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Prostate cancer is the second most common cancer among men and the risk evaluation of the cancer

prior the treatment can be critical. Risk evaluation of the prostate cancer is based on multiple

factors such as clinical assessment. Biomarkers are studied as they would also be bene�cial in the

risk evaluation. In this thesis we assess the predictive abilities of biomarkers regarding the prostate

cancer relapse.

The statistical method we utilize is logistic regression model. It is used to model the probability

of a dichotomous outcome variable. In this case the outcome variable indicates if the cancer of the

observed patient has relapsed. The four biomarkers AR, ERG, PTEN and Ki67 form the explanatory

variables. They are the most studied biomarkers in prostate cancer tissue.

The biomarkers are usually detected by visual assessment of the expression status or abundance of

staining. Arti�cial intelligence image analysis is not yet in common clinical use, but it is studied as

a potential diagnostic assistance. The data contains for each biomarker a visually obtained variable

and a variable obtained by arti�cial intelligence. In the analysis we compare the predictive power of

these two di�erently obtained sets of variables. Due to the larger number of explanatory variables,

we seek the best �tting model. When we are seeking the best �tting model, we use an algorithm

glmulti for the selection of the explanatory variables. The predictive power of the models is measured

by the receiver operating characteristic curve and the area under the curve.

The data contains two classi�cations of the prostate cancer whereas the cancer was visible in the

magnetic resonance imaging (MRI). The classi�cation is not exclusive since a patient could have

had both, a magnetic resonance imaging visible and an invisible cancer. The data was split into

three datasets: MRI visible cancers, MRI invisible cancers and the two datasets combined. By

splitting the data we could further analyze if the MRI visible cancers have di�erences in the relapse

prediction compared to the MRI invisible cancers.

In the analysis we �nd that none of the variables from MRI invisible cancers are signi�cant in the

prostate cancer relapse prediction. In addition, all the variables regarding the biomarker AR have

no predictive power. The best biomarker for predicting prostate cancer relapse is Ki67 where high

staining percentage indicates greater probabilities for the prostate cancer relapse. The variables

of the biomarker Ki67 were signi�cant in multiple models whereas biomarkers ERG and PTEN

had signi�cant variables only in a few models. Arti�cial intelligence variables show more accurate

predictions compared to the visually obtained variables, but we could not conclude that the arti�cial

intelligence variables are purely better. We learn instead that the visual and the arti�cial intelligence

variables complement each other in predicting the cancer relapse.
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1 Introduction

In 2020, prostate cancer caused 375 000 deaths worldwide and it is the second most
common cancer among men (Sung et al. [1]). Risk evaluation and accurate diagnosis of
prostate cancer is needed before e�ective treatment. Nowadays risk evaluation is based on
four indicators: Gleason score, level of prostate-speci�c antigen, clinical stage assessment
and imaging stage assessment. Gleason score tells how aggressive the cancer seems and it
is given by a pathologist from samples of cells. A biomarker is a biological molecule found
in tissues that indicates normal or abnormal condition (Strimbu & Tavel [2]). Biomarkers
may give added value when evaluating the risk of prostate cancer or give additional
information to the clinical parameters (Moldovan et al. [3], Schoots et al. [4]).

In this thesis we analyze if biomarkers have relation to the prostate cancer relapse by
analysing the predictive abilities of biomarkers using logistic regression model. Relapse
also known as biochemical recurrence of prostate cancer is the outcome variable in the
statistical models. It is de�ned as two sequential measurements of high prostate-speci�c
antigen (>0.2 ng/mL). In the analysis we have four biomarkers to explain the relapse:
AR, ERG, PTEN and Ki67. They are the most studied in prostate cancer tissue and are
possibly implemented to clinical practice (Guo et al. [5], Wang et al. [6], Troyer et al. [7],
Berlin et al. [8]).

The four biomarkers are usually detected by immunohistochemistry and visual assessment
of the expression status or abundance of staining. In the analysis we have a variable mea-
sured visually and a variable measured by arti�cial intelligence (AI) for each biomarker.
Arti�cial intelligence image analysis is not yet in common clinical use, but it is studied as
a potential diagnostic assistance (Fourcade & Khonsari [9]). The arti�cial intelligence uses
neural network in this study and it is trained to analyze histological images for potential
biomarkers. The objective of the used arti�cial intelligence is to help standardize the
analysis, to catch the �ndings a pathologist may miss and to increase diagnostic accuracy
(Niazi [10]). One task of the thesis is to assess the applicability of arti�cial intelligence in
this �eld of study.

The data consist of 387 observations which are patients who all underwent robot-assisted
laparoscopic prostatectomy as primary therapy at the Helsinki University Hospital. The
study period was from January 2014 to September 2015. All patients underwent preop-
erative magnetic resonance imaging at discretion of urologist. The cancers were classi�ed
into two groups based on whether the cancer was visible in the magnetic resonance imag-
ing. The classi�cation was not exclusive for observations since a patient could have had
both magnetic resonance imaging visible and invisible cancer. The classi�cation of cancer
was taken into consideration in the analysis.
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The objective of this thesis is to model prostate cancer relapse with the given biomarkers.
We want to know if biomarkers have any relation to the prostate cancer relapse so it could
be predicted. In order to �nd out the applicability of arti�cial intelligence in this �eld of
study, we compare arti�cial intelligence to visual assessment of human observers in the
relapse prediction. Additionally we want to examine if the classi�cation of cancer a�ects
the relapse prediction.

The logistic regression model used in this thesis is a regression model used for describing a
dichotomized outcome variable with one or multiple explanatory variables. The unknown
parameters of the predictors are estimated using the maximum likelihood estimation and
the predictive power of the models is measured mainly with receiver operating character-
istic curve. Pursuing the models with the best �t, we used algorithm glmulti (Calcagno &
de Mazancourt [11]) to select the explanatory variables in the environment of R software
(R Core Team [12]).

This thesis begins with theoretical part where we de�ne the logistic regression model and
the practices a�liated to it: parameter estimation, signi�cance testing and selection of
covariates. There we also explain the important concept of odds ratio. From model theory
we advance to the model diagnostics where we go through issues that have to be checked
before the model can be used for analysis. After the theoretical part comes the data
chapter which explains each variable and the dataset. Finally, there is the analysis and
the conclusions. Appendix contains all the model summaries used in the analysis.
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2 Logistic Regression Model

The logistic regression model is a generalized linear model. Generalized linear models
have three following components. The �rst is the random component that describes
the randomness of the process. It de�nes the outcome variable y and its probability
distribution. Generalized linear models assume that observations y = (y1, . . . , yn)T are
independent. The second component is the linear predictor that describes the �xed part
of the process. A parameter vector β = (β1, . . . , βp)

T and a matrix X forms the linear
predictor βX.

The matrix X is a n× p model matrix that contains values of explanatory

variables xi = (xi1, xi2, . . . , xip)
T for the i = 1, . . . , n observations.

(2.1)

The third component is the link function that describes the relation between the random
component and the linear predictor with

g[E(y)] = βX,

where g is the link function.

In the case of logistic regression model the outcome variable is Bernoulli distributed with
probabilities of P (yi = 1) = πi and P (yi = 0) = 1 − πi. Note also that E(yi) = πi. It
can be viewed as binomial distribution where the number of trials ni = 1. The natural
parameter for the binomial distribution is ln[πi/1 − πi], so the link function for logistic
regression is the logit-link

(2.2) g(πi) = ln

(
πi

1− πi

)
,

where ln is the natural logarithm.

Logistic regression model is used to model the probability of a dichotomous outcome
variable. In this case the outcome variable is the Relapsed and is marked as

(2.3) yi =

{
0, if the cancer of observed patient i has not relapsed,

1, if the cancer of observed i patient has relapsed.

Logistic regression model can be written using two equivalent formulas when the explana-
tory variables are continuous. They are

(2.4) logit(πi) = ln

(
πi

1− πi

)
=

p∑
j=1

βjxij
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and

(2.5) πi =
exp

(∑p
j=1 βjxij

)
1 + exp

(∑p
j=1 βjxij

) ,
where i = 1, . . . , n. For categorical explanatory variables we use dummy variables.

The part of ln(πi/1 − πi) in the model formula is considered as log odds. The practical
problem with the log odds is that a change in the scale of the log odds is rather hard to
explain. To have a more useful interpretation we need to convert the log odds to odds
ratio (OR) (Yule [13]).

For example, let x be a dichotomous explanatory variable in a logistic regression model.
Now the odds ratio for x is the ratio of the odds for x = 1 to the odds for x = 0, which
is notated as

(2.6) OR =

π(1)

[1− π(1)]

π(0)

[1− π(0)]

.

The odds ratio describes how much more likely or unlikely the outcome variable yi is going
to get value 1 with x = 1 compared to x = 0. If the variable x is continuous the odds
ratio is the ratio of odds for π(x) to the odds for π(x+ 1). The relationship between the
coe�cient and the odds ratio makes the logistic regression model such a powerful analytic
research tool (Hosmer et al. [14]).

Odds ratio of 1 means that the explanatory variable xj shows no discrimination on the
prediction of the outcome variable. In this case the outcome variable yi expresses the
relapse of cancer. Less than 1 odds ratio of an explanatory variable means that the
variable decreases the occurrence of the cancer relapse. Greater than 1 odds ratio of
an explanatory variable means that the variable increases the occurrence of the cancer
relapse.

For example, if one dichotomized explanatory variable x1 denotes whether a specimen
does (x1 = 1) or does not (x1 = 0) have a staining from a speci�c biomarker. Let the
variable x1 have odds ratio of 0.5 in the logistic regression model. Then the odds of
cancer relapse among those patients whose specimen have a staining from the biomarker
is one-half the odds of cancer relapse for those patients who did not get stained from the
biomarker. An another example, where a continuous variable x2 has odds ratio of 1.2
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in the logistic regression model and the variable x2 indicates the percentage of an other
biomarker staining valued between 1-100. Now the odds of relapse multiply by 1.2 per
percentage increase of staining.

2.1 Estimation

Hosmer, Lemeshow, Sturdivant [14] is the main source for this section. We need to es-
timate the values of the unknown parameters β = (β1, . . . , βp)

T in the equation (2.5) in
order to �t the logistic regression model to a set of data. The values of βj, j = 1, . . . , p
are called coe�cients. They describe the change in log odds of having the outcome per
unit change in the explanatory variable xj, j = 1, . . . , p. The general method used for
parameter estimation in logistic regression model is maximum likelihood. The method of
maximum likelihood produces values for the unknown parameters β = (β1, . . . , βp)

T that
maximize the probability of obtaining the observed set of data. Usually the logistic regres-
sion model contains an intercept coe�cient β0 as well though it is not very conventional,
because it describes the log odds of y = 1 while all explanatory variables xj, j = 1, . . . , p
are equal to zero. A model containing only the intercept coe�cient and no explanatory
variables is called a null model.

The maximum likelihood method uses maximum likelihood function which expresses the
probability of the observed data as a function of the unknown parameters. There is
no analytical solution for maximizing the maximum likelihood function in the logistic
regression model so maximizing must be done numerically. The maximum likelihood
function of model (2.5) is

(2.7) L(β) =
n∏

i=1

π(xi)
yi [1− π(xi)]

1−yi .

However, it is simpler to use the logarithm of the maximum likelihood function, so we
de�ne it as

(2.8) l(β) = ln[L(β)] =
n∑

i=1

{yi ln[π(xi)] + (1− yi) ln[1− π(xi)]}.

We call the logarithm of the maximum likelihood function the log-likelihood function.

To proceed �nding the maximum value of the log-likelihood function, we di�erentiate the
log-likelihood function with respect to β0 and βj, j = 1, . . . , p, and setting the result to
zero. This yields equations

(2.9)
n∑

i=1

[yi − π(xi)]
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and for j = 1, . . . , p

(2.10)
n∑

i=1

xi[yi − π(xi)].

The values of β obtained as the solution to the log-likelihood equations are called the
maximum likelihood estimates and are denoted with β̂. We report the values of β̂ under
the title Estimate in tables in the analysis chapter.

2.2 Signi�cance Testing of Coe�cients

Again, this section utilizes literature of Hosmer et al. [14] unless informed otherwise. After
estimating parameters we want to asses the signi�cance of the explanatory variables in
the model. In order to check if an explanatory variable has a signi�cant relation to
the outcome variable, we need to perform a statistical hypothesis test. We set the null
hypothesis to be

(2.11) H0 : βj = 0

and the alternative hypothesis

(2.12) H1 : βj 6= 0.

The p-value signi�cance threshold is set to be 0.05.

There are several ways to determine whether the explanatory variables in the model are
signi�cantly related to the outcome variable. Hosmer et al. [14] suggests that the usual
way to test the signi�cance of the variable is with the likelihood ratio test (Wilks [15]). It
is favoured since it shares the same principles with signi�cance tests of linear regression
models. The likelihood ratio test is formed using two models, where one is estimated
with the speci�c variable and one is estimated without it. Then the predicted values
of the two models are compared to the observed values of the response variable. In the
case of logistic regression, the comparison of observed to predicted values utilizes the
log-likelihood function de�ned in equation (2.8). Likelihood ratio test uses the deviance
statistic

D = −2 ln

[
(likelihood of the �tted model)

(likelihood of the saturated model)

]
= −2

n∑
i=1

[
yi ln

π̂i
yi

+ (1− yi) ln
1− π̂i
1− yi

]
.

(2.13)
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The saturated model in (2.13) is a perfect �tting model, which is obtained when the model
contains as many parameters as there are observations in the data. A perfect �tting model
is not useful in practice whereas a parsimonious model is useful in estimating the true
relation.

Using deviances we can compute the G test statistic

G = D(model without the variable)−D(model with the variable)

= −2 ln

[
(likelihood without the variable)

(likelihood with the variable)

]
.

(2.14)

Under the null hypothesis, the G test statistic follows a chi-square distribution with 1
degrees of freedom where we can obtain the p-value for the hypothesis deciding if the
explanatory variable is signi�cant in the model.

We can use statistically equivalent Wald test (Wald [16]) for signi�cance testing. Under
the null hypothesis, Wald test statistic follows a standard normal distribution, where the
p-value can be obtained. The Wald test statistic is de�ned as

(2.15) W =
β̂j

ŜE(β̂j)
,

where ŜE(β̂j) is the estimate of standard error of β̂j. We can obtain an estimated standard

error of β̂j from the inverse of the estimated information matrix Î which is

(2.16) Î
−1

= (XT V̂X)−1,

where V̂ denotes n × n diagonal matrix having the π̂i(1 − π̂i) as the main element and

X is de�ned in equation (2.1). The square roots of the main diagonal elements of the Î
−1

are the estimates of standard errors of β̂j.

2.3 Selecting Covariates

The section is based on Calcagno & de Mazancourt [11] except for the parts where it is
stated otherwise. In some cases data can contain a large amount of possible explanatory
variables that may also be irrelevant or unnecessary to describe the outcome variable. As
a result we may need to drop some of them from the model. In the empirical analysis we
start from a benchmark model containing all explanatory variables. Using the benchmark
model we can seek for the best �tting model as well as various models with speci�c sets
of potential explanatory variables to obtain comparison.
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One method to select only the important explanatory variables for the model is a stepwise
method. It begins with the benchmark model and then one proceeds to drop a non-
signi�cant explanatory variable or an explanatory variable which reduces the �t of the
model least. The procedure of dropping non-signi�cant variables can be repeated to the
point where all the explanatory variables are signi�cant. The stepwise method can also be
performed the other way around by starting from a null model without any explanatory
variables and then adding the most signi�cant ones.

When using the stepwise method, the decision of dropping or adding a variable can be
justi�ed with t-test or some other similar hypothesis testing tool together with a speci�ed
signi�cance level. Choosing a proper signi�cance level can cause problems since the num-
ber of tests may rise to unexpectedly high (Harrell [17]). Using the information criteria
can avoid the use of hypothesis testing tools and the adjustments required for the proper
signi�cance level. Then we can compare the models during the procedure of adding or
dropping the explanatory variable with information criteria.

The stepwise method is not robust, since the outcome is dependent on the starting model.
Starting from the benchmark model and starting from the null model can lead to dissimilar
models. Using signi�cance level as a decisive factor and as a stopping rule can naturally
lead to di�erent models just by adjusting the signi�cance level.

We decide to use only information criteria when selecting the explanatory variables for the
models. Giving each model an information criterion value allows us to rank the models.
Thereby the model that holds the smallest value of information criterion is considered to
have the best �t. The important di�erence in using only information criterion to stepwise
method is that the information criterion ensures that the best �tting model can always
be identi�ed.

Our goal at selecting covariates involves seeking the best model that can still accurately
re�ect the true outcome experience of the data. According to Hosmer et al. [14], the
commonly used information criterion utilized to compare models with di�erent numbers
of covariates is the Akaike information criterion (AIC) (Akaike [18]). The measure of
Akaike information criterion for a model M can be obtained from

(2.17) AICM = −2[l(β̂M)− k],

where l(β̂M) is the maximized log-likelihood for model M and k is the number of param-
eters in the model M .

However, we use the Bayesian information criterion (BIC) (Schwarz [19]) for the selection
of the covariates because it is known to punish for increasing the number of parameters
more severely than Akaike information criterion (Agresti [20]). The more parsimonious
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the model is, the better. This is why we chose the Bayesian information criterion and
its nature of repelling any unnecessary covariates over the Akaike information criterion.
Minimizing the number of covariates in the model has its advantages: The model is more
likely to be numerically stable and is less dependant on the observed data. Increasing
the number of covariates in the model increases the estimated standard errors (Hosmer et
al. [14]). Due to these facts we also use the Bayesian information criterion on the model
ranking. The Bayesian information criterion is de�ned for model M as

(2.18) BICM = k ln(n)− 2[l(β̂M)],

where l(β̂M) is the maximized log-likelihood for model M , k is the number of parameters
in the model M and n is the number of observations in the data.

2.3.1 Using Glmulti of R Software

We do not settle for manually browsing through candidate models searching for the best
�tting one. To get further from benchmark models with all covariates we use the algorithm
Glmulti for �nding the best �tting model. The algorithm has two di�erent settings: brute
force and genetic. The brute forcing type goes trough every possible variation of given
set of explanatory variables to predict the given outcome variable. After going through
all possible models we can obtain the best �tting model by the value of the Bayesian
information criterion. The algorithm itself does not �t any models. It just produces
model formulas and passes them onto desired model �tting function of R software.

The genetic version of the algorithm is more complicated than simply going through all
the possible combinations. However, it can be crucial when the number of candidate
models is too large for brute forcing. Going through every single combination of variables
can quickly get over the computing limitations especially when we allow the algorithm to
form models with interacting variables.

The genetic algorithm picks an adjustable size of population of models. In every gen-
eration, models are �tted and the values of Bayesian information criterion are used to
calculate �tness of the model, ω. The �tness of the ith model is

(2.19) ωi = exp(−(ICi − ICbest)),

where ICbest is the best value of Bayesian information criterion in the current population
of models. Higher IC value means lower �tness for the model.

The genetic algorithm contains three di�erent methods that produce models for the next
generation: asexual reproduction, sexual reproduction and immigration. The rates of
sexual reproduction and immigration can be controlled via given parameters. A model
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which is a product of asexual reproduction is a copy of its parent which will contain
a component of mutation. Mutation probability of a component in the model is an
adjustable parameter for asexual reproduction. Asexual reproduction models are drawn
randomly from the parent generation with a probability proportional to �tness. A model
which is a product of sexual reproduction has two parent models which are selected also
randomly from the parent generation with a probability proportional to �tness. This
selection of parent models guarantee the convergence of the algorithm to the best �tting
model. Components of parent models are combined to the model produced by sexual
reproduction. Mutation is possible too in the method of sexual reproduction. A model
which is a product of immigration has the state of each component chosen randomly
with equal probability. Immigration produced models play important part in the genetic
version of the algorithm, because they have the biggest changes in the structure of the
models which are �tted. This means that immigration is a way to avoid being stuck
around a local optimum of Bayesian information criterion value and improves convergence
in many cases (Yang [21]).

The genetic version of the algorithm has three di�erent adjustable stopping rules as pa-
rameters. The �rst is a target improvement in the best values of Bayesian information
criterion. The second is target improvement in the average values of Bayesian informa-
tion criterion. The third parameter is the number of every consecutive 20 generations the
targets can be failed to be ful�lled until stopping the algorithm. This means that if the
observed improvements are below the given target values then the genetic algorithm is
declared not to have signi�cantly improved. This routine is checked every 20 generations.
If during the amount of given consecutive 20 generations the routine has not found any
signi�cant improvement, the algorithm stops.

In the analysis where the genetic version of the algorithm was used, we ran it through
a few hundred times since it does not always converge to the same outcome. Following
parameter values were chosen randomly between two values. For population size of 100-
150 the mutation probability was 0.001-0.1, the sexual reproduction rate was 0-0.2, the
immigration rate was 0-0.5, the stopping rule of target best IC was 0-0.5, the stopping rule
of target average IC was 0-0.5, and the stopping rule of every consecutive 20 generations
the targets can be failed was 2-5. These parameter values were suggested by Calcagno &
de Mazancourt [11].

Figure 1 illustrates the operation of the algorithm when applied to dataset A, where each
dot is one �tted model. The algorithm has brute forced through all possible 256 candidate
models and we can see that there exists one model with truly lower value of the Bayesian
information criterion than the other models. The red line indicates the two units of the
Bayesian information criterion away from the best �tting model.
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Figure 1: The values of the Bayesian information criterion for models formed from dataset
A using the algorithm glmulti on brute force setting.

3 Model Diagnostics

In the previous chapter we already introduced a method to �nd a model that is considered
to have the best �t using the value of the Bayesian information criterion. However, the
�t is not the only measurable feature a model can have. In this chapter we demonstrate
methods to further evaluate the competency of the logistic regression model.

3.1 Checking Collinearity

This section is based on Agresti [20]. In the logistic regression model with multiple
covariates can happen a phenomenon called collinearity. It means that one covariate has
exact linear dependence to one or multiple other covariates. In this case we use the term
collinearity also when there is a near linear dependency. The source of collinearity is the
data and it is not caused by the formed model.

Logistic regression is sensitive to signi�cant collinearity between any of the independent
explanatory variables in the model. However, collinearity does not reduce the predictive
power or correctness of the model. Collinearity mainly a�ects inference regarding indi-
vidual covariates. For example an explanatory variable can lose its signi�cance if another
predictor in the model has collinearity with it. This is critical to the analysis, because we
speci�cally want to treat the variables as individuals to get more accurate results.
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To check for any possible collinearity among the covariates in the model we use the
variance in�ation factor (VIF). The measure of the variance in�ation factor for covariate
xi is

(3.1) VIFi =
1

1−R2
i

,

where R2
i is the coe�cient of determination for the regression of xi on all remaining

independent variables included in the model. The variance in�ation factor is the multiple
by which the variance increases, because the other covariates are correlated with the
covariate xi. The minimum value of the variance in�ation factor is 1, which would imply
no collinearity between the covariate xi and the remaining covariates. Values exceeding
10 indicate serious collinearity which should be handled (Menard [22]).

If collinearity occurs in a model, one approach is to remove those covariates that have
signi�cant collinearity. Removing such redundant covariates can reduce the standard
errors of the other estimated e�ects. Another method to treat collinearity is to combine
the collinear covariates especially when they are indicators of a common feature.

3.2 Predictive Power

In this section we introduce two methods to measure predictive power of a model: classi-
�cation table and receiver operating characteristic curve. Even though a model can have
a good �t it does not mean the model classi�es well. Also, accurate or inaccurate classi�-
cation does not address the criteria for a good �t of the model (Hosmer et al. [14]).

3.2.1 Classi�cation Table

This subsection is based on Hosmer et al. [14]. In the method of classi�cation table, the
built model cross-classi�es the dichotomized observed outcome yi with a prediction ŷi of
whether yi = 0 or yi = 1. The prediction ŷi for observation i is ŷi = 1, when π̂i > π0 and
ŷi = 0, when π̂i < π0. The probability π0 is the pre-selected cut-o� value. Typically the
cut-o� point is set π0 = 0.50.

The classi�cation table forms a 2 × 2 table as an outcome where we see the number of
correct and false classi�cations (Table 1). The classi�cation table yields measures of sen-
sitivity and speci�city. Sensitivity is de�ned as P (ŷ = 1 | y = 1), which is obtained from
Table 1 using formula a/(a + c). Speci�city is de�ned as P (ŷ = 0 | y = 0), which is
obtained from Table 1 using formula d/(b + d). A model with high sensitivity classi�es
observations with positive outcome well and a model with high speci�city classi�es obser-
vations with negative outcome well. These are not exclusive, so a model can classify the
observed outcome well despite the value of the outcome.
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Table 1: An example of a classi�cation table.

Observed outcome y
1 0 Total

Prediction ŷ
1 a b a+ b
0 c d c+ d

Total a+ c b+ d

Measures such as sensitivity and speci�city derived from a 2×2 classi�cation table depend
heavily on the distribution of the estimated probabilities in the observed data. That is
why the �t of a model should not be relayed on a classi�cation table. These measures
might depend entirely on the ratio of the observed outcome y rather than a correctness
of a model.

The disadvantage of the classi�cation table is that the predictions are highly dependant
from the value of the cut-o� term π0. Using only the classi�cation table when measuring
predicting power of a model can give biased results, but it is suitable when the only goal
of an analysis is classi�cation. In the case of logistic regression model, classi�cation table
can be used as a supplement tool when assessing predicting power of the model.

3.2.2 Receiver Operating Characteristic Curve

The classi�cation table decided the outcome of the prediction ŷ by only one cut-o� point
whereas the receiver operating characteristic curve is more informative method for mea-
suring predictive power of a model. It takes into consideration the estimated sensitivity
and speci�city for all the possible values of cut-o� point π0. The receiver operating char-
acteristic curve is normally displayed in a plot as a concave line connecting points (0, 0)
and (1, 1). The bigger the area under the curve (AUC) in the plot is, the better predictive
power the model has. These principles are illustrated in Figure 2 (Agresti [20]).

The sensitivity is also known as the true positive rate. The false positive rate is P (ŷi =
1 | yi = 0) = (1 − speci�city). The receiver operating characteristic curve is de�ned as
a plot of the true positive rate as a function of the false positive rate when the values of
the cut-o� point π0 decreases from 1 to 0. For example, when the cut-o� point π0 is close
to the value 1, then almost all predictions are ŷi = 0. In contrast, when the cut-o� point
π0 is close to the value 0, then almost all predictions are ŷi = 1 (Agresti [20]).

The area under curve takes values between 0 and 1. In general, if the area under curve
is equal to 0.5, then prediction shows no discrimination. There exists no strict thresh-
olds, but only guidelines to categorize the values of the area under curve. We consider
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Figure 2: An example of two receiver operating characteristic curves. One indicating good
predictive power and other indicating poor predictive power.

0.7 ≤ AUC < 0.8 to be acceptable discrimination and 0.8 ≤ AUC < 0.9 to be excellent
discrimination (Hosmer et al. [14]).

3.3 Goodness of Fit

The section is based on Hosmer et al. [14] unless stated otherwise. Even though we
have found a well �tted model with purposefully selected covariates using the Bayesian
information criterion, we still do not know whether the probabilities produced by the
model accurately re�ect the observed outcome variable. To answer that, we use a statis-
tical goodness of �t test. It gives us a summary measure for a model whereas selecting
covariates is examination of the individual components of a model.

To �nd out whether the predicted values of the model are accurate compared to the
observed values, we chose to use the Hosmer�Lemeshow goodness of �t test (Hosmer &
Lemeshow [23]). There are a few limitations in the Hosmer�Lemeshow goodness of �t
test. The test does not measure the actual amount of goodness of �t, it just detects if
there is signi�cant lack of �t. Additionally, if there is occurrence of poor �t, the test does
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not tell the cause of it. The test can only be performed for the �tted values determined
by the covariates in the model and not for the set of all available covariates. This means
that each model has to be tested separately after the desirable set of covariates has been
found.

To obtain the test we set null hypothesis

H0 : Cannot conclude that model does not �t

and the alternative hypothesis

H1 : Model does not �t.

So the desirable outcome from the the Hosmer�Lemeshow goodness of �t test is a large
p-value that indicates adequacy of the model.

Let xi = (xi1, . . . , xip)
T be the i:th observation of the explanatory variables, i = 1, . . . , n.

It can happen that xi = xl for some i 6= l, so that the vector of explanatory variables
are equal in di�erent observations. We denote with S the number of unique values of
observed xi, i = 1, . . . , n, and note that it may happen that S < n. We adopt notation
mS for all the observations xi = xs, i = 1, . . . , n and s = 1, . . . , S. Further, let yS be
the number of y = 1 outcomes among the mS observations. From this we can conclude
that

∑S
s=1ms = n and

∑S
s=1 ys = n1, where n1 denotes the number of y = 1 outcomes in

the data. After this modi�cation, we proceed to group the data into g groups. For each
observation i we assign an estimated probability π̂s = P̂ (yi = 1 | xi = xs) and then order
the observations from the smallest estimated probability to the largest. The g groups are
formed then with the �rst group containing n′1 = n

g
observations with the smallest values

of π̂s and the last group n′g = n
g
observations with the largest values of π̂s, s = 1, . . . , S.

The Hosmer-Lemeshow goodness of �t statistic, Ĉ, can be obtained from the following
formulas

Ĉ =

g∑
k=1

[
(o1k − ê1k)2

ê1k
+

(o0k − ê0k)2

ê0k

]

=

g∑
k=1

[
(o1k − ê1k)2

n′kπ̄k
+

(n′k − o1k − (n′k − ê1k))2

n′k(1− π̄k)

]

=

g∑
k=1

[
(o1k − n′kπ̄k)2

n′kπ̄k(1− π̄k)

]
,

(3.2)

where

o1k =

ck∑
s=1

ys,
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o0k =

ck∑
s=1

(ms − ys),

ê1k =

ck∑
s=1

msπ̂s,

ê0k =

ck∑
s=1

ms(1− π̂s),

π̄k =
1

n′k

ck∑
s=1

msπ̂s

and ck is is the number of covariate variations in the kth group. The Hosmer-Lemeshow
goodness of �t test statistic Ĉ asymptotically follows a χ2 distribution with g− 2 degrees
of freedom.

The parameter g is the number of groups and it is commonly set to be g = 10. The
Hosmer-Lemeshow goodness of �t test is practical, because it outputs a single value which
is not hard to interpret. It gets the most accurate results when the S is large and both
outcomes (yi = 0 and yi = 1) are frequently occurring. The probability of missing an
important deviation from the �t is higher in the the process of grouping with a small
data. The simulation results reported in the literature of Canary et al. [24] indicate
that the Hosmer-Lemeshow goodness of �t test is not especially accurate for data sizes
n < 400.

The p-value obtained from the Hosmer-Lemeshow goodness of �t test should not be used
for selecting covariates or comparing models. If two models both have p-value over 0.05
from the Hosmer-Lemeshow goodness of �t test. One is not better than the other, the
conclusion is that the both models �t. Only if a third model has p-value under 0.05 then
we would favour the other two models.

3.4 In�uence Diagnostics

In this section the main source is Agresti [20] unless stated otherwise. After assessing the
goodness of �t, the last phase in building a logistic regression model is to check individual
observations that are extremely in�uential on the model. Maximum likelihood estimation
method is sensitive to in�uential observations and so only a few exceptional observations
can undermine the correctness of the model (Pregibon [25]). We try to identify leverage
and outliers that are signi�cant in in�uence diagnostics. Then we decide whether the
speci�c observations should be included in the model.
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If an outcome value of an observation does not follow the general trend of the model,
we call that observation an outlier. If an observation i has extreme values of predictor
variables xi = (xi1, . . . , xip)

T , we say that the particular observation has high leverage.
In this case extreme means unusually low or high values. Even abnormal combination of
values of predictors can cause high leverage.

There are multiple ways to identify in�uential observations and in this case we use the
standardized residuals and the Cook's distance. Residual is the measure of di�erence
between the observed value and the estimated value. The standardized residuals have
similarities with the Pearson's residuals, but they take leverage into account. The Cook's
distance uses leverage too, because it employs standardized residuals.

3.4.1 Residuals

First we introduce the Pearson's residual. For observation i with observed outcome value
yi the Pearson's residual ei is

(3.3) ei =
yi − π̂i√
v̂ar(yi)

=
yi − π̂i√

π̂i(1− π̂i)/ni

,

where π̂i is the estimated probability for the outcome value yi.

For the standardized residual we need to acquire the measure of leverage ĥii. It can be
obtained from the so-called hat matrix for logistic regression

(3.4) ĤW = Ŵ
1/2
X(XTŴX)−1XTŴ

1/2
,

where the weight matrix Ŵ is n×n diagonal matrix with element ŵii = niπ̂i(1− π̂i), i =
1, . . . , n and X is de�ned in equation (2.1). The standardized residual for ith observation
is

ri =
ei√

1− ĥii
=

yi − π̂i√
[π̂i(1− π̂i)(1− ĥii)]/ni

.
(3.5)

The advantage of the standardized residuals compared to the Pearson's residuals is that
the standardized residual approximate N(0, 1) and more appropriately recognise redun-
dancies. Absolute standardized residual values of larger than about 3 provide evidence of
signi�cant in�uence.
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3.4.2 Cook's Distance

The Cook's distance is based on the change in the estimated parameter values β̂, when
the speci�c observation i is removed from the data. As said, the Cook's distance for
observation i uses the leverage ĥii obtained from the hat matrix ĤW and the standardized
residual ri. The measure of Cook's distance Di for observation i is

(3.6) Di = r2i

[
ĥii

u(1− ĥii)

]
,

where u is the number of coe�cients in the model.

Martin & Pardo [26] suggests using (2u/n) as the threshold value when deciding whether
an observation is extremely in�uential. If an observation has the evidence to be extremely
in�uential by either of the shown methods, we can proceed to remove the observation
from the model. After the removal we need to re�t the model again. Then we can make
comparisons and evaluate the robustness of the models.
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4 Data

After radical prostatectomy, all the patients are checked routinely to measure their prostate-
speci�c antigen. The outcome variable Relapse is true if the patient has had prostate
cancer relapse. The relapse is de�ned as two sequential measurements of high prostate-
speci�c antigen (>0.2 ng/mL) after surgery. We try to explain whether the relapse can
be predicted with biomarkers.

The data contains two di�erent cancer classi�cations. If the cancer was already spotted
by a radiologist on the magnetic resonance imaging (MRI), the cancer is classi�ed as
MRI visible. The area where the cancer was found in MRI is called a region of interest.
Otherwise the cancer was MRI invisible and was found afterwards by a pathologist. We
split the data in three di�erent datasets: Dataset A, MRI visible exclusively (n=274),
Dataset B, MRI invisible exclusively (n=168), and the third Dataset C is MRI visible
and invisible combined (n=130). Observations in dataset C must have had cancer lesions
spotted in the MRI by the radiologist and afterwards by the pathologist elsewhere than
in the region of interest.

An observation is dropped from the analysis if it has at least one null value in any used
variable. In this data, there are less observations for MRI invisible cancers. The combined
dataset C is naturally the smallest as the patient must have had a MRI visible cancer and
a MRI invisible cancer to be in it.

The dataset contains four biomarkers for which we have both a visually provided value
by the pathologist and an arti�cial intelligence produced value. In total we have 8 vari-
ables to use as logistic regressions predictors in datasets A and B. Dataset C contains 16
explanatory variables which are all the explanatory variables from datasets A and B. The
biomarkers are called: AR, ERG, PTEN and Ki67. Each biomarker behaves and reacts
di�erently which is why the values of each biomarker in some of variables have di�erent
quantity.

If a patient have had a spotted cancer by the radiologist, the region of interest is inspected
in 1-3 tissue microarray cores. The MRI invisible cancers have 1 core for examination.
The cores are then cut to 4 µm-thick sections for the biomarker staining. While some
patients have multiple values for a single MRI visible cancer variable and some only one,
we have to modify them into a single value without losing information.

Biomarker AR, androgen receptor, is known for its ability to be the driver of prostate
cancer progression. Usual non-surgical treatment option for advanced prostate cancer is
androgen deprivation therapy (Wadosky & Koochekpour [27]). The variable AR visual
has a fuse score given for each 1-3 inspected core. Fuse score is a product of strength and
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percentage scores. Strength is the staining intensity of the biomarker AR. It takes the
following values: 0 indicates negative value, 1 indicates low value, 2 indicates intermediate
value and 3 indicates strong values. The strength value is then multiplied by the per-
centage of the biomarker AR positive nuclei. To have only one value from these multiple
fuse scores, we use the average of them in the analysis. For AR visual to be relative to
other variables we divided the �nal value by three to be in the range of percentages and
not 0-300. In the variable AR AI the arti�cial intelligence has counted the amount of
biomarker AR positive and negative nucleus. The value we use in the variable AR AI is
positive nucleus percent.

Biomarker ERG, ETS-related gene, is an indicator for tumour carrying the transmembrane
protease serine 2 gene and ERG fusion. It is the most common gene alteration in prostate
cancer, but there is no prognostic value for its tissue-based detection proven (Wang et
al. [6]). The variable ERG visual is dichotomized and biomarker ERG positive in one
of the three cores means that the variable ERG visual gets value 1. The variable ERG
AI sums biomarker ERG positive and negative nuclei of all cores and then takes ratio of
positive to negative on a log10 scale.

Biomarker PTEN, phosphatase and tensin homolog, is a tumour suppressor gene. The
inactivation of PTEN changes gene expression in prostate cancer and is related to higher
Gleason score, lower disease-speci�c survival time and greater probability of secondary
therapies after radical prostatectomy (Lahdensuo et al. [28]). The variable PTEN visual
is dichotomized and gets value 1 if all the cores are biomarker PTEN positive. If even one
of the cores is biomarker PTEN negative, the value of PTEN visual is then 0. The variable
PTEN AI does not count nuclei but biomarker PTEN positive and negative areas. The
variable PTEN AI sums biomarker PTEN positive areas and negative areas of all cores
and then takes ratio of positive to negative in mm2 on a log10 scale.

Biomarker Ki67 is regularly used to measure cell proliferation. Earlier analysis proved that
high expressions of biomarker Ki67 is associated with unfortunate outcome of prostate
cancer for example death of metastasis (Berlin et al. [8]). The variable Ki67 visual is
mean percentage of all biomarker Ki67 positive nuclei in cores. Estimating percentages
visually is more demanding task than obtaining the values for the other visual variables.
The variable Ki67 visual has interesting side note linked to it in the data: "Mostly a quick
test to have something to measure against the AI output". The variable Ki67 AI is mean
percentage of nuclei in cores that are biomarker Ki67 positive.
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Table 2: Summary of the Dataset A.

n=274, Relapsed=51 (19%)
Variable Min Max Median Mean
AR visual 0.0 98 54 53
AR AI 12 98 91 85
ERG visual 0 1 0 0.27
ERG AI -3.8 1.2 -2.3 -1.8
PTEN visual 0 1 1 0.62
PTEN AI -2.5 6.5 2.2 1.9
Ki67 visual 0 12 1.7 2.0
Ki67 AI 0.026 21 3.0 3.8

5 Analysis

The analysis is done using R software (R Core Team [12]) including packages: broom
( [29]), caret ( [30]), car ( [31]), pROC ( [32]) and ROCit ( [33]).

We want to know if the biomarkers could predict prostate cancer relapse. Besides the
predictive power of the biomarkers, which is the main question, we compare MRI visible
cancers to MRI invisible and arti�cial intelligence to visual. We use logistic regression
model to predict the dichotomized relapse variable with the four biomarkers and the total
of 16 explanatory variables, which 8 concern Dataset A and 8 concern Dataset B. These
variables are explained in chapter 4.

First we analyze the dataset A, then we analyze the dataset B, and lastly we analyze the
dataset C. In the analysis of dataset A we use only variables from MRI visible cancers
(n=274) in the statistical models. In the analysis of dataset B we use only variables that
are from MRI invisible cancers (n=168) in the statistical models. The third case, analysis
of dataset C (n=130), uses variables from both dataset A and dataset B in the statistical
models. The models formed from dataset A are considered the main models, because of
the lack of data, we cannot a�ord to lose any more observations.

In all three cases we begin the analysis by building a benchmark model with all explanatory
variables included. For comparison of arti�cial intelligence and visual we use models with
separated arti�cial intelligence and visual covariates. Possible collinearity is checked via
variance in�ation factor. We use values of Bayesian information criterion to rank the
models. The covariates in the best �tting models are chosen by algorithm glmulti by
lowest possible values of Bayesian information criterion. To check the goodness of �t
we use the Hosmer�Lemeshow test with g = 10 and for predictability we use receiver
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Table 3: The estimates of Model A1, the benchmark model of dataset A.

Variable Estimate OR (95% CI) p-value
AR visual 0.0024 1.00 (0.98 - 1.02) 0.819
AR AI 0.0029 1.00 (0.98 - 1.03) 0.839
ERG visual -0.77 0.46 (0.11 - 2.03) 0.304
ERG AI -0.14 0.87 (0.52 - 1.42) 0.587
PTEN visual 0.31 1.37 (0.47 - 4.17) 0.570
PTEN AI -0.30 0.74 (0.54 - 1.00) 0.052
Ki67 visual 0.16 1.18 (0.99 - 1.40) 0.062
Ki67 AI 0.14 1.15 (1.04 - 1.28) 0.005*

operating characteristic curve and its area under the curve. We use standardized residuals
and Cook's distance for checking if the models contain extremely in�uential observations.
These methods we employ in the analysis are explained in sections 2 and 3. The p-value
signi�cance threshold is set to be 0.05 in the logistic regression models.

Section 5.1 holds the analysis of dataset A. In subsections 5.1.1 and 5.1.2 are the best
two competing models for dataset A. Comparison of visual and arti�cial intelligence is
found in subsection 5.1.3. Dataset B is treated in section 5.2. Lastly the analysis of the
combined dataset C is in section 5.3. Appendix A contains the R software printouts of
the estimated models.

5.1 Logistic Regression for Dataset A

In this section we analyze dataset A which has all MRI visible cancer variables as pre-
dictors. After seeing how each variable performs in the benchmark model A1 we let the
glmulti algorithm calculate us a model with the best predictors. For dataset A we build
the additional models using arti�cial intelligence and visual variables.

Next we interpret the Model A1, see Table 3 for reference. The variables for biomarker AR
seem to be bad predictors on this model. The estimates for the variables AR AI and AR
visual are very close to zero and the p-values indicate that neither of them has no e�ect on
the relapse. The estimates for the ERG AI and ERG visual variables are negative which
indicates that positive values of ERG variables lead to low probabilities of relapse. The
biomarker PTEN is the only biomarker that has con�ict between the arti�cial intelligence
and visual variables. These variables of biomarker PTEN di�er in the e�ect as well as in
the predictive ability. The variable PTEN visual indicates that positive values of it lead
to high probabilities of relapse whereas variable PTEN AI indicates that positive values
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of it lead to low probabilities of relapse. The variable PTEN visual has the largest odds
ratio con�dence interval so the odds ratio has the lowest precision.

The only variable with statistically signi�cant p-value is Ki67 AI. In this model it is a
very good predictor for the probability of relapse compared to the others. It has small
con�dence interval of odds ratio and a very small p-value. The estimate and the odds ratio
are strongly towards relapse as the variables of Ki67 are in percentages. One percent of
Ki67 AI positive has 1.15 higher odds than zero percent of Ki67 AI. The estimates suggest
that the variable Ki67 visual has more e�ect in the model than the variable Ki67 AI per
percent of positive biomarker Ki67. The variable Ki67 visual has conservative values
within a small gap whereas the values of variable Ki76 have wider range. Therefore, we
observe a larger estimate and larger odds ratio for the former variable.

The benchmark model of dataset A with all covariates, Model A1, have area of 0.708 under
the receiver operating characteristic curve. That is considered to be mediocre predictive
power. The value of Bayesian information criterion of Model A1 is 288 and the Hosmer-
Lemeshow goodness of �t test suggests that there is no evidence for poor �t with p-value
of 0.50. There was no signi�cant collinearity, because when the highest value of variance
in�ation factor is 3.5.

5.1.1 Best Model for Dataset A

When the algorithm glmulti chooses the covariates in the dataset A by the lowest value of
Bayesian information criterion, the outcome is Model A2 (Table 4) that contains only one
covariate Ki67 AI with Bayesian information criterion value 261. Figure 3 illustrates the
regression curve of the Model A2. Also, the second best model would have had also only
one covariate, Ki67 visual with Bayesian information criterion value 267. We decide that
the second best model is not worthwhile, because the di�erence between values of Bayesian
information criterion is greater than two units (Calcagno & de Mazancourt [11]). The
algorithm with the brute force setting generates all possible 2p candidate models, where
p is the number of the explanatory variables. A single run of the algorithm takes only a
few seconds on average with 8 explanatory variables.

Figure 4 gives the distribution of the variable Ki67 AI in Model A2 between the non-
relapsed (0) and the relapsed (1). Figure 5 depicts the distribution of the variable Ki67
visual. We observe that the values of the biomarker Ki67 (both visual and arti�cial
intelligence) are a tiny bit higher for the relapsed than for the non-relapsed. The di�erence
between the relapsed and non-relapsed is larger in the variable Ki67 AI.

The area under the receiver operating characteristic curve for Model A2 with algorithm
chosen covariates is 0.64 and the Hosmer-Lemeshow goodness-of-�t test suggests no evi-
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Figure 3: Regression curve of the Model A2 which contains only the variable Ki67 AI.

Table 4: The estimates of the Model A2.

Variable Estimate OR (95% CI) p-value
Ki67 AI 0.17 1.19 (1.08 - 1.31) 0.00033*

dence of poor �t with p-value of 0.79.

We begin to check if the model contains any extremely in�uential observations. Figure
6 shows that non-relapsed samples have very small spread of standardized residuals and
almost all are packed on the same line between 0 and -1. The relapsed samples on
the top however have notably higher standardized residuals as they are settled between
1 and 2. We cannot conclude that the model contains any in�uential observations by
the standardized residuals since none of them exceeds the limit of value 3 (Hosmer et
al. [14]).

The situation of extremely in�uential observations is di�erent when we consider the Cook's
distances in Figure 7. One observation stands out heavily and we can proceed to remove
it from the model. The same observation indexed 202 can be seen at the bottom in Figure
6. It is a non-relapsed observation with the largest value of variable Ki67 AI (20.7) in the
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Figure 4: The distribution of the variable Ki67 AI in Model A2 with non-relapsed (0) and
relapsed (1).

Figure 5: The distribution of the variable Ki67 visual with non-relapsed (0) and relapsed
(1).
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Figure 6: Standardized residuals for Model A2.

data. When the observation is removed from the Model A2, we �t the model again. The
new Bayesian information criterion value is 258 and the area under the receiver operating
characteristic curve is 0.65.

The Bayesian information criterion value suggests that the algorithm chosen Model A2
is indeed better compared to the Model A1. It may not be as usable because the area
under the receiver operating characteristic curve is drastically better in Model A1 with
all covariates. Even the benchmark Model A1 has the area under the receiver operating
characteristic curve of 0.71, which is acceptable. The literature states that models with
area under the curve equal or larger to 0.8 predict excellently (Hosmer et al. [14]). How-
ever, the value of area under the receiver operating characteristic curve gets punished in
Model A2 for the low number of covariates. This is especially true in this data where
many relapses still happen with low values of Ki67 and relapsed observations have higher
standardized residuals than others. We conclude that the relapse can not be trustfully
explained by only one biomarker or covariate.

5.1.2 Best Model for Dataset A With Interacting Covariates

We return back to the whole dataset A and modify the set of covariates by allowing
all possible two variable interaction terms. Interaction terms increase the number of
candidate models to 2p2 , where p is the number of the explanatory variables so we use the
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Figure 7: Cook's distance for Model A2.

Table 5: The estimates of Model A3.

Variable Estimate OR (95% CI) p-value
Ki67 AI 0.21 1.23 (1.10 - 1.38) 0.00043*
Ki67 visual : ERG AI -0.11 0.90 (0.84 - 0.95) 0.00069*
Ki67 AI : PTEN AI -0.034 0.97 (0.94 - 0.99) 0.022*

genetic version of the algorithm glmulti. While p = 8, the number 282 is so large that we
would have never gone through all the candidate models with the brute force setting of
the algorithm. A single run of the algorithm with the genetic setting takes 15 seconds on
average. The algorithm was run through a few hundred times with di�erent parameter
values since it does not always converge to the same outcome. All in all, the genetic
setting made it possible that the computing could be done in the matter of hours rather
than taking almost an in�nity.

When the algorithm has two-level covariates enabled, it no longer results in a model with
only the variable Ki67 AI as its only predictor. From the previous models it is no surprise
that the variable Ki67 AI is also present in this best two-level model, Model A3 (Table
5). Model A3 has Bayesian information criterion value of 258 and area under the receiver
operating characteristic curve is 0.71. There is no evidence of poor �t by the Hosmer-
Lemeshow goodness-of-�t test with p-value 0.39. No signi�cant collinearity is detected by
the variance in�ation factor, highest value is 1.5.

All the three predictors in Model A3 have p-value under the 0.05 threshold. The variable
Ki67 AI being the only one-level predictor and with positive odds ratio. The other two
two-level predictors are interaction variables Ki67 AI : PTEN AI and Ki67 visual : ERG
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Figure 8: Cook's distance for Model A3.

Table 6: Confusion matrix of Model A3 after outlier removal with accuracy 0.86, sensi-
tivity 0.27 and speci�city 0.99.

Observed outcome y
1 0

Prediction ŷ
1 13 3
0 35 217

AI. So the Model A3 is not dominated by only arti�cial intelligence variables. Both the
two-level predictors have odds ratio below 1.

To get the absolutely best outcome from this model we can remove extremely in�uential
observations. This model has six of them illustrated in Figure 8 using the Cook's distance.
When the model is �tted again without the in�uential observations, the new Bayesian
information criterion value is 238 and the area under the curve is 0.72. Model �ts now
better but the predictability has almost no change even when compared to the benchmark
Model A1 with area under the receiver operating characteristic curve of 0.71. The process
of removing as much as six observations may not be absolutely necessary if they are
relapsed observations which we already have very few. However, we obtained here a
slightly better �tting model even though 3 of the removed 6 observations were relapsed
observations.

The confusion matrix in Table 6 tells us how well the Model A3 predicts the observations
with cut-o� point set to π0 = 0.50. In the best model, after removing in�uential obser-
vations, the brutal classi�cation accuracy on the same data is 0.86. The model classi�es
the non-relapsed observations better than relapsed. This can be seen from high speci�city
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Figure 9: The receiver operating characteristic curves for Models A1, A2 and A3.

(0.99). This can be due to low amount of relapsed samples and the fact that relapses
still happen at low percentages of positive Ki67 which is the only predictor which in-
creases chances of relapse. The sensitivity of 0.27 indicates that 27 percent of relapsed
observations were classi�ed correctly.

From the Model A2 and the Model A1 with all MRI visible cancer covariates we could
say that arti�cial intelligence is useful and predicts better the relapse. From this Model
A3 we cannot conclude that arti�cial intelligence is purely better at predicting relapse
compared to visual because the variable Ki67 visual is present in the model. Altough we
could say that the visual and AI complement each other. In Figure 9 we see the receiver
operating characteristic curves for Models A1, A2 and A3 where models A2 and A3 have
their in�uential observations removed. It is visible that the predictive power of the Model
A2 is being punished by the low number of covariates. The reason why the di�erence in
predictive power between the benchmark model A1 and the best �tting Model A3 is so
tiny, can be due to the imbalance of the outcome variable.
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Figure 10: The receiver operating characteristic curves for Models A visual and A AI.

5.1.3 Visual Versus Arti�cial Intelligence in Dataset A

To even further compare the visual variables to arti�cial intelligence variables, we form
models with only their distinctive covariates. First we consider the visual covariates case
i.e., AR visual, ERG visual, PTEN visual and Ki67 visual (Table 7). The Bayesian
information criterion value of the model is 278 and area under the receiver operating
characteristic curve is 0.66.

Second we consider arti�cial intelligence covariates, i.e., AR AI, ERG AI, PTEN AI and
Ki67 AI (Table 8). The Bayesian information criterion value of the model is 271 and area
under the receiver operating characteristic curve is 0.69. In Figure 10 are the receiver
operating characteristic curves for Models A visual and A AI. The di�erence between
these two models is not huge but still the arti�cial intelligence performs better according
to the Bayesian information criterion and the receiver operating characteristic curve.

5.2 Logistic Regression for Dataset B

For this part of analysis we use only the variables that are exclusive to dataset B so the
values are formed from MRI invisible cancer only. The sample size of dataset B is 168.
We consider that the results from this analysis are not as reliable as the ones from the
dataset A analysis due to smaller sample size.
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Table 7: The estimates of Model A Visual.

Variable Estimate OR (95% CI) p-value
AR visual 0.01 1.01 (0.99 - 1.02) 0.283
ERG visual -1.04 0.35 (0.14 - 0.81) 0.018*
PTEN visual -0.46 0.63 (0.32 - 1.24) 0.178
Ki67 visual 0.22 1.24 (1.06 - 1.46) 0.009*

Table 8: The estimates of Model A Arti�cial Intelligence.

Variable Estimate OR (95% CI) p-value
AR AI 0.01 1.01 (0.98 - 1.03) 0.631
ERG AI -0.31 0.73 (0.54 - 0.97) 0.037*
PTEN AI -0.22 0.80 (0.66 - 0.98) 0.028*
Ki67 AI 0.17 1.19 (1.08 - 1.31) 0.0004*

Table 9: The estimates of Model B1.

Variable Estimate OR (95% CI) p-value
AR visual 0.0049 1.00 (0.98 - 1.03) 0.694
AR AI -0.0012 1.00 (0.96 - 1.06) 0.961
ERG visual 1.24 3.45 (0.37 - 38.0) 0.287
ERG AI -0.58 0.56 (0.21 - 1.26) 0.198
PTEN visual 2.08 8.00 (0.95 - 187) 0.098
PTEN AI -0.31 0.73 (0.40 - 1.30) 0.298
Ki67 visual 0.13 1.13 (0.90 - 1.45) 0.274
Ki67 AI 0.066 1.07 (0.80 - 1.37) 0.619

Again the benchmark model, Model B1, contains all covariates from dataset B to ex-
plain relapse. None of the covariates are statistically signi�cant by the p-value with 0.05
threshold. The Bayesian information criterion value of the model is 164 and area under
the receiver operating characteristic curve is 0.66 (Figure 11). The Hosmer-Lemeshow
Goodness-of-�t test gives no evidence for poor �t with p-value of 0.38. No signi�cant
collinearity is detected by the variance in�ation factor, the highest value is 3.0.

Next we interpret the Model B1, see Table 9. Biomarker AR has almost no e�ect at all
to the model as the odds are almost equal to 1. The di�erence here to the benchmark
model of the dataset A, Model A1, is that AR AI has now odds less than 1.
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Figure 11: The receiver operating characteristic curves for Model B1.

In the Model A1 both ERG variables have negative e�ect to relapse. Nevertheless in this
Model B1 the dichotomized variable ERG visual has odds over 3 and a wide con�dent
interval. The value of the variable ERG AI is towards non-relapse with odds ratio of 0.56.
The biomarker PTEN is similar to the biomarker ERG: The dichotomized visual variable
has large odds ratio, 8.0, with wide con�dence interval and the AI variable is against the
relapse with odds ratio of 0.73. Both Ki67 variables have positive odds similar to the
Model A1. Both AI and visual variables of Ki67 have almost the same con�dence interval
of odds ratio but visual have larger odds ratio, 1.13 versus 1.07.

The Model B1 with all covariates seems not to �t very well. There is not even a single one
covariate with p-value lower than the 0.05 threshold. Regardless, the Hosmer-Lemeshow
test gives no evidence for poor �t. Some of the visual variables disagree with arti�cial
intelligence variables and a few have wide odds ratio con�dence intervals.

Again, we search for better models using the algorithm glmulti. Resulting models for the
best Bayesian information criterion values were same for normal covariates and interacting
covariates. Both of them were null models with the Bayesian information criterion values
of 132. It means that only the intercept is explanatory variable for relapse. This leads to
a conclusion that no variable or biomarker from dataset B explains the relapse.
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Table 10: The estimates of Model C1.

Variable Estimate OR (95% CI) p-value
A AR Visual 0.0085 1.01 (0.97 - 1.05) 0.681
B AR Visual 0.0088 1.01 (0.98 - 1.04) 0.562
A AR AI 0.031 1.03 (0.96 - 1.13) 0.440
B AR AI -0.024 0.98 (0.92 - 1.04) 0.425
A ERG Visual -0.042 0.96 (0.05 - 19.3) 0.977
B ERG Visual 0.73 2.07 (0.04 - 75.8) 0.682
A ERG AI -0.53 0.59 (0.19 - 1.61) 0.321
B ERG AI -0.65 0.52 (0.14 - 1.50) 0.274
A PTEN Visual -1.29 0.28 (0.03 - 2.36) 0.240
B PTEN Visual 3.03 20.7 (1.41 - 781) 0.051
A PTEN AI 0.14 1.15 (0.63 - 2.13) 0.657
B PTEN AI -0.71 0.49 (0.22 - 1.02) 0.067
A Ki67 Visual 0.53 1.70 (1.22 - 2.45) 0.0025*
B Ki67 Visual 0.039 1.04 (0.77 - 1.52) 0.806
A Ki67 AI -0.0021 1.00 (0.78 - 1.22) 0.985
B Ki67 AI 0.054 1.06 (0.73 - 1.45) 0.750

5.3 Logistic Regression for Dataset C

The combined model is built from variables of datasets A and B. This requires each
observation to have values in A and B datasets. It means that the sample size gets
even smaller from the previous dataset B. We consider this model, Model C1, to be the
least reliable due to its small sample size. Now n=130 and only 18 of them are relapsed
observations. The objective of this model is to see if there are more di�erences between
A and B dataset variables when B variables already failed to predict relapse.

Next we interpret the Model C1, see Table 10. The letter A or B before the name of
the variable de�nes which dataset the variable is originally from. From the benchmark
model, Model C1, with all covariates we see that the variable A Ki67 visual is the only
variable to pass the 0.05 p-value threshold. It has also higher odds ratio (1.7) than in the
dataset A models. The value of the Bayesian information criterion of the Model C1 is 163
and area under the receiver operating characteristic curve is 0.81. The Hosmer-Lemeshow
Goodness-of-�t test gives no evidence for poor �t with p-value of 0.96. No signi�cant
collinearity is detected by the variance in�ation factor, the highest value is 5.3.

In the Table 10, the variable AR in all its four forms has not changed from previous
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Table 11: The estimates of Model C2.

Variable Estimate OR (95% CI) p-value
A ERG AI -0.47 0.63 (0.38 - 0.97) 0.046*
A Ki67 Visual 0.48 1.61 (1.20 - 2.13) 0.00041*

models and has almost no e�ect to the model. The odds ratios are extremely close to
value 1 and con�dence intervals are very compact. The variable A ERG visual and the
variable B ERG visual are both dichotomized and have oddly large odds ratio con�dence
intervals. The variable B ERG visual being towards relapse and the variable A ERG
visual against. Both the variable A ERG AI and the variable B ERG AI are against
relapse and have more precise odds ratio con�dence intervals. The dichotomized visual
variables of PTEN, A PTEN visual and B PTEN visual, have mixed stances. The variable
A PTEN visual is against the relapse and the variable B PTEN visual is full on relapse
with the most imprecise odds ratio con�dence interval of the analysis, but it still almost
has the p-value (0.051) under the threshold. The arti�cial intelligence variables of PTEN
are mixed too, the variable A PTEN AI being towards relapse. In the biomarker Ki67
variables, the variable A visual has the largest odds ratio. Noticeable thing is that the
variable A Ki67 AI has slightly less than one odds ratio unlike the other Ki67 variables
increase the probability of relapse.

We again use the algorithm to obtain a more parsimonious model and we receive the
parsimonious model, Model C2, which has two signi�cant covariates: the variable A ERG
AI and the variable A Ki67 visual. From Table 11 we see that both of them have similar
odds ratios as in the model C1 although the variable A ERG AI was not signi�cant in the
Model C1. After building the Model C2 we see that not a single variable from dataset B
was signi�cant and the algorithm did not suggest any of them either.

Model C2 has the value of the Bayesian information criterion of 103 and the area under the
receiver operating characteristic curve of 0.74. The receiver operating characteristic curves
for Models C1 and C2 are illustrated in Figure 12. The interacting covariates were not
possible due to computational reasons even for the genetic version of the algorithm.

5.4 Results

The main dataset in the analysis is A, which is the most reliable due to its sample size.
We �nd that the variable Ki67 AI is statistically signi�cant to predict cancer relapse
in the Model A1 and ends up being the only covariate chosen by the algorithm in the
Model A2. When the algorithm is allowed to use interacting covariates, we get Model
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Figure 12: The receiver operating characteristic curves for Models C1 and C2.

A3 and then the covariates are Ki67 AI, Ki67 AI : PTEN AI and Ki67 visual : ERG-
AI. The Model A3 is considered as the best model. Goodness of �t of the models were
tested with the Hosmer-Lemeshow test using g = 10 and none of the three dataset A
models had evidence of poor �t. Predictability of the models were measured with area
under the receiver operating characteristic curve. Even the largest area under the receiver
operating characteristic curve (0.72) for Dataset A models was not able to reach the desired
boundary of 0.8.

To compare arti�cial intelligence to visual in the dataset A, two models were built, one
with only arti�cial intelligence variables and other with only visual variables. Model that
contained arti�cial intelligence variables had lower value of the Bayesian information cri-
terion (271 vs 278) and larger area under the receiver operating characteristic curve (0.69
vs 0.66). The results drawn from Model A1 and Model A2 imply that arti�cial intelligence
variables could be better predictors. From the Model A3 we cannot conclude that arti-
�cial intelligence is purely better at predicting relapse, because the variable Ki67 visual
is present in it. We could say that visual and arti�cial intelligence variables complement
each other.

From dataset A we moved on to the smaller dataset B. It has its own values formed
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from MRI invisible cancers. Benchmark model, Model B1 with all dataset B explanatory
variables had zero statistically signi�cant predictors. The algorithm glmulti suggests that
the lowest value of the Bayesian information criterion for dataset B variables is a null
model for normal covariates and interacting covariates. This means that no variable in
dataset B explains the relapse.

Purpose of the dataset C model is to compare dataset A variables to dataset B variables
although it may be the least reliable model due to the lack of observations. The benchmark
model, Model C1, �nds the variable A Ki67 visual statistically signi�cant. The algorithm
glmulti chooses the best �tting model with two predictors: the variable A Ki67 visual
and the variable A ERG AI. This suggests same what we encountered with the dataset A
exclusive models that arti�cial intelligence variables are not distinctly better. The absence
of the dataset B variables in the algorithm chosen models implies that they are weaker in
predicting the relapse than the dataset A variables.

To answer the question whether the relapse can be predicted using biomarkers, we can
conclude that the biomarker Ki67 seems to be the best biomarker of the four. The
variables of Ki67 are statistically signi�cant in multiple models. Because high percent of
positive biomarker Ki67 indicates high probability of the relapse, we need to remember
that the values of the variables of Ki67 in the data are only between 0-20 percent.

All models in this analysis have high speci�city meaning they predict non-relapsed bet-
ter than relapsed. This can be due to a low amount of relapsed samples and the fact
that relapses still happen at low percentages of positive variable Ki67, which is the only
predictor that increases chances of relapse.

The variables of the biomarker AR are the worst predictors. Not a single model suggests
them and odds ratios are almost equal to one in all benchmark models. The variables of
the biomarker PTEN are only present in the Model A3 as PTEN AI. The variables of the
biomarker ERG are a part of the Model A3 and also variable A ERG AI is in the Model
C2. As a result, the biomarkers ERG and PTEN have some added value to the analysis
unlike the biomarker AR.
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6 Conclusion

The motive of this analysis was to �nd out if biomarkers have predictive abilities on
prostate cancer relapse. Additionally we expanded the interest to comparing predicting
power of visually obtained values to values which were acquired from arti�cial intelligence.
At �rst we were not certain how well the arti�cial intelligence had performed in acquiring
the values from the sample cores.

The data contained cancers with two di�erent classi�cations: MRI visible and MRI in-
visible. We decided to split the data to three datasets where the classi�cation was the
decisive factor. Third dataset was the two datasets combined. Predictive abilities of the
biomarkers could then be further investigated if the classi�cation of cancer had impact.
Each 4 biomarkers had an arti�cial intelligence variable and a visual variable, total of
8 explanatory variables for the �rst two datasets and 16 explanatory variables for the
combined dataset.

Logistic regression model was the chosen method to examine how well the biomarkers
could predict the dichotomized outcome of relapse. The parameters for explanatory vari-
ables were estimated using the maximum likelihood method. Signi�cance of the explana-
tory variables were determined using the Wald test.

The selection of explanatory variables was done using the algorithm glmulti (Calcagno
& de Mazancourt [11]) for models other than benchmark models with all variables. The
algorithm was either operating with brute force or with the genetic setting. In all cases
the explanatory variables were decided by the lowest value of the Bayesian information
criterion of the model. Low values of the Bayesian information criterion indicate good
�t.

After models were built we assured that there were no signi�cant collinearity using the
variance in�ation factor. Predictive power of models were measured with receiver operat-
ing characteristic curve and the area under it. Goodness of �t was tested for each model
with the Hosmer-Lemeshow goodness of �t test. We checked if there were any extremely
in�uential observations with the standardized residuals and the Cook's distance. If there
were any signi�cantly in�uential observations, we removed them and re�tted the model
and made comparisons to learn their e�ects on the results.

The logistic regression models on MRI visible data, dataset A, showed that arti�cial
intelligence variable for biomarker Ki67 has explanatory power for relapse. Further, in-
vestigating the modelling problem with interacting covariates, it turned out that arti�cial
intelligence variables of biomarkers ERG and PTEN are signi�cant components in explain-
ing the relapse. The visual variable of biomarker Ki67 also appeared signi�cant among
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the interacting covariates.

Analysis of the MRI invisible data, dataset B, showed no signi�cant predictors in the
logistic regression model. The same is observed in the logistic regression model of the
combined data, dataset C: none of the variables from dataset B were signi�cant. All in
all no variables from dataset B were signi�cant or chosen by the algorithm. That implies
that MRI invisible cancer relapse is harder to predict or that MRI invisible variables are
bad predictors. In the model of dataset C the only two signi�cant explanatory variables
were from dataset A; the visual variable of biomarker Ki67 and the arti�cial intelligence
variable of biomarker ERG.

All the �tted logistic regression models had values of area under the receiver operating
characteristic curve from 0.64 to 0.81. The value of area under the curve can roughly
be translated to correct classi�cation probability. The models classi�ed non-relapsed
observations better. These values indicate that the biomarkers do have some predictive
power regarding the relapse.

As already mentioned, some of the biomarkers were found signi�cant in some of the logistic
regression models. However, all variables of biomarker AR had no relation to the relapse
in any of the models. The biomarker Ki67 is the best predictor of the 4 biomarkers,
because it is signi�cant in greater number of models than the other biomarkers. The
biomarkers ERG and PTEN are signi�cant only in the interacting covariates with Ki67.
Thus, biomarkers ERG and PTEN are not as useless as AR, but mostly seem to just
support the biomarker Ki67.

When splitting dataset A to arti�cial intelligence and visual variables we noticed slight
superiority of the arti�cial intelligence. The model that contained only the arti�cial intel-
ligence variables had better �t and more accurate classi�cation according to the receiver
operating characteristic curve. However, we cannot conclude that arti�cial intelligence
variables are purely better than visual variables, because the models contain signi�cant
visual variables. We could say that visual and arti�cial intelligence variables complement
each other. To conclude, we observe that the arti�cial intelligence work and may give
better accuracy in the relapse prediction.

These results apply only to the used data. To obtain more reliable results, we would need
more observations in particular for the relapsed and MRI invisible cases. This could be
solved by data imputation, but was decided not to be pursued in this analysis.

We particularly focused only to biomarkers applied on MRI visible and MRI invisible can-
cers. We did not include the variables of biomarkers applied to healthy area. For further
studies we could add clinical variables such as Pre-operative prostate-speci�c antigen or
Gleason score. Including variables of biomarkers applied to healthy area could deepen
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the analysis. Statistical analysis was solely done with logistic regression. There exist al-
ternative methods to logistic regression for relapse prediction such as a machine learning
method called random forest classi�er.

39



References

[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates
of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer
Journal for Clinicians, 71(3):209�249, 2021.

[2] Tavel JA Strimbu K. What are biomarkers? Curr. Opin. Hiv Aids, 5(6):463�466,
2010.

[3] Moldovan PC, Van den Broeck T, Sylvester R, et al. What is the negative predictive
value of multiparametric magnetic resonance imaging in excluding prostate cancer
at biopsy? a systematic review and meta-analysis from the european association of
urology prostate cancer guidelines panel. Urol Oncol., 72(2):250�266, 2017.

[4] Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG.
Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of
signi�cant prostate cancer detection compared to standard transrectal ultrasound-
guided biopsy: a systematic review and meta-analysis. Urol Oncol., 68(3):438�450,
2015.

[5] Richeng Jiang, Douglas E. Linn, Hege Chen, Hegang Chen, Xiangtian Kong,
Jonathan Melamed, Cli�ord G. Tepper, Hsing-Jien Kung, Angela M.H. Brodie,
Joanne Edwards, Yun Qiu Zhiyong Guo, Xi Yang, Feng Su,. A novel androgen recep-
tor splice variant is up-regulated during prostate cancer progression and promotes
androgen depletion�resistant growth. Cancer Res., 69(6):2305�-2313, 2009.

[6] Wang Z, Wang Y, Zhang J, et al. Signi�cance of the tmprss2:erg gene fusion in
prostate cancer. Mol Med Rep., 16(4):5450�5458, 2017.

[7] Troyer, Dean A., Jamaspishvili, Tamara, Wei, Wei, Feng, Ziding, Good, Jennifer,
Hawley, Sarah, Fazli, Ladan, McKenney, Jesse K., Simko, Je�, Hurtado-Coll, Anto-
nio, Carroll, Peter R., Gleave, Martin, Lance, Raymond, Lin, Daniel W., Nelson, Pe-
ter S., Thompson, Ian M., True, Lawrence D., Brooks, James D., and Squire, Jeremy
A. A multicenter study shows pten deletion is strongly associated with seminal vesicle
involvement and extracapsular extension in localized prostate cancer. The Prostate,
75(11):1206�1215.

[8] Berlin A, Castro-Mesta JF, et al. Prognostic role of ki-67 score in localized prostate
cancer: A systematic review and meta-analysis. Urol Oncol., 35(8):499�506, 2017.

[9] Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for
doctors. J Stomatol Oral Maxillofac Surg., 120(4):279�288, 2019.

40



[10] Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and arti�cial intelligence.
Lancet Oncol., 20(5):e253�e261, 2019.

[11] Vincent Calcagno, Claire de Mazancourt. glmulti: An R Package for Easy Automated
Model Selection with (Generalized) Linear Models. Journal of Statistical Software,
Volume 34, Issue 12. American Statistical Association, 2010.

[12] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2020.

[13] G Udny Yule. On the methods of measuring association between two attributes.
Journal of the Royal Statistical Society, 75(6):579�652, 1912.

[14] David W. Hosmer, Stanley Lemeshow, Rodney X. Sturdivant. Applied Logistic Re-
gression. Wiley. 2013.

[15] S.S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Com-
posite Hypotheses. Institute of Mathematical Statistics, 1938.

[16] AbrahamWald. Tests of Statistical Hypotheses Concerning Several Parameters When
the Number of Observations is Large. American Mathematical Society, 1943.

[17] FE Harrell. Regression Modeling Strategies: With Applications to Linear Models,
Logistic Regression, and Survival Analysis. Springer-Verlag, 2001.

[18] H Akaike. A new look at the statistical model identi�cation. IEEE Transactions on
Automatic Control, 19:716�723, 1974.

[19] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics,
6:461�464, 1978.

[20] Alan Agresti. Foundations of Linear and Generalized Linear Models. Wiley. 2015.

[21] WX Yang. An Improved Genetic Algorithm Adopting Immigration Operator. Intel-
ligent Data Analysis, 8:385�401, 2004.

[22] Scott Menard. Applied logistic regression analysis, volume 106. Sage, 2002.

[23] DavidW Hosmer and Stanley Lemeshow. Goodness of �t tests for the multiple logistic
regression model. Communications in statistics-Theory and Methods, 9(10):1043�
1069, 1980.

[24] Jana D Canary, Leigh Blizzard, Ronald P Barry, David W Hosmer, and Stephen J
Quinn. A comparison of the hosmer�lemeshow, pigeon�heyse, and tsiatis goodness-of-
�t tests for binary logistic regression under two grouping methods. Communications
in Statistics-Simulation and Computation, 46(3):1871�1894, 2017.

41



[25] Daryl Pregibon. Logistic regression diagnostics. The annals of statistics, 9(4):705�
724, 1981.

[26] Nirian Martin and Leandro Pardo. On the asymptotic distribution of cook's distance
in logistic regression models. Journal of Applied Statistics, 36(10):1119�1146, 2009.

[27] Kristine M Wadosky and Shahriar Koochekpour. Androgen receptor splice variants
and prostate cancer: From bench to bedside. Oncotarget, 8(11):18550�18576, 2017.

[28] Lahdensuo K, Erickson A, Saarinen I, et al. Loss of pten expression in erg-negative
prostate cancer predicts secondary therapies and leads to shorter disease-speci�c
survival time after radical prostatectomy. Mod Pathol, 29(12):1565�1574, 2016.

[29] David Robinson, Alex Hayes, and Simon Couch. broom: Convert Statistical Objects
into Tidy Tibbles, 2020. R package version 0.7.2.

[30] Max Kuhn. caret: Classi�cation and Regression Training, 2021. R package version
6.0-90.

[31] John Fox and Sanford Weisberg. An R Companion to Applied Regression. Sage,
Thousand Oaks CA, third edition, 2019.

[32] Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique
Lisacek, Jean-Charles Sanchez, and Markus Müller. proc: an open-source pack-
age for r and s+ to analyze and compare roc curves. BMC Bioinformatics, 12:77,
2011.

[33] Md Riaz Ahmed Khan and Thomas Brandenburger. ROCit: Performance Assess-
ment of Binary Classi�er with Visualization, 2020. R package version 2.1.1.

42



A Model Summaries

Model A1, benchmark model of Dataset A

Call:
glm(formula = Relapsed ~ ., family = "binomial", data = Dataset A)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5243 -0.6214 -0.4990 -0.3437 2.4709

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.561178 1.238819 -2.067 0.03869 *
AR Visual 0.002407 0.010527 0.229 0.81918
AR AI 0.002930 0.014391 0.204 0.83868
ERG Visual -0.766382 0.745655 -1.028 0.30405
ERG AI -0.137765 0.253464 -0.544 0.58677
PTEN Visual 0.313852 0.553377 0.567 0.57061
PTEN AI -0.301045 0.155089 -1.941 0.05225 .
Ki67 Visual 0.163944 0.087854 1.866 0.06203 .
Ki67 AI 0.143370 0.051199 2.800 0.00511 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.35 on 273 degrees of freedom
Residual deviance: 237.40 on 265 degrees of freedom
AIC: 255.4

Number of Fisher Scoring iterations: 5
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Model A2, algorithm chosen model, Dataset A

Call:
glm(formula = Relapsed ~ 1 + Ki67 AI, family = "binomial",

data = Dataset A)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7709 -0.6383 -0.5517 -0.4927 2.1069

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.1904 0.2670 -8.203 2.34e-16 ***
Ki67 AI 0.1702 0.0474 3.590 0.00033 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.35 on 273 degrees of freedom
Residual deviance: 249.99 on 272 degrees of freedom
AIC: 253.99

Number of Fisher Scoring iterations: 4
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Model A3, algorithm chosen model with interacting variables, Dataset

A

Call:
glm(formula = Relapsed ~ 1 + Ki67 AI + Ki67 VIsual : ERG AI +

Ki67 AI : PTEN AI, family = "binomial", data = Dataset A)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7486 -0.5926 -0.4879 -0.4208 2.2110

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.50241 0.29635 -8.444 < 2e-16 ***
Ki67 AI 0.20553 0.05841 3.519 0.000434 ***
Ki67 Visual : ERG AI -0.10840 0.03196 -3.392 0.000694 ***
Ki67 AI : PTEN AI -0.03380 0.01476 -2.290 0.022047 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.35 on 273 degrees of freedom
Residual deviance: 235.09 on 270 degrees of freedom
AIC: 243.09

Number of Fisher Scoring iterations: 4
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Model with only Visual variables, Dataset A

Call:
glm(formula = Relapsed ~ 1 + AR Visual + ERG Visual + PTEN Visual
+ Ki67 Visual, family = "binomial", data = Dataset A)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5557 -0.6574 -0.5625 -0.4429 2.2289

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.934040 0.425003 -4.551 5.35e-06 ***
AR Visual 0.009007 0.007521 1.198 0.2311
ERG Visual -0.891016 0.419765 -2.123 0.0338 *
PTEN Visual -0.380026 0.333683 -1.139 0.2548
Ki67 Visual 0.196616 0.079540 2.472 0.0134 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 277.13 on 285 degrees of freedom
Residual deviance: 264.96 on 281 degrees of freedom
AIC: 274.96

Number of Fisher Scoring iterations: 4
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Model with only AI variables, Dataset A

Call:
glm(formula = Relapsed ~ 1 + AR AI + ERG AI + PTEN AI + Ki67 AI,
family = "binomial", data = Dataset A)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7778 -0.6200 -0.5058 -0.3866 2.4956

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.262731 0.990155 -3.295 0.000984 ***
AR AI 0.007725 0.010428 0.741 0.458825
ERG AI -0.349407 0.151443 -2.307 0.021045 *
PTEN AI -0.215956 0.098867 -2.184 0.028940 *
Ki67 AI 0.186155 0.048280 3.856 0.000115 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 275.15 on 295 degrees of freedom
Residual deviance: 251.41 on 291 degrees of freedom
AIC: 261.41

Number of Fisher Scoring iterations: 4
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Model B1, benchmark model of Dataset B

Call:
glm(formula = Relapsed ~ ., family = "binomial", data = Dataset B)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9581 -0.5799 -0.4744 -0.2854 2.3767

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.012202 2.462442 -2.035 0.0418 *
AR Visual 0.004886 0.012415 0.394 0.6939
AR AI -0.001240 0.025039 -0.050 0.9605
ERG Visual 1.239734 1.163491 1.066 0.2866
ERG AI -0.581499 0.451763 -1.287 0.1980
PTEN Visual 2.079708 1.256608 1.655 0.0979 .
PTEN AI -0.310432 0.298148 -1.041 0.2978
Ki67 Visual 0.125131 0.114466 1.093 0.2743
Ki67 AI 0.065865 0.132393 0.497 0.6188
---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 126.59 on 167 degrees of freedom
Residual deviance: 118.32 on 159 degrees of freedom
AIC: 136.32

Number of Fisher Scoring iterations: 6
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Model B2, algorithm chosen model with and without interacting

variables, Dataset B

Call:
glm(formula = Relapsed ~ 1, family = "binomial", data = Dataset B)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.5168 -0.5168 -0.5168 -0.5168 2.0393

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9459 0.2333 -8.341 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 126.59 on 167 degrees of freedom
Residual deviance: 126.59 on 167 degrees of freedom
AIC: 128.59

Number of Fisher Scoring iterations: 4
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Model C1, benchmark model of Dataset C

Call:
glm(formula = Relapsed ~ ., family = "binomial", data = Dataset C)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5783 -0.5232 -0.3170 -0.1408 2.6104

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.016777 3.972594 -2.018 0.04359 *
A AR Visual 0.008453 0.020539 0.412 0.68066
B AR Visual 0.008827 0.015237 0.579 0.56237
A AR AI 0.030709 0.039775 0.772 0.44007
B AR AI -0.023631 0.029592 -0.799 0.42456
A ERG Visual -0.041990 1.483874 -0.028 0.97742
B ERG Visual 0.728099 1.778203 0.409 0.68220
A ERG AI -0.529924 0.533539 -0.993 0.32060
B ERG AI -0.646120 0.590285 -1.095 0.27370
A PTEN Visual -1.285169 1.094102 -1.175 0.24014
B PTEN Visual 3.031611 1.556352 1.948 0.05143 .
A PTEN AI 0.136085 0.306037 0.445 0.65656
B PTEN AI -0.711462 0.387943 -1.834 0.06666 .
A Ki67 Visual 0.532114 0.175661 3.029 0.00245 **
B Ki67 Visual 0.039431 0.160191 0.246 0.80557
A Ki67 AI -0.002063 0.111038 -0.019 0.98518
B Ki67 AI 0.054183 0.169803 0.319 0.74966
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 104.562 on 129 degrees of freedom
Residual deviance: 79.965 on 113 degrees of freedom
AIC: 113.96

Number of Fisher Scoring iterations: 6
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Model C2, algorithm chosen model without interacting variables,

Dataset C

Call:
glm(formula = Relapsed ~ 1 + A ERG AI + A Ki67 Visual,

family = "binomial", data = Dataset C)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.4187 -0.5351 -0.3931 -0.3031 2.5184

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.9019 0.7217 -5.407 6.43e-08 ***
A ERG AI -0.4676 0.2348 -1.991 0.046446 *
A Ki67 Visual 0.4761 0.1348 3.532 0.000413 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 104.562 on 129 degrees of freedom
Residual deviance: 88.885 on 127 degrees of freedom
AIC: 94.885

Number of Fisher Scoring iterations: 5
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