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The research and methods in the field of computational biology have grown in the last decades,
thanks to the availability of biological data. One of the applications in computational biology is
genome sequencing or sequence alignment, a method to arrange sequences of, for example, DNA or
RNA, to determine regions of similarity between these sequences. Sequence alignment applications
include public health purposes, such as monitoring antimicrobial resistance.

Demand for fast sequence alignment has led to the usage of data structures, such as the de Bruijn
graph, to store a large amount of information efficiently. De Bruijn graphs are currently one of the
top data structures used in indexing genome sequences, and different methods to represent them
have been explored. One of these methods is the BOSS data structure, a special case of Wheeler
graph index, which uses succinct data structures to represent a de Bruijn graph.

As genomes can take a large amount of space, the construction of succinct de Bruijn graphs is slow.
This has led to experimental research on using large-scale cluster engines such as Apache Spark
and Graphic Processing Units (GPUs) in genome data processing.

This thesis explores the use of Apache Spark and Spark RAPIDS, a GPU computing library for
Apache Spark, in the construction of a succinct de Bruijn graph index from genome sequences.
The experimental results indicate that Spark RAPIDS can provide up to 8× speedups to specific
operations, but for some other operations has severe limitations that limit its processing power in
terms of succinct de Bruijn graph index construction.
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1. Introduction

1.1 Motivation

Computational biology as a field has evolved over the last 20 years [11], due to the
explosive increase of biological data in terms of volume, velocity and variety that has
come with the technological advancement of computing technology. This rapid develop-
ment has led to the development of many applications that make use of computational
biology in the modern world, for example battling the SARS-CoV-2 [18] pandemic.
One of the emerging methods used in computational biology is Sequence alignment.

Sequence alignment [26] is a way of arranging sequences of DNA, RNA or protein
to determine regions of similarity between the sequences using reads. These regions
of similarity may stem from a consequence of a functional, structural or evolutionary
relation between the different sequences. A read is a sequence that is obtained from a
fragmented genome, where each sequenced fragment produces a read.

An approximate form of sequence alignment, pseudoalignment, gives only the
information whether a read matches to a reference sequence or not [22], and is often
sufficient for analysis. Compared to pseudoalignment, regular alignment also returns
the location of the match in the genome. Pseudoalignment has the advantage of being
computationally more efficient in terms of speed and cost, a property that becomes
important when working with a large amount of data.

Genome indexes created for sequence alignment have many applications. Metage-
nomic sequences are for example used for public health purposes, such as monitoring
antimicrobial resistance [27]. Antimicrobial resistance is considered to be one of the
top public threats, as its spread will lead to increased mortality for many bacterial
illnesses [27]. The research into antimicrobial resistance has been made possible due
to the increasing amount of sequences available, and data structures that represent it
efficiently.

The technology for producing sequences has made remarkable progress in the last
20 years. Large sequencing initiatives have been completed that aim to study genetic
variation for humans and agriculturally and bio-medically important species. For ex-
ample, human genome projects 1000 Genomes was announced in 2008 and completed
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2 Chapter 1. Introduction

in 2015 [4], and the 100 000 Genomes was announced in 2013 and completed in 2018∗.
These projects showcase the increase of speed of sequencing projects [10].

As sequence alignment is a computationally heavy task, it is important to ensure
that tools for it are reliable and efficient. Further development of these tools and
methods is important, in terms of both improving software and hardware used in
sequence alignment.

Software can be improved by for example by using compact data structures such
as the succinct de Bruijn graph that enable the usage of fast algorithms that take
advantage of its compact form.

Hardware can be improved by the development of various different types of proces-
sors and by scaling out and increasing performance by introducing more processors that
parallelize the workload. Improving current processors has led to the usage of graphics
processing units (GPUs) as an alternative to the traditional central processing units
(CPUs). GPUs have been a major factor in modern neural network computing [21]
and due to their usefulness in, for example, cryptocurrency mining [16], demand for
them has greatly risen†.

1.2 Background

The de Bruijn graph has become a staple in computational biology since it was in-
troduced in the context of bioinformatics [19, 27, 20]. It is widely used in modern
genomics, as it is essential in genome assembly [27]. As de Bruijn graphs are often cre-
ated from large-scale data and have different variations depending on the application,
a number of different ways to implement and represent them have been created.

De Bruijn graphs are constructed from a set of strings called k-mers, that are
substrings of a biological sequence that are the length of k. A set of k-mers can
be thought to represent a genome sequence in its entirety, while a de Bruijn graph
constructed from a set of k-mers represents the k-mers and the relation between them
in a compressed form. A variant of the original de Bruijn graph, the colored de Bruijn
graph, includes the source of each vertex in the graph as additional information.

The intended use of colored de Bruijn graphs is to represent massive population-
level sequence data that has become abundant due to the rapid advancement of se-
quencing technology in the last 20 years. From these graphs, variant information of an
individual or population can be inferred [27, 20]. They are built in various different
approaches and representations.

While the initial application [20] for colored de Bruijn graphs was for assembly
∗https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/
†https://www.bbc.com/news/technology-55755820
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and genotyping, it has been used in other fields of computational biology, such as
pan-genomics [41].

However, as the datasets are large, the methods to analyze them are limited.
While colored de Bruijn graphs have served as a popular choice in computational
biology, they are still hindered by few factors [17]. First, building a de Bruijn graph
from raw sequence reads is computationally demanding, and consumes a lot of memory.
Second, as the application purposes can vary, suitable software libraries for a specific
purpose may not exist, meaning that often data structures to index the de Bruijn
graph have to be re-implemented. Furthermore, adding colors to the de Bruijn graph
accelerates the already problematic memory consumption, as the colors tend to use
more memory than the edges and vertices of the graph [17].

As the amount of data is constantly growing, the need to implement the colored
de Bruijn graphs using succinct data structures has risen. Succinct data structures aim
to use as little space as possible while retaining fast operations. Succinct de Bruijn
graphs can be used for fast and light pseudoalignments, and as a consequence, the
research for space-efficient representations of de Bruijn graphs has grown. The formal
descriptions of a de Bruijn graph, succinct de Bruijn graph, colored de Bruijn graph,
and k-mers will be introduced in Chapter 2.

Examples of recent research into different succinct representations of de Bruijn
graphs include TwoPaCo [25], BCALM2 [9] and BiFrost [17]. TwoPaCo builds a suc-
cinct colored de Bruijn graph from k-mers which are either branching or located at the
extremities of unitigs, a special kind of set of reads from k-mers, that they call junc-
tion k-mers [25]. BCALM2 also uses unitigs and partitions to make parallel processing
possible, combining the partitions after they have been computed [9]. Bifrost adopts
a similar approach, using unitigs, partitioning, and a space-efficient probabilistic data
structure called Bloom filter for minimizer hashing, to provide a compact form for a
succinct de Bruijn graph [17]. Minimizer of a k-mer x is a l-mer y occurring in x such
that l < k and y is lexicographically smallest of all the l-mers in x [17].

Similarly to the increasing availability and volume of sequencing data, the amount
of data in general has rapidly grown in recent years [35]. Creating tools for accessing,
analyzing and storing massive amounts of data has been a popular topic in both re-
search and industry. This had led to the creation of various frameworks suited for these
purposes, such as Apache Spark [39]. Apache Spark is a cluster computing framework
that enables parallel processing between multiple nodes, while retaining a simple pro-
gramming interface that does not require the programmer to implement the parallelity.
Specifics of Spark will be explored in more detail in Chapter 2.6. While Spark and
similar frameworks have wide applications across different fields, they have not had
wide use in the analysis of genomic and proteomic sequences [32].
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However, several tools exist that make use of Spark and other similar frameworks
like MapReduce in the context of computational biology. Hadoop-BAM software li-
brary made use of Hadoop distributed computing framework to manipulate sequencing
data, and it could also be used to interface legacy bioinformatics data formats in Apache
Spark [29]. Software tool KCH was the first suite of MapReduce algorithms specifically
designed for linguistic and informational analysis of large collections of biological se-
quences, implemented in Apache Hadoop [31]. KCH showed that big data technologies
can be superior to highly-optimized shared memory multiprocessor approaches, even
when dealing with data that is considered mid-size. It has given experimental evidence
that big data technologies show promise for being an effective solution of a broad spec-
trum of problems in computational biology, ranging from basic primitives to analysis
and storage pipelines [31].

ADAM, a Spark-based toolkit meant for exploring genomic data, is an early
attempt to use Spark to extract k-mers. It is able to process large genomic sequences
by splitting sequences into different nodes. Being an early exploration, it suffers from
a simplistic approach and thus has a very poor resource utilization [32, 24].

Another example is FastKmer, a system used for the extraction of k-mer statistics
from large collection of genomic and meta-genomic sequences [32]. FastKmer is imple-
mented in Spark, and makes use of compression and custom partitioning to optimize
the results. While building succinct de Bruijn graphs was not the primary motivation
for FastKmer, k-mer statistics can be used to construct de Bruijn graphs. FastKmer
highlighted the importance of tuning Spark parameters, and emphasized that naive
usage of Spark and similar tools can lead to poor results, but with proper tuning, the
results can be impressive.

While distributed computing frameworks have received a lot of attention recently
as a solution to big data and heavy computing, different approaches have also been
proposed. Graphical Processing Units (GPUs) have massive parallel computing capa-
bilities that enables applications that were previously thought infeasible because of long
execution times [28]. GPUs have evolved from a configurable graphics processors to
programmable parallel processors, and are a many-core multithreaded multiprocessors
that excel at both graphics and computing applications. Modern GPUs have thousands
of parallel processor cores that execute tens of thousands of parallel threads, that can
be used to solve large problems that have inherent parallelism. They are also cost-
effective, and have become the most prevalent massively parallel processing resource
available.

The original driving force for GPUs was to render real-time graphics, a computing
task which has tremendous inherent parallelism. GPU computing frameworks, such
as the CUDA parallel computing model, can be used to create programs written in
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C or C++ code that scales transparently over a wide range of parallelism. GPU
technology has vastly improved in the last 20 years, with transistor counts and CUDA
parallel computing cores doubling every 18 months since their introduction in 2010.
In 2007, NVIDIA introduced the Tesla C870, D870 and S870 GPU card, deskside
and rack-mount GPU computing systems that contain one, two and four T8 GPUs.
These CUDA-capable GPUs enabled researchers and industry developers to create a
diverse range of applications. The modern equivalent, the NVIDIA V100 is a massive
improvement, for example with the number of CUDA cores rising from the 4× 128 of
S870 to the 6912 of A100∗†.

The interest in GPUs in the field of computational biology has grown, with GPUs
being recently experimented in applications involving genome assembly. Gerbil is one
of the more notable k-mer counting tools that use GPUs [13]. Written in CUDA,
it proved to be noticeably more efficient than a similar CPU oriented solution when
the length of k was sufficiently large. It employs the use of supermers, a contiguous
sequence of bases wherein each k-mer shares the same minimizer [13]. However, Gerbil
is a single-node shared memory system, meaning that it is not practical for analyzing
datasets that are massive in scale.

DEDUKT was the first GPU-accelerated distributed-memory parallel k-mer
counter [30]. Implemented using CUDA, experimental results show that the GPU-
based computation reduced the execution time by one to two orders of magnitude
compared to distributed-memory CPU counterpart when using large-scale genomic
data. However, the GPU acceleration results in a communication bottleneck, that is
addressed by using supermers similarly to ones used in Gerbil. DEDUDKT outper-
forms existing CPU based framework by up to 150× on a H. sapien 54× genome data
set, showcasing the massive potential of distributed GPU computing.

Few GPU-based approaches to build succinct de Bruijn graph have also been
created with the intention of providing a speedup for succinct de Bruijn graph con-
struction. ParaHash is a succinct de Bruijn graph assembler that partitions the input
data into a compact format, and parallelizes the computation between CPUs and GPUs
of a single computer [33]. ParaHash tries to make use of all processors available in a
single machine to assemble genomes that are too large to fit into memory. However,
Parahash is limited due to how it handles repeat k-mers, as it cannot be used for
micro-assembly, a form of assembly that improves the accuracy of the graph. GATK
HC is another GPU-based succinct de Bruijn graph assembler [34]. It assumes there
are no repeat k-mers in its input dataset and calculates the occurrences of (k+1)-mers
in parallel on the GPU, and only used CPU to check for repeat k-mers. Using these

∗https://www.nvidia.com/en-us/data-center/a100/
†https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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techniques, it achieves up to 2.66× speedup compared to CPU implementation, and it
is well suited for micro-assembly.

As methods for both parallel distributed computing frameworks, such as Spark,
and GPU computing have been on the rise in large-scale computing, attempts to com-
bine both into a single united framework have been made. DEDUKT is an example
of how combining both distributed parallel computing and GPUs can lead to massive
speedups, but it has the downside of being suited only for a very specific purpose.
Spark RAPIDS library is an addition to the Apache Spark framework that enables
Spark to use GPU computing∗. Built on top of CUDA, Spark RAPIDS can potentially
provide a cost-effective and easily programmable speedup solution to a wide array of
applications, including genome sequencing.

This thesis explores combining succinct de Bruijn graph construction with parallel
computing and GPU computing, and showcases the results of a Spark RAPIDS enabled
tool that builds a succinct de Bruijn graph. This tool is modeled after Themisto [22],
a pseudoalignment tool created by Alanko et al., that constructs and uses succinct
de Bruijn graphs, and is also part of its suite. For the remainder of the thesis, the
experimental pipeline explored in this thesis is referred to as Spark Themisto, with
it being additionally referred as GPU-enabled Spark Themisto when considering its
version that uses RAPIDS, while the original Themisto created by Alanko et al. is re-
ferred as original Themisto. However, when discussing simply Themisto, the discussion
applies to all versions unless explicitly mentioned otherwise.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows: Chapter 2 gives an overview of the
preliminaries related to the topic, presenting a detailed overview of a de Bruijn graph
and its variations. Chapter 3 explains the methods used, along with a introduction to
Themisto. The results of the experiments are shown in Chapter 4, while Chapter 5
concludes.

∗https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/apache-spark-3/ebook-
sign-up/



2. Preliminaries and definitions

In order to understand the upcoming definitions such as de Bruijn graphs, crucial
preliminaries have to be introduced first in order to understand data structures and
tools used by Themisto.

A string is in traditional computer programming a sequence of characters. A
string X can be defined as T [0...n − 1] = t[0]t[1]...t[n − 1], n being the length of the
string, where individual t[i] represents a single character, where 0 ≤ i ≤ n − 1. Each
character belongs to an ordered alphabet Σ that is the size of σ. A substring of T is
defined as t[i]t[i + 1]...t[j], where 0 ≤ i ≤ j ≤ n − 1. Now, prefix of T is defined as a
substring where i = 0, and suffix of T is defined as a substring where j = n − 1. An
empty string that contains no characters is denoted with ε, and is the prefix and suffix
of any possible string. If a string is the length of k, it is called a k-mer.

A set of strings can be ordered by lexicographic order and colexicographic order.
The lexicographic order of strings is given by reading strings from left to right, where
the order of strings is determined by the first character that differs and their respective
ordering in the alphabet. Colexicographic ordering is the same except instead of reading
the string from left to right, the string is read from right to left. If strings being ordered
have lengths that differ, a padding of null characters can be added to either to the
beginning or to the end, depending on the ordering used. These null characters are
treated as smaller than any other element in alphabet Σ. This enables the comparing
of strings with different lengths. For example, if Σ = {a, b, c}, where the alphabet Σ
is ordered in the following way: a < b < c, the lexicographic order of a set of strings
{ac, a, aa, bbb} after padding would be a$$ < aa$ < ac$ < bbb, and the colexicographic
order of the same strings after padding would be $$a < $aa < bbb < $ac.

A graph G is defined as a pair of two sets G = (V,E), where V = {v1, ..., vn} is the
set of vertices and E = {e1, ..., em} is the set of edges, where an edge can be considered
a pair of vertices ei = (v, u), where v, u ∈ V , that are connected. These edges may
be directed, where they are defined as an ordered pair, in which edge ex = (v, u) that
goes from v to u is distinguished from edge ey = (u, v), that goes from u to v. Edges
can also have weights w(e) where e ∈ E, a function that assigns a weight to each edge.
Weight can represent costs and labels, but here it is important to know that it can be

7
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a string representation of a k-mer string.

2.1 De Bruijn Graph

De Bruijn graphs are special graphs, and are especially used in computational biol-
ogy [3, 20]. The de Bruijn graphs used in computational biology [20] slightly differ
from the mathematical standard ones, with the ones used in computational biology be-
ing a subgraph of the mathematical standard de Bruijn graph [37]. A simple de Bruijn
graph following the mathematical standard can be seen in Figure 2.1. De Bruijn graphs
are defined by the order of k, and in this thesis we consider them to be created from a
set of input strings S1, ..., Sm, which represent sequence reads from a DNA or individ-
ual genomes. There are two ways to define a de Bruijn graph, a node-centric and an
edge-centric definition.
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Figure 2.1: A simple mathematical standard de Bruijn graph of order k = 4 with the edge-centric
definition over alphabet Σ where {0, 1} = Σ. The mathematical standard de Bruijn graph of length
k has |Σ|(k−1) vertices that are all the possible string variations over alphabet Σ length of n. With
the edge-centric definition, edges exist from node v to node u if v’s (k− 1)-mers suffix length of k− 2
equals u’s (k − 1)-mers prefix length of k − 2. The structure of the graph is from Wikipedia*.

∗https://sv.m.wikipedia.org/wiki/Fil:De_bruijn_graph-for_binary_sequence_of_order_4.svg
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In the node-centric definition, all nodes are distinct parsed k-mers, with an edge
existing between nodes v and u if and only if the last k − 1 characters of a node v are
the same as the first k−1 characters of u. The node-centric graph is a subgraph of the
mathematical order-k de Bruijn graph, where the alphabet is over the input strings,
taking the nodes that correspond to all |Σ|k, where Σ is the alphabet, possible input
strings and adding edges between them.

The edge-centric definition has the distinct (k − 1)-mers of the input string as
nodes, with an edge existing between two nodes v and u if and only if a k-mer exists
in an input string that is prefixed by v and suffixed by u. This is a subgraph of the
de Bruijn graph of order k − 1, where the alphabet is over the input strings. In the
edge-centric definition, not all edges over nodes are necessarily included. This is due
to the fact that even though a case occurs where node v and u have overlapping suffix
and prefix length of k − 2, the edge between v and u will not exist in the graph if the
k-mer does not exist in the input. For the remainder of the thesis, the edge-centric
definition will be used when discussing de Bruijn graphs.

A colored de Bruijn graph [3] is a special variation of the de Bruijn graph, where
the additional information of cases a k-mer has appeared is stored. In this variation,
each node has an additional label called color set. The different cases of coloring vary
depending on the application. For example, a unique color may represent a single input
file, or type of the sequence. A node can have multiple colors, each one signaling that
this k-mer appeared in the corresponding case. As k-mers can have multiple colors,
they are labeled with the set of colors they have. These color sets can consist of any
possible colors. This will be further explained in Section 2.5.

The base De Bruijn graph as a concept is a crucial part of Themisto, as Themisto
is a succinct de Bruijn graph, and therefore relies on its base concepts.

2.2 Succinct Data Structures

Succinct data structures are data structures that use low amount of space, but still allow
efficient querying. Succinct data structures encode data efficiently, and no decoding
needs to be used to query them. Every operation reads bits from the data structure,
meaning that they are encoded by using 0s and 1s.

Let T = t[0]t[1]...t[n − 1], where t[i] ∈ Σ, be a string of length n and let the
alphabet size be σ = |Σ|. Using succinct data structures, string T can be stored
in Ndlog2 σe bits, and any character t[i] can be retrieved in constant time using bit
operations.

A common use for a succinct data structure is to compute rank and select values
on strings. The rank query returns the amount of i’s present in a half-open interval
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0    1    2    3    4    5    6          0    1    2    3    4    5    6
0 1 0 0 1 1 0 0 1 0 0 1 1 0

Figure 2.2: A simple representation of the results of a rank and select query on a bit vector.

[0, i), or more formally rankc(T, i), where c ∈ Σ and 1 ≤ i ≤ n, returns the number
of c’s in t[0]...t[i − 1]. For any T and c we define rankc(T, 0) = 0. The select query
returns the index position of j-th c in T . More formally, selectc(T, j) = h where c ∈ Σ
and h is the index of jth c in T , where the indexing of T starts from 0. For any t and
c, selectc(T, 0) = 0 and selectc(T, j) = n for any j > rankc(T, n).

The rank and select algorithms are used in Wheeler graphs and by extension
succinct de Bruijn graphs. The usage of these will be elaborated in Section 2.4.

While rank and select queries are not directly related to the Spark Themisto
pipeline explored in this thesis, it is important to understand them in order to know
how the graphs created by Spark Themisto are used and how they are used in the
original Themisto.

2.3 Wheeler Graphs

Wheeler graphs are directed edge-labeled graphs, where nodes can be sorted by the in-
coming path labels [2, 15]. They can be used to explain many succinct data structures,
such as succinct de Bruijn graphs created by Themisto. Wheeler graphs allow succinct
storage of a graph, while allowing optimal querying. They make use of a generalized
kind of Burrows-Wheeler transform [8], an algorithm that rearranges a string into runs
of similar characters for the purpose of compression.

Wheeler graphs are defined as a generalization of colexicographic order of strings.
The nodes of a Wheeler graph have to be able to be ordered by an order that satisfies
three conditions in order to for a graph to be a Wheeler graph. Let λ(e) symbolize
the single character label of an edge that connects two nodes. The first condition is
as follows: For all pairs of edges ex(ux, vx) and ey(uy, vy), if their respective labels
are not equal, it means that the node with the label that has a smaller character in
colexicographic order, is always smaller. Or in more formal terms:

1 : if, λ(ex) 6= λ(ey) then it follows that: (vx < vy ↔ λ(ex) < λ(ey)).
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The second condition states that for nodes where ux 6= uy and vx 6= vy, for all
pairs of edges ex(ux, vx) and ey(uy, vy), if the single character labels of the edges are
the same, but the sources are different, the destination of the lower-source edge must
not come after the destination of the higher-source edge. Formally:

2 : λ(ex) = λ(ey), then it follows that (vx < vy ↔ ux < uy).

The third and final condition states that the source nodes of the graph, which
are the nodes that have no incoming edges, are smaller in colexicographic order than
any node with more than zero incoming edges. Note that this is true only for nodes
with no incoming edges, and does not mean that nodes with less incoming edges are
always smaller than nodes with more incoming edges. This can be described for a pair
of nodes u, v formally as follows:

3 : indegree(v) = 0 ∧ indegree(u) 6= 0, then it follows that v < u.

These three conditions are the Wheeler conditions that a graph has to fulfill in
order for it to be considered a Wheeler graph. In short, the conditions state that the
order of the nodes are decided by the incoming labels. If ties exist, they are decided
by the origins of the edges, with the special case where nodes with no incoming edges
coming before nodes with incoming edges.

If strings s and t are modeled in a graph as a non-branching paths, then the
final nodes on the paths are ordered in a colexicographic order in the same order as
colexicographic order of s and t. It is due to this why Wheeler graphs can be considered
to be a generalization of colexicographic order on strings [15].

One of the features of a Wheeler graph comes from its third condition: All in-
coming edges to a single node have the same label, as otherwise there would be a
contradiction in the form of where a node would have to be strictly smaller than itself.
This also makes Wheeler graph input consistent, as all the incoming edges of a single
node have the same label. Because of this, the labels can be thought to be in the nodes
instead of the edges, as the edge labels can just simply be pushed to the node, with
nodes that have no incoming edges having the label of ε, the empty character that is
not in the actual alphabet and is smaller than any other character.

When a subpath query is done on a graph G = (V,E), it takes a string s and
returns a representation of all nodes v where a subpath exists to v with the label s.
Wheeler graphs can be indexed for efficient subpath queries, which is the main moti-
vation for its existence. The subroutines of the subpath queries used are the rank and
select queries explained in Section 2.2. The detailed explanation of using these queries
in Wheeler graph will be explained in the following section.
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2.4 Succinct de Bruijn graphs

As mentioned in Section 1, research into more compact forms of de Bruijn graphs has
risen [7]. As Themisto is a succinct de Bruijn graph, its implementation relies on the
following concepts.

Bowe et al. created a succinct de Bruijn graph representation that has made
it possible to represent de Bruijn graphs in a compact form. It is called the BOSS
data structure [3], and it makes use of a compressed full-text substring index called
FM-index [14]. FM-index in turn is based on Burrows-Wheeler transform.

This BOSS data structure is described using strictly strings in its original paper.
However, Alanko et al. represent it using a Wheeler graph index, which will be used
here due to it being easier to understand.

LetW be a Wheeler graph index for a succinct de Bruijn graph G, that is created
from W . The edges e of this larger graph W are labeled with single characters, and
the label of an edge is denoted as L(e), with the nodes having no special features and
being unlabeled. As G is a de Bruijn graph, we can denote its properties using k-mers,
with nodes representing (k − 1)-mers that contain the (k − 1)-mer label.

The label for node v is marked as l(v) and they are called nodemers. The nodes
V are ordered colexicographically by the labels l(v) with ties broken arbitrarily. For
edges e of G that represent k-mers, we denote them as l(e) and call them edgemers.
Edgemers include the complete k-mer, which can be thought to include the nodemer
where the edge starts from, followed by the L(e). Note that l(e), the edgemer, contains
the full k-mer, and is not to be confused with the label of an edge of G which is denoted
as L(e) that contains only the last character of the corresponding edgemer l(e).

Due to how de Bruijn graphs work, all incoming paths to a node v that are the
length of (k − 1) will form the same string. For example, if we have (k − 1)-mer with
a nodemer "GTA" with arbitrary amount of incoming edges, no matter which edge we
will choose to traverse back, the last three edges will be "A", "T" and "G", forming the
k-mer "GTA".

Because some nodes in graph G do not have (k− 1) length path leading to them,
dummy nodes and dummy edges are added to the graph. For every node v that has
indegree of 0, a path of k dummy nodes are added that lead to them, these dummy
nodes representing the all possible prefixes of v, until the empty string ε is reached.
For example, a node that has no incoming edges and has the label "AGT" and is a
(k− 1)-mer with k = 4, will have added path of incoming edges from nodes "AG", "A"
and "ε". The added edges that come from this have the last character of the node they
are leading to as their label, so for example, in the previous example, the outgoing
edge from node ε has "A" as its label, as it leads to node "A".
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Figure 2.3: A Wheeler Graph that corresponds to a succinct colored de Bruijn graph, built from
sequences "ACGTAA", "ACACGT", "AGTA", "GCGCGCGA". The indexes EBWT , O, and I all use
the colexicographic order of the nodes. The colexicographic order here is ε, A, TAA, ACA, CGA,
GTA, AC, CAC, CGC, AG, ACG, GCG, AGT, CGT. For example, for node CGT, we can look from
EBWT that it has one outgoing edge with label A, and from I and O that it has one outgoing and one
ingoing edge. The C index represents the number of edges appearing in the graph according to their
lexicographic order. The color index Colors shows us the colors of the different nodes, by mapping
each color set with a unique integer. The graph was inspired by a similar Wheeler graph as seen in [3].

If two different nodes get the same prefix added to the path leading to them,
they are merged together. The dummy nodes and edges can be thought to form a tree,
where the empty string is the root of the tree. The leaves of the tree are the proper
prefixes of the actual nodes v of G that originally did not have incoming edges, and
the leaves have the outgoing edges to these nodes. The notations l(v) and l(e) are
extended to denote the prefixes represented by the dummy nodes v and dummy edges
e with L(e) representing the last character of l(e).

Just like the definition of Wheeler graphs, Wheeler index on W represents the
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colexicographical order of the nodes and edges ofW . We define that for nodes u and v,
u is smaller in colexicographical order than v if and only if l(u) is colexicographically
smaller than l(v). The edges are also ordered in colexicographic order by using l(e).

Wheeler index consists of three main components. The first component is a string
called EBWT, that is the concatenation of all edge labels L(e) ordered by the nodes
of the origin of the edge. It is based on the Burrows Wheeler transformation [2], a
method to compress a string. The second component is a bit vector O, that encodes
the outdegrees of the nodes of W , again in colexicographic order. This is done by
marking a start of a new node with 1, followed by the number of zeros corresponding
to the amount of outgoing edges a node has. For example, a node that has zero outgoing
edges will be encoded as just "1", while a node that that has two outgoing edges will be
encoded as "100". The third component, I, is also a bit vector representing the amount
of edges in the same way as O, but instead it represents the incoming edges to a node.
The total length of I and O is the sum of the amount of edges and amount of nodes
in the graph. Both O and I and how they represent nodes can be seen in Figure 2.3.

While these three components may seem to contain only a portion of the infor-
mation the full graph W has, they can be used to create and define the full graph W
using different operations. When querying the graph, the index C that is constructed
from EBWT is also used. The index C is defined as C[0, ...m,Σ|], such that C[i] is
the number of edges in E with a label smaller than the ith smallest symbol in σ. For
example, for EBWT = "ACGATTA", the corresponding C for it would be "{0,3,4,5}".

2.4.1 Pattern Search

The rank and select queries explained in Section 2.2 are used to query information
about the graph using the EBWT, I, O and C index, most notably querying whether
a particular k-mer exists in the graph by querying a pattern. While Spark Themisto
builds these indexes, querying them is currently not implemented in Spark Themisto.
However, in the original Themisto, pattern searching is implemented.

Recall that rankc(i) returns the number of occurrences of symbol c on half-open
interval [0, i) and selectc(i) returns the position of the ith occurrence of character c.
A node’s colexicographical ordering is denoted as j. These queries are done with de
Bruijn graph being a Wheeler graph in mind. In the details for using rank and select,
we assume that indexing of the nodes start from 0.

To find out the indegree of node j, we can use select on I. Using I.select1(j +
2) − I.select1(j + 1) − 1 tells how many 0’s exist between the 1 representing the jth
node and the 1 representing the (j + 1)th node, and as 0’s tailing 1 represent edges,
their amount tells us the indegree of the node. The outdegree of node works similarly,
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but uses the O vector instead of I.
To get the labels of edges outgoing from node j, using select and rank in combi-

nation is required. As the vector EBWT has the edge labels of the originating nodes
in colexicographical ordering, the vector O can be used to find the index numbers of
the 0’s that correspond to the edges of node j. Using these index numbers, the EBWT
vector can then be sliced to get the edge labels of node j. Slicing EBWT through
the indexes EBWT[O.rank0(O.select1(j + 1)) : O.rank0(O.select1(j + 2))] gets us the
string representation of edges of node j.

The labels of edges incoming to node j can be queried similarly, but instead of
EBWT and O, indexes I and C are used. The index C can be thought to feature all the
edges concatenated as a one string just like EBWT, but instead of being ordered based
on the colexicographical order of the nodes, the string itself is lexicographically sorted.
For example, C = {0, 6, 9, 13} of Figure 2.3 would be ”AAAAAACCCGGGGTT”.
The index C can also be thought to represent the incoming edges labels for I in the
same way as EBWT does for outgoing edges for O. Slicing C[I.rank0(I.select1(j+1)) :
I.rank0(I.select1(j + 2))] will return the incoming labels for node j, but not directly,
as the indexes returned must be decoded with EBWT in order to get the full string
representations.

Recall by that the definition of Wheeler graphs, if nodes v and u have ordering
where v is colexicographically smaller than u, and both of these nodes have an outgoing
edge with the same character label c ∈ Σ to nodes v′ and u′ respectively, and we assume
that v′ 6= u′, then we also know that v′ < u′.

This implies that if we have an interval of nodes [i, j] which are in order, and we
follow the nodes with the same label, the resulting other contiguous interval of nodes
[i′, j′] is also in order.

When querying a pattern P from W that corresponds to, for example, edgemer
l(e), it is queried by one character at a time, by keeping up an interval of nodes where
the current prefix resides. Using a pattern matching operation, we can take an interval
and update it until the interval size is 1, meaning that i = j where [i, j] is the interval.
When the intervals size is 1, it means that is the rank of the node with the edgemer
l(e) is found, and the rank of its node is i = j. Updating the interval tells us the
parameters for the next rank or select operations, depending on the ongoing part of
the pattern search.

The detailed explanation of querying pattern P using rank and select is a convo-
luted, and can be thought to done in five steps. These five steps are iterated for each
character of the pattern to be matched. A representation of a single loop iteration
of this query is shown in Figure 2.4. The iteration switches between looking up edge
intervals and node intervals. The query rank can be though to give a nodes/edges
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rank, or in other words, the colexicographical ordering of it. The algorithm is shown in
Algorithm 1, where the steps are described in detail. Note that the algorithm features
many subtractions and additions of 1, due to the fact that switching between indexing
that starts from 0 and indexing that starts from 1 is required due to how Wheeler
graphs and rank/select work.

Algorithm 1 Pattern Search
Require: k-mer to search K EBWT, O, I, C.
1: [x, y]← [0, n− 1] . Step 0
2: for character c in K do
3: [a, b]← [O.select1(x+ 1)− x,O.select1(y + 2)− y − 2] . Step 1
4: if a < b then
5: break . K-mer not found.
6: end if
7: [e, f ]← [EBWT.rankc(a), EBWT.rankc(b+ 1)] . Step 2
8: if e = f then
9: break . K-mer not found.

10: end if
11: [g, h]← [C[c] + e, C[c] + f − 1] . Step 3
12: [u, v]← [I.select0(g + 1), I.select0(h+ 1)] . Step 4
13: [x, y]← [I.rank1(u)− 1, I.rank1(v)− 1] . Step 5
14: end for
15: return x . The Colexicographical rank for the k-mer

0. In Step 0, the first interval is initialized to go through the start of index O to its
end, by choosing an interval from 0 to nn − 1 where nn is the amount of nodes,
or in other words the amount of 1’s in O.

1. In Step 1, we use the interval [x, y] that we receive either from the previous
iteration of the loop or from the initialization of the algorithm. Using two select1
queries on O gives us a node interval [a, b] that contains the 1’s of interest that
represent the nodes that may have an outgoing edge with the label c. Although
not shown in the pseudocode, but if y = nn − 1, then b = ne − 1 where ne is the
amount of edges. In any case, if a < b, then we know that the queried pattern,
or rather, k-mer is not present in the graph.

2. In Step 2, the node interval [a, b] is used to locate the edge labels of interest
that have the character c. Using two rankc queries, the edge interval [e, f ], that
contains the next edges of interest, is found from the index EBWT.
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3. In Step 3, using the C array, the interval [g, h] is found. This interval corresponds
to the nodes incoming edges, enabling the following of the edges.

4. In Step 4, the interval [u, v] is found by using two select0 queries on I, and this
interval gives us the edges that are incoming to the nodes that we are interested
to follow in the next interval.

5. In Step 5, the nodes that have incoming edges leading to them with the label c
are found and marked in the interval [x, y] used in the next iteration of the loop.
If this is the last iteration of the loop and x = y, then x is the colexicographical
rank of the k-mer searched.

Using rank queries on EBWT or F or rank/select queries on the I and O vectors
can be done in O(log σ) time. Locating pattern P from the Wheeler index is done in
O(|P | log σ) time.

In the original description of BOSS [7], nodes that have indegree or outdegree
of zero are allowed. By making a limitation of not allowing these in the previously
described form, we can mark the last outgoing and the first incoming edge to each
node, and with this represent the information of the indegrees and outdegrees. This
however comes at the cost of introducing the null character, symbolized by a $, to the
alphabet Σ, and by adding extra edges that have $ as their label. This is to ensure that
every single node has one outgoing and one incoming edge, but in spite of the additional
character, it overall makes the representation of indegree and outdegree more compact.
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Figure 2.4: A single iteration of the k-mer pattern search loop for the graph seen in Figure 2.3. Here,
k-mer ACA is searched, with the loop currently searching the character ’C’ represented as c. The
numbered parts correspond to the steps as seen in Algorithm 1. The iteration of the loop ends when
the new x=6 and y=7 are found for the next iteration. The new x and y tell the colexicographical
rank of the nodes that will be traversed upwards in the next iteration for the search of the k-mer
ACA. The colexicographically ranked 6 and 7 nodes are AC and CAC, the only nodes that could
have the predecessor ACA. To make the Figure easier to understand, C is represented as its string
representation F in the middle of the loop.

2.5 Color Aggregation

A colored de Bruijn graph is an extension of the original where each k-mers are asso-
ciated with information of its data set(s) of origin, that can be defined in various ways
depending on the purpose [23]. Each data set is given a unique color, and each k-mer
has a color set that defines its origin data sets.
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Figure 2.5: Different strategies for storing colors. From left to right, color matrix, color sets matrix
and several color matrices methods. The result of any color storing strategy can be compressed using
various strategies to save space.

Examples of variations of how colors can be stored can be seen in Figure 2.5.
At its most basic, a bit vector can be created to represent the colors of k-mers. For
example, given n k-mers and c data sets, multiple bit vectors can be combined to create
a color matrix with the shape of n× c where active bit in position i, j means that color
j is active in k-mer i.

A different approach is to use global color sets, where all the different combina-
tions of colors a k-mer can have receive a unique integer that represents them. Using
this method, it is possible to look up the integer that represents a k-mers color set,
and then look up from another array that what color sets does the integer represent.
This exploits the redundancy where many different data sets share the same k-mers,
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resulting in smaller color encoding size. If two k-mers share the same color sets, they
are associated with a single color set instead of two identical bit vectors.

Several matrices can also be used in conjunction by storing a probabilistic set of
k-mers. However, this can lead to wrong association in terms of k-mers and colors. The
details of this method is out of scope of this thesis, and the reader is referred to [23]
for further explanation.

Due to the fact that many data sets share a large number of k-mers, the resulting
redundancy can be taken advantage of in various different compression methods. For
example, a color matrix can be compressed using bit encoding techniques, or by taking
advantage of the sparsity or the density of the matrix [23]. Another example is delta-
based encoding, where instead of storing two bit vectors, only the first is stored along
with a list of positions that need to inverted in order to obtain the second vector.

While Spark Themisto uses color sets, no advanced methods of color compression
is implemented in it. However, Spark Themisto stores only a subset of color sets as a
way of avoiding redundancy by taking advantage of the properties of succinct de Bruijn
graphs. This will be further explored in Section 3.1.2.

2.6 Spark

Apache Spark is a cluster-computing framework that has wide scale applications for
big data processing [5]. Spark distributes computation across nodes in a cluster, by
partitioning and distributing data between the nodes. It has APIs in Scala, Java
and Python programming languages, and it contains libraries for streaming, graph
processing and machine learning. It is open source, and makes use of an abstraction
called resilient distributed datasets, or RDDs in short. Spark Themisto is implemented
in Apache Spark, using the Scala API of Spark.

Spark consists of a programming model that creates a dependency graph, and an
optimized runtime system which uses this graph to schedule work units on a cluster.
It also transports code and data to the worker nodes of this cluster where they will
be processed by executor processes. Worker nodes handle the computation, and carry
a number of executors that each have their own computations. An overview of Spark
Architecture can be seen in Figure 2.6.

Spark shares implementation details with earlier systems designed to handle large
workloads, such as MapReduce [12] and its open source implementation Hadoop [36],
but improved upon them by making optimization easier for users, and by making it
possible to save intermediate results of the computation to memory [40]. MapReduce
operates on input data as a set of (key, value) pairs, and is based on two functions, map
and reduce. Map processes the inputs (key, value) pairs, and returns an intermediate
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Figure 2.6: A simple overview of the Apache Spark architecture. There is a single master node that
contains the driver that has SparkContext, a client which represents the connection to a Spark cluster.
The master node can simultaneously act as a worker node as well. Multiple worker nodes can exist
simultaneously, and each has multiple executors that execute tasks. The worker nodes do the actual
computation of the Spark jobs.

set of (key, value) pairs. Reduce then merges the intermediate (key, value) value pairs
to form another set, usually smaller, of values. MapReduce functions are run on nodes
of a distributed computing cluster.

Apache Hadoop is a framework that supports the MapReduce paradigm, and
makes use of two architectural components YARN (Yet Another Resource Negotia-
tor) [38] and HDFS (Hadoop Distributed File System) [36]. YARN handles the resource
allocation of the computing cluster, while HDFS is a distributed and block-structured
file system that handles fault tolerance through data replication. Both of these are
features that can be used with Spark.

MapReduce always stores intermediate results to disks, while RDDs store them
in memory by default [5]. The ability to store intermediate results in memory makes
more efficient data reuse between multiple computations that use intermediate results
possible. This meant that there was no longer need to write the results to an external
distributed file system that would incur substantial overheads due to data replication,
disk I/O operations and serialization, which took a significant time of an application’s
total execution time.

RDDs are parallel data structures that are a read-only partitioned collection of
records [40]. They can be created only by from either data that is in a stable storage,
or from other RDDs. By default, Spark reads the input data into an RDD from the
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nodes that are close to it. RDDs are the core feature of Spark, and enable the efficient
data reuse that differentiated Spark from similar older systems.

There is no need for an RDD to be materialized at all times. This is because
RDD contains the information about how it was derived from other datasets. This
means that a RDD has the ability to be used to compute all its missing partitions
from the data that resides in a stable storage, that it was originally created from.
This information features the transformations done to the data, which are operations
that are applied to many data items. This feature provides fault-tolerance, as if a
partition is lost, then the information about how it was derived will be located in other
RDDs and in turn can be used to recompute the lost portion. Lost data recovered this
way is more efficient and less expensive than replication. This gives RDDs a powerful
property, since a program cannot reference a RDD that cannot be reconstructed after
a failure.

Users can also control two aspects of RDDs. First is persistence, where a user
can indicate that they will reuse a RDD, making the intermediate results available for
further operations. The second is partitioning, where the strategy of where a RDD
is stored can be chosen, for example in memory or hard storage. RDDs can also be
partitioned based on a key in each record, ensuring that two datasets that are joined
together are partitioned evenly across the nodes. These partitions make it possible to
optimize the transformations.

RDDs are evaluated lazily, which means that RDDs are represented as a plan of
how a computation is applied to a dataset. When an action that can produce an output
is reached, such as count, the computation is launched. This allows the Spark engine
to do query optimization under the hood, meaning that some intermediate results do
not need to be materialized. However, the Spark RDD engine does not understand the
structure of data or the data types in RDDs, and thus it is somewhat limited and hard
to make certain optimizations for.

The mechanism Spark uses to redistribute data across partitions is called shuf-
fling [32]. As RDDs are evaluated lazily, shuffling only occurs when certain trans-
formations, such as groupBy, are called that make the data move across different
processes or between executors on separate nodes. The RDD obtained via a shuffle
transformation will retain the number of partitions of the original RDD.

2.7 Spark SQL

Spark SQL is a module for Apache Spark that brings relational database query func-
tionality to Spark, while also keeping the traditional procedural processing in the sys-
tem [5]. The motivation behind creating Spark SQL was to bring relational queries that
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are simpler and provide better user experience, while also still maintaining the option
to implement complex procedural algorithms. The problem with pure relational sys-
tems is that they are in many ways insufficient for big data applications. Computation
involving "Extract, Transform, and Load" operations, handling semi- or unstructured
data and advanced analytics, such as machine learning and graph processing, are eas-
ier to express and implement in procedural computing. Spark SQL bridges the gap
between these two models, allowing users to create data pipelines that are expressed
in both relational queries and procedural algorithms [5].

Spark SQL provides a dataframe API, which makes it possible to perform rela-
tional queries on both external data sources and on Spark’s built-in distributed col-
lections. Dataframes are a statically typed distributed collection of rows, and can be
considered to be equal to a table in a relational database. Dataframes are more efficient
than the procedural API and RDDs because they are statically typed, unlike RDDs
that are dynamically typed. Static typing allows Spark SQL to be optimized better, in-
cluding pre-compilation of queries with known data type information. Dataframes store
data in columnar format, which is significantly more compact than just Java/Python
objects. It is also simpler to compute multiple aggregates in dataframes than in the
traditional functional API.

Unlike RDDs, dataframes have the knowledge of the schema of the data, which
enables the support of relational operations, which can be more easily optimized. This
is due to the data types used by the action being known at compile time, unlike in
RDDs where the data types are resolved at runtime. Dataframes can be constructed
from external data sources or from existing RDDs, and they can also be considered to
be a RDD of row objects, allowing RDD operations to be performed in them.

Just like RDDs, dataframes are also lazy, meaning that a dataframe object repre-
sents a logical plan to compute a dataset according to instructions. The actual execu-
tion occurs after the user calls an action that can create an output, such as saving the
output to external storage. All major SQL data types are supported in dataframes,
and the logical plans are analyzed eagerly, meaning that for example column names
are checked that they exist in the underlying tables. Dataframes also possess the same
resilient, immutability and distributed features of RDDs.

The core feature that makes efficient optimization in Spark SQL possible is the
Catalyst optimizer [5], an SQL optimizer for SQL queries represented as dataframes. It
adds new optimization techniques and features to address problems that are common in
large volumes of data, such as handling semi-structured data and advanced analytics.
It is possible to expand and customize the functions of the optimizer. Catalyst creates
the logical plan of the execution. The logical plan is then optimized, for example, by
combining multiple filter operations and by choosing a physical plan based on it, using
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Figure 2.7: Pictured a) a simple table of data, b) how it is stored in a traditional memory buffer
and c) how it is stored in a columnar memory buffer. Apache Arrow, a framework that can be used
in Spark SQL, uses columnar memory buffer. Columnar memory format is used in Spark RAPIDS,
introduced in Section 2.8.

the one with the lowest cost, after which the code is generated, and then executed.
The plans created by Catalyst optimizer are implemented in a tree structure, with the
exact details being out of scope of this work [5].

Spark Themisto uses a mix of RDD and Spark SQL processing, with the GPU-
enabled version relying more on Spark SQL.
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2.8 RAPIDS

As GPUs are becoming more popular in computing due to their success in deep learning,
recently they have began seen use in traditional machine learning and extract transform
load workloads ∗. While a CPU consists of a few cores that are optimized for sequential
serial processing, a GPU has a massively parallel architecture that consists of thousands
of smaller cores, that can handle multiple tasks simultaneously. This means GPUs are
better for many computationally demanding tasks and potentially can provide massive
speedups in them.

RAPIDS† is a suite of different open-source software libraries and APIs that
provide GPU enabled computing to various different purposes. The motivation for
these libraries is to try to provide speedup by using GPU computing. The RAPIDS
libraries are built on top of NVIDIA CUDA‡, an architecture and software platform for
GPU computing. The RAPIDS libraries expose the GPU parallelism through APIs,
and make use of GPU dataframe objects, similar to Spark dataframes, that are stored in
standardized language-independent columnar memory format. A RAPIDS library for
Spark has been created for Apache Spark version 3.x, allowing Spark to use columnar
processing on GPU that is much more GPU friendly than row-by-row processing. It is
important to note that Spark RAPIDS is only compatible with Spark SQL, meaning
that only certain dataframe operations have a GPU enabled version. RDD operations
are not supported by Spark RAPIDS, and the processing switches over to a CPU if a
RDD or a not supported operation occurs in a Spark program. A simple overview of
the Spark RAPIDS technology stack can be seen in Figure 2.8

Spark RAPIDS an open-source project developed by NVIDIA§. Essentially acting
as an extension to Catalyst optimizer, it analyzes the physical plan and replaces ex-
ecutor and expression nodes of the plan with GPU versions whenever possible. Spark
RAPIDS makes heavy use of Apache Arrow, a Spark framework that minimizes data
conversion and data serialization when the data processing pipeline includes different
computing frameworks [1]. Arrow is beneficial for Spark RAPIDS due to using indepen-
dent columnar memory format that is well-suited for GPU processing. The columnar
memory format used by Arrow is visualized in Figure 2.8.

Spark RAPIDS tries to provide a reduction in computation time by using fewer
nodes, without any changes required in the code created by the user. When RAPIDS
is loaded into Spark, Catalyst query optimizer identifies which operators in a query

∗https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/apache-spark-3/ebook-
sign-up/

†https://rapids.ai/
‡https://developer.nvidia.com/cuda-zone
§https://github.com/nvidia/spark-rapids
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Figure 2.8: The technology stack for Spark RAPIDS. RAPIDS links to Spark SQL and dataframe
API, and before runtime looks which operations are implemented in Spark RAPIDS library. These
libraries use RAPIDS C++ libraries that use CUDA.

plan can be replaced with a GPU enabled one. If an operation is not implemented in
RAPIDS, Spark will fall back to use the CPU version, transferring the data to CPU
from GPU. Only dataframe operations are supported by Spark RAPIDS.

The library is relatively new as of writing this thesis, and is missing many core
operations and features. However, it is being developed actively, with new versions re-
leased frequently. The core motivation of this thesis was to implement Spark Themisto
in a GPU-enabled way by using Spark RAPIDS, and to measure the potential speedup
gained in computation time when using it.



3. Methods

The goal of the thesis is to create the EBWT, I, O and color indexes of the succinct
de Bruijn graph using GPU accelerated computing.

This was done by implementing a RAPIDS version of Spark Themisto. Themisto
is a tool created by Alanko et al. that builds succinct colored de Bruijn graphs, that
can also be used as a sequence pseudoalignment tool [22]. Spark Themisto version
was created by Jaakko Vuohtoniemi, and it replicates the functionality of the original
using Apache Spark and its Scala API. The original Themisto created by Alanko et
al. was created in the C++ programming language. Spark Themisto implements the
construction of the indexes are used to create the graph, as well as the coloring of
the graph. While querying the graph for k-mers is explored in Section 2.4.1, Spark
Themisto does not currently support these functionalities and thus does not support
the pseudoalignment features of the original Themisto. The details of Themisto will
be covered in Section 3.1.

The starting point of is as follows: We start with input that consists of sequences.
The sequences are in text files and are separated with identifier lines that mark when
a new sequence starts in a file. These identifier lines contain the description of the
sequence succeeded by them, however the sequence specific information is not used
and therefore not relevant in the actual graph building and are instead discarded. The
input sequences are marked with colors during the processing. A unique color can
correspond either to the start of a new identifier line, or each different file given as an
input. The method used to assign colors to the sequences depends on the application.
In this thesis, the colors are considered to consist of the files of origin, meaning there
are as many colors as there are files in the input. The sequences itself are arbitrary
length, and the size of the files they come varies, as they can be anything to a hundred
gigabytes. The sequences contain letters ’A’, ’C’, ’G’, ’T’, with every other characters
being filtered out.

Creation of the EBWT, I, O and color aggregation indexes of the succinct de
Bruijn graph happens in two distinct phases. The details of these indexes are covered
in Chapter 2. The two different phases are called Graph Building and Coloring. Graph
Building constructs the indexes, while Coloring constructs the indexes that contain the
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colors of the nodes.

3.1 Themisto

Themisto is a tool that implements succinct de Bruijn graph construction and a pseu-
doalignment algorithm for pattern searching, and is used in the mGEMS pipeline [22].
In Spark Themisto, Themisto’s graph construction is divided into two distinct phases,
Graph Building and Coloring, that correspond to the construction of EBWT, I, and O,
and to the construction of the color aggregation indexes respectively. Graph Building
consists of "KmerParser" and "KmerSort", while Coloring consists of "CoreKmers" and
"ColorParser".

Themisto builds a k-mer index as a succinct de Bruijn graph, where nodes of the
graph are k-mers and edges are (k + 1)-mers. This is a variant of the BOSS structure,
with each node linking to a color set with a separate data structure that stores the
colors of the k-mers. Let the reference sequences be denoted as T = T1, T2, ..., Tm. Let
fl(x) be the set of distinct characters that are to the left of a k-mer x of T , and fr(x)
be the set of distinct characters to the right of a k-mer. The set fr(x), and for fl(x), its
cardinality |fl(x)| are used in the creation of the EBWT, I and O indexes by Themisto.

Spark Themisto’s index construction creates the same structure, but uses a dif-
ferent programming approach. In Spark Themisto, Apache Spark powered parallel
computing is used, instead of the programming language C++ that was used to create
the original Themisto. In the following subsections, the logic and flow of the Spark
Themisto pipeline is explored.

An overview of the Spark Themisto pipeline can be seen in Figure 3.1.

3.1.1 Graph Building

Graph Building consists of two unique parts, "KmerParser" and "KmerSort". To build
a succinct de Bruijn graph, a Wheeler graph is built from the reference sequences by
iterating on the sets fl(x) and fr(x). This is done by first listing all the distinct (k+2)-
mers. "KmerParser" does this by taking the raw sequences as an input. "KmerParser"
outputs the unique (k + 2)-mers that are used by "KmerSort" and "CoreKmers".

In "KmerSort", for every (k+ 2)-mer with an identical k-mer x, the cardinality of
the set |fl(x)| and the set fr(x) are collected by looking at the first and last characters
of the (k + 2)-mers. The cardinality |fl(x)| contains the count of unique characters
appearing on the left side of a unique k-mer, while the set fr(x) contains the unique
characters appearing on the right side of a unique k-mer. This corresponds to the
output seen in Figure 3.4. "KmerSort" is also responsible for creating dummy nodes,
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Figure 3.1: The current pipeline of Spark Themisto. The input sequences are used by both "Kmer-
Parser" and "ColorParser". "KmerParser" outputs all unique (k+ 2)-mers. Output of "KmerParser" is
used in both "KmerSort" and "CoreKmers". "KmerSort" produces an output that contains all unique
k-mers and their corresponding values |fl(x)| and fr(x). "CoreKmers" creates an output that contains
all the core k-mers. "ColorParser" uses the core k-mers from "CoreKmers" and the original input to
produce the colors for all core k-mers.

special nodes that contain the prefixes of nodes that have no predecessors, that are not
considered to be k-mers.

From the information collected in "KmerSort", the Wheeler graph data structure
can be created from the raw sequences T1, ..., Tm. The EBWT index is created by
concatenating the fr(y) of all the middle k-mer that are sorted in a colexicographic
order, adding a separating symbol between them that tells when a new node starts.
The O index of outgoing edges is created by making a bit vector where 1 signals the
start of then next node, followed by n 0’s, where the n corresponds to the amount
of outgoing edges. The I index is created in the exact same way as O, but with
considering incoming edges instead of outgoing. From these, the actual graph index
is created, using the middle k-mers as nodes, and forming the outgoing and incoming
edges from O and I. Now a working index of a succinct non-colored de Bruijn graph
(V,E) is formed. This covers Graph Building, while Coloring will be covered next.
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3.1.2 Coloring

Coloring consists of two unique parts, "CoreKmers" and "ColorParser". As there is a
lot of redundancy due to the large amount of different colors a k-mer can have, only
a subset of color sets are stored. For nodes (u, v) ∈ E, u is denoted as a predecessor
of v, and v is a successor of u. The nodes that will have their color sets stored are
called core k-mers, and are found using "CoreKmers" that takes the parsed sequences
outputted by "KmerParser" as an input. The subset V ′ ⊆ V of nodes v ∈ V ′ that have
their color set stored have one of the following condition hold:

1. Node v represents the first k-mer of a reference sequence.

2. The predecessors of node v represent the last k-mer of a reference sequence.

3. Node v has more than one predecessor.

4. Node v has a predecessor that has more than one successor.

Figure 3.2: The four different cases of storing a k-mers color visualized, where a red node is considered
to be a core k-mer. If a k-mer fulfills one of these cases, it is considered to be a core k-mer.

The core k-mer cases are illustrated in Figure 3.2. In the case where node v /∈ V ′,
we know that node v has the same color set as its predecessor. This means that
finding out its color set is done by walking backward to the nearest node u ∈ V ′,
which is guaranteed to exist, as the first node of every reference sequence is always
in V ′. "ColorParser" uses the original raw sequence data along with the output of
"CoreKmers" as its input to parse color sets for the core k-mers. In the experimental
runs that are referred in this thesis, the colors are assigned to the sequences based on
the origin file of the sequence, although alternative options in the form of giving a file
that contains the colors or giving colors based on the identifier lines are also supported.

It can take a long time to search node u for the purpose of finding out node v’s
color in situation of where v resides behind a long non-branching path. To make this



3.2. Code 31

process faster, the original Themisto stores additional color sets for nodes in a long
non-branching path. The set of nodes S have a backward distance to the nearest node
in V ′ such that it is an integer multiple of s for some global integer parameter s. All
the color sets for nodes in S are stored, making it possible to find a color set for a node
at most in s backward steps. However, this is not currently implemented in the Spark
Themisto.

In the original Themisto, the color sets are computed in the following way. First,
we mark all nodes in V ′ ∪ S, and assign reference sequences T1, ..., Tm colors such
that the color of sequence Ti is i. For each i = 0, ...,m − 1 the succinct de Bruijn
graph is traversed through according to the corresponding reference sequence Ti using
the constructed indexes, and if a node v ∈ V ′ ∪ U comes across, a pair (v, i) is stored.
After processing all the reference sequences, the pairs are sorted by the k-mer identifier
v. This sorted list is then scanned, and then a list containing pairs (v, Cv) is created,
where Cv is the list of colors of v. Then, these pairs are sorted by the color sets and
scanned through to obtain a list of pairs (X,C), where X is the set of nodes with the
color set C. The pairs (X,C) are split into two different files, along with a pointer
integer that combines the pair.

3.2 Code

This section covers the details of the Spark Themisto code implemented by Jaakko
Vuohtoniemi and adapted for GPU computing jointly by the author. The adaptations
feature changes to Spark Themisto implementation to make it more compatible with
RAPIDS GPU processing. Different pieces of code feature more changes than others,
with the changes being mostly replacing RDD operations with dataframe operations
wherever possible to make a bigger portion of the computing time to be spent on GPU.
The entire pipelines code is available in GitLab∗†.

Regardless whether RAPIDS is used or not, the programs use the same input and
produce the same output. However, some liberties have been taken with making the
code perform better on GPU, such as using the Apache Parquet, a columnar compressed
data format‡ when writing the intermediate and final outputs into disk.

Each piece of code is implemented in Scala, using a mix of Spark dataframe and
RDD operations. Every time a piece of code is launched, Spark-specific operations are
executed: The Spark session is created, and RDD/dataframe is formed from the input.
This is a standard part of any Spark code, allowing Spark to use its libraries and show

∗Graph Building https://version.helsinki.fi/xvuxvu/phase1/-/tree/Topi_Thesis_Codes
†Coloring https://version.helsinki.fi/xvuxvu/phase2/-/tree/Topi_Thesis_Codes
‡https://parquet.apache.org/documentation/latest/
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various metrics in the user interface it provides. The Spark-specific operations are not
included in any piece of pseudocode. Other programming-specific cases are also missing
from the pseudocode descriptions. For example, in "KmerParser", a delimiter is passed
to the file input reader, telling it to separate records from character ">", which marks
that a new sequence starts in the file. These kinds of program specific details are hidden
as they can vary in different programming languages. However, the implementation
should still be straightforward in most modern programming languages.

Graph Building consists of two different pieces of code. These cover two parts in
the goal of building the indexes for constructing a succinct colored de Bruijn graph. The
first part, "KmerParser", parses the unique (k+2)-mers. The second part, "KmerSort",
gives us information about the k-mers, namely the values |fl(x)| and fr(x), that are
relevant when building the graph.

Coloring consists of two parts as well, that aim to collect the core k-mers and their
color sets. "CoreKmers" finds the core k-mers, while "ColorParser" collects the color
sets for the core k-mers. We will start by introducing "KmerParser" and "KmerSort"
of Graph Building, followed by the "CoreKmers" and "ColorParser" of Coloring.

Both "KmerSort" and "CoreKmers" translated well to be run with GPUs, while
"KmerParser" and "ColorParser" did not translate well to be run with GPUs. The
results along with the discussion of limitations and strengths of running Spark Themisto
with GPU will be covered in Sections 4 and 5 of this thesis.

The pseudocode describe the actual code as summaries of different parts. The
actual code available in GitLab has comments denoting where the different portions of
the pseudocodes start. The code is implemented using Scala API of Spark, with both
Spark SQL and Spark RDD operations. The detailed implementation of these specific
operations is not in the scope of this thesis, but documentation for them is available in
the Spark dataframe manual∗. We will start with Graph Building, introducing "Kmer-
Parser" followed by "KmerSort". After this, Coloring is introduced, with "CoreKmers"
first and "ColorParser" after.

∗https://spark.apache.org/docs/latest/api/sql/
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3.2.1 KmerParser

 

 

  

 
 
 

 

Figure 3.3: Overview of "KmerParser". "KmerParser" takes raw sequence data as input, and outputs
a table of unique (k + 2)-mers.

The first part of Graph Building is "KmerParser". "KmerParser" takes an input file
that contains sequences represented as strings that are separated with an identifier line.
The program outputs the parsed (k + 2)-mers as a table that contains all the unique
(k + 2)-mers found in the input sequences. An overview of the input and output for
"KmerParser" can be seen in Figure 3.3, and the pseudocode for "KmerParser" can be
seen in Algorithm 2.

Algorithm 2 KmerParser
Require: List of sequences S, k-mer length to parse k
1: S ← filterIllegalCharacters(S)
2: S ← addNulls(S)
3: S ← parseKmers(S, k + 2)
4: output S

The sequence input can be thought to be a one dimensional table S, where only
one column exists, and each row element contains a sequence s length of n ∈ N. The
table S can be thought to be a list as well. The k given as input has only the condition
that k + 2 is smaller than every sequence in the input.

The input can be thought to be a collection of sequences separated by a FASTA
description lines. These FASTA description lines come from the FASTA format used
to represent either nucleotide sequences or amino acid (protein) sequences, and feature
a short description of the sequence that comes after the description. These description
lines are not used in Themisto, and are discarded.

In line 1 of the pseudocode, the function filterIllegalCharacters() filters out the
illegal characters and splits the sequences into a table based on the FASTA description
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lines. The beginning of a new FASTA description line marks the start of a new sequence,
and therefore a new row in the table.

Filtering the illegal characters in the case of Themisto means removing all char-
acters where character c /∈ {A, C, G, T}. However, removing these characters is not
as straightforward as just removing them from the sequences and leaving them as they
are. As illegal characters are a part of a sequence, a naive removal of them could create
parsed (k + 2)-mers in the sequence that do not exist in the actual input.

For example, a naive approach with sequence ["ACGXXAXXGTA"] would result
into a sequence of ["ACGAGTA"], that would result into parsed (k + 2)-mers, where
k + 2 = 3, ["ACG", CGA", "GAG", "AGT", "GTA"], whereas the legitimate
(k + 2)-mers found in the original example sequence are ["ACG", "GTA"]. The
correct approach is to split and filter the illegal characters, and then filter out the
non-illegal parts of the sequence that are too short to form a k-mer. For example,
the sequence ["ACGXXAXXGTA"] would result into ["ACG", "A", "GTA"] that
would, after filtering the too short sequence parts, result into sequence parts ["ACG",
"GTA"], that are considered to be legitimate parts of the sequence to parse (k+2)-mers
from.

In line 2, the addNulls() function, a null character is added to the sequences
and the sequence parts beginnings and ends, to represent a sequence’s start or end. In
Themisto and related literature, a dollar sign $ is often used as the null character, and
is used here as well. For example, if we have sequence and parts of sequences such as
["TTGAGT", "ACG", "GTA"], it would result into ["$TTGAGT$", "$ACG$",

"$GTA$"]. The null characters are added as "KmerParser" parses (k+2)-mers, mean-
ing that without the null characters not all k-mers and k-mers sets fl(x) and fr(x) could
be collected from the (k + 2)-mers properly in "KmerSort" and "CoreKmers".

In line 3, the (k + 2)-mers are parsed from the sequences and their parts with
parseKmers(). This is done using a sliding window with window size of (k+ 2), that
goes through all the sequences and sequence parts, collecting all unique (k + 2)-mers
into a table.

For example, sequence and sequence parts ["$TTGAGT$", "$ACG$",

"$GTA$"] would result into parsed (k + 2)-mers ["$TT", "TTG", "TGA"

"GAG", "AGT", "GT$" "$AC", "ACG" "CG$", "$GT", "GTA", "TA$"],
where (k + 2) = 3.

The unique (k+ 2)-mers are then outputted, and are ready to be used in "Kmer-
Sort" and "CoreKmers".
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3.2.2 KmerSort

 

 

  

   

Figure 3.4: Overview of "KmerSort". "KmerSort" takes the output of "KmerParser" as an input, and
outputs unique k-mers together with the amount of unique characters appearing left and the unique
characters appearing right.

The second part of Graph Building is "KmerSort". The objective of "KmerSort" is to
take as an input the (k + 2)-mers parsed by "KmerParser", and use them to produce
a table that has the three columns that contain information about the unique k-mers
in a compact form. This information includes the unique k-mers, and the cardinality
|fl(x)| and set fr(x) of each k-mer, introduced in Section 3.1.1.

The output table is formatted as follows. The middle column contains unique
k-mers parsed from the inputs (k + 2)-mers. The first column contains the integers
|fl(x)| that tell how many different unique characters have appeared on the left side
of a unique k-mer, and finally, the third column contains lexicographically sorted sets
fr(x) that have the different unique characters that have appeared on the right side of a
unique k-mer. "KmerSort" is also responsible for creating the dummy nodes explained
in Section 2.4, adding them for k-mers that have no predecessors.

An overview of the input and output for "KmerSort" can be seen in Figure 3.4,
and the pseudocode for "KmerSort" can be seen in Algorithm 3.

Algorithm 3 KmerSort
Require: Table of (k + 2)-mers S
1: S ← collectLeftAndRightSets(S)
2: D ← where(S, |fl(x)| = 0)
3: D ← dummyNodeCreation(D)
4: S ← when(S, |fl(x)| = 0, 1)
5: S ← S ∪D
6: S ← sortColex(S)
7: output S
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For reference, the inputs (k + 2)-mers are strings featuring characters "A", "C",
"G", "T" and "$" appearing in a table or a list.

In line 1 of the pseudocode, the function collectLeftAndRightSets() collects
the unique k-mers and their corresponding counts |fl(x)| and sets fr(x). For exam-
ple, if we would have as an input rows (k + 2)-mers ["ATGA", "CTGC", "GTGC",

"ATG$"], where k = 2, the output would have a single row containing the following
three column values [3, "TG", ["A", "C"]], where the second value is the k-
mer, the first the count |fl(x)|, the amount of different characters found in the right of
the k-mer, and the third column the set fr(x) that contains all the different characters
found right of the unique k-mer. An important notion is that the null character $ does
not increase the count |fl(x)| or get added to the set fr(x).

In line 2, a separate table D is created. This table will contain the dummy nodes
that are created in line 3 with dummyNodeCreation(). For reference, dummy nodes
are created due to the fact that every k-mer node must have a predecessor in a Wheeler
graph. This means that only unique k-mers that have no predecessors, where |fl(x)| = 0
holds for k-mer x, will be selected to have a dummy node created for them. The dummy
nodes are all the unique prefixes of the k-mers that have no predecessors.

For example, for k-mers ["ACGT", "ACTT"] with no predecessors would have
the dummy nodes ["ACG", "ACT", "AC", "A", "ε"] created for them, where
"ε" is the empty node. In addition, the sets fr(x) are collected for the dummy nodes,
and |fl(x)| is given as 1 for every dummy node except the empty node ε where |fl(ε)| = 0
always holds. For the previous example, this would result to table

[[1, "ACG", ["T"]],

[1, "ACT", ["T"]],

[1, "AC", ["G", "T"]],

[1, "A", ["C"]],

[0, "ε", ["A"]]].

In line 4, the actual k-mers, that originally had no predecessors, will be marked
as having a single predecessor due to the fact that they now have a dummy node as
predecessor. This is done by using the when() function, where the second parameter
marks the column and the condition to be changed, while the third parameter tells the
value that the matching row/column values will be changed to. Here, we use the rows
and column values where a k-mer x in table S has |fl(x)| = 0 as the second parameter,
and replace these with row/column values that match with the third parameter that
is the integer 1.

In line 5, the two tables, one containing the original k-mers, and the other con-
taining the dummy nodes, get merged together using a union operation.
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In line 6, the table is sorted colexicographically with the function sortColex()
based on k-mers or in other words, the middle column, after which the table is out-
putted.

3.2.3 CoreKmers

 

 

  

 

Figure 3.5: Overview of "CoreKmers". The output of "KmerParser" is taken as an input, and a table
featuring the core k-mers is outputted. The different cases of core k-mers are explained in Figure 3.2.

Coloring begins with "CoreKmers", a program that takes as an input the k-mers
parsed by "KmerParser", and outputs the core k-mers introduced in Section 3.1.2.
The output of the program contains a table of core k-mers, the k-mers that will have
their color stored. These core k-mers are then used in the second part of Coloring,
"ColorParser", to collect color sets for them.

An overview of the input and output for "CoreKmers" can be seen in Figure 3.5,
and the pseudocode for "CoreKmers" can be seen in Algorithm 4.

Algorithm 4 CoreKmers
Require: Table of (k + 2)-mers S
1: S ← collectLeftAndRightSets(S)
2: S ← filterNonCore(S)
3: S ← dropDuplicates(S)
4: output S

In line 1 of the pseudocode, the function collectLeftAndRightSets() is nearly
the same as the one used in "KmerSort", but with a slight difference. The (k+ 2)-mers
are split into three distinct columns that feature the unique k-mer along with the sets
fl(x) and fr(x). In "CoreKmers", the set fl(x) is used instead of its cardinality, and
both sets contain the null character $ if it has appeared in the respective side of a
k-mer. The null characters are required to determine if a k-mer is considered to be a
core k-mer.
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In line 2, all non-core k-mers are filtered out in filterNonCore() using the four
different cases of core k-mers seen in Figure 3.2.

For example, (k + 2)-mers (while not a realistic parse output) ["$ACG",

"ATTC", "ATTA", "CGTC"] would result into core k-mers ["AC", "TC",

"TA"]. In this example from cases of Figure 3.2, case 1 applied for k-mer "AC",
while case 4 applied to k-mers "TC" and "TA".

Afterwards in line 3, only the k-mer column is selected for outputting, and the
duplicate k-mers are removed with dropDuplicates(), and the core k-mers are then
outputted.

3.2.4 ColorParser

  

 
 

  

 

  

 

 
 
 

 

Figure 3.6: Overview of "ColorParser". The original raw sequence data and the core k-mers are
taken as input, while the k-mer sets and their corresponding color sets are outputted as two separate
tables.

"ColorParser" gathers all color sets for unique core k-mers, using the same original
raw sequence data "KmerParser" also uses and the core k-mers outputted by "CoreK-
mers". By default, "ColorParser" uses unique files as its sources for colors. For example,
in the case where the original raw sequence data comes from four different files, a k-mer
can have one to four colors. In our use, this method is used due to unique files con-
taining the sequences we want to be considered distinct from each other. However, the
actual code supports different formats for coloring, such as using a separate color file,
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or by coloring by the sequence separators featured in the files. Here, we only consider
the format suitable for our needs, where the colors are determined by the file of origin
of a sequence.

An overview of the input and output for "ColorParser" can be seen in Figure 3.6,
and the pseudocode for "ColorParser" can be seen in Algorithm 5.

Algorithm 5 ColorParser
Require: List of sequences with their colors S, k-mer length to parse k, table of Core

k-mers C
1: S ← gatherColors(S)
2: S ← filterIllegalCharacters(S)
3: S ← parseKmers(S.col("kmer"), k)
4: S ← filter(S.col("kmer") not in C))
5: S ← collectSetsAndIndex(S)
6: Skmer ← sortColex(S.col("kmers")).drop(S.col("colors"))
7: Scolors ← drop(S.col("kmers"))
8: output Skmer

9: output Scolors

In line 1, the colors are gathered for each individual sequence with gatherCol-
ors(). As mentioned before, What determines a sequence’s color varies on the use
case. As an example, two sequences ["CGTC", "CGTT"] after coloring could be-
come [["CGTC", 1], ["CGTT", 2]].

In line 2, filterIllegalCharacters() is used as it was used "KmerParser" ex-
plained in Section 3.2.1, to format the raw sequence data into a suitable form, however,
colors are also included here.

In line 3, parseKmers() is used to parse just as it was used in "KmerParser" in
Section 3.2.1, but here k-mers are parsed instead of (k + 2)-mers.

In line 4, all non-core k-mers are filtered using filter() operation and the core
k-mers in table C.

In line 5, the collectSetsAndIndex is used to collect sets of k-mers and their
corresponding color sets, as well as index the set pairs. For example, k-mers and colors

[["CGTC", 1],

["CGTT", 2],

["TGAT", 1],

["TGAT", 2],

["GTGT", 1]]

would become
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[[1, ["CGTC", "GTGT"], [1]],

[2, ["CGTT"], [2]],

[3, ["TGAT"], [1, 2]]],

where the first column is the index, second the k-mer set, third the color set.
In lines 6 to 7, the table is split into two, with one missing the k-mer sets, and

the other missing the color sets, with both having the indexes that connect the two.
The table featuring the k-mer sets is sorted colexicographically, and after the proper
columns are dropped from the tables, both are outputted.

This concludes the Section where Spark Themisto is explored, and the next sec-
tion will present the results of running experimental tests on the pipeline.



4. Results

4.1 Experimental Setup

The implementation of GPU-enabled Themisto was tested in a set of experiments. Two
different datasets were used, sized 100GB and 250GB. These datasets are partitions of
the 661,405 bacterial genomes 1.5TB dataset retrieved from the European Nucleotide
Archive [6]. The experiments were run with k = 30. These partition sizes are large
enough to test the performance reliably for a Spark application, and no larger size was
used due to hardware limitations.

For both of these partitions the entire Spark Themisto pipeline was tested in
both CPU and GPU mode, with four different set of setup parameters with each of the
different programs defined in Section 3, "KmerParser", "KmerSort", "CoreKmers" and
"ColorParser", making for a total of 2× 2× 4× 4 = 64 runs.

These four different setup parameters used to run the different variations of each
experiment only differed in the number of executors used. As explained in Section
2.6, Apache Spark uses executors as a resource. Each executor has a fixed number of
CPU cores assigned to it, in this case 10, and a set amount of RAM memory assigned
depending on the amount of executors used in a run. In the case of GPU runs, each
executor also has a GPU assigned to it. In the experiments, the runtimes using the
setup parameters seen in Table 4.1 are collected.

GPU CPU

2 Executors, 20 CPU Cores, 2 GPUs 4 Executors, 20 CPU Cores
4 Executors, 40 CPU Cores, 4 GPUs 8 Executors, 40 CPU Cores
6 Executors, 60 CPU cores, 8 GPUs 6 Executors, 60 CPU cores
8 Executors, 80 CPU Cores, 8 GPUs 16 Executors, 80 CPU Cores

Table 4.1: Table of the setup parameters used in experiments.

The setup used a NVIDIA DGX-1†, equipped with 8X NVIDIA Tesla V100 32GB
†https://www.nvidia.com/en-us/data-center/dgx-1/
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GPUs, 4X 20-Core Intel Xeon CPU E5-2698 @ 2.20GHz CPUs, 512GB DDR4 RDIMM
memory, and a 10TB RAID storage. The RAID storage has 650MB/s write speed, a
disk speed that might cause I/O bottleneck especially in the faster programs, but still
provide enough speed for reasonably reliable results.

Apache Spark 3.2.0 and Spark RAPIDS v21.12.0 were used in running the ex-
periments. The runtime-specific parameters used in launching the Spark applications
can be found in Appendix A. A big portion of testing GPU enabled Spark Themisto
went on the tuning of Spark runtime-specific parameters. These differ from the setup
parameters, such as the number of executors used. The tuning of runtime-specific
parameters of RAPIDS had a large impact on the runtimes, with no tuning or bad
tuning resulting into extremely poor runtimes compared to an optimal tuning. There
is no certainty that the runtime-specific parameters used in these experimental runs
were the best ones available, but were simply found to be the best ones of all the dif-
ferent variations of runtime-specific parameters experimented with when running the
tests on the pipeline. For the CPU runs, fewer runtime-specific parameters had to be
tuned, but all the runtime-specific parameters that were not RAPIDS specific were set
to the same value regardless what processing was used. A documentation of available
runtime-specific parameters can be founr from∗†.

For "KmerParser" and "ColorParser", the sequence files are read as .txt files, while
every other intermediate and final result is read and saved in .parquet format. Note
that when discussing the input sizes of 100GB and 250GB, it is referring to the size of
the uncompressed raw original input sequence. The disk space used by intermediate
results between the different parts of the pipeline vary greatly in size.

Due to the limitations of the Spark RAPIDS library, only rough estimates of
how much processing was executed in GPU could be done. Although it is possible to
see which parts of the processing can be executed in GPU, there are no feasible ways
to calculate the exact time spent between CPU processing and GPU processing when
running a process that makes use of both.

The results for all different parts of the pipeline will be portrayed in the same
manner. The figures show the results of the GPU runtimes on the left column, and the
results of CPU runtimes on the right column. The top row shows the speedup, and
the bottom column show the time of the process in minutes per executor.

When comparing the results, it is important to consider the question of either
expanding the processing power by adding GPUs or by adding CPUs and therefore
more executors. This can be done by considering the speedups achieved with either by
adding GPUs or CPU processing.

∗https://spark.apache.org/docs/latest/configuration.html
†https://nvidia.github.io/spark-rapids/docs/configs.html
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ne Parser Sort Core Color Total
2 174 19 9.6 96 299
4 90 11 5.2 54 160
6 66 8.1 3.9 44 122
8 59 7.3 3.7 41 111

(a) GPU 100GB

ne Parser Sort Core Color Total
2 132 66 52 150 400
4 84 41 31 90 246
6 72 36 26 84 218
8 72 34 25 78 209

(b) CPU 100GB

ne Parser Sort Core Color Total
2 384 32 17 450 883
4 204 17 9.7 258 489
6 144 13 7.2 258 422
8 132 12 6.8 252 403

(c) GPU 250GB

ne Parser Sort Core Color Total
2 330 138 102 492 1062
4 210 90 60 306 666
6 186 78 53 264 581
8 174 72 49 252 547

(d) CPU 250GB

Table 4.2: The results of the experimental runs. Columns Parser, Sort, Core and Color correspond
to "KmerParser", "KmerSort", "CoreKmers" and "ColorParser" respectively, with the values reported
in minutes. Four tables contain the results for the two different datasets used and GPU and CPU
runs, and contain (a) GPU with 100GB, (b) CPU with 100GB, (c) GPU with 250GB and (d) CPU
with 250GB.

4.2 Runtime

The individual results for each program can be seen in Table 4.2. These results indicate
that adding GPU processing to Spark does increase speedup more compared to adding
more CPU processing in regard to both data sizes experimented in this setup. The
speedup gets bigger as more executors are added, however, this speedup is not major.
The speedup differs in different programs: "KmerSort" and "CoreKmers" perform well
with GPU processing, while "KmerParser" and "ColorParser" do not benefit from it as
much. GPUs also perform better overall with the smaller dataset, possibly due to the
lower amount of spilling runtime intermediate data on disk.

The total summed up runtime of the pipeline can be seen in Figure 4.1. The
total speedup of using GPUs ends up being around half times faster than using CPU
when comparing the different setup parameters. The overall speedup difference is not
that large, due to the benefits of using GPUs ending up being largely lost in the
slower processing time of "KmerParser" and "ColorParser". However, a completely
RAPIDS enabled pipeline is faster than the regular one, even when the speedups are
not impressive in these specific parts of the pipeline.

Each different part of the pipeline will be covered next that will feature graphs
corresponding to the specific part of the pipeline. These include brief descriptions of
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how well the specific part adapted to GPU, as well as some program specific obser-
vations related to the performance in regard to speedup, the size of data used, and
amount of executors used.
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Figure 4.1: Experimental results of total runtime of the pipeline.
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4.2.1 KmerParser Results
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Figure 4.2: Experimental results of "KmerParser".

The results of "KmerParser" can be seen in Figure 4.2. "KmerParser" was the
least suitable part of the pipeline for a RAPIDS version, as "KmerParser" uses pro-
cessing that is much more feasible to do in a way that does not include Spark SQL
processing. "KmerParser" implementation uses RDD operations for the most part. As
Spark RAPIDS can only use Spark SQL libraries, the bulk of the runtime is executed
in CPU regardless if GPU processing is enabled. Experimental setups with code that
could be processed entirely in GPU proved to be ineffective and slow compared to the
RDD processing.

However, the speedup from GPUs is higher than in CPUs, but this may be due
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to the slow initial GPU runs with 2 executors, as it can skew the speedup of additional
executors in GPUs favor. GPU processing does get faster than CPU processing as more
executors are added. When running with 250GB data and 8 executors in GPU only
mode, the runtime is 1.3× faster than the corresponding CPU runtime. The overall
speedup is mediocre with both dataset sizes, but with 6 to 8 executors, GPU processing
becomes faster regardless of the datasize used. This is even though it is costly in terms
of computation time to swap the processing and data between GPU and CPU.

Overall, GPU processing achieved mediocre results in "KmerParser".

4.2.2 KmerSort Results
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Figure 4.3: Experimental results of "KmerSort".
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The results of "KmerSort" can be seen in Figure 4.3. "KmerSort" was the only
part of the pipeline that was run with different code depending if run on only CPU or
using GPUs. This is due to the GPU version of the code being slower than the original
RDD code for CPU only processing. For GPUs, the entire processing could be done in
GPU. "KmerSort" is well-suited for a dataframe implementation, making it a good fit
for GPU processing.

The difference between speedups is noticeable, but because even when using only
2 executors the processing is fast, the speedup graph does not portray the true benefit
of using GPUs in "KmerSort". In terms of runtime, GPU processing provides a great
improvement, with runtime being over fiver times faster when running with the larger
dataset and maximum processors. Reasons for this may include the low amount of
swapping between the CPU and GPU processing. The speedup of GPUs in regard to
computation time is best reflected when comparing the runtimes of two executors with
250GB dataset, that showcases the potential of GPUs at its best well.

Overall GPU processing proved to be effective for "KmerSort", with a large
speedup between the different sized datasets and number of executors being relatively
consistent.

4.2.3 CoreKmers Results

The results of "CoreKmers" can be seen in Figure 4.4. "CoreKmers", like "KmerSort",
is fully compatible with GPU. "CoreKmers" was implemented in completely RAPIDS
enabled way, using only dataframe operations. Of all the different programs, "CoreK-
mers" proved to be the most effective code to run in GPU.

For "CoreKmers", the speedup improvement when using GPUs was large, with
the GPU runtime being up to seven times faster than the CPU one. "CoreKmers"
proved to be effective in running GPUs even with a small number of executors, with
the slowest GPU run being over two times faster than the fastest CPU run in the case
of 250GB data.

In terms of executors, the speedups end up getting smaller as more executors are
added, notably between 4 and 6 executors. This may be due to the data size being
too small to provide an optimal speedup curve. For both sizes of the dataset used, the
speedup is large and in similar scale.

Again, as with "KmerSort", the speedup achieved with GPUs may be due to the
fact that no swapping between the different processing had to made, and "CoreKmers"
being implemented by only using efficient and straightforward dataframe operations.
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Figure 4.4: Experimental results of "CoreKmers".

4.2.4 ColorParser Results

The results of "ColorParser" can be seen in Figure 4.5. The same things that applied to
"KmerParser" applies to "ColorParser" as well. "ColorParser", just like "KmerParser",
was not fully compatible with GPU as it heavily relies on RDD operations that can
not be run in GPU. "ColorParser" might also experience I/O bottlenecks, as both the
CPU and GPU versions get hardly any speedup after 4 executors are added.

For "ColorParser", the speedup improvement when using GPUs was negligible.
For 2 to 6 executors and 250GB dataset, only minor speedups are observed, while for
8 executors and 250GB dataset, no speedup is observed at all.

With the 100GB dataset, the runtime of the program is faster in GPU runs,
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Figure 4.5: Experimental results of "ColorParser".

although the magnitude is not as great as in "KmerSort" and "CoreKmers", and is
more similar to "KmerParser". The difference in runtime between CPU and GPU
does get wider as the data gets bigger, but the difference is not major. The slow
performance of "ColorParser" may lie in a potential I/O bottleneck, as well as in GPU
runs featuring multiple swaps between the different processing types, or in an inefficient
implementation.

Overall, based on the results here, GPU processing for "ColorParser" is overall
not effective. When considering the further development of both Spark Themisto and
GPU enabled Spark Themisto, "ColorParser" has the potential for most improvement,
as it most likely bottlenecks the potential processing time of the entire Spark Themisto
pipeline.





5. Conclusions

5.1 Summary

This thesis presents the Spark RAPIDS implementation of the graph building and
coloring portion of Themisto, a tool that builds succinct colored de Bruijn graphs and
supports pseudoalignment built by Alanko et al. [22]. This implementation uses code
created for Apache Spark by Jaakko Vuohtoniemi and expands on it by modifying it
for a better GPU support. The Spark RAPIDS library is a recent library, that adds
GPU processing to Apache Spark, a clustering engine for large-scale data processing.

The experimental tests were gathered using a data of real genome sequence data,
on two different sizes that correspond well to sizes used in actual applications. The
results indicate that adding GPU processing can provide vast speedups compared to
regular CPU processing when the conditions are ideal.

In the experimental results, a speedup of as big as 8× were observed. The Spark
RAPIDS library is also built seamlessly on top of Apache Spark, meaning that Spark
RAPIDS does not introduce its own operations or logic that affects user programming
of Apache Spark, and does not require changes to existing code to be used.

5.2 Discussion

Spark RAPIDS is not perfectly suited for succinct de Bruijn graph construction, since
succinct de Bruijn graphs are not easily implemented in relational processing. Spark
RAPIDS is suited better for high-level and domain specific operations, while RDD
processing that is not available to Spark RAPIDS offers low-level functionality and
control, a better model for succinct de Bruijn graph construction.

While "KmerSort" and "CoreKmers" achieved large speedups, the time spent in
the overall pipeline on them is small. Most of the runtime is focused on "KmerParser"
and "ColorParser", the parts that did not translate well to GPU, but are crucial parts
of the succinct de Bruijn graph construction of Themisto. If Themisto could be im-
plemented with only dataframe operations, or rather in an efficient Spark RAPIDS
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supported way, the total speedups achieved could potentially be massive, in the vein
of "KmerSort" and "CoreKmers". At the moment, no efficient manner to implement
Themisto in a pure dataframe operations supported by RAPIDS seem to exist, or at
the very least, in a straightforward manner.

Many of the limitations of Spark RAPIDS are due to it being a relatively new
library, others due to its overall framework. It does not support all existing Apache
Spark dataframe operations, and notably there is no support for any type of RDD
processing. This means that in many cases, not all processing can be done in GPU.
This introduces severe overhead in terms of switching the processing and data between
CPU and GPU processing, which is costly in terms of processing and ends up negating a
sizeable portion of the speedups gained from GPU processing. Some crucial dataframe
operations are also missing a GPU implementation in RAPIDS, meaning that some
operations must be implemented in a haphazard manner, being inefficient and hard to
understand.

Also, tuning the Spark runtime-specific parameters is much more crucial when
using Spark RAPIDS than without using it. It adds a lot more parameters that are
necessary to tune, as they have large importance in the amount of speedup gained when
using the library. The failure of tuning these parameters correctly results in little to
no speedup, or regular crashes due to out-of-memory errors. This adds an extra layer
of exploration and experimentation to the Spark engine.

While using Spark RAPIDS does not limit the Spark operations that are available
to use, extra steps are required to ensure that as much code as possible is supported
by the library. Tools for this purpose are provided that clearly indicate the operations
that are possible to execute in GPU by Spark RAPIDS. This information is given by
the modified Catalyst query optimizer. This adds programming overhead when using
the library to ensure the best possible results.

Spark RAPIDS has a limitation in the form of how many resources can be used
when it is enabled. When using Spark, the best speedups are gained with many ex-
ecutors that have a small amount, typically 4 to 6, of CPU cores assigned to them.
With Spark RAPIDS enabled, each Spark Executor can only have a single GPU as
its resource, and there can be no more executors than there are GPUs. This limits
its flexibility, as in a case where a cluster has only a few GPUs, but many CPU cores
available as resources, the processing will be bottle-necked by the number of GPUs. Al-
ternatively, the GPU processing must be forgone entirely to provide the Spark Cluster
with the ideal amount of executors.
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5.3 Future Work

Spark RAPIDS has many additional functionalities that are not explored in this thesis.
One of these is GPUDirect Storage spilling∗, a spillable cache that enables device buffers
to spill directly to storage, meaning that GPUs can directly spill to disk instead of
CPUs handling it. Another one is RAPIDS shuffle manager†, a feature which enables
high-bandwidth transfers within nodes that has multiple GPUs.

In order to gauge the full potential of the Spark RAPIDS library, these features
must be utilized. These functionalities can potentially increase the speedup provided
by RAPIDS, and ending up bringing another layer of variables to consider when using
RAPIDS.

The implementation of both Spark Themisto and GPU enabled Spark Themisto
could be improved. The current implementation of the Spark Themisto pipeline has
bottlenecks and redundancy that could be avoided. As RAPIDS is developed further,
more efficient manners to implement the current functionalities will be introduced.
Other similar systems to Themisto could also be implemented using Apache Spark,
providing other means to further try succinct de Bruijn graph construction on Apache
Spark.

Succinct de Bruijn graphs are quickly rising in popularity in the field of sequence
pseudoalignment, and the research on efficient construction of them is ongoing [17, 3].
As the research on them continues, more applications that explore the usage of parallel
processing and GPUs together to construct succinct de Bruijn graphs could appear, as
both methods of processing individually have become a mainstay in processing large
datasets.

Exploration and research of succinct de Bruijn graph construction on Apache
Spark, GPUs or similar systems is still limited. However, as the size of data is already
large and increasing in the field of genomics, it is clear that tools like Apache Spark
and GPU processing are becoming more relevant in the field.

With systems and libraries that use GPUs and parallel processing being on the
rise, the further development of these technologies is probable. In conclusion, Apache
Spark provides a user-friendly platform to develop tools for large-scale data processing,
and Spark RAPIDS provides a relatively seamless way to utilize GPU support for Spark.
These two combined have a potential to create robust, flexible and fast data processing
pipelines for applications like genome sequencing.

∗https://nvidia.github.io/spark-rapids/docs/additional-functionality/gds-spilling.html
†https://nvidia.github.io/spark-rapids/docs/additional-functionality/rapids-shuffle.html
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Appendix A. Runtime-specific parameters used for Spark jobs

A.1 CPU

driver-memory 24G
spark.executor.memory=(400/i)G
spark.executor.cores=10
spark.cores.max=(i*10)
spark.locality.wait=0s
spark.sql.files.maxPartitionBytes=16m
spark.sql.shuffle.partitions=1500

A.2 GPU

spark.executor.memory=(400/i)G
spark.executor.cores=10
spark.cores.max=(i*10)
spark.locality.wait=0s
spark.sql.files.maxPartitionBytes=16m
spark.sql.shuffle.partitions=1500
spark.rapids.sql.concurrentGpuTasks=8
spark.executor.resource.gpu.amount=1
spark.task.resource.gpu.amount=0.125
spark.rapids.memory.pinnedPool.size=4G
spark.plugins=com.nvidia.spark.SQLPlugin
spark.rapids.sql.csv.read.long.enabled=TRUE
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