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ARTICLE OPEN

Multiomics implicate gut microbiota in altered lipid and
energy metabolism in Parkinson’s disease
Pedro A. B. Pereira 1,2,6✉, Drupad K. Trivedi 3,6, Justin Silverman4,5, Ilhan Cem Duru2, Lars Paulin 2, Petri Auvinen 2 and
Filip Scheperjans 1✉

We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in
Parkinson’s disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC
subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found
between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and
the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated
with altered lipid and energy metabolism in PD.
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INTRODUCTION
Parkinson’ disease (PD) is the second most common neurode-
generative disorder and is associated with prominent gastro-
intestinal pathophysiological changes and symptoms1. In the gut
of PD patients, there are signs of low-grade inflammation,
increased permeability, and bacterial invasion, all of which may
predispose to overexpression and accumulation of alpha-
synuclein that subsequently may spread to the brain in a prion-
like fashion. Indeed, recent research suggests that early gastro-
intestinal involvement may be a key determinant of PD subtypes
and that in a significant group of patients the origin of PD may lie
in the gut. Gut microbiota impact brain health through multiple
pathways, including production of neuroactive metabolites and
neurotransmitters, but also through interactions with the immune
system and potentially by excreting aggregation-prone proteins.
Compositional alterations of gut microbiota in PD have been
robustly demonstrated across multiple cohorts2,3 and have been
linked to motor- and non-motor symptoms as well as progression
of the disease. However, the functional implications of these
changes regarding microbiota-host interactions and PD pathology
and progression are still poorly understood. Alterations of faecal
and serum/plasma metabolites and inflammatory markers have
been described in relation to gut microbiota4–6, but except for
reproducible findings of reduced faecal short-chain fatty acid
(SCFA) levels in PD7, shortlisting of relevant metabolites and
pathways has been challenging and inconsistent. Multiomics
analyses have linked faecal microbiota abundances to alterations
of amino acid metabolites4, lipids, sulphur metabolism, bile acids8,
and SCFAs9 in serum/plasma, and alterations of lipids, vitamins,
amino acids, SCFAs, and other organic compounds in faeces of PD
patients10–12. Thus, more research is needed to better understand
how an altered microbial composition and metabolic activity may
impact PD.
The Helsinki cohort has so far been analysed for microbiome

correlations with clinical features2,13 and disease progression14.
We have also studied the oral and nasal microbe communities15.

Recently, the immune response and fecal SFCA levels were
studied among the same individuals6. The current study was
primarily designed to investigate, as broadly as possible, the
existence of possible links between gut bacteria and metabolite
features, using a data-driven, hypothesis-generating approach (as
opposed to hypothesis-testing approach), using untargeted serum
metabolomics, 16S rRNA bacterial marker gene data, and clinical
symptoms in PD as compared to healthy control subjects (HC). A
total of 124 subjects were part of the study, divided into 63 PD
patients and 61 HC subjects14 (see supplementary file “Supple-
mentary population data table” for details). The serum samples
were collected as close to the collection timepoint of the stool
samples as practically possible, with the following average
difference between stool and serum collection (days mean ± SD):
PD (1.27 ± 1.42) and HC (0.69 ± 2.20).

RESULTS
Metabolome analysis
Data-driven metabolomics profiling of serum samples was under-
taken, identifying a total of 7585 metabolite features. Support
Vector Machines (SVM) using RBF kernel showed 81% classifica-
tion accuracy using GC-MS metabolic profiles, and 77% and 72%
classification accuracy was achieved using LC-MS positive and
negative mode ionisation data, respectively (Table 1).
Selection of predictive metabolite features between Controls

and PD subjects was carried out using SVM recursive feature
elimination to select the top 10% of features from profiling
experiments. The metabolite features that contributed the most to
the classification of PD and control samples in the SVM model,
selected via SVM-RFE, were called “key predictive”metabolites and
the same terminology will be used throughout this paper. A total
of 139 features (i.e. metabolites) were selected: 101 features from
LC-MS data and 38 features from GC-MS data (Table 2). Pathway
enrichment analysis using all the 7585 metabolomics features
revealed significant changes in carnitine shuttle, vitamin E
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metabolism, glycerophospholipids, sphingolipids, fatty acids and
aminoacyl-tRNA biosynthesis amongst 20 perturbed pathways
(Table 3). These features were also putatively annotated based on
accurate mass match at 5ppm using human metabolome
database (HMDB v.4)16 and LipidMaps17 following Metabolite
Standards Initiative (MSI)18 at Level 3. Age, gender, BMI, dietary
components, and PD-related clinical variables like medications did
not show any evidence of biologically meaningful effects on the
selected 139 metabolite features, with the possible exception of a
very minor effect from COMT-inhibitors (see “Supplementary Table
7 (MODELS).xlsx” and the ‘Methods’ section for details). Within the
PD group, no association was established between clinical
variables and all 7585 metabolite features after adjusting for time
since motor symptom onset, age at sampling, and other known
clinical covariates (see also “Supplementary Table 7 (MODELS).
xlsx” and the ‘Methods’ section for details). All 7585 metabolite
features were used for this within-PD analysis because irrespective
of their lack of predictive potential for PD (unlike the selected 139),
some could still have been associated with those clinical variables
that are of interest only within the PD group.

Metabolome-microbiome correlation analysis
Correlation analysis between the selected 139 metabolite features
and bacterial taxa at genus, family, and phylum levels was
performed separately for the PD and Control groups to facilitate
their contrast (Supplementary Tables 1–6). All results’ tables have
been curated to obtain the best possible putative identification of
the metabolite peak IDs at MSI level 3 identification level. Tables 2
and 5, as well as the two genus-level supplementary tables
(Supplementary Tables 1 and 2) contain a metabolite “class”
identification column (see ‘Methods’ section for details). All
Supplementary Tables contain all identified taxa/metabolite
correlation pairs (using the selected 139 metabolite features and
all bacterial abundance data) that show posterior mean correlation
values at or above 0.3 and at a 95% “confidence level” (see
‘Methods’ section for more details).
The within-PD analysis at genus level identified a total of 176

correlation pairs, while within-Controls analysis produced 202
pairs (Supplementary Tables 1 and 2, respectively). As can be seen,
there is some overlap in the taxa and metabolites represented in
the two groups, but overall there are substantial differences in the

bacterial taxon-metabolite pair associations. To aid in the
identification of possible links between metabolite classes and
bacteria, we produced network figures for both within-PD and
within-Controls results at genus level, using metabolite classes.
(Figs. 1 and 2). At family level, the within-PD analysis identified a
total of 67 correlation pairs, while the within-Controls analysis
identified a total of 85 pairs (Supplementary Tables 3 and 4,
respectively). Finally, the within-PD analysis at phylum level
identified a total of 17 correlation pairs and the within-Controls
analysis identified a total of 6 pairs (Supplementary Tables 5 and 6,
respectively).
To further focus the study, we trimmed the correlation pairs

down to only those containing bacterial taxa that were (i) not
unclassified at the target taxonomic level, (ii) differentially
abundant between PD and Control groups at one or both of the
two time points of sample collection in a previous study using the
same subject data14, and (iii) taxa that were systematically
reported previously in the PD microbiome literature as being
differentially abundant between PD and Control groups3,14 (Table
4). The bacterial abundance data used in the present article
corresponds to the second time point of sample collection in Aho
et al.14. To aid in visualizing the relationships, a third within-PD
network figure was produced, using genus-level data and
metabolite classes as before, but limited to the trimmed
correlation pairs (Fig. 3).
In the Helsinki cohort, six bacterial genera were previously

reported as being differentially abundant (selected for the present
article at an alpha threshold of statistical significance of 0.05 from
the original 0.1), using one or more statistical methods14, between
Control and PD groups at one or both time points, namely:
Bifidobacterium, Roseburia, Prevotella, Blautia, Lactobacillus, and
Clostridium XIVa. All these genera, except for Clostridium XIVa, have
also been reported as being differentially abundant in previous
publications contrasting a control group to PD patients14. Of
these, Prevotella, Bifidobacterium, Roseburia, and Lactobacillus are
also found to be correlated with one or more metabolite features
in our genus-level analysis (Table 4).
Other differentially abundant bacterial genera reported pre-

viously in the PD microbiome literature3 besides those referred to
in Aho et al.14 have also been found covarying with metabolite
features in our dataset, and we also used that information for the
purpose of focusing our study’s results. At genus level, Akkerman-
sia, Bifidobacterium, Faecalibacterium, Prevotella, Lactobacillus, and
Roseburia were reported multiple times in the literature, with only
Akkermansia and Faecalibacterium not being reported in the Aho
et al.14 study as being differentially abundant (Table 4).
In the Aho et al.14 study, seven bacterial families were reported

as being differentially abundant between PD and Control groups
at one or both time points, namely: Bifidobacteriaceae, Prevotella-
ceae, Rikenellaceae, Lachnospiraceae, Pasteurellaceae, Lactobacilla-
ceae, and Puniceicoccaceae. All these families, except for
Puniceicoccaceae, have also been reported as being differentially
abundant in previous publications contrasting a control group to
PD patients14. Three of them showed correlations with one or
more metabolite features in our family-level analysis (Table 4).
Boertien et al.3 also reported on the bacterial families most
commonly found to be differentially abundant, namely Bifidobac-
teriaceae, Prevotellaceae, Lachnospiraceae, Lactobacillaceae, Verru-
comicrobiaceae, Enterobacteriaceae, Erysipelotrichaceae, and
Ruminococcaceae, with the last four families not being found to
be differentially abundant at any time point in our cohort14 (Table
4).
For this study, we have also analysed our data at phylum level,

unlike in Aho et al.14, and found correlations between various
metabolites and the phyla Lentisphaerae, Verrucomicrobia, Syner-
gistetes, and Tenericutes (Supplementary Tables 5 and 6). Some
phyla recurrently found to be differentially abundant between PD
and Control groups are Verrucomicrobia, Firmicutes, and

Table 1. Confusion matrices.

Predicted
control

Predicted PD

GC-MS CCR= 81% Actual
control

83% 17%

Actual PD 20% 80%

LC-MS Positive Mode
CCR= 77%

Actual
control

75% 25%

Actual PD 21% 79%

LC-MS Negative Mode
CCR= 72%

Actual
control

72% 28%

Actual PD 28% 72%

Confusion matrices for (a) LC-MS positive mode data, (b) LC-MS negative
mode data, (c) GC-MS data. For each data, confusion matrix shows an
average of 100 models tested by resampling. Each time 60% data were
used as training set and 40% were used as test set. Average correct
classification rate (CCR) is represented for each of the data. Upon
permutation of class labels, LC-MS positive mode CCR dropped to 49%,
LC-MS negative mode CCR dropped to 47% and GC-MS CCR dropped
to 47%.
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Table 2. Key predictive metabolite features.

Peak number Putative ID Metabolite feature class Avg P/C foldchange

349 GalCer(d18:1/23:0);GlcCer(d18:1/23:0) Sphingolipid 2.314

458 20:2-Glc-Campesterol Sterol lipid 2.035

1303 MGDG(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)) Glycerolipid 2.024

264 6-Keto-decanoylcarnitine Fatty acyls 1.979

199 Palmitoleic acid Fatty acyls 1.958

793 Tetrahydroaldosterone-3-glucuronide Steroid and derivatives 1.731

856 FAHFA(18:1(9Z)/13-O-18:0) Fatty acyls 1.722

447 Veranisatin C Prenol lipids 1.661

1160 5-Methyltetrahydropteroyltri-L-glutamate Steroid and derivatives 1.624

151 PE(18:4(6Z,9Z,12Z,15Z)/18:1(9Z)) Glycerophospholipid 1.604

1005 Unknown 2 Unknown 1.586

299 Neoabietic acid Isoprenoids 1.567

429 PC(16:0/18:1(6Z));PC(16:0/18:1(6E)) Glycerophospholipid 1.488

501 Galbanic acid Prenol lipids 1.485

368 Deca-4,6,8-triyne-1,1,2,3-tetraol Artificial chemical 1.403

280 Citrulline Carboxylic acid and derivatives 1.377

191 Sphinganine-phosphate Sphingolipid 1.356

398 Unknown 1 Unknown 1.354

75 N-stearoyl tyrosine Carboxylic acid and derivatives 1.346

32 (-)-Jolkinol B Chemical 1.336

320 11-cis-Dehydroretinal;all-trans-Dehydroretinal Prenol lipids 1.319

144 1alpha,24,25,28-tetrahydroxyergocalciferol Vitamin D2 derivative 1.290

204 Glycerol Sugar alchohol 1.289

362 PC(22:4(7Z,10Z,13Z,16Z)/0:0) Glycerophospholipid 1.274

70 (3S,5R,6S,7E,9x)-7-Megastigmene-3,6,9-triol 9-glucoside Fatty acyl glycoside 1.263

369 PE-Cer(d15:2(4E,6E)/22:0(2OH)) Glycerophospholipid 1.255

415 Estrone, 16alpha-hydroxy- Steroid and derivatives 1.253

1201 PC(P-16:0/18:4(6Z,9Z,12Z,15Z)) Glycerophospholipid 1.248

1137 PE(16:0/P-18:1(11Z)) Glycerophospholipid 1.247

461 Sphingosine-1-phosphate;Sphingosine 1-phosphate Phosphosphingolipids 1.245

386 Heptadecane, n- Alkane 1.242

1474 PI-Cer(t20:0/22:0(2OH)) Glycerophospholipid 1.242

170 PA(P-18:0/17:2(9Z,12Z)) Glycerophospholipid 1.230

36 PG(16:1(9Z)/22:4(7Z,10Z,13Z,16Z)) Glycerophospholipid 1.229

792 PS(19:0/0:0) Glycerophospholipid 1.219

439 PI(16:0/20:1(11Z)) Glycerophospholipid 1.209

370 3-octadecylenic acid Fatty acyls 1.201

518 PC(18:4(6Z,9Z,12Z,15Z)/18:1(11Z)) Glycerophospholipid 1.195

67 4-O-alpha-Cadinylangolensin Flavonoids 1.186

430 PC(P-20:0/18:3(6Z,9Z,12Z)) Glycerophospholipid 1.185

406 SM(d16:1/22:0) Sphingolipid 1.171

393 Propionylcarnitine Fatty acyls 1.164

420 PC(16:1(9Z)/0:0);PC(16:1(9E)/0:0) Glycerophospholipid 1.163

47 PE(18:4(6Z,9Z,12Z,15Z)/15:1(9Z)) Glycerophospholipid 1.129

463 PC(P-16:0/20:3(8Z,11Z,14Z)) Glycerophospholipid 1.100

243 PS(20:3(8Z,11Z,14Z)/0:0) Glycerophospholipid 1.097

414 PA(O-16:0/21:0) Glycerophospholipid 1.097

423 PC(P-20:0/18:2(9Z,12Z)) Glycerophospholipid 1.072

497 SM(d17:1/24:1) Sphingolipid 1.056

1339 PE(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)) Glycerophospholipid 1.056

509 PI(O-16:0/13:0) Glycerophospholipid 1.049

511 PC(18:3(9Z,12Z,15Z)/0:0) Glycerophospholipid 1.045

21 2-amino-2-deoxy-glucose Glucose derivative 1.043
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Table 2 continued

Peak number Putative ID Metabolite feature class Avg P/C foldchange

500 Butyrylcarnitine Fatty acyls 1.042

502 PE(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)) Glycerophospholipid 1.038

160 Methionine, N-formyl- Amino acid derivative 1.036

499 3-Deoxyvitamin D3 Sterol lipid 1.021

161 Maltotriose Oligosaccharides 1.014

1338 PG(P-20:0/20:1(11Z)) Glycerophospholipid 0.999

314 Proline Carboxylic acid and derivatives 0.997

92 Alanine, beta- Carboxylic acid and derivatives 0.996

459 PC(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)) Glycerophospholipid 0.984

170 Lactic acid, 3-imidazole- Azoles 0.975

467 PE-Cer(d15:1(4E)/18:0) Glycerophospholipid 0.974

1434 PI(15:0/22:0) Glycerophospholipid 0.959

348 Cysteine, N-acetyl- Drug 0.955

68 3-Methyl-2-oxopentanoic-acid Neurotoxin 0.954

385 Proline Carboxylic acid and derivatives 0.950

295 Proline, 4-hydroxy-, trans- Carboxylic acid and derivatives 0.928

485 SM(d18:1/21:0) Sphingolipid 0.928

1283 PE(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)) Glycerophospholipid 0.925

1391 PS(19:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) Glycerophospholipid 0.915

137 Tridecane, n- Alkane 0.913

29 Glucose, 2-amino-2-deoxy- Glucose derivative 0.912

498 SM(d18:2/21:0) Sphingolipid 0.903

343 Glycine, 2-phenyl- Carboxylic acid and derivatives 0.899

159 Serine Amino acid 0.898

367 PC(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) Glycerophospholipid 0.896

65 Dodecane Alkane 0.896

420 Tartronic acid Dicarboxylic acid 0.893

11 Dodecane Alkane 0.892

109 Hydantoin, 5-methyl- Allantoin metabolite 0.892

47 n-tricosane Alkane 0.888

845 2-methylbacteriohopane-32,33,34,35-tetrol Prenol lipids 0.886

247 Proline, 4-hydroxy-, trans- Carboxylic acid and derivatives 0.885

474 Acevaltrate Carboxylic acid 0.885

227 Pentadecane, n- Alkane 0.883

355 Glyceric acid Sugar acids and derivatives 0.876

126 Methionine Amino acid 0.871

267 Aniline, 3,4-dimethyl- Xylidine isomer 0.864

364 Decane, n- Alkane 0.859

490 PA(O-20:0/13:0) Glycerophospholipid 0.857

443 GlcCer(d18:1(8Z)/21:0(2OH[R]));GlcCer(d18:1(8E)/21:0(2OH[R])) Sphingolipid 0.854

278 3-demethylubiquinone-9 Prenol lipids 0.852

323 3,3-Dibromo-2-n-hexylacrylic acid Fatty acyls 0.852

327 Anandamide (20:5, n-3) Fatty acid amide 0.845

384 Tetradecane, n- Alkane 0.845

134 Unknown 4 Unknown 0.843

307 Urea Organic acids and derivatives 0.842

387 Benzaldehyde Benzoids 0.827

229 3,4-dimethyl-5-carboxyethyl-2-furanpentanoic acid Furanoic fatty acids 0.826

50 Pyroglutamic acid Carboxylic acid and derivatives 0.816

433 25-hydroxy-1alpha-hydroxymethyl-23,23,24,24-tetradehydrocholecalciferol Vitamin D metabolite 0.815

379 Galactose, 2-amino-2-deoxy-, D- Glucose derivative 0.800

1072 OKHdiA-PS Chemical 0.797

360 Heptadecane, n- Alkane 0.769

P.A.B. Pereira et al.
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Bacteroidetes3, although of those reported only Verrucomicrobia
yielded correlations with metabolite features in our analysis
(Table 4).

DISCUSSION
Using mummichog approach, we have shown in this study that
the identified serum metabolome differences in PD have
functional significance on over 20 pathways, including carnitine
shuttle, vitamin E metabolism, glycerophospholipids, sphingoli-
pids, fatty acids, and aminoacyl-tRNA biosynthesis. In a separate
study, we have demonstrated that carnitine shuttle, sphingolipids,
and fatty acids pathways change in Parkinson’s sebum—these are
within the 20 pathways enlisted above detected in serum in this
study19.
The changes observed in pathways associated with sphingoli-

pid metabolism may indicate a key shift in cell signalling and

regulation. Dysregulation of sphingolipids is known to be
associated with α-synucleinopathy20,21, changes in lysosomal
metabolism, and in mitochondrial metabolism observed in
PD22,23. Sphingolipids have shown strong associations with many
neurodegenerative conditions as recently reviewed by Alessenko
and Albi24. In addition to altered sphingolipid metabolism in
plasma, metabolomics and lipidomics studies in PD have shown
changes in ceramides, sphingosine and sphingosine-1-phosphate
in particular25,26. It is not surprising, given that one of the top
pathways where notable changes are seen in this study is linked
to glycerophospholipid metabolism. Glycerophospholipids and
sphingolipids are well-known as the ‘ying and yang’ of lipotoxicity
in metabolic disease27. The dysregulation of these complementary
and opposed forces in the metabolome leads to lipotoxicity seen
in many metabolic diseases. It can thus be speculated that such
lipotoxic insult may be one of the underlying pathophysiologies of
PD, as measured in serum.

Table 2 continued

Peak number Putative ID Metabolite feature class Avg P/C foldchange

226 Norvaline, DL- Carboxylic acid and derivatives 0.765

130 7,3’-Dihydroxy-4’-methoxy-8-methylflavan Flavonoids 0.752

188 Unknown 3 Unknown 0.751

418 Sorbitan stearate Sorbitol derivative 0.738

363 3-carboxy-4-methyl-5-pentyl-2-furanpropanoic acid Furanoic fatty acids 0.703

287 Fuconic acid Chemical 0.690

361 3,4-dimethyl-5-carboxyethyl-2-furanhexanoic acid Furanoic fatty acids 0.690

399 PE(O-20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) Glycerophospholipid 0.688

880 DG(15:0/18:4(6Z,9Z,12Z,15Z)/0:0) Fatty acyls 0.684

390 Fuconic acid Chemical 0.669

153 Withaperuvin B Steroid and derivatives 0.655

1044 OHOHA-PS Chemical 0.640

9 OHOHA-PS Chemical 0.638

337 C17 sphingosine-1-phosphocholine Sphingolipid 0.637

201 Butenylcarnitine Fatty acyls 0.636

274 (20S,24R)-20-fluoro-1alpha,24-dihydroxy-26,27-cyclovitamin D3 Chemical 0.634

311 Sphingofungin A Antifungal 0.633

295 Glycoursodeoxycholic acid Steroid and derivatives 0.610

177 Glutarylcarnitine Fatty acyls 0.595

204 2,3-epoxyphylloquinone Vitamin K derivative 0.572

348 Fuconic acid Chemical 0.560

276 SM(d18:0/24:0) Sphingolipid 0.542

263 Epigallocatechin 3-O-caffeate Epigallocatechins 0.536

115 Hydroxybutyrylcarnitine Fatty acyls 0.522

5 Palmitoleamide Fatty amide 0.519

365 N-trans-Feruloyloctopamine Cinnamic acids and derivatives 0.515

313 iodovulone I Chemical 0.485

321 N2,N2-Dimethylguanosine Purine nucleosides 0.353

20 Rubraflavone D Flvonoids 0.348

24 Cycloheterophyllin Pyranoflavonoids 0.333

331 cholesterol sulfate Steroid and derivatives 0.328

13 Leukotriene D5 Organooxygen compounds 0.208

407 PE(20:2(11Z,14Z)/0:0) Glycerophospholipid 0.105

Key predictive metabolite features between PD and Controls, organized in descending order of effect size. These top 10% metabolite features were selected
after ranking them for their predictive power to distinguish between PD and HC. See ‘Methods’ section for details. The m/z features annotated as ‘Unknown’
had no accurate mass match or spectra match when compared to the library during database search. Mass spectra for these can be found in the
Supplementary files as ”Supplementary Figure—Unknown X spectra”, with X corresponding to the respective unknown features 1, 2, 3, and 4 in the table.
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Decreased long-chain acylcarnitines due to insufficient
β-oxidation has been shown to carry potential for early diagnosis
of Parkinson’s28, especially 12–14 long chain acylcarnitines. In
recent work studying the gut microbiome, Rosario et al.29 have
shown the role of bacterial folate and homocysteine metabolism
in PD. Higher numbers of bacterial mucin and host degradation
enzymes were linked to the manifestation of PD. The contribution
of bacterial folate metabolism to human metabolic regulation is
not entirely clear. Folate is an essential vitamin B, that maintains
methylation reactions. The liver, via many methylation reactions in
post-translational modifications, regulates the synthesis of hor-
mones, creatine, carnitine, and phosphatidylcholine30. If methyla-
tion capacity is compromised due to an alteration in folate
metabolism, there may be impaired phosphatidylcholine synthesis
along with shunted or disrupted carnitine shuttle observed in our
results. Altered carnitine metabolism, fatty acids, and steroid
metabolism were also observed in a metabolomics profiling study
recently reported31. Several studies have reported decreased
levels of carnitine and acylcarnitines in plasma from PD
patients28,32,33; however, according to Jiménez-Jiménez et al.34

no changes were observed in acylcarnitine levels in plasma or
cerebrospinal fluids of PD participants. Thus, there is no clear
evidence of direction in which carnitines are expressed but there
is much research evidence that suggests a link between
perturbations in carnitine shuttle owing to protective mechanism
of acylcarnitines leading to changes in other fatty acids and
eventually the lipid make-up in PD. Researchers have shown
molecules such as LDL and HDL to have direct association with
sebum and related diseases such as acne35 and demonstrated that
lipid metabolism is not just a diet processing effect, but a complex

interaction that affects lipid uptake from the gut, biosynthesis in
liver and sequestration in tissues including on skin36. These results
in serum metabolome could be indicative of link between gut
microbiome, serum metabolome and sebum metabolome.
Energy metabolism is highly regulated by facilitation of long

chain fatty acid β-oxidation. Also, in serum from frail11 elderly
participants without Parkinson’s, dysregulation of carnitine shuttle
and vitamin E metabolism was observed when compared to
similarly aged resilient individuals37. Thus, perturbation of
carnitine shuttle and vitamin E, along with fatty acids in serum
metabolome may indicate a significant change in energy
metabolism during PD. Further, Vitamin E’s role as a protective
factor against Parkinson’s has been extensively studied along with
vitamin C for therapy of early onset PD38–41. Serum metabolome
based on pathway analysis presented in this study indicates
changes broadly in energy metabolism and lipid metabolism in
PD. These disruptions have been recently reported in other
biofluids such as sebum19 and CSF42 and the community is
increasingly recognising the role of lipid dysregulation, well
summarized in these reviews20,43,44. We used knowledge from our
microbiome analysis to investigate if these metabolic shifts were
entirely endogenous or were also partly contributed to by
changing gut microbiome in Parkinson’s disease.
Regarding the correlations between bacterial taxa and meta-

bolite features, and given that metabolite MSI 3 ID is a putative
identification, we will mostly focus the following discussion at the
level of metabolite classes. When mentioning specific bacterial
taxa in terms of correlation results, we will report between
brackets if the taxon is always (or usually) reported in the literature
as being over- or underrepresented in PD (see the last column in

Table 3. Results from pathway analysis.

Analytical Platform Pathway name Metabolite overlap Pathway size Adjusted p-value

LC-MS (pos mode) Carnitine shuttle 18 27 0.00934

Vitamin E metabolism 18 34 0.01417

Glycosphingolipid metabolism 15 28 0.01585

N-Glycan Degradation 5 6 0.01624

Porphyrin metabolism 13 25 0.0209

Glycerophospholipid metabolism 15 31 0.02649

Saturated fatty acids beta-oxidation 8 15 0.03312

Linoleate metabolism 9 18 0.03892

Squalene and cholesterol biosynthesis 17 39 0.04848

LC-MS (neg mode) De novo fatty acid biosynthesis 13 18 0.00192

Fatty acid activation 12 17 0.00209

Hexose phosphorylation 6 7 0.00292

Glycosphingolipid metabolism 10 16 0.00384

Caffeine metabolism 6 10 0.01308

Phosphatidylinositol phosphate metabolism 4 6 0.02081

Fructose and mannose metabolism 4 6 0.02081

Fatty Acid Metabolism 4 6 0.02081

Starch and Sucrose Metabolism 3 4 0.03001

Glycerophospholipid metabolism 10 22 0.03784

GC-MS Aminoacyl-tRNA biosynthesis 6 48 0.00011601

Pantothenate and CoA biosynthesis 3 19 0.0037957

Valine, leucine and isoleucine biosynthesis 2 8 0.007673

Phenylalanine metabolism 2 10 0.012069

Results from pathway analysis for LC-MS and GC-MS data. Metabolite overlap shows the number of metabolites that overlap on the total metabolites on
pathway indicated by pathway size. The p-values were adjusted for multiple comparisons as implemented within the Mummichog algorithm, as a penalisation
process that takes into account the Cumulative Distribution Function (CDF) and the Expression Analysis Systematic Explorer (EASE).
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the Table 4 for details), as well as the signal of the correlation
detected in the present study.
At all bacterial taxonomic levels investigated in this study, the

most commonly detected correlations were found with putative
metabolites in the glycerophospholipid class and with lipids in
general. This is the case both in our non-trimmed results
(Supplementary Tables 1–6) and in the trimmed results focusing
only on bacterial taxa found in the previous literature as being
differentially abundant between Controls and PD cases (Table 4).
Specifically, in the within-PD analysis and focusing the discussion
on the trimmed results, we find correlations between various
glycerophospholipids and Roseburia (decreased in PD; positive
correlation), Lactobacillus (increased in PD; positive correlation),
Akkermansia (increased in PD; one positive and one negative
correlation), Bifidobacteriaceae (increased in PD; positive correla-
tion), Pasteurellaceae (decreased in PD; positive correlation),
Lactobacillaceae (increased in PD; positive correlation), Verrucomi-
crobiaceae (increased in PD; one positive and one negative

correlation), and Verrucomicrobia (increased in PD; one positive
and one negative correlation) (Table 4). Akkermansia, Verrucomi-
crobiaceae, and Verrucomicrobia share the same positive and
negative correlations with two metabolite features. Lactobacillus
and Lactobacillaceae correlate positively with the same metabolite
feature.
With the exception of Roseburia and Pasteurellaceae, all these

taxa are usually found to be overrepresented in PD, and are mostly
positively correlated with various glycerophospholipids, which are
also found in our analysis to be mostly overrepresented in PD
(Table 2). This is not the case in the within-controls analysis, in
which the only detected correlations with glycerophospholipids
are with Lactobacillaceae (positive correlation with a different
metabolite) and Enterobacteriaceae (also a positive correlation
with a different metabolite) (Table 4). The genus-level network
figures for PD and Controls (Figs. 1 and 2) also indicate the
existence of possible alterations in bacterial metabolic dynamics in
PD. Overall, these results suggest that these bacterial taxa, which

Fig. 1 Network of within-PD correlations. Network of within-PD correlations between bacterial genera and metabolite classes.
Supplementary Tables 1 and 2 contain correlations with bins composed of more than one genus (or higher taxon), which were unclassified
at genus level, but these bins were removed from Figs. 1 and 2 to aid in visualization and to focus on the identified genera. Edge thickness
represents the strength of the correlation. Blue edges represent positive correlations, and Orange edges represent negative correlations.
Green nodes represent metabolite classes and may contain more than one metabolite feature (hence why there may be multiple edges
between two nodes), and Cyan nodes represent bacterial genera. Check Table 6 at the end of this article for the key to the abbreviations used
in Figs. 1 and 2.
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have been found to be overabundant in PD in several studies, may
be associated for the most part with an increase in glyceropho-
spholipid abundance in PD.
All of these glycerophospholipids have an endogenous (human

host) origin and are linked to cell signalling, lipid peroxidation, and
lipid metabolism. These phospholipids are the main component of
cell membranes in all known living systems, and play roles in
various biological processes, including signal induction and acting
as transporters. Interestingly, there are several genetic factors
directly or indirectly related to glycerophospholipid metabolism,
such as PLA2G620, that are associated with PD risk (PLA2G6 is the
cause of early-onset PARK14-linked dystonia- parkinsonism45,46).
Alpha-synuclein, characteristically found in aggregates within
Lewy bodies in the brains of PD patients, directly binds to

negatively charged phospholipids in the cells’ lipid membranes,
and exhibits preferential binding to small lipid vesicles47. The
binding of alpha-synuclein to lipid membranes can also lead to
alterations in their bilayer structure that can induce the formation
of those lipid vesicles48. Very importantly in the PD context, these
interactions between lipid membranes and alpha-synuclein affect
its rate of aggregation, and can lead to disruption of membrane
integrity both in vitro and in vivo49. It has also been shown that
the association of soluble alpha-synuclein with planar lipid bilayers
results in the formation of aggregates and small fibrils50. Exposure
to docosahexaenoic acid (DHA), which accounts for 60% of
glycerophospholipid esterified fatty acids in the plasma mem-
brane, gradually assembles alpha-synuclein into amyloid-like
fibrils, with the notable feature that DHA itself becomes part of

Fig. 2 Network of within-Controls’ correlations. Network of within-Controls’ correlations between bacterial genera and metabolite classes.
Supplementary Tables 1 and 2 contain correlations with bins composed of more than one genus (or higher taxon) which were unclassified at
genus level, but these bins were removed from Figs. 1 and 2 to aid in visualization and to focus on the identified genera. Edge thickness
represents the strength of the correlation. Blue edges represent positive correlations, and Orange edges represent negative correlations.
Green nodes represent metabolite classes and may contain more than one metabolite feature (hence why there may be multiple edges
between two nodes), and Cyan nodes represent bacterial genera. Check Table 6 at the end of this article for the key to the abbreviations used
in Figs. 1 and 2.
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he aggregate51. Notably, alpha-synuclein gene expression is
increased with elevated DHA intake, and the resulting oligomers
are toxic to cells52,53. Alpha-synuclein also binds with specific
phospholipids in mitochondrial membranes, modulating the
efficiency of mitochondrial energy production54, with various
mitochondrial phospholipids appearing to have an effect on
alpha-synuclein toxicity20. Thus, the interaction between alpha-
synuclein and various phospholipids and their metabolism may
play an important role in PD pathogenesis, and gut microbiota
may be implicated in these interactions.
We also detected correlations with other lipids in the within-PD

analysis. Roseburia (decreased in PD) negatively correlates with a
sterol lipid, probably of dietary origin. Roseburia is also positively
correlated with a metabolite in the fatty acyl class, possibly also
associated with diet. Lactobacillus (increased in PD) is negatively
correlated with a furanoic fatty acid, which is associated with cell
signalling, lipid peroxidation, lipid metabolism, and lipid transport
metabolism, with dietary, human, and/or bacterial origin. Half of
the metabolites from the fatty acyl class were found to be
overrepresented in PD in the selected 139 metabolite features in
our blood serum data (Table 2), but overall underrepresented in
the PD sebum data from Sinclair et al.19.
In the within-controls analysis we detected a positive correla-

tion between Enterobacteriaceae (increased in PD) and a
sphingolipid, which is associated with membrane stabilization,
lipid peroxidation, and lipid metabolism, of endogenous origin. In
our study, this metabolite feature is slightly decreased in PD
(Table 2) and no correlation is found between it and PD-linked
bacterial taxa in the within-PD analysis.
Although the interpretation of these results regarding lipids in

general is not suggestive of a particular pattern as in the case of
glycerophospholipids, it is nevertheless interesting that virtually all
correlations, positive or negative, with lipids are detected in the
PD group, with most lipids detected in our study being
overrepresented in PD relative to the control group (Table 2).
Also interesting is that the majority of the identified correlations
between metabolite features and the trimmed bacterial taxa list
are with lipids, with relatively few other metabolite groups
represented in the results (Table 4). The importance of this link
between lipid metabolism and PD can’t be overstated: as
mentioned earlier in the context of phospholipids, recent research
shows that alpha-synuclein binds preferentially to specific lipid
families and molecules, and that the latter promote alpha-
synuclein interaction with synaptic membranes and affect alpha-
synuclein oligomerization and aggregation. These same lipid-
protein complexes also affect lipid metabolism by interfering with
the catalytic activity of lipid enzymes in the cytoplasm and lipases
in lysosomes. Lipid compositional alterations in PD have also been
reported in brain and plasma, as well as linked to oxidative stress,
inflammation, and progressive neurodegeneration through pro-
inflammatory lipid mediators (see Alecu et al.20 for a full review on
the role of lipids in PD). The link between lipids and bacteria in PD,
if any, would probably consist of the bacterial modulation of lipid
intake through diet and its differential effect on the bioavailability
of those lipids in the host. The results of our study, by establishing
associations between bacterial taxa found to be differentially
abundant between Controls and the PD group and lipid
metabolites present in serum that are themselves predictive of
PD, suggests that such a scenario could have a role in PD
pathology and development.
Further correlations with putative metabolites in other classes

have also been detected in our study, in particular in the hexoses
class and carboxylic acid or derivatives class. In the hexoses case,
two negative correlations for the same metabolite feature were
found for Bifidobacterium and Bifidobacteriaceae (both taxon levels
increased in PD; Table 4). These two correlations are only found in
the within-controls analysis. The metabolite is probably endogen-
ous in origin and is involved in sugar metabolism shunts, divertingTa
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a proportion of glucose from the main glycolytic path and
returning metabolites at the level of triose phosphate and fructose
6-phosphate.
Finally, a positive correlation in the within-PD analysis is found

between a metabolite feature in the carboxylic acid or derivatives
class and the bacterial family Erysipelotrichaceae, which is mostly
found in previous studies to be overrepresented in PD. This
metabolite feature is tentatively identified as proline and may
have a microbiome or endogenous source. Four different
metabolite features found to be predictive of PD in our data are
tentatively identified as proline (Table 2), and in all cases show a
slight decrease in mean abundance in PD. Interestingly, L-proline
can act as a weak agonist for glycine and glutamate receptors55,
like NMDA, AMPA, and kainite. Both glutamate and glycine are
neurotransmitters. Although that is not the case in our data,
proline has been reported previously as being overrepresented in
PD31 and is known to be linked to protein metabolism and
structure, cell differentiation, conceptus growth and develop-
ment56, and gut microbiota community re-equilibration in cases of
dysbiosis, with L-proline dietary supplementation being known to
affect gut microbial composition and gut concentrations of several
bacterial metabolites57. One of the detected correlations with
Prevotella also involves (putative) proline. Prevotella and Prevo-
tellaceae, when detected in PD studies, are usually found
decreased in PD. In this study it correlates negatively with proline,
which is found to be slightly underrepresented in the PD group.
In conclusion, we designed our study to investigate, as broadly

as possible, the existence of associations between bacteria and
metabolite abundances in PD. To this end, we used a data-driven,
hypothesis-generating approach based on untargeted metabolo-
mics data. It is our hope that the results can a posteriori be used to
build more focused studies of either an observational or
experimental nature to explore our putative findings. Circa
7500 serum metabolite features were detected by gas chromato-
graphy and liquid chromatography using untargeted metabolo-
mics. Of these, 139 were deemed to be particularly predictive for
PD status. For the most part they are related to lipid metabolism,
and are also mostly overrepresented in PD. The evidence for
metabolic differences in PD is related to carnitine shuttle, vitamin
E metabolism, glycerophospholipids, sphingolipids, and fatty
acids, suggesting alterations in PD related to energy and lipid
metabolism. Our results indicate that the abundance of several
gut bacterial genera (e.g. Prevotella, Bifidobacteria, Akkermansia,
Lactobacillus, Roseburia) correlates with the abundance of several
of these metabolite features, and thus may be implicated in these
metabolic alterations in PD.
One limitation of this study, like in many other metabolomics

clinical studies, could be the variation introduced by drug usage.
We have analysed possible associations between the metabolite

features against several medications (e.g. LEDD score) and found
no clear indication of drug effects. However, without a targeted
metabolomics study, it is hard to rule out such effects. We may
have these drugs or their breakdown products in our data, but we
cannot target them specifically due to the unknown masses of all
possibly relevant drug metabolites. We hope that untargeted
metabolomics studies like the present one could, with their broad
hypothesis-generation approach, serve as a basis for future
targeted metabolomics studies that could better deal with
potential sources of variation such as drugs or their metabolic
products.

METHODS
Study subjects, clinical data, and sampling
This study was conducted in accordance with the Declaration of Helsinki
and was approved by the ethics committee of the Hospital District of
Helsinki and Uusimaa. All participants provided written informed
consent.
The present study uses bacterial abundance data that was used in a

previously published study by Aho et al.14. The study subjects and
associated clinical data in the present study is similar to the data referred
to previously in that study as “follow-up” timepoint, with minor changes
specific to the present study: of the original 128 subjects, 61 control
subjects and 63 PD patients were used in the present study, i.e. 3 control
subjects and 1 PD subject less than in the original cohort (C75, C82, C123,
and P119). This difference in sample numbers was due to insufficient
metabolite data available to perform the study.
For DNA sequencing, the stool samples were collected at home by the

study subjects using tubes containing DNA stabilizer (PSP Spin Stool DNA
Plus Kit, STRATEC Molecular), which were stored for a maximum of three
days in a freezer until transport. At the clinic, the received samples were
stored at −80 °C and later transferred to the sequencing centre, where
they were also stored at −80 °C until further processing14.
For serum samples, blood was drawn at the study visit and, after

processing, immediately transferred to −20 °C and subsequently to −80 °C.
Samples were shipped overnight on dry ice from Helsinki to Manchester
for analysis.

Sample preparation and metabolomics methods
Metabolomics sample preparation. Untargeted metabolite profiling was
performed on serum samples that were collected from participants and
stored at −80 °C prior to analysis. Complementary coverage of metabolites
was obtained using ultra-high performance liquid chromatography mass
spectrometry (UHPLC-MS) and gas chromatography mass spectrometry
(GC-MS). The procedures were adapted from the Dunn58 and Begley59

protocols as summarized here:
Metabolites were extracted from the serum samples by individually

adding 400 µL of cold methanol to 200 µL of serum. This was followed by
vortexing and centrifugation (17,500 × g) to yield a metabolite rich
supernatant that was split into two aliquots and lyophilised for 12 h.
Resultant metabolite pellet was stored at −80 °C until analysis. A pooled

Fig. 3 Network of selected within-PD correlations. Network of within-PD correlations between bacterial genera and metabolite classes using
selected results (Table 4). Edge thickness represents the strength of the correlation. Blue edges represent positive correlations, and Orange
edges represent negative correlations. Green nodes represent metabolite classes, and Cyan nodes represent bacterial taxa.
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QC standard was also generated by combining 20 µL aliquots of each
sample into a pooled vial with subsequent 200 µL aliquots from the pool,
being extracted identical to each sample.

LC-MS method parameters. Processed metabolite pellets were defrosted
at 4 °C and subsequently reconstituted in 100 µL of 95:5 H2O:MeOH (v/v).
UHPLC-MS analysis was performed using an Accela UHPLC with cooled
auto sampler system coupled to an electrospray LTQ-Orbitrap XL hybrid
mass spectrometer (ThermoFisher, Bremen, Germany). Analysis was carried
out in positive and negative ESI modes while samples were completely
randomised to negate for any bias. The mobile phases and gradient elution
profile were as tabulated in Table 5. From each sample vial, 10 µL of the
extract was injected onto a Hypersil GOLD UHPLC C18 column (length
100mm, diameter 2.1 mm, particle size 1.9 µm, Thermo-Fisher Ltd. Hemel
Hempsted, UK) held at a constant temperature of 50 °C with a solvent flow
rate of 400 µLmin−1.
Prior to analysis, LTQ-Orbitrap XL was calibrated according to

manufacturer’s instructions using caffeine (20 µgmL−1), the tetrapeptide
MRFA (1 µgml−1) and Ultramark 1621 (0.001%) in an aqueous solution of
acetonitrile (50%), methanol (25%) and acetic acid (1%). The data
acquisition was performed in centroid mode with 30 K mass resolution
and scan rate of 400ms per scan. The masses were measured between 100
and 1200m/z range with source gases set at sheath gas= 40 arb units, aux
gas= 0 arb units, sweep gas= 5 arb units. The ESI source voltage was set
to 3.5 V, and capillary ion transfer tube temperature set at 275 °C.

LC-MS data processing. Xcaliber software (v.3.0; Thermo-Fisher Ltd. Hemel
Hempsted, UK) was used as the operating software for the Thermo LTQ-
Orbitrap XL mass spectrometer. Data processing was initiated by the
conversion of the standard UHPLC.raw files into the.mzML format using
Proteowizard60. Subsequently, peak picking was carried out in RStudio61

using the XCMS62 package for data deconvolution (http://masspec.scripps.
edu/xcms/xcms.php). The output data was a matrix of mass spectral
features with accurate m/z and retention time pairs. Any missing values
after deconvolution were replaced using k-nearest neighbours algorithm.
Peaks with relative standard deviation of more than 20% within pooled
QCs were removed. The remaining data was normalised with total ion
count to account for injection to injection signal variations, log10
transformed, and pareto scaled prior to statistical analysis.

GC-MS method parameters. Analysis of serum samples was also carried
out on a Agilent 7250 GC-Time-of-Flight mass spectrometer coupled to a
Gerstel-MPS autosampler. Two step derivatization of metabolite pellets
thawed at 4 °C was carried out as described in the Begley protocol59. The
source temperature was set to 230 °C and quad temperature was at 150 °C.
The total run time was 25min for 10 µL sample injected each time. The
sample was injected in split mode with 20:1 split ratio and split flow of
20mL per minute. Agilent CP8944 VF-5ms column was used for separation
(30m × 250 µm × 0.25 µm). With a 5 min solvent delay at the start of run,
gradient elution method was used to elute and separate analytes from
serum. The oven temperature was ramped from 70 °C to 300 °C with an
increase of 14 °C per minute. At 300 °C the temperature was held for 4 min
before dropping back to starting conditions.

GC-MS data processing. The raw data files were in Agilent.D format that
were converted to.mzML format using Proteowizard60. Peak picking was
carried out in RStudio61 using an in-house script for the eRah63 package for

GC-MS peak picking and deconvolution. The peaks were annotated using
eRah’s MassBank library. Any missing values after deconvolution were
replaced using k-nearest neighbours algorithm. Peaks with relative
standard deviation of more than 20% within pooled QCs were removed.
The remaining data was normalised with total ion count to account for
injection to injection signal variations, log10 transformed, and pareto
scaled prior to statistical analysis.
All metabolites successfully annotated within both the LC-MS and

GC-MS analysis were assessed and scored at MSI level 3 putative
identification according to rules set out by the Chemical Analysis Working
Group of the Metabolite Standards Initiative18.

Sample preparation and DNA sequencing
DNA extraction was performed according to the manufacturer’s instructions.
We then amplified the V3-V4 regions of the bacterial 16 S rRNA gene, using
two technical replicates (25 μL reactions) per biological sample, and a mixture
of the universal bacterial primers 341F1–4 (5′ CCTACGGGNGGCWGCAG 3′)
and 785R1–4 (5′ GACTACHVGGGTATCTAATCC 3′) with partial Illumina TruSeq
adapter sequences added to the 5′ ends (F1; ATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCT, F2; ATCTACACTCTTTCCCTACACGACGC TCTTCCGATC
Tgt, F3; ATCTACACTCTTTCCCTACACGACGCTCTTCCGA TCTagag, F4; ATCT
ACACTCTTTCCCTACACGACGCTCTTCCGATCTtagtgt and R1; GTGACTGGAGTT
CAGACGTGTGCTCTTCCGATCT, R2; GTGACT GGAGTTCAGACGTGTGCTCTTCCG
ATCTa, R3; GTGACTGGAGTTCAGACGT GTGCTCTTCCGATCTtct, R4; GTGACT
GGAGTTCAGACGTGTGCTCTTCCGA TCTctgagtg)14. The small letters in the
above sequences are additional nucleotides introduced for purposes of
mixing in the sequencing process. We performed two-step PCRs followed by
quantification, pooling, and purification14. The resulting PCR products were
then sequenced with Illumina MiSeq (v3 600 cycle kit), with 325 bases and
285 bases for the forward and reverse reads, respectively.

Bioinformatics and statistical data analysis
Statistical analysis of metabolomics data. In this untargeted profiling
study, we detected a total of 7585 features combined between LC-MS
positive ionisation mode, LC-MS negative ionisation mode and GC-MS
data. After processing the raw data and applying QC based relative
standard deviation filtering, in LC-MS positive ionisation mode 5897
features remained, and in LC-MS negative ionisation mode data 1260
features remained. In GC-MS data 428 features were retained for statistical
analysis. As described earlier in this article, these features were scaled and
transformed prior to any statistical analysis.

(i) Classification by disease status: Individual dataset from LC-MS
positive mode, LC-MS negative mode, and GC-MS were first analysed
separately and then standardised combined data was used to generate a
model based on the whole metabolome measured by 7585 features in
total. Individual datasets from each technique were analysed using partial
least squares discriminant analysis (PLS-DA) to classify between PD and
control using the Metaboanalyst package in R. The models were validated
by 60:40 split of data with 250 bootstraps and also by comparing correct
classification rates with permuted models (Supplementary Table 7
(MODELS)).
In order to investigate the classification of samples into PD and control,

support vector machines (SVM) were used on 7585 metabolite features.
Using Python via Orange user interface, SVM models were generated for
this analysis. The data were pre-treated as described earlier in this article.
The data were then split into train (60% data) and test (40% data), and
resampling was repeated 100 times. The SVM model was generated with
RBF-kernel, cost (C) was set to 1.5, and regression loss epsilon was set at
0.10. We accounted for potential effects of hypercholesterolaemia, gender,
age at sampling, BMI, defecations per week, weekly stool characteristics
average, clinical scores (GDS15, MMSE, NMSQ, NMSS, RBDSQ, Rome-III
constipation score, SDQ, Wexner total, Progression score, and Rome-III IBS
criteria) as well as 68 dietary and lifestyle related variables as described in
Supplementary table 7 (MODELS). The top 10% variables were selected
after ranking them by ReliefF algorithm, and models were regenerated to
rule out the possibility of an effect due to a large number of metabolite
features.

(ii) Key predictive metabolite feature selection: To select metabolite
features (i.e., features predictive of PD status) contributing to the SVM
models, the mSVM-RFE algorithm was used64. The iterative algorithm
worked backwards from an initial set of features consisting of all the
metabolite features in the dataset. At each iterative round, firstly a simple
linear SVM was fitted, then features were ranked based on their weights in

Table 5. Mobile phases and gradient elution profile.

Time (min) Mobile Phase A (95:5 H2O:
MeOH with 0.1% Formic
acid) composition

Mobile Phase B (95:5 MeOH:
H2O with 0.1% Formic acid)
composition

0 100 0

1 95 5

12 5 95

20 5 95

22 95 5

25 95 5
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the SVM solution and lastly, the algorithm eliminated the feature with the
lowest weight. In order to stabilize these feature rankings, at each iteration
cross validation resampling was used. By using k-fold cross validation (k=
10) multiple SVM-RFE iterations were carried out. From the resultant
ranked feature list, the top 10% of the features were selected (the 139 key
predictive metabolite features) for further interpretation as they con-
tributed the most towards SVM models.

(iii) Effects of PD medications, UPDRS-III score, and time since onset of
motor symptoms on key metabolite features selected: During the selection
of the key predictive metabolite features, potential effects from clinical
variables like PD medication could not be taken directly into account in
those models, since they are restricted to the PD group. However, such an
approach would leave open the question regarding possible effects of
those variables on the metabolite predictors. Thus, to investigate the
potential effects of PD medications, UPDRS-III score, and time since motor
symptoms on PD vs HC classification (i.e. the 139 metabolite features), and
to investigate associations of drug dosages to the key metabolite features,
partial least squares and logistic regression were carried out within-PD for
continuous and categorical responses, respectively. The variables that had
continuous scaled values were subjected to partial least squares regression
with 20 PCs, for 1000 iterations. The variables that had categorical values
were subjected to logistic regression with ridge penalization with cost
value of 1. All partial least squares and logistic regression models were
validated by leave-one-out cross-validation (LOOCV). Partial least squares
R2 and root mean squared error (RMSE) and logistic regression
classification accuracy were used for model evaluation (Supplementary
Table 7 (MODELS)). The top 10% of variables were selected after ranking
them by ReliefF algorithm, and models were regenerated to rule out the
possibility of an effect due to a large number of metabolite features. Our
results indicate that the choice of 139 metabolite features was not affected
by PD medication use or dosage. One possible exception could be COMT
inhibitors, which may have a weak effect and may be associated with the
PD metabolome in serum: using the 139 key metabolites, we were able to
classify between a PD subject with and without COMT inhibitor treatment
with an accuracy of 63%, which is low. Thus, these results suggest by
extension that drug use did not affect the choice of the 139 key predictive
metabolite features in any substantial way during the HC vs PD predictive
feature analysis. Supplementary Table 7 (MODELS) includes information
about variables and adjusted variables, for each model.

(iv) Effects of clinical variables on metabolome within PD: We
investigated potential effects and association of clinical variables within
the PD cohort. All metabolite features (not just the key predictive
metabolite features) were regressed against clinical features of Parkinson’s
viz. GDS-1565 (depression), MMSE66 (cognition), NMSS67 (non-motor
symptoms), RBDSQ68 (REM-sleep behaviour disorder), Rome-III constipation
score69, Rome-III IBS status, Wexner score70 (constipation), SCS-PD71

(drooling), SDQ72 (dysphagia), UPDRS II-III, Hoeh & Yahr scale, and
progression category from Aho et al.14, while adjusting for model
covariates (see Supplementary Table 7 (MODELS)). All RBDSQ and
Progression categories were adjusted for age at sampling and time since
motor onset. SCS-PD, SDQ, UPDRS-II, UPDRS-III and Hoehn & Yahr were also
adjusted for LEDD. UPDRS-III was additionally adjusted for beta blockers.
Wexner score and Rome-III IBS status and Rome-III constipation scores
were also adjusted for anticholinergic medication, constipation medica-
tion, opioids, and tricyclic medications, as well as dietary fibre intake. SCS-
PD was additionally adjusted for anticholinergic and tricyclics. GDS-15 was
additionally adjusted for SSRI medications. MMSE was additionally
adjusted for anticholinergic and tricyclic medications.
Partial least squares and logistic regression was carried out for

continuous and categorical responses, respectively. The features that had
continuous scaled values were subjected to partial least squares regression
with 20 PCs, for 1000 iterations. The features that had categorical values
were subjected to logistic regression with ridge penalization with cost
value of 1. All partial least squares and logistic regression models were
validated by splitting data into 60:40 training: test sets and resampling for
100 times. Partial least square R2 and root mean squared error (RMSE) and
logistic regression classification accuracy were used for model evaluation
(Supplementary Table 7 (MODELS)). Top 10% of variables (759 variables)
were selected after ranking them by ReliefF algorithm, and models were
regenerated to rule out the possibility of an effect due to a large number of
metabolite features.

(v) Pathway analysis: In this data driven approach, we have inter-
rogated data generated from an untargeted profiling study. It is often
impractical to identify each peak in a metabolomics profiling study as it
could contain upwards to 5000 features in a single sample. To identify

them accurately, the only option is to purchase commercial standards and
perform MS/MS analysis in both samples and standards and then match
fragmentation spectra. This could be relevant when performing a targeted
analysis with a defined set of metabolites. Computationally predicted m/z
based identification alone is not adequate for pathway analysis due to
multiple metabolite matches to single m/z. Thus, we have employed
mummichog analysis that does not depend on identification of
metabolites and then mapping on pathways. Instead, mummichog
leverages the collective power in the organisation of metabolic networks.
If a list of m/z values truly reflects a biological activity, the true metabolites
that are represented by these m/z values should show enrichment on a
local structure of a metabolic network. If the measured m/z matches to a
falsely represented metabolite, the distribution will be observed
randomly. The overall significance of mapping and pathway enrichment
is estimated by ranking the p-values from the real data among the
p-values from permutation data to adjust for type I error, along with
penalisation. Thus, a robust functional metabolic network gives us
insight into our data more than identifying a handful of features.
Mummichog73 (v.1.0.9) pathway analysis was used to predict network
activity from pre-processed UHPLC-MS metabolomics data. The full
metabolite data set consisting of 5897 and 1260 features from LC-MS
positive and negative mode, respectively, was used as an input. Pathway
enrichment analysis was performed on annotated 428 GC-MS features
using MetaboAnalystR74.

Data pre-processing for 16S rRNA gene sequence data. The raw sequence
data amounted to a total of 34,701,899 reads. In brief, primers were
removed from the reads using cutadapt before further processing14. We
then used mothur to pair, quality trim, taxonomically classify, and finally
cluster the reads into OTUs, following mothur’s Standard Operating
Procedure (SOP) for MiSeq. The following customizations were made to
the SOP parameters: insert= 40 and deltaq= 10 in make.contigs;
maxlength= 450 in the first screen.seqs step; start= 6428 and end=
23,440 in the second screen.seqs step; diffs= 4 in pre.cluster. Singleton
sequences were also removed with split.abunds (cutoff= 1) before
running classify.seqs. The reference databases used were the full-length
SILVA alignment release 128 for align.seqs and the RDP 16S rRNA reference
(PDS) version 16 for classify.seqs. The final, processed data set (without
sequencing blanks) consisted of 18,867 278 reads14.

Metabolome-microbiome correlation analysis. For correlation analysis
between metabolites and bacterial taxa at genus, family, and phylum
levels, we used the fido75 package (v.0.1.13; the package was formerly
known as stray) for the R Statistical Programming Software76 (v.3.6.0). fido
provides a framework for inferring multinomial logistic-normal models
which can account for zeros and compositional constraints, as well as
sampling and technical variation present in sequence count data75. For the
present study we used the function orthus from fido which enables joint
modelling of multivariate count data (e.g. 16S rRNA gene amplicon
sequence data) and multivariate Gaussian data (e.g. metabolomics data on
the log-scale).
For samples j∈ {1,…, N} we denote by Yj the observed D1 -dimensional

vector of sequence counts, Zj the standardized (i.e. Z-transformed) and
log10 -transformed P -dimensional vector of observed metabolite
abundances, and Xj a Q -dimensional vector of covariates. Using this
notation, the orthus likelihood model is given by

Yj � Multinomial πj
� �

πj ¼ ϕ�1 ηj
� �

ηTj

ZT
j

" #T

� N ΛXj ; Σ
� �

(1)

with priors Λ � NðΘ; Σ; ΓÞ and Σ �Inverse Wishart Ξ; vð Þ and with ϕ�1

denoting the inverse additive log-ratio (ALR) transform with respect to the
D -th taxa77. Of note, the ultimate inference is invariant to the chosen ALR
transform. This represents a joint linear model over the latent relative
abundances of microbial taxa and metabolite abundances. For computa-
tional scalability this model was inferred using the multinomial-Dirichlet
Bootstrap approximation to the marginal posterior density p (π | Y) that is
available in fido. The multinomial-Dirichlet bootstrap approximates the true
marginal posterior density using the posterior of a Bayesian multinomial-
Dirichlet model centred at the maximum a posteriori (map) estimate of π. In
brief, this is accomplished as follows: for each sample j, the marginal
posterior distribution p (πj | Y) is approximated as the posterior of a
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Bayesian multinomial Dirichlet model pð~π j ~YÞ where ~Y ¼ πmap
j

PD
i¼1 Yij .

Here, the Dirichlet parameters αj were all taken to be 0.5; this can be
thought of as a probabilistic equivalent to using a pseudo-count of 0.5
yet also producing quantified uncertainty due to multivariate counting.
The prior parameters were chosen as

Θ ¼ 0ð½D�1þP� ´QÞ; Γ ¼ Iq (2)

and v= D+ P+ 9. Finally, we set the prior

Ξ ¼ ðv � D� PÞ BlockDiagonal GGT ; IP
� �

(3)

where G is the (D− 1) × D ALR contrast matrix given by G ¼ ID�1 � 1½ �. This
choice of Θ, Γ, Ξ, and v represents the weak prior belief that the correlation
between the absolute abundance of taxa is, on average, small. This prior is
closely related to the sparse penalization used by SparCC78. Using this
model, priors, and inference, we sampled 2000 independent samples from
the posterior distribution p (Λ, Σ | Y, Z, X).
Variable selection for these metabolite feature/microbiota correlation

models was performed as follows: we selected the relevant variables based
on multivariate analyses of the communities’ Bray-Curtis dissimilarity measure
using PERMANOVA, a semi-parametric approach that does not assume
multivariate normality. These analyses were performed separately for the
within-Controls and within-PD groups. First, all clinical and technical variables
of interest were analysed on their own in a univariable model (i.e. a model
with a single explanatory variable). Given that the amount of variance
explained in microbiome models is always very low, the choice of variables at
this step was based solely on achieving statistical significance equal to or
lower than 0.05. The variables that passed this alpha threshold of significance
were then combined into a multivariable model (i.e. a model with more than
one explanatory variable) using marginal testing. Those that retained
significance at 0.05 or less in this full model were considered for the Bayesian
covariance models. Of the latter, only those variables in common between the
metabolite-based variable selection (see section iii above) and the microbiota-

based variable selection were used for the Bayesian covariance models. Thus,
for the three within-Parkinson’s covariance models (i.e. using only PD subjects
at three taxonomic levels), the models were adjusted for COMT inhibitor
medication use. For the three within-Controls covariance models we used
intercept-only models.
The matrix Σ represents a ([D− 1]+Q) × ([D− 1]+Q) covariance matrix

encoding all possible covariances between ALR coordinates and metabolites.
For model interpretation and inference, each posterior sample of the upper
(D− 1) ×Q submatrix was transformed to a D×Q matrix representing the
covariance between microbial composition (now represented with respect to
centred log-ratio coordinates, or CLR) and metabolite abundances. Covar-
iances were transformed to correlations using the function cov2cor in the R
programming language. For the purposes of this study, we considered only
those correlations that had a posterior mean equal to or larger than 0.3 and
that had a 95% credible region not including zero. Conditioned on our chosen
priors, this decision boundary can be thought of as limiting our results to
correlations which we believe (with at least 95% certainty) are non-zero.
Covariance modelling was performed for bacterial genus, family, and

phylum levels, using only metabolite abundance data at “Peak ID” level.
This means that, although several of their corresponding MSI level 3
putative identifications were nominally the same, these were not
merged before analysis, because they have different retention times
and there is non-negligible uncertainty in their identification. After the
correlations were calculated, we broadly assigned metabolite class
information to these metabolites for Table 4 and Table 2 to aid in
interpretation. These class assignments were then used to produce the
Cytoscape79 network visualisations (v.3.8.0), both because classes
simplify the networks and because they are more plausible than the
putative MSI level 3 identifications. These classes were assigned by
searching each putative identification of a metabolite feature against
the Human Metabolome Database16 (HMDB) and the Kyoto Encyclope-
dia of Genes and Genomes80 (KEGG) entry (Table 6).

Table 6. Key to Figures 1 and 2.

Metabolite class key Metabolite feature class Metabolite class key Metabolite feature class

AA Amino acid GL Glycerolipid

AC Acylcarnitines GuD Glucose derivative

AF Antifungal GPL Glycerophospholipid

Al Alkane H Hexoses

Ar Arylamine NT Neurotoxin

ArC Artificial chemical OAAD Organic acids and derivatives

Az Azoles OOC Organooxygen compounds

C Chemical OS Oligosaccharides

CA Carboxylic acid PF Pyranoflavonoids

CAAD Carboxylic acid and derivatives PL Prenol lipids

DA Dicarboxylic acid PN Purine nucleosides

DODM Drug or drug metabolite PSL Phosphosphingolipids

DOVA2 Derivative of Vitamin A2 SAD Steroid and derivatives

EC Epigallocatechins SD Sorbitol derivative

F Flavonoids SHC Saturated hydrocarbon

FA Fatty acyls SL Sphingolipid

FAA Fatty acid amide StL Sterol lipid

FAG Fatty acyl glycoside TAD Tyrosine and derivatives

FFA Furanoic fatty acids VDM Vitamin D metabolite

GD Galactose derivative VKD Vitamin K derivative

Genus key Genus Genus key Genus

Acid Acidaminococcus Hold Holdemanella

Akke Akkermansia Howa Howardella

Allo Alloprevotella Inte Intestinimonas

AnaeS Anaerostipes Kleb Klebsiella

AnaeT Anaerotruncus Lach Lachnospira
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The 16S rRNA gene sequence raw data is available at the European Nucleotide
Archive, with the accession number PRJEB27564. The metabolomics data is available
at MetaboLights, with the accession number MTBLS4332. The clinical data is also
available upon direct request from the corresponding authors of the present article.
This is due to European patient confidentiality laws, and may require signing a Data
Usage Agreement, depending on the specifics of the request.

CODE AVAILABILITY
Code for the bacterial taxa-metabolite correlation analyses is available as R scripts’
files (Supplementary files “Metabolomics.SERVER.SCRIPT.PD_ONLY.Selected.CORR.
final” and “Metabolomics.SERVER.SCRIPT.CONTROLS_ONLY.Selected.CORR.final”). For
metabolomics-only data analysis, deconvolution R scripts using XCMS and eRah,
Matlab code for Partial Least Squares Discriminant Analysis (PLS-DA), R code for
metabolite correlations, and Python code for Support Vector Machine (SVM) are
available in the GitHub repository at github.com/drupadt/.
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