
https://helda.helsinki.fi

Visualization of causation in social-ecological systems

Banitz, Thomas

2022-03

Banitz , T , Hertz , T , Johansson , L-G , Lindkvist , E , Martinez-Pena , R , Radosavljevic , S

, Schlüter , M , Wennberg , K , Ylikoski , P K & Grimm , V 2022 , ' Visualization of causation

in social-ecological systems ' , Ecology and Society , vol. 27 , no. 1 , 31 . https://doi.org/10.5751/ES-13030-270131

http://hdl.handle.net/10138/343048

https://doi.org/10.5751/ES-13030-270131

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Copyright © 2022 by the author(s). Published here under license by the Resilience Alliance.
Banitz, T., T. Hertz, L.-G. Johansson, E. Lindkvist, R. Martínez-Peña, S. Radosavljevic, M. Schlüter, K. Wennberg, P. K. Ylikoski,
and V. Grimm. 2022. Visualization of causation in social-ecological systems. Ecology and Society 27(1):31. https://doi.org/10.5751/
ES-13030-270131

Synthesis

Visualization of causation in social-ecological systems
Thomas Banitz 1  , Tilman Hertz 2, Lars-Göran Johansson 2,3, Emilie Lindkvist 2, Rodrigo Martínez-Peña 2,4, Sonja Radosavljevic 2,
Maja Schlüter 2, Karl Wennberg 4,5, Petri Ylikoski 4,6 and Volker Grimm 1

ABSTRACT. In social-ecological systems (SES), where social and ecological processes are intertwined, phenomena are usually complex
and involve multiple interdependent causes. Figuring out causal relationships is thus challenging but needed to better understand and
then affect or manage such systems. One important and widely used tool to identify and communicate causal relationships is visualization.
Here, we present several common visualization types: diagrams of objects and arrows, X-Y plots, and X-Y-Z plots, and discuss them
in view of the particular challenges of visualizing causation in complex systems such as SES. We use a simple demonstration model to
create and compare exemplary visualizations and add more elaborate examples from the literature. This highlights implicit strengths
and limitations of widely used visualization types and facilitates adequate choices when visualizing causation in SES. Thereupon, we
recommend further suitable ways to account for complex causation, such as figures with multiple panels, or merging different
visualization types in one figure. This provides caveats against oversimplifications. Yet, any single figure can rarely capture all relevant
causal relationships in an SES. We therefore need to focus on specific questions, phenomena, or subsystems, and often also on specific
causes and effects that shall be visualized. Our recommendations allow for selecting and combining visualizations such that they
complement each other, support comprehensive understanding, and do justice to the existing complexity in SES. This lets visualizations
realize their potential and play an important role in identifying and communicating causation.
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INTRODUCTION
Science seeks to understand how systems are organized and
function. A key element of such understanding is identifying the
relationships between causes and effects, also referred to as
causation (Woodward 2016, Pearl and Mackenzie 2018).
Claiming causal relationships is so commonplace in everyday life
that scientists rarely ask themselves what causation actually
means and on what basis we make causal claims. The word
“because” is omnipresent: we have day and night “because” of
the earth's rotation; the plant will not grow “because” it does not
get enough water. Such causal claims are simple and direct, and
such simple claims are hardwired into our language and thinking.

For explaining phenomena in complex systems, however, simple
claims are often not sufficient (Meyfroidt 2016). This is the case
for social-ecological systems (SES), which are composed of
decision-making interacting agents, such as humans and
organisms, and their environment (Ostrom 2009, Ferraro et al.
2018). The key building blocks of these systems, the agents, often
behave in elusive ways. Causal relationships between variables in
these systems are often nonlinear and can involve more than two
variables. Moreover, in SES, social and ecological processes are
intertwined. All this leads to complex systems in which single
causal relationships are difficult, if  not impossible, to disentangle
(Schlüter et al. 2019).  

The consequences for trying to understand and, thereupon,
influence or manage such systems can be dire. Decisions based
on erroneously understood causal relationships, or too simple or
narrow mental models, can lead to unintended consequences and
potentially disasters (Merton 1936, Sterman 2006, Levin et al.
2013). This happened, for example, during the 2008 global
financial crisis and the collapse of Atlantic cod stocks (e.g., Frank

et al. 2016, Sguotti et al. 2019). Factors complicating the
construction of useful models of causation in SES include the
diversity of their building blocks, adaptive behavior, positive and
negative feedback loops, indirect, delayed or path-dependent
effects, stochasticity, and the interaction of processes on different
spatial, temporal, and organizational scales (e.g., Meyfroidt 2019,
Elsawah et al. 2020).  

Being aware that simple causal claims and single, linear causal
chains are often insufficient to understand what happens in SES,
researchers have sought to identify and communicate more
elaborate causal relationships. As the primary sense of humans
is the visual one, visualizations play a key role in this endeavor.
Their main purpose is to represent complex systems and
phenomena with different foci, from different angles, and at
different levels of detail. By decomposing and depicting parts of
the system and their relationships, visualizations are used to
elucidate how these systems function or how the phenomena
emerge. This may happen at different stages throughout the
research process, from visualizing initial hypotheses to eventually
consolidated causal findings (Sheredos et al. 2013). Thus,
visualizations are widely used to comprehend and to
communicate causal relationships in SES. However, visualizations
may also constrain our ability to capture causation, in particular
in complex and intertwined systems such as SES. As graphical
representations of structures and dynamics, they translate into
mental models that may often suggest a level of simplicity in
causal relationships that does not mirror reality. Likewise, even if
we have better understood complex causation, using, for example,
statistical analyses or mechanistic simulation models, our
visualizations might not be able to adequately represent this
understanding.  

1Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany, 2Stockholm Resilience Centre,
Stockholm University, Sweden, 3Department of Philosophy, University of Uppsala, Sweden, 4Institute for Analytical Sociology, Linköping
University, Sweden, 5Department of Management, Stockholm School of Economics, Sweden, 6Sociology, University of Helsinki, Finland

https://doi.org/10.5751/ES-13030-270131
https://doi.org/10.5751/ES-13030-270131
mailto:thomas.banitz@ufz.de
mailto:thomas.banitz@ufz.de
https://orcid.org/0000-0001-8541-789X
mailto:tilman.hertz@su.se
mailto:tilman.hertz@su.se
mailto:lars-goran.johansson@filosofi.uu.se
mailto:lars-goran.johansson@filosofi.uu.se
mailto:emilie.lindkvist@su.se
mailto:emilie.lindkvist@su.se
mailto:rodrigo.martinez.pena@liu.se
mailto:rodrigo.martinez.pena@liu.se
mailto:sonja.radosavljevic@su.se
mailto:sonja.radosavljevic@su.se
mailto:maja.schlueter@su.se
mailto:maja.schlueter@su.se
mailto:karl.wennberg@hhs.se
mailto:karl.wennberg@hhs.se
mailto:petri.ylikoski@helsinki.fi
mailto:petri.ylikoski@helsinki.fi
mailto:volker.grimm@ufz.de
mailto:volker.grimm@ufz.de


Ecology and Society 27(1): 31
https://www.ecologyandsociety.org/vol27/iss1/art31/

Although visualizations play an important role in exploring and
communicating causation in SES, their inherent assumptions,
strengths and weaknesses are rarely reflected upon (Spiegelhalter
et al. 2011). The way we visualize, and hence conceptualize,
complex systems affects our understanding of these systems and
the conclusions based on this understanding. For example, the
conceptual model of what is known, unknown, or uncertain about
an agricultural SES, and how different variables in that SES
influence and respond to each other, is virtually inconceivable
without visualization, and in turn, shapes the development of
climate change mitigation and adaptation strategies (Bentley and
Anandhi 2020).  

We therefore seek to raise awareness of how widespread types of
visualization can shape our ability to properly identify and express
causal relationships and provide some ways forward for using
visualizations in SES research. We first identify challenges for
visualizing complex causation, followed by a presentation of
common types of visualization and a discussion of their scope,
potential, limitations, and their suitability to address the
challenges. We then highlight examples of visualizations in the
literature on SES, specifically attempts to visually capture
complex causation. Finally, we formulate caveats and
recommendations for future use of visualizations. Although
comprehensively visualizing causation in a complex SES with a
single figure may be impossible, creative solutions for elucidating
and communicating this complexity exist and should further be
developed.

CHALLENGES FOR VISUALIZATIONS OF COMPLEX
CAUSAL RELATIONSHIPS
To systematically analyze the visualization types’ potential and
limitations for presenting and explaining causal relationships, we
identify key challenges for visualizing causal relationships in SES.
Although there is overlap with the general obstacles for studying
causation in complex systems (e.g., Preiser et al. 2018, Schlüter et
al. 2019), we focus on the following challenges that are specific to
the task of visualization:  

1. Visualizing whether a relationship is causal. This challenge
includes separating causation from mere covariance and
visualizing confounding. Two variables covary if  a change
in one of them goes along with a change in the other, but
the covariance does not reveal which variable is the cause
and which is the effect. Even more important, they may also
covary without a direct causal relationship if  changes in both
are caused by a third variable. These options are not mutually
exclusive. Often, there is a causal relationship between two
variables, but this relationship is confounded by a third
variable, which affects both. This poses a problem for
detecting whether two variables are causally related, and for
visualizing it (Pearl and Mackenzie 2018). 

2. Visualizing the characteristics of causal relationships. This
challenge includes discriminating between positive and
negative relationships. If  two variables are cause and effect,
increases in the first variable can increase (positive
relationship) or decrease (negative relationship) the second
variable. Moreover, the shape of their relationship is often
nonlinear or may even change direction. It may also include

discontinuities. Visualizing these characteristics of a causal
relationship, especially in a quantitative manner, cannot be
achieved by all visualization types. 

3. Visualizing reciprocal causal relationships. This challenge
includes illustrating that certain variables are causes and
effects of each other. This is common in SES, for example,
harvesting affects and is affected by the abundance of a
target population or the decisions of suppliers affect and are
affected by the market price. Such feedback may generate
hysteresis or cyclic dynamics. Making these reciprocal
relationships perceivable is a frequent demand when
visualizing causation in complex systems. 

4. Visualizing multiple causes. This challenge includes
depicting that two or more factors, actors, processes or
events can each lead to the same effect (alternative causes,
or equifinality). Moreover, the relationship between a cause
and its effect can be moderated by an additional factor or
context, or it is the combination of causes that lets a certain
effect emerge. The challenge of multiple causes also includes
showing causal relationships at different resolutions of
system elements. When two variables are causally related, a
detailed analysis of their relationship at a higher resolution
will often reveal that the relationship is indirect, meaning
that the first variable has an effect, which itself  is a cause of
another effect, and so forth, until the second variable is
affected. Visualizing these intermediate variables (mediators)
and their relationship (causal chain) is challenging. 

5. Visualizing temporal dynamics of causal relationships. This
challenge includes showing that and how causal
relationships change over time. It may also be that one or
several causes lead to an effect with delay. If  the temporal
sequence of certain actions, processes, events, or the
temporal development of a causal variable matter for the
resulting effects, then these are legacy effects or path-
dependent effects, which can be difficult to visualize. Finally,
this challenge also includes displaying the occurrence of
temporally discrete events or interventions and the
consequences that follow them (Healy and Moody 2014). 

6. Visualizing uncertainty about causal relationships. This
challenge includes expressing uncertainty about causation
and displaying stochastic relationships. Causal relationships
between variables are often not deterministic, but changes
in one or several variables change the probability of a certain
effect to occur. Additionally, it is a challenge to visualize the
uncertainty of a causal relationship that is depicted, be it
uncertainty whether the relationship is causal at all or about
the possible strength of an effect (Spiegelhalter et al. 2011,
Hullman 2020).

TYPES OF VISUALIZATION OF CAUSATION
We present an overview of three main types of visualization of
causation that are commonly used in the literature on SES and
related fields, and we discuss each visualization type’s particular
characteristics in the light of the challenges introduced above. On
this basis, we assess whether a visualization type (1) cannot meet
the challenge, (2) can partly meet the challenge, but requires
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Table 1. Assessment of the presented visualization types according to the six visualization challenges. o Cannot meet the challenge. ✓ 
Can partly meet the challenge, requires specific adjustments. ✓✓ Broadly meets the challenge. ✓✓✓ Is especially suited to meet the
challenge. The strengths and weaknesses of each visualization type are discussed in the main text. See also Table A1.1 (Append. 1) for
further details supporting the assessment.
 

Visualization challenge Objects and arrows X-Y plots X-Y-Z plots

Conceptual diagrams Causal diagrams Network diagrams

1 Causal vs. non-causal ✓✓✓ ✓✓✓ ✓ o o
2 Characterize relationships ✓ ✓ ✓ ✓✓✓ ✓✓
3 Reciprocal relationships ✓ ✓✓ ✓ ✓✓ ✓

4 Multiple causes ✓✓ ✓ o o ✓✓
5 Temporal dynamics ✓ o ✓ ✓ ✓✓

6 Uncertainty ✓ o o ✓✓ ✓

specific adjustments, (3) broadly meets the challenge, or (4) is
especially suited to meet the challenge (Table 1). The assignment
to these categories is explained below and supported by a detailed
consideration of how the different aspects of each challenge can
be addressed by the different visualization types (Table A1.1,
Append. 1). For illustrative purposes, we use a hypothetical SES
as a main example (Box 1) and add examples from the literature
where appropriate. It should also be noted that many
visualizations mix these main types of visualization of causation
and also may contain additional elements that do not fit into any
of these types. We refer to examples of such combinations in below
in the section “Visualizing Complex Causation in SES Research.”

Box 1:   

DemoViz: a model of a hypothetical SES. To create exemplary
visualizations, we generated data for a hypothetical system with
an individual-based simulation model. Here, we provide a short
summary of the model. A detailed description following the ODD
(overview, design concepts, and details) protocol for standardized
descriptions of individual-based and agent-based models
(Grimm et al. 2006, 2010, 2020) is given in Append. 2.  

The assumed SES comprises a fish population in a river affected
by river pollution, temperature, and fishing. Each fish individual
is characterized by its body condition and location along the river.
Both body condition and location change in time. The individuals’
body condition is affected by the environmental variables river
pollution level and river temperature, and differs among
individuals. The individuals’ locations are affected by river
temperature only (representing movement to follow shifts of
regions with favorable temperature along the river).  

The population-level dynamics emerge from stochastic
simulations of the individual-level processes according to the
individuals’ current attributes in each time step (corresponding
to 1 year). The ecological processes comprise mortality, which is
affected by body condition, and reproduction of individuals,
which is affected by body condition and location. Besides natural
mortality, the individuals can die through fishing. The social part
of the SES is represented in a very simple form via the option to
reduce river pollution, and via adapting the fishing pressure to
the fish population size. Only above a certain threshold is fishing

carried out, and approximately 20% of the individuals are caught
randomly. The simulation is run for 200 time steps, but the
population may go extinct before. 

Objects and Arrows
One of the most common ways of visualizing and explaining
causation in complex systems is a diagram consisting of objects
and arrows connecting them (e.g., Fig. 1). It visually represents a
phenomenon in a system by its organized parts and relationships,
proposing how these interact to bring about the phenomenon
(Sheredos et al. 2013). When used for representing causal
relationships, an arrow from object A to object B depicts that a
change of A causes a change of B. If  there is another opposite
arrow from B to A (or the arrow is double-headed), the causation
is reciprocal: there is a feedback between A and B, as a change of
B also causes a change of A. These meanings of objects and arrows
are very general and flexible. Yet they require a conceptualization
of the system for which the causal relationships are visualized. In
particular, the objects must be defined. They can be entities in the
system (e.g., agents or other components), but also state variables
or processes. It is also possible to connect different kinds of objects
in one diagram.  

The selection of objects and arrows to be included has important
implicit consequences. The objects already determine which
claims about causal relationships in the system are possible based
on the diagram. The arrows depict which of these relationships
are actually considered. Any further causal relationships the
objects might be involved in, and any further objects not shown,
are ignored. All details within an object are usually ignored too,
i.e., the higher-resolution objects it is composed of and the causal
relationships between them. This simplified representation of the
real complex system (e.g., Fig. 1A) helps to focus only on elements
and relationships that are considered essential for a given question
(Starfield 1990, Grimm and Railsback 2005). But it is crucial to
be aware of these decisions, and they should be made clear. Often
they are not explicitly stated, but taken for granted with the
diagram of objects and arrows. However, they guide and constrain
all subsequent efforts based on this visualization. The diagram
represents, so to speak, a certain worldview and leaves out
elements that might in fact be important but are ignored in this
worldview. This is not only a decision of where to draw the
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boundaries and how to choose the resolution of the SES
representation. Also, what kind of objects are depicted in a
diagram matters. In ecology, a good example is whether
ecosystems are perceived either as being composed of organisms
or of compartments containing energy and nutrients. This
decision strongly influences for which real-world phenomena a
causal understanding can be achieved (Grimm et al. 2017).

Fig. 1. Visualizations of causal relationships based on the
example model DemoViz (Box 1) by objects and arrows. (A)
Conceptual diagram broadly visualizing causal relationships in
the SES. Humans affect fish by polluting the river and by
fishing. They also cause the change of climate, which in turn
affects fish via river temperature. The arrows have different
meanings, such as processes (e.g., fishing) or mediators (e.g.,
river temperature), which is expressed by the different arrow
labels. The bottom arrow shows two relationships (two labels).
The direction of effect of relationships is not specified (e.g.,
whether high or low temperature is better for the fish). One may
interpret that the dashed arrow means that the causal
relationship between humans and climate is not part of the
analysis. However, this is not explicitly defined and should be
explained in the figure caption. (B) Diagram of a causal chain
that illustrates how river pollution by humans is mediated to
eventually affect the fish population. Note that river pollution,
which was a label for the arrow between objects (the
relationship between entities) in A, is now an entity itself, as the
causal relationship is visualized at a higher resolution.

Potential. This visualization type can represent multiple causes
by several arrows leading to an object. Thus, it can also indicate
that a phenomenon emerges from the influence and interaction
of these multiple causes. The visualization can also represent
multiple effects by several arrows starting from an object. In
addition to direct feedback between two objects (cf. above),
indirect loops of causal relationships involving more than two
objects can be visualized. An arrow starting from and looping
back to an object can represent internal feedback. The causal
relationship indicated by an arrow can be used to represent
temporal order (i.e., termination of object 1 causes the start of
object 2; e.g., in flowcharts). It can also represent flows of energy,
matter, or information. The direction and strength of causal
relationships can be visualized by using different widths or styles
of arrows, or by labeling them. In any case, the absence of an
arrow allows for a clear and even quantitative statement: there is
no direct causal relationship between objects 1 and 2.  

Limitations. Due to their versatility, visualizations with objects
and arrows are used in many ways. This freedom can also be a
drawback leading to confusion. Any intended meaning of specific
shapes and styles of objects and arrows (e.g., Fig. 1A) should
therefore be well explained in the figure captions. The meaning
of arrows can remain unclear as they do not necessarily represent
causal relationships. If  they do, the possibilities of expressing
different characteristics of these relationships are clearly limited.
Even if  the specific appearance of arrows can be varied to show
differences, all these specifications are not inherent to the
visualization. They might root implicitly in a presupposed
common understanding of their meaning in the visualized
context, for instance because this is established in a specific
scientific discipline or methodological community. Preferably,
they should be explicitly communicated in addition to the
diagram, in particular with regard to the fact that SES research
is interdisciplinary. Moreover, a single arrow does not specify the
underlying mechanism(s) of causation. Additional objects
involved in such mechanisms and any details within objects are
not visualized according to the selected resolution or worldview.
They are therefore also ignored. However, for showing these
detailed objects and their relationships, such as causal chains, the
same form of objects and arrows can be used too (e.g., Fig. 1B).
This offers an important option for understanding and visualizing
causal mechanisms.  

Three subtypes of diagrams with objects and arrows are
particularly relevant for causation in SES: conceptual diagrams,
causal diagrams, and network diagrams.

Conceptual diagrams
Visualization by objects and arrows is very popular for conceptual
diagrams, which are highly generic and flexible. They are
ubiquitous in use for SES representations, visualizing conceptual
models of the systems, but also frameworks and approaches to
study them. Conceptual diagrams do not require strict formal
rules. They may contain just a few objects and arrows (e.g., Fig.
1A) or many. To take into account the complexity of SES, different
kinds of arrows, different kinds of objects (e.g., representing
factors, actors, other system components, processes), multiple
colors, layers, labels or pictures can be included, and diagrams
can be nested (e.g., Lindkvist et al. 2020; Fig. A3.1, Append. 3).
However, to be used meaningfully and unambiguously, these
differences require careful explanation. Moreover, although very
helpful for visualizing multiple causes and discriminating causal
from non-causal relationships, the high flexibility comes at the
cost of lower potential for conveying more specific or quantitative
information, for instance on the shape, strength, or temporal
changes of causal relationships (Table 1). As the numbers of
objects and arrows increase, it can become difficult to grasp which
causal relationships are indicated, and it becomes likely that only
selected relationships will be grasped, ignoring how they are
embedded and interact with additional system elements. Attempts
to reflect the actual complexity of an SES can lead to a conceptual
diagram containing plenty of objects and arrows in an almost
arbitrary manner (i.e., everything is linked to everything).
Although each object and link in such a diagram may be justified
and have a meaning, the visualization is then of limited use for
specifying and disentangling complex causal relationships.
Nonetheless, it can be useful for demonstrating this complexity,
showing that phenomena are intertwined and that simple, mono-
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Fig. 2. Visualizations of causal relationships based on the example model DemoViz (Box 1) by causal diagrams. (A) Causal diagram
of the system in dot and arrow format as it is represented in the simulation model. Each node depicts a specific state variable or
process rate, each arrow depicts a causal relationship. The diagram includes instances of mediators (e.g., an indirect path from river
pollution to fish mortality via fish body condition, which thus mediates the effect), multiple causes (e.g., two arrows leading to fish
body condition), multiple effects (e.g., two arrows from river temperature), and reciprocal relationships (a direct loop between fish
reproduction and population visualizing density dependence; an indirect loop involving fishing, fish mortality, and the fish
population). This causal diagram is particularly useful for discriminating causal from non-causal relationships. For example, one
might think that the fish location affects body condition, and also find them to be correlated. However, the diagram shows that there
is no direct causal relationship between them (no arrow), but both are affected by temperature, which is therefore a confounding
variable. (B) Causal loop diagram of a part of the system. Two state variable names (fish body condition, fish location) have been
converted into clearly interpretable descriptions consistent with the “+” and “-” labeling scheme. This example combines stocks (e.g.,
fish population) and flows (e.g., fishing), and the loops are additive. The left loop is a balancing loop (one negative sign along the
loop), whereas the right loop is a reinforcing loop (no negative sign).

causal thinking is inadequate (e.g., Walker et al. 2009; Fig. A3.2,
Append. 3).

Formal causal diagrams
Certain diagrams of objects and arrows follow a more specific
formalism to represent causal relationships, for instance the dot
and arrow format (e.g., Fig. 2A). Using such causal diagrams to
visualize what we assume (or know) about the causal relationships
in an SES makes these assumptions about the system more explicit
and transparent, and allows inferences about their consequences.
Causal diagrams in the dot and arrow format, with dots
representing variables and the additional restriction that only
unidirectional arrows and no cycles are allowed, can be used as
tools for causal inference (Pearl and Mackenzie 2018, Lederer et
al. 2019). To this end, the paths between dots can be traced, and
common challenges for causal inference can be identified because
they go along with characteristic structures in causal diagrams.
For example, for a given arrow between two variables, a backdoor
path is a path that leads to both of them from a third variable,
which is therefore a confounder of the relationship. An indirect
path connects the two variables in the same direction as the direct
arrow, but via a third variable, which is therefore a mediator
(Textor et al. 2016, Lederer et al. 2019). Such paths can be
embedded in relationships involving many more than just three
variables. Detecting them, as well as more complicated generic
structures with specific meaning for causal analysis, is greatly
facilitated by causal diagrams. Thus, the visualization serves as a
robust and powerful tool that provides the basis for well-justified
decisions whether certain variables must or must not be controlled
for in causal inference. Without visualization, this would soon
become much more difficult with an increasing number of
variables and causal relationships between them (Pearl and
Mackenzie 2018).  

Although causal diagrams can be used for depicting stochastic
causal relationships, the stochasticity itself  is not visualized (Table
1). This means that it is not clear whether an arrow indicates, for
example, that changes in one variable will sometimes, often, or
always lead to changes in another variable that is linked by an
arrow. Or an arrow connecting two events need not mean that the
first event always causes the second. It may just modify the
chances for the second event to occur.  

Causal diagrams are also used to visualize structural equation
models (SEM), a popular method for analyzing statistical
associations between variables that then serve for causal
interpretation (Shipley 2000, Grace 2006, Asah 2008, Fan et al.
2016). In these diagrams, in addition to arrows showing the
direction, path coefficients indicate the strength and sign of
relationships between variables (e.g., Palomares et al. 1998; Fig.
A3.3, Append. 3). When applying SEM, the relationships that are
included (i.e., the structure of the diagram) can be varied to test
different models and select the preferred one based on fitting to
data. Thus, the causal relationships that form the underlying
conceptual model of the system would not be determined a priori
but as a result of the system analysis (Eisenhauer et al. 2015).
However, it is important to notice that the causal relationships
cannot be derived from the associations between variables alone.
Rather, these relationships need to be provided to the SEM as
causal assumptions, and subsequent findings rely on careful
interpretation (Bollen and Pearl 2013).  

Causal loop diagrams are another popular type of visualizing
causal relationships (e.g., Fig. 2B). They are a key tool in systems
dynamics approaches to SES research (Elsawah et al. 2017,
Radosavljevic et al. 2020). In these diagrams, arrows are labeled
with “+” or “-” signs to indicate positive or negative relationships
between the connected variables, respectively. The particular focus
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of the diagrams is on closed loops involving two or more variables.
If  the number of negative signs along a loop is even, the loop is
reinforcing, meaning that increases (decreases) in one variable
feed back positively through the loop and further increase
(decrease) that variable. If  the number of negative signs along the
loop is odd, the loop is balancing, meaning that increases
(decreases) in one variable feed back negatively through the loop
and decrease (increase) the variable. These features make causal
loop diagrams highly suitable to visualize and characterize
reciprocal causal relationships (Table 1).  

However, when combining stocks and flows (as variables) in a
causal loop diagram, the visualization is prone to
misinterpretation because the “+” and “-” labels can have two
different meanings: additive or proportional change. An additive
arrow denotes that the first variable adds to the second variable
(or, for the negative sign, subtracts from that variable). But two
variables linked by a positive arrow do not necessarily change in
the same direction (and vice versa for a negative arrow). For
instance, fish reproduction adds to the fish population (Fig. 2B),
but it is possible that fish reproduction decreases whereas the fish
population increases (e.g., when the population approaches its
maximum capacity). For proportional arrows, the two variables
do always change in the same (or opposite) direction and thus are
positively (or negatively) correlated (see Richardson 1997, Lane
2008 for details on this ambiguity of causal loop diagrams).
Hence, thorough reflection and clarification of these meanings is
strongly advocated when using causal loop diagrams.

Network diagrams
Network diagrams visualize objects and their pairwise relations
as networks of nodes (objects) and edges (lines linking objects)
between them (e.g., Fig. 3). The networks (also called graphs) can
be used as abstract descriptions of structural aspects of studied
systems, including SES (Borgatti et al. 2009, Dale 2017, Will et
al. 2020). The nodes and edges can have flexible meaning. For
instance, nodes may represent specific organizational units, such
as individuals, populations, species, or spatial areas. Although
nodes typically represent elements of the same type, this need not
always be the case. For example, actor-network theory focuses on
associations between different types of elements to investigate,
among other things, how social processes influence a studied
phenomenon (Latour 2005, Langley and Tsoukas 2016). Edges
in network diagrams may represent proximity, flows, (potential)
interactions or any other kind of associations between the
elements. They can be undirected (edges only) or directed (edges
with arrows), and they can have weights that, for example, express
the distance between objects or costs, durations, or intensities of
flows or interactions. This flexibility can lead to ambiguity. For
example, when visualizing foodwebs with network diagrams,
arrows can be used to represent predation (directed from predator
to prey), flows of biomass (from prey to predator), or reciprocal
causation between predator and prey abundance (bidirectional
arrows). Edges without arrows are also common, which can
represent any of these options.  

Network representations of SES focus on structural aspects of
the systems and thereby implicitly assume that interaction
structure plays a key role in the systems’ causations (Borgatti et
al. 2009, Scott 2011, Levine et al. 2017). To analyze this structure,
graph theory provides a variety of tools and metrics to assess,

among others, the spatial or functional connectance, density,
nestedness, vulnerability, or node centrality of networks
(Bollobas 1998, Butts 2009, Thébault and Fontaine 2010). The
structure that is visualized in a network diagram often determines
the framework for identifying causal relationships, for example,
the potential interactions. But it is not equivalent to the actual
processes operating in an SES, for example, the realized
interactions.

Fig. 3. Visualization of the spatial connectedness of fish
individuals at two points in time by network diagrams.
Snapshots from a run of the example model DemoViz. A
random subgroup of the fish population is shown, with dots
representing individuals. Their number differs because
individuals may die, and new ones get born in each time step.
Two dots are connected if  the two individuals’ locations are
within a neighborhood (defined by a maximum distance). In
the diagrams, dots are placed arbitrarily such that the resulting
networks are well displayed. They visualize that individuals are
much closer to each other and thus more connected at time step
121 (A) than at time step 122 (B). The underlying, yet invisible
cause is that temperature increased between these time steps
and affected the individuals’ locations (cf. Box 1, Append. 2).

Networks can be used in two ways for deciphering causation in
an SES. On the one hand, the structure has certain causes, that
is, properties and dynamics of the system elements that led to the
structure. On the other hand, the structure also has consequences
as it enables, facilitates, or constrains processes in the system. In
both cases, the network structure and its metrics can be regarded
as patterns, and these patterns hint at the system’s causal
relationships (Bodin et al. 2019). However, such causal
implications of the network structure are not conveyed by the
visualization itself. They require interpretation and additional
analyses and explanations. Nonetheless, the causal understanding
is considerably supported by network diagrams, and its derivation
can be straightforward. A network diagram of a foodweb implies
that an abundant predator population causes a pressure on its
prey population. A weighted network diagram of trading routes
makes visible that closing a certain route could cause higher costs
for trading partners using that route and higher usage of
alternative routes. Here, the weights also serve to characterize the
causal relationships.

X-Y Plots
This very common visualization type comprises two-dimensional
line, point, bar, or similar plots relating two variables X and Y (e.
g., Fig. 4). In this way, an X-Y plot reduces system complexity to
just two chosen factors. The plot displays how different values of
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X are associated with different values of Y. Given that Y is not
constant, this means that changes in X are related to changes in
Y. Very often, this visualization type is interpreted as indicating
causation, meaning that changes in X cause changes in Y. This
suggested causal relationship is mirrored by a common
terminology, calling X the independent and Y the dependent
variable. X-Y plots are appealing as they convey a simple message,
which is easy to grasp and memorize. However, they also strongly
evoke mono-causal thinking, ignoring complexity and context.
X-Y plots often suggest a simplicity and generality that do not
exist in reality.

Fig. 4. Visualization of DemoViz (Box 1) results for one run
over 200 time steps by X-Y plots. (A) Line plot showing the
number of fished individuals vs. time (often referred to as time
series). This number drops to zero during several periods. The
(invisible) cause is that fishing is adaptive and stops when the
population size falls below a threshold (cf. Box 1). (B) Bar plot
comparing the total amount of fished individuals over the
whole simulation period for two different scenarios. The
visualization suggests that the intervention (reduced river
pollution) is the cause for the higher amount of fishing, which
is correct. (C) Point plots of the body condition of fish both at
the individual and the population level (cf. legend) vs. river
pollution. The visualization suggests a causal relationship from
river pollution to body condition. This relationship exists, but is
not that simple as pollution is not the only factor affecting
body condition (cf. Fig. 2A). (D) Point plot of population
growth vs. population size of the previous time step. It makes
the causal relationship visible that large population sizes do not
allow for high reproduction. However, for small population
sizes reproduction can also be low, driven by different causes
that are not shown.

There are exceptions of X-Y plots for which the visualized
relationship is clearly not meant to indicate causation. The
independent variable may be a mere criterion for discriminating
different cases, such as the names of different agents or places, or
the ranks of different items according to their associated Y value
(e.g., species rank-abundance plots, May et al. 2016; Fig. A3.4,
Append. 3). Also time series, plots in which time is the
independent variable on the X axis (e.g., Fig. 4A), do not imply

that time is the direct cause for change of the dependent variable
(although time is usually involved in such change).  

Potential. This visualization type is standard and extremely useful
for depicting the relationship between one potential cause and
one effect. In X-Y plots, the detailed characteristics of such a
relationship can be made visible right away, such as its direction,
strength, nonlinearity, or non-monotony, and also critical
thresholds (Table 1). The relationship can be shown at high
resolution of the variables’ values. Variations, uncertainty, or
confidence can be incorporated, for instance by individual values
underlying a mean (Fig. 4C), error bars, intervals around the
plotted curve, or symbols and labels for the results of statistical
tests (e.g., tests whether data from different treatments have a
common mean). In time series, the time points/periods of
occurrence of events/treatments/interventions can be highlighted.
This facilitates inspection whether those changes, which are not
plotted themselves, are related to changes in the plotted Y variable.
For the same purpose, one can plot two time series, one for the
(potential) causal and one for the effect variable, or even more to
consider multiple effects. Generally, using multiple lines/points/
bars differing in style or color can overcome the restriction to only
one Y variable (sometimes also using two different Y axes). This
strategy can be used to visualize different instances of an
additional variable (cf. “Multiple Plots of the Same Visualization
Type” below). But within one plot, these potentially dependent
Y variables all need to be related to the same independent X
variable.  

Limitations. Apart from depicting the relationship to only one
(potential) cause, the most important limitation of X-Y plots is
that it is not possible to visually discriminate causation from mere
covariance (Table 1). For instance, two variables might show a
strong relationship not because X is the cause of Y, but because
both are affected by a common cause C that confounds their
relationship but is not shown. This is crucial and makes the plot
amenable to mis- or over-interpretation. It adds to the problem
that depicted relationships, even if  they are causal, can be
modified in complex systems by additional factors. Information
about such factors and context, as well as mechanistic
interpretations of causation behind depicted relationships, is not
conveyed by the plot itself. These aspects require additional
explanation. The same is true for underlying statistical models
and assumptions, if  uncertainty is included in the visualization.  

It is also possible to plot the values of an independent variable X
together with the change of that variable (dX/dt as Y variable).
This allows visualizing the feedback of a variable X on itself  (e.
g., Fig. 4D). However, it also separates this self-feedback from its
context and suggests ignoring the additional causes for changes
of the X variable.  

To visualize the reciprocal relationships between two variables,
phase space plots can be used. These X-Y plots show the
trajectories of combinations of two state variables (value pairs of
X and Y), denoting changes over time in the phase space of
possible states of a system (e.g., Fig. 5A). They usually imply that
X and Y are causally related in both directions. In addition to
visualizing possible combinations of X and Y, a trajectory also
shows that for a given value of one variable, various values of the
other variable are possible.
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Fig. 5. Visualization of trajectories of combinations of two
variables by X-Y plots. (A) Phase space plot showing observed
numbers of Canadian hare and lynx individuals (thousands)
from 1875 to 1906. The two populations are prey and predator
and thus involved in a reciprocal causal relationship. However,
the visualization does not allow clearly discriminating whether
this predator–prey relationship, an alternative relationship of
disease transmitted from hare to lynx, the relationship between
hare and its food, or the relationship from human hunters to
both populations is the major cause for the system dynamics.
Source and further details: Gilpin (1973). Figure used with
permission by the University of Chicago Press. (B) X-Y plot
showing hysteresis in a hypothetical dynamic ecosystem with
alternative stable states (Y axis). Arrows visualize the temporal
development, including abrupt changes (catastrophic shift or
restoration) when the environmental conditions (X axis) cross a
tipping point (black dots). Ecosystem states between the solid
black curves are not stable, they cannot be maintained over
time. The dashed curve separates unstable states from which the
ecosystem would return to the upper “conserved” stable state
(blue area above the dashed curve) and states from which it
would return to the lower “degraded” stable state (area below
the dashed curve). The blue arrow depicts a disturbance. Source
and further details: van den Elsen et al. (2020). Figure used
without modification under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/).

When X depicts an environmental driver and Y depicts a state
variable, the effect that the driver has on the system state can
depend on the current state of that system (e.g., Fig. 5B). Thus,
both X and Y have an effect on changes in Y, leading to alternative
stable states for the same value of the driver variable X. There
may also be tipping points (Milkoreit et al. 2018), which means
that the state variable changes abruptly when the driver exceeds
a certain threshold. Even if  the driver variable changes back,
potentially very far from the threshold, the state variable does not
reach the same values as before. It is possible that two tipping
points exist, meaning that the state variable changes back
(abruptly) only if  the driver exceeds another threshold. This
phenomenon of path-dependence causing alternative stable states
(hysteresis) is common for SES, and X-Y plots are popular for
visualizing it (May 1977, Scheffer et al. 2001, Hughes et al. 2013,
Sguotti et al. 2019). Typically, the trajectories of the different
stable states are connected with dashed or dotted lines to visualize
that the corresponding combinations of X and Y values belong
to unstable states (cf. Fig. 5B).

X-Y-Z Plots
This visualization type includes three variables. Here, X and Y
are two independent variables, and Z is the dependent variable
shown for different combinations of values of X and Y (e.g., Fig.
6). This is realized, for example, by two-dimensional contour or
raster plots, or by three-dimensional surface or point plots. Thus,
two potential causes and their effects on Z can be visualized
together. This is an important step toward visualizing complex
relationships in the system represented. The downside of this
added complexity is that the plots can be more difficult to grasp
compared with X-Y plots. And similar to X-Y plots, there remains
the pitfall of perceiving depicted relationships as causal even
though this may not be the case (Table 1).

Fig. 6. Visualization of DemoViz (Box 1) results for one run
over 200 time steps by X-Y-Z plots. (A) Point plot of fish body
condition (population mean of individual values shown) vs.
river pollution and temperature. Both pollution and
temperature are causally related to fish body condition (cf. Fig.
2A). A linear fit to the relationship is plotted as a gridded
plane. It approximately captures the depicted relationship and
helps in discerning where the points are. However, the points’
exact positions in the X-Y-Z space and how much they deviate
from the linear fit are difficult to determine. (B) Raster plot of
the linear fit of the same relationship (background colors,
constrained to the interval [0, 1]) and single points for values of
fish body condition visualized by color (cf. color bar). The
background raster plot visualizes the trends of body condition
increasing with decreasing river pollution and with increasing
temperature. The colored points reveal that the single points
approximately follow this trend, but also show considerable
deviations. Some deviations are easier to discern than in plot
(A) due to the color differences.

Potential. The visualization of two independent variables enables
inspecting and presenting effects that emerge from their
interaction. The characteristics of their relationship to the
dependent variable get visible, including nonlinearity or critical
thresholds. Even highly multifaceted relationships can be
quantitatively shown. Similar values of Z for different
combinations of X and Y values show that different regimes are
similar in terms of their associated effect on Z. This can point to
trade-offs between two causes and to options for buffering or
compensating for negative effects of one factor by changing a
second factor. In particular, the second factor can be a moderator
or a variable representing the context and, thus, the dependence
of the relationship between X and Z on this second factor Y is
visualized. If  time is the Y variable, changes of a relationship over
time are depicted, although time is not considered a direct cause
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Fig. 7. Visualizations of a conceptualization of SES by objects and arrows, illustrating an analytical framework for analyzing
emergent social-ecological phenomena. (A) The collapse of a fishery (top object) emerges from and affects “action situations” in
which policy makers, fishers, and fish populations interact (middle objects). These diverse action situations affect each other (arrows
between middle objects) and they each involve a different network of actors and system components (exemplified by bottom
objects). (B) More abstract and generic visualization of the framework, highlighting how an SES phenomenon emerges from and
again influences social, social-ecological, and ecological action situations (AS, middle objects). The AS also influence and emerge
from their effects on each other (arrows between them). Each of these AS objects involves several instances of participating actors
(A) and/or ecological entities (EE) (arrows from bottom objects). An example network of interactions between these A and EE is
visualized by lines connecting them. The figure uses different kinds of objects, arrows, colors, labels, layers, and photographs to
convey different types of entities and causal relationships that let the SES phenomenon emerge. Frames around the diagrams show
that all this is considered in its context of social and ecological conditions. Source and further details: Schlüter et al. (2019). Figure
used without modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

for changes of the dependent variable (cf. above). X-Y-Z plots
can also be used to visualize the possible combinations of three
variables that describe a system state and may all affect each other
(e.g., Radosavljevic et al. 2020; Fig. A3.5, Append. 3). Or,
comparable to X-Y plots (Fig. 5B), they can visualize that and
how the relationship between two variables changes from
bistability to a single stable state depending on the value of a third
variable (the “cusp” model in catastrophe theory, e.g., Petraitis
and Dudgeon 2016, Sguotti et al. 2019; Fig. A3.6, Append. 3).  

Limitations. Also in X-Y-Z plots, causation cannot be visually
discriminated from mere covariance. Moreover, it can be difficult
to accurately discern the characteristics of relationships.
Transferring visual differences of colors into quantitative
differences of Z values is susceptible to errors (Fig. 6B). Exactly
determining the positions of points or a surface in a three-
dimensional space, which must nevertheless be plotted as a two-
dimensional figure, is not always possible (Fig. 6A). Visualizing
uncertainty about relationships is difficult and usually requires
an additional plot, for example of the variation of Z values for

different combinations of X and Y values. If  time is chosen as the
second independent variable Y, the benefit of showing the
temporal development of the relationship between X and Z comes
at the cost of not showing the interaction with a second potential
cause.

VISUALIZING COMPLEX CAUSATION IN SES
RESEARCH
The presented characteristics, potentials, and limitations of the
different visualization types provide a sound basis for choosing
the appropriate visualization of causation in an SES depending
on the intended purpose. Nonetheless, this means that a decision
needs to be taken as to which—often substantial—aspects of the
complexity of the SES will be disregarded and which aspects will
be brought into focus. For example, recent advances developed
ways to visualize multiple and complex causal relationships that
bring about an emergent phenomenon of interest in an SES, such
as a fisheries collapse, through elaborate conceptual diagrams
with objects and arrows (Fig. 7). A distinctive feature here is that
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Fig. 8. Visualizations of a network of action situations that lead to an emergent SES phenomenon by objects and arrows. The
diagram follows the approach described by Schlüter et al. (2019, cf. Fig. 7) for the hypothetical SES used in the DemoViz model.
The social-ecological (dark blue) and ecological (light blue) action situations can lead to the collapse of the fish population. (Purely
social action situations are not included in this example, cf. Box 1.) The action situation “Fish life” comprises fish movement,
changes in fish body condition, and fish deaths through natural mortality (cf. Append. 2 for details). How emergent outcomes of
one action situation affect another action situation is visualized by labeled arrows between them. For instance, the fish movement in
response to the river temperature affects the individuals’ locations and, thus, their spatial connectedness (cf. Fig. 3), which affects
fish reproduction. Temperature is an external driver of the action situation “Fish life”, visualized by a gray dashed arrow.

several levels of organization are visualized: from single actors
and ecological entities over the action situations they participate
in as well as networks of action situations, to the overall emergent
phenomenon. Implicitly, such a figure also communicates that
(and why) the phenomenon is complex as it is produced by
multiple interacting processes. The approach to visualize
networks of action situations can be applied to a specific case, for
example the hypothetical SES used for the DemoViz model (Fig.
8, cf. Box 1). Based on such visualizations, the analytical
framework can be used to develop hypotheses about causal
mechanisms that generate SES phenomena (Schlüter et al. 2019,
Orach and Schlüter 2021). These possible explanations can then
be further examined through empirical research or modeling.  

If  the focus of a visualization, however, lies in supporting causal
inference of relationships between variables in an SES, more
formal causal diagrams are often the appropriate choice (Fig. 2).
On the other hand, the focus may also lie in presenting specific
causal relationships, ignoring the wider SES context they are
embedded in for the sake of visualizing the particular shape,
tipping points, or reciprocity of a relationship in an X-Y plot
(Figs. 4, 5) or, for instance, interactions of two causal variables in
an X-Y-Z plot (Fig. 6).

Multiple Plots of the Same Visualization Type
An important option for widening the focus and visualizing
complex causation is bringing together several plots of the same

type in one figure. This allows increasing the number of causes
to be shown, the number of effects, or both. For example, multiple
X-Y plots in one figure depicting the same relationship between
one causal and one effect variable for different instances of a
second cause (i.e., different contexts) can show how two causes
interact (Fig. 9, different columns). At the same time, the precise
quantitative visualization of the depicted relationship provided
by X-Y plots is maintained. Moreover, depicting the relationships
between one causal and several effect variables in multiple X-Y
plots further adds complementary information to these
relationships, respectively (Fig. 9, different rows). This may, for
instance, visualize trade-offs between different effects of changing
one cause. The principle of multiple X-Y plots can be extended,
for example, by using the X axes, different columns, different rows,
and different line colors to show the effects and interactions of
four different causal variables (e.g., Banitz 2019; Fig. A3.7,
Append. 3). However, it needs to be mentioned that the data
needed for such comprehensive visualizations of an effect variable
for all combinations of relevant values of the causal variables are
rarely available, except for computational models of SES, where
conditions can easily be controlled and resulting system state
variables obtained (Schulze et al. 2017, Schlüter et al. 2019).  

The same principle of multiple plots can also be used with other
visualization types. With X-Y-Z plots that already show the
interaction of two causes, a third cause or context can be added
(Fig. 10). Similarly, this can be achieved by nested rows and
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Fig. 9. Visualization of complex causation for a modeled generic agricultural SES by multiple X-Y plots. Rural farmers invest a
certain percentage of their assets in individual household activities (X axes) and give the remaining percentage to the community.
The single plots show how these investment decisions affect the household- and community-level assets (Y axes) and, thus, poverty.
Different columns are used to visualize the effects of a second cause or context, namely the operating poverty trap (column titles).
These poverty traps result from mechanisms that involve several additional causes, which are not shown in the figure. Different rows
are used to discriminate between two effects. They visualize how farmers’ decisions and the operating poverty trap affect the assets
of the whole community (top) and of individual households (bottom). Note that, in the single plots, different values of assets are
possible for the same values of investments as the modeled dynamical system has multiple stable equilibria (attractors, red line
plots). Source and further details: Radosavljevic et al. (2021). Figure used without modification under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

Fig. 10. Visualization of complex causation in a modeled
fisheries SES in Northwest Mexico by multiple X-Y-Z plots.
The single plots show how the two causal variables “fishing
cooperatives’ loyalty” (X axes) and “variation of the fishers’
reliability” (Y axes) affect the proportion of all fishers that do
not directly contract with a fish buyer, but instead become
members in a cooperative (visualized by color, cf. color bar).
The two causes are varied in three discrete categories (three
steps on the X and Y axes). Thus, broad effects are clearly
shown, but detailed shapes of the relationships are not in focus.
Different columns are used to visualize the effects of a third
cause, namely fluctuations in environmental conditions
(column titles). Source and further details: Lindkvist et al.
(2017). Figure used without modification under the CC BY 4.0
license (https://creativecommons.org/licenses/by/4.0/).

columns for multiple causes in a table and visualizing their
combined effects by colors (e.g., Ferguson et al. 2020; Fig. A3.8,
Append. 3). Combining multiple network diagrams in one figure
can be used to show how networks, and thus their associated
causes and effects (cf. “Network Diagrams” above), change in
different contexts (Fig. 3; see also Bodin 2017; Fig. A3.9, Append.
3).

Combining Visualization Types
Combining different visualization types in one plot is another
common and useful option for visualizing complex causation in
SES. This strategy allows benefiting from the respective strengths
of each visualization type (cf. “Types of Visualization of
Causation” above). For example, X-Y plots showing the temporal
development of an SES state and of underlying causal variables
can be amended by objects and arrows diagrams showing the
internal SES organization for different points in time (Fig. 11).
Thus, the state of system entities and the causal relationships
between them are integrated into the visualization and support
causal understanding of the depicted temporal developments.
Vice versa, X-Y plots can be inserted in a diagram of objects and
arrows to illustrate the specific shape of the visualized
relationships between different system variables (e.g., Banitz et al.
2020; Fig. A3.10, Append. 3). In another example from the SES
literature, the combination of X-Y plots with objects and arrows
visualizes causal relationships between trophic groups in a
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Fig. 11. Visualization of complex causation in a modeled
fisheries SES in the Baltic Sea by combining an X-Y plot and
network diagrams. The time series show the temporal
development of several environmental variables (labeled black
areas) and an index aggregating them (dashed line). Although
the environmental conditions are similar in the first and third
period shown, the ecosystem state (straight line) is very
different. This is explained by network diagrams that show the
biomass of different species populations (white node sizes, C –
cod, S – herring, P, A – zooplankton species Pseudocalanus
acuspes and Acartia spp.), the extent of fishing pressure (black
node size), and the direction and strength of causal
relationships between these SES entities (black arrows).
Through the network diagrams, the figure aims to visualize that
the changing environmental conditions during the second
period have (together with fishing pressure) caused a transition
to a different system state, which is difficult to reverse despite
favorable environmental conditions. Source and further details:
Möllmann et al. (2009). Figure used with permission by John
Wiley and Sons.

modeled marine ecosystem and quantitatively shows certain
preconditions for these trophic interactions to occur as well as
certain effects they have (van Leeuwen et al. 2013; Fig. A3.11,
Append. 3).  

It is also possible to combine different X-Y-Z plots and thus
visualize the interaction of two causes both in three dimensions
and—in a more precise quantitative manner—in two dimensions
(Fig. 12). However, a disadvantage of such nonstandard
multifaceted visualizations is that they may easily get very
complicated. They require extensive explanation, and grasping
the depicted causal relationships is not always intuitive. If  used,
readers should therefore always be guided through the
visualizations in order to fully explain the intended causal claims.

The visualizations presented so far can also be combined with
additional types. One example are set diagrams that visualize sets
by closed areas (e.g., circles). Set diagrams are widely and flexibly
used, for instance, to visualize an SES conceptualization for
studying poverty traps, according to which economy is part of a
society, and this society is part of the biosphere (e.g., Lade et al.
2017; Fig. A3.12, Append. 3; see also Folke et al. 2016). In Venn

Fig. 12. Visualization of complex causation in a fisheries SES in
the North Atlantic by combining different X-Y-Z plots. The
three-dimensional surface plot depicts the effects of two causal
variables (fishing mortality and sea surface temperature) on cod
biomass according to a theoretical “cusp” model. The “cusp”
shape of the surface visualizes the interaction of both causes:
depending on temperature, the relationship between fishing and
cod biomass is either continuous or discontinuous (hysteresis,
cf. surface edges). Dots on the surface depict particular
empirical values of cod biomass over time, whereby dot size is
used to visualize biomass and dot color to separate two periods
(cf. legend). The plot is mapped onto an X-Y plane (bottom),
and a section of it visualized by a two-dimensional plot (left).
This is again an X-Y-Z plot with the two causal variables on the
axes and their effects on cod biomass visualized by the position
and size of the dots. The dots are connected to visualize their
sequence in time. The background blue area depicts the
combinations of values of the two causal variables for which
the model is discontinuous, as visualized in the surface plot.
Source and further details: Sguotti et al. (2019). Figure used
without modification under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/).

diagrams, overlap of two areas represents overlap of sets, that is,
elements that belong to both sets. The same principle works for
more than two sets. Integrating a Venn diagram in an objects and
arrows visualization can be used to illustrate complex causation
in an SES, for instance, the contribution of different causes to an
effect. A typical situation is that different factors alone are
insufficient to cause an effect. However, they necessarily belong
to a particular combination of factors that causes the effect. As
this combination is not the only way to bring about the effect, it
is sufficient but unnecessary (e.g., Fig. 13A). Such “insufficient
but necessary parts of unnecessary but sufficient” (INUS)
conditions were defined by Mackie (1965) and are employed to
disentangle complex causation in social and social-ecological
research (Mahoney 2008, Morgan 2013, Meyfroidt 2016, Carlson
et al. 2018). The combination of a Venn diagram with a network
diagram can also be used to integrate visualizing subsets of
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Fig. 13. Visualization of complex causation by combining Venn diagrams with objects and arrows. (A) The institutional collapse in
Brazil in 1964 (Y) was hypothesized to be caused by three characteristics of the Brazilian state and society (X1-3). Labeled arrows
visualize that each of these factors is an INUS condition, and their combination (i.e., a Brazilian state and society with all three
characteristics) is a sufficient condition causing the collapse. Additionally, the size of the areas is used to indicate the strength of
each factor. Source and further details: Amorim Neto and Rodriguez (2016, adapted from Santos 1986). Figure used without
modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). (B) Visualization of potentially relevant
elements (white circles) of a fisheries SES in northern Australia. The elements are assigned to different SES components by placing
them in boxed areas A–E. Gray areas visualize the overlap of these elements with a subset that is included in a particular model
analysis. Only these selected components and their interactions can cause the modeled dynamics. For the ecological SES component,
causal relationships in terms of species interactions are visualized by a network diagram. This includes relationships with species
outside the gray area, showing that these are neglected in the model. Source and further details: Plagányi et al. (2014). Figure used
with permission by John Wiley and Sons.

potential factors that are included in an analysis and visualizing
causal relationships between these factors (e.g., Fig. 13B).

CONCLUSION
We have highlighted that visualizing causation in SES poses
significant challenges, but there are promising ways to overcome
them. A prerequisite for using visualizations to present and
explain complex SES phenomena is to be aware of the key
visualization challenges (“Challenges for Visualizations of
Complex Causal Relationships” above) and the strengths and
weaknesses of the different types (“Types of Visualization of
Causation” above). In summary, the high flexibility of diagrams
of objects and arrows is excellent for visualizing complex
causation, but can easily lead to ambiguities, so consistency and
explanation are critical. Moreover, the biggest limitations of these
diagrams are their poor capability to show the characteristics of
singular causal relationships and to visualize temporal dynamics
and uncertainty. X-Y plots and X-Y-Z plots are more suitable for
these challenges, but strongly limited in discriminating causal
from noncausal relationships and visualizing multiple causes
(Tablea 1, A1.1). Our assessment enables the informed selection
of the appropriate visualization type depending on the research
question, the purpose (e.g., visualizing assumptions, visualizing

results, or visualizing a conceptual framework of a causal
analysis), the knowledge about causal relationships in the SES,
and the properties and part(s) of the system that shall be the focus
of a figure (cf. specific exemplary recommendations at the
beginning of “Visualizing Complex Causation in SES Research”
above).  

Ideally, figures speak for themselves and their messages are
straightforward and fully comprehensible. But a correct and
complete understanding of a figure may also rely on certain
implicit assumptions. These may be familiar to researchers with
a common scientific background. However, tacitly assuming
specific knowledge and interpretation along with a visualization
risks confusing readers who are unfamiliar with them, even more
so because SES research is highly interdisciplinary. For these
reasons, information that is needed to correctly understand a
figure, or that is needed to communicate an aspect of causal
analysis not conveyed by the figure, should be explicitly added
with explanatory text. The respective caption should aim at clearly
guiding readers through a figure, almost as one would do in
presentations. This guidance can be critical to get the meaning
and causal implications of a visualization unambiguously
understood. One practical option to support this is to use
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numbered labels and, in the figure caption, make readers grasp
the figure sequentially by “walking” from element to element (e.
g. Lindkvist et al. 2020; Fig. A3.1, Append. 3).  

For diagrams of objects and arrows, such guidance can also help
readers to mentally animate visualizations and, thereby,
comprehend how an SES phenomenon is caused by the operation
of several processes. This works particularly well for sequential
processes. But also in the case of simultaneous processes that let
a complex phenomenon emerge, the visual summary of these
processes can support causal reasoning and provide a sound basis
for the design of analytical tools such as computational models
(Jones and Wolkenhauer 2012, Sheredos et al. 2013).  

Besides relying on mental animation, a recent additional option
is to create actual animations of visualizations (e.g., Anderson
2013, Grossman et al. 2016). Similar to their use during a
presentation, animations can be used to visually tell a story about
how an SES is organized and functions, in other words, to develop
a causal narrative (cf. Shepherd and Suddaby 2017). This option
can be appropriate for all three main types of visualization
presented. Applied to X-Y and X-Y-Z plots, animations can also
be used to visualize the changes of relationships over time,
overcoming the challenge of visualizing temporal dynamics while
retaining other strengths, such as the precise characterization of
relationships (cf. Table 1). Most journals allow for animated
visualizations in the supplement, whereas including them in the
main manuscript is rarely possible. However, there are attempts
to encourage the latter and keep the manuscript still
comprehensible when printed on paper (e.g., with additional static
figures as placeholders; Grossman et al. 2016).  

Most visualizations used in science aim for simplicity so that the
key message of a figure is easy to grasp and memorize. For
complex causation, however, this design principle can be
counterproductive as it suggests a level of simplicity that plainly
does not exist. We therefore see a particularly promising way for
overcoming the challenges of visualizing complex causation in
SES (“Challenges for Visualizations of Complex Causal
Relationships” above) in the combination of multiple
visualizations in one figure.  

Multiple plots of the same visualization type (“Multiple plots of
the same visualization type” above) can be used to show specific
causal relationships between variables in different contexts or for
different values of additional variables. Thus, they visualize
interactions and common emergent effects of multiple causes. The
approach can also be used to visualize multiple effects of the same
cause(s) within one figure (e.g., Fig. 9). As this principle of adding
causes and effects by multiple instances of the same visualization
works for all types, their specific potential for visualizing different
aspects of complex causation in SES can nonetheless be exploited.

An alternative way to exploit this potential are well-designed
combinations of different visualization types in one plot
(“Combining visualization types” above). If  one is careful not to
overcomplicate these combinations, they can provide otherwise
impossible comprehensive pictures that simultaneously tackle
several of the presented visualization challenges. This
considerably helps to disclose the complexity of SES phenomena
and prevents unduly simple causal interpretations. However,
especially when using creative and less common ways of

combining different visualization types, careful and consistent
design and thorough guidance in accompanying captions are
crucial. Otherwise, they risk being of little value: although
containing a large amount of heterogeneous information, they
do not serve their main purpose of conveying causal insights to
a broad interdisciplinary readership.  

Thus, we assert that visualizing causation in complex SES remains
an often difficult task and simultaneously addressing many, let
alone all, of the identified challenges is virtually unfeasible. A
single figure will not capture and characterize all causal
relationships that are relevant for the fate and functioning of an
SES. Simple figures remain important and useful, for example
when putting the visualization focus on subsystems, on specific
aspects of complex phenomena, on selected causes and effects.
But they should be complemented by figures with combinations
of visualizations to remind ourselves that causation in SES is more
complex than our common way of thinking in terms of simple
causal relationships and linear causal chains—and more complex
than common visualization types may suggest. By being aware of
this pitfall, and of the strengths and weaknesses of the different
types of visualization, we will be well equipped to use
visualizations to do justice to the complexity of SES and support
a better and more comprehensive causal understanding.
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Appendix 1. Table on visualization challenges 

Table A1.1. Details supporting the assessment of visualization types according to the specific aspects of the challenges presented and explained 

in Section 2 in the main text. No entries denote that the visualization type is, to our knowledge, typically not used to address the respective aspect 

of the challenge. Categories for overall assessment: o Cannot meet the challenge. ✓ Can partly meet the challenge, requires specific adjustments. 

✓✓ Broadly meets the challenge. ✓✓✓ Is especially suited to meet the challenge (cf. Table 1). 

Visualization challenge Specific aspect of the 
challenge 

Objects and arrows X-Y-plots X-Y-Z-plots 

Conceptual 
diagrams 

Causal 
diagrams 

Network 
diagrams  

1  Visualizing whether a 
relationship is causal 

Discriminating causation 
from mere covariance 

suitable suitable possible (only 
for potential 
causal relation-
ships, excludes 
causation when 
no connection) 

  

Confounding suitable suitable conceivable  
(for potential 
confounding) 

  

 Overall assessment ✓✓✓ ✓✓✓ ✓ o o 
2  Visualizing the 

characteristics of 
causal relationships 

Discriminating positive 
from negative 
relationships 

possible  
(arrow labels) 

suitable  
(e.g. +/- labels) 

 suitable suitable 

Strength of relationships  possible  
(arrow styles) 

possible  
(e.g. SEM path 
coefficients) 

possible 
(weighted 
edges)  

suitable suitable 

Shape of relationships 
(incl. nonlinearity, 
discontinuities) 

   suitable suitable 
(discerning 
exact shapes 
can be difficult)  

 Overall assessment ✓ ✓ ✓ ✓✓✓ ✓✓ 
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Visualization challenge Specific aspect of the 
challenge 

Objects and 
arrows 

  X-Y-plots X-Y-Z-plots 

Conceptual 
diagrams 

Causal 
diagrams 

Network 
diagrams  

3  Visualizing reciprocal 
causal relationships 

Feedback suitable suitable possible (only 
for potential 
feedback) 

possible  
(phase space 
plot) 

possible  
(phase space 
plot) 

Hysteresis    possible  
 

possible  
 

Cyclic dynamics  possible  
(e.g. causal loop 
diagrams) 

 possible  
(e.g. phase 
space plot) 

possible  
(e.g. phase 
space plot) 

 Overall assessment ✓ ✓✓ ✓ ✓✓ ✓ 
4  Visualizing multiple 

causes 
Equifinality suitable suitable   suitable 

(two causes) 
Moderation, context-
dependence 

conceivable 
(e.g. arrows 
pointing at 
arrows) 

   suitable 

Emergence possible 
(e.g. arrow 
labels) 

   suitable (for 
emergence from 
interactions of 
two causes) 

Discriminating direct from 
indirect relationships, 
different resolutions of 
system elements 

suitable suitable possible (only 
for potential 
relationships) 

  

 Overall assessment ✓✓ ✓ o o ✓✓ 
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Visualization challenge Specific aspect of the 
challenge 

Objects and 
arrows 

  X-Y-plots X-Y-Z-plots 

  Conceptual 
diagrams 

Causal 
diagrams 

Network 
diagrams  

  

5  Visualizing temporal 
dynamics of causal 
relationships 

Change of relationships 
over time 

    possible 
(time as one 
axis) 

Path dependence, legacy 
effects 

conceivable 
(diagram of 
potential system 
states) 

 conceivable 
(network of 
potential system 
states) 

possible 
(phase space 
plot) 

 

Delayed effects    possible 
(events marked 
in time series) 

possible 
(time as one 
axis) 

Effects of events and 
interventions 

possible 
(temporal 
sequence of 
events, e.g. 
flowcharts) 

conceivable 
(events as 
objects) 

 possible 
(e.g. marked in 
time series) 

possible 
(time as one 
axis) 

 Overall assessment ✓ o ✓ ✓ ✓✓ 
6  Visualizing uncertainty 

about causal 
relationships 

Uncertainty about 
causation 

conceivable 
(e.g. arrow 
styles, labels) 

    

Stochastic relationships possible 
(e.g. arrow 
styles, labels) 

possible 
(strength of 
statistical 
relationship for 
SEM)  

 suitable 
(e.g. error bars, 
intervals, labels 
for statistical 
test results) 

possible 
(e.g. point 
clouds, labels 
for statistical 
test results) 

 Overall assessment ✓ o o ✓✓ ✓ 
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Appendix 2. DemoViz model description (ODD) 

The following model description complies with the ODD (Overview, Design concepts, and 

Details) protocol for standardized descriptions of individual-based and agent-based models 

(Grimm et al. 2006, 2010, 2020).  

1 Purpose 

The purpose of the DemoViz model is to create example visualizations of causation in a 

hypothetical SES. The hypothetical research purpose of the model could be to predict the 

effects of different pollution, fishing or climate scenarios on the dynamics of a river fish 

population and the catch from this population, and to understand causal mechanisms that lead 

to these dynamics.  

2 Entities, state variables and scales 

The model environment comprises a river of 60 km length and individuals belonging to a fish 

population within this river. The river is characterized by its state variables pollution level P, 

temperature T, and capacity C. P (unitless value between 100 and 200) and T (in °C) do not 

vary along the river, but change in time. The capacity C determines the maximum number of 

fish individuals that can live in the river. It changes in time too. Each fish individual is 

characterized by its state variables body condition B and location L along the river. Both B 

(unitless value between 0 and 1) and L (position between 0 and 60 km) change in time 

depending on the environmental conditions P and T (cf. 7 Submodels). Each time step 

represents one year. Simulations were run for 200 years. 

3 Process overview and scheduling 

Each time step includes the following processes: fish movement, fish reproduction, fish 

mortality, fishing. After fish movement, the remaining processes are scheduled synchronously. 

This means that new born individuals cannot die in the same time step. If both mortality and 

fishing happen to cause death of the same individual, the information is stored and at the end of 

the time step half of these death events are assigned to mortality and to fishing, respectively. 

The rationale for this is to approximate synchronous dynamics since the temporal order of 

events within one time step is not explicitly modeled. 
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4 Design concepts 

Emergence. All process rules and the individuals’ state variables’ responses to environmental 

conditions are imposed. The population abundance and the fishing catch emerge from the 

interplay of all modeled processes. 

Adaptation. Fishing is adaptive to the fish population abundance. Only if the abundance was 

above a certain threshold (here set to 150 individuals) in the previous time step, fishing is 

carried out (cf. 7 Submodels – Fishing). 

Objectives. The objective of adaptive fishing is not to exert additional pressure on the fish 

population when it has a low abundance, thus reducing the risk of extinction. 

Sensing. The model uses one overall temperature value for the whole river (cf. 2 Entities, state 

variables and scales). However, we assume that in reality the local temperature actually varies 

along the river, the individuals sense this local temperature and move to a location with their 

preferred temperature range. This is implicitly considered in a simple manner as the fish 

individuals change their location in response to the overall river temperature (cf. 7 Submodels – 

Fish movement). 

Interaction. Fish individuals’ competition for resources is modeled implicitly via limiting the 

maximum population abundance to the capacity of the river. Humans, who are not explicitly 

modeled, interact with the fish via altering the level of river pollution and via fishing. 

Stochasticity. The creation of environmental input data contains stochastic elements. The 

individuals’ state variable’s responses to environmental conditions are partly stochastic. The 

model processes contain stochastic elements, i.e. random movement, random death and 

reproduction events, and random fishing mortality (cf. 7 Submodels). These stochastic elements 

represent variability that is potentially essential for the modeled dynamics, but without explicitly 

including the causes of this variability. 

Observation. The fish population abundance and the fishing catch rate over time are the main 

observations. Each state variable of the individuals as well as emergent process variables (e.g. 

population mortality rate, population reproduction rate) can be observed (Fig. A2.1). 
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Fig. A2.1. Example time series from the DemoViz model for 200 years (X-axes). A-C Environmental state 

variables used as input data (cf. Y-axes for variable names and units). D-I Emergent state variables 

obtained in one stochastic simulation run with the model (cf. Y-axes for variable names and units). The 

mortality rate (G) refers to mortality apart from deaths due to fishing (F). In this example run, the fish 

population collapsed (went extinct) after 189 years (I). 

5 Initialization 

The fish population is initialized with 350 individuals. Their state variable values are not 

initialized separately as they depend on current environmental conditions in each time step and, 

thus, get assigned during the submodels Fish movement and Fish mortality (cf. 7 Submodels). 

6 Input data 

The model uses input data to represent time series of river pollution level, temperature and 

capacity over the simulation time of 200 years (Fig. A2.1A-C). These hypothetical input data 

were randomly generated to represent reasonable variability in the environmental conditions. 
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7 Submodels 

Fish movement. Changes in river temperature T cause the fish to change their locations. The 

rationale for this relationship is that we assume that the real temperature varies along the river 

(decreasing from position 0 to position 60 km). This means that when the whole river gets 

warmer (colder), areas with the temperature range preferred by the fish shift to higher (lower) 

positions along the river. We additionally assumed that these areas get larger when the overall 

river temperature T increases. Thus, we implicitly take the movement of fish in response to local 

temperature changes into account (cf. 4 Design concepts – Sensing). For each individual, the 

new location is randomly sampled from a normal distribution with mean value 60km * T/20°C 

and standard deviation 0.125 * 60km * T/20°C. With increasing temperature, the locations 

change to higher values and the variation among individual locations increases too (cf. Fig. 3 in 

the main text). 

Fish reproduction. Different locations cause different chances for reproductive success. For 

each individual, the reproduction rate R depends on location L via R = 1.5 - L/24, and the 

number of new born individuals is randomly sampled from a Poisson distribution with the rate 

parameter R. New borns are added to the population up to the current capacity C, which cannot 

be exceeded. This constraint leads to a dependence of the population reproduction rate on 

population size, but no functional form of this density dependence is explicitly assumed. 

(Assigning location and body condition to new individuals is not necessary as they are not 

affected by further processes and these variables get assigned in the submodels Fish 

movement and Fish mortality during the next time step.) 

Fish mortality. The current river pollution level P and temperature T both affect the body 

condition B of fish (cf. Fig. 6 in the main text). For each individual, the new value of B is 

randomly sampled from a normal distribution with mean value (6 - 3 * P/100) * T/20°C and 

standard deviation 0.1. Thus, body condition decreases with pollution and increases with 

temperature. The random sampling may yield values for B below 0 or above 1. Such values are 

replaced by uniform random values between 0 and 0.1 or 0.9 and 1, respectively, to keep B in 

the allowed range (cf. 2 Entities, state variables and scales). The individuals’ mortality rate M 

depends on B via M = 0.84 - 0.64 * B + err (where err is a common error for the whole 

population randomly sampled from a normal distribution with mean value 0 and standard 

deviation 0.05). Individuals die randomly with a probability equal to their mortality rate M. (If the 
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population happens to exceed the current capacity C at the end of the time step after all 

processes have been realized, additional randomly selected individuals die until C is reached.) 

Fishing. Fishing is adaptive. It takes place only if the population abundance was above a 

threshold of 150 individuals at the end of the previous time step. In this case, individuals get 

fished randomly with a probability of 0.2. This means that higher population abundances cause 

higher annual catch rates (cf. Fig. A2.1).  
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Appendix 3. Additional example figures 

 

Fig. A3.1. Visualization of an agent-based fisheries SES model by a conceptual diagram. The focus is put 

on the interplay (reciprocal causal relationships) between agents’ characteristics and (inter)actions (the 

micro-level) and system properties (the macro-level). This interplay is affected by environmental drivers 

and it causes emergent properties of the modeled system, both at the macro- and micro-level. Numbered 

markers are used to visually guide readers through the steps of micro- and macro-level changes affecting 

each other during the simulation. Different kinds of objects and arrows as well as labels and additional 

illustrations show and discriminate the processes operating during the simulation (left) and the emergent 

simulation outcomes (right). Source and further details: Lindkvist et al. (2020). Figure used without 

modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 
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Fig. A3.2. Visualization of a framework for assessing the social-ecological resilience of a study region, 

using a large number of objects and arrows to represent complex causation. Resilience is assessed for 

multiple biophysical, economic and social values (left labels) and multiple spatial scales (bottom labels). 

Different variables driving the system’s state are visualized by boxes, grouped in circles, and their multiple 

interactions shown by many arrows. Exogenous drivers of the SES state are visualized as an additional 

box linked by an arrow (top). Source and further details: Walker et al. (2009). Figure used without 

modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 
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Fig. A3.3. Visualization of structural equation modeling (SEM) results for a Mediterranean ecosystem in 

south-western Spain by a causal diagram with a standard formalism. Path coefficients provide the strength 

and sign of statistical relationships between variables (additionally visualized by the thickness and line style 

of arrows, dashed for negative relationship). Relationships significantly different from zero are marked with 

an asterisk. Arrows pointing to a variable that do not start from another variable (marked with ‘U’) represent 

error terms in the SEM, which account for variance in those variables due to unmeasured causal factors or 

stochasticity. The additional curved arrow between two variables visualizes that no hypothesis on their 

causal relationship was included in the model. Their correlation might represent a causal relationship in any 

direction or effects of a common, unmeasured causal factor. Source and further details: Palomares et al. 

(1998). Figure used with permission by John Wiley and Sons. 
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Fig. A3.4. Visualization of a simulated abundance distribution of tropical tree species by an X-Y-plot. The 

species are ranked (X-axis) according to their abundance, which is plotted relative to the total abundance 

of the community (Y-axis, logarithmic scale). The species ranks are the plain result of sorting and do not 

imply to be the cause for the depicted abundances. Source and further details: May et al. (2016). Figure 

used with permission by John Wiley and Sons.  
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Fig. A3.5. Visualization of the state space of an agricultural SES by an X-Y-Z-plot. Three SES state 

variables are depicted that are all causally related to each other in a dynamical systems model: 

phosphorous in the environment (X-axis), household assets (Y-axis) and water level (Z-axis). Two colored 

circles visualize two different stable states the system can approach over time (attractors) and the 

transparent colored volumes separate the initial states that cause one or the other attractor to be reached 

(basins of attraction). Source and further details: Radosavljevic et al. (2020). Figure used in accordance 

with the authors’ right to reuse own material (https://www.elsevier.com/about/policies/copyright). 
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Fig. A3.6. Visualization of the so-called “cusp” model from catastrophe theory by an X-Y-Z-plot. The causal 

relationship between one variable (parameter a, X-axis) and the system’s equilibrium state (Z-axis) changes 

qualitatively depending on a second variable (parameter b, Y-axis). The bottom areas visualize the 

combinations of values of a and b with either one corresponding stable state (area 1) or two alternative 

stable states (area 2, i.e. hysteresis in the relationship between parameter a and the system state, cf. Fig. 

5B in the main text). The transparent fold shows the possible system states, the cyan fold shows states that 

cannot be reached. Source and further details: Petraitis and Dudgeon (2016). Figure used with permission 

by CSIRO Publishing. 



7 

 

Fig. A3.7. Visualization of the effects of multiple factors on biodiversity in a modeled ecosystem by multiple 

X-Y-plots. In each subplot, the quantitative relationships between disturbance size (X-axes) and species 

diversity (Y-axes) are shown, with shaded areas visualizing the variation among multiple stochastic 

simulation runs. The additional factors causally related to diversity are the actual trade-off in species traits 

(TO, different columns), the spatial configuration of disturbances (different rows), and the applied scenario 

of intraspecific trait variation (ITV, different colors). Source and further details: Banitz (2019). Figure used 

in accordance with the authors’ right to reuse own material (https://onlinelibrary.wiley.com/page/journal/ 

16000706/homepage/Permissions.html). 
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Fig. A3.8. Visualization of the effects of multiple factors on death tolls in a human pandemic model by a 

colored table, which yields a nested raster plot in a simple manner. It shows the effects of the three causal 

factors intervention strategy (X-axis, different column labels), number of intensive care unit cases needed 

to trigger the intervention (inner Y-axis, range 60-400), and virus reproduction number R0 (outer Y-axis, 

range 2-2.6) on the simulated number of total deaths (cell entries, visualized by color). Source and further 

details: Ferguson et al. (2020). Figure used without modification under the CC BY-NC-ND 4.0 license 

(https://creativecommons.org/licenses/by-nc-nd/4.0/). 
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Fig. A3.9. Visualization of human collaboration in different SES by multiple network diagrams. The nodes 

depict human actors and the edges connect collaborating actors in (A) coastal ecosystem management in 

Sweden, (B) biosphere reserve management in Canada, and (C) small-scale coastal fishery in Kenya. In 

network C, different colors visualize different types of gear used by the fishers and dashed lines show 

different subgroups of fishers with many connections between them. The combination of multiple network 

diagrams in one figure facilitates comparison of the different networks’ structural characteristics and causal 

interpretation of these structures (cf. Section 3.1.3 in the main text). Insets in the bottom right of each 

subplot show frequent structural building blocks of the visualized network, respectively. Source and further 

details: Bodin (2017). Figure used with permission by The American Association for the Advancement of 

Science. 
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Fig. A3.10. Visualization of complex causation in a conceptual ecosystem model by combining a diagram 

of objects and arrows with X-Y-plots. The objects and arrows visualize causal relationships between 

disturbances D, biodiversity B and ecosystem functioning F (biodiversity is shown twice to illustrate that its 

relationship to ecosystem functioning is often studied separately from disturbances). The X-Y-plots inserted 

visualize observable relationships between variables representing the connected objects, respectively (axis 

labels). These emergent DBF relationships are affected by the underlying causal relationship between 

these variables, and by additional variables (either shown or not shown). For example, the relationship 

between the effective number of species and the multifunctionality index (bottom X-Y-plot) is confounded 

by the disturbance frequency which is causally related to both variables (visually detectable by a backdoor 

path between them, cf. Section 3.2.1 in the main text). Source and further details: Banitz et al. (2020). 

Figure used without modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/ 

4.0/). 
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Fig. A3.11. Visualization of complex trophic relationships between different species in a marine ecosystem 

model by combining X-Y-plots with diagrams of objects and arrows. The two bar plots (X-Y-plots) visualize 

frequency distributions of body length (X-axes) of two fish species (the predator cod and the prey sprat, cf. 

Y-axes, also visualized by icons). They show that the populations are structured in cohorts. In these bar 

plots, arrows between cohorts visually indicate the model processes growth (black arrows), reproduction 

(gray arrows) and mortality (dashed gray arrows). Another line plot (X-Y-plot) visualizes the switching of 

cod prey preference throughout its life-stages. Additional prey species are visualized by icons (zooplankton 

at the bottom, benthic organisms in the middle), and thin arrows represent biomass flows from these prey 

species to the different life-stages of the two fish species. Similarly, the gray areas visualize the predator-

prey relationship between the two fish species, but here the dotted area shows the size range of predators 

that can feed on a prey individual of a certain size (11 cm), and the shaded area shows the size range of 

prey a predator individual of a certain size (35 cm) can feed on. The figure requires detailed explanation, 

but helps understanding the model rules and processes that let the population dynamics emerge in 

simulations. Source and further details: van Leeuwen et al. (2013). Figure used with permission by the 

University of Chicago Press. 
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Fig. A3.12. Visualization of an SES conceptualization by a set diagram. The colored areas visualize that 

economy is considered a part of society and this society is considered a part of the biosphere (cf. Folke et 

al. 2016). Gray lines and circles depict different poverty trap models, which explicitly take into account 

different subsets of the complex SES. Source and further details: Lade et al. (2017). Figure used without 

modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 

Literature cited 

Banitz, T. 2019. Spatially structured intraspecific trait variation can foster biodiversity in 

disturbed, heterogeneous environments. Oikos 128(10):1478–1491. 

Banitz, T., A. Chatzinotas, and A. Worrich. 2020. Prospects for integrating disturbances, 

biodiversity and ecosystem functioning using microbial systems. Frontiers in Ecology and 

Evolution 8. 

Bodin, Ö. 2017. Collaborative environmental governance: achieving collective action in social-

ecological systems. Science 357(6352):eaan1114. 

Ferguson, N. M., D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. 

Boonyasiri, Z. Cucunubá, and G. Cuomo-Dannenburg. 2020. Impact of non-

pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare 

demand. Imperial College COVID-19 Response Team. Imperial College COVID-19 

Response Team:20. 

Folke, C., R. Biggs, A. V. Norström, B. Reyers, and J. Rockström. 2016. Social-ecological 

resilience and biosphere-based sustainability science. Ecology and Society 21(3). 



13 

Lade, S. J., L. J. Haider, G. Engström, and M. Schlüter. 2017. Resilience offers escape from 

trapped thinking on poverty alleviation. Science Advances 3(5):e1603043. 

van Leeuwen, A., M. Huss, A. Gårdmark, M. Casini, F. Vitale, J. Hjelm, L. Persson, and A. M. 

de Roos. 2013. Predators with multiple ontogenetic niche shifts have limited potential for 

population growth and top-down control of their prey. The American Naturalist 182(1):53–

66. 

Lindkvist, E., N. Wijermans, T. M. Daw, B. Gonzalez-Mon, A. Giron-Nava, A. F. Johnson, I. van 

Putten, X. Basurto, and M. Schlüter. 2020. Navigating complexities: agent-based modeling 

to support research, governance, and management in small-scale fisheries. Frontiers in 

Marine Science 6. 

May, F., T. Wiegand, S. Lehmann, and A. Huth. 2016. Do abundance distributions and species 

aggregation correctly predict macroecological biodiversity patterns in tropical forests? 

Global Ecology and Biogeography 25(5):575–585. 

Palomares, F., P. Ferreras, A. Travaini, and M. Delibes. 1998. Co-existence between Iberian 

lynx and Egyptian mongooses: estimating interaction strength by structural equation 

modelling and testing by an observational study. Journal of Animal Ecology 67(6):967–

978. 

Petraitis, P. S., and S. R. Dudgeon. 2016. Cusps and butterflies: multiple stable states in marine 

systems as catastrophes. Marine and Freshwater Research 67(1):37–46. 

Radosavljevic, S., L. J. Haider, S. J. Lade, and M. Schlüter. 2020. Effective alleviation of rural 

poverty depends on the interplay between productivity, nutrients, water and soil quality. 

Ecological Economics 169:106494. 

Walker, B. H., N. Abel, J. M. Anderies, and P. Ryan. 2009. Resilience, adaptability, and 

transformability in the Goulburn-Broken catchment, Australia. Ecology and Society 

14(1):art12. 

 


