices ξ(j) ∈ [0, 1]n−1. In particular, we have

1

(4n+ 1)
n
2

Vs ≤
1

2n−1(n− 1)!
VP ≤ Vs.

Proof. We refer to [16] for the proof of the fact that the volume of an (n− 1)-simplex is
given by

Vs =
1

(n− 1)!

∣∣∣∣det

([
ξ(1) · · · ξ(n)

1 · · · 1

])∣∣∣∣ .
The volume of the parallelepiped is

VP =
∣∣det

([
n(P1) · · ·n(Pn)

])∣∣ =

∣∣∣∣∣∣∣det


−2ξ(1)

c1

· · · −2ξ(n)

cn
1

c1

· · · 1

cn



∣∣∣∣∣∣∣ ,
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where cj =
√

4‖ξ(j)‖2 + 1 for every j = 1, . . . , n. First we can extract the multiplier −2
out of the first n− 1 rows and get

VP =

∣∣∣∣∣∣∣det


−2ξ(1)

c1

· · · −2ξ(n)

cn
1

c1

· · · 1

cn



∣∣∣∣∣∣∣ = 2n−1

∣∣∣∣∣∣∣det


ξ

(1)

c1

· · · ξ(n)

cn
1

c1

· · · 1

cn



∣∣∣∣∣∣∣ .

Then we extract the constants cj out of the columns and derive that

VP = 2n−1

∣∣∣∣det

([
ξ(1) · · · ξ(n)

1 · · · 1

])∣∣∣∣ n∏
j=1

1

cj
= 2n−1(n− 1)!Vs

n∏
j=1

1

cj
.

Since ξ(j) ∈ [0, 1]n−1, we have 1 ≤ cj ≤
√

4n+ 1 for every j = 1, . . . , n. Thus

2n−1(n− 1)!

(4n+ 1)
n
2

Vs ≤ VP ≤ 2n−1(n− 1)!Vs

and dividing the inequalities with 2n−1(n− 1)! gives us the wanted result.

The following lemma can be seen as manifestation of the uncertainty principle, which
asserts that the extension operator is constant at scale K when the frequency is supported
on a scale K−1.

Lemma 5.7. Let BK be a cube of side length K and α ∈ PartK−1([0, 1]n−1). Then

sup
x∈BK
|Eαg(x)| .

(
1

|BK |

ˆ
Rn
|Eαg(x)|pwBK ,10E(x) dx

) 1
p

.

Proof. By lemma 1.7 there exists a Schwartz function f that is 1 on the cube B(0, 3n).
Let ϕ be the inverse Fourier transform of f . Now we have that ϕ̂ = 1 on B(0, 3n). We
define

ϕK(x) =
1

Kn
ϕ(

x

K
)e(x · zα) =

1

|BK |
ϕ(

x

K
)e(x · zα),

where zα = (cα, |cα|2) and cα is the center of the cube α. Now by change of variables

ϕ̂K(ξ) =

ˆ
Rn
ϕK(x)e(−x · ξ) dx

=

ˆ
Rn

1

Kn
ϕ(

x

K
)e(x · zα)e(−x · ξ) dx

=

ˆ
Rn
ϕ(y)e(Ky · zα)e(−Ky · ξ) dy
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=

ˆ
Rn
ϕ(y)e(−Ky · (ξ − zα)) dy

= ϕ̂(K(ξ − zα)) = ϕ̂(
ξ − zα
K−1

).

Hence ϕ̂ = 1 on B(zα, 3nK
−1).

We arque that the support of the Fourier transfrom of Eαg is in B(zα, 3nK
−1). Let

φ ∈ S(Rn). We apply Fubini’s theorem and Fourier inversion theorem to calculate that

〈Êαg, φ〉 = 〈Eαg, φ̂〉 =

ˆ
Rn

ˆ
Rn−1

1α(ξ)g(ξ)e(x · (ξ, |ξ|2))φ̂(x) dξ dx

=

ˆ
Rn−1

1α(ξ)g(ξ)

ˆ
Rn
φ̂(x)e(x · (ξ, |ξ|2)) dx dξ

=

ˆ
Rn−1

1α(ξ)g(ξ)φ(ξ, |ξ|2) dξ.

Now we see that
supp(Êαg) ⊂ {(ξ, |ξ|2) ∈ Rn : ξ ∈ α}.

For ξ ∈ α we have

|(ξ, |ξ|2)− zα| ≤ |ξ − cα|+
∣∣|ξ|2 − |cα|2∣∣ ≤ √n− 1K−1 +

∣∣|ξ|2 − |cα|2∣∣
and ∣∣|ξ|2 − |cα|2∣∣ ≤ n−1∑

i=1

|ξ2
i − (cα)2

i |

=
n−1∑
i=1

|(ξi − (cα)i)(ξi + (cα)i)|

≤
n−1∑
i=1

K−1|ξi + (cα)i|

≤ K−1

n−1∑
i=1

(|ξi|+ |(cα)i|)

≤ 2(n− 1)K−1.

Thus we have
supp(Êαg) ⊂ B(zα, 3nK

−1).

This means that by lemma 1.13 we have ̂Eαg ∗ ϕK = Êαg ϕ̂K = Êαg which implies
Eαg ∗ ϕK = Eαg in the distributional sense. Since the functions Eαg ∗ ϕK and Eαg are
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continuous, lemma 1.11 implies that we also have Eαg ∗ ϕK = Eαg in the classical sense.
Then applying lemma 1.5 with s = 10E, we get

|Eαg(x)| =
∣∣∣∣ˆ

Rn
Eαg(y)ϕK(x− y) dy

∣∣∣∣
=

1

|BK |

∣∣∣∣ˆ
Rn
Eαg(y)ϕ(

x− y
K

)e((x− y) · zα) dy

∣∣∣∣
≤ 1

|BK |

ˆ
Rn
|Eαg(y)|

∣∣∣∣ϕ(
x− y
K

)

∣∣∣∣ dy

.
1

|BK |

ˆ
Rn
|Eαg(y)|

(
1 +
|x− y|
K

)−10E

dy.(5.8)

For x ∈ BK , we can apply lemma 3.8 to get

(1 +
|x− y|
K

)−10E = wBK ,10E(y + cBK − x) ∼ wBK ,10E(y)

and plugging this to (5.8) gives that for all x ∈ BK , we have

(5.9) |Eαg(x)| . 1

|BK |

ˆ
Rn
|Eαg(y)|wBK ,10E(y) dy.

An application of Hölder inequality with coefficients p and p′ yields

1

|BK |

ˆ
Rn
|Eαg(y)|wBK ,10E(y) dy

=

ˆ
Rn

|Eαg(y)|wBK ,10E(y)
1
p

|BK |
1
p

wBK ,10E(y)
1
p′

|BK |
1
p′

dy

≤
(

1

|BK |

ˆ
Rn
|Eαg(y)|pwBK ,10E(y) dy

) 1
p
(

1

|BK |

ˆ
Rn
wBK ,10E(y) dy

) 1
p′

∼
(

1

|BK |

ˆ
Rn
|Eαg(y)|pwBK ,10E(y) dy

) 1
p

.

The last relation is due to lemma 3.5. Combining this with (5.9) gives us

sup
x∈BK
|Eαg| .

(
1

|BK |

ˆ
Rn
|Eαg(y)|pwBK ,10E(y) dy

) 1
p

as wanted.
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For the rest of this section we will restrict the dimension to n = 3. At the end of
this chapter we will discuss the distinctions in the proofs for other dimensions. A key
step in the proof of the reverse decoupling constant inequality is the following proposition
which gives us an estimate on the left-hand side of (4.2) when the lower dimensional linear
decoupling constant is bounded by any negative power of the scale δ.

Proposition 5.10. Let p ≥ 2, g ∈ L1([0, 1]2) and assume Dec2(δ, p,Γ2(10E)) .ε δ
−ε.

Then there exists a constant C and Cε such that for each m ≥ 1 and each R ≥ K2m such
that R

K
∈ N, we have

‖Eg‖Lp(wBR,E) ≤ CεK
ε


 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR,E)

 1
2

+

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBR,E)


1
2



+KC Dec3(R−1, p,K−2,m,E)

 ∑
∆∈Part

R
− 1

2
([0,1]2)

‖E∆g‖2
Lp(wBR,E)


1
2

.

Proof. By lemma 4.3 it suffices to prove the inequality with ‖Eg‖Lp(BR) on the left-hand
side. Cover BR with a family PartK(BR) of cubes in R3 with side length K. For each
α ∈ PartK−1([0, 1]2) and each BK ∈ PartK(BR) we define

cα(BK) =

(
1

|BK |

ˆ
R3

|Eαg(x)|pwBK ,10E(x) dx

) 1
p

.

Note that lemma 5.7 gives us that

(5.11) sup
x∈R3

|Eαg(x)| . cα(BK).

Let α∗ := α∗(BK) ∈ PartK−1([0, 1]2) be the square that maximizes cα(BK). Let L be a
line in the (ξ1, ξ2) plane and define

SL = {(ξ1, ξ2) ∈ [0, 1]2 : dist(L, (ξ1, ξ2)) ≤ CL

K
}.

Define also
Sbig = {α : cα(BK) ≥ K−2cα∗(BK)}.
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We will show that for each BK ∈ PartK(BR) there exists a line L = L(BK) ⊂ R2 such
that for all x ∈ BK

|Eg(x)| ≤
C1 cα∗(BK)(5.12)

+KC2 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

cαi(BK)

) 1
3

(5.13)

+

∣∣∣∣∣∑
α⊂SL

Eαg(x)

∣∣∣∣∣ ,(5.14)

where C1 and C2 are constants. Define Uα∗ := {α ∈ Sbig : dist(α, α∗) ≥ 10
K
}. We distin-

guish three scenarios

1. Uα∗ is empty.

2. Uα∗ is not empty and there exists an α ∈ Sbig that intersects the complement of SL.

3. Uα∗ is not empty and all α ∈ Sbig are in SL.

Clearly these scenarios cover all possible situations.
In the first scenario we do not need SL. We can directly bound |Eg(x)| with (5.12) as

follows

|Eg(x)| ≤
∑
α

|Eαg(x)|

=
∑
α∈Sbig

|Eαg(x)|+
∑
α/∈Sbig

|Eαg(x)|

≤ C ′

 ∑
α∈Sbig

cα(BK) +
∑
α/∈Sbig

cα(BK)


≤ C ′

 ∑
α∈Sbig

cα∗(BK) +
∑
α/∈Sbig

K−2cα∗(BK)


≤ C ′

(
232cα∗(BK) +K2K−2cα∗(BK)

)
= 530C ′ cα∗(BK),

where C ′ is the maximum of the implicit constants from the estimates of the form (5.11).
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Now we assume that Uα∗ is not empty. Then the line L is determined by centers of
the squares α1 and α2 that are furthest apart among all possible pairs in Sbig. Since Uα∗
is not empty, the distance between these squares is at least 10

K
.

We claim that in the second scenario (5.13) suffices. To show this we let α3 be a square
that intersects the complement of SL. Let T be a triangle that is determined by three
points that are in different squares αi. The area of the triangle has the lower bound

m2(T ) ≥ 1

2

10

K
(
CL
K
−
√

2

K
) =

5(CL −
√

2)

K2
.

An application of lemma 5.6 shows that choosing CL >
√

2 + 9
10

gives us that α1, α2 and
α3 are K−2-transverse. Now

|Eg(x)| ≤
∑
α

|Eαg(x)| ≤ C ′

(∑
α

cα∗(BK)

)
= C ′K2cα∗(BK) ≤ C ′K4cαi(BK),

for i = 1, 2, 3. Multiplying both sides with respect to i and taking a cube roots and
maximums gives us

|Eg(x)| ≤ C ′K4 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

cαi(BK)

) 1
3

.

Since logK(C ′) ≤ log2(C ′) for all C ′ ≥ 1, we get

|Eg(x)| ≤ C ′K4 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

cαi(BK)

) 1
3

= K logK(C′)+4 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

cαi(BK)

) 1
3

≤ K log2(C′)+4 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

cαi(BK)

) 1
3

as wanted.
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In the third scenario (5.12) and (5.14) will suffice. Indeed,

|Eg(x)| =

∣∣∣∣∣∑
α

Eαg(x)

∣∣∣∣∣
≤

∣∣∣∣∣∑
α⊂SL

Eαg(x)

∣∣∣∣∣+
∑
α/∈Sbig

|Eαg(x)|

≤

∣∣∣∣∣∑
α⊂SL

Eαg(x)

∣∣∣∣∣+ C ′

 ∑
α/∈Sbig

cα(BK)


≤

∣∣∣∣∣∑
α⊂SL

Eαg(x)

∣∣∣∣∣+ C ′

 ∑
α/∈Sbig

K−2cα∗(BK)


≤

∣∣∣∣∣∑
α⊂SL

Eαg(x)

∣∣∣∣∣+ C ′cα∗(BK).

Next we are going to prove that (5.12)-(5.14) implies

‖Eg‖Lp(BK) .ε

Kε


 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK,10E)

 1
2

+

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,10E)


1
2


+KC2 max

α1,α2,α3

K−2-transverse

(
3∏
i=1

‖Eαig‖Lp(wBK,10E)

) 1
3

.(5.15)

In the first case scenario we have

|Eg(x)| ≤ C1cα∗(BK)

⇒ ‖Eg‖Lp(BK) =

(ˆ
BK

|Eg(x)|p dx

) 1
p

≤ C1|BK |
1
p cα∗(BK) = C1‖Eα∗g‖Lp(wBK,10E)

⇔ ‖Eg‖Lp(BK) ≤ C1

(
‖Eα∗g‖2

Lp(wBK,10E)

) 1
2

⇒ ‖Eg‖Lp(BK) ≤ C1

 ∑
α∈PartK−1 ([0,1])2

‖Eαg‖2
Lp(wBK,10E)

 1
2

.
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The second scenario yields

|Eg(x)| ≤ KC2 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

cαi(BK)

) 1
3

⇔ |Eg(x)| ≤ KC2|BK |−
1
p max

α1,α2,α3

K−2-transverse

(
3∏
i=1

‖Eαi‖Lp(wBK,10E)

) 1
3

⇒ ‖Eg‖Lp(BK) ≤ KC2 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

‖Eαi‖Lp(wBK,10E)

) 1
3

.

For the third scenario we translate BK so that it is centered in the origin. Then on
the left side of (5.15) we have

ˆ
BK

|Eg(t)|p dt =

ˆ
[−K

2
,K

2
]3
|Eg(u+ cBK )|p du

and changing the variables back on the right-hand side of (5.15) yields
ˆ
R2

|Eαg(u+ cBK )|pw[−K
2
,K

2
]3,10E(u) du =

ˆ
R2

|Eαg(t)|pw[−K
2
,K

2
]3,10E(t− cBK ) du

=

ˆ
R2

|Eαg(t)|pwBK ,10E(t) dt.

Thus we may assume that BK = [−K
2
, K

2
]3. We then calculate that

|Eg(x)| ≤

∣∣∣∣∣∑
α⊂SL

Eαg(x)

∣∣∣∣∣+ C ′cα∗(BK)

⇒ ‖Eg‖Lp(BK) ≤

∥∥∥∥∥∑
α⊂SL

Eαg

∥∥∥∥∥
Lp(BK)

+ C ′|BK |
1
p cα∗(BK).

Identically as in the first scenario we have

C ′|BK |
1
p cα∗(BK) ≤ C ′

 ∑
α∈PartK−1 ([0,1])2

‖Eαg‖2
Lp(wBK,10E)

 1
2

.

All that is left is to control the term
∥∥∑

α⊂SL Eαg
∥∥
Lp(BK)

with the right-hand side of
(5.15).
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We will assume that L = {ξ : ξ2 = 0}. This is essentially the same assumption as in
[5]. Unfortunately, we will take this simplification of notation as granted and leave out
the details of the general case.

We cover SL by pairwise disjoint rectangles U that have side lengths CLK−1 and K−
1
2 ,

with the longer side parallel to L. Denote S̃L :=
⋃
α⊂SL α and g̃ = g1S̃L . These simplify

the notation as we can write
∑

α⊂SL Eαg = ESL g̃. Next we will prove the following claim.

Claim: ‖ESL g̃‖Lp(BK) . Kε

(∑
U

‖EU g̃‖2
Lp(wBK,10E)

) 1
2

.(5.16)

In order to prove this claim, we will apply theorem 4.27 in the lower dimension n = 2. The
lower dimensional decoupling constant that arises from theorem 4.27 will be contained
by assumption. Thus the idea is to find a lower dimensional function that satisfies the
assumptions of theorem 4.27 and is somehow similar to ESL g̃.

We study the following change of variables

(s, t) = (ξ1, ξ
2
1 + ξ2

2)⇔ (ξ1, ξ2) = (s,
√
t− s2).

The Jacobian determinant of this transformation is

det

([
1 0

∂(
√
t−s2)
∂s

1
2
√
t−s2

])
=

1

2
√
t− s2

and hence we can write

ESL g̃(x) =

ˆ
R2

g̃(ξ)e(x · (ξ, |ξ|2)) dξ

=

ˆ
R2

g̃(s,
√
t− s2)e(x · (s,

√
t− s2, t))

1

2
√
t− s2

d(s, t)

=

ˆ
R2

g̃(s,
√
t− s2)e(

√
t− s2 x2)

1

2
√
t− s2

e(sx1 + tx3) d(s, t).

Note that in the above equalities the information about the area of integration is included
in the function g̃. Denote EAg̃x2(x1, x3) := EAg̃(x1, x2, x3), where A is a set. From the
above calculation we see that for a fixed x2 the inverse Fourier transform of the function
g∗x2

, that is defined by

(s, t) 7→ g̃(s,
√
t− s2)e(

√
t− s2 x2)

1

2
√
t− s2

,
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is ESL g̃x2 . Thus the Fourier inverse formula of S ′(R2) gives that F (ESL g̃x2) = g∗x2
, which

is supported in the set
{(s, t) : (s,

√
t− s2) ∈ S̃L}.

We have
SL = {(s, r) : |r| ≤ CL

K
}

and hence we get

√
t− s2 ≤ CL

K
⇔ s2 ≤ t ≤ s2 +

(
CL
K

)2

,

which implies that (s, t) ∈ N(CL
K

)2([0, 1]), i.e., the Fourier transform of ESL g̃x2 is supported

in N(CL
K

)2([0, 1]). This means that theorem 4.27 yields

‖ESL g̃x2‖Lp(B̃K) .

Dec2(K−1, p,Γ2(10E))

 ∑
Q∈Part

K
− 1

2
([0,1])

‖ (ESL g̃x2)N
(CLK )

2 (Q) ‖
2
Lp(w

B̃K,10E
)


1
2

,

where we denoted B̃K := [−K
2
, K

2
]2 in the (x1, x3) plane. Next we calculate the Fourier

restriction

(ESL g̃x2)N
(CLK )

2 (Q)(x1, x3)

=

ˆ
N

(CLK )
2 (Q)

g̃(s,
√
t− s2)e(

√
t− s2x2)

1

2
√
t− s2

e(sx1 + tx3) d(s, t)

=

ˆ
Q

ˆ CL
K

0

g̃(ξ1, ξ2)e(ξ2x2)e(ξ1x1 + |ξ|2x3) dξ2 dξ1

=

ˆ
U

g̃(ξ1, ξ2)e(x · (ξ, |ξ|2)) dξ = EU g̃x2(x1, x3),

where U = {(ξ1, ξ2) : ξ1 ∈ Q, ξ2 ∈ [0, CL
K

]}. We now have proven

‖ESL g̃x2‖Lp(B̃K) . Dec2(K−1, p,Γ2(10E))

(∑
U

‖EU g̃x2‖2
Lp(w

B̃K,10E
)

) 1
2

,
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which by assumption implies

‖ESL g̃x2‖Lp(B̃K) .ε K
ε

(∑
U

‖EU g̃x2‖2
Lp(w

B̃K,10E
)

) 1
2

.(5.17)

Raising the left-hand side of (5.17) to the power p and integrating over x2 ∈ [−K
2
, K

2
]

gives

ˆ K
2

−K
2

‖ESL g̃x2‖
p

Lp(B̃K)
dx2 = ‖ESL g̃‖

p
Lp(BK)

and applying Minkovski’s inequality in L
p
2 we see that the same procedure on the right-

hand side gives

Kεp

ˆ K
2

−K
2

(∑
U

‖EU g̃x2‖
2
Lp(w

B̃K,10E
)

) p
2

dx2 = Kεp

∥∥∥∥∥∑
U

‖EU g̃x2‖
2
Lp(w

B̃K,10E
)

∥∥∥∥∥
p
2

L
p
2 ([−K

2
,K

2
])

≤ Kεp

(∑
U

∥∥∥‖EU g̃x2‖
2
Lp(w

B̃K,10E
)

∥∥∥
L
p
2 ([−K

2
,K

2
])

) p
2

= Kεp

(∑
U

∥∥∥‖EU g̃x2‖
p
Lp(w

B̃K,10E
)

∥∥∥ 2
p

L1([−K
2
,K

2
])

) p
2

.

By lemma 3.8, we have wB̃K ,10E(x1, x3) = wBK ,10E(x1, 0, x3) ∼ wBK ,10E(x1, x2, x3) for
x2 ∈ [−K

2
, K

2
] and thus∥∥∥ ‖EU g̃x2‖
p
Lp(w

B̃K,10E
)

∥∥∥
L1([−K

2
,K

2
])

=

ˆ K
2

−K
2

ˆ
R2

|EU g̃(x1, x2, x3)|pwB̃K ,10E(x1, x3) dx1 dx3 dx2

=

ˆ
R3

|EU g̃(x1, x2, x3)|p1[−K
2
,K

2
](x2)wB̃K ,10E(x1, x3) dx1 dx2 dx3

.
ˆ
R3

|EU g̃(x)|pwBK ,10E(x) dx = ‖EU g̃‖pLp(wBK,10E).
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Thus the procedure modifies the right-hand side of (5.17) to

Kεp

ˆ K
2

−K
2

(∑
U

‖EU g̃x2‖
2
Lp(w

B̃K,10E
)

) p
2

dx2 ≤ Kεp

(∑
U

∥∥∥ ‖EU g̃x2‖
p
Lp(w

B̃K,10E
)

∥∥∥ 2
p

L1([−K
2
,K

2
])

) p
2

. Kεp

(∑
U

‖EU g̃‖2
Lp(wBK,10E)

) p
2

.

This proves our claim

‖ESL g̃‖Lp(BK) .ε K
ε

(∑
U

‖EU g̃‖2
Lp(wBK,10E)

) 1
2

.

In order to get (5.15) in the third scenario, we still need to estimate the expression(∑
U ‖EU g̃‖2

Lp(wBK,10E)

) 1
2 further. Let V be the unique square in Part

K−
1
2
([0, 1]2) that

covers U . By the restriction on the line L, we have U ∩ S̃L = U and thus we can write

EU g̃(x) = EUg(x) = EV g(x)− EV \U .

By Minkovski’s inequalities in Lp and l2 we get

(∑
U

‖EU g̃‖2
Lp(wBK,10E)

) 1
2

≤

(∑
V

‖EV g‖2
Lp(wBK,10E)

) 1
2

+

∑
V \U

‖EV \Ug‖2
Lp(wBK,10E)

 1
2

.

Since every V is in Part
K−

1
2
([0, 1]2), we can trivially estimate the first term

(∑
V

‖EV g‖2
Lp(wBK,10E)

) 1
2

≤

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,10E)


1
2

.

For the second term we divide the rectangles V \ U into squares V ′ ∈ PartK−1([0, 1]2) by
using Minkovski’s inequality

‖EV \U‖Lp(wBK,10E) ≤
∑
V ′

‖EV ′‖Lp(wBK,10E).
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For each V \ U we need K
1
2 (K

1
2 − CL) squares V ′. Since (V \ U) ∩ SL = ∅, we have

V ′ /∈ Sbig and hence we can estimate further

‖EV \U‖Lp(wBK,10E) ≤
∑
V ′

‖EV ′‖Lp(wBK,10E)

≤
∑
V ′

K−2‖Eα∗‖Lp(wBK,10E)

≤ K−1‖Eα∗‖Lp(wBK,10E).

Since the number of rectangles V \ U is K
1
2 , we get∑

V \U

‖EV \Ug‖2
Lp(wBK,10E)

 1
2

≤
∑
V \U

‖EV \Ug‖Lp(wBK,10E)

≤
∑
V \U

K−1‖Eα∗g‖Lp(wBK,10E)

= K−
1
2‖Eα∗g‖Lp(wBK,10E)

≤ ‖Eα∗g‖Lp(wBK,10E).

Thus(∑
U

‖EU g̃‖2
Lp(wBK,10E)

) 1
2

≤

(∑
V

‖EV g‖2
Lp(wBK,10E)

) 1
2

+

∑
V \U

‖EV \Ug‖2
Lp(wBK,10E)

 1
2

≤

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,10E)


1
2

+ ‖Eα∗g‖Lp(wBK,10E).

We conclude that (5.15) holds in the third scenario as

‖Eg‖Lp(BK) ≤ ‖
∑
α⊂SL

Eαg‖Lp(BK) + C ′‖Eα∗g‖Lp(wBK,10E)

.ε K
ε


 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,10E)


1
2

+

 ∑
α∈PartK−1 ([0,1])2

‖Eαg‖2
Lp(wBK,10E)

 1
2


and we are done proving (5.15).
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Using wBK ,10E ≤ wBK ,E, inequality (5.15) implies

‖Eg‖Lp(BK) .ε

Kε

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK,E)

 1
2

+Kε

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,E)


1
2

+KC2 max
α1,α2,α3

K−2-transverse

(
3∏
i=1

‖Eαig‖Lp(wBK,10E)

) 1
3

.(5.18)

Raising the left-hand side of the above inequality to the power p, summing over BK ∈
PartK(BR) and then raising it to the power 1

p
gives

(5.19)

 ∑
BK∈PartK(BR)

‖Eg‖pLp(BK)

 1
p

= ‖Eg‖Lp(BR).

For the first term on the right-hand side the same process gives

Kε

 ∑
BK∈PartK(BR)

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK,E)


p
2


1
p

= Kε

 ∑
BK∈PartK(BR)

 ∑
α∈PartK−1 ([0,1]2)

(ˆ
R3

|Eαg(x)|pwBK ,E dx

) 2
p


p
2


1
p

= Kε

 ∑
BK∈PartK(BR)

∥∥∥∥ˆ
R3

|Eαg(x)|pwBK ,E(x) dx

∥∥∥∥
l
2
p

 1
p

≤ Kε

∥∥∥∥∥∥
ˆ
R3

|Eαg(x)|p
∑

BK∈PartK(BR)

wBK ,E(x) dx

∥∥∥∥∥∥
l
2
p

 1
p

. Kε

(∥∥∥∥ˆ
R3

|Eαg(x)|pwBR,E(x) dx

∥∥∥∥
l
2
p

) 1
p

= Kε

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR,E)

 1
2

.

105



The first inequality is due to Minkovski’s inequality in l
2
p and the second inequality is

justified by lemma 3.12. The second term is dealt identically. Thus

Kε

 ∑
BK∈PartK(BR)

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK,E)


p
2


1
p

. Kε

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR,E)

 1
2

(5.20)

and

Kε

 ∑
BK∈PartK(BR)

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,E)


p
2


1
p

. Kε

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBR,E)


1
2

(5.21)

For the third term we calculate that

KC2

( ∑
BK∈PartK(BR)

max
α1,α2,α3

K−2-transverse

(
3∏
i=1

‖Eαig‖
p
Lp(wBK,10E)

) 1
3
) 1

p

≤ KC2

( ∑
BK∈PartK(BR)

∑
αi

(
3∏
i=1

‖Eαig‖
p
Lp(wBK,10E)

) 1
3
) 1

p

= KC2

(∑
αi

∑
BK∈PartK(BR)

(
3∏
i=1

‖Eαig‖
p
Lp(wBK,10E)

) 1
3
) 1

p

≤
∑
αi

KC2

( ∑
BK∈PartK(BR)

(
3∏
i=1

‖Eαig‖
p
Lp(wBK,10E)

) 1
3
) 1

p

,

where the sum is taken over all K−2-transverse triples that are in PartK−1([0, 1]2). Then
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by (5.2) we have ∑
BK∈PartK(BR)

(
3∏
i=1

‖Eαig‖
p
Lp(wBK,10E)

) 1
3


1
p

≤ Dec3(R−1, p,K−2,m,E)

 3∏
i=1

∑
qi∈Part

R
− 1

2
(αi)

‖Eqig‖2
Lp(wBR,E)


1
6

.

Since αi ⊂ [0, 1]2, we have∑
qi∈Part

R
− 1

2
αi

‖Eqig‖2
Lp(wBR,E) ≤

∑
∆∈Part

R
− 1

2
([0,1]2)

‖E∆g‖2
Lp(wBR,E)

and thus we further have

KC2

 ∑
BK∈PartK(BR)

max
α1,α2,α3

K−2-transverse

(
3∏
i=1

‖Eαig‖
p
Lp(wBK,10E)

) 1
3


1
p

≤
∑
αi

KC2 Dec3(R−1, p,K−2,m,E)

 ∑
∆∈Part

R
− 1

2
([0,1]2)

‖E∆g‖2
Lp(wBR,E)


1
2

≤ KC2+6 Dec3(R−1, p,K−2,m,E)

 ∑
∆∈Part

R
− 1

2
([0,1]2)

‖E∆g‖2
Lp(wBR,E)


1
2

.(5.22)

The last inequality is due to the fact that # PartK−1([0, 1]2) = K2.
Combining (5.19), (5.20), (5.21) and (5.22) means that (5.18) becomes the inequality

in the proposition once we stipulate that Cε is the maximum of all of the implicit constants
in the argument and C = C2 + 6.

The following is analogous to proposition 5.10 for smaller partitioning cubes. This will
allow us to iterate the scale of the partitioning cubes from big to small, which will give
us the main argument for the proof of theorem 5.27.
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Proposition 5.23. Let τ ∈ Partδ([0, 1]2), where δ ≥ R−
1
2K2m−1. Assume that for all

δ′ < 1, we have Dec2(δ′, p,Γ2(10E)) .ε δ
′−ε. Then if R ≥ K2m and R

K
∈ N, we have

‖Eτg‖Lp(wBR,E) ≤ CεK
ε


 ∑
α∈PartδK−1 (τ)

‖Eαg‖2
Lp(wBR,E)

 1
2

+

 ∑
β∈Part

δK
− 1

2
(τ)

‖Eβg‖2
Lp(wBR,E)


1
2



+KC Dec3((Rδ2)−1, p,K−2,m, 3E)

 ∑
∆∈Part

R
− 1

2
(τ)

‖E∆g‖2
Lp(wBR,E)


1
2

,

where the constants C and Cε are independent of δ, R, τ and K.

The idea is to extend the parabola over τ to the whole parabola P2 via an affine
transformation. In [5], this technique is referred to as parabolic rescaling.

Proof. We write τ = a + [0, δ]2, for some a ∈ R2. We consider a change of variables
ξ′ = ξ−a

δ
. Notice that the image of τ in this mapping is [0, 1]2. Hence, using the fact that

|c+ b|2 = |c|2 + |b|2 + 2c · b, for c, b ∈ Rn, gives

|Eτg(x)| =
∣∣∣∣ˆ
τ

g(ξ)e
(
x · (ξ, |ξ|2)

)
dξ

∣∣∣∣
=

∣∣∣∣δ2

ˆ
[0,1]2

g(ξ′δ + a)e
(
x · (ξ′δ + a, |ξ′δ + a|2)

)
dξ′
∣∣∣∣

=

∣∣∣∣e(x · (a, |a|2))δ2

ˆ
[0,1]2

g(ξ′δ + a)e
(
x · (ξ′1δ, ξ′2δ, δ2|ξ′|2 + 2δa · ξ)

)
dξ′
∣∣∣∣

=

∣∣∣∣∣δ2

ˆ
[0,1]2

g(ξ′δ + a)e
(
x1ξ

′
1δ + x2ξ

′
2δ + x3(δ2|ξ′|2 +

2∑
i=1

2δaiξ
′
i)
)

dξ′

∣∣∣∣∣
=

∣∣∣∣∣δ2

ˆ
[0,1]2

g(ξ′δ + a)e
( 2∑
i=1

ξ′iδ(xi + 2aix3) + x3δ
2|ξ′|2

)
dξ′

∣∣∣∣∣
=

∣∣∣∣δ2

ˆ
[0,1]2

g(ξ′δ + a)e
((

(x1 + 2a1x3)δ, (x2 + 2a2x3)δ, δ2x3

)
· (ξ′, |ξ′|2)

)
dξ′
∣∣∣∣

=: δ2|Eg′(Tx)|.(5.24)
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In the last line we denoted g′(ξ) := g(ξδ+a) and Tx :=
(
(x1+2a1x3)δ, (x2+2a2x3)δ, δ2x3

)
.

Note that the Jacobian determinant of T is δ4.
Then we cover the image of BR under T with a pairwise disjoint family of cubes B′

with side length δ2R that satisfy

1T (BR)(x) .
∑
B′

wB′,3E(x) . wBR,E(T−1x).

The proof of the existence of the above covering can be found in [14] section 5.2 lemma
5.2.2. Now we change variables to get

‖Eτg‖Lp(BR) = δ2

(ˆ
BR

|Eg′(Tx)|p dx

) 1
p

= δ2

(
δ−4

ˆ
T (BR)

|Eg′(y)|p dy

) 1
p

. δ2− 4
p

(ˆ
R3

|Eg′(y)|p
∑
B′

wB′,3E(y) dy

) 1
p

= δ2− 4
p

(∑
B′

‖Eg′‖pLp(wB′,3E)

) 1
p

.(5.25)

Since δ ≥ R−
1
2K2m−1 ⇔ δ2R ≥ K2m , proposition 5.10 yields

‖Eg′‖Lp(wB′,3E) ≤ CεK
ε


 ∑
α∈PartK−1 ([0,1]2)

‖Eαg′‖2
Lp(wB′,3E)

 1
2

+

 ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg′‖2
Lp(wB′,3E)


1
2



+KC Dec3((δ2R)−1, p,K−2,m, 3E)

 ∑
∆∈Part

(δ2R)
− 1

2
([0,1]2)

‖E∆g
′‖2
Lp(wB′,3E)


1
2

.

Remark 5.26. In the above inequality we must choose Γ2(10E) to be at least 60E+, p+ 1.
This comes from the fact that we must apply theorem 4.27 with the weight exponent
being 30E and thus in lemma 4.13 we need W ≥ 60E + p+ 1.
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Plugging the first term into (5.25) gives

δ2− 4
p

∑
B′

Cp
εK

εp

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg′‖2
Lp(wB′,3E)


p
2


1
p

= CεK
εδ2− 4

p

(∑
B′

∥∥∥‖Eαg′‖pLp(wB′,3E)

∥∥∥
l
2
p

) 1
p

≤ CεK
εδ2− 4

p

(∥∥∥∥∥∑
B′

‖Eαg′‖pLp(wB′,3E)

∥∥∥∥∥
l
2
p

) 1
p

= CεK
εδ2− 4

p

(∥∥∥‖Eαg′‖pLp(
∑
B′ wB′,3E)

∥∥∥
l
2
p

) 1
p

. CεK
εδ2− 4

p

(∥∥∥‖Eαg′‖pLp(wBR,E◦T
−1)

∥∥∥
l
2
p

) 1
p

= CεK
εδ2− 4

p

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg′‖2
Lp(wBR,E◦T

−1)

 1
2

.

Then changing the variables back gives

δ2− 4
p‖Eαg′‖Lp(wBR,E◦T

−1) = δ2

(ˆ
R3

|Eαg′(y)|pwBR,E(T−1y)δ−4 dy

) 1
p

= δ2

(ˆ
R3

|Eαg′(Tx)|pwBR,E(x) dx

) 1
p

and as ξ 7→ ξδ + a maps cubes in PartK−1([0, 1]2) into cubes in PartδK−1(τ), we get
similarly as in (5.24) that

δ2|Eαg′(Tx)| =
∣∣∣∣δ2

ˆ
α

g(ξ′δ + a)e
(
Tx · (ξ′, |ξ′|2)

)
dξ′
∣∣∣∣

=

∣∣∣∣ˆ
α′
g(ξ)e

(
x · (ξ, |ξ|2)

)
dξ

∣∣∣∣ = |Eα′g(x)|,

where α′ ∈ PartδK−1(τ).
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The same deduction applies to the other two terms and thus we have shown that

‖Eτg‖Lp(BR) ≤ CεK
ε


 ∑
α∈PartδK−1 (τ)

‖Eαg‖2
Lp(wBR,E)

 1
2

+

 ∑
β∈Part

δK
− 1

2
(τ)

‖Eβg‖2
Lp(wBR,E)


1
2



+KC Dec3((Rδ2)−1, p,K−2,m, 3E)

 ∑
∆∈Part

R
− 1

2
(τ)

‖E∆g‖2
Lp(wBR,E)


1
2

and now lemma 4.3 gives us the result.

5.3 Reverse decoupling constant inequality
In section 5.1 we showed that one can dominate the multilinear decoupling constant
with the linear decoupling constant. In this section we will show the following reverse
inequality which states that we can somehow dominate the linear decoupling constant
with the multilinear decoupling constant. The proof is essentially multiple iterations of
proposition 5.23 and careful accounting of the additional coefficients that arise from the
iteration. The same proof applies in all dimensions as long as propositions 5.10 and 5.23
have analogous counterparts in Rn for n 6= 3.

Theorem 5.27. Let E ≥ 100n and ε > 0. Let also Γn(E) be a large enough constant
dependent on E and n. Assume that one of the following holds

• n = 2.

• n ≥ 3 and Decn−1(δ, p,Γn−1(10E)) .ε,E δ
−ε.

Then for each 0 < ν < 1, such that R

ν−
1
2
∈ N, there exists a function ε(ν) = ε(ν, p, E) with

lim
ν→0

ε(ν) = 0 and a constant Cν,m such that for each m ≥ 1, we have

Decn(R−1, p, E) ≤ Cν,mR
ε(ν)

1 + sup
1≤R′≤R

E∗∈{E,3E}

Decn(R′−1, p, ν,m,E∗)


for each R ≥ ν−2m−1.
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The harmless restriction of R

ν−
1
2
∈ N comes from working with essential partitions in

lemma 3.12 (see the end of the proof of proposition 5.10 on the bottom of page 105 and the
top of page 106). With finitely overlapping covers this restriction is not needed. Note also
that theorem 5.27 is custom made for the induction proof of the l2 decoupling theorem.
For n ≥ 3 we assume an inequality which is similar to the l2 decoupling theorem in the
lower dimensional space Rn−1. We will prove the theorem for n = 3.

Proof. Let K = ν−
1
2 and R ≥ K2m = ν−2m−1 . Our plan is to iterate proposition 5.23

starting from scale δ = 1 until we reach scales δ = R−
1
2K2m−1 and δ = R−

1
2K2m−1− 1

2 .
Each iteration lowers the scale from δ to at least δK−

1
2 . This gives us intuition to the

fact that we must iterate at most M := logK R− 2m times since

K−
M
2 = (K−

1
2 )logK R−2m =

1

(K
1
2 )logK R

K2m−1

=
1

(K logK R)
1
2

K2m−1

= R−
1
2K2m−1

.

We note that M ≥ 0, since by assumption we have R−
1
2K2m−1

= (R−1K2m)
1
2 ≤ 1 and

K > 1. We denote MDec3(δ) := sup
E∗∈{E,3E}

Dec3(δ, p,K−2,m,E∗) and

Iδ(Q) :=

( ∑
α∈Partδ Q

‖Eαg‖2
Lp(wBR,E)

) 1
2

,

where Q is a cube. Furthermore denote Iδ([0, 1]2) := Iδ. Now we can use proposition 5.10
to write

‖Eg‖Lp(wBR,E) ≤ CεK
ε(IK−1 + I

K−
1
2
) +KC Dec3(R−1, p,K−2,m,E)I

R−
1
2

≤ CεK
ε(IK−1 + I

K−
1
2
) +KC MDec3(R−1)I

R−
1
2
.(5.28)

We want to retain the I
R−

1
2
terms so we will use proposition 5.23 to ‖Eαg‖Lp(wBR,E) in the

terms IK−1 and I
K−

1
2
.

For an arbitrary scale δ ≥ R−
1
2K2m−1 proposition 5.23 and the Minkovski’s inequality

of l2 gives that

Iδ =

 ∑
α∈Partδ([0,1]2)

‖Eαg‖2
Lp(wBR,E)

 1
2

≤

 ∑
α∈Partδ([0,1]2)

[
CεK

ε
(
IδK−1(α) + I

δK−
1
2
(α)
)

+KC MDec3(R−1δ−2)I
R−

1
2
(α)
]2

 1
2
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≤

 ∑
α∈Partδ([0,1]2)

C2
εK

2εIδK−1(α)2

 1
2

+

 ∑
α∈Partδ([0,1]2)

C2
εK

2εI
δK−

1
2
(α)2

 1
2

+

 ∑
α∈Partδ([0,1]2)

K2C MDec3(R−1δ−2)2I
R−

1
2
(α)2

 1
2

and for every scale δ′ ≤ δ, we have the following property ∑
α∈Partδ([0,1]2)

Iδ′(α)2

 1
2

=

 ∑
α∈Partδ([0,1]2)

∑
α′∈Partδ′ α

‖Eα′g‖2
Lp(wBR,E)

 1
2

=

 ∑
α′∈Partδ′ ([0,1]2)

‖Eα′g‖2
Lp(wBR,E)

 1
2

= Iδ′ .

Since CεKε ≥ 1, we now get

Iδ ≤ CεK
ε
(
IδK−1 + I

δK−
1
2

+KC MDec3(R−1δ−2)I
R−

1
2

)
,(5.29)

for every scale δ ≥ R−
1
2K2m−1

= K−
M
2 . We note that since 1 ≥ δ ≥ R−

1
2K2m−1 we have

R−1 ≤ R−1δ−2 ≤ K−2m ≤ 1 and thus we may estimate

MDec3(R−1δ−2) ≤ sup
1≤R′≤R

MDec3((R′)−1) =: MDec .

Now (5.29) simplifies to

(5.30) Iδ ≤ CεK
ε
(
IδK−1 + I

δK−
1
2

+KC MDec I
R−

1
2

)
,

for each δ ≥ R−
1
2K2m−1

= K−
M
2 .

The problem with the above estimate is that the lower bound for the scale δ brings
technical difficulties to the argument. To get rid of these difficulties we will look for an
inequality that holds also with smaller scales than K−

M
2 . The following is a simplification

of the authors original argument that was suggested by T. Hytönen. To facilitate this
argument, we denote

IR∗ := max{I
K−

M
2
, I
K−

M+1
2
} = max{I

R−
1
2K2m−1 , IR−

1
2K2m−1− 1

2
}
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and

Jδ :=

{
Iδ, if δ > K−

M
2 ,

IR∗ , if δ ≤ K−
M
2 ,

for each δ = K−
N
2 , where N ∈ N. We now claim that (5.30) implies

(5.31) Jδ ≤ CεK
ε
(
JδK−1 + J

δK−
1
2

+KC MDec I
R−

1
2

)
To show this, we consider four cases. If K−1δ > K−

M
2 , then all J terms in (5.31) coincide

with the corresponding I terms and (5.30) is exactly (5.31). If δ ≤ K−
M
2 , then all J terms

in (5.31) are equal to IR∗ and (5.31) is clear, since CεKε ≥ 1. Now it only remains to
consider δ ∈ {K−M2 + 1

2 , K−
M
2

+1}. If δ = K−
M
2

+1, then

Jδ = Iδ, J
δK−

1
2

= I
δK−

1
2
, JδK−1 = IR∗ ≥ I

K−
M
2

= IδK−1 ,

so that from (5.30) we get (5.31). Lastly, if δ = K−
M
2

+ 1
2 , then

Jδ = Iδ, J
δK−

1
2

= IR∗ ≥ I
K−

M
2

= I
δK−

1
2
, JδK−1 = IR∗ ≥ I

K−
M+1

2
= IδK−1

and again from (5.30) we get (5.31). This concludes the proof of (5.31).
Let us stress the fact that in (5.31) there is no lower bound for δ, which means that it

is best to iterate (5.31). Let us note that Part1([0, 1]2) = {[0, 1]2} and hence

I1 = ‖Eg‖Lp(wBR,E).

If M > 0, then J1 = I1. If M = 0, then J1 = IR∗ = max{I1, IK−
1
2
} ≥ I1. Thus in any

case, we have
I1 ≤ J1.

At each iteration the scale decreases by a small step of K−
1
2 , a big step of K−1 or it

jumps to the scale R−
1
2 . The terms of this last type is no linger iterated, but new such

terms are generated at each iteration. After N ≤ M iterations we may end up in one of
the following scenarios. We may have taken s ≤ N iterations with small step K−

1
2 and

N −s iterations with big step K−1, resulting in a final scale K−
s
2K−N+s = K−(N− s

2
). The

possible order of such iterations may have occurred in
(
N
s

)
different ways. On the other

hand, after any number of small step and large step iterations before the scales K−
M
2 and

K−
M+1

2 , there is a possibility of taking a jump to the scale R−
1
2 as the last iteration. Note

also that both small step and large step iterations produce a factor CεKε, whereas a jump
to the scale R−

1
2 (which can only happen once, as the last iteration) produces the factor

KC MDec.
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1

K−
1
2

K−1

K−
3
2

K−2

K−
5
2

K−3

Possible routes for
the first three iterations.

R−
1
2K2m−1+ 3

2

R−
1
2K2m−1+1

R−
1
2K2m−1+ 1

2

R−
1
2K2m−1

R−
1
2K2m−1− 1

2

Figure 5.1: The iteration tree that describes how the scale decreases with every iteration.

Estimating the possible routes of iteration, we are led to the following bound

(5.32) J1 ≤ (CεK
ε)N

(
N∑
s=0

(
N

s

)
J
K−(N− s2 ) + 2NKC MDec I

R−
1
2

)
,

for each N ∈ N. While we have already sketched the combinatorial reasons behind the
above estimate, let us still provide a rigorous proof by induction on N .

Base case N = 0: In this case (5.32) reduces to

J1 ≤ J1 +KC MDec I
R−

1
2
,

which is trivially true.
The induction step: We assume that (5.32) holds for some N ≥ 0. Since∑N
s=0

(
N
s

)
= 2N , an application of (5.31) gives that

N∑
s=0

(
N

s

)
J
K−(N− s2 ) ≤ CεK

ε

N∑
s=0

(
N

s

)(
J
K−(N+1− s2 ) + J

K−(N+ 1
2−

s
2 ) +KC MDec I

R−
1
2

)
= CεK

ε

[
N∑
s=0

(
N

s

)(
J
K−(N+1− s2 ) + J

K−(N+ 1
2−

s
2 )

)
+

N∑
s=0

(
N

s

)
KC MDec I

R−
1
2

]
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= CεK
ε

[
N∑
s=0

(
N

s

)(
J
K−(N+1− s2 ) + J

K−(N+ 1
2−

s
2 )

)
+ 2NKC MDec I

R−
1
2

]
.(5.33)

Furthermore, we have

N∑
s=0

(
N

s

)
J
K−(N+ 1

2−
s
2 ) =

N∑
s=0

(
N

s

)
J
K−(N+1− s+1

2 ) =
N+1∑
t=1

(
N

t− 1

)
J
K−(N+1− t2 ) .

Thus by denoting
(
N
−1

)
=
(
N
N+1

)
= 0 and applying Pascal’s formula

(
N
s

)
+
(
N
s−1

)
=
(
N+1
s

)
,

we get

N∑
s=0

(
N

s

)(
J
K−(N+1− s2 ) + J

K−(N+ 1
2−

s
2 )

)
=

N+1∑
s=0

[(
N

s

)
+

(
N

s− 1

)]
J
K−(N+1− s2 )

=
N+1∑
s=0

(
N + 1

s

)
J
K−(N+1− s2 ) .

Substituting this into (5.33) yields

N∑
s=0

(
N

s

)
J
K−(N− s2 ) ≤ CεK

ε

[
N+1∑
s=0

(
N + 1

s

)
J
K−(N+1− s2 ) + 2NKC MDec I

R−
1
2

]
.

This combined with the induction assumption and CεKε ≥ 1 results in

J1 ≤(CεK
ε)N

(
N∑
s=0

(
N

s

)
J
K−(N− s2 ) + 2NKC MDec I

R−
1
2

)

≤ (CεK
ε)N

(
CεK

ε

[N+1∑
s=0

(
N + 1

s

)
J
K−(N+1− s2 )

+ 2NKC MDec I
R−

1
2

]
+ 2NKC MDec I

R−
1
2

)

≤ (CεK
ε)N+1

(
N+1∑
s=0

(
N + 1

s

)
J
K−(N+1− s2 ) + 2N+1KC MDec I

R−
1
2

)
.

This concludes the proof of (5.32) by induction.
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By choosing N = M in (5.32), we have N − s
2

= M − s
2
≥M − M

2
= M

2
and hence all

J terms on the right-hand side of (5.32) are equal to IR∗ . This means that we get

I1 ≤ J1 ≤ (CεK
ε)M

(
M∑
s=0

(
M

s

)
IR∗ + 2MKC MDec I

R−
1
2

)
= (CεK

ε)M
(

2MIR∗ + 2MKC MDec I
R−

1
2

)
= (2CεK

ε)M
(
IR∗ +KC MDec I

R−
1
2

)
(5.34)

Recall that IR∗ = max{I
R−

1
2K2m−1 , IR−

1
2K2m−1− 1

2
}. Next we will show that

(5.35) IR∗ ≤ K2m−1

I
R−

1
2
.

An application of Minkovski’s inequality and Cauchy-Schwartz inequality gives

‖Eβg‖Lp(wBR,E) ≤
∑

β′∈Part
R
− 1

2
β

‖Eβ′g‖Lp(wBR,E)

≤

 ∑
β′∈Part

R
− 1

2
β

1


1
2
 ∑
β′∈Part

R
− 1

2
β

‖Eβ′g‖2
Lp(wBR,E)


1
2

= K2m−1

 ∑
β′∈Part

R
− 1

2
β

‖Eβ′g‖2
Lp(wBR,E)


1
2

,

where β ⊂ [0, 1]2 is a cube of side length R−
1
2K2m−1 . Thus

I
R−

1
2K2m−1 =

 ∑
β∈Part

R
− 1

2K2m−1
([0,1]2)

‖Eβg‖2
Lp(wBR,E)


1
2

≤

 ∑
β∈Part

R
− 1

2K2m−1
([0,1]2)

K2m
∑

β′∈Part
R
− 1

2
β

‖Eβ′g‖2
Lp(wBR,E)


1
2

= K2m−1

 ∑
∆∈Part

R
− 1

2
([0,1]2)

‖E∆g‖2
Lp(wBR,E)


1
2

= K2m−1

I
R−

1
2
.
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For the smaller scale δ = R−
1
2K2m−1− 1

2 we similarly have

I
R−

1
2K2m−1− 1

2

≤ K2m−1− 1
2 I
R−

1
2
≤ K2m−1

I
R−

1
2
.

We have now shown (5.35) and plugging it to (5.34) gives

‖Eg‖Lp(wBR,E) = I1 ≤ (2CεK
ε)M

(
K2m−1

I
R−

1
2

+KC MDec I
R−

1
2

)
≤ (2CεK

ε)MK2m−1+C(1 + MDec)I
R−

1
2

(5.36)

Recall that K = ν−
1
2 and M = logK R− 2m. Using this we calculate that

(2CεK
ε)MK2m−1+C ≤ (2CεK

ε)logK Rν−2m−2−C
2

= RlogK(2Cε)+εν−2m−2−C
2

= R−2 logν(2Cε)+εν−2m−2−C
2 .(5.37)

The first equality is justified by

C logK R = (K logK C)logK R = (K logK R)logK C = RlogK C , C > 0

and the last equality is due to the change of base formula of the logarithm

logK C = log
ν−

1
2
C =

logν C

logν ν
− 1

2

= −2 logν C, C > 0.

Recall that we denoted MDec = sup
1≤R′≤R

MDec3

(
(R′)−1

)
. Plugging (5.37) to (5.36) gives

us

‖Eg‖Lp(wBR,E) ≤ Cν,mR
ε(ν)
(

1 + sup
1≤R′≤R

MDec3

(
(R′)−1

))
I
R−

1
2
,

where we choose Cν,m = ν−2m−2−C
2 and ε(ν) = −2 logν(2Cε) + ε. It remains to check that

lim
ν→0

ε(ν) = 0. Since ε is arbitrary, it suffices to check that logν(2Cε) → 0 as ν → 0. This
follows directly from the change of base formula

logν(2Cε) =
ln 2Cε
ln ν

−→
ν→0

0.

As a recap, the proof of theorem 5.27 for n = 3 utilized the fact that the contribution
coming from the squares β that exist near a line can be controlled by a lower dimensional
decoupling constant Dec2(δ, p) .ε δ

−ε via the Fourier support decoupling theorem 4.27.
When n ≥ 4, the contribution coming from the cubes near a hyperplane H in [0, 1]n−1

will be similarly controlled by Decn−1(δ, p). This is due to the fact that the maximum
and minimum curvatures of the paraboloid over H are comparable to 1 uniformly over
the hyperplanes H. When n = 2 there is no such lower dimensional contribution.
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