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ABSTRACT
Introduction  Peptide markers of inflammation have 
been associated with the development of type 2 
diabetes. The role of upstream, lipid-derived mediators 
of inflammation such as eicosanoids, remains less 
clear. The aim of this study was to examine whether 
eicosanoids are associated with incident type 2 
diabetes.
Research design & methods  In the FINRISK (Finnish 
Cardiovascular Risk Study) 2002 study, a population-
based sample of Finnish men and women aged 
25–74 years, we used directed, non-targeted liquid 
chromatography-mass spectrometry to identify 545 
eicosanoids and related oxylipins in the participants’ 
plasma samples (n=8292). We used multivariable-
adjusted Cox regression to examine associations 
between eicosanoids and incident type 2 diabetes. 
The significant independent findings were replicated 
in the Framingham Heart Study (FHS, n=2886) and 
DIetary, Lifestyle and Genetic determinants of Obesity 
and Metabolic syndrome (DILGOM) 2007 (n=3905). 
Together, these three cohorts had 1070 cases of 
incident type 2 diabetes.
Results  In the FINRISK 2002 cohort, 76 eicosanoids 
were associated individually with incident type 2 
diabetes. We identified three eicosanoids independently 
associated with incident type 2 diabetes using stepwise 
Cox regression with forward selection and a Bonferroni-
corrected inclusion threshold. A three-eicosanoid risk 
score produced an HR of 1.56 (95% CI 1.41 to 1.72) per 
1 SD increment for risk of incident diabetes. The HR for 
comparing the top quartile with the lowest was 2.80 
(95% CI 2.53 to 3.07). In the replication analyses, the 
three-eicosanoid risk score was significant in FHS (HR 
1.24 (95% CI 1.10 to 1.39, p<0.001)) and directionally 
consistent in DILGOM (HR 1.12 (95% CI 0.99 to 1.27, 
p=0.07)). Meta-analysis of the three cohorts yielded a 
pooled HR of 1.31 (95% CI 1.05 to 1.56).
Conclusions  Plasma eicosanoid profiles predict incident 
type 2 diabetes and the clearest signals replicate in three 
independent cohorts. Our findings give new information 
on the biology underlying type 2 diabetes and suggest 
opportunities for early identification of people at risk.

Significance of this study

What is already known about this subject?
	► Type 2 diabetes is a complex disease involving inter-
actions of both environmental risk factors and genet-
ics, and, at an undetermined scale, of inflammation.

	► Biomarkers of systemic inflammation, such as cy-
tokines, adiponectin and high-sensitivity C reactive 
protein, have been associated with the development 
of type 2 diabetes.

	► Eicosanoids mediate inflammatory processes di-
rectly at local level as well as systemically, including 
through modulation of cytokines and other inflam-
matory mediators but their role in the development 
of diabetes is not known.

	► A recent cross-sectional analysis found several eico-
sanoids associated with blood pressure traits.

What are the new findings?
	► Altogether 76 eicosanoid metabolites were associ-
ated with incident diabetes in our discovery cohort, 
FINRISK 2002, independent of traditional risk factors 
of type 2 diabetes.

	► These eicosanoids were correlated with each other 
but three eicosanoids representing independent sig-
nals were identified.

	► An eicosanoid risk score, constructed of the three 
independent eicosanoids, was associated with inci-
dent diabetes risk in two replication cohorts as well 
as in the meta-analysis of all three cohorts.

	► One of the eicosanoids associated with incident type 
2 diabetes in the present study was also associated 
with blood pressure in our earlier study.

How might these results change the focus of 
research or clinical practice?

	► A targeted analysis of eicosanoids may help to iden-
tify individuals at elevated risk of diabetes.

	► Further research on eicosanoids may uncover novel 
therapeutic targets for the prevention and treatment 
of diabetes and reveal new links between diabetes 
and elevated blood pressure.
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INTRODUCTION
Diabetes and its complications contribute significantly 
to the global burden of disease: in 2017, it was the third 
leading cause of global years lost due to disability for men 
and the fifth for women.1 It is estimated that its global 
costs (US$1.3 trillion in 2015) will continue to rise by 
2030, even if Sustainable Development Goals related to 
the disease are met.2

The prevention of complications, such as cardio-
vascular disease, diabetic nephropathy, neuropathy 
and retinopathy, lie at the heart of diabetes care. 
However, clinical trials have shown that the onset of 
type 2 diabetes can be postponed, and even prevented, 
by lifestyle changes, such as changes in the intake of 
fats and fibers, and increasing physical activity, and 
medical treatment, such as metformin medication.3 4 
Therefore, better understanding of factors involved in 
the development of type 2 diabetes, together with 
earlier identification of people at risk, are important 
for optimal targeting of right preventive measures to 
right people.

Type 2 diabetes is a complex disease involving inter-
actions of both environmental risk factors and genetics, 
and, at an undetermined scale, of inflammation. Type 2 
diabetes is closely linked to cardiovascular and kidney 
diseases, obesity and metabolic syndrome, all of which 
are known to be associated with low-grade inflammation. 
Biomarkers of systemic inflammation, such as cytokines, 
adiponectin and high-sensitivity C reactive protein (hs-
CRP), have been associated with the development of type 
2 diabetes in large population-based studies and random-
ized controlled trials.5–9

Situated proximally (upstream) in the inflam-
mation pathways is a large group of bioactive lipids 
known as eicosanoids and related oxylipins. These 
chemical factors are derived from arachidonic acid 
and other polyunsaturated fatty acids by enzymatic 
mechanisms, notably via cyclooxygenase (COX), 
lipoxygenase (LOX) and cytochrome P450 enzymes, 
as well as by non-enzymatic mechanisms. Eicosanoids 
mediate inflammatory processes directly at local level 
as well as systemically, including through modulation 
of cytokines and other inflammatory mediators.10 
With recent advances in mass spectrometry-based 
metabolomics, hundreds of eicosanoid and oxylipin 
species can now be detected and quantified in human 
plasma.11 12

The aim of this study was to examine whether plasma 
eicosanoid profiles are associated with risk of incident 
type 2 diabetes in a prospective follow-up of a population-
based Finnish cohort. The significant independent 
signals were replicated using multivariate models in two 
other cohorts. Together, these cohorts included 1070 
cases of incident type 2 diabetes. A secondary aim was to 
investigate whether the eicosanoid effect is mediated by 
inflammation or insulin resistance.

METHODS
Population, data collection and design
FINRISK 2002
FINRISK (Finnish Cardiovascular Risk Study) 2002 study 
is a population-based random sample of individuals aged 
25–74 years living in Finland (n=8798, participation rate 
65.2%). Sampling included stratification by sex, region 
and 10-year age groups. Participants responded to ques-
tionnaires, underwent physical examination by trained 
nurses and gave blood samples. Detailed study proto-
cols have been previously described.13 Plasma samples 
from 8292 participants were successfully analyzed with 
directed non-targeted liquid chromatography-mass 
spectrometry (LC-MS), as described in previous publi-
cations.11 12 In addition, an oral glucose tolerance test 
(OGTT) was carried out in 3767 participants (45 years of 
age and older) and data on glucose tolerance status were 
obtained for 3092 participants without prior history of 
diabetes. A panel of cytokines was quantified from blood 
samples of 2951 participants.

For the FINRISK 2002 cohort, prevalent diabetes 
cases at baseline and incident cases during follow-up 
were identified combining information from the 
National Hospital Discharge Register (NHDR), Causes 
of Death Register (CDR) and the Drug Reimbursement 
and Drug Purchase Registers (DPR), using the Finnish 
personal identification number, up to December 31, 
2017. Diagnostic codes for extracting information 
from NHDR and CDR were E10-E14 (International 
Classification of Diseases (ICD)-10) or 250*B (ICD-
9). Diabetes medication purchase ATC code A10 or 
a special reimbursement code for diabetes medica-
tions were used for identifying diabetes cases from the 
drug purchase register. If medicine purchase was the 
only fulfilled criterion, ≥3 purchases were required, 
and diagnosis codes were used to exclude gestational 
diabetes. To determine the type of diabetes, we used 
a proxy variable: all participants under 30 years of age 
and treated with insulin only, or in combination with 
metformin, and those aged 30–40 years when insulin 
only was started, were categorized as type 1 diabetes. 
All other persons with diabetes were considered to 
have type 2 diabetes. Thanks to the country-wide elec-
tronic healthcare registers, the follow-up was virtually 
100% complete.

Participants with prevalent or incident type 1 diabetes 
were excluded from the analysis (n=79). Record linkages 
based on the personal identification code to NHDR, 
CDR and DPR were also used to identify subjects to be 
excluded from the analysis, due to cancer (excluding 
ICD-10 category C44, n=1085). Participants pregnant at 
baseline (n=44) were also excluded from the final anal-
yses. Finally, after excluding further participants with 
missing values of variables relevant for our analyses, the 
total study population consisted of 6548 participants. 
Online supplemental figure 1 presents a flow chart 
formulating the final study sample.
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Framingham Heart Study Offspring
Framingham Heart Study (FHS) Offspring study is a 
cohort of 5124 participants that were first examined in 
1971 and consecutively re-examined every 4–8 years. The 
cohort consists of the children of the FHS first-generation 
cohort, and their spouses. Participants of the original 
cohort were enrolled in a longitudinal community-based 
cohort study in 1948, including a random sample of two-
thirds of the adult population of Framingham, Massachu-
setts, USA. Detailed study protocols have been previously 
published.14 For this study, we considered individuals 
who participated in the eighth examination cycle of FHS 
Offspring in 2005–2008 and whose samples were success-
fully analyzed with LC-MS (n=2886). After excluding 771 
participants with diabetes at baseline or missing covari-
ates, we included n=2115 participants as the replication 
cohort. Diabetes mellitus in FHS Offspring cohort was 
diagnosed either by fasting plasma glucose ≥126 mg/dL 
(7.0 mmol/L), non-fasting plasma glucose ≥200 mg/dL 
(11.0 mmol/L) or treatment with insulin or an oral hypo-
glycemic agent as ascertained at routine FHS examina-
tions or based on annual medical health history updates.

DILGOM 2007
The DIetary, Lifestyle and Genetic determinants of 
Obesity and Metabolic syndrome (DILGOM) study is an 
extension of the FINRISK 2007 survey, which included 
a random population-based sample of individuals aged 
25–75 years living in Finland. All participants of the 
FINRISK 2007 survey were invited to take part in the 
more focused DILGOM study and 5024 participated 
(participation rate 80%).

Participants responded to self-administered question-
naires, underwent a physical examination by trained 
nurses and gave blood samples. Detailed study proto-
cols have been previously described.15 Plasma samples 
from n=4903 participants were successfully analyzed 
with LC-MS. Cases of diabetes were identified and infor-
mation from registries combined in an identical way to 
the FINRISK 2002 cohort, as described above. Similarly, 
participants with prevalent type 1 diabetes, pregnancy, 
cancers (excluding ICD-10-C44) and missing values were 
excluded from the final replication cohort. Finally, 3905 
individuals were included in the analyses.

Laboratory methods and plasma eicosanoid profiling
Plasma eicosanoid profiling for all three cohorts was 
carried out in the same laboratory at the University of 
California San Diego, USA. The profiling methodology is 
described in more detail elsewhere.11 12 In short, we used 
directed, non-targeted LC-MS combined with compu-
tational chemical networking to identify eicosanoids in 
participants’ plasma samples. In the discovery sample, 
FINRISK 2002, a total of 545 eicosanoids and related 
oxylipins were validated using methodologies such as 
spectral fragmentation pattern networking and manual 
annotation.

The OGTT was carried out according to WHO recom-
mendations, and the testing and measurement meth-
odologies have previously been described in detail.16 
Fasting plasma glucose and insulin concentrations were 
used to calculate the homeostasis model assessment for 
insulin resistance (HOMA-IR) and for beta-cell function 
(HOMA-B) indices.17

We quantified well-known inflammatory markers often 
hypothesized to associate with diabetes. hs-CRP was 
quantified with the Architect ci8200 Chemistry Analyser 
(Abbott Laboratories, USA) from FINRISK 2002 serum 
samples and with Architect c8000 analyzer (Abbott Labo-
ratories, USA) from DILGOM 2007 serum samples, using 
an immunoturbidimetric method (Sentinel Diagnostics, 
Italy). Interleukin-1 receptor antagonist (IL-1Ra), inter-
leukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) 
were quantified from previously unthawed heparin 
plasma samples using Bio-Rad’s premixed Bio-Plex Pro 
Human Cytokine 27-plex Assay and 21-plex Assay, and 
Bio-Plex 200 reader with Bio-Plex V.6.0 software (Bio-Rad 
Laboratories, USA). The detailed methodology has been 
previously published.18 19

Statistical methods
The eicosanoid profiling data were normalized using 
plate medians corrected for plate deviation: plate 
medians were subtracted from each feature and then 
divided by the median absolute deviation.20

We used means, or where relevant due to skewed 
distributions, geometrical means and IQRs to summa-
rize baseline characteristics of continuous variables and 
frequencies for categorical variables. For subsequent 
analyses, participants with prevalent type 2 diabetes 
(n=167) were excluded from the FINRISK study popu-
lation resulting in n=6381 (with n=586 of incident type 2 
diabetes cases).

To test the association of eicosanoids with incident 
type 2 diabetes in our discovery cohort FINRISK 
2002, we used Cox proportional hazards regression 
and a nested modeling approach, adjusting for well-
established risk factors for type 2 diabetes, and other 
confounding factors, in three different models. The 
first model adjusted for age, sex, region of residence 
and mass spectrometry plate. The second model 
(model 2) added adjustments for body mass index 
(BMI), physical activity, parental history of diabetes, 
prevalent cardiovascular disease (CVD), systolic blood 
pressure, antihypertensive medication, triglycerides 
and lipid-lowering medication. We also ran a third 
model that was further adjusted for hs-CRP. Further-
more, we ran the sensitivity analyses where BMI was 
replaced with waist-to-hip ratio or waist circumfer-
ence and also a model where persons with prevalent 
CVD at baseline were excluded from the analysis. The 
proportional hazards assumption was tested using 
Schoenfeld residuals.21 We used the false discovery 
rate (FDR) correction method for type I error 
control in multiple comparisons.22 We also produced 
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a correlation heatmap for eicosanoids significantly 
associated with incident type 2 diabetes, ordered using 
the complete linkage clustering method. Correlations 
with hs-CRP were also added to the heatmap.

Eicosanoids with significant associations in any of 
the three longitudinal analysis models (described 
above) were then included in a stepwise Cox regres-
sion analysis with forward selection, applying 
a Bonferroni-corrected inclusion threshold of 
p<0.05/545=0.00009.23 We constructed an eicosanoid 
risk score for the three remaining eicosanoids using 
their respective regression coefficients as weights in 
the prediction model.

We examined type 2 diabetes-free survival across 
quartiles of the risk score using Cox models and 
Kaplan-Meier survival curves. We compared survival 
distributions using the log rank test.24 Using Cox 
regression, we calculated the risk per SD change in 
the eicosanoid risk score for the different models.

We calculated medians of fP-Glucose (fP-Gluc), 
fP-Insulin (fP-Ins), HOMA-IR and HOMA-B for the 
eicosanoid score quartiles and tested the linear 
trends across the quartiles adjusting for age, sex and 
BMI. We explored the correlations between fP-Gluc, 
fP-Ins, HOMA-IR, HOMA-B and three eicosanoids 
from the risk score using Spearman’s correlation. 
Correlations were also calculated between a panel of 
cytokines, namely IL-1Ra, IL-6, TNF-α and the same 
three eicosanoids.

Replication analyses for the three eicosanoids 
exceeding the Bonferroni-corrected inclusion 
threshold (p<0.05/545=0.00009) in FINRISK were 
performed in the FHS Offspring cohort with Cox 
regression adjusted for age, sex, BMI, systolic blood 
pressure, hypertension treatment and triglycerides. 
Participants with baseline diabetes (n=302) and 
missing values in the covariates were excluded from 
the analysis, resulting in n=236 incident diabetes 
cases out of a total of 2115 individuals included.

In the DILGOM 2007 cohort, we excluded partic-
ipants with prevalent type 2 diabetes (n=144), and 
thus 3761 individuals (out of which n=248 with inci-
dent type 2 diabetes) were included in the replication 
analysis. The analysis was performed for the three 
eicosanoids with Cox regression adjusting for the 
same covariates as in the FINRISK cohort.

Meta-analysis of the risk scores in the three cohorts 
was performed using a random-effects model (metafor 
package in R). We used R, V.3.6.1, for all analyses and 
the source code for analyses is available at https://
doiorg/105281/zenodo3968712.

RESULTS
Baseline characteristics of the FINRISK 2002, DILGOM 
2007 and FHS Offspring cohort participants (women 
and men) are presented in table 1. Hemoglobin A1c 

(HbA1c) values were only available for FINRISK 
participants older than 50 years (n=3586).

Longitudinal analyses: independent eicosanoids
When we tested eicosanoids one by one in the FINRISK 
2002 cohort using the multivariate models described in 
the ‘Methods’ section, we observed altogether 76 signif-
icant associations between eicosanoids and incident 
type 2 diabetes. Eicosanoids, their FDR-corrected levels 
of significance and the direction of the association with 
type 2 diabetes, are visualized in figure 1. The heatmap 
of pairwise correlations for the 76 eicosanoids with signif-
icant associations, and hs-CRP, is shown in online supple-
mental figure 2. Overall, the eicosanoids correlated 
with each other, with some clusters of strong positive 
correlations.

We included 76 eicosanoids that showed significant 
associations with incident type 2 diabetes in the stepwise 
Cox regression analysis using model 2. Three eicosanoids 
remained in the model, notably an unknown eicosanoid 
(EIC 62), 8-iso-prostaglandin A1 (8-iso-PGA1) and 12-h
ydroxy-5,8,10-heptadecatrienoic acid (12-HHTrE). The 
forest plot (figure 2) presents HRs and 95% CIs for the 
individual eicosanoids remaining in the model. The 
unknown eicosanoid was inversely associated with inci-
dent type 2 diabetes, whereas 8-iso-PGA1 and 12-HHTrE 
were positively associated with the disease risk. Neither 
these HRs nor their statistical significances changed 
substantially in the sensitivity analyses where BMI was 
replaced with indicators of central obesity, that is, waist-
to-hip ratio or waist circumference, or in the analyses 
where persons with prevalent CVD at baseline were 
excluded.

Cox regression on the three eicosanoids was performed 
in the replication cohorts (figure 2). The eicosanoid 8-iso-
PGA1 was replicated in FHS (p<0.001) and 12-HHTrE 
in DILGOM (p=0.025) cohort, and the other two were 
directionally consistent.

Longitudinal analyses: eicosanoid risk score
Using these three eicosanoids, we established an eicosa-
noid risk score. Results are presented for women and men 
combined as testing revealed no interaction with sex and 
the eicosanoid risk score. The multivariate adjusted HRs 
per SD for the three different cohorts are presented in 
figure 3, together with the random-effects meta-analysis, 
which gave a pooled HR of 1.31 (95% CI 1.05 to 1.56, 
p<001).

In the top risk score quartile of participants, compared 
with the lowest quartile, the HR was 2.80 (95% CI 2.53 to 
3.07) in FINRISK, 1.74 (95% CI 1.31 to 2.31) in FHS and 
1.37 (95% CI 1.00 to 1.74) in DILGOM (online supple-
mental table 1). The respective HRs for quartiles 2 and 
3 demonstrated a dose-response type relationship of the 
eicosanoid score with the risk of incident type 2 diabetes 
in all three cohorts. Furthermore, Kaplan-Meier curves 
for the risk score quartiles in FINRISK are presented in 
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figure 4. Disease-free survival in the lowest quartile was 
95.7% and 82.6% in the top quartile.

Eicosanoid associations with glucose and insulin levels and 
commonly known cytokines
The medians of fP-Gluc, fP-Ins, HbA1c and HOMA-IR 
increased across the eicosanoid risk score quartiles, 
and the increasing trend remained statistically signifi-
cant (p<0.0001) after adjusting the analyses for age, sex 
and BMI. For HOMA-B, the increase was less significant 
(p=0.014) (online supplemental table 2).

The eicosanoid identified as 12-HHTrE was quite 
strongly correlated with fP-Gluc, fP-Ins, HbA1c, HOMA-
IR, HOMA-B and hs-CRP (online supplemental table 3). 
The other eicosanoids showed some statistically signifi-
cant correlations with these glucose metabolism indica-
tors but the magnitudes of the correlation coefficients 
were modest.

None of the three eicosanoids correlated with the 
blood concentrations of inflammatory cytokines. In 
addition, Cox proportional hazards regression analysis 
for the multivariable model, further adjusted for the 

Table 1  Baseline characteristics of FINRISK 2002 discovery cohort (n=6548) and FHS Offspring (n=2886) and DILGOM 2007 
(n=3905) replication cohorts

FINRISK 2002 Replication cohort (FHS) Replication cohort (DILGOM)

Women n=3423 Men n=3125 Women n=1571 Men n=1315 Women n=2059 Men n=1846

Age, years 45.6 (20.8) 46.6 (19.9) 66.4 (9.0) 66.3 (9.0) 49.8 (13.4) 50.7 (13.1)

Weight, kg 69.5 (16.6) 84.5 (17.3) 71.5 (15.8) 88.5 (15.9) 70.7 (13.9) 84.7 (13.9)

Height, m 1.63 (0.08) 1.76 (0.09) 1.61 (0.06) 1.75 (0.07) 1.63 (0.06) 1.76 (0.07)

BMI, kg/m2 26.3 (6.2) 27.2 (5.1) 27.7 (5.9) 29.0 (4.7) 26.7 (5.3) 27.3 (4.1)

Waist-to-hip ratio 0.84 (0.08) 0.96 (0.09) 0.86 (0.06) 0.97 (0.07)

Mean systolic blood pressure, 
mm Hg

131 (26) 136 (22) 128 (18) 129 (17) 133 (21) 138 (19)

HbA1c, mmol/mol 36.2 (5.0)
n=1840

36.4 (5.0)
n=1758

HDL, mmol/L* 1.59 (0.53) 1.30 (0.43) 1.65 (0.47) 1.28 (0.37) 1.53 (0.49) 1.27 (0.40)

LDL, mmol/L* 3.07 (1.11) 3.38 (1.20) 2.84 (0.82) 2.58 (0.78) 3.04 (1.13) 3.12 (1.16)

Triglycerides, mmol/L* 1.07 (0.63) 1.41 (1.01) 1.31 (0.69) 1.36 (0.88) 1.08 (0.66) 1.40 (0.98)

hs-CRP, mmol/L* 1.15 (2.07) 1.10 (1.66) 1.17 (2.00) 1.09 (1.63)

Current smokers, n (%) 761 (22.3%) 1006 (32.3%) 147 (9.4%) 111 (8.5%) 307 (14.9%) 411 (22.2%)

Education, n (%)

Low 1132 (33.6%) 1071 (34.8%) 656 (31.9%) 522 (28.3%)

Middle 1105 (32.8%) 1001 (32.5%) 689 (33.5%) 646 (35.0%)

High 1131 (33.6%) 1004 (32.6%) 693 (33.7%) 668 (36.2%)

Physical activity at leisure time, n (%)

Low level or no exercise 777 (22.7%) 718 (23.0%) 374 (18.2%) 345 (18.7%)

Light exercise, at least 4 hours 
per week

1893 (55.3%) 1585 (50.7%) 1111 (54.0%) 936 (50.7%)

Aerobic exercise, at least 
3 hours per week, or regular 
exercise at competitive level

753 (22.0%) 822 (26.3%) 574 (27.9%) 565 (30.6%)

Use of antihypertensive 
medicines, n (%)

428 (12.5%) 376 (12.0%) 699 (44.6%) 701 (53.6%) 357 (17.3%) 341 (18.5%)

Use of lipid-lowering 
medication, n (%)

220 (6.4%) 224 (7.2%) 229 (11.1%) 298 (16.1%)

Prevalent CVD, n (%) 48 (1.4%) 126 (4.0%) 38 (1.8%) 94 (5.1%)

Family history of diabetes, n (%) 897 (26.2%) 731 (23.4%) 629 (30.5%) 474 (25.7%)

Prevalent T2DM, n (%) 80 (2.3%) 87 (2.8%) 135 (8.6%) 166 (12.6%) 52 (2.5%) 92 (4.9%)

Means (IQRs) for continuous variables, frequencies (percentage) for categorical variables.
*Geometric means used due to skewed distribution.
BMI, body mass index; CVD, cardiovascular disease; DILGOM, DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic 
syndrome; FHS, Framingham Heart Study; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; hs-CRP, high-sensitivity C reactive 
protein; LDL, low-density lipoprotein; T2DM, type 2 diabetes mellitus.
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inflammatory cytokines, remained significant for both 
the continuous three-eicosanoid risk score as well as the 
third and fourth risk quartiles of the score.

DISCUSSION
Downstream mediators of inflammation such as CRP and 
other peptide mediators of inflammation such as cyto-
kines, have received a lot of attention in the study of the 
development of type 2 diabetes.25 Previous studies have 
pointed to adiponectin, apolipoprotein B, CRP, IL1-Ra 

Figure 1  Associations between eicosanoids and incident 
type 2 diabetes in FINRISK 2002. A statistically significant 
association was found for 76 eicosanoids and incident type 2 
diabetes: red is for positive associations, blue is for negative 
associations and grey is for non-significant associations. 
Dashed line represents the false discovery rate (FDR)-
corrected level of significance. Eicosanoids analysed one 
by one, adjusted for age, sex, body mass index, physical 
activity, parental history of diabetes, prevalent cardiovascular 
disease, systolic blood pressure, antihypertensive 
medication, triglycerides, lipid-lowering medication, 
geographical area and mass spectrometry plate.

Figure 2  Forest plot showing HRs and 95% CIs for three 
eicosanoids independently associated with incident type 2 
diabetes. Each eicosanoid was analysed separately. Cox 
proportional hazards regression analyses for the FINRISK 
and DILGOM cohorts are adjusted for age, sex, body mass 
index (BMI), physical activity, parental history of diabetes, 
prevalent cardiovascular disease, systolic blood pressure, 
antihypertensive medication, triglycerides, lipid-lowering 
medication, geographical area and mass spectrometry 
plate. For the Framingham Heart Study (FHS) cohort, Cox 
proportional hazards regression analyses are adjusted 
for age, sex, BMI, systolic blood pressure, hypertension 
treatment and triglycerides. DILGOM, DIetary, Lifestyle and 
Genetic determinants of Obesity and Metabolic syndrome; 
12-HHTrE, 12-hydroxy-5,8,10-heptadecatrienoic acid; 8-iso-
PGA1, 8-iso-prostaglandin A1.

Figure 3  Forest plot showing HRs and 95% CIs for the 
eicosanoid risk score and its independent association with 
incident type 2 diabetes in the FINRISK cohort, FHS and 
DILGOM replication cohorts and their meta-analysis. Cox 
proportional hazards regression analyses for the FINRISK 
and DILGOM cohorts are adjusted for age, sex, body mass 
index (BMI), physical activity, parental history of diabetes, 
prevalent cardiovascular disease, systolic blood pressure, 
antihypertensive medication, triglycerides, lipid-lowering 
medication, geographical area and mass spectrometry plate. 
For the FHS cohort, Cox proportional hazards regression 
analyses are adjusted for age, sex, BMI, systolic blood 
pressure, hypertension treatment and triglycerides. Meta-
analysis was calculated using the random-effects model. 
DILGOM, DIetary, Lifestyle and Genetic determinants of 
Obesity and Metabolic syndrome; FHS, Framingham Heart 
Study.

Figure 4  Kaplan-Meier curves for the three-eicosanoid 
risk score and incident type 2 diabetes in FINRISK 2002. 
Diabetes-free survival analysis for the different risk classes/
quartiles (Q1–Q4). Analyses adjusted for age, sex, body 
mass index, physical activity, parental history of diabetes, 
prevalent cardiovascular disease, systolic blood pressure, 
antihypertensive medication, triglycerides, lipid-lowering 
medication, geographical area and mass spectrometry plate.
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and ferritin playing a role in type 2 diabetes prediction.6 7 
The Whitehall II study examining MR/CRP haplotypes 
suggested non-causal associations between CRP, insulin 
resistance, glycemia and diabetes, and that upstream 
effectors of inflammation may play a more causal role in 
the development of diabetes.26

Combined with advanced metabolomics methodolo-
gies, our statistically cogent survival analysis using a three-
eicosanoid risk score suggests a significant independent 
role for lipid-derived, upstream mediators of inflamma-
tion in the prediction of incident type 2 diabetes. One 
of the three eicosanoids showed an independent inverse 
association with incident type 2 diabetes, suggesting 
potential protective characteristics for some plasma eico-
sanoids. However, this negative association was not statis-
tically significant in the replication cohorts.

In 2011, Luo and Wang examined the role of eicosa-
noids from the different arachidonic acid metabolism 
pathways in pathogenesis of diabetes: they proposed that 
eicosanoids metabolized by the COX pathway are active 
participants in the function of beta-cells, those metabo-
lized by the LOX pathway act as mediators in the beta-cell 
inflammation whereas the role of eicosanoids metabo-
lized via the cytochrome P450 enzymes was still unclear.27 
More recently, metabolites have been suggested to act as 
regulators of insulin sensitivity and further hypothesized 
to play a role in the pathogenesis of insulin resistance 
and type 2 diabetes.28

Out of the individual eicosanoids identified for our 
three-eicosanoid risk score, two are metabolites with 
known bioactivity. 8-iso-PGA1 is part of isoprostanes, 
which are stereoisomers of prostaglandins formed inde-
pendent of COX enzymes, through peroxidation of 
arachidonic acid. They are considered as markers of 
oxidative stress, which may lead to chronic inflamma-
tion.29 30 Studies have suggested a causal role for isopros-
tanes in the development of different disease states, such 
as incident type 2 diabetes.30 31

Oxidative stress has also been implicated in the devel-
opment of complications of diabetes such as nephropathy 
and neuropathy.32 33 A recent study found that individuals 
with heredity of type 2 diabetes have an increased suscep-
tibility to oxidative stress and inflammation following a 
high carbohydrate meal.34

The second known eicosanoid demonstrating a positive 
independent association with incident type 2 diabetes 
is 12-HHTrE. Different enantiomers of 12-HHTrE are 
metabolites of non-enzymatic activity as well as of COX 
and LOX pathways, and they have been implicated in 
conditions such as breast cancer, hypertension, endothe-
lial prostacyclin formation, response to acute exercise 
and high carbohydrate intake.35–38

A study using the same mass spectrometry platform 
recently found 12-HHTrE to be robustly associated with 
blood pressure.36 None of the eicosanoids associated with 
blood pressure were correlated with 8-iso-PGA1, however 
one of them (Tetranor-12(R)-HETE) strongly correlated 
with 12-HHTrE. Furthermore, the unknown eicosanoid 

from our risk score showed strong correlation with all but 
one of the eicosanoids associated with blood pressure.

The Cox regression models using the eicosanoid risk 
score replicated in the FHS cohort but did not quite reach 
statistical significance in DILGOM. However, a meta-
analysis of the risk scores in the three cohorts produced 
a statistically significant result. These results support our 
hypothesis of an eicosanoid risk score predicting incident 
type 2 diabetes.

Pathogenetic mechanisms for the effects of these 
eicosanoids on the risk of incident type 2 diabetes are 
not known. 12-HHTrE was moderately associated with 
HOMA-IR and other indicators of insulin resistance, 
even after adjustment for age, sex and obesity. Interest-
ingly, the eicosanoid 8-iso-PGA1 that replicated strongly 
in the FHS cohort did not correlate with glucose levels 
and only weakly with the insulin indicators.

Our study showed very little correlation between a 
panel of cytokines and the three eicosanoids significantly 
associated with type 2 diabetes. In addition, the Cox 
models further adjusted for cytokines in the FINRISK 
cohort, remained statistically significant both for the 
continuous eicosanoid risk score as well as the upper 
risk quartiles. This suggests that the peptide markers of 
inflammation, hs-CRP, IL-6, IL-1Ra and TNF-alpha, may 
not comprehensively reflect all aspects of subclinical 
inflammation that play a role in risk of type 2 diabetes 
and can be identified by using eicosanoids as more prox-
imal markers of inflammatory activity. Alternatively, the 
eicosanoid score may increase the risk of type 2 diabetes 
through mechanisms other than traditional inflamma-
tory pathways.

Recently, it has been suggested that inflammation 
should be targeted with novel therapeutics, as part 
of treatment and prevention of type 2 diabetes and its 
complications, especially because some antidiabetic 
agents have direct and secondary anti-inflammatory prop-
erties.39 40 Biological and pharmacological characteristics 
of upstream mediators of inflammation, such as of the 
two eicosanoids positively associated with incident type 2 
diabetes (8-iso-PGA1 and 12-HHTrE), need to be further 
investigated in order to establish potential eicosanoid-
targeting anti-inflammatory therapeutic measures.

Our study suggests potential windows of opportunity 
for intervention in terms of both prevention and treat-
ment of type 2 diabetes. We speculate that 8-iso-PGA1 
and 12-HHTrE could be used as personalized biomarkers 
in the identification of people at risk of developing type 
2 diabetes. Interestingly, the latter metabolite was also 
associated with hypertension in our recent analysis.36 
Better understanding of determinants and functions 
of these two eicosanoids may allow for a more targeted 
approach in the preventive measures such as lifestyle 
and medical interventions.3 4 These two eicosanoids, the 
three-eicosanoid risk score and their novel biomarker 
potential should be examined with closer detail in order 
to establish their roles in the early development of insulin 
resistance and type 2 diabetes.
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Strengths and limitations
Our study is a large population-based random sample of 
adults aged 25–74 years with a high participation rate, 
prospective design and negligible loss to follow-up. 
Analyses were controlled for traditional risk factors for 
incident type 2 diabetes, other factors that may affect 
inflammation levels and hs-CRP. Versatile sensitivity 
analyses replacing BMI with indicators of central obesity 
or excluding persons with prevalent CVD at baseline 
confirmed the robustness of the findings. The partial 
replication of our results in FHS and DILGOM data-
sets further strengthens the study. 8-iso-PGA1 replicated 
robustly in the FHS cohort. The other two were direction-
ally consistent but the lack of statistical significance may 
be due to the limited statistical power in both FHS and 
DILGOM. Also, the FHS participants were on average 20 
years older than FINRISK participants, which may have 
had an effect on replication. The eicosanoid profiling for 
all three cohorts was done in the same laboratory with the 
same methods. We used a sophisticated, directed, non-
targeted LC-MS combined with computational chemical 
networking to identify hundreds of known and putative 
eicosanoids from the majority of the study participants.

Our study design is observational which cannot establish 
causality. The study included mainly white participants of 
European ancestry and, therefore, the findings may not 
be generalizable to all ethnic groups. Limitations of our 
study include possible bias due to self-reported smoking 
status and the level of physical activity as well as lack of 
information on the use of over-the-counter drugs such 
as acetylsalicylic acid, non-steroidal anti-inflammatory 
analgesics and omega-3 fatty acids. Using family history 
of type 2 diabetes as our only consideration of genetic 
risk factors instead of, for example, a polygenic risk score, 
is a further limitation. In addition, we could only detect 
known and putative eicosanoids that circulate in human 
plasma. And finally, the identity of several eicosanoids, 
including one of the eicosanoids with a significant inverse 
association with our outcome, remains unknown.

CONCLUSIONS
Plasma eicosanoids are associated with incident type 
2 diabetes and our three-eicosanoid risk score was an 
independent predictor of future type 2 diabetes in the 
general population. Of individual eicosanoids, 8-iso-
PGA1 clearly replicated in two independent populations. 
Furthermore, 12-HHTrE which has been associated with 
hypertension earlier, predicted type 2 diabetes in the two 
Finnish cohorts and was close to statistical significance in 
FHS as well. Finally, our findings provide novel biolog-
ical information on the development of type 2 diabetes 
suggesting opportunities for early identification of indi-
viduals at risk and potential therapeutic targets for more 
precise prevention and treatment of type 2 diabetes.
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