
Master’s thesis
Master’s Programme in Data Science

Localization Aware Active Learning for
IoU Predicting Object Detectors

Mikko Saukkoriipi

March 22, 2022

Supervisor(s): Associate Professor Laura Ruotsalainen

Examiner(s): Associate Professor Laura Ruotsalainen
Professor Jukka K. Nurminen

University of Helsinki
Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Mikko Saukkoriipi

Localization Aware Active Learning for IoU Predicting Object Detectors

Master’s thesis March 22, 2022 65

computer vision, active learning, object detection

Two factors define the success of a deep neural network (DNN) based application; the training data
and the model. Nowadays, many state-of-the-art DNN models are available free of charge, and
training and deploying these models is easier than ever before. As a result, anyone can set up a
state-of-the-art DNN algorithm within days or even hours.

In the past, most of the focus has been given to the model when researchers were building faster
and more accurate deep learning architectures. These research groups commonly use large and
high-quality datasets in their work, which is not the case when one wants to train a new model for
a specific use case.

Training a DNN algorithm for a specific task requires collecting a vast amount of unlabelled data
and then labeling the training data. To train a high-performance model, the labeled training dataset
must be large and diverse to cover all relevant scenarios of the intended use case.

This thesis will present an efficient and straightforward active learning method to sample the most
informative images to train a powerful anchor-free Intersection over Union (IoU) predicting objector
detector. Our method only uses classification confidences and IoU predictions to estimate the image
informativeness. By collecting the most informative images, we can cover the whole diversity of
the images with fewer human-annotated training images. This will save time and resources, as we
avoid labeling images that would not be beneficial.

ACM Computing Classification System (CCS):
Computing methodologies → Artificial intelligence → Computer vision → Object detection
Computing methodologies → Machine learning → Learning settings → Active learning settings

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Contents

1 Introduction 1
1.1 Motivation of the research . 3
1.2 Related work . 3
1.3 Structure of thesis . 4

2 Convolutional Neural networks in Object Detection 7
2.1 Object Detector Architecture . 8
2.2 Data augmentation . 11
2.3 Real-time and slower object detectors 13

3 Performance Metrics for Object-Detection Algorithms 17
3.1 Definition of correct localization . 17
3.2 Precision and Recall . 19
3.3 Average Precision (AP) and Mean Average Precision (mAP) 20

4 YOLOX 23
4.1 YOLO detectors history . 24
4.2 YOLOX - latest innovations to YOLO architecture 30
4.3 YOLOX Performance . 33

5 Active Learning 35
5.1 Active Learning vs. Passive Learning 36
5.2 Active Learning Process . 37

5.2.1 Defining the seed set . 39
5.2.2 Selecting the most informative data samples 39
5.2.3 Terminating the active learning loop 41

5.3 Active learning as annotation support 42

6 Experiments 45
6.1 Pascal VOC object detection dataset 45
6.2 YOLOX-S object detector . 47

v

vi

6.3 Model training . 47
6.4 Defining detection uncertainty score . 49
6.5 Used Active Learning Process . 49
6.6 Training rounds progress . 51
6.7 Results . 53

7 Conclusions 59

Bibliography 61

1. Introduction

Two factors define the success of a deep learning-based application; the training data
and the model. In the past, most of the focus has been given to the model when
researchers were building faster and more accurate deep learning architectures. Com-
monly these research groups use large and high-quality datasets in their work. In object
detection, these are Pascal Visual Object Classes [8] or COCO dataset [25].

Nowadays, it is easier than ever before to create and deploy a deep learning model
for any task. Many of the latest state-of-the-art deep learning models are available free
of charge and with easy-to-use instructions on the webpages like Pytorch Hub [2],
Tensorflow Hub [3] and Model Zoo [1]. Because of this, it is possible to set up a
state-of-the-art deep learning model in just a few days or even within hours.

As many ready-made models are available, the major work lies in creating the
training data. Even there are available a wide variety of ready-made training datasets,
these datasets only cover a small subset of all possible use cases. Therefore it is expected
that there is no ready-made dataset available for one’s use case, and one needs to collect
and annotate his training dataset.

Annotating the training data is especially expensive for the object detection task
[20]. In the object detection task, it is common that a single image includes multiple
objects. In the annotation process, the human annotator needs to draw a tight box
bounding box around each object in the image and then classify the content of each
bounding box. This process is significantly more difficult and time-consuming than
annotating training data for the image classification task, where the annotator can
answer multiple-choice questions of which class the image belongs to [39]. At the same
time, it is also more challenging to monitor the annotation quality.

In the context of object detection, active learning is not very well studied, and
estimating image informativeness is a challenging task [20]. The challenge comes from
the fact that the object detection model does two tasks: object localization and clas-
sification. Because of the two subtasks settings, we need to assess if the unlabelled
image has new information to improve localization, classification, or both [6]. As the
images are not annotated, we need to do this estimation without knowing the ground
truth labels.

1

2 Chapter 1. Introduction

In my master’s thesis, I will research active learning in the context of object
detection with convolutional neural networks. We focus on the object detectors that
output classification confidences, predict estimated bounding box Intersection over
Union (IoU), and use anchor-free localization. These properties can be seen as a new
paradigm in object detectors, as the first IoU predicting object detector was released
in 2020 [21], and since that, they have been successfully implemented to other object
detectors like You Only Look Once version X (YOLOX) [11].

The work aims to find an efficient and automated way to select the most informa-
tive images for the human annotator and that way speed up the development process
and save resources. My master’s thesis focuses on active learning with massive data
volumes, which requires used techniques to be computationally efficient. We use the
YOLOX object detector in our experiment [11].

Previous research on this topic is not scalable to massive data volumes [20], or
the active learning method only uses classification confidences when estimating image
informativity [6] [14]. In this work, we propose a maximum uncertainty active learning
method for anchor-free object detection algorithms that natively predict the estimated
IoU, which can be used to estimate the localization confidence of the detected objects.
Our proposed method only uses classification confidences and predicted IoU to define
the image informativity score, and it does not require any changes to the object detector
architecture. As a result, the proposed method is computationally efficient, and it uses
both classification and localization metrics when measuring image informativity.

As a summary, we want to answer the following questions with the thesis:

1. How can we minimize the number of required training images to train a modern
object detection algorithm?

2. Can we leverage object detector predicted IoU to select the most informative
unlabeled images?

To make the proposed method useful in real-life use cases, it needs to fulfill the
following requirements:

1. The proposed method needs to be computationally efficient.

2. The proposed sampling method must keep the training dataset balanced (sample
images from each object class).

1.1. Motivation of the research 3

1.1 Motivation of the research

To our knowledge, this is the first active learning research in object detection, where
the model predicted IoU is used to estimate the localization confidence. Secondly,
the previous methods have given only a little or no attention to keeping the training
dataset balanced during the active learning process [14][6][20]. If the training dataset
is not kept balanced, it may hurt the model’s performance to detect an object from
the rarest object classes [42].

The model predicted IoU has been proved to be an efficient way to estimate
the localization confidence. This is proved by Kim et al., where IoU prediction was
found to have on average less than 0.1 error, and test was done with multiple different
backbones [21]. Therefore we can argue that IoU prediction can be used to estimate
the localization confidence, which would benefit the active learning process to sample
the most informative unlabelled images. However, this has topic has not been studied
before in the context of active learning.

The challenge of the unbalanced dataset is common when working with usual
object detection datasets like COCO and Pascal VOC, but they are very common in
real life [42]. Also, it is expected that a vast number of unlabelled images do not have
any objects in real life, and we want to filter out these images in the active learning
process.

An unbalanced dataset changes the strategy of how most informative images
should be sampled. If the training dataset is not kept balanced, it is likely that even
if the model’s overall performance improves, the performance to detect and classify
the rarest classes may stay poor [42]. We wanted to keep the dataset as balanced as
possible through the active learning process in our method. In practice, this means
that we aim to select 100 most informative images for each 20 object class on each
active learning round. Therefore our method is designed by default to keep training
dataset classes balanced.

1.2 Related work

The research by Kao et al. 2018 investigates active learning with a two-stage object
detector Faster R-CNN [20]. Their method achieved the best results by using localiza-
tion stability and classification uncertainty to estimate image informativity. However,
localization stability is measured by comparing object localization in the image to lo-
calizations with the same image added with Gaussian noise. This means that every
unlabelled image must be processed twice, which causes a computational overhead.
Besides, we expect that using Gaussian noise to estimate localization stability would

4 Chapter 1. Introduction

be less efficient when strong data augmentation is used in the model training pro-
cess because strong data augmentation increases model robustness against adversarial
examples and corrupted and out-of-distribution inputs [44][43].

In the research by Brust et al. 2018 they study active learning in object detec-
tion by calculating scores based on the classification confidence distribution [6]. The
experiment uses a YOLOv3 object detector [34], which uses a logistic classifier to clas-
sify objects. This means that for each classified object, a logistic classifier will give
confidence to each possible class. Then the image informativity score is calculated by
taking the absolute difference between the highest and second-highest class scores for
each detected object. The theory behind this technique is that if the difference between
the two highest class scores is very low, then it is likely to be located close to a decision
boundary. Brust et al. do not use localization when estimating image informativity,
which decreases the potential benefits of the active learning process.

The third related work we want to introduce is by Hausmann et al. 2020 [14].
While the two previously introduced pieces of research used Pascal VOC or Coco
datasets and used less than 1,100 images, Hausmann et al. used a dataset containing
2 million images recorded by the cars on the road. Their dataset is a private dataset
from Nvidia, and the authors are Nvidia employees. In their research, several active
learning methods were tested, and the best results were achieved when the predicted
object classification confidences were used to calculate entropy, then top-N images were
selected, and finally, possible similar images were filtered by using cosine similarity of
the image embeddings. Hausmann et al. do not use localization when estimating
image informativity, which, similarly to the research by Brust et al. [6], decreases the
potential benefits of the active learning process.

1.3 Structure of thesis

Chapter 2 will present the standard building blocks used in the modern convolutional
neural networks (CNN) object detection algorithms. We will not cover CNN layer types
on details, but this information can be found from the Goodfellow et al. 2016 Deep
Learning book [12]. After introducing the object detector architecture, we will present
the common image augmentation techniques used in object detection and also in our
experiment. These augmentation techniques include strong augmentations Mosaic [5]
and mixup [44].

Chapter 3 covers the metrics used to evaluate object detection algorithms. These
metrics can be defined in several different ways, and we follow the definition used in
the Pascal VOC object detection challenge 2010 onwards. The most important object
evaluation metrics in our experiment are Average Precision (AP) and Mean Average

1.3. Structure of thesis 5

Precision (mAP).
Chapter 4 introduces the YOLOX object detection algorithm. YOLOX is the

latest YOLO family object detector, and it won CVPR 2021 streaming perception
challenge [11][45]. First, we will go through the development history of the YOLO
algorithms, and then we will describe the YOLOX algorithm and compare its perfor-
mance to the other object detectors on COCO 2017 object detection dataset.

Then in chapter 5, we will go through the active learning concept. We will begin
the chapter by comparing active learning to passive learning, and then we will introduce
the standard active learning process. The active learning process has three main phases:
defining seed set, most informative unlabelled data selection, and terminating the active
learning process. We will introduce all these phases, while our research focuses only on
the second phase, where we select the most informative images. At the end of chapter
5, we will describe how we can make the object detector training data annotation
process more efficient by using active learning as annotation support.

In chapter 6, we will introduce our experiment where we leverage the object detec-
tor localization and classification confidences to sample the most informative images.
In this chapter, we will introduce the experiment in detail, and at the end, we report
the results and benefits that can be achieved by using our proposed method.

2. Convolutional Neural networks
in Object Detection

Object detection is the task of localizing objects with tight bounding boxes and clas-
sifying their content [4]. On the typical task, object classes include people, cars, dogs,
cats, etc., but the classes may be almost anything. In the field of object detection, the
most famous datasets are Coco and Pascal VOC, where Coco has 80 different object
classes, and Pascal 20 [25][8].

In figure 2.1, we demonstrate the object detection task. It also illustrates some
of the challenges of high-class variability. The causes of the variability can be divided
into two subgroups: variations due to the imaging process and the intrinsic appearance
variability of objects [47].

Figure 2.1: Three dog images from the Pascal VOC 2007 test set [8]. The name of the object class
is presented on the left-top corner of the bounding box.

The variability that the imaging process causes are due to changes in the illu-
mination, camera position, and artifacts caused by the camera, like motion blur [47].
We can effectively limit their impact on the model performance with the training data
augmentation, a technique described in chapter 2.2. Then the intrinsic appearance
variability is caused by the fact that even objects belonging to the same class may look
very different. Training a robust CNN model against this type of variance requires a
high-quality training dataset, but we can limit its impact with augmentation methods.

7

8 Chapter 2. Convolutional Neural networks in Object Detection

2.1 Object Detector Architecture

The majority of the modern-day CNN-based object detection algorithms use an archi-
tecture that has three parts. These parts are the backbone, neck, and prediction head,
and the structure is visualized in figure 2.2 [5].

Figure 2.2: Typical the object detector architecture. A dense prediction head is used with the
single-stage object detectors and a sparse head with the two-stage object detectors [5].

Since the Faster Region Based Convolutional Neural Networks (Faster R-CNN)
[35] and the first version of You Only Look Once (YOLOv1) [32] object detectors,
significant improvements have been made on improving these basic building blocks.
Since the main focus of our paper is on the YOLO family object detectors, we focus
to the innovations used in those. Next, we will go through these three object detector
building blocks and their development during the past years.

The first part of the object detector is the backbone, which is used to extract
features from the input images [18]. A typical backbone uses the structure of the CNN
classification network, and we will use Darknet19, from the second YOLO version
(YOLOv2) [33], as an example to describe an object detector backbone at a detailed
level. The whole Darknet19 architecture is presented in figure 2.3.

The Darknet19 uses a block structure with 3x3 and 1x1 convolutional layers and
at the end of each block is a pooling layer. When moving deeper, the output dimensions
decrease, and the number of channels (filters) is doubled after each pooling step.

The details of the used layer types can be found in the Deep Learning book by
Goodfellow et al [12]. As a summary, the purpose of the used layer types can be
summarized as follow:

• 3x3 convolution is used to extract features [12].

• 1x1 convolution is used for cross-channel parametric pooling [22].

• The pooling layer is used for in-channel parametric pooling [12].

2.1. Object Detector Architecture 9

This process also changes the dimensions of the feature map, which is created
from the input image in the first convolutional layer. As an example, let’s consider
a feature map with dimensions (h, w, and d), where h is height, w is width, and d

is depth. With 1x1 convolution, we can manipulate the size of the d, and with the
pooling layer, we can manipulate sizes of the h and w. This process can also be seen
in figure 2.3.

As a total, Darknet19 has 19 convolutional layers and 6 pooling layers. Newer
backbones, like Darknet53, also use residual shortcut connections [16] to create deeper
and more powerful backbones [34].

Type Filters Size Stride Output dimensions
Convolutional 32 3 x 3 1 224 x 224 x 32
Maxpool 2 x 2 2 112 x 112 x 32
Convolutional 64 3 x 3 1 112 x 112 x 64
Maxpool 2 x 2 2 56 x 56 x 64
Convolutional 128 3 x 3 1 56 x 56 x 128
Convolutional 64 1 x 1 1 56 x 56 x 64
Convolutional 128 3 x 3 1 56 x 56 x 128
Maxpool 2 x 2 2 28 x 28 x 128
Convolutional 256 3 x 3 1 28 x 28 x 256
Convolutional 128 1 x 1 1 28 x 28 x 128
Convolutional 256 3 x 3 1 28 x 28 x 256
Maxpool 2 x 2 2 14 x 14 x 256
Convolutional 512 3 x 3 1 14 x 14 x 512
Convolutional 256 1 x 1 1 14 x 14 x 256
Convolutional 512 3 x 3 1 14 x 14 x 512
Convolutional 256 1 x 1 1 14 x 14 x 256
Convolutional 512 3 x 3 1 14 x 14 x 512
Maxpool 2 x 2 2 7 x 7 x 512
Convolutional 1024 3 x 3 1 7 x 7 x 1024
Convolutional 512 1 x 1 1 7 x 7 x 512
Convolutional 1024 3 x 3 1 7 x 7 x 1024
Convolutional 512 1 x 1 1 7 x 7 x 512
Convolutional 1024 3 x 3 1 7 x 7 x 1024
Convolutional 1000 1 x 1 1 7 x 7 x 1000
Avgpool Global 1 x 1000
Softmax 1 x 1000

Figure 2.3: Darknet-19 classification model architecture [33].

10 Chapter 2. Convolutional Neural networks in Object Detection

The second part of the modern object detector is the neck, and it serves two main
purposes. First, it improves object detectors’ scale invariance by processing images in
multiple scales. Second, it combines semantically strong low-resolution features with
semantically weak high-resolution features [47]. The second benefit is achieved by
combining feature maps from multiple feature levels [26].

It is possible to enhance the neck by adding an additional block [5]. In the
newer YOLO architectures, this means using of spatial pyramid pooling (SPP) block
that increases the receptive field and pools arbitrary size feature maps into fixed-size
vectors. Because of this, we do not need to fix the input image size, and also model
becomes more robust for detecting the objects in multiple scales [15].

In the YOLO context, the YOLOv1-2 [32][33] did not use any neck. Later,
YOLOv3 [34] introduced neck with the Feature Pyramid Network (FPN) and [23]
Spatial Pyramid Pooling (SPP) [15] blocks. In the YOLOv4 [5], FPN was replaced
with a more advanced Path aggregation Network (PANet) [26]. Later YOLO models
continue to use the same neck with the PANet and SPP [19][11].

The last part of the object detector is the head [5]. Head is where the object
localization and classification happen, and several head architectures have been devel-
oped over time. The two main branches are the dense- and sparse prediction heads,
also known as single and two-stage detection heads. In principle, the one-stage head
simultaneously predicts multiple bounding boxes and class probabilities for those boxes
[32]. This differs from the two-stage detection heads, where the head first predicts the
bounding boxes, and then the content of the predicted bounding boxes is classified [35].

In the detection head, there are two different strategies for object localization.
The first one is based on the predefined anchor boxes, and the second is anchor-free.
The anchor-based localization was proposed by Ren et al. in the Faster R-CNN paper in
2015 [35], and the majority of the object detectors follow this strategy. In anchor-based
localization, k predefined reference boxes are used to estimate if location l has an object.
After the object has been found, reference boxes are combined to get the final bounding
box. Faster R-CNN uses reference boxes with three different aspect ratios and three
different scales, yielding k = 9. In 2019 anchor free object detector proposed by Tian
et al. [40] overcame the performance of anchor-based object detectors. In anchor-free
localization, object location is predicted instead of using predefined reference boxes.
As it does not use predefined anchors, it requires less hand-made parameter tuning,
and also, the prediction head gets simpler. In YOLOX, anchor-free localization was
first time implemented in the YOLO architecture [11].

2.2. Data augmentation 11

The object detector backbone, neck, and head can be summarized as [5]:

1. Backbone:
• Darknet19 [33] • Darknet53 [34] • CSPDarknet53 [5] • ResNet-101 [16]

2. Neck:
Path-aggregation blocks: • FPN [23] • PANet [26]
Additional blocks: • SPP [15]

3. Head:
Dense Prediction (one-stage):

Anchor based: • YOLOv1-YOLOv5 heads [32][33][34][5][19]
Anchor free: • YOLOX head [11] • FCOS head [40]

Sparse Prediction (two-stage):
Anchor based: • Faster R-CNN [35]

2.2 Data augmentation

Data augmentation is an important part of training deep convolutional neural network-
based object detectors, and its purpose is to enhance the size and quality of training
datasets. In practice, this means a process of artificially creating new images by ap-
plying photometric and geometric distortions to training images [5]. Then by using
the original and augmented images, we can train the object detection model that is
more robust against the variations in environmental conditions, variations in imaging
processing, and variations in intrinsic appearance [37].

Next, we will introduce the data augmentation techniques used in the standard
YOLOv4, YOLOv5, and YOLOX training processes. These techniques are hue, satu-
ration, value (HSV) manipulation, horizontal flipping, rotation, translation, shearing,
scaling, mosaic, and mixup. Two example images with these augmentations can be
found in figure 2.6.

The first augmentation technique is the HSV color channel manipulation. In this
process, image hue, saturation, and value are randomly manipulated inside predefined
limitations [11]. The trained model will be more robust against the lightning and
color variation in the images by using HSV augmentation. The second augmentation
is random horizontal image flipping. In this process, images with probability p get
horizontally flipped. As a result, the trained model will produce the same output if the
object is located left-to-right or right-to-left. It is not common to use vertical flipping
in object detection, as it is not expected that objects could appear in the images upside-
down. The third augmentation is rotation. In the case of YOLOX, image rotation is a
random angle between -10 to 10 degrees. With image rotation augmentation, we train

12 Chapter 2. Convolutional Neural networks in Object Detection

the model that may appear in the image at different angles. The fourth augmentation
technique is image translation. This means a process of moving the image along with
the X and Y directions. As a result, we train the model that the object may appear at
any location in the image. The fifth augmentation is the shear transformation. In shear
transformation, we fix one image axis and then rotate the rest of the image according
to the random shearing angle. With shear augmentation, we create training images as
they were taken from different directions. The sixth basic augmentation is scaling. As
the name suggests, in scaling, we change the image size.

These six techniques belong to the basic augmentation techniques, and example
images where these are applied are presented in figure 2.4. Next, we will present
so-called strong data augmentation techniques Mosaic and mixup.

Figure 2.4: Example images with data augmentations: HSV manipulation, horizontal flipping,
rotation, translation, shearing, and scaling [19].

The Mosaic and mixup augmentation belong to the so-called strong data aug-
mentation techniques. Mosaic augmentation follows the principles of CutMix [43] aug-
mentation, where patches from multiple images are cut out and then pasted together.
In CutMix, two patches were used, but YOLOv4 authors [5] found out that using four
patches would be more efficient, and this technique is called Mosaic augmentation. Mo-
saic augmentation allows training object detection algorithms to detect objects outside
their normal context, and by having multiple images in one image, a smaller mini-batch
size can be used. Figure 2.5 presents example images where only Mosaic augmentation
has been applied.

2.3. Real-time and slower object detectors 13

Figure 2.5: Mosaic augmentation examples [5].

The last augmentation technique is the mixup [44]. In mixup, training images
i and j are placed on top of each other with the magnitude of λ ∈ [0, 1]. We define
mixup as

x̃ = λxi + (1− λ)xj (2.1)

ỹ = λyi + (1− λ)yj (2.2)

where xi and xj are raw input vectors, yi and yj are one-hot label encodings, x̃

is the new combined image, and ỹ the combined label.

Mixup is based on the prior knowledge that linear interpolations of the features
should lead to the interpolation of the associated targets. As a result, mixup trains
the CNN model to favor linear behavior in-between the training examples [44].

After we apply all nine augmentation techniques presented in this chapter, we get
training images, as shown in figure 2.6. Combining presented augmentation methods
have been proved to be an effective way to improve output object detector performance
[11], which is the reason we use these augmentations in our experiment in chapter 6.
By using these augmentations, our active learning experiment follows the techniques
that would also be used in the real-life use case [45].

2.3 Real-time and slower object detectors

With the state of the art object detection models, there is always a trade-off between
the model performance and the inference speed. This is not very surprising as the
deeper networks have more capacity to learn more details. Also, it is common practice
to downscale image resolution before inference to make the inference faster, and it is
common to use 640x640 image size as the model input. Downside the downscaling

14 Chapter 2. Convolutional Neural networks in Object Detection

Figure 2.6: Two training images with all nine data augmentations: HSV manipulation, horizontal
flipping, rotation, translation, shearing, scaling, Mosaic, and mixup [19].

image resolution is the lost information, but as said before, there is always a trade-
off between speed and accuracy [45]. Figure 2.7 presents the YOLOX large version
(YOLOX-L) performance-to-speed comparison with the different input image sizes.

Image width Image height Speed (ms) AP
1440 2304 28.1 50.6
1280 2048 21.4 49.9
1200 1920 20.5 49.7
1120 1792 19.7 48.7
960 1536 16.0 46.3

Figure 2.7: Image size vs. Speed vs. Precision with YOLOX-L object detector [45].

Generally, the object detectors can be divided into two groups based on the
inference speed. The first group is the real-time models, where the common speed
requirement is 30 frames per second (FPS) on a single GPU. In the real-time models,
the YOLO models have been the most popular ones and it has been updated multiple
times with the latest techniques [5][11]. Commonly the real-time models are single-
stage detectors, while there is more variance among the slower and more powerful
models.

The second group can be called as not real-time object detectors. The most
popular family in this group has been the R-CNN model family, which was later up-
dated to the Fast R-CNN model, then to Faster R-CNN model [35], and later the

2.3. Real-time and slower object detectors 15

Faster R-CNN model with feature pyramid network (FPN) [23]. This model family
belongs to the two-stage object detectors, where the first stage localizes the object and
the second stage classifies it, while in the single-stage detectors, both of these happen
simultaneously.

Since 2020, transformers-based object detectors are starting to show promising
results [7]. They are still significantly slower than the single-stage CNNs, but they
are powerful and fast enough to compete against the slower models. Also, transformer
encoder-decoder structures simplify the overall model architecture and minimises the
need for the hand-crafter rules, like the commonly used anchors [49].

3. Performance Metrics for
Object-Detection Algorithms

A wide range of evaluation metrics has been developed to evaluate the performance
of the object detection models. It is challenging to summarize the model performance
with a single number in object detection due to the two subtasks: localization and
classification. Due to this challenge and the lack of common consensus of the used
metric, evaluating the object detection models is a challenge faced by the scientific
community [31].

The commonly used metrics include average precision (AP), the area under the
curve (AUC), precision, recall, average recall (AR), average precision at IoU greater
than 0.50 (AP50), and many others. Besides the wide range of different metrics, many
of the metrics can be defined in multiple ways. One example is average precision, which
can be calculated in at least six different ways [31].

The next chapters will introduce the metrics used in our research and explain
how they are calculated. We use the metrics and evaluation as they are defined in the
Pascal VOC object detection challenges from 2010 onwards [8].

3.1 Definition of correct localization

Before defining the most important metric, average precision, we need to define back-
ground formulas. First, we will define the meaning of correct localization.

In object detection, the object location areas are called bounding boxes. Bounding
boxes are commonly defined as the coordinate of the left-top corner and the coordinate
of the right-bottom corner. Another common way is to define the object center point
and then the object width and height. In both cases, the ground-truth and the object
detection model’s localization result are defined with the precision of a single-pixel [31].

However, we want to accept a small error in the localization due to two reasons.
First, the human annotator draws the ground truth locations, which may have minor
errors. Secondly, it is common enough to have an estimated object location, and in
fact, humans are poor at visually estimating the localization tightnesses [36].

17

18Chapter 3. Performance Metrics for Object-Detection Algorithms

The standard way to define correct localization without requiring exactly the
same result is the Intersection Over Union (IoU). IoU is calculated as a Jaccard Index
J , which measures a similarity coefficient between two bounding boxes [31]. IoU of the
predicted bounding box Bp and the ground truth bounding box Bgt is defined as:

IoU = J(Bp, Bgt) = area(Bp ∩Bgt)
area(Bp ∪Bgt)

, (3.1)

where Bp∩Bgt denotes the intersection of the predicted and ground truth bound-
ing boxes and Bp ∪Bgt denotes their union [8].

In figure 3.1 we illustrate the IoU calculation with an example. In the numerator,
we calculate the intersection areas, and in the nominator, we calculate the union of the
areas. As a result, we get the IoU of these two areas.

Figure 3.1: Example of Intersection Over Union (IoU).

We also want to highlight how different IoU levels look in practice, as humans are
naturally poor at visually evaluating IoU [36]. In figure 3.2, we have two images with
increasing IoU values. These images show that localization tightness looks surprisingly
good already on lower IoU values, and based on this observation, we can justify the
decision to accept IoU values less than 1.0.

With the IoU we can flexibly define if the localization is correct or not. As we
want to accept IoU values less than 1.0, we use lower-level threshold t, where t ∈ [0, 1],
and bounding boxes with IOU ≥ t are considered correct localization (True Positive).
Similarly, if IoU < t, the localization is considered incorrect (False Positive). In
practice, it is common to use t = 0.5 or t = 0.75 [31].

3.2. Precision and Recall 19

Figure 3.2: Two example images with increasing intersection over union (IoU) [36].

3.2 Precision and Recall

So far, we have defined the meaning of the correct localization. Next, we need to
extend the definition to define precision and recall, which are used to evaluate model
performance when detecting multiple objects from several object classes.

When we evaluate an object detection model, the outputs can be divided into
three groups. These are:

• True Positive (TP): Localization and classification correct

• False Positive (FP): Detection of a nonexistent object or localization IoU less
than threshold t (classification correctness is irrelevant).

• False Negative (FN): Undetected ground-truth bounding box (no classification
result, as the object is not detected).

The true negative (TN) is not used in object detection, as there are infinite
number of possible bounding boxes that should not be detected in a single image [31].
Therefore, we need to use metrics that do not require information about the true
negatives. Precision P and recall R are such metrics, which is why the evaluation of
object detection models is based on these two concepts.

Precision and recall are defined as:

Precision (P) = TP

TP + FP
= TP

all detection
(3.2)

Recall (R) = TP

TP + FN
= TP

all ground truths
(3.3)

20Chapter 3. Performance Metrics for Object-Detection Algorithms

The precision metric measures the models’ ability to detect and classify only
relevant objects. In other words, it penalizes the model for possible false positive
detections. Then the recall measures the models’ ability to detect and classify all
the relevant objects, also known as ground truth bounding boxes [31]. In summary,
precision penalizes the false positive detections, and recall penalizes for not detecting
all the relevant objects.

As precision and recall measure different properties, they are both important in
evaluating the object detecting model’s performance. An object detector with only a
high recall or high precision would work poorly in practice. Instead, a good object
detector requires both high precision and high recall [31].

3.3 Average Precision (AP) and Mean Average Pre-
cision (mAP)

The average precision (AP) and mean average precision (mAP) are the most important
metrics in object detection. AP is used to evaluate object detections in a single object
class, and mAP is used to evaluate object detectors’ overall performance. These metrics
can be defined in several different ways, and next, we will introduce the definition used
in the Pascal VOC object detection challenge from 2010 onwards [8]. This is also the
definition we follow in our research in chapter 6.

The AP is defined using the area under the curve (AUC). As a good model
should have both high precision and high recall, we want to maximize AUC in the
precision/recall plot.

To create the precision/recall plot, we first gather all the detector results for
a wanted object class, and as a result, we get a table presented in figure 3.3. In
figure 3.3, detections are ordered by the detection confidence. We want to make the
precision/recall curve monotonically decreasing, meaning that when recall increases,
then precision decreases. That’s why we will interpolate precision values and select the
highest precision value for each recall value [9]. The formula to calculate interpolated
precision values Pinterp is defined as:

Pinterp (R) = max
R̃:R̃≥R

P (R̃), (3.4)

where Pinterp is maximum precision value P , with recall value R̃ greater or equal
to R [31]. In figure 3.3, we present this calculation with toy problem detections and
visualizes the area under curve plot based on the table precision, interpolated precision,
and recall values.

3.3. Average Precision (AP) and Mean Average Precision (mAP) 21

Confidence TP FP Acc TP Acc FP P R Pinterp

95 % 1 0 1 0 1 0.0666 1
95 % 0 1 1 1 0.5 0.0666 1
91 % 1 0 2 1 0.6666 0.1333 0.6666
88 % 0 1 2 2 0.5 0.1333 0.6666
84 % 0 1 2 3 0.4 0.1333 0.6666
80 % 0 1 2 4 0.3333 0.1333 0.6666
78 % 0 1 2 5 0.2857 0.1333 0.6666
74 % 0 1 2 6 0.25 0.1333 0.6666
71 % 0 1 2 7 0.2222 0.1333 0.6666
70 % 1 0 3 7 0.3 0.2 0.4285
67 % 0 1 3 8 0.2727 0.2 0.4285
62 % 1 0 4 8 0.3333 0.2666 0.4285
54 % 1 0 5 8 0.3846 0.3333 0.4285
48 % 1 0 6 8 0.4285 0.4 0.4285
45 % 0 1 6 9 0.4 0.4 0.4285
45 % 0 1 6 10 0.375 0.4 0.4285
44 % 0 1 6 11 0.3529 0.4 0.4285
44 % 0 1 6 12 0.3333 0.4 0.4285
43 % 0 1 6 13 0.3157 0.4 0.4285
38 % 0 1 6 14 0.3 0.4 0.4285
35 % 0 1 6 15 0.2857 0.4 0.4285
23 % 0 1 6 16 0.2727 0.4 0.4285
18 % 1 0 7 16 0.3043 0.4666 0.3043
14 % 0 1 7 17 0.2916 0.4666 0.3043

Figure 3.3: Precision and recall example. The left side table contains 24 detections for the single
object class, where 7 are true positives, and 17 are false positives. The table values are visualized on
the right-side plot as a precision/recall curve. Acc TP is an accumulative count of True Positives, and
Acc FP is an accumulative count of False Positives. In the table, maximum precision values used in
the Pinterp are bolded. Dashed horizontal lines are used to highlight the Pinterp values [31].

Then we can calculate the AP. AP is the area under interpolated precision to
recall curve, and it is defined as:

AP =
∑

n

(Rn+1 −Rn)Pinterp(R). (3.5)

This is the AP definition we use in our experiment. In the experiment, we use
the notation of AP50, which means AP with IoU≥ 0.5.

After calculating the AP values for each object class, we can calculate the mean
average precision (mAP). The mAP is used to summarize per class average precision
(AP) values into a single value. The formula to calculate mAP is defined as:

mAP = 1
N

N∑
i=1

APi, (3.6)

where APi is AP value of the ith object class and N is the total number of object
classes.

4. YOLOX

You Only Look Once (YOLO) series object detectors [32] [33] [34] [5] [19] [11] are pop-
ular real-time deep learning-based object detectors. The YOLO series detectors have
always looked for the optimal speed and accuracy trade-off for real-time applications.

The YOLO detectors have been frequently updated with the latest object detec-
tion techniques. As a result, the YOLO detectors’ performance has been steadily in-
creasing through the versions without sacrificing the inference speed, and they have be-
come popular in many real-life applications. Also, the latest YOLO detector, YOLOX,
is used in the state-of-the-art (SOTA) real-time multi-object tracking network [46].

The first YOLO series object detector was published in 2016 [32], and since
that, it has been improved several times. The original research group developed the
first three versions, which after other research groups have released their own and
updated versions of the YOLOv3. The whole YOLO detectors development timeline is
introduced in figure 4.1, and we introduce the YOLO detectors history in chapter 4.1.

Figure 4.1: YOLO development timeline.YOLOX is based on the YOLOv3, but YOLOX versions
YOLOX-S, YOLOX-M, YOLOX-L, and YOLOX-X use modified CSPNet as their backbone. Modified
CSPNet was first introduced on the YOLOv5. For this reason, there is a connection from YOLOX to
both the YOLOv3 and YOLOv5.

The latest and the most sophisticated YOLO detector is called YOLOX. YOLOX
was developed by Ge et al. [11] from Megvii Technology, and it was published in August
2021. According to the developers of the YOLOX, they wanted to implement the latest

23

24 Chapter 4. YOLOX

object detection techniques to the YOLO architecture, and as a result, became YOLOX.
As a starting point, Ge et al. used YOLOv3 because the later YOLO architectures were
over-optimized for the new techniques [11]. YOLOX has a connection to the YOLOv5
by using the same backbone.

When compared to the older YOLO versions, YOLOX uses multiple new tech-
niques, which as a result, gives an impressive speed and performance. The YOLOX has
also won the 2021 CVPR workshop on the autonomous driving streaming perception
challenge, proving it’s a State-of-the-Art (SOTA) model [11].

4.1 YOLO detectors history

The first version of the YOLO (You Look Only Once) was released in May 2016 by
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. YOLO was devel-
oped in cooperation between the University of Washington, Allen Institute for AI, and
Facebook AI Research [32]. The first YOLO version was a significant step towards
accurate real-time deep learning object detectors, and since its release, until 19th of
January 2022, it has been cited 21,369 times.

When YOLO was released, it offered a completely new approach to object detec-
tion. The theory of the YOLO is to frame object detection as a regression problem to
spatially separated bounding boxes and associated class probabilities. Before YOLO,
the solution to the object detection problems was to repurpose classifiers to perform
detection [32]. As a result, YOLO offered significant speed improvement while the
performance was close to the most accurate object detection models at that time. A
comparison between the YOLO and other object detectors from that time is presented
in figure 4.2.

According to the YOLO authors, the comparison presented in figure 4.2 does not
tell the whole truth. When compared to the state-of-the-art detection systems, YOLO
makes more localization errors, but at the same time, it is less likely to predict false
positives in the background [32].

The YOLO object detection process has four steps, where the second and third
steps run in parallel. The process is also described in the image 4.3. In the first step,
the image is divided into the S x S grids. Then in the second step, the model predicts
B bounding boxes (x, y, w, h) and object confidence for each bounding box. Object
confidence is the confidence of whether the bounding box has an object or not. In the
parallel is running the third step, where the model runs classification on each grid cell.
In the last step, the results of the localization and classification results are combined.
Boxes with high object confidence are assigned grid classification results, which give
the object location (x, y, w, h) and the object’s class in the given grid cell. Then we

4.1. YOLO detectors history 25

Method Real-time Train mAP FPS
Fast YOLO Yes 2007+2012 52.7 155
100Hz DPM Yes 2007 16.0 100
YOLO Yes 2007+2012 63.4 45
30Hz DPM Yes 2007 26.1 30
YOLO VGG-16 No 2007+2012 66.4 21
Faster R-CNN ZF No 2007+2012 62.1 18
Fastest DPM No 2007 30.4 15
Faster R-CNN VGG-16 No 2007+2012 73.2 7
R-CNN Minus R No 2007 53.5 6
Fast R-CNN No 2007+2012 70.0 0.5

Figure 4.2: Speed and accuracy comparison on PASCAL VOC2017 dataset. Speed measured in
Titan X GPU and list is ordered by FPS [32].

run non-maximal suppression to join multiple boxes and remove overlapping boxes of
the same class object [32].

In summary, the YOLO architecture is simpler and faster than other high-
accuracy object detection architectures. Because YOLO does not use sliding windows,
YOLO sees the entire image and encodes contextual information and the appearance
of the classes. As a result, YOLO is highly generalizable, but it has some difficulties in
precisely localizing some objects. Also, as YOLO runs classification to grid cells, it is
not able to classify multiple nearby objects that might belong to different classes [32].

Seven months after the release of the first version, the original authors released
the second YOLO version. The second version is officially named YOLO9000 [33], but
later it was called YOLOv2 to highlight that it is the second YOLO version. The name
of the YOLO9000 comes from its capability to localize and classify over 9000 different
objects while running in real-time.

The second YOLO version improved the two main weaknesses the first version
had. The first YOLO version made a significant number of localization errors, and it
had lower recall compared to the region proposal-based object detectors. These were
the main objectives YOLOv2 developers wanted to tackle while also maintaining high
classification accuracy and fast inference speed [33].

The developers did not want to compromise the speed, so using a deeper network
was not an option. Instead, they implemented four new techniques on the YOLOv2
[33]. These four new techniques were:

26 Chapter 4. YOLOX

Figure 4.3: YOLOv1 object detection process [32].

1. Batch normalization

2. Anchor boxes

3. Fine-Grained Features

4. New classifier, Darknet-19

The first new technique was batch normalization [17]. Batch normalization im-
proves model convergence during the training and helps to regularize the model. As a
result, it was possible to remove dropout and still get a 2 % better mAP score than
the YOLOv1 [33].

The second significant change was starting to use anchor boxes to predict bound-
ing boxes similarly as in the Faster R-CNN [33][35]. Using anchor boxes in the YOLO
network worsens the mAP score slightly, but increases improve the recall from 81 % to
88 %. In the YOLOv1, there were 98 boxes, but with the anchor boxes, the number of
boxes increased to thousands. In the YOLOv2, the classification network was changed
to classify each anchor box instead of grids as done in the YOLOv1. Even the anchor
boxes decrease the mAP score, the improved recall means that the model has more
potential to improve [33].

The third change was to use fine-grained features, which follow the idea of the
ResNet [16]. In the YOLOv2, this means that high-resolution features are concatenated

4.1. YOLO detectors history 27

with low-resolution features by stacking them into different channels. This process is
part of the passthrough layer, and using both high- and low-resolution improves the
localization precision. As a result, the mAP score was increased by 1 % [33].

The fourth change was a new classification model called Darknet-19 [33]. The
Darknet-19 is faster and more accurate than the previously used classifier, and it is
able to achieve 91.2 % top-5 accuracy on the ImageNet dataset. Darknet-19 was used
as an example in chapter 2.1, where it was also explained at a detailed level.

These changes improved the YOLO mAP score from 63.4 to 78.6, making it only
slightly slower. The speed dropped from 45 frames per second to 40 frames per second,
which is still above the common real-time speed requirement of 30 frames per second.
The improvements helped improved to detect and localize small objects, but it did not
completely remove this flaw [33].

The third version of the YOLO detectors was released in 2018, slightly over a
year after the YOLOv2. The YOLOv3 [34] was the last version developed by the
original YOLO authors, and the later YOLO versions [5] [19] [11] heavily rely on the
YOLOv3 network. At the end of the YOLOv3 research paper, the authors criticize
computer vision in unethical applications, like military applications and personal data
harvesting, which is the probable reason why YOLOv3 was their last version.

Interestingly, according to the authors, the motivation to publish the YOLOv3
paper was the following: "We have a camera-ready deadline [13] and we need to cite
some of the random updates I made to YOLO but we don’t have a source. So get
ready for a TECH REPORT!" [34]. Even though it was released as a tech report, it is
one of the most important research papers in object detection when measured by the
number of citations.

The YOLOv3 introduced two significant improvements when compared to the
previous YOLOv2. The first change was predictions across scales, similar to the feature
pyramid network introduced two years before by Lin et al. [23]. The second major
change was the new feature extractor, named Darknet-53 4.4.

The Feature Pyramid Network (FPN) introduced a computationally efficient and
accurate way to make predictions in multiple scales, which tackles the issue where
computer vision models have difficulties accurately detecting and classifying objects in
various sizes [23]. While the previous YOLO models already delivered good accuracy
with the medium and large size objects, they struggled to detect and localize small
size objects [34]. Unlike previous YOLO models, YOLOv3 makes predictions at three
different scales making localization and classification more accurate.

The second significant change was the new feature extractor. The new Darknet-
53 is a hybrid between the Darknet-19, feature extractor used in the YOLOv2, and
the residual learning framework introduced in 2016 by He et al. [16]. With the help of

28 Chapter 4. YOLOX

the residual shortcut connection, the network is significantly deeper and more powerful
than the Darknet-19. The number of convolutional layers has been increased to 53,
which is also the logic behind the name. The Darknet-53 reaches similar accuracy as
deeper ResNet-101 and ResNet-152 feature extractors while being significantly faster
[34]. The whole Darknet-53 architecture is described in figure 4.4.

Block
Count

Type Filters Size Stride Output

Convolutional 32 3 x 3 256 x 256
Convolutional 64 3 x 3 2 128 x 128
Convolutional 32 1 x 1

1x Convolutional 64 3 x 3
Residual 128 x 128

Convolutional 128 3 x 3 2 64 x 64
Convolutional 64 1 x 1

2x Convolutional 128 3 x 3
Residual 64 x 64

Convolutional 256 3 x 3 2 32 x 32
Convolutional 128 1 x 1

8x Convolutional 256 3 x 3
Residual 32 x 32

Convolutional 512 3 x 3 2 16 x 16
Convolutional 256 1 x 1

8x Convolutional 512 3 x 3
Residual 16 x 16

Convolutional 1024 3 x 3 2 8 x 8
Convolutional 512 1 x 1

4x Convolutional 1024 3 x 3
Residual 8 x 8
Avgpool Global

Connected 1000
Softmax

Figure 4.4: Darknet-53 classification model architecture [34].

Overall, YOLOv3 offers significant improvements over the previous YOLO models
without sacrificing the network simplicity required to reach real-time inference speed.

After the YOLOv3, YOLO architecture stayed untouched for almost two years.
In April 2020, new authors, Bochkovskiy et al. [5] released the fourth YOLO version,
YOLOv4. According to the authors, researchers have developed a vast number of
new techniques that are said to improve convolutional neural network accuracy. Still,
practical testing of combinations and theoretical justification of the results are required.
As a result of testing latest techniques became YOLOv4.

4.1. YOLO detectors history 29

YOLOv4 made several architectural improvements to the YOLOv3 and added
Mosaic and mixup data augmentation methods, which are introduced in chapter 2.2.
YOLOv4 uses a new CSPDarknet53 backbone, SPP additional module, PANet path-
aggregation neck, and YOLOv3 anchor-based head on the model architecture side [5].

The Cross Stage Partial Network (CSPNet) is a skip-connection technique that
enables the backbone to achieve richer gradient combinations while reducing compu-
tation [5]. This is done by partitioning the feature map of the base layer into two
parts. Then one part runs through the network stage, and at the end of the net-
work stage, these two parts are merged. According to the CSPNet authors, the new
skip-connection reduces computation by 20 %, resulting in equivalent or even better
accuracy [41]. When Darknet-53 is updated with the CSPNet, we reach similar im-
provement, and the updated backbone is called CSPDarknet-53.

With the new, the CSPDarknet53 is added a Spatial Pyramid Pooling block
(SPP) [5]. After the last convolutional layer, the SPP block does a max-pooling in
multiple scales, significantly increasing the receptive field, meaning that far away fea-
tures can be more efficiently and accurately utilized [15]. Also, as can be seen in figure
4.5, the SPP block pools arbitrary size feature maps into fixed-size vectors. Because
of this, we do not need to fix the input image size, and YOLOv4 can be trained with
several input image sizes, which makes YOLOv4 more robust for detecting the objects
in multiple scales.

Figure 4.5: Spatial Pyramid Pooling (SPP) block. In image 256 is the number of filters in the last
convolutional layer [15].

30 Chapter 4. YOLOX

The last update YOLOv4 brought for the YOLOv3 is the Path Aggregation
Network (PANet) method [5]. While the YOLOv3 used Feature Pyramid Network
(FPN) in parameter aggregation from different backbone levels for the different feature
levels, in YOLOv4, FPN is replaced with the PANnet. PANet shortens the information
path between the low- and high-level features and, that way, improves localization
accuracy [26].

The last version before the YOLOX is the YOLOv5 [19]. Authors of the YOLOv5
have not ever released paper from this object detector, which made it challenging to
find the actual changes compared to the YOLOv4. The only change we found was the
improved backbone called Modified CSP v5.

Overall, the Modified CSP v5 backbone is very similar to the CSPDarknet53,
and the only difference is a small change in the number of blocks per stage [19].

Nevertheless, YOLOv5 brought one exciting update. Before YOLOv5, the back-
bone dimensions and layers were fixed. However, in YOLOv5, the convolutional kernel
dimensions and block counts are parametrized. This means that the YOLOv5 can be
easily scaled to different sizes. Authors of the YOLOv5 have named the main sizes as
YOLOv5-S (small size), YOLOv5-M (medium size), YOLOv5-L (large size), YOLOv5-
X (extra large size), where the first one is the smallest and fastest and the last one
is largest and most accurate [19]. We can see how the architecture size affects the
inference speed and accuracy from figure 4.8.

4.2 YOLOX - latest innovations to YOLO architec-
ture

YOLOX updates the YOLO detectors with the latest academic innovations that can
be applied to object detectors [11]. The YOLOX authors considered using YOLOv4
or YOLOv5 as the starting point for the new anchor-free object detectors, but these
two were found to be over-optimized for the new anchor-free pipeline. As a result, the
YOLOX authors decided to use YOLOv3 architecture as a starting point for the new
anchor-free object detector while using the CSPNet backbone of the YOLOv5.

When we compare YOLOX to the previous YOLO models, it offers three impor-
tant updates:

1. Anchor-free localization with IoU prediction

2. Decoupled head

3. SimOTA label assignment strategy

4.2. YOLOX - latest innovations to YOLO architecture 31

The most significant update in the YOLOX is to be the first anchor-free YOLO
detector. Anchor-free localization means that the bounding box coordinates are pre-
dicted instead using predefined anchor boxes. By removing the anchor mechanism,
overall architecture can be simplified, and the number of manually tunable parameters
is significantly reduced [11]. With the anchor-free localization, an IoU prediction head
is also added. The IoU predictions are used to get estimated localization confidences,
which are used with the classification confidences to filter out possibly false positive
predictions and to give overall detection confidence. In the YOLOX, the combined
detection confidence (also called score) for single detection i (deti) is defined as:

Stotal(deti) = Scls(deti) ∗ Sloc(deti), (4.1)

where Scls is the classification confidence of the most confident object class,
and Sloc is the predicted IoU. Because the Scls ∈ [0, 1] and IoU ∈ [0, 1], then the
Stotal ∈ [0, 1]. According to Kang et al., the predicted IoU naturally corresponds to
the localization quality, and the range of the classification confidence matches with the
predicted IoU, the intuitive way to combine these two scores is to use multiplication
[40]. This is also the formula we use in our active learning research experiment in
chapter 6 to calculate detected object confidences.

The second change is the new decoupled head, as introduced in figure 4.6. Like
the anchor-free localization, the decoupled was also invented a few years before and
used successfully in the other object detector architectures, like the RetinaNet [24].
Now, YOLOX brought this improvement to the YOLO architecture [11].

Figure 4.6: Illustration of the difference between the YOLOv3 to YOLOv5 coupled head and YOLOX
decoupled head [11].

32 Chapter 4. YOLOX

The benefit of the decoupled head comes from the fact that the object detector
has two tasks. These are localizing and classifying the wanted objects in the images.
However, these two tasks have spatial misalignment, and therefore the optimized joint
head will always be a compromise [38]. Decoupled head removes the need to com-
promise between localization (regression) and classification. Because regression and
classification tasks have their heads, they can be better optimized, improving model
performance. Also, the decoupled head model converges significantly faster than the
original YOLO head, as shown in image 4.7.

Figure 4.7: YOLOX authors experiment with training a YOLOv3 object detector with coupled
and decoupled heads. The object detector converges towards optimum significantly faster with the
decoupled head and also achieves better accuracy [11].

The third and the last significant improvement is the SimOTA label assignment
strategy [11]. SimOTA is based on the optimal transport assignment for object de-
tection (OTA) research from the same authors as the YOLOX object detector [10].
SimOTA is used to optimize YOLOX training process by calculating unit transporta-
tion cost between the predictions and ground truth labels as the weighted sum of the
classification and regression losses. This makes the training process faster and also
increases the detection performance.

4.3. YOLOX Performance 33

4.3 YOLOX Performance

With the latest updates to the YOLO architecture, YOLOX offers the best speed and
accuracy that the YOLO models have reached by August 2021 [11].

Figure 4.8 presents a speed and precision comparison between several real-time
object detectors. When comparing similar size YOLOv5 and YOLOX models, the
latter offers 0.8 % to 2.0 % higher average precision. Even though the difference
between these two models is not as large as one might expect, it is good to remember
how these numbers are reached.

As discussed in chapter 4.2, YOLOX is the first anchor-free YOLO object de-
tector. As the YOLOX is anchor-free architecture, it requires only a minimal amount
of hyperparameter tuning to reach the optimal performance. As the previous model’s
used anchor-based localization, the user had to pre-define the anchors before the actual
model training. At the same time, pre-defining optimal anchors is not a straightforward
or simple task. For example, YOLOv3 authors use unsupervised clustering methods
to find the optimal anchor parameters [34].

Method Backbone Parameters Resolution FPS
(V100)

AP
(%)

AP50 AP75 APS APM APL

EfficientDet-D0 Efficient-B0 - 512x512 98.0 33.8 52.2 35.8 12.0 38.3 51.2
EfficientDet-D1 Efficient-B1 - 640x640 74.1 39.6 58.6 42.3 17.9 44.3 56.0
EfficientDet-D2 Efficient-B2 - 768x768 56.5 43.0 62.3 46.2 22.5 47.0 58.4
EfficientDet-D3 Efficient-B3 - 896x896 34.5 45.8 65.0 49.3 26.6 49.4 59.8
YOLOv3+ASFF Darknet-53 - 608x608 45.5 42.4 63.0 47.4 25.5 45.7 52.3
YOLOv3+ASFF Darknet-53 - 800x800 29.4 43.9 64.1 49.2 27.0 46.6 53.4
YOLOv3-ultralytics Darknet-53 - 640x640 95.2 44.3 64.6 - - - -
PP-YOLOv2 ResNet50-vd-dcn - 640x640 68.9 49.5 68.2 54.4 30.7 52.9 61.2
PP-YOLOv2 ResNet101-vd-dcn - 640x640 50.3 50.3 69.0 55.3 31.6 53.9 62.4
YOLOv4 CSPDarknet-53 - 608x608 62.0 43.5 65.7 47.3 26.7 46.7 53.3
YOLOv4-CSP Modified CSP v5 - 640x640 73.0 47.5 66.2 51.7 28.2 51.2 59.8
YOLOv5-S Modified CSP v5 7.3 M 640x640 114.9 36.6 - - - - -
YOLOv5-M Modified CSP v5 21.4 M 640x640 90.1 44.5 63.1 - - - -
YOLOv5-L Modified CSP v5 47.1 M 640x640 73.0 48.2 66.9 - - - -
YOLOv5-X Modified CSP v5 87.8 M 640x640 62.5 50.4 68.8 - - - -
YOLOX-DarkNet53 Darknet-53 - 640x640 90.1 47.4 67.3 52.1 27.5 51.5 60.9
YOLOX-S Modified CSP v5 9.0 M 640x640 102.0 36.9 - - - - -
YOLOX-M Modified CSP v5 25.3 M 640x640 81.3 46.4 65.4 50.6 26.3 51.0 59.9
YOLOX-L Modified CSP v5 54.2 M 640x640 69.0 50.0 68.5 54.5 29.8 54.5 64.4
YOLOX-X Modified CSP v5 99.1 M 640x640 57.8 51.2 69.6 55.7 31.2 56.1 66.1

Figure 4.8: Speed and accuracy comparison on COCO 2017 test-dev dataset [11].

Interestingly, YOLOX was originally designed for the CVPR 2021 streaming per-
ception challenge [45]. In this challenge, algorithm latency was scored together with
the model accuracy. The YOLOX team received 1st place in this competition by using
the YOLOX-L model with a high-resolution input image size [11].

5. Active Learning

We need a large labeled dataset to train supervised machine learning. Having a large
dataset may not be enough, as the dataset also needs to cover the whole variance of
the data population. In other words, your labeled dataset needs to have quality and
quantity [14].

In the computer vision context, quality means that images need to cover a wide
variance of how the objects look. For example, if we want to train cat vs. dog classifiers,
we need to have labeled training images from a wide range of dog and cat breeds. Also,
cats and dogs should be in pictures in a wide range of positions, and photos should
have been taken from a wide range of different angles.

Annotating images is a time-consuming task [6]. The high price of the annotation
process is even more apparent in cases where we use a team of highly trained profes-
sionals to ensure the quality of the annotated dataset. While the annotation process is
time-consuming and expensive, every individual image does not offer the same amount
of new information [14]. One such example is when the dataset has multiple identical
or almost identical images, like in the figure 5.1. In this case, it is enough to annotate
and train the model with only one of the images belonging to this group. Annotating
all the identical or almost identical images would not increase the model’s performance,
and it would be an inefficient use of the annotation resources.

Active learning is a supervised learning technique that tackles the inefficiency
of collecting and annotating irrelevant data samples [20]. In the active learning, we
actively choose the images we will annotate and add to the training dataset [30]. The
aim is only to pick the most informative data samples and ignore the ones that would
not improve the model performance. As a result, the amount of data labeling work
can be reduced [14].

Even though active learning has been proved to be an effective method to train
an image classification model, there is only a minimal amount of research on applying
active learning to the object detection [20][14]. Also, according to the questionnaire
by Tomanek and Olsson 2009 proved that active learning is not widely used [30]. We
can argue that active learning has not received the attention it deserves as an efficient
data annotation process is an essential but time-consuming task.

35

36 Chapter 5. Active Learning

Figure 5.1: Three almost identical images from the surface of the stainless steel. The light round
area is a surface defect called indentation.

5.1 Active Learning vs. Passive Learning

The typical way of annotating data is called passive learning. In passive learning, we
take a random subset of the data to be labeled, or if the dataset is small enough, then
label the whole data set. In other words, we do not actively select images that we will
annotate.

With passive learning, we may face several problems. The first one is taking
samples that do not benefit the model accuracy or even decrease the model performance
[42]. As introduced in the previous chapter, this could mean picking several similar
examples that do not have any new information.

The second possible problem is data balance. When we want to train a machine
learning model that does classification, we want to have balanced training dataset.
Unfortunately, the real-life unlabelled dataset is commonly not balanced [42]. It is
common that we can get samples of samples more easily than other and we may even
have a situation where most of the samples belong to a single class and there are only
few samples from the other classes.

For example, let’s consider a situation where we want to build an animal classifier.
We take all the animal images we can find from the internet and create a large pool
of unlabelled animal images. Let’s say that the unlabelled data pool has images from
100 different animal species, including dogs, cats, ice bears, mooses, foxes, and others.
The number of images per class is naturally unbalanced, as it is easier to take images
from cats than from the ice bears.

5.2. Active Learning Process 37

Let’s say that the unlabelled data pool DU is so large that we are not able to
label all the images, but instead, we can only label a random sample of the images
in the unlabelled data pool. Let’s consider that we have a prior estimate, that if we
randomly select image from the unlabelled datapool, then P (dog) = 1

3 , P (cat) = 1
3 ,

and P (Others) = 1
3 . In the class "Others," we have all the other 98 animal species. If

we labeled the data with passive learning, it would be probable that we would mostly
pick dog and cat images, and the trained classifier would perform poorly in classifying
other animal species. Also, we would probably label many images that do not provide
any new information. We can solve this problem with active learning by picking only
the most informative samples and picking images from all the classes [6].

The primary purpose of active learning is to offer an effective approach for data
annotation [20]. As a result, the performance of active learning is often measured by
how much data is required to reach some given performance level when data is sampled
from the same set of unlabeled data by passive learning or by active learning [30]. In our
research in chapter 6, we will show how with a maximum uncertainty active learning,
we can reduce the number of labeled images from 16,551 to 13,473 images, while model
mAP50 drops only from 83.6 % to 83.2 %.

5.2 Active Learning Process

Active learning is a class of algorithms that iteratively search for the most informative
samples to be added to the training data set [20]. As it is a class of algorithms, there is
more than one way to apply active learning, but next, we will introduce the standard
active learning loop.

The standard active learning loop goes as follows:

1. Collect unlabelled dataset DUi.

2. From DUi, select and label samples Si.

3. Remove labelled samples Si from the unlabelled dataset DUi. Now, labelled
samples Si will create the first labelled dataset DLi. The first labeled dataset
DL0 is called the seed set.

4. Train a model Mi with the labelled dataset DLi.

5. Apply model Mi to the unlabelled dataset DUi.

6. For each unlabelled sample in the dataset DUi, estimate whether this sample
contains information that model Mi has not been learned before.

38 Chapter 5. Active Learning

7. Select the most informative samples Si+1 for the Oracle for annotation. Oracle
is someone who can give the ground truth answers for unlabelled data. Usually,
Oracle is a human annotator.

8. Add labelled samples Si+1 to the labelled dataset DLi. Also, remove samples Si+1

from the unlabelled dataset DUi.

9. Repeat steps 4 through 8, until unlabelled dataset DUi is empty, or until some
stopping criterion is met. These steps can be found as a image from the figure
5.2.

10. Output a model that is trained with the labelled data DLj, where j is the number
of active learning loops. Through the whole process, DUi ∩DLi = ∅ and size of
the dataset DLi increases and size of the dataset DLi decreases (if new unlabelled
data is not collected during the process).

Figure 5.2: The common active learning loop as a image.

The active learning loop is relatively standard on the theoretical level, but there
may be lots of variance at the practical level. In real-life applications, it is expected
that the unlabelled dataset is not fixed. Instead, it may be continuously growing and so
large that it would not be feasible to analyze each data sample in each active learning
loop round.

Next, we will introduce the three most important steps of the active learning loop
on a more detailed level. These are: defining the seed set, finding the most informative
data samples, and terminating the active learning loop.

5.2. Active Learning Process 39

5.2.1 Defining the seed set

As we can see from the previously introduced list, the first part of the active learning
loop is to create labeled seed data set [20]. The simplest way to generate seed data
set is to take and label a random subset from the unlabeled data. The base data set
should have multiple samples from each class in the optimal situation. If class sizes
in the unlabeled data set are heavily unbalanced, getting samples from each class may
not be easy. In this case, we may use clustering, the unsupervised learning technique,
to cluster images and then pick samples from each cluster [30].

The benefits of creating seed set by clustering have not been studied in computer
vision. In the context of natural language processing, its benefits have not been notice-
able when compared to random sampling [29]. We would still expect deep learning-
based image clustering to be a powerful tool for creating the seed set, but verifying
this question is outside of our own experiment.

5.2.2 Selecting the most informative data samples

Finding the most informative data samples in the active learning loop can be manual
or automatic. First, we will introduce the manual process. Then we will introduce the
most common automatic ways to pick the most informative data samples.

In manual active learning, the data labeler manually inspects the model results.
In other words, the data labeler manually looks through the model outputs and picks
the data samples where the model has made a mistake. When the data labeler finds
a data sample where the model has made a mistake, he knows that this data sample
has new information that should be labeled and added to the training dataset.

Next, we will introduce the three most common active learning approaches [30].
These are:

1. Query by uncertainty

2. Query by committee

3. Active learning with redundant views

The first approach is called query by uncertainty, also known as uncertainty sam-
pling or uncertainty reduction [30]. Query by uncertainty is the most straightforward
active learning method, as it uses the model prediction confidences as its main source
to find the most informative samples. When the model makes a high confidence pre-
diction, it indicates that the given sample has similar information as the data used to
train the model. Conversely, when the model makes a low confidence prediction, the

40 Chapter 5. Active Learning

given instance has new and valuable information and should be annotated and added to
the training dataset. Query by uncertainty can be applied to a wide range of machine
learning and deep learning models, but the model needs to provide confidence scoring
to indicate how confident it is in each prediction it performs.

The second approach is called query by committee. In this context, commit-
tee members are different predictive models. In the query by committee, committee
members make predictions on the same data. When predictions between committee
members differ, then the given sample includes new and valuable information [30]. The
use of query by committee expects that the used models are not identical, as identi-
cal processes would output identical predictions, and there would be no disagreements
among the committee members.

The third and the last approach of active learning techniques is called active
learning with redundant views. Redundant views are similar to the query by committee,
as both techniques aim to find data samples that will cause disagreement among the
committee members [30]. While in the query by committee, the committee members
use the same input data, but in the redundant views, committee members use different
input data that should give the same output. In other words, the domain has redundant
views if the domain has at least two mutually exclusive sets of features that can be
used to learn the same target concept [27]. Then we can train two or more models that
should give the same output by using different input data. For example, we can use
images and lidar data to estimate object dimensions in 3D.

These are the main three approaches to active learning. In our research in chapter
6 we study uncertainty sampling in object detection. The reason is that it is compu-
tationally the most efficient active learning method, and our experiment domain does
not have two or more mutually exclusive sets required for the redundant views.

In our proposed method, we define detected object uncertainty as a confidence
score. A low confidence score indicates that the image has new, not yet learned infor-
mation. We define the total object confidence score for a single detected object (deti)
as follow:

Stotal(deti) = max
ccls∈K

p̂(ccls|deti) ∗ IoU(deti), (5.1)

where K is the set of possible object classes, maxccls∈K p̂(ccls|deti) is the classifi-
cation confidence of the most confident object class for detection deti, and IoU(deti)
is the predicted IoU of detection deti. This follows the principles used in the FCOS
[40] and YOLOX [11] to filter out low confidence detections, but we use it to find the
most informative unlabelled images. To our knowledge, we are the first ones to use
this technique in the active learning context.

5.2. Active Learning Process 41

5.2.3 Terminating the active learning loop

So far, we have introduced the first two main parts of the typical active learning process:
creating the seed set and selecting the most informative samples. Then the last step
is to decide when to terminate the active learning process. As one main purpose of
active learning is to minimize the amount of data labeling work, we need to know
when to stop the loop. From the theory perspective, the active learning loop should be
terminated when the model reaches its peak effectiveness. However, it is challenging
to know when this happens before all the data is labeled [48].

Determining when to stop the active learning process has no unequivocal answer,
and according to Zhu et al., it is not a very well-studied topic [48]. Terminating the
active learning process is also out of the scope of our study, but we will introduce
the main terminating approaches. We did not find any research of the terminating
approaches in the deep learning context, but from the theory perspective, they should
also be applicable to both machine learning and deep learning models.

The different terminating approaches can be grouped under the three main cat-
egories. These are:

1. Resources defined terminating approach

2. Model performance defined terminating approach

3. Statistical terminating approach

In the resources defined terminating approach, the annotation resources define
when to end the active learning process. In practice, this could mean that we have
annotation resources to perform an active learning loop ten times, annotate 1,000
data samples each time, and therefore label a total of 10,000 data samples. However,
there is no way to estimate the optimum training data size beforehand, so we might
stop the process too early or too late [48]. Even the active learning with resources
defined terminating strategy may not end the optimum model performance, it is still a
significantly better approach than passive learning, where we randomly pick the data
we annotate [30].

Then the second approach is to use model performance-defined stopping criterion.
In this approach, we evaluate the model performance in each iteration and repeat the
active learning loop until we reach the predefined model performance or we are satisfied
with the model performance. To effectively use this approach, we need to evaluate
model performance reliably in each iteration, which is not a trivial task, especially if
the test dataset is relatively small. Secondly, it is difficult to predefine an appropriate
and achievable performance because it depends on the problem and users’ requirements
[48].

42 Chapter 5. Active Learning

The last category of the stopping criterion is called the statistical terminating
approach. In the statistical terminating approach, we aim to estimate the optimum
active learning process stopping moment by using the unlabelled data or by using the
trend of the model performance development. As in the active learning process, the
model outputs the estimated informativity for each data sample. We can use this
information to estimate when no informative samples are left [48]. We can also use
performance development through an active learning loop to estimate when the model
reaches the peak performance. The theory behind the model performance development
approach goes as follows. When the size of the labeled training data increases, then
the model performance also increases. While the model performance increases, it also
converges towards the model maximum performance level. This means that the model
performance improvement decreases when the number of training images increases. We
can see an example in figure 6.8, where we used a predefined and fixed performance
test set. In this example, the performance converges towards a value of 0.84. Using the
model performance development as a stopping criterion has not been formally studied,
but from the theory perspective, we can agree with Zhu et al. [48] that it is probably
an efficient stopping criterion.

We have now introduced the main strategies on how to define the active learning
stopping criterion. The categories are loosely defined, and the categories are formed
by the similarity of the individual techniques. We believe that the optimum stopping
criterion would be a combination of multiple individual techniques. Then we can get
the best benefits out of the whole active learning process.

As we discussed at the beginning of the chapter, terminating the active learning
process is not a very well-studied topic, and we did not find any research that would
have been done in deep learning or in the field of computer vision. Nevertheless, we
believe that they should be applicable also to modern neural networks.

5.3 Active learning as annotation support

The main benefit of active learning is to choose the most informative samples from
the unlabelled data pool, but selecting the most informative samples is not the only
potential benefit in the active learning loop. We can improve the typical active learning
loop by pre-annotating the unlabelled data samples before giving them to Oracle. Then,
Oracle only needs to confirm that labeling is correct and fix the potentially incorrect
samples in this situation.

Object detection has one of the most time-consuming data annotation processes
in the context of computer vision. In this process, the data labeler first needs to search
all the interesting objects in the image, draw tight bounding boxes around each object

5.3. Active learning as annotation support 43

Figure 5.3: Image without pre-annotation.
Figure 5.4: Image with pre-annotation.

and classify objects inside the bounding boxes. This process needs to be done carefully,
as images may have objects that are important but difficult to notice. According to
Su et al., annotating a single object from an image takes on average 50.8 seconds, but
verifying labeling quality takes on average only 21.9 seconds [39].

In figures 5.3 and 5.4, we present examples of how pre-annotation helps to detect
all the relevant objects. The image has multiple sheep, and the objects are relatively
small. Even though the pre-annotation may not be completely correct, it highlights
most of the relevant objects, and therefore annotator may focus on fixing the annotation
instead of searching for the sheep from the image.

In figure 5.5 we present an example of using uncertainty sampling and image
pre-annotation. Image has been automatically selected for the annotator because the
object detector detected an object with low confidence. In this case, the annotator only
needs to remove the incorrect tv monitor labeling and slightly adjust the cat bounding
box to make it tighter.

In summary, by having data pre-annotation as an active learning process, the
role of the image labeling expert changes. Without the pre-annotation, the annotator
focuses on finding objects, drawing bounding boxes, and classifying objects. But when
using pre-annotation made by the object detector, the annotator only needs to verify
that annotations are correct and fix the incorrect labels. The second option takes less
time and helps the annotator find all the relevant objects, improving the annotation
quality.

44 Chapter 5. Active Learning

Figure 5.5: Example of the image pre-annotation in the active learning loop. Image has been
automatically selected because the object detector made a low confidence detection. Then, model
detections are used as the pre-annotation. In this example, cat pre-annotation is correct, but the
kitchen cabinet labeled as a tvmonitor needs to be removed.

6. Experiments

We propose an uncertainty sampling-based active learning method for object detection.
As we want to keep our method applicable for real-life use cases, our proposed active
learning method is designed to require only a minimal computation overhead and keep
the labeled training dataset balanced.

Active learning aims to minimize the number of labeled training samples, and
this task can be split into three subparts. These are: defining the seed set, sampling
method, and the stopping criterion. Our proposed method is only meant to answer the
question of the optimal sampling method, and we do not experiment with these two
other questions.

We use the YOLOX-S (YOLOX small) object detector in our experiment, but
the method is also applicable to other object detectors that predict localization IoU
for every detection. Our method is unsuitable for the anchor-based object detectors,
as these do not usually output localization confidence, which is required to calculate
detection scores.

The experiment chapter follows the following structure. First, we introduce the
used dataset and the YOLOX-S object detector. Then we introduce the active learning
process step-by-step, and finally, we introduce the results.

6.1 Pascal VOC object detection dataset

We use the Pascal VOC object detection dataset [8]. We want to make our experiment
setup as realistic as possible, and that’s why we want to use a larger dataset than
commonly used VOC 2007 or VOC 2012. As a solution, we combine the VOC 2007
train+validation+test dataset with the VOC 2012 train+validation dataset. As a
result, we get a dataset with 21,503 images and 33,264 objects.

Then we split this dataset into two parts. This first part takes all the training
and validation images from VOC 2007 and VOC 2012 datasets. This dataset creates
the unlabelled dataset DUi where we aim to sample the most informative samples. The
second part takes all the images from the VOC 2007 test dataset. We call this dataset
a performance test set or ground truth test set. It is used to reliably evaluate our

45

46 Chapter 6. Experiments

model performance changes through the 10 rounds of the active learning loop. All the
details of the used dataset are presented in figure 6.1.

How used As train, validation and test As performance test
Data source VOC2007+2012 Train+Val VOC2007 Test
Total images 16551 4952
aeroplane 916 205
bicycle 826 250
bird 1106 289
boat 704 176
bottle 1030 240
bus 627 183
car 1990 775
cat 1428 332
chair 1870 545
cow 455 127
diningtable 904 247
dog 1727 433
horse 777 279
motorbike 785 233
person 6469 2097
pottedplant 841 254
sheep 423 98
sofa 1067 355
train 813 259
tvmonitor 874 255
Total objects 25632 7632

Figure 6.1: Number of images and objects in unknown data set and performance test data set.

When we train the object detector with the labeled dataset, we use the following
data split: 70 % to the train set, 15 % to the validation set, and 15 % to the test
set. The performance test set is kept separately, as we want to have a fixed test set to
reliably evaluate the model performance through the whole active learning process.

6.2. YOLOX-S object detector 47

6.2 YOLOX-S object detector

YOLOX-S is the small-size version of the YOLOX object detector [11]. The differ-
ence between the different size YOLOX versions can be seen from figure 4.8 where we
compare a number of parameters in different YOLOX models.

As discussed in chapter 4.1, a different number of parameters is achieved by scal-
ing the Modified CSP v5 backbone. In practice, this means the number of convolutional
kernels and layers used in the backbone.

We use the YOLOX-S in our experiment, as it is faster to train than the larger
YOLOX models. Nevertheless, the single model training takes approximately 6 to 12
hours, depending on the amount of the training data, when the model is trained with
a cluster of 4 pieces of Tesla M60 GPUs.

6.3 Model training

When we start to train the object detector, we use transfer learning to transfer knowl-
edge from one domain to our task and that way to improve the trained model [28]. We
first tested the transfer learning to transfer knowledge of the YOLOX-S object detector
trained with the COCO object detection dataset to train a object detector for Pascal
VOC object dataset. However, we found that these two datasets contain mostly the
same classes, and the actual learning from to Pascal VOC dataset was minimal. Be-
cause we aimed to experiment the uncertainty sampling in a real-life situation, where it
is likely that the gap between the task domains is large, we decided not to use transfer
learning from the model trained with the COCO dataset. As a solution, we decided to
use transfer learning from the YOLOX-S model trained with the steel dataset. This is
a private dataset of the Outokumpu Oyj, and the dataset contains images of the steel
surface defects. Now the domains were different enough for our experiment purposes.
In figure 6.2, we compare the results when the model is trained with 2,000 Pascal VOC
images, and one model uses transfer learning from COCO and another from the Steel
dataset.

In the model training we follow the practices proposed by the YOLOX developers
[11]. The model is trained with 300 epochs, with batch size of 32 images. We used all
augmentations as introduced in the chapter 2.2, but we removed mixup and Mosaic
augmentations from the last 15 epochs. This follows the recommended training process.

We evaluate the model performance with the validation dataset in every 10 epochs
in the training process. We save these evaluated models, and the best performing model
is selected as the output for the given training process.

48 Chapter 6. Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mAP

tvmonitor
train
sofa

sheep
pottedplant

person
motorbike

horse
dog

diningtable
cow

chair
cat
car
bus

bottle
boat
bird

bicycle
aeroplane

AP score with IoU:50

Coco
Steel

Figure 6.2: Test set results with two pretrained models re-trainned with same dataset. Models are
trained with 2,000 Pascal VOC images.

6.4. Defining detection uncertainty score 49

6.4 Defining detection uncertainty score

YOLOX is an anchor-free object detector, and therefore it natively outputs two con-
fidence scores. As can be seen from figure 4.6, these are the classification confidence,
and the second is IoU confidence. As described in chapter 5.2.2, the predicted IoU
can be used to estimate the localization confidence score. YOLOX provides these two
confidence numbers for every detection, so using them does not cause any additional
computing overhead.

Because we want to measure and compare the detection confidences, we define
the score for each detection. The combined confidence score formula is introduced in
detail in chapter 5, but the high-level idea is following:

Stotal(deti) = Scls(deti) ∗ IoU(deti), (6.1)

where deti is a single detection, Scls(deti) is the classification confidence for de-
tection deti, and IoU(deti) is the predicted bounding box IoU for detection deti.

We attach the score calculation as a part of the YOLOX-S inference process. In
practice, we save detection results to the XML file for each image, and the XML follows
the standard Pascal VOC format. An example of the output is presented in figure 6.3.
Then after we have processed all the images, we can easily create a summary of all the
detection and select the most informative samples.

6.5 Used Active Learning Process

In the experiment, we follow the standard active learning loop process. Then to select
the most informative samples, we use detection score as defined in chapters 5.2.2 and
6.4.

Step-by-step, the used active learning process went as follow:

1. Collect unlabelled dataset DUi. DUi is combination of VOC2007+2012 train and
validation sets. Details are presented in the figure 6.1.

2. From DUi, select and label samples Si. We select randomly 2,000 images for a
seed set. Seed set details can be found from the figure 6.4.

3. Remove labelled samples Si from the unlabelled dataset DUi. Now, labelled
samples Si will create the first labelled dataset DL0.

4. Train a model Mi with the labelled dataset DLi.

50 Chapter 6. Experiments

5. Apply model Mi to the unlabelled dataset DUi, calculate detection scores, and
save detections with score greater than threshold t > 0.2. We use a lower thresh-
old t to increase the probability of sampling objects from wanted object classes.
This process is also presented as a pseudo-code in pseudo-code 1.

6. Select 100 lowest score detections from the each object class as described in the
pseudo-code 2.

7. Annotate selected images (in experiment we use original Pascal VOC dataset
labels).

8. Add labelled samples Si+1 to the labelled dataset DLi. Also, remove samples Si+1

from the unlabelled dataset DUi.

9. Repeat steps 4 through 8, until unlabelled dataset DUi is empty.

Algorithm 1 Pseudo-code for running object detection and saving results.
Input: Unlabelled image pool [DU], Trained object detector [Det]
Output: Saved object detections [SavedDetections]
for image i in DU do

Detectionsi ← Det(i)
for Detectioni in Detectionsi do

UncertaintyScorei ← LocalizationConfidencei ∗ ClassificationConfidencei

if UncertaintyScorei > 0.2 then
SavedDetections← Save(Detectioni)

end if
end for

end for
Return: SavedDetections

6.6. Training rounds progress 51

Algorithm 2 Pseudo-code for select the most informative images.
Input: Saved object detections [SavedDetections]
Output: Selected images names list [ImageNamesList]
for ObjectClass c in SavedDetections do

Detectionsc ← filterWithClass(SavedDetections)
Thresholdc ← getUpperThreshold(Detectionsc) {100th lowest confidence}
for Detectioni in Detectionsc do

if DetectionConfidencei < Thresholdc then
ImageNamesList← ImageNameToList(Detectioni)

end if
end for

end for
Return: ImageNamesList

6.6 Training rounds progress

Our experiment consists of 10 training rounds, as described in section 6.5. The only
difference is the last training round, where we do not apply any confidence filtering but
instead select all the unlabelled images that are left.

In each training round, we split our labeled data into three parts: training, val-
idation, and test sets. We use a stratified split method to keep object classes in each
set balanced. We use a 70-15-15 split, where 70 % go to the training set, 15 % to the
validation set, and 15 % for the test set on each training round. Details of the number
of images in each set in each training round are described in figure 6.4.

In figure 6.5, we can see the used detection upper confidence filtering thresholds
for each object class on each training round. As described before, the score is defined
as the 100th lowest detection score. Then we select all the images with detection scores
below the defined upper threshold.

As we can expect, the upper confidence threshold to select 100 lowest confidence
detections from each object class rises through the training rounds. Details can be
found in figure 6.5. This is due to two reasons. First, we select the most difficult images
on each training round and, therefore, the number of difficult unlabelled images gets
smaller and smaller. Secondly, the model gets better on each training round, which
reduces the number of low confidence detections.

In figure 6.6, we can see how the class-specific AP50 score rises quickly during
the first training rounds. Quick model improvement is a behavior we want to see in
the effective active learning process, as our aim is to get the best possible results with
the least amount of data.

52 Chapter 6. Experiments

Our method is designed to keep the labeled training dataset as balanced as pos-
sible. To achieve this task, we select 100 low score object detections from each class on
each training round. Because of this number of objects from each object class grows
approximately by 100 pieces. We want to highlight the word approximately because
of the two reasons. First, we sample images with the low confidence detection, and
therefore these detections, by default, have errors. In figure 5.4, we can see an example
where the model has falsely detected a tv monitor from the image. Secondly, Pascal
VOC dataset images may have multiple objects and multiple object classes in a single
image. Therefore several low confidence detections can be in the same image. Also,
high confidence detection may appear in the same image with a low confidence detec-
tion, as in the figure 5.4. In figure 6.7, we can see the number of labeled objects from
each class in each training round. Our seed set was a random sample of 2,000 images
from the unlabelled images, so at the beginning, the number of objects in different
object classes differs.

When we combine the information from figures 6.6 and 6.7, we can see that some
object classes are easier to detect than others. For example, in the case of aeroplane
the AP50 score reaches 80 % with 278 labeled objects, but with bird, we need 787
labeled objects to achieve a similar AP50 score. The probable reason is the intra-class
variance, the variance of what objects can look like, but the deeper investigation of the
reason is outside of the scope of our research.

The working active learning solution maximizes the model performance with min-
imal annotated data samples. From figure 6.8, we can see that the model performance
increases quickly during the first training rounds, but then the slope tapers. This is
expected behavior, as the images in the unlabelled data pool get less informative after
each round and model performance convergence towards the optimal maxima. Based
on the AP50 score of the test set and performance test set, the progress is barely
noticeable after the training round 8th.

6.7. Results 53

6.7 Results

With 16,551 images, the MAP50 score is 0.8361. With 13,473 images result is almost
the same, 0.8315. So we could remove 3078 images, barely noticing any difference in
results. By removing 5559 images, the performance drop is still only 2.21 %. Object
detection annotation is a relatively slow process, so if we expect that annotating a
single image takes 1 minute, then by not annotating the removed 5559 images, we
would have saved close to 100 hours. Also, this method is computationally extremely
efficient and easy to use.

This is the first study where the predicted IoU is used as a metric to measure
localization confidence. We have proved that when predicted IoU is combined with the
classification confidence, we can efficiently sample the most informative images from
the pool of unlabelled data.

As we can see from figure 6.8, the greatest benefits from our active learning
method can be achieved in the early training rounds. This proves that the method
efficiently samples the most informative images because otherwise, the improvements
would not be as drastic.

According to Haussmann et al., the images in the Pascal VOC dataset are pre-
selected when the dataset was created and thus contain mostly informative images [14].
Based on this statement, we could expect even better results with our method when
applied to the real-life dataset.

54 Chapter 6. Experiments

<annotat ion>
<f i l ename>2007_000017 . jpg</ f i l ename>
<analys i s_t ime>2021−11−27 T13:41:49 .897255</ ana lys i s_t ime>
<s i z e>

<width>480</width>
<he ight>364</ he ight>
<depth>3</depth>

</ s i z e>
<ob j e c t>

<name>horse</name>
<con f idence>85 .2</ con f idence>
<bndbox>

<xmin>123</xmin>
<ymin>83</ymin>
<xmax>429</xmax>
<ymax>351</ymax>

</bndbox>
</ ob j e c t>
<ob j e c t>

<name>person</name>
<con f idence>64 .9</ con f idence>
<bndbox>

<xmin>166</xmin>
<ymin>63</ymin>
<xmax>286</xmax>
<ymax>204</ymax>

</bndbox>
</ ob j e c t>

</ annotat ion>

Figure 6.3: YOLOX inference output XML.

6.7. Results 55

Training round
Dataset name 1 2 3 4 5 6 7 8 9 10
Train+Val+Test 2000 3816 5638 7453 9214 10922 12322 13473 14217 16551
Unknown 14551 12735 10913 9098 7337 5629 4229 3078 2334 0
Train 1400 2671 3946 5217 6449 7645 8625 9431 9951 11585
Validation 300 572 846 1118 1382 1638 1848 2021 2133 2483
Test 300 573 846 1118 1383 1639 1849 2021 2133 2483
Performance test 4935 4935 4935 4935 4935 4935 4935 4935 4935 4935

Figure 6.4: Number of images in training rounds.

Confidence level filter upper threshold
Object 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10
aeroplane 37.0% 32.0% 60.7% 74.2% 84.6% 87.4% 89.4% 91.7% N/A
bicycle 44.0% 56.0% 80.1% 86.4% 91.4% 93.6% 96.2% 100% N/A
bird 34.9% 26.1% 31.8% 43.3% 57.8% 76.6% 83.7% 88.3% N/A
boat 29.5% 26.3% 33.4% 44.6% 75.1% 88.8% 100% 100% N/A
bottle 28.5% 27.7% 30.1% 34.8% 55.7% 84.2% 92.7% 100% N/A
bus 56.7% 73.9% 85.4% 92.1% 95.3% 100% 100% 100% N/A
car 24.9% 24.0% 25.3% 29.3% 40.7% 67.5% 82.0% 91.2% N/A
cat 34.7% 37.7% 50.7% 65.1% 75.3% 78.2% 82.7% 86.3% N/A
chair 23.5% 23.1% 25.5% 28.7% 33.2% 64.4% 85.5% 100% N/A
cow 49.3% 49.6% 67.3% 85.7% 100% 100% 100% 100% N/A
diningtable 44.6% 40.8% 58.4% 83.2% 100% 100% 100% 100% N/A
dog 31.8% 31.5% 44.1% 55.6% 65.3% 76.3% 82.3% 86.6% N/A
horse 52.3% 63.1% 73.8% 84.9% 89.5% 92.5% 94.8% 100% N/A
motorbike 59.8% 46.5% 76.8% 86.8% 89.4% 92.2% 95.5% 100% N/A
person 21.2% 21.0% 21.4% 22.1% 23.6% 25.5% 30.1% 45.1% N/A
pottedplant 28.5% 27.2% 29.2% 39.8% 58.5% 84.2% 100% 100% N/A
sheep 34.7% 50.2% 66.0% 88.7% 100% 100% 100% 100% N/A
sofa 31.8% 43.5% 50.6% 73.3% 87.4% 92.9% 100% 100% N/A
train 40.7% 37.4% 55.8% 78.1% 85.9% 89.1% 92.5% 100% N/A
tvmonitor 30.5% 35.9% 41.5% 54.8% 81.9% 90.5% 100% 100% N/A
Average 36.9% 38.7% 50.4% 62.6% 74.5% 84.2% 90.4% 94.5% N/A
Median 34.7% 36.7% 50.7% 69.2% 83.25% 88.9% 95.15% 100% N/A

Figure 6.5: Confidence filter upper threshold.

56 Chapter 6. Experiments

AP50 score for each class after each training round
Object 1 2 3 4 5 6 7 8 9 10
aeroplane 0.6140 0.7334 0.8208 0.8400 0.8681 0.9015 0.8869 0.8985 0.8824 0.9079
bicycle 0.6992 0.7793 0.8094 0.8720 0.8854 0.9031 0.9068 0.9293 0.9113 0.9216
bird 0.3706 0.5193 0.6193 0.7197 0.7302 0.7781 0.7911 0.8052 0.8245 0.8391
boat 0.4929 0.5672 0.6435 0.6861 0.6765 0.7311 0.7385 0.7605 0.7746 0.7571
bottle 0.3305 0.5136 0.6342 0.7011 0.6821 0.6962 0.7168 0.7157 0.7269 0.7170
bus 0.6397 0.7902 0.8424 0.8679 0.8799 0.8826 0.8764 0.9055 0.8896 0.8895
car 0.8282 0.8679 0.9046 0.9197 0.9315 0.9278 0.9289 0.9415 0.9361 0.9444
cat 0.6149 0.6459 0.7050 0.7604 0.7967 0.8057 0.8478 0.8442 0.8677 0.8678
chair 0.2801 0.4658 0.5293 0.5943 0.6065 0.6606 0.6536 0.6804 0.6816 0.6644
cow 0.4893 0.5889 0.7511 0.7957 0.8564 0.8563 0.8770 0.8923 0.8962 0.8879
diningtable 0.4040 0.6601 0.7300 0.7513 0.7683 0.7757 0.8127 0.7853 0.7917 0.8261
dog 0.4538 0.5576 0.6240 0.7286 0.7677 0.8106 0.8141 0.8312 0.8455 0.8423
horse 0.6824 0.7171 0.8435 0.8705 0.8950 0.9124 0.9176 0.9177 0.9106 0.9152
motorbike 0.6550 0.7600 0.8192 0.8680 0.8879 0.9018 0.8965 0.9083 0.9223 0.9071
person 0.7515 0.8043 0.8317 0.8594 0.8697 0.8719 0.8838 0.8833 0.8884 0.8909
pottedplant 0.1345 0.3226 0.4444 0.5016 0.5002 0.5580 0.5474 0.5797 0.5766 0.5711
sheep 0.4641 0.6195 0.7189 0.7701 0.8222 0.8462 0.8314 0.8604 0.8470 0.8432
sofa 0.5112 0.6142 0.6920 0.7316 0.7497 0.7729 0.7776 0.7914 0.7973 0.8028
train 0.6819 0.7584 0.8198 0.8357 0.8502 0.8604 0.8765 0.8655 0.8708 0.8788
tvmonitor 0.5894 0.6781 0.7464 0.7856 0.7694 0.8276 0.8300 0.8346 0.8332 0.8469
Mean AP50 0.5344 0.6482 0.7265 0.7730 0.7897 0.8140 0.8206 0.8315 0.8337 0.8361

Figure 6.6: The master test set AP50 score for each class. The highest and second-highest AP50
scores are bolded.

Training round
Object 1 2 3 4 5 6 7 8 9 10
aeroplane 118 3.8% 174 2.8% 278 2.9% 382 3.1% 474 3.1% 555 3.1% 620 3.1% 683 3.1% 736 3.2% 916 3.6%
bicycle 105 3.4% 186 2.9% 285 3.0% 398 3.2% 496 3.2% 592 3.3% 679 3.4% 754 3.4% 794 3.5% 826 3.2%
bird 145 4.7% 243 3.9% 341 3.6% 424 3.4% 510 3.3% 609 3.4% 696 3.4% 787 3.6% 855 3.7% 1106 4.3%
boat 64 2.1% 179 2.8% 275 2.9% 360 2.9% 447 2.9% 543 3.0% 628 3.1% 787 3.6% 692 3.0% 704 2.7%
bottle 121 3.9% 281 4.5% 434 4.6% 580 4.6% 696 4.5% 814 4.5% 896 4.4% 960 4.4% 993 4.3% 1030 4.0%
bus 93 3.0% 190 3.0% 290 3.1% 397 3.2% 490 3.2% 583 3.2% 612 3.0% 620 2.8% 621 2.7% 627 2.4%
car 260 8.5% 490 7.8% 706 7.5% 934 7.5% 1144 7.4% 1309 7.2% 1456 7.2% 1574 7.2% 1677 7.3% 1990 7.8%
cat 196 6.4% 284 4.5% 385 4.1% 495 4.0% 616 4.0% 717 4.0% 816 4.0% 916 4.2% 992 4.3% 1428 5.6%
chair 237 7.7% 517 8.2% 825 8.7% 1084 8.7% 1299 8.4% 1501 8.3% 1637 8.1% 1740 7.9% 1801 7.9% 1870 7.3%
cow 65 2.1% 141 2.2% 200 2.1% 279 2.2% 351 2.3% 434 2.4% 449 2.2% 451 2.1% 453 2.0% 455 1.8%
diningtable 112 3.7% 305 4.8% 477 5.1% 611 4.9% 723 4.7% 836 4.6% 871 4.3% 885 4.0% 891 3.9% 904 3.5%
dog 189 6.2% 371 5.9% 515 5.5% 676 5.4% 832 5.4% 979 5.4% 1116 5.5% 1228 5.6% 1334 5.8% 1727 6.7%
horse 88 2.9% 176 2.8% 262 2.8% 354 2.8% 456 3.0% 549 3.0% 640 3.2% 722 3.3% 749 3.3% 777 3.0%
motorbike 85 2.8% 183 2.9% 278 2.9% 372 3.0% 465 3.0% 548 3.0% 640 3.2% 711 3.2% 754 3.3% 785 3.1%
person 739 24.1% 1492 23.7% 2241 23.7% 2984 23.9% 3712 24.1% 4406 24.3% 4953 24.5% 5402 24.7% 5643 24.7% 6469 25.2%
pottedplant 90 2.9% 245 3.9% 398 4.2% 508 4.1% 604 3.9% 694 3.8% 771 3.8% 823 3.8% 828 3.6% 841 3.3%
sheep 53 1.7% 123 2.0% 181 1.9% 246 2.0% 330 2.1% 391 2.2% 417 2.1% 420 1.9% 422 1.8% 423 1.7%
sofa 113 3.8% 287 4.6% 415 4.4% 550 4.4% 670 4.4% 795 4.4% 914 4.5% 987 4.5% 1009 4.4% 1067 4.2%
train 102 3.3% 202 3.2% 289 3.1% 370 3.0% 464 3.0% 556 3.1% 640 3.2% 714 3.3% 774 3.4% 813 3.2%
tvmonitor 90 2.9% 237 3.8% 362 3.8% 488 3.9% 594 3.9% 694 3.8% 783 3.9% 852 3.9% 863 3.8% 874 3.4%
Total objects 3066 100% 6306 100% 9437 100% 12492 100% 15373 100% 18105 100% 20234 100% 21911 100% 22881 100% 25632 100%
Total images 2000 3816 5638 7453 9214 10922 12322 13473 14217 16551

Figure 6.7: Number of objects in combination of train, validation, and test sets during the training
rounds.

6.7. Results 57

Round
1: 2000

im
ages

Round
2: 3816

im
ages

Round
3: 5638

im
ages

Round
4: 7453

im
ages

Round
5: 9214

im
ages

Round
6: 10922

im
ages

Round
7: 12322

im
ages

Round
8: 13473

im
ages

Round
9: 14217

im
ages

Round
10: 16551

im
ages

0.6

0.8

1

Train set
Validation set
Test set
Performance test set

Figure 6.8: AP50 score evolution through the training rounds.

7. Conclusions

In this thesis, our main topic was to study active learning to minimize the amount of
training data required to train a modern, state-of-the-art object detector that predicts
the estimated localization IoU. We wanted to make the proposed method useful in
real-life use cases, and that’s why it needed to meet the following requirements:

1. The proposed method needs to be computationally efficient.

2. The proposed sampling method must keep the training dataset balanced (sample
images from each object class).

As described before, our proposed method fulfills these requirements. The exper-
iment shows that it can be used efficiently to sample the most informative images and
save a vast amount of data labeling work. Also, we are the first ones to leverage the
predicted IoU in the active learning process.

In the beginning, we studied different object detection architectures to find the
most suitable one for our research. Based on this research, we decided to focus on the
YOLOX, which was published in August 2021 [11]. There were four main reasons why
we selected to use YOLOX. First, it is the most accurate real-time object detector, and
that’s why the best candidate for most real-life object detection applications. Second,
it uses three interesting properties that have not been used before in active learning.

From our point of view, the most interesting properties in YOLOX are mixup data
augmentation, IoU prediction, and the decoupled head. Each of these properties affects
how the active learning method should be built. First, the mixup creates linear behavior
between the decision boundaries, which affects predicted detection confidences. Second,
with the decoupled head, the classification and localization have their own heads and
last convolution layers, which makes it more important to estimate image informativity
from both perspectives. As a solution, we have proved that the predicted IoU can be
used to estimate image informativity from the localization perspective.

At the thesis’s beginning, we went through the typical object detector architec-
ture and the most important building blocks. Then we introduced the augmentation
techniques to train these models. Both of these topics have developed quickly dur-

59

60 Chapter 7. Conclusions

ing the last five years, and the YOLOX combines the latest techniques from several
research papers.

Then we introduced the concept of active learning. The main principles of active
learning have stayed relatively similar during the last 15 years, and one of our active
learning sources was from 2007, which we found to be still relevant and applicable
to the latest deep learning-based models. There was only a limited amount of new
research available on this topic, which is surprising when we consider the potential
benefits that can be achieved with active learning.

Before going to the experiment, we introduced the YOLOX object detector. First,
we went through the whole YOLO family object detectors development timeline and
then focused on the YOLOX object detector. During this process, we found that the
improvement between two sequential models is usually relatively small, and updates
typically come from the other research papers. But when we compare the first and the
latest model, then there is a significant difference.

The last chapter of the thesis was the experiment. In the experiment, we proved
that our proposed method makes the labeling process more efficient, and it can save a
significant amount of annotation time. However, we expected even better results from
our method, and one reason may be the used dataset. According to Haussmann et
al., typical object detection datasets are already cleaned to contain mostly informative
samples [14]. This would cause the active learning method to be less beneficial than
in a real-life situation.

It is likely that our method could be improved few ways. First, we did not
use any sophisticated method to define the seed set, which may lower the benefits.
Because the most informative images are sampled with the object detector itself, it
is likely the model trained with better seed sets would have sampled different images.
Second, our way of defining the informativity image score is may not be optimal. In our
method, we multiple the classification confidence and the predicted IoU to get the final
detection confidence score. When defining image informativity, better results might
be achievable by using these two detection confidence numbers separately. Also, when
defining the classification confidence, we only used the highest classification confidence,
but YOLOX predicts confidence for each object class for each detected object. This
means that there can be more than one high confidence classification class for a single
detected object, and using this information could possibly give even better results.

Bibliography

[1] Model zoo. https://modelzoo.co/. Accessed: 2021-12-06.

[2] Pytorch hub. https://pytorch.org/hub/. Accessed: 2021-12-06.

[3] Tensorflow hub. https://tfhub.dev/. Accessed: 2021-12-06.

[4] Y. Amit, P. Felzenszwalb, and R. Girshick. Object Detection, pages 1–9. Springer
International Publishing, Cham, 2020.

[5] A. Bochkovskiy, C. Wang, and H. M. Liao. YOLOv4: Optimal speed and accuracy
of object detection. CoRR, abs/2004.10934, 2020.

[6] C. Brust, C. Käding, and J. Denzler. Active learning for deep object detection.
CoRR, abs/1809.09875, 2018.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko.
End-to-end object detection with transformers. In A. Vedaldi, H. Bischof, T. Brox,
and J.-M. Frahm, editors, Computer Vision – ECCV 2020, pages 213–229, Cham,
2020. Springer International Publishing.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The Pascal Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision, 88(2):303–338, June 2010.

[9] M. Everingham and J. Winn. The pascal visual object classes challenge 2012
(VOC2012) development kit. Pattern Analysis, Statistical Modelling and Compu-
tational Learning, Tech. Rep, 8:5, 2011.

[10] Z. Ge, S. Liu, Z. Li, O. Yoshie, and J. Sun. OTA: Optimal transport assignment
for object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 303–312, 2021.

[11] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun. YOLOX: exceeding YOLO series in
2021. CoRR, abs/2107.08430, 2021.

61

https://modelzoo.co/
https://pytorch.org/hub/
https://tfhub.dev/

62 Bibliography

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[13] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi. IQA:
visual question answering in interactive environments. CoRR, abs/1712.03316,
2017.

[14] E. Haussmann, M. Fenzi, K. Chitta, J. Ivanecky, H. Xu, D. Roy, A. Mittel,
N. Koumchatzky, C. Farabet, and J. M. Alvarez. Scalable active learning for
object detection. CoRR, abs/2004.04699, 2020.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convo-
lutional networks for visual recognition. In D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, editors, Computer Vision – ECCV 2014, pages 346–361, Cham,
2014. Springer International Publishing.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[18] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu. A survey of deep
learning-based object detection. IEEE Access, 7:128837–128868, 2019.

[19] G. Jocher, A. Stoken, A. Chaurasia, J. Borovec, NanoCode012, TaoXie, Y. Kwon,
K. Michael, L. Changyu, J. Fang, A. V, Laughing, tkianai, yxNONG, P. Skalski,
A. Hogan, J. Nadar, imyhxy, L. Mammana, AlexWang1900, C. Fati, D. Montes,
J. Hajek, L. Diaconu, M. T. Minh, Marc, albinxavi, fatih, oleg, and wang-
haoyang0106. YOLOv5. https://github.com/ultralytics/yolov5, 2020.

[20] C. Kao, T. Lee, P. Sen, and M. Liu. Localization-aware active learning for object
detection. CoRR, abs/1801.05124, 2018.

[21] K. Kim and H. S. Lee. Probabilistic anchor assignment with iou prediction for
object detection. In European Conference on Computer Vision, pages 355–371.
Springer, 2020.

[22] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

http://www.deeplearningbook.org
https://github.com/ultralytics/yolov5

Bibliography 63

[23] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft COCO: Common Objects in Context. In D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision – ECCV 2014,
pages 740–755, Cham, 2014. Springer International Publishing.

[26] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for instance
segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[27] I. Muslea, S. Minton, and C. A. Knoblock. Selective sampling with redundant
views. In AAAI/IAAI, pages 621–626, 2000.

[28] E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito, and A. J. S.
Lopez. Handbook Of Research On Machine Learning Applications and Trends:
Algorithms, Methods and Techniques - 2 Volumes. Information Science Reference
- Imprint of: IGI Publishing, Hershey, PA, 2009.

[29] F. Olsson. Bootstrapping Named Entity Annotation by Means of Active Machine
Learning: A Method for Creating Corpora. PhD thesis, , SICS, 2008.

[30] F. Olsson. A literature survey of active machine learning in the context of natural
language processing. Technical Report 2009:06, SICS, 2009.

[31] R. Padilla, S. L. Netto, and E. A. B. da Silva. A survey on performance metrics
for object-detection algorithms. In 2020 International Conference on Systems,
Signals and Image Processing (IWSSIP), pages 237–242, 2020.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 779–788, 2016.

[33] J. Redmon and A. Farhadi. YOLO9000: Better, faster, stronger. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6517–
6525, 2017.

64 Bibliography

[34] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

[35] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1137–1149, 2017.

[36] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds: Human-machine
collaboration for object annotation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[37] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of big data, 6(1):1–48, 2019.

[38] G. Song, Y. Liu, and X. Wang. Revisiting the sibling head in object detector.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11563–11572, 2020.

[39] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations for visual object de-
tection. In Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence, 2012.

[40] Z. Tian, C. Shen, H. Chen, and T. He. FCOS: Fully Convolutional One-Stage
Object Detection. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9626–9635, 2019.

[41] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh.
CSPNet: A new backbone that can enhance learning capability of cnn. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2020.

[42] L. Wang, M. Han, X. Li, N. Zhang, and H. Cheng. Review of classification methods
on unbalanced data sets. IEEE Access, 9:64606–64628, 2021.

[43] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. CutMix: Regularization
strategy to train strong classifiers with localizable features. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.

[44] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical
risk minimization. CoRR, abs/1710.09412, 2017.

[45] S. Zhang, L. Song, S. Liu, Z. Ge, Z. Li, X. He, and J. Sun. Workshop on au-
tonomous driving at CVPR 2021: Technical report for streaming perception chal-
lenge. CoRR, abs/2108.04230, 2021.

Bibliography 65

[46] Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and X. Wang.
ByteTrack: Multi-object tracking by associating every detection box. CoRR,
abs/2110.06864, 2021.

[47] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu. Object detection with deep learn-
ing: A review. IEEE Transactions on Neural Networks and Learning Systems,
30(11):3212–3232, 2019.

[48] J. Zhu, H. Wang, and E. Hovy. Learning a stopping criterion for active learning
for word sense disambiguation and text classification. In Proceedings of the Third
International Joint Conference on Natural Language Processing: Volume-I, 2008.

[49] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai. Deformable DETR: De-
formable transformers for end-to-end object detection. In International Conference
on Learning Representations, 2021.

	Introduction
	Motivation of the research
	Related work
	Structure of thesis

	Convolutional Neural networks in Object Detection
	Object Detector Architecture
	Data augmentation
	Real-time and slower object detectors

	Performance Metrics for Object-Detection Algorithms
	Definition of correct localization
	Precision and Recall
	Average Precision (AP) and Mean Average Precision (mAP)

	YOLOX
	YOLO detectors history
	YOLOX - latest innovations to YOLO architecture
	YOLOX Performance

	Active Learning
	Active Learning vs. Passive Learning
	Active Learning Process
	Defining the seed set
	Selecting the most informative data samples
	Terminating the active learning loop

	Active learning as annotation support

	Experiments
	Pascal VOC object detection dataset
	YOLOX-S object detector
	Model training
	Defining detection uncertainty score
	Used Active Learning Process
	Training rounds progress
	Results

	Conclusions
	Bibliography

