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Tiivistelmä — Referat — Abstract

One of the main ways of physically realizing quantum bits for the purposes of quantum
technology is to manufacture them as superconducting circuits. These qubits are
artificially built two-level systems that act as carriers of quantum information. They
come in a variety of types but one of the most common in use is the transmon qubit.
The transmon is a more stable, improved version of the earlier types of superconducting
qubits with longer coherence times.

The qubit cannot function properly on its own, as it needs other circuit elements
around it for control and readout of its state. Thus the qubit is only a small part of a
larger superconducting circuit interacting with the qubit. Understanding this interac-
tion, where it comes from and how it can be modified to our liking, allows researchers
to design better quantum circuits and to improve the existing ones. Understanding
how the noise, travelling through the qubit drive lines to the chip, affects the time
evolution of the qubit is especially important. Reducing the amount of noise leads to
longer coherence times but it is also possible to engineer the noise to our advantage to
uncover novel ways of quantum control.

In this thesis the effects of a variable temperature noise source on the qubit drive
line is studied. A theoretical model describing the time evolution of the quantum state
is built. The model starts from the basic elements of the quantum circuit and leads to
a master equation describing the qubit dynamics. This allows us to understand how
the different choices made in the manufacturing process of the quantum circuit affect
the time evolution.

As a proof of concept, the model is solved numerically using QuTiP in the specific
case of a fixed-frequency, dispersive transmon qubit. The solution shows a decohering
qubit with no dissipation. The model is also solved in a temperature range 0K < T ≤ 1K
to show how the decoherence times behave with respect to the temperature of the
noise source.
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1 Introduction

This is an exciting time to be alive. Especially for a quantum physicist. It is said that the
current development of quantum technologies is so groundbreaking that we are currently
living the times of a second quantum revolution [1]. The first quantum revolution resulted
from the discovery of completely new physics in the beginning of 20th century. The most
well-known inventions that arose from the understanding and application of the physical
laws of the microscopic realm were lasers and transistors. Although their complete descrip-
tion requires knowledge of the quantum theory, their working principles do not involve
precise control on the quantum systems at an individual level. However, the second quan-
tum revolution is just about that: controlling the individual quantum systems such that
they behave exactly as we want. We aim to harness the quantum effects to do something
for us, rather than just studying the laws of quantum theory and being content with what
we find.

At the core of emerging quantum technologies are qubits, which are the carriers of quantum
information. Qubits allow for building a quantum network for quantum communication
purposes [2], they can be used as sensors in quantum metrology [3] and as emulators of
more complex quantum systems in quantum simulation [4]. One of the most striking and
attention attracting (in the minds of the public and physicists alike) quantum technology
is the possibility of building a universal quantum computer. There qubits serve the role
of classical bits in normal computers, allowing the user to run algorithms which change
the state of qubits such that we are able to perform computation tasks that would not be
feasible to be implemented on a classical computer [5].

In all of the examples above we need to be able to control the qubits somehow. After all,
what use would a computer, sensor or simulator be if we could not feed in any information
and get out results? This requirement of controllability of the quantum state poses a
challenge, as we need to be able to have sufficiently strong interaction with the qubit.
However, opening up the qubit system for our control allows it also to interact with the
environment, which is detrimental to the preparation and longevity of the superposition
states used for the computing tasks [6]. Therefore, we need to understand how the qubits
are controlled, where the decoherence comes from and how it affects the quantum state.

The main building blocks in designing quantum computers are superconducting qubits of
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2 CHAPTER 1 INTRODUCTION

various kinds [7]. They are controlled with microwave signals, which are used to initialize
the qubits to desired superposition states and to perform gate operations on them [8].
These microwave signals require the aforementioned openness of the qubit system in order
for them to interact with the qubit. Coming from a signal source at room temperature, these
microwave signals initially carry a lot of thermal noise that needs to be damped before they
reach the superconducting circuit. The damping of the high temperature thermal noise is
done by using attenuators at a specific low temperature [8], but these devices themselves
add thermal noise corresponding to their temperature.

Although much of the developments in quantum technology have been due to the reduction
of noise in the systems, leading to longer coherence times of the quantum states, the effects
of carefully engineered noise can be also used to our advantage [9]. Therefore studying the
exact nature of the noise and its effects are interesting as it could allow us to uncover novel
quantum states of matter and find new approaches in quantum control [10].

Bluefors Oy, a Helsinki based company manufacturing dilution refrigerators for the use of
quantum technology, has devised an attenuator installable in the qubit drive line, whose
temperature can be changed. This variable temperature noise source [11] allows for the
study of the effects of noise in quantum states as a funtion of temperature. The main goal of
this thesis is to quantify how does this noise source affect the quantum state of a supercon-
ducting transmon qubit, and to predict how do the choices of the circuit parameters used
in the manufacturing process of the qubit affect the state evolution. To reach this goal, we
build a theoretical model to characterize the qubit evolution in the presence of this noise
source. The beginnings of the model are the very basic elements of the superconducting
circuit of the qubit. Using circuit quantum electrodynamics and the theory of open quantum
systems, we end up with a master equation that describes the time evolution of the qubit.
Solving this master equation shows how the quantum state of the qubit behaves in time, in
the presence of noise coming from the variable temperature noise source.

This thesis is organized as follows: the first two chapters concentrate on giving the nec-
essary theoretical background on the topics we need in order to analyze the qubit and
its superconducting circuit. The next two chapters then concentrate on first deriving the
theoretical model in a specific case of a dispersive transmon qubit and then on solving it
and presenting the results.

In chapter 2 we give an introduction to circuit quantum electrodynamics, an architec-
ture for building and analyzing superconducting quantum circuits. After discussing the
quantization process of a simple electrical circuit we move on to consider how to treat
dissipative elements quantum mechanically. After a brief discussion about qubits both as
mathematical and physical entities, we move to chapter 3, where we discuss the theory of
open quantum systems. There, a brief reminder of quantum mechanics is in order before
moving to discuss the actual open quantum system dynamics and to derive the Lindblad
master equation in a general case.

In chapter 4 we begin to formulate and derive the theoretical model for solving the qubit
dynamics. We begin with the quantization of the circuit under study by first drawing
its circuit diagram and then quantizing the resulting Hamiltonian. Using the obtained
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Hamiltonian, we derive a master equation that describes the qubit dynamics when it
interacts with its circuitry and the variable temperature noise source, which is modelled
as a 50Ω resistor. After this, we move on to chapter 5, which is dedicated to solving the
master equation. In this chapter, we discuss selected analytical solutions to the master
equation and present results from the numerical simulations of the master equation. The
last chapter of this thesis is 6, where we conclude our work and discuss the obtained results.
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2 Circuit Quantum Electrodynamics

Quantum physics is generally regarded as the study of the microscopic world, where the
deterministic rules of classical physics break down and become intrinsically probabilistic.
Usually the length-scale associated with objects, such as electrons, photons and other
particles, which are noticeably influenced by the quantum effects, are atomic or sub-atomic.
Thus direct observation of these particles is difficult and can alter the fragile quantum state.

In the past the role of a quantum physicist has been to study the already existing properties
of these quantum particles and to discover new quantum phenomena from nature. The
idea of engineering man-made atoms to be used in future applications, for example in
quantum simulation and computation was, for a long time, inconceivable. However, in
recent years it has become possible for researchers and engineers to manufacture so-called
artificial atoms with carefully specified behaviour [12]. This is thanks to the emergence of
a relatively new field in physics called circuit quantum electrodynamics [13] or cQED for
short.

The authors of a recent cQED review paper [7] define the field as follows: "Circuit quan-
tum electrodynamics is the study of the interaction of nonlinear superconducting circuits,
acting as artificial atoms or as qubits for quantum information processing, with quantized
electromagnetic fields in the microwave frequency domain". This definition states that we
are talking about quantum effects of electrical circuits, that happen to be superconducting.
From the electrical circuits we are able to construct qubits and artificial atoms by using
inductors, capacitors and other circuit elements [10] and we study their interaction with
the electromagnetic field [7, 14]. It is notable that, by being able to construct electric
circuits that exhibit quantum effects, we bring the quantum phenomena out of the micro-
scopic world. Indeed, these mesoscopic circuits have microscopic properties albeit being
macroscopic in a sense that they contain a large number of particles [15].

The idea of observing quantum effects in macroscopic scale was not new or special in the
time when the core ideas of cQED were proposed for the first time by Blais et al. [13]. For
example the phenomena of superfluidity and superconductivity are usually regarded as
prime examples of macroscopic quantum effects [16]. However, Anthony Leggett argued
in his 1980 paper that these phenomena are not prime examples of actual macroscopical
quantum states [17]. Then the question arose whether or not we can observe effects
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6 CHAPTER 2 CIRCUIT QUANTUM ELECTRODYNAMICS 2.1 QUANTIZATION OF AN LC-CIRCUIT

like quantum tunneling, entanglement or energy level quantization at all in macroscopic
systems [7, 17].

While raising the question about the existence of macroscopical quantum effects, Leggett
also argued that superconducting systems (and especially superconducting quantum in-
terference devices or SQUIDs) would be an ideal testing ground when trying to observe
these phenomena [17]. This fuelled the interest to study superconducting circuits which
culminated to the realization of a superposition state in a macroscopic device in 1999 when
Nakamura et al. published their milestone discovery [18]. They managed to superpose
two charge states of the device and control the quantum state evolution. Thus the first
superconducting qubit was born.

The appearance of an artificially produced qubit opened up new prospects of research.
Soon a system of two qubits was built, which showed the existence of entanglement in
macroscopic systems [19]. It was indeed possible to observe truly macroscopic quantum
effects. Eventually the urge to realize better systems with more qubits and with enhanced
lifetime led to the formulation of cQED in 2004 by Blais et al.[13].

The advantage of cQED is that in designing a qubit or an artificial atom we can obtain the
quantum features, such as energy spectra and coupling strengths, directly from the used
macroscopic circuit parameters [20]. The parameters we are able to design are thus not
fundamental and can be tailored to our liking, depending on what the systems is designed
for [15]. Indeed, the power of the cQED architecture has not gone unnoticed as it is the
most widely used design architecture in quantum computation [7].

In this chapter we aim to gain sufficient knowledge and understanding about the cQED ar-
chitecture to be able to apply it to a actual qubit circuit later in chapter 4. To accomplish this,
we begin with a simple model of a harmonic oscillator constructed as a superconducting
parallel LC-circuit. Understanding the connection between the classical circuit model of an
LC-oscillator and the emerging quantum description of the circuit as a single bosonic mode
allows for more complicated treatment of the circuit diagrams encountered later. Then we
extend the treatment from a single LC-oscillator to an infinite collection of them, when
we discuss the dissipation in superconducting circuits due to the presence of resistors and
obtain a quantum description thereof. Finally, we discuss about qubits themselves, starting
from their theoretical description and finishing with the current state-of-the-art physical
realization called transmon qubit, that is based on the same principles as Nakamura’s qubit
from 1999 [18] but with vastly improved properties.

2.1 QUANTIZATION OF AN LC-CIRCUIT

We begin our journey through the realm of circuit quantum electrodynamics by studying
one of the simplest but also one of the most useful cases possible, that is the harmonic
oscillator. In electronics the dynamics corresponding to harmonic motion are obtained
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L

φ

C φ̇

Figure 2.1: A parallel LC-circuit with
node flux φ and voltage V = φ̇ be-
tween the top node and ground.

by constructing a lumped element circuit1 with a ca-
pacitor in parallel with an inductor, and one node of
the circuit connected to ground. This circuit, whose
schematic is shown in figure 2.1, is characterized by
the inductance L and capacitance C of its elements
or equivalently by its angular frequency ωr = 1/

p
LC

and characteristic impedance Zr =
p

L/C .

To compute the dynamics of the circuit, we iden-
tify its kinetic and potential energies in order to use
the Lagrangian formalism. It’s a well known result
of classical electrodynamics [21] that the energy of
an inductor is proportional to the current flowing
through it

EL =
1

2
LI 2 , (2.1)

and the energy of the capacitor is proportional to the voltage difference between its plates

EC = 1

2
CV 2 . (2.2)

Following the method in [15], we introduce a position-like variable2 called generalized flux,
or branch flux, as the integral over time of the voltage variations across certain element b of
the circuit

φb(t ) =
∫ t

−∞
Vb(t ′)dt ′ , (2.3)

where we assume the lower limit of integration to be sufficiently far in the past, such that the
circuit had been at rest with no voltages or currents present. Note that (2.3) is the integrated
version of the Faraday’s law Vb = φ̇b , an equality which will often be used in this work. Using
this identity between the voltage and time derivative of the flux together with the relation
φ= LI between flux and current, allows us to write the capacitive energy as a kinetic term
in the Lagrangian, while the inductive energy becomes the potential term.3 Remarkably,
we are able to reduce the complex dynamics of an enormous number of electrons in the
circuit to one single degree of freedom φ in the Lagrangian formalism [14]

LLC = Ekin −Epot =
1

2
C φ̇2 − 1

2L
φ2 , (2.4)

where the roles of "mass" and "spring constant" of the harmonic oscillator are played by
the capacitance C and the inverse inductance 1/L respectively.

1Meaning an approximation of a spacially distributed circuit where its elements are thought of as being
discrete.

2In the Lagrangian sense, where the position-like variable will be associated with the potential term and the
velocity-like variable with the kinetic term.

3It should be noted that the choice of φ being the coordinate in our description is (in this case) arbitrary, since
we would get the same result by using Q as the coordinate and φ as the momentum. However, later on, when
encountering non-linear inductors (see section 2.3), it will turn out that the choice of φ as the coordinate is
more convenient [14].
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The standard procedure of defining a momentum conjugate of the generalized position
coordinate4 as Q = ∂LLC/∂φ̇, which satisfies the Poisson bracket

{
φ,Q

} = 1 of classical
Hamiltonian mechanics5, allows us to move to the Hamiltonian description via the Legen-
dre transformation of the Lagrangian (2.4)

HLC = φ̇∂LLC

∂φ̇
−LLC = Q2

2C
+ φ2

2L
. (2.5)

So far, we have analysed the LC-oscillator in figure 2.1 in a purely classical fashion. However,
since we are ultimately interested in the quantum properties of a circuit that comprises
of these oscillators, we need to quantize the circuit Hamiltonian (2.5). Here two slightly
different ways of quantization are presented. These two approaches are quite similar, but
the reader might be more familiar with the first one and after going through it should feel
more confident in reading through the second. The latter is a bit more general and allows
for an easier treatment of Josephson junctions, which we will encounter in the later sections
of this chapter.

Approach 1

Using the angular frequency of the LC-circuit ωr = 1/
p

LC , we can write the Hamiltonian
(2.5) in a suggestive form [7]:

HLC = Q2

2C
+ 1

2
Cω2

rφ
2 , (2.6)

which closely resembles the Hamiltonian of a mechanical harmonic oscillator with mo-
mentum Q, mass C and position φ.

As shown in [7], the quantization is done by promoting the variables for the generalised
flux φ and charge Q to corresponding operators φ̂ and Q̂. The Poisson bracket between the
dynamical variables is replaced by the commutator between the operators, obeying the
canonical commutation relation{

φ,Q
}= 1 ⇒ [

φ̂,Q̂
]= iħ . (2.7)

Following the standard treatment of the quantum harmonic oscillator (QHO) [22], we can
identify how to write the flux and charge operators using the annihilation operator â and
the creation operator â†. This procedure is outlined in the box below and used extensively
in other parts of the thesis.

QHO:
The Hamiltonian for a particle of mass m and oscillation frequency ω reads

ĤQHO = p̂2

2m
+ 1

2
mω2x̂2 . (2.8)

The position operator x̂ and the momentum operator p̂ are written in terms of the

4In this case generalized charge is the conjugate variable of generalized flux.
5
{
φ,Q

}= ∂φ
∂φ

∂Q
∂Q − ∂φ

∂Q
∂Q
∂φ = 1−0 = 1.
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ladder operators as [22]

x̂ =
√

ħ
2mω

(â† + â) , p̂ = i

√
ħmω

2
(â† − â) . (2.9)

LC-circuit:
The Hamiltonian for the quantized LC-circuit reads

ĤLC = Q̂2

2C
+ 1

2
Cω2

r φ̂
2 . (2.10)

We identify that the capacitance C corresponds to mass m of QHO and ωr = 1/
p

LC is
the oscillation frequency. Thus it’s easy to identify how the flux and charge operators φ̂
and Q̂ are written in terms of the ladder operators:

φ̂=
√

ħ
2Cωr

(â† + â) , Q̂ = i

√
ħCωr

2
(â† − â) . (2.11)

Using the expressions in equation (2.11) in the quantized LC-oscillator Hamiltonian equa-
tion (2.10) allows us to present it in the well known form

ĤLC =ħωr(â†â +1/2) , (2.12)

which is diagonal in the number basis |n〉, with â†â|n〉 = n|n〉 for n ∈ N, where n is the
number of quanta in the LC-circuit. These quanta of angular frequency ωr are created by
the creation operator â† and destroyed by the the annihilation operator â.

Approach 2
The circuit in figure 2.1 is superconducting so it could be good idea to normalize the flux
φ and charge Q in terms of parameters which appear in the superconductivity theory.
Following Ref. [8] we define the reduced fluxΦ= 2πφ/φ0 and reduced charge n =Q/(2e).
Here φ0 = h/(2e) is the superconducting magnetic flux quantum and 2e comes from the
charge of a Cooper pair. Applying this change of variables to equation (2.5), we obtain

HLC = 4
e2

2C
n2 + 1

2

φ2
0

(2π)2L
Φ2 = 4ECn2 + 1

2
ELΦ

2 . (2.13)

We defined the capacitive and inductive energies as EC = e2/(2C ) and EL = (φ0/(2π))2/L.
It should be noted that the new variables Φ and n are still conjugate variables but with
a Poisson bracket

{
φ,n

}= 1/ħ.6 Therefore, when we promote Φ and n to corresponding
operators Φ̂ and n̂ their commutation relation becomes{

Φ,n
}= 1

ħ ⇒ [
Φ̂, n̂

]= i . (2.14)

The Hamiltonian in equation (2.13) still describes harmonic motion. Similarly to Approach
1 we can write the operators Φ̂ and n̂ in terms of the creation and annihillation operators

6
{
φ,n

}= ∂Φ
∂φ

∂n
∂Q − ∂Φ

∂Q
∂n
∂φ = π

φ0e = 2π
h = 1

ħ



10 CHAPTER 2 CIRCUIT QUANTUM ELECTRODYNAMICS 2.2 TREATMENT OF DISSIPATIVE ELEMENTS

as [8]

Φ̂=
(2EC

EL

) 1
4

(â† + â) , n̂ = i
( EL

32EC

) 1
4

(â† − â) . (2.15)

Using the above equations we may write the Hamiltonian of the harmonic oscillator in an
identical form to equation (2.12) but with ωr =

p
8ELEC/ħ.

The path from a classical LC-oscillator circuit diagram from figure 2.1 to its quantum
equivalent Hamiltonian equation (2.12) sheds light on the fact that we can treat the LC-
oscillator as a container of bosons, each of which has fixed angular frequency ωr which is
determined by the circuit parameters L and C . This allows us to engineer the properties of
the "bosons" to our liking.

It is noteworthy that the above method of circuit quantization by finding the kinetic and
potential energies and the corresponding Hamiltonian is not limited to the simple case of
an LC-oscillator, but can be applied to more complex cases, as can be seen in later sections.
However, we are restricted to dealing with circuits composed only of linear7 capacitive
and linear or non-linear inductive elements [15]. The third and last category of passive
circuit elements, the resistors, is not considered in this formalism because modelling the
dissipated energy at some time t would lead to cumbersome expressions [10]. However, we
are able to construct a Hamiltonian formalism of dissipation, as can be seen in the next
section where we apply the Caldeira-Leggett model [23] to resistors.

2.2 TREATMENT OF DISSIPATIVE ELEMENTS

In quantum mechanics the time-independent Hamiltonians are invariant with respect to
time translation, which leads to energy conservation according to Noether’s theorem. This
can be seen for example by considering the Heisenberg equation of motion (see section
3.1.1)

d

dt
ÂH(t ) = i

ħ
[
ĤH, ÂH(t )

]+(
∂ÂS

∂t

)
H

, (2.16)

which tells how an operator Â evolves in time in the Heisenberg picture. If we considered
the case where the operator in question is the Hamiltonian itself, ÂH = ĤH, we would see
that the Hamiltonian is a constant of motion8 that is not changing in time, and thus the
energy of our system would be conserved. The dynamics of such a system is said to be
reversible.

The difficulty in dealing with dissipative elements, such as resistors, in this way is that their
behaviour is irreversible. By adding resistors to our circuits, we can no longer treat them as
isolated systems where energy is conserved, because the resistors dissipate energy out of
the system. The Hamiltonian treatment in section 2.1 is reversible, conserving the system

7A capacitor is an element whose voltage depends directly only on charge via some function: v(t ) = f (Q(t ))

with capacitance C (Q) = ( d f
dQ

)−1. A capacitor is linear if its capacitance is independent of the charge and
thus a constant C (Q) =C . Similarly a linear inductor has a constant inductance, which doesn’t depend on
the flux: L(φ) = L [15].

8This is because we would get d
dt ĤH(t ) = i

ħ [ĤH, ĤH(t )] = 0 since the Hamiltonian commutes with itself and
we assume that the Hamiltonian doesn’t depend on time.
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Z
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φ1

L2
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φ2

Ln

Cn

φn

Figure 2.2: We can represent the impedance Z of a resistor as an infinite series of LC-
oscillators using the extended Foster’s first form. The node fluxes φn are defined such that
their time derivative φ̇n represent the voltage drop over the corresponding LC oscillator in
our decomposition. Figure adapted from [10].

energy and thus not immediately usable for the treatment of resistors. Fortunately, we can
overcome this problem by extending the formalism via the usage of Caldeira-Leggett model
[23], which applies to systems with linear dissipation [15].

2.2.1 A HAMILTONIAN FORMALISM FOR A RESISTOR

In order to treat a dissipative element, such as a resistor, in the Hamiltonian formalism,
we need to overcome the problem of inherent reversibility of the Hamiltonian equations,
which was discussed in the intro to this section. This is accomplished by using the Caldeira-
Leggett model [23] in the context of cQED alongside with network synthesis methods
developed by Ronald Foster in 1924 [24].

In 1924 Ronald Foster proved that any passive, lossless circuit impedance can be presented
using either a series of parallel LC-oscillators (called Foster’s first form) or parallel series
LC-oscillators (called Foster’s second form) [24]. Usually, in network synthesis, these series
are finite, thus yielding a purely imaginary impedance. Keeping in mind that our current
goal is to get a model for quantum dissipation that describes the lossy nature of a resistor,
we extend (following the example of [15] and [10]) the series of parallel LC-oscillators
encountered in Foster’s first form to be infinitely long (see figure 2.2). As can be seen later,
this ultimately leads to the appearance of an impedance with a real and imaginary part, and
we argue that the real part of the impedance is the resistance of the resistor in our model.

When we choose to represent the resistor as an infinite series of LC-oscillators, we transform
our model into one that has an infinite number of degrees of freedom. Previously the whole
resistor was described only by its resistance R , but now it is described by the separate node
fluxes between each parallel LC-oscillator of the infinite series, as shown in figure 2.2. As
argued by Vool and Devoret in [15], the change from a finite number of degrees of freedom
to an infinite one allows for the emergence of irreversible dynamics of the system on
physical timescales. The timescale during which the system evolves and measurements are
made is much smaller than the corresponding Poincaré recurrence time [25, 26] needed for
the actual reversibility of the system dynamics. Thus the system is seemingly irreversible.
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We begin building the model for quantum dissipation in resistors, the Caldeira-Leggett
model in cQED, by analysing the impedances in figure 2.2. We know from basic electrody-
namics [21] that the impedances of capacitors and inductors are frequency dependent and
are given by

ZC(ω) = 1

−iωC
, ZL(ω) =−iωL , (2.17)

where C and L are respectively the corresponding capacitance and inductance of the
elements and ω is the angular frequency of the AC signal which is used to drive the circuit.
Using the impedances from equation (2.17), we can find the impedance of a single parallel
LC-circuit, like the one in figure 2.1, as

ZLC|| =
(
− iωC + i

ωL

)−1

. (2.18)

Here we used the well known fact that impedances in parallel sum as their reciprocals. We
can write the above expression in terms of the resonance frequency ωr = 1/

p
LC of the

oscillator as

ZLC|| =
i

2C

(
1

ω+ωr
+ 1

ω−ωr

)
. (2.19)

Using equation (2.19) we can write the total impedance Z∞(ω) of the network in figure
2.2 as a sum of the individual LC-oscillator impedances, each of which has a different
capacitance C j and resonance frequency ω j :

Z∞(ω) =
∞∑

j=1

i

2C j

(
1

ω+ω j
+ 1

ω−ω j

)
. (2.20)

Following the procedure in [10], we choose the different capacitances C j and resonance
frequencies ω j such that they are described by some very small frequency difference ∆ω,
which is the difference in the resonance frequencies between two neighbouring oscillators
in the decomposition:

C j =
π

2∆ωRe[Z ( j∆ω)]
, ω j = j∆ω , (2.21)

where Z (ω) is the impedance whose action we want to mimic through the decomposition.
This will later be set to (approximately, in a certain range) the impedance of the resistor
(that is the resistance R). Using the equation (2.21) above and the formula for the resonance
frequency, we can compute the corresponding inductance L j of each oscillator in figure 2.2.
We get

L j =
2∆ωRe[Z ( j∆ω)]

πω2
j

. (2.22)

We can now plug the chosen capacitance values from equation (2.21) to equation (2.20)
describing the total impedance Z∞ of the oscillator network. This yields

Z∞(ω) =
∞∑

j=1

i

π
∆ωRe[Z (ω j )]

(
1

ω+ω j
+ 1

ω−ω j

)
. (2.23)
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The summation over j essentially goes over the whole frequency space in steps of ∆ω
because of the definition from equation (2.21): ω j = j∆ω. Thus if we let ∆ω to become
infinitesimal, we can replace the sum by an integral over ω j

Z∞(ω) = i

π

∫ ∞

0
dω j Re[Z (ω j )]

(
1

ω+ω j
+ 1

ω−ω j

)
= i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+ i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j
. (2.24)

In the above equation we have faced a small problem. The first term on the right-hand side
of equation (2.24) does not converge for ω< 0 and the second term does not converge for
ω> 0. To face this issue, we introduce a small term iε in the denominators, which pulls our
integrand to the complex plane. This allows us to use the results of complex analysis to our
advantage, more specifically the Sokhotski-Plemelj theorem for the real line, which states
that

lim
ε→0+

∫ b

a
dx

f (x)

x ± iε
=∓iπ f (0)+P.V.

∫ b

a
dx

f (x)

x
, (2.25)

where a < 0 < b, f is defined and continuous on the integration interval and P.V. denotes
the Cauchy principal value. Assigning the small imaginary term to the denominators
of integrals in equation (2.24) gives us the following form, where the Sokhotski-Plemelj
theorem (2.25) can be used:

Z∞(ω) = lim
ε→0+

i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j + iε
+ i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j + iε
. (2.26)

Now we need to analyse the integrals in the above equation in the two regimes, where the
angular frequency ω is either positive or negative.

ω< 0:
The second integral in (2.26) doesn’t diverge since ω< 0 so we can take the limit ε→ 0
there to get

Z∞(ω) = lim
ε→0+

i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j + iε
+ i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j
. (2.27)

To the first integral we employ a change of variables x =ω+ω j to get the integral into
the proper form for Sokhotski-Plemelj theorem (2.25):

Z∞(ω) = lim
ε→0+

i

π

∫ ∞

ω
dx

Re[Z (x −ω)]

x + iε
+ i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j
. (2.28)

Applying (2.25) to the first integral gives

Z∞(ω) = Re[Z (ω)]+ i

π

[∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j
+P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j

]
, (2.29)

where we also changed back to the original integration variable.
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ω> 0:
Now the first integral in (2.26) doesn’t diverge since ω> 0 so we can take the limit ε→ 0
there to get

Z∞(ω) = i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+ lim
ε→0+

i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j + iε
. (2.30)

Now employing a change of variables x =ω−ω j to the second integral to get it to the
same form as in (2.25):

Z∞(ω) = i

π

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+ lim
ε→0+

i

π

∫ ω

−∞
dx

Re[Z (ω−x)]

x + iε
. (2.31)

Again we can apply Sokhotski-Plemelj (2.25) to the second integral to get

Z∞(ω) = Re[Z (ω)]+ i

π

[∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j

]
, (2.32)

where we again moved back to the original integration variable.

Comparing the impedances Z∞(ω) from equations (2.29) and (2.32), we can see that they
look very similar. We can combine the two results together into one equation9

Z∞(ω) = Re[Z (ω)]+ i

π

[
P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j

]
, (2.33)

and notice that

Re[Z∞(ω)] = Re[Z (ω)] , (2.34)

Im[Z∞(ω)] = 1

π

[
P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j

]
. (2.35)

We can see from the above equations that we have managed to obtain a real part for the
impedance Z∞(ω). This is quite remarkable because remembering that the impedance of a
single LC-oscillator given in equation (2.19) is purely imaginary, we were able to produce
something real from an infinite series of imaginary impedances. Mathematically this
was possible due to one of the key assumptions in the Caldeira-Leggett model for the
resistor, namely assuming of having the resonance frequencies for the individual oscillators
infinitesimally close to each other. This allowed for integration over the whole frequency
space and, by using the tools of complex analysis, gave rise to a real impedance that happens
to match the real part of the impedance of which we are interested in. A physical argument
is provided in Ref. [10]. Dealing with an infinite series of LC-circuits corresponds to sending
a signal down the infinitely long chain of LC-circuits and since the signal will never reach
the end of the chain it will never reflect from the end returning to the start of the chain.

9We obtained equation (2.33) by considering cases ω< 0 and ω> 0. The case ω= 0, corresponding to DC
current, is trivial with vanishing impedance as can be seen from equation (2.20). If we deal with AC signals
we need not bother about this.
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Therefore we will not observe any recurrence time for the signals, since they are travelling
through the LC-chain forever. This is seen as dissipation at the input.

We can now choose the impedance of interest Z (ω) in equations (2.34) and (2.35) such that
it stays approximately constants with respect to frequency, mimicking the behaviour of a
real resistor. This behaviour is obtained, for example, by choosing [10]

ZR(ω) = R
ω2

C

ω2
C +ω2

+ iR
ωωC

ω2
C +ω2

, (2.36)

where R is the resistance of the resistor and ωC is some large cutoff frequency such that
the above equation is valid in the range ω¿ωC

10. In this range we get the simple result
for the impedance Z∞(ω) of the infinite LC-oscillator network as Z∞(ω) ≈ R, because the
imaginary part is vanishingly small.

So far we have been able to produce a network consisting of parallel LC-oscillators shown in
figure 2.2 and to show that this infinite network manages to produce an impedance that is
equivalent to a usual resistor in a certain frequency range. Thus we can indeed think of the
resistor as an infinite collection of LC-oscillators. This makes the final step in the derivation
of the quantum dissipation, that is the Caldeira-Leggett model, for cQED straightforward.
The last step is to express the resistor in the Hamiltonian formalism, that is to quantize it.

Knowing that the resistor can be modelled as a collection of LC-oscillators, we can quantize
it by considering the quantization of the separate LC-oscillators that constitute the network.
We choose to parametrize the problem as shown in figure 2.2, where each of the fluxes
φ j is associated with the voltage difference over the j th LC-circuit [10]. In this way the
LC-circuits are not coupled and can be treated as independent harmonic oscillators with
angular frequency ω j . Applying the quantization procedure described in section 2.1 to
each LC-oscillator, we get the Hamiltonian of the resistor as

HR =
∞∑

j=1
ħω j (â†

j â j +1/2) =
∞∑

j=1
ħω j â†

j â j +
∞∑

j=1
ħω j /2. (2.37)

The last term is just a constant, arising from the summation over the resonance frequencies
of the LC-oscillator or, physically, over the modes of the electromagnetic field. Fortunately
this term can be discarded because of two reasons. The first one is that Hamiltonian
dynamics are not affected by the addition or removal of constants. The second reason
rephrases the first one in a more experimentally oriented way. The argument provided by
Peskin and Schroeder in the Introduction to Quantum Field Theory textbook [27] is that
the infinite constant, the sum over all modes of the zero-point energies, cannot be actually
measured because the experimentalists detect only energy differences from the ground
state of the Hamiltonian. In the context of quantum optics, the same problem is discussed
more in depth in [28] before getting to the same conclusion that the infinite energy term
can be thrown away. Thus we ignore the last term in equation (2.37) here and in all of the
calculations that follow.
10Note that the choice of the real part of impedance ZR(ω) gives rise to the imaginary part, as can be seen

from equation (2.35). In Appendix A it is shown that equation (2.36) does indeed fulfil equations (2.34) and
(2.35).
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Finally, we have obtained a simple form for the resistor Hamiltonian

HR =
∞∑

j=1
ħω j â†

j â j . (2.38)

We can interpret this equation as meaning that the resistor acts as a bosonic bath with an
infinite number of modes. Coupling a system to this bath will result in dissipation of the
system’s energy into the resistor and its infinite degrees of freedom.

In conclusion, we have managed to obtain a Hamiltonian description for a resistor, that
captures its inherently dissipative and non-reversible behaviour by describing it as an
infinite collection of non-dissipative components. Starting from an extended Foster’s
first form in figure 2.2 and quantizing it we end up to equation (2.38), which shows that
the Caldeira-Leggett model essentially deals with the description of quantum dissipation
arising from the infinite bosonic bath.

When we couple the bath to another quantum system and let them interact, we can observe
decoherence effects on the smaller system of interest. Usually this smaller system is a qubit
or a qubit and its readout circuitry. In the next section we will focus on the theoretical
description of qubits in the cQED formalism.

2.3 ABOUT QUANTUM BITS

The modern world is built on digital technology. And digital technology, at its most fun-
damental level, is built on bits. Streams of zeros and ones are part of our everyday life
without us noticing them or paying too much attention to them. The flow of bits grants
us an abundance of information on almost anything we can imagine, sometimes even if
we are not in need of it. Indeed, the bit is a fundamental concept in classical information
theory describing a basic unit of classical information. Analogously, in the quantum world,
the quantum bit, or qubit for short, is a basic unit of quantum information. The fields of
quantum information and quantum computation are built solely upon the study of qubits
[5] but they are useful also in other areas of novel quantum technologies such as quantum
communication, metrology and sensing to name a few [29].

Qubits can be discussed in two distinctly different ways. On one hand they are some abstract
mathematical objects with certain properties that make them useful for computation and
carriers of information. This way of thinking about them is purely theoretical but allows
us to understand how they behave generally, without worrying about the exact physical
implementation of them [5]. But, on the other hand, experimental physicists and engineers
must be able to somehow realize the qubits as real-life, physical objects. Somehow the
mathematical properties of the qubits need to be brought into this realization that can be
used in experiments. This section aims to explain how the connection between the abstract
mathematical point of view and real-life implementation of a qubit is made.
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2.3.1 THEORETICAL DESCRIPTION OF A QUBIT

A classical bit can be only in one of the two states 0 or 1, whereas as a qubit can be in its
ground state |0〉, in its excited state |1〉 or in any superposition of these two states11

|ψ〉 =α |0〉+β |1〉 , (2.39)

with α,β ∈C and |α|2 +|β|2 = 1. Therefore, in principle, the number of possible states for a
qubit is infinite, whereas for a classical bit the number of possible states is two. The ground
and excited states |0〉 and |1〉 are also called the computational basis states and they form
and orthonormal basis of the two dimensional Hilbert space of the qubit [5].

Even though the quantum state of the qubit |ψ〉 is a superposition of the basis states (and
with infinitely many possible combinations), we must stress that once the qubit undergoes
a measurement the state collapses to one of the two possible basis states. Thus we can
only observe either the qubit giving an answer 0 or 1 but with probabilities given by |α|2
and |β|2 respectively. This collapse of the wave function is a fundamental property of
quantum mechanics and its meaning and origin have been debated since the beginning
of quantum theory [30]. But rather than focusing on the discussion on the interpretation
of the fundamental principles of quantum theory (such as superposition, entanglement
and tunneling), we take them as mathematical consequences of the theory and focus on
constructing a useful picture of the quantum state of the qubit. This picture will help us to
understand how different environmental effects such as dissipation and dephasing affect
the qubit’s quantum state.

A useful picture to think about the quantum state of the qubit is the geometrical representa-
tion called the Bloch sphere [5]. This allows us to visualize the quantum state geometrically
as a point within a sphere.

We start by noting that the complex coefficients α and β in Eq. (2.39) can be written as
α= rαeia and β= rβeib for some real numbers rα and rβ describing the magnitude, and a
and b describing the phase of α and β respectively. Thus the pure state |ψ〉 can be written
as

|ψ〉 = rαeia |0〉+ rβeib |1〉 . (2.40)

Equation (2.39) can be multiplied by a phase factor e−ia without changing the measurement
outcomes because the probabilities given by the coefficients α′ = e−iaα and β′ = e−iaβ are
invariant:

|α′|2 =αe−iaα∗eia =αα∗ = |α|2

and similarly for |β′|2. We can say that the global phase of the quantum state can be
neglected. Thus we can write the qubit state as

|ψ′〉 = e−ia |ψ〉 = rα |0〉+ rβei(b−a) |1〉 = rα |0〉+ rβeiφ |1〉 , (2.41)

11It should be noted that here we describe the qubit as a perfect two-level system but qubits with more than
two levels can also be treated theoretically. These are called qutrits for three distinct levels or qudits for
n > 3 distinct excitation levels [5, 20].
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where we defined φ= b −a. We have now reduced the number of necessary parameters to
describe the quantum state from four to three. Next we change the coefficient of basis state
|1〉 from polar coordinates to cartesian coordinates, giving simply

|ψ′〉 = rα |0〉+ (x + iy) |1〉 . (2.42)

To this form we apply the normalization condition 〈ψ′ |ψ′〉 = 1 giving us

r 2
α+|x + iy |2 = r 2

α+x2 + y2 = 1.

This is an equation for a unit sphere in cartesian coordinates. Now we can transform from
the cartesian coordinates to spherical coordinates. The factor rα represents now the z
coordinate. The coordinate transformation is given by x = r sinθcosφ, y = r sinθ sinφ,
z = r cosθ, with θ ∈ [

0,π
]

and φ ∈ [
0,2π

]
. Now with radius r = 1 we get from Eq. 2.42

|ψ′〉 = cosθ |0〉+ sinθ(cosφ+ isinφ) |1〉 = cosθ |0〉+eiφ sinθ |1〉 , (2.43)

with only two real parameters θ and φ defining the pure quantum state. However, there is
some redundancy in the above expression because some points are counted twice. Let’s con-
sider two quantum states |ψ〉 and |ψ〉o , which are exactly opposite to each other. The state
|ψ〉 corresponds to a point (1,θ,φ) on the surface of a sphere and its basis representation is

|ψ〉 = cosθ |0〉+eiφ sinθ |1〉 .

The state |ψ〉o corresponds to a point (1,π−θ,π+φ). Its basis representation is then

|ψ〉o = cos(π−θ) |0〉+ei(π+φ) sin(π−θ) |1〉
=−cosθ−eiφ sinθ |1〉
=−|ψ〉 .

We see from the above that when a quantum state |ψ〉 moves to a point on the surface of
the sphere which is opposite to its original place it picks up a minus sign. This is a global
phase factor and we know that it can be neglected since it doesn’t affect the measurement
results. Thus in the Bloch sphere representation we restrict the angle θ to only half values
(θ ∈ [

0,π/2
]
) to get rid of the redundancy. This is obtained by using half angles in the qubit

state equation

|ψ〉 = cos
θ

2
|0〉+eiφ sin

θ

2
|1〉 . (2.44)

The pictorial representation of an arbitrary state |ψ〉 on the Bloch sphere is shown in
figure 2.3. The ẑ axis of the Bloch sphere is the qubit quantization axis and is named the
longitudinal axis and the ŷ and x̂ axes are both called transverse axis [8].

In the derivation of equation (2.44) we assumed initially that the qubit is in a pure state
as in equation (2.39). This gave us a Bloch sphere representation for the pure states being
the points on the surface of the sphere. Next we aim to extend this picture to mixed states,
which are represented by density matrices.

A qubit density matrix is a 2×2 positive semi-definite Hermitian matrix with unit trace
[31]. The Pauli matrices together with the identity matrix constitute a basis on the vector
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|ψ〉

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

φ

θ

Figure 2.3: A Bloch sphere representation of a single, arbitrary qubit state |ψ〉 .

space of complex 2×2 matrices. Thus we can write the qubit density matrix in this basis
decomposition as

ρ = r11+ r ′
xσx + r ′

yσy + r ′
zσz =

[
r1 + r ′

z r ′
x − ir ′

y

r ′
x + ir ′

y r1 − r ′
z

]
,

with some real coefficients r1, r ′
x , r ′

y , r ′
z . The restriction of unit trace sets Tr(ρ) = 1 ⇒ r1 = 1

2 .
Therefore we can write the mixed state density matrix as

ρ = 1

2

[
1+ rz rx − iry

rx + iry 1− rz

]
= 1+ r ·σ

2
, (2.45)

where we defined the Bloch vector r as r = (rx ,ry ,rz) = (2r ′
x ,2r ′

y ,2r ′
z) and σ = (σx ,σy ,σz).

Positive semi-definiteness of the density matrix restricts all of the eigenvalues of ρ to being
positive, thus forcing the determinant to be positive.12 This gives us the following condition:

det(ρ) = 1

2
(1− r 2

x − r 2
y − r 2

z ) ≥ 0. (2.46)

From here notice that the case in which r 2
x + r 2

y + r 2
z = 1 corresponds to the surface of the

sphere and is the case of a pure state that we derived earlier. However equation (2.46) does
not restrict us to the surface of the sphere. The points within the sphere are also available.
The restriction we get for equation (2.45) from Eq. (2.46) is that |r|2 ≤ 1. If |r|2 = 1 we have a
pure state and if |r|2 < 1 we have a mixed state. An interesting point to note is the origin of
the Bloch sphere, which corresponds to |r|2 = 0. In that case we have ρ = 1/2, which is the
maximally mixed state.

12This is because the determinant of a matrix is equal to the product of its eigenvalues. Thus if all eigenvalues
are positive, then so is the determinant [32].
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We have now gone through the derivation of the Bloch sphere representation for a single
qubit. It gives a concise geometrical interpretation of a qubit’s quantum state, whether it be
pure or mixed. However, we need to note that the intuition we gain from this description is
limited because there does not exist a known, simple generalization of the Bloch sphere for
multiple qubits [5]. Nevertheless, for single qubit states we can use it to better understand
the effects of certain operations and phenomena by seeing how these effects change the
state on the Bloch sphere. We return to these processes in chapter 5, when we consider the
effect of environmental coupling to quantum states. Next we turn our attention to a physical
implementation of the qubit and see that while the theoretical treatment of the qubit as a
perfect two level system is beautifully concise, the reality is a bit more complicated.

2.3.2 PHYSICAL IMPLEMENTATION: A TRANSMON QUBIT

As discussed before, qubits are two level systems. Thus any physical realization of a qubit
must have two distinct quantum states that can be distinguished from the other possible
states of the system [33]. This is trivial if the physical set-up is naturally two level, such
as an electron with spin 1

2 or a photon with horizontal and vertical polarization. While
manufacturing qubits using electrons [34] or photons [35] is possible, the main way of
realizing qubits nowadays are the superconducting qubits using the cQED architecture
[13, 7] we have been discussing in this chapter. These systems have inherently more than
two possible energy levels, so care must be taken when manufacturing them to make sure a
qubit-like behaviour can be obtained. Now we shall discuss a transmission-line shunted
plasma oscillation qubit or a transmon developed by Koch et al. in 2007 [36], which is the
most popular way of realizing a superconducting qubit at this time [7]. We shall see how
it is built from actual circuit elements using cQED architecture and what design choices
enable it to function as a qubit.

V (φ)

φ

CA φ̇

Figure 2.4: A transmon qubit built
from a Josephson junction (box with
a cross) and a shunt capacitor.

A transmon is a specific type of qubit developed from
a so-called Cooper pair box, in which the basis states
represent the presence or absence of superconduct-
ing charge carriers, Cooper pairs, in the supercon-
ducting chip [18]. In the most simple terms we can
analyze the transmon as a quantum LC-oscillator
(like in figure 2.1), where the linear inductor is re-
placed by a Josephson junction with a non-linear in-
ductance [20, 8]. This is depicted in figure 2.4. Let’s
take a closer look at how this works and enables us
to construct a working qubit.

A Josephson junction is a superconducting circuit
element, which has two superconducting islands separated by a non-superconducting
insulator. The Cooper pairs in the superconducting regions can tunnel through the insulator
in a phenomenon called the Josephson effect [37]. The Josephson junction is depicted in
figure 2.5. The Josephson effect creates an observable current through and voltage across
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Superconducting Superconducting

Insulator

Tunnelinge−e−
Cooper pair

Figure 2.5: Schematic of a Josephson junction. A non-superconducting insulator separates
two superconducting regions. The Cooper pairs can tunnel back and forth between the
superconducting materials through the insulating barrier. Figure adapted from [20].

the junction, whose values are given by the equations [20]

I (t ) = Ic sin(χ(t )) , (2.47)

V (t ) = ħ
2e
χ̇(t ) , (2.48)

where χ is a superconducting phase difference between the two islands and Ic is the critical
current of the junction, depending on its exact geometry. Integrating equation (2.48) with
respect to time gives us a relation between the superconducting phase difference χ and the
generalized flux φ through the junction as φ=ħχ/(2e). Using this expression in equation
(2.47) gives the following relation between the current and generalized flux:

I (t ) = Q̇(t ) = Ic sin
(2eφ(t )

ħ
)
= Ic sin

(
2π

φ(t )

φ0

)
, (2.49)

where we used the definition of superconducting magnetic flux quantum φ0 = h/(2e) from
section 2.1. As we have an equation for the current in terms of generalized flux, we can
compute the inductance this produces as [15, 20]

L(φ) =
(
∂I

∂φ

)−1

= φ0

2πIc

1

cos
(
2π φ

φ0

) = LJ

cos
(
2π φ

φ0

) , (2.50)

where we defined the Josephson inductance LJ =φ0/(2πIc). We can immediately notice that
the inductance of the Josephson junction is non-linear and dependent on the flux φ. This
behaviour is crucial in the construction of a superconducting qubit as we will see later.

We would like now to find the Lagrangian of the transmon circuit in figure 2.4 in a similar
manner as we did in section 2.1. This requires finding the corresponding energies for
the circuit elements. The shunt capacitor has not changed so its energy is the same as in
equation (2.2) but the inductive energy of the Josephson junction needs to be calculated.

To obtain the inductive energy of the Josephson junction we can think about how much
power has gone through the element from the beginning of dynamics to some arbitrary
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time t . The power of the junction is of course given by

P (t ) =V (t )I (t ) = φ̇(t )Ic sin
(
2π

φ(t )

φ0

)
. (2.51)

Integrating this from t ′ = −∞ to t ′ = t gives the stored energy in the inductor. The time
t ′ = −∞ means a time sufficiently far in the past when the circuit was at rest with no
currents or voltages affecting it. The energy of the Josephson junction becomes

E(φ) =
∫ t

−∞
P (t ′)dt ′ =

(φ0

2π

)2 1

LJ

[
1−cos

(
2π

φ(t )

φ0

)]
= EJ

[
1−cos

(
2π

φ(t )

φ0

)]
, (2.52)

where EJ = φ2
0/((2π)2LJ) is the Josephson energy. We can see that the energy is also non-

linear. Now we are ready to build the Lagrangian of the transmon circuit:

L = 1

2
CΣφ̇

2 −EJ

[
1−cos

(
2π

φ(t )

φ0

)]
= 1

2
CΣφ̇

2 +EJ cos
(
2π

φ(t )

φ0

)
, (2.53)

where the constant term was dropped out since the Lagrangian and Hamiltonian equations
are invariant with respect to the addition of a constant. The parameter CΣ =CA +CJ is now
the sum of the shunt capacitance CA and the self-capacitance of the junction CJ [8]. From
the transmon Lagrangian (2.53) we get the Hamiltonian via the Legendre transformation:

H = Q

2CΣ
−EJ cos

(
2π

φ(t )

φ0

)
. (2.54)

Now we are almost ready to quantize the equation. Before that, we perform the same
change of variables used in section 2.1 in approach 2 to the LC-circuit quantization. Now
we see why it was useful to think about reduced charge and flux back then. Noticing that
the argument of the cosine function is exactly the reduced flux Φ= 2πφ/φ0 and that the
reduced charge becomes again n =Q/(2e), we get [8]

H = 4ECn2 −EJ cos(Φ) ⇒ Ĥ = 4ECn̂2 −EJ cos(Φ̂) . (2.55)

The Hamiltonian was quantized by promoting the variables n and Φ to corresponding
operators with the commutation relation

[
Φ̂, n̂

]= i (see equation (2.14)). The appearance
of the cosine term in the Hamiltonian arises from the non-linear inductive potential of
the Josephson junction. This makes the qubit with Hamiltonian (2.55) an anharmonic
oscillator. Its energy levels are not evenly spaced like in the case of a quantum harmonic
oscillator. They are much more complex and given in terms of Mathieu functions. The
exact energy levels for Hamiltonian (2.55) can be found in Koch et al. [36].

The unevenness of the energy levels spacing allows us to separate the two lowest energy
levels as a computational subspace for qubit operations.13 If the spacing were even with
ωn,n+1 = ħωr for all n, we could not distinguish between the different excitation states.
Sending a pulse with energy ħωr could lead to excitation |1〉→ |2〉 (or any other jump to the
next energy level), which is not what we want. The anharmonicity of the inductive potential
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Figure 2.6: The quadratic potential of the harmonic oscillator yields equidistantly spaced
energy levels (in blue). The transmon potential is sinusoidal and thus non-linear (in red).
It yields nonequidistant energy levels14, thus allowing to isolate levels |0〉 and |1〉 as a
computational subspace. Figure adapted from [8].

leads toω01 6=ω12 so that we cannot accidentally excite the qubit to unwanted energy levels.
The difference between the harmonic and anharmonic potentials is shown in figure 2.6.

To be precise, the Hamiltonian in equation (2.55) holds for both Cooper pair boxes and
transmons alike. Now we make a distinction why do we talk about transmons in this
thesis. We can see from the Hamiltonian that the coefficients EC and EJ determine if the
Hamiltonian has more capacitive or inductive energy. It turns out that the setup with EJ ≤ EC

is highly sensitive to charge noise (variations in n̂), and this has been proven challenging to
mitigate [8]. The so called transmon regime is reached when EJ À EC, mitigating the charge
noise and allowing for better performance of the qubit [8, 15, 36].15 The ratio EJ/EC ≥ 50 is
sufficiently high for the charge noise reduction [36].

In this chapter we have introduced the necessary tools and methods of cQED to treat
actual circuits, composed of real circut elements, quantum mechanically. We started
by considering the treatement of the simple but useful case of an LC-oscillator and its

13When neglecting the higher excited states, the anharmonicity is paired with very low temperatures of the
qubit chip, which makes the higher excited states unlikely to be populated. In this way we can choose the
two-level system to be the ground and first excited state of our artificial atom, which we then call a qubit.

14The energy level values shown for the transmon are just for illustrative purposes. They are not exact. The
exact transmon energy levels can be obtained by solving the qubit Hamiltonian (2.55) and the solution is
given in [36]. Even though the energy values are not exact the figure points out the clear anharmonicity
between the energy levels, which is an important factor in constructing a qubit.

15Increasing the EJ/EC ratio does have a drawback; it decreases the anharmonicity of the energy levels.
However, it turns out that by increasing EJ/EC the noise decreses exponentially while the anharmonicity de-
creases as a weak power law. Thus we can find a regime of negligible noise but still sufficient anharmonicity
for qubit operations [36].
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quantization. Then we moved to discuss a more complex case of a resistive, dissipative
element and its quantization. Albeit quantum mechanics describes inherently reversible
processes, we were able to construct a quantum description of a resistor using the extended
Foster’s first form for the resistor as an infinite series of parallel LC-oscillators. Quantization
of this yielded the Caldeira-Leggett model for the resistor, leading us to think about it
as a bath of infinite harmonic oscillators. In the last section we discussed the theory of
quantum bits and looked at a specific type of qubit physical implementation, namely the
transmon qubit. We traced the steps needed to understand how this differs from other
superconducting qubits and how it is treated in the cQED architecture.

All of the above was done with a specific goal in mind: to describe an actual circuit and
find its Hamiltonian. But before delving into that, we need to introduce another important
theoretical model to describe the qubit and its dynamics. Indeed, the qubit will interact
with its environment (if not, then we would not be able to read it). Therefore the qubit is
not a closed system but an open quantum system.



3 Theory of Open Quantum Systems

When students studying theoretical physics encounter quantum mechanics for the first
time, they meet an idealized version of the theory. In basic quantum mechanics the isolated
quantum system lives alone in its Hilbert space, with nothing to interact with. The dynamics
of such a system is given by the Schrödinger equation, which the students can solve exactly
in some carefully selected cases. However, as is the case in most areas of physics (if not in
all of them), this is just an idealization.

In Nature there is no such a thing as an isolated system [38]. On the contrary, in reality every
quantum system is open, interacting with an external environment [39]. The quantum
states are not alone after all. But the standard treatment of quantum mechanics, where
time evolution is unitary, is not sufficient to describe the coupling to environment, which
is in itself a large quantum system. We need to expand the theory to the theory of open
quantum systems, which considers also non-unitary time evolution of states.

As stated, in reality every quantum system is open. Therefore it is easy to imagine that
the theory of open quantum systems is found in several subfields of modern physics that
somehow deal with quantum phenomena. It is used in atomic and nuclear physics [40],
photonics [41], biological physics [42] and in mesoscopic physics [43] to name a few. As this
thesis studies the behaviour of a superconducting qubit in a resistive environment, we are
applying open quantum systems theory to mesoscopic physics. Also, in the development of
quantum technology using superconducting qubits the theory of open quantum systems is
used extensively for example in quantum metrology [44, 45], quantum computation [46] or
in the study of quantum thermodynamics [47].

A pictorial representation of the prevailing problem with open quantum systems is depicted
in figure 3.1. In the most general case a system of interest is actually a subsystem of a much
larger system, which also includes the environment. The environment can be for example
a radiation field or a thermal bath. It usually consists of many degrees of freedom (much
more than in the subsystem) and is often modelled as an infinite collection of harmonic
oscillators [31]. Our interest lies in describing the dynamics of the subsystem and inferring
the equations of motion for this subsystem from the equations of motion of the total system
[38]. We also hope that the dynamics of the subsystem is easier to compute than the
dynamics of the total system, environment included.

25
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Environment: B ,HB,ρB

System: S,HS,ρS

α α

Total system: T,HT =HS ⊗HB,ρT = ρS ⊗ρB

Figure 3.1: A pictorial depiction of an open quantum system. The open system S interacts
with the environment B via the coupling α. The total system T = S +B is closed and is the
tensor product of the system and environment. Figure adapted from [31].

In this chapter we aim to gain sufficient knowledge of the theory of open quantum systems
in order to be able to apply it later to a Hamiltonian describing an actual superconducting
qubit and its circuit. We start by recalling standard quantum mechanics and its different
pictures, because we first need to understand how closed and isolated quantum systems
work before we start loosening the restrictions and start to consider open quantum systems.
After the brief review of quantum mechanics, we move to discuss open quantum system
dynamics. There we provide a way of deriving the master equation, which is the equation of
motion for stochastic processes such as quantum state evolution. The derivation presented
here is physically motivated but several other ways also exist (see Refs. [31, 39]). Lastly, we
meet a formulation which is useful in bringing the derived master equation into a form
which is more easily solvable using computer programs.

3.1 BRIEF REMINDER OF QUANTUM MECHANICS

We need to be familiar with the basics of quantum mechanics in order to grasp the nature of
the open quantum systems theory. Therefore we briefly recall how the usual quantum me-
chanics, encountered in the introductory courses, works. The structure of this discussion
follows mainly the steps in Breuer and Petruccione [31], starting from the Schrödinger pic-
ture quantum mechanics after which we consider the Heisenberg and interaction pictures.
We don’t go through all the mathematical details needed to construct a rigorous quantum
theory but only the bits that are most crucial and needed for further discussion about
open quantum systems. A reader interested in a more thorough treatment of quantum
mechanics can look for the introductory textbooks in quantum mechanics for example
from Griffiths [22] or Sakurai [48].

We begin by considering a pure state |ψ(t )〉 that describes the quantum state of some
arbitrary system. According to quantum mechanics, the time-evolution of the state vector
|ψ(t )〉 is given by the Schrödinger equation

iħ d

dt
|ψ(t )〉 = Ĥ(t ) |ψ(t )〉 . (3.1)

The Hamiltonian operator Ĥ(t ) describes the total energy of the system which, in general,
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can depend on time. The Schrödinger equation can be solved by postulating1 the existence
of a time-evolution operator Û (t , t0) such that it transforms the state vector from an earlier
time t0 to a later time t :

|ψ(t )〉 = Û (t , t0) |ψ(t0)〉 . (3.2)

For simplicity let’s set t0 = 0 for here on out. Clearly the time-evolution operator has an
initial condition Û (t , t) = 1 for any time t , since if the time is not evolving the state |ψ(t )〉
must stay the same. Let’s now plug equation (3.2) into (3.1) to get a differential equation for
Û (t ,0)

iħ d

dt
Û (t ,0) = Ĥ(t )Û (t ,0) . (3.3)

Taking the adjoint of the above equation gives

− iħ d

dt
Û †(t ,0) = Û †(t ,0)Ĥ(t ) , (3.4)

where we used the fact that the Hamiltonian is Hermitian and (AB)† = B † A†.

Let’s now consider the time derivative of a product Û †(t ,0)Û (t ,0).

d

dt

(
Û †(t ,0)Û (t ,0)

)= dÛ †(t ,0)

dt
Û (t ,0)+Û †(t ,0)

dÛ (t ,0)

dt

= i

ħÛ †(t ,0)Ĥ(t )Û (t ,0)− i

ħÛ †(t ,0)Ĥ(t )Û (t ,0)

= 0. (3.5)

Because of equation (3.5), Û †Û must be a constant. And due to the initial condition
Û (0,0) = 1 we must have

Û †Û = ÛÛ † = 1 . (3.6)

An operator, which satisfies equation (3.6) is called unitary.

Now we make a distinction between time dependent and time independent Hamiltonians.
If the Hamiltonian is time independent we call the system isolated. Then the energy of
the system is bound to be constant. If the system Hamiltonian is time dependent and its
dynamics can still be described in unitary fashion, we have a closed system [31].

Considering now an isolated system with time independent Hamiltonians, we can solve
equation (3.3) easily by integrating both sides with respect to time and get

Û (t ,0) = e−iĤ t/ħ . (3.7)

For time dependent Hamiltonians we would (in general) need to employ time-ordering in a
so called Dyson series [48].

As discussed, the Schrödinger equation gives the time evolution for a pure state |ψ(t )〉. Let’s
then consider a system which is in a statistical ensemble of pure states, that is it’s in a mixed

1Actually the Schrödinger equation and the existence of the time-evolution operator Û are both the same
postulate, just formulated differently [38].
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state. We can describe the mixed states as density matrices. Let’s say that at time t = 0 the
system’s state is characterized by a density matrix

ρ̂(0) =
∑

i
pi |ψi (0)〉〈ψi (0)| , (3.8)

where the coefficients pi are probabilities which sum to unity.

The representation for the state at time t is easy to get by using equation (3.2) and its
adjoint:

ρ̂(t ) =
∑

i
piÛ (t ,0) |ψi (0)〉〈ψi (0)|Û †(t ,0)

= Û ρ̂(0)Û † . (3.9)

When we differentiate (3.9) with respect to time we recover an equation of motion for the
density matrix.

d

dt
ρ̂(t ) = d

dt

[
Û ρ̂(0)Û †]

= dÛ

dt
ρ̂(0)Û † +Û ρ̂(0)

dÛ †

dt

=− i

ħ Ĥ(t )Û ρ̂(0)Û † + i

ħÛ ρ̂(0)Û †Ĥ(t )

=− i

ħ
[
Ĥ(t ), ρ̂(t )

]
, (3.10)

where we used equations (3.3), (3.4) and (3.9) as an aid. The derived equation is called the
Liouville-von Neumann equation. It is the Schrödinger equation equivalent for mixed states.
Equation (3.10) is the usual form for the Liouville-von Neumann equation encountered in
quantum mechanics. However, we write it in a slightly different form

d

dt
ρ̂(t ) =L (t )ρ̂(t ) , (3.11)

where L (t) is the Liouvillian superoperator or just the Liouvillian. It is a superoperator,
which means that it acts on operators, just like an operator acts on vectors. The Liouvillian
L is defined in equation (3.11) as

L (t ) =− i

ħ
[
Ĥ(t ), ·] , (3.12)

where the dot is replaced by the operator to which the Liouvillian acts on. In the case of
time independent Hamiltonian, equation (3.11) has the well known solution

ρ̂(t ) = eL t ρ̂(0) . (3.13)

If the Hamiltonian depended on time we would again need time ordering for the general
solution [31].
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3.1.1 THE HEISENBERG PICTURE

In the previous part we assumed that the quantum states, whether they were pure states
|ψ(t )〉 or mixed states ρ̂(t ), carried all time dependence. This picture of quantum mechanics
is called the Schrödinger picture. An equivalent formulation is obtained by letting the
operators acting on the Hilbert space H carry all time dependence, which leaves states
time independent. This formulation is called the Heisenberg picture. To make sure that these
two pictures actually coincide and describe the same quantum mechanics we require that
the observable quantities, that is the expectation values of operators, remain unchanged
between the two pictures. This requirement gives

〈Â〉 = 〈
ψ(t )

∣∣ Â
∣∣ψ(t )

〉= 〈
ψ(0)

∣∣∣Û † ÂÛ
∣∣∣ψ(0)

〉
= 〈ÂH〉 (3.14)

for pure states and

〈Â〉 = Tr
[

Âρ̂(t )
]= Tr

[
ÂÛ ρ̂(0)Û †]= Tr

[
Û † ÂÛ ρ̂(0)

]= Tr
[

ÂHρ̂(0)
]= 〈ÂH〉 (3.15)

for density matrices. Above we denoted the Heisenberg picture operator by the subscript H.
Here we can spot how the Schrödinger picture operators are transformed to the Heisenberg
picture via the canonical transformation

ÂH(t ) = Û †(t ,0)ÂÛ (t ,0) . (3.16)

Note that the transformation between the pictures arises from the requirement of coincid-
ing expectation values for the observables.

Taking the time derivative of (3.16) gives us an equation of motion for the operators [48]

d

dt
ÂH(t ) = d

dt

(
Û † ÂÛ

)
= dÛ †

dt
ÂÛ +Û †∂Â

∂t
Û +Û † Â

dÛ

dt

= i

ħÛ †ĤÛÛ † ÂÛ − i

ħÛ † ÂÛÛ †ĤÛ +
(
∂Â

∂t

)
H

= i

ħ
[
ĤH, ÂH(t )

]+(
∂Â

∂t

)
H

. (3.17)

This is called the Heisenberg equation of motion. If the Schrödinger picture operator Â is
time independent and we consider an isolated system, we can write the above equation
simply as

dÂH

dt
= i

ħ
[
Ĥ , ÂH

]
, (3.18)

because then the Heisenberg picture Hamiltonian HH = Û †ĤÛ reduces to the Schrödinger
picture one.
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3.1.2 THE INTERACTION PICTURE

Having considered the Schrödinger and Heisenberg pictures of quantum mechanics, we
consider the third picture that we use extensively when considering the open quantum
system dynamics. This is called the interaction picture and it’s most useful, as the name
suggests, when considering some free Hamiltonians interacting with each other . We start
to characterize the interaction picture by considering a Hamiltonian that can be written as
a sum of two parts [31]

Ĥ(t ) = Ĥ0 + ĤI(t ) , (3.19)

where Ĥ0 represents the sum of energies of the systems in study without an interaction
and is taken to be time independent. The term ĤI(t ) describes the interaction between the
systems and can, in general, depend on time.

Now we say that the time-evolution operator corresponding to Hamiltonian (3.19) can be
written as a product the two parts [31]

Û (t ,0) = Û0(t ,0)ÛI(t ,0) , (3.20)

where Û0 corresponds to the time evolution of the free part and ÛI corresponds to the time
evolution of the interaction part. Therefore the expectation value of some (Schrödinger
picture) observable Â is given in the interaction picture by

〈Â〉 = Tr
[

ÂÛ ρ̂(0)Û †]= Tr
[

ÂÛ0ÛIρ̂(0)Û †
I Û †

0

]= Tr
[
Û †

0 ÂÛ0ÛIρ̂(0)Û †
I

]= Tr
[

Ã(t )ρ̃(t )
]

.
(3.21)

Above we introduced the interaction picture operator

Ã(t ) = Û †
0 ÂÛ0 (3.22)

and the interaction picture density matrix

ρ̃(t ) = ÛIρ̂(0)Û †
I . (3.23)

The tilde on top of an operator Õ denotes interaction picture. It can be seen from the
definitions (3.22) and (3.23) that the time evolution of the operators is generated by the
free part Ĥ0 and the time evolution of the states by the interaction part ĤI. Therefore
the interaction picture can be thought of as an intermediate formulation between the
Schrödinger and Heisenberg picures. This can be seen more clearly by setting Ĥ0 = 0 in the
Hamiltonian (3.19). This would yield Û0 = 1 and ÛI = Û , corresponding to the Schrödinger
picture. Similarly, by setting ĤI = 0 in (3.19) we would recover the Heisenberg picture with
Û0 = Û and ÛI = 1 [31].

The time evolution operator of the interaction part ÛI satisfies the differential equation
(3.3) with the interaction Hamiltonian [31]

iħ d

dt
ÛI(t ,0) = H̃I(t )ÛI(t ,0) , (3.24)

where H̃I(t) = Û †
0 ĤIÛ0 is the interaction part of the Hamiltonian Ĥ(t) in the interaction

picture. We can then differentiate (3.23) with respect to time, use equation (3.24), and
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following similar lines of reasoning as in deriving equation (3.10) we end up with

d

dt
ρ̃(t ) =− i

ħ
[
H̃I(t ), ρ̃(t )

]
. (3.25)

This is the Liouville-von Neumann equation in the interaction picture and the starting
point of our discussion about open quantum systems.

The emergence of the interaction picture can also be found out to be a special case of a
general unitary transformation of the Hamiltonian. Let’s here derive a useful result for how
an arbitrary unitary transformation changes the Hamiltonian. Let Û be the transformation
in question. It maps quantum states |ψ(t )〉 to other states |ψ(t )〉′ as

|ψ(t )〉′ = Û |ψ(t )〉 . (3.26)

The new states must also evolve according to the Schrödinger equation (3.1) with the
transformed Hamiltonian Ĥ ′. This gives

iħ d

dt
|ψ(t )〉′ = Ĥ ′ |ψ(t )〉′

⇒ iħdÛ

dt
|ψ(t )〉+ iħÛ

d

dt
|ψ(t )〉 = Ĥ ′Û |ψ(t )〉

⇒ iħÛ
d

dt
|ψ(t )〉 = Ĥ ′Û |ψ(t )〉− iħdÛ

dt
|ψ(t )〉

⇒ iħ d

dt
|ψ(t )〉 =

[
Û †Ĥ ′Û − iħÛ † dÛ

dt

]
︸ ︷︷ ︸

Ĥ

|ψ(t )〉 .

The original Hamiltonian is given in terms of the transformed Hamiltonian in the brackets.
We can solve for Ĥ ′ to get

Ĥ ′ = Û ĤÛ † + iħdÛ

dt
Û † . (3.27)

This gives the general unitary transformation of the Hamiltonian. A special case of this is

now the interaction picture, because setting Û = e−iĤ0t/ħ recovers the interaction picture
for the original Hamiltonian of the form (3.19).

3.2 OPEN QUANTUM SYSTEM DYNAMICS

The dynamics of the closed quantum systems discussed in the last section were all de-
scribed by the unitary time evolution operator2 U (t ,0) and the Liouville-von Neumann
equation of motion. The unitarity (and thus reversibility) of the dynamics was an underly-
ing assumption in the preceding discussion. Now we relax that requirement by considering
open quantum systems.

2Here and in what follows we drop the hat describing the operator for simplicity. It should be clear from
context when operators are considered.
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As Breuer and Petruccione [31] put it, "an open system is a quantum system S which is
coupled to another quantum system B called the environment." Thus we are considering
two distinct systems, S and B , of which S is our main system of interest (the one whose
dynamics we want to compute) while B is its environment that affects the dynamics in
a non-trivial manner. S is the open quantum system interacting with environment B . It
represents a subsystem of the complete system S +B , which we take to be a closed system
[31]. See again figure 3.1 for a pictorial description.

Let’s denote the Hilbert space of the "universe"3 Hamiltonian HT as HT. Next we decom-
pose the total Hamiltonian and its Hilbert space into Hamiltonian of the system HS with
Hilbert space HS and Hamiltonian of the environment HB with Hilbert space HB. The
Hilbert space of the universe can be written as the tensor product between the system and
environment Hilbert spaces HT =HS ⊗HB [31]. The total Hamiltonian becomes

HT = HS ⊗ 1B + 1S ⊗HB +αHI , (3.28)

where we show explicitly the tensor product structure of the free part of the total Hamil-
tonian. HI describes the interaction between the system and its environment and α is a
dimensionless quantity, which measures the strength of the interaction [38].

Let’s now begin the analysis for the open system dynamics, following references [31, 38, 39]
and [49]. We consider the system dynamics in the interaction picture, since our ultimate
interest lies in the effects of the environmental interaction on the system. Since we assume
the complete system with Hamiltonian HT to be closed, we can use the Liouville-von
Neumann equation (3.25) to describe its dynamics

d

dt
ρ̃T(t ) =− iα

ħ
[
H̃I(t ), ρ̃T(t )

]
. (3.29)

Here we were able to move the quantity α to the front since it’s just some number. The tilde
denotes again interaction picture operators. Integrating this with respect to time gives us

ρ̃T(t ) = ρ̃T(0)− iα

ħ

∫ t

0

[
H̃I(t ′), ρ̃T(t ′)

]
dt ′ . (3.30)

Let’s substitute (3.30) into the right hand side of (3.29) to get

d

dt
ρ̃T(t ) =− iα

ħ
[
H̃I(t ), ρ̃T(0)

]− α2

ħ2

∫ t

0

[
H̃I(t ),

[
H̃I(t ′), ρ̃T(t ′)

]]
dt ′ (3.31)

At this point we are dealing with the complete state density matrix ρT. Since we are ulti-
mately interested in the dynamics of the system only, we trace over the environment in an
operation called the partial trace (see Refs. [31, 39] for its mathematical formulation). This
operation allows us to obtain only the system dynamics, while the environment effect is
described by some numerical coefficients. More concretely, we get for the complete system
density matrix4

TrB[ρT] = TrB[ρS ⊗ρB] = ρS Tr[ρB] = ρS , (3.32)

3This refers to the system of everything, which is the smaller system of interest plus the bath.
4Here we assume that the total system’s state is separable as a tensor product. More on this soon, when the

Born approximation is discussed.
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because the density matrix has unit trace by definition. Taking the partial trace of equation
(3.31) gives

d

dt
ρ̃S(t ) =− iα

ħ TrB

{[
H̃I(t ), ρ̃T(0)

]}− α2

ħ2

∫ t

0
TrB

{[
H̃I(t ),

[
H̃I(t ′), ρ̃T(t ′)

]]}
dt ′ . (3.33)

To continue from here we need to perform our first approximation.

3.2.1 BORN APPROXIMATION

The Born approximation or the weak coupling approximation states that the coupling
strength between the system and its environment is weak. In our case this means that
α/ħ ¿ 1.5 Let’s assume that in the beginning there exists no correlations between the
system and its environment such that the total density matrix separates as ρT(0) = ρS(0)⊗ρB.
This means that the system and environment are not entangled with each other.

Now taking the environment to be huge compared to the system, the non-trivial time
evolution of the system should not have a noticeable effect on the environment’s state [39].
Thus we can assume that the total density matrix separates for all time evolution as [31]

ρT(t ) ≈ ρS(t )⊗ρB . (3.34)

We take the state of the environment ρB to be in a time independent, stationary state.6

More precisely the environment is in a thermal state, which is at thermal equilibrium at
some temperature T . The thermal state density matrix is given by (see Appendix B for
derivation)

ρTh(ω) = 1

1+ n̄(ω)

∞∑
n=0

( n̄(ω)

1+ n̄(ω)

)n
|n〉〈n| , (3.35)

where n̄(ω) is the expected number of quanta given by the Bose-Einstein distribution for
some angular frequency ω.

Using the Born approximation (3.34) in equation (3.33) yields:

d

dt
ρ̃S(t ) =− iα

ħ TrB

{[
H̃I(t ),ρS(0)⊗ρB

]}−α2

ħ2

∫ t

0
TrB

{[
H̃I(t ),

[
H̃I(t ′), ρ̃S(t ′)⊗ρB

]]}
dt ′ . (3.36)

This looks a bit complicated but will keep simplifying as we move on.

Let’s consider the form of the interaction Hamiltonian HI. As it determines the interactions
between the system and bath, it must be composed of some kind of a product between the
corresponding operators. If not, the terms would just be added to the free Hamiltonians.
Therefore we can conclude that the interaction Hamiltonian is in its most general form

HI =
∑
β

Aβ⊗Bβ , (3.37)

5The Born approximation makes our derivation perturbative in nature. We could insert the integral form of
the complete state (3.30) into the Liouville-von Neumann equation (3.29) more than once. This would yield
a power series in coupling strength α/ħ but since we assume α/ħ¿ 1 we can neglect the terms of order
O (α3) [38].

6This means that [HB ,ρB ] = 0.
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where Aβ are operators acting on the system Hilbert space HS and Bβ are environment
operators acting on HB. The index β runs over all the terms that exist in HI.

Now we take a closer look at the first term in equation (3.36). Since the interaction Hamilto-
nian can be decomposed as in equation (3.37), we write the trace in the first term as

TrB

{[
H̃I(t ),ρS(0)⊗ρB

]}=
∑
β

TrB

{[
Ãβ(t )⊗ B̃β(t ),ρS(0)⊗ρB

]}
=

∑
β

TrB

{(
Ãβ(t )⊗ B̃β(t )

)(
ρS(0)⊗ρB

)− (
ρS(0)⊗ρB

)(
Ãβ(t )⊗ B̃β(t )

)}
=

∑
β

TrB

{(
ÃβρS

)⊗ (
B̃βρB

)− (
ρS Ãβ

)⊗ (
ρBB̃β

)}
=

∑
β

(
ÃβρS

)
Tr

{
B̃βρB

}−∑
β

(
ρS Ãβ

)
Tr

{
ρBB̃β

}
.

Here we used the mixed product property of the Kronecker product (A ⊗ B)(C ⊗ D) =
(AC )⊗ (BD) [50]. The remaining traces are over the environment Hilbert space. Since
we assume the environment to be in a thermal state given by the equation (3.35) the
traces become zero. This is because we can assume without any loss of generality that the
expectation values for the bath operators Tr

[
ρBB̃β

]= 〈B̃β〉 = 0 for all β, or if this is not the
case we can transform the Hamiltonian into a form where it’s true by just introducing an
energy shift [38]. Therefore we have

TrB

{[
H̃I(t ),ρS(0)⊗ρB

]}= 0. (3.38)

This simplifies equation (3.36). Let’s now use the interaction Hamiltonian decomposition
(3.37) there to get

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ t

0
TrB

{[
Ã†
β

(t )⊗ B̃ †
β

(t )︸ ︷︷ ︸
H̃I=H̃ †

I

,
[

Ãβ′(t ′)⊗ B̃β′(t ′), ρ̃S(t ′)⊗ρB
]]}

dt ′ . (3.39)

Now we need to open up the double commutator in the integrand. Using the fact that the
transpose distributes in tensor products ((A ⊗B)> = A>⊗B>) but not for normal matrix
products ((AB)> = B>A>) we get after some algebra

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ t

0
dt ′ TrB

{(
Ã†
β

(t )⊗ B̃ †
β

(t )
)(

Ãβ′(t ′)⊗ B̃β′(t ′)
)(
ρ̃S(t ′)⊗ρB

)
− (

Ãβ′(t ′)⊗ B̃β′(t ′)
)(
ρ̃S(t ′)⊗ρB

)(
Ã†
β

(t )⊗ B̃ †
β

(t )
)}+h.c. , (3.40)

where h.c. denotes the Hermitian conjugate. Usage of the mixed product property for
Kronecker products allows us to separate the system and environment operators to their
own blocks:

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ t

0
dt ′ TrB

{(
Ã†
β

(t )Ãβ′(t ′)ρ̃S(t ′)
)⊗ (

B̃ †
β

(t )B̃β′(t ′)ρB
)

− (
Ãβ′(t ′)ρ̃S(t ′)Ã†

β
(t )

)⊗ (
B̃β′(t ′)ρBB̃ †

β
(t )

)}+h.c. . (3.41)
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The partial trace ignores the contribution of the system operators and only acts on states
living in the environment Hilbert space HB. Therefore we have after some algebra

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ t

0
dt ′ Tr

{
ρBB̃ †

β
(t )B̃β′(t ′)

}[
Ã†
β

(t ), Ãβ′(t ′)ρ̃S(t ′)
]+h.c. . (3.42)

Above the trace term is the expectation value of the bath operator product at different times
t and t ′:

Tr
{
ρBB̃ †

β
(t )B̃β′(t ′)

}= 〈
B̃ †
β

(t )B̃β′(t ′)
〉

. (3.43)

Equation (3.43) is called the reservoir correlation function [31]. It tells us how much do the
bath operators correlate with each other at two different times. Intuitively the time interval
t − t ′ should be the contributing factor here since we have assumed the environment to
be stationary and not changing in time. Motivated by this reasoning let’s change the time
variable to τ= t − t ′. Using this new variable τ let’s examine the correlation function (3.43)
a bit closer.

The reservoir correlation function becomes〈
B̃ †
β

(t )B̃β′(t −τ)
〉= Tr

{
ρBB̃ †

β
(t )B̃β′(t −τ)

}
. (3.44)

Let’s apply here the definition for the interaction picture of the operators given by
equation (3.22). Now U0 is given by the free parts Hamiltonian U0 = e−i(HS+HB)t/ħ but,
since we are considering only bath operators in the interaction picture, the system
Hamiltonian has no effect. This is because

[
HS,Bβ

]= 0 as the operators live in different
Hilbert spaces. Therefore we get〈

B̃ †
β

(t )B̃β′(t −τ)
〉= Tr

{
ρBeiHBt/ħB †

β
e−iHBt/ħeiHB(t−τ)/ħBβe−iHB(t−τ)/ħ

}
. (3.45)

Because the bath is stationary we have
[
HB,ρB

]= 0. This allows us to treat ρB and eiHBt

as if they were scalars in the above. Using this and the cyclicity of trace we can move
the factor eiHB(t−τ) from the back to the right side of ρB and get〈

B̃ †
β

(t )B̃β′(t −τ)
〉= Tr

{
ρBeiHBτ/ħB †

β
e−iHBτ/ħBβ

}
= 〈

B̃ †
β

(τ)B̃β′(0)
〉

. (3.46)

Thus the correlation function depends only on the time difference τ as guessed before.

Let’s now use the change of variables τ= t − t ′ and equation (3.46) in equation (3.42) to get

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ t

0
dτ

〈
B̃ †
β

(τ)B̃β′(0)
〉[

Ã†
β

(t ), Ãβ′(t −τ)ρ̃S(t −τ)
]+h.c. . (3.47)

This form of the system time-evolution equation is still difficult to solve because the equa-
tion depends on the system evolution history due to the presence of ρ̃S(t −τ). Therefore it’s
time for another approximation.
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3.2.2 MARKOV APPROXIMATION

Getting rid of the system state’s history in equation (3.47) requires the use of Markov
approximation. Let’s say that the environment correlation function (3.46) decays in a time
scale τB. This means that |〈B̃ †

β
(τ)B̃β′(0)〉|∝ e−t/τB . Now we assume that this time scale τB is

much smaller than the relevant time scale for the system dynamics τS in which the system
state in the interaction picture changes appreciably, so τB ¿ τS. Therefore, if we consider
a time t∗ À τB but which is still much smaller than τS, we can replace ρ̃S(t −τ) by ρ̃(t) in
the integral (3.47) because the correlation function decays to zero at any appreciable time
τ∼ t∗ À τB [49]. Effectively we assume the existence of a time scale t∗ such that

τB ¿ t∗ ¿ τS =O (ħ2/α2) , (3.48)

with the system time scale being determined by the coupling between the system and its
environment [49].

Using the above argument of correlation function being negligible for τÀ τB we can also
extend the upper limit of integration to infinity and get

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ ∞

0
dτ

〈
B̃ †
β

(τ)B̃β′(0)
〉[

Ã†
β

(t ), Ãβ′(t −τ)ρ̃S(t )
]+h.c. . (3.49)

The validity of moving from equation (3.47) to (3.49) is discussed in Ref. [39]. There it
is shown that if the correlation functions decay even subexponentially7, then the above
approximation works.

Now we have a Markovian differential equation. In the literature, equation (3.49) is called
the Redfield equation, but it does not warrant complete positivity [38, 49, 39], which is a
requirement for the physical (CPTP)8 evolution of density matrices. We now proceed to fix
this issue.

Our next step is to move from the time domain to the frequency domain. This is done
by introducing the so called jump operators (the naming will become evident soon) of
the system. In essence we express the system operators Aβ(t ) in frequency domain. This
representation turns out to be convenient later.

We proceed by decomposing the system operators in the energy eigenbasis of the system.
In this basis the system Hamiltonian HS is diagonalized

HS =
∑

i
εi |εi 〉〈εi | . (3.50)

Here εi is the energy of the eigenstate |εi 〉 such that HS |εi 〉 = εi |εi 〉. Then the system
operators can be written as

Aβ =
∑
i , j

|εi 〉〈εi |Aβ|ε j 〉〈ε j | =
∑
i , j

〈εi |Aβ|ε j 〉 |εi 〉〈ε j | , (3.51)

7Meaning that if the decay is of the form |〈B̃ †
β

(τ)B̃β′ (0)〉|∝ e−(t/τB)k
, then the Markov approximation is valid

for k > 0, so k need not be even greater or equal to 1 [39].
8Completely Positive, Trace Preserving
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where we used the fact that the energy eigenstates constitute a complete basis such that∑
i |εi 〉〈εi | = 1. Let’s now fix the energy difference between the two basis states to be ε j −εi =

ħω, with ω being the Bohr frequency. This gives us

Aβ(ω) =
∑

ε j−εi=ħω
〈εi |Aβ|ε j 〉 |εi 〉〈ε j | , with Aβ =

∑
ω

Aβ(ω) . (3.52)

What equation (3.52) does, is collecting all the elements of the matrix which contribute to
the same Bohr frequency ω. These operators Aβ(ω) are now the jump operators because
they are responsible for changing the state energy level by the amount ħω or, in other words,
by jumping up/down in energy levels by that amount. The full operator Aβ is then the sum
over all possible frequencies of these jump operators. The meaning of equation (3.52) is
also explained in figure 3.2, where we consider the matrix representation of the operator Aβ.
There the coloured diagonal beams correspond to different jump operators Aβ(ω). Thus
equation (3.52) essentially decomposes the matrix Aβ into a sum of its k-diagonals, where
k = 0 corresponds to the leading diagonal, k =±1 to the super- and subdiagonals et cetera.

A11 A12 A13 A14 . . .

A21 A22 A23 A24 . . .

A31 A32 A33 A34 . . .

A41 A42 A43 A44 . . .

...
...

...
...

. . .





ε j −εi = 0

ε j −εi =−1

ε j −εi =−2

ε j −εi =−3

ε j −εi = 1

ε j −εi = 2

ε j −εi = 3

Figure 3.2: Pictorial representation of equation (3.52). The different jump operators cor-
respond to different diagonal lines in the matrix form of operator Aβ. The jump operator
method therefore decomposes the matrix Aβ to a sum of its different k-diagonals, which
are represented in wide coloured beams in the figure.

Next we need to convert operators Aβ(ω) to the interaction picture. Due to the definition
(3.52) of the jump operators this is easy:

Ãβ(ω) =U †
0 Aβ(ω)U0

=
∑

ε j−εi=ħω
〈εi |Aβ|ε j 〉eiHSt/ħ |εi 〉〈ε j |e−iHSt/ħ

= ei(εi−ε j )t/ħ ∑
ε j−εi=ħω

〈εi |Aβ|ε j 〉 |εi 〉〈ε j |

= e−iωt Aβ(ω) . (3.53)

From this we immediately get also the adjoint

Ã†
β

(ω) = eiωt A†
β

(ω) . (3.54)
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From equations (3.53) and (3.54) we get the form for the interaction picture system operator
Ãβ(t ) by summing over the frequencies (see Eq. (3.52))

Ãβ(t ) =
∑
ω

e−iωt Aβ(ω) , and Ã†
β

(t ) =
∑
ω

eiωt A†
β

(ω) . (3.55)

We can now use the above equation in the Markovian system state evolution equation
(3.49):

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∫ ∞

0
dτ

〈
B̃ †
β

(τ)B̃β′(0)
〉[∑

ω

eiωt A†
β

(ω),
∑
ω′

e−iω′(t−τ) Aβ′(ω′)ρ̃S(t )
]
+h.c. .

(3.56)
After some algebra this becomes

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∑
ω,ω′

ei(ω−ω′)t [A†
β

(ω), Aβ′(ω′)ρ̃S(t )
]∫ ∞

0
dτ

〈
B̃ †
β

(τ)B̃β′(0)
〉

eiω′τ+h.c. . (3.57)

It is notable that we have managed to separate all environment dependency (coming from
the bath operators Bβ) to the integral over the time interval τ. This is of course the effect of
taking the partial trace over the environment. To clean up notation let’s define

Γββ′(ω′) ≡
∫ ∞

0
dτ

〈
B̃ †
β

(τ)B̃β′(0)
〉

eiω′τ . (3.58)

This is the one sided Fourier transform of the bath correlation function. Applying this
shorthand notation to (3.57) we arrive at

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∑
ω,ω′

ei(ω−ω′)tΓββ′(ω′)
[

A†
β

(ω), Aβ′(ω′)ρ̃S(t )
]+h.c. . (3.59)

This form is called the Bloch-Redfield master equation. This equation still does not guar-
antee complete positivity of the transformed density matrices due to the oscillating terms
with ω 6=ω′ [39]. We will need one final approximation to obtain the desired form.

3.2.3 SECULAR APPROXIMATION

The secular approximation, also known as the rotating wave approximation, deals with
the frequency difference ω−ω′ and the effect it has on the final state of the system. As can
be seen from equation (3.59) the frequency difference appears in the exponential factor
ei(ω−ω′)t , which is a rotation. The time scale of this rotation is clearly |ω−ω′|−1. Let’s now
assume a time scale t∗ satisfies [49]

∃t∗ such that |ω−ω′|−1 ¿ t∗ ¿ τS =O (ħ2/α2) . (3.60)

In this range the terms oscillating with frequency ω−ω′ will not give any significant con-
tribution to the system dynamics, since by integrating (3.59) with respect to time these
oscillations average out to zero [49, 39]. Note that equation (3.60) is a refinement of equation
(3.48).
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When neglecting the fast rotating terms we should be careful to check the validity of
equation (3.60) as discussed in Ref. [49]. In some circumstances neglecting all terms with
ω 6= ω′ is feasible, provided the difference in each frequency pair is large enough such
that |ω−ω′|−1 ¿ τS for all ω,ω′ (called the full secular approximation). Then all of the
rotating terms are oscillating so fast compared to the system evolution time scale that their
contributions average out. However, if some frequency steps are close to the system time
scale, |ω−ω′|−1 ∼ τS, then we cannot find a time scale t∗ in between that would satisfy
equation (3.60). In this case some of the slowly rotating terms with ω 6=ω′ would need to be
kept (this is called the partial secular approximation).

For simplicity let us now assume the full secular approximation and neglect all the terms in
equation (3.59) with ω 6=ω′. This gives us

d

dt
ρ̃S(t ) =−α

2

ħ2

∑
β,β′

∑
ω

(
Γββ′(ω)

[
A†
β

(ω), Aβ′(ω)ρ̃S(t )
]+Γ∗β′β(ω)

[
ρ̃S(t )A†

β
(ω), Aβ′(ω)

])
, (3.61)

where the Hermitian conjugate was written out explicitly.

Let’s now decompose the one sided Fourier transform Γββ′(ω) to a real and imaginary parts
as follows.

Γββ′(ω) ≡ 1

2
γββ′(ω)+ iSββ′(ω) . (3.62)

Then we have

γββ′(ω) ≡ Γββ′(ω)+Γ∗β′β(ω) =
∫ ∞

−∞
dτ

〈
B̃ †
β

(τ)B̃β′(0)
〉

eiωτ , (3.63)

Sββ′(ω) ≡ 1

2i

(
Γββ′(ω)−Γ∗β′β(ω)

)
. (3.64)

We can notice that γββ′(ω) becomes the full Fourier transform of the bath correlation
functions.

We can now use the decomposition (3.62) in equation (3.61). After a little bit of quite
straightforward algebra we end up with the following form

d

dt
ρ̃S(t ) =− i

ħ
[
HLS, ρ̃S(t )

]+ α2

ħ2

∑
β,β′

∑
ω

γββ′(ω)
(

Aβ′(ω)ρ̃S(t )A†
β

(ω)− 1

2

{
A†
β

(ω)Aβ′(ω), ρ̃S(t )
})

,

(3.65)
where we used the anticommutator

{
A,B

}= AB +B A and defined the Lamb-shift Hamilto-
nian HLS as

HLS =
α2

ħ
∑
β,β′

∑
ω

Sββ′(ω)A†
β

(ω)Aβ′(ω) . (3.66)

This renormalizes the system energy levels due to the interaction with the environment,
like in the case of the original Lamb shift encountered in the hydrogen atom energy levels
[51].

Equation (3.65) is still in the interaction picture. Using the equation for Hamiltonian
unitary transformation (3.27) we can move back to the Schrödinger picture with U = eiH0t/ħ.
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Note that since the jump operators Aβ(ω) commute with H0, they are left invariant by U .
When moving to Schrödinger picture the state operators change to ρ̃S(t ) → ρS(t ) and the
commutator term picks up the free Hamiltonian H0. Finally we get

ρ̇S(t ) =− i

ħ
[
H0+HLS,ρS(t )

]+α2

ħ2

∑
β,β′

∑
ω

γββ′(ω)
(

Aβ′(ω)ρS(t )A†
β

(ω)−1

2

{
A†
β

(ω)Aβ′(ω), ρS(t )
})

.

(3.67)
This equation is called the GKSL-equation, named after Gorini, Kossakowski, Sudarshan
and Lindblad [52, 53], or just the Lindblad equation. It satisfies complete positivity, because
the coefficients γββ′ can be shown to be positive [39]. Thus the Lindblad equation is a
proper master equation that describes dynamics of a quantum system subject to effects of
the environment. It can also be written, using the superoperator notation, as

d

dt
ρS(t ) =L [ρS(t )] , (3.68)

just like in equation (3.11) for the Liouville-von Neumann equation but now with a more
complex Liouvillian superoperator L .

We can notice that the first term in the Lindblad equation looks a lot like the Liouville-von
Neumann equation (3.10). This is no coincidence but a fact that shows that the theory
works. Since (3.67) is an extension of the Liouville-von Neumann equation to open quantum
systems, it should be contained within the more general equation. Indeed, we notice that
in the limit of vanishingly weak coupling α→ 0 we recover the Liouville-von Neumann
equation since the Lamb-shift Hamiltonian as well as the α2-term, called the dissipator
and denoted as D[ρ], disappear and our Hamiltonian (3.28) reduces to just the free part H0.
Thus the environmental effects disappear and we are left with a closed quantum system.

3.2.4 THE ADJOINT MASTER EQUATION

Equation (3.67) is, as stated before, in Schrödinger picture and it was derived by going
through the interaction picture (see Eq. (3.65)). In both of these pictures the states carry
time dependence but sometimes it’s useful to fully consider the time dependence of the
operators. Thus we need a Heisenberg picture form of the Lindblad equation.

To arrive at the Heisenberg picture we again use the equivalence of the expectation values
between the pictures as shown in equation (3.15). As we start from the Schrödinger picture,
an arbitrary operator O acting on HS is time independent and we can safely consider the
time evolution of its expectation value using equation (3.67).

d

dt
Tr

{
OρS(t )

}=− i

ħ Tr
{

O
[
H0 +HLS,ρS(t )

]}
+ α2

ħ2

∑
β,β′

∑
ω

γββ′(ω)Tr
{

O
(

Aβ′(ω)ρS(t )A†
β

(ω)− 1

2

{
A†
β

(ω)Aβ′(ω), ρS(t )
})}

. (3.69)

Let’s consider first the unitary part of the equation. Let’s simplify the notation by denoting
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H0 +HLS ≡ H for now.

Tr
{

O
[
H ,ρS(t )

]}= Tr
{
OHρS(t )

}−Tr
{
OρS(t )H

}= Tr
{
OHρS(t )

}−Tr
{

HOρS(t )
}

= Tr
{[

O, H
]
ρS(t )

}
=−Tr

{[
H ,O

]
ρS(t )

}
.

Then let’s compute the trace inside the dissipator.

Tr
{

O
(

AρS(t )A† − 1

2

{
A† A, ρS(t )

})}= Tr
{

O AρS(t )A† − 1

2
O A† AρS(t )− 1

2
OρS(t )A† A

}
= Tr

{(
A†O A− 1

2
O A† A− 1

2
A† AO

)
ρS(t )

}
= Tr

{(
A†O A− 1

2

{
A† A,O

})
ρS(t )

}
.

Using the above results we can write equation (3.69) as

d

dt
Tr

{
OρS(t )

}= i

ħ Tr
{[

H0 +HLS ,O
]
ρS(t )

}
+ α2

ħ2

∑
β,β′

∑
ω

γββ′(ω)Tr
{(

A†
β

(ω)O Aβ′(ω)− 1

2

{
A†
β

(ω)Aβ′(ω), O
})
ρS(t )

}
. (3.70)

Now we can move the time dependency from the state ρS to the operator O. The expectation
values stay the same between the Schrödinger and Heisenberg pictures if the time evolution
of the operator O(t ) is given by the equation

Ȯ(t ) = i

ħ
[
H0 +HLS,O(t )

]+ α2

ħ2

∑
β,β′

∑
ω

γββ′(ω)
(

A†
β

(ω)O(t )Aβ′(ω)− 1

2

{
A†
β

(ω)Aβ′(ω), O(t )
})

.

(3.71)
This is called the adjoint master equation, the name referring to the fact that if we present
(3.71) in the superoperator form like equation (3.68) we get

d

dt
O(t ) =L †[O(t )] , (3.72)

showing the fact that the operator time evolution is generated by L †, the adjoint superop-
erator.

3.3 LIOUVILLE SPACE FORMULATION

Having succesfully derived the Lindblad master equation (3.67) governing the quantum
system dynamics the next obvious question is how to solve it. The formal solution is
obtained by looking at the superoperator formulation (3.68), which gives us straight away
that

ρS(t ) = eL tρS(0) . (3.73)

But this raises questions. How do we treat the superoperator L ? What does it mean to
exponentiate it? What is L exactly? These questions are answered and the problem of
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solving the master equation is made easier by moving to a Liouville space, where we are
able to represent the state operators as vectors and superoperators as matrices acting on
them. This allows us to utilize the powerful tools of linear algebra.

The discussion in this section follows Ref. [54] by Jerryman Gyamfi, where he describes
the Liouville space formulation in detail. Here the most important and crucial steps in
constructing the Liouville space formulation, as well as showing how to obtain the master
equation in this formulation are provided. The finer mathematical details are left out but
the reader can find them easily from the reference provided.

We begin by considering a density matrix of a two-level system to illustrate the mapping
from matrices to vectors. The state operator can be written as

ρ(t ) = |ψ(t )〉〈ψ(t )| =
(

a(t )
b(t )

)(
a∗(t ) b∗(t )

)= ( |a(t )|2 a(t )b∗(t )
a∗(t )b(t ) |b(t )|2

)
, (3.74)

for some time dependent complex values a(t) and b(t). Now we define a so called bra-
flipper operator

Ω
, which acts on operators |a〉〈b| the following way:

Ω[ |a〉〈b|]= |a〉⊗ |b〉∗ ≡ |a,b〉〉 , (3.75)

with |b〉∗ being the complex conjugate of |b〉 and where both the bra-flipper operator and
the operator |a〉〈b| live in the same space Od , which is the space of operators acting on
Hd . The resulting element |a,b〉〉 lives in the Liouville space Ld and is called a superket.
Essentially the bra-flipper

Ω
transforms the ordinary matrix product between vectors to

a tensor product (effectively a Kronecker product) between the elements. Using this to
equation (3.74) yields

Ω
[ρ(t )] =Ω[ |ψ(t )〉〈ψ(t )|]= |ψ(t )〉⊗ |ψ(t )〉∗ . (3.76)

If we represent this as matrices we get

|ρ〉〉 =
(

a(t )
b(t )

)
⊗

(
a∗(t )
b∗(t )

)
=


|a(t )|2

a(t )b∗(t )
b(t )a∗(t )
|b(t )|2

 . (3.77)

We can notice that when we define the bra-flipper as in equation (3.75) we are defining a
mapping from matrices to vectors where the vector is obtained by stacking the rows of the
matrix. This can clearly be seen by comparing equations (3.74) and (3.77). Of course the
density matrix ρ does not have to be two dimensional, the same procedure generalizes for
arbitrary density matrices.

The same procedure works also for any operators acting on Hd . We can see this by decom-
posing an arbitrary operator A in some orthonormal basis

{ |i 〉}
A =

d∑
i

d∑
j

Ai j |i 〉〈 j | , Ai j = 〈i |A| j 〉 , (3.78)
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where we assumed the Hilbert space to have dimension dim(Hd ) = d . Then we apply the
bra-flipper operation to this decomposition:

Ω
[A] = |A〉〉 =

d∑
i

d∑
j

Ai j
Ω[ |i 〉〈 j |]= d∑

i

d∑
j

Ai j |i , j 〉〉 =
d 2∑
α

Aα|α〉〉 . (3.79)

Here we denoted the basis elements |i , j 〉〉 of the Liouville space by a single index |α〉〉. This
denotes a basis (or a superbasis) of the Liouville space. We can see that we have transformed
the operator representation from a d ×d dimensional matrix into a d 2 dimensional vector.

We skip now a lot of mathematical details about the Liouville space formulation, such
that the existence of dual vectors called superbras 〈〈α|, orthonormality of the superbasis
spanned by the superkets and the fact that

Ω
is an isomorphism between the space of

operators Od (acting on the Hilbert space Hd ) and the Liouville space Ld . Although these
interesting results are required to give rigour to the formulation we don’t need the exact
details in order to proceed further and gain intuition on what is happening with this method.
So let us continue.

We saw above that we are indeed able to transform operator representation from matrices to
vectors. But this is just the first step in the formulation. How about superoperators? It would
make sense that since operators acting on Hd become vectors in Ld , then superoperators
(which act on operators) would become matrices in Ld acting on the vectorized state
operators. As we will soon discover, this is exactly what happens.

At this point we can see the striking similarities this approach has with Dirac notation. For
example, equation (3.79) is essentially a decomposition of the operator A in the Liouville
space with a superbasis |α〉〉, just like we would write for a pure state the Hilbert space Hd .
Therefore we can argue that there exists superoperators acting on Ld , living in space Sd ,
which can be expressed in terms of the orthonormal superbasis

{|α〉〉〈〈α|} as

B=
d 2∑
α

d 2∑
α′
Bαα′ |α〉〉〈〈α′| , Bαα′ = 〈〈α|B|α′〉〉 , (3.80)

for some superoperator B, just like in equation (3.78) for operators. We can also express
the superbasis explicitly in terms of the original basis elements of the Hilbert space Hd

(see equation (3.79) last step) to get

B=
d∑
i

d∑
j

d∑
k

d∑
l
Bi j ,kl |i , j 〉〉〈〈k, l | , Bi j ,kl = 〈〈i , j |B|k, l〉〉 , (3.81)

The above equation shows explicitly that for our d-dimensional Hilbert space Hd the
superoperators are d 2 ×d 2 matrices in the Liouville space formulation.

We have now encountered four different spaces, namely the Hilbert space of quantum
states Hd , the space Od of operators acting on said Hilbert space, the Liouville space Ld of
vectorized operators and the space Sd of superoperators acting on the Liouville space.9

The relation between these spaces is summarized in figure 3.3.

9Strictly mathematically all of the said spaces have Hilbert space structure so they are all Hilbert spaces. But
for clarity we are referring only to the space Hd as Hilbert space just to give it a distinct name.
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Hd

Dimension: d
Basis: |i 〉
Hilbert space of
quantum states,
where states are
represented as vec-
tors.

Od

Dimension: d ×d
Basis: |i 〉〈 j |
Space of opera-
tors acting on Hd ,
where operators are
represented as ma-
trices.

Ld

Dimension: d 2

Basis: |i , j 〉〉
Liouville space of
superkets, where
superkets are vec-
torized operators
from Od .

Sd

Dimension: d 2 ×d 2

Basis: |i , j 〉〉〈〈k, l |
Space of superoper-
ators acting on Ld ,
where superopera-
tors are represented
as matrices.

Acts on Acts on

Maps to

Figure 3.3: Structure of the Liouville space formalism discussed in this section. The spaces
Hd and Ld are similar to each other as are spaces Od and Sd . The bridge between the
representations is the isomorphism between Od and Ld given by the bra-flipper operator.

Now that the full structure of the Liouville space formalism has been introduced, we can
derive a result that is important for further treatment of the Lindblad master equation we
derived in the last section. This result is called the superket triple product identity. Let us
consider three operators A,B and C acting on Hd (and thus A,B ,C ∈Od ). Their product is
also an operator acting on Hd . Applying the bra-flipper operator

Ω
to the product ABC

gives us the corresponding superket in Ld , for which the superket triple product identity
states that

|ABC〉〉 = (
A⊗C>)|B〉〉 . (3.82)

What the above equation tells us is that the superket |ABC〉〉 ∈Ld , corresponding to the
operator ABC ∈ Od , can be written as a result of the superoperator (A ⊗C>) ∈ Sd acting
on a superket |B〉〉. From (3.82) it is easy to derive two more results by adding an identity
operator 1d either to the front or to the back of ABC :

|ABC〉〉 = (
AB ⊗ 1d

)|C〉〉 , (3.83)

|ABC〉〉 = (
1d ⊗BC

)|A〉〉 . (3.84)

The proof of equation (3.82) is given in the Appendix C.

Using the superket triple product identity we are able to deal with commutators. Let
A,B ∈Od . Mapping their commutator

[
A,B

] ∈Od to the Liouville space Ld gives

|[A,B ]〉〉 = |AB −B A〉〉 = |AB〉〉− |B A〉〉 = |AB1d 〉〉− |1d B A〉〉
= (

A⊗ 1d
)|B〉〉− (

1d ⊗ A>)|B〉〉 = (
A⊗ 1d − 1d ⊗ A>)|B〉〉

= JA,1dK|B〉〉 , (3.85)

where we defined the supercommutator between two superoperators

JX ,Y K= X ⊗Y >−Y ⊗X > . (3.86)
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Similarly we can define a superanticommutator as

{{X ,Y }} = X ⊗Y >+Y ⊗X > . (3.87)

Now we have finally all the tools we need to transform the Lindblad master equation (3.67)
to the Liouville space. Applying the bra-flipper to both sides of the equation gives

|ρ̇S〉〉 =− i

ħ|[H ,ρS]〉〉+ α2

ħ2

∑
β,β′

∑
ω

γββ′
(
|Aβ′ρS A†

β
〉〉− 1

2

∣∣{A†
β

Aβ′ , ρS}
〉〉)

=− i

ħJH ,1K|ρS〉〉+
α2

ħ2

∑
β,β′

∑
ω

γββ′
(

Aβ′ ⊗ A∗
β|ρS〉〉−

1

2

{{
A†
β

Aβ′ ,1
}}|ρS〉〉

)
=

[
− i

ħJH ,1K+ α2

ħ2

∑
β,β′

∑
ω

γββ′
(

Aβ′ ⊗ A∗
β−

1

2

{{
A†
β

Aβ′ ,1
}})]|ρS〉〉

=L |ρS〉〉 ,

where the Liouvillian superoperator matrix L is given by

L =− i

ħJH ,1K+ α2

ħ2

∑
β,β′

∑
ω

γββ′
(

Aβ′ ⊗ A∗
β−

1

2

{{
A†
β

Aβ′ ,1
}})

. (3.88)

The main result of the Liouville space formulation now lies in front of us. We have managed
to transform the abstract nature of the master equation (3.67) into something that can be
computed using matrix calculus.

The solution to the master equation given by (3.73) is now understandable. We obtain the
vectorized state of the system by computing the matrix exponential of (3.88) at time t . Then
to represent the state again by a density matrix, we can perform an inverse operation to
bra-flipper

Ω
. Thus, we jump to the Liouville space to make the computations easier and

then jump back to the original space in order to be able to interpret the obtained results. Of
course, solving the equation (3.73) is still difficult and cumbersome to do analytically for
most cases but since we are now able to write the solution in terms of matrix operations,
we can utilize computers to perform the tedious calculations.

In this chapter we introduced the necessary tools and results of open quantum systems
to compute their dynamics when a Hamiltonian describing the system is known. After a
short reminder of basic quantum mechanics we moved on to derive the Lindblad master
equation that gives the time evolution of our system. The derivation was quite long and
several approximations had to be made in order to get to the final result. But all of the
steps were physically motivated and gave some insight into the cases which we can analyze
using these methods. The derivation left us with an abstract equation of operators and
superoperators but in the final section we showed how we can map it into essentially a
problem of matrix calculus, allowing us to later utilize computers in the final steps of solving
the master equation.
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As in chapter 2, the above was done in order to gain sufficient knowledge and understanding
of the underlaying theory, to be able to compute the dynamics of an actual circuit, once its
Hamiltonian has been found. Equipped with the tools of chapters 2 and 3, we are ready to
deal with the actual matter of this thesis. How does the quantum state of a transmon qubit
evolve in time when it is coupled to a resistive environment? This is the discussion ahead
of us in the next chapter.



4 From Micrograph to Master Equation

Up to this point in this thesis we have discussed separately both the cQED architecture
for building superconducting circuits and the theory of open quantum systems. We saw
in chapter 2 that cQED gives us tools for finding the quantum Hamiltonian of a circuit.
In chapter 3 we went through the process of deriving an equation of motion for an open
quantum system when the total system Hamiltonian is already known and in a convenient
form.

In this chapter we combine what we have learned so far to analyze an actual superconduct-
ing circuit with a transmon qubit coupled to a readout resonator and its drive line. The exact
details of the qubit circuit can be found in [55]. In addition to just having a qubit and read-
out resonator in our model, we add a resistor into the qubit drive line, whose temperature
can be modified. This variable temperature noise source [11] allows for characterization of
thermal effects on the qubit state. The ultimate goal is indeed to gain theoretical knowledge
on how the qubit state behaves as a function of temperature of this noise source.

We begin by considering the superconducting circuit of the qubit and other circuit elements.
We draw its circuit diagram and using that infer the related energies of the system. That
way we are able to first derive the classical Hamiltonian and then to quantize it to get an
equation which can be used in the theory of open quantum systems. Using the derived
quantum Hamiltonian we then derive a master equation which describes the time evolution
of the qubit-readout resonator system.

4.1 QUANTIZATION OF THE CIRCUIT

As stated in the title of this chapter, we begin our journey from a micrograph picture of
the qubit circuit. Figure 4.1 is an optical image of the qubit circuit we are interested in,
taken from [55]. On the very top of the figure the qubit drive line is visible. Microwave
signals intended to operate the qubit are send to the drive line. In the middle we can
see the meandering readout resonator as a coplanar waveguide (CPW). This is used to
read out the qubit state indirectly. On the bottom we can see the cross shape, which
includes the qubit itself and its coupling to the readout resonator. The specific type of
transmon in this geometry is called the Xmon qubit, the name motivated by its shape [56].

47
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Figure 4.1: Qubit cir-
cuit micrograph. Fig-
ure cropped from orig-
inal in Ref. [55] under
license CC BY 4.0.

What is not visible in the figure is the resistor installed at the drive
line, whose effect on the qubit’s quantum state we actually want
to analyze.

In order to quantize the circuit in question, we need to take the
following steps:

1. Find the lumped element circuit diagram of the qubit circuit
in figure 4.1.

2. Use the methods presented in chapter 2 to find the La-
grangian and the Hamiltonian of the circuit.

3. Quantize the resulting Hamiltonian.

Let’s begin with the first step, which essentially parametrizes our
problem mathematically, allowing for the use of theoretical tools
in the rest of the analysis.

4.1.1 THE CIRCUIT DIAGRAM

The main difficulty in drawing the lumped element circuit diagram
comes from the existence of the readout resonator. The methods
of usual circuit analysis assume that the wavelength of the signals
passing through the circuit are much smaller than the physical
dimensions of the circuit itself [57]. In this case the circuit ele-
ments can be approximated as being discrete. However, the CPW
resonators for qubit readout are manufactured such that their length is comparable to
the wavelength of signals passing through them. Therefore we cannot trivially describe
the readout resonator in a lumped element description. We need to use transmission line
theory for their characterization.

An important distiction in considering the CPW resonators is whether they are λ/4 or
λ/2 resonators. This means that whether the fundamental mode of the resonator has
wavelength λ= 4d or λ= 2d , where d is the total length of the CPW [57]. These different
frequency modes are obtained by using different boundary conditions in the ends of the
line. If both ends of the line are either short- or open-circuited, we recover a λ/2 resonator.
If different boundary conditions are used on the ends, the line is a λ/4 resonator. See figure
4.2 for pictorial explanation on how the voltages and currents behave in each case. We
are interested in a line that is open on the qubit end (giving capacitive coupling to qubit)
and shorted on the drive line end (giving inductive coupling there), which makes it a λ/4
resonator.

A CPW resonator is a distributed device, whose capacitance and inductance can be mod-
elled as being distributed along the whole length of the resonator [58]. Following the
example of [7], we represent a transmission line as a combination of lumped elements, as
shown in figure 4.3. In this model the self-inductance of the line is distributed along its
whole length using small lumped element inductors L, as is the capacitance to ground with

https://creativecommons.org/licenses/by/4.0/
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λ/4

x = dx = 0

λ/2

x = dx = 0

VoltageCurrent

Voltage

Current
x

I , V
Max

x

I , V
Max

Figure 4.2: Differences between the two types of CPWs. On the left side we have a CPW with
left end shorted (giving maximum current) and right end open (with maximum voltage).
The right side CPW has both ends open so the current at the ends disappear. The λ/4 CPW
depicted above will lead to an inductive coupling on its left end and to capacitive coupling
on its right end.

lumped capacitors C [57]. In this telegrapher model, the different elements are separated
by a small distance ∆x from each other.

In Ref. [7] it is shown that the continuum limit ∆x → 0 of the telegrapher model in figure
4.3 leads into a continuous form Hamiltonian

H =
∫ d

0
dx

[Q(x,t )2

2c0
+ 1

2l0

(∂Φ(x,t )

∂x

)2]
, (4.1)

where c0 and l0 are respectively the distributed capacitance and inductance per unit length
of the line. The function Q(x,t) is the charge density field and Φ(x,t) the flux field. This
Hamiltonian, together with the Hamilton equations lead into a wave equation for the flux
fieldΦ(x,t ):

v2
0
∂2Φ(x,t )

∂x2
− ∂2Φ(x,t )

∂t 2
= 0, (4.2)

with v0 = 1/
√

l0c0 being the speed of the signal. It is well known that the wave equation is
separable and that a linear combination of solutions is also a solution [59] so we can write
general form of the solution as

Φ(x, t ) =
∞∑

m=0

φm(t )um(x) . (4.3)

L

C

∆x

x = 0

φ0

x = d

φ1 φ2 φn φn+1 φN

Figure 4.3: Telegrapher model of the transmission line. The line can be thought of as
consisting of several lumped capacitors and inductors that are distributed along the whole
length of the line. Figure adapted from [7].
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The separability of the wave equation leads to two separate differential equations

u′′
m(x) =−ω

2
m

v2
0

um(x) and φ̈m(t ) =−ω2
mφm(t ) (4.4)

for each mode m. We can concentrate on solving the spatial profile of the wave given
by um(x). The specific solution we are looking for um(x) is determined by the boundary
conditions of our problem. As our CPW resonator is open at one end (at x = d), we require
that the current disappears there. On the shorted end (at x = 0) we require that the voltage
disappears. These two boundary conditions can be presented via the following equations
[7]

V (x = 0, t ) = ∂Φ(x, t )

∂t

∣∣∣
x=0

= 0, (4.5)

I (x = d , t ) =− 1

l0

∂Φ(x, t )

∂x

∣∣∣
x=d

= 0. (4.6)

The voltage boundary condition is satisfied if Φ(x = 0, t) = 0.1 Using these two boundary
conditions for the spatial profile we get

um(x) = A sin

(
(2m +1)π

2

x

d

)
= A sin

(
km

x

d

)
, (4.7)

where we defined km ≡ (2m +1)π/2. The coefficient A can be determined via a normaliza-
tion condition [7]:

1

d

∫ d

0
un(x)um(x)dx = δnm . (4.8)

Evaluating the above integral with the spatial profiles from equation (4.7) gives A =
p

2.
We can now collect what we have found to gain an expression for the flux field Φ(x, t) in
equation (4.3). We get

Φ(x, t ) =
∞∑

m=0

p
2sin

(
km

x

d

)
φm(t ) . (4.9)

Note that we have not solved the time profile explicitly but that is not a problem as the
explicit form is not needed. Now we can use the flux field solution above in the Hamiltonian
(4.1). Noting that Q(x,t ) is the charge conjugate to the flux field given by Q(x,t ) = c0∂tΦ(x,t )
we get

H =
∫ d

0
dx

[
1

2
c0

(∂Φ(x,t )

∂t

)2
+ 1

2l0

(∂Φ(x,t )

∂x

)2
]

=
∞∑

n,m

[
1

2
c0φ̇m(t )φ̇n(t )

∫ d

0
um(x)un(x)dx

]
+ 1

2l0

∫ d

0
Φ′(x,t )Φ′(x,t )dx .

1Strictly the requirement given by equation (4.5) is thatΦ(x = 0, t) is constant in time. But sinceΦ(x,t) has
explicit time dependence, we require that the spatial profile vanishes at this boundary, thus setting the
constant to zero.
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We can use integration by parts to the second term. The substitution term is zero due to the
boundary conditions (4.5) and (4.6). To the remaining integral term with Φ′′(x,t) we can
use equation (4.4) and get

H =
∞∑

n,m

[1

2
c0φ̇m(t )φ̇n(t )+ 1

2l0

ω2
m

v2
0

φm(t )φn(t )
]∫ d

0
um(x)un(x)dx︸ ︷︷ ︸

(4.8)

=
∞∑

m=0

[1

2
c0dφ̇2

m + d

2l0

ω2
m

v2
0

φ2
m

]
=

∞∑
m=0

[1

2
Cfφ̇

2
m + 1

2
Cfω

2
mφ

2
m

]
.

Above we defined the total capacitance Cf = dc0 and used the definition of v0 to simplify
the second term. Now we use the conjugate charge which was defined as Qm =Cfφ̇m (see
chapter 2) to get

H =
∞∑

m=0

[Q2
m

2Cf
+ 1

2
Cfω

2
mφ

2
m

]
. (4.10)

If we compare this to the Hamiltonian of a single parallel LC-oscillator (2.6) we can im-
mediately notice that the CPW resonator can be modelled as an infinite sum of parallel
LC-circuits with capacitance Cf and mode frequency ωm . The infinity of the sum is a bit
problematic but if we work in a frequency range that is close to the resonance frequency
of the CPW resonator (and this is usually the case [7])2, we can neglect all the other con-
tributions other than the one arising from the m = 0 term. Therefore we can model the
CPW resonator as a parallel LC-oscillator, with the capacitance defined by Cf = dc0 and
inductance determinable from the frequency and capacitance as Lf = 1/(Cfω

2
0).

So we have indeed managed to find a simple lumped element representation for the CPW.
But there is one question that still remains. What is the capacitance Cf in our model and
how do we obtain its value? We defined it to be the "total" distributed capacitance Cf = dc0

along the whole length d of the CPW. So the problem reduces essentially to determining
the capacitance per unit length c0. It turns out that c0 is completely determinable from the
geometry of the manufactured CPW, depending on the width of the conducting line and on
the gaps between the central conductor and the surrounding ground plane [58]. Therefore,
if we know the geometry of our CPW resonator we can find out the distributed capacitance
and thus also the lumped element capacitance.

Now we are ready to draw the circuit diagram for the qubit circuit in the micrograph 4.1.
This is shown in figure 4.4. We can see there in the left the qubit drive line with an additional
resistor R whose effect to the qubit dynamics we ultimately want to model. Between the
drive line and the readout resonator is an inductive coupling via a mutual inductance M .
On the right side we have the transmon qubit with a coupling to the readout resonator via a
capacitor Cg. The black dots represent different nodes of the circuit and the corresponding
voltages are given by the time derivatives of the generalized fluxes.

2CPW resonators can be manufactured such that their fundamental mode resonance frequency f0 is close to
the qubit frequency, but also other regimes are possible. As the frequency responses of both the qubit and
the resonator are very narrow (see for example [55, 58]), we can indeed work in a frequency range close to f0

and ignore the other modes.
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R φ̇L

LL

M

LR

Cg
φ̇f

Cf Lf

φ̇A

V (φA) CA

Figure 4.4: Lumped element circuit model of the micrograph in figure 4.1. On the left is the
drive line with inductive coupling to the readout resonator, which in turn is capacitively
coupled to the qubit.

4.1.2 CIRCUIT HAMILTONIAN

Now that we have obtained a lumped element model for the qubit circuit, we can apply the
tools learned in chapter 2 to compute the Hamiltonian of the circuit. Our goal is to obtain
a Hamiltonian that describes the free dynamics of the qubit and the readout resonator
and the interaction between them. Additionally we want to see the interaction between
the resistor and the qubit-resonator system. In essence, we are looking for a Hamiltonian
which is in a form that resembles the starting point of interaction picture analysis. This
allows us later to obtain a master equation describing the qubit dynamics.

We begin by considering the capacitive and inductive energies of the circuit in figure
4.4, writing them in terms of the generalized flux variables. In what follows we apply
the Caldeira-Leggett model for the resistor, modelling it as an infinite series of parallel
LC-oscillators.

The capacitive energy of the circuit is given by

EC = 1

2
CAφ̇

2
A +

1

2
Cfφ̇

2
f +

1

2
Cg(φ̇A − φ̇f)

2 +
∞∑
α=1

1

2
Cαφ̇

2
α . (4.11)

and the inductive energy is given by

EL =V (φA)+ 1

2Lf
φ2

f +
1

2LR
φ2

f +
M

LLLR
φfφL +

1

2LL
φ2

L +
∞∑
α=1

1

2Lα
φ2
α . (4.12)

The sums over α correspond to the resistor decomposition shown in chapter 2. Now
we can apply Kirchoff’s voltage law to notice that

∑∞
α φ̇α = φ̇L, so then it must hold that∑∞

α φα =φL +φext, with some external flux φext. Taking the external flux to be zero, we get
from (4.12)

EL =V (φA)+ 1

2Lf
φ2

f +
1

2LR
φ2

f +
M

LLLR
φf

( ∞∑
α

φα

)
+ 1

2LL

( ∞∑
α

φα

)2
+

∞∑
α=1

1

2Lα
φ2
α . (4.13)

Looking at equations (4.11) and (4.13), we see that some terms describe coupling between
certain variables while some other terms are free, describing only energy associated with a
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single variable. We can better see this structure, if we represent these equations in matrix

form. Let’s therefore define a flux vectorφ= [
φA ,φf ,φ>

α

]>, with the vectorφ>
α = [

φ1 ,φ2 ,...
]

collecting together the resonator fluxes. Using this convention, we can rewrite the energy
equations as

EC = 1

2
φ̇>C φ̇ , EL =

1

2
φL−1φ+V (φA) , (4.14)

with the matrices C and L−1 given by

C =


CA +Cg −Cg 0 0 . . .
−Cg Cf +Cg 0 0

0 0 C1 0
0 0 0 C2
...

. . .

 ,L−1 =


0 0 0 0 . . .
0 L−1

f +L−1
R

M
LRLL

M
LRLL

0 M
LRLL

L−1
1 +L−1

L L−1
L

0 M
LRLL

L−1
L L−1

2 +L−1
L

...
. . .


(4.15)

We can see that the matrices have a structure which describes the interaction between
the circuit parts. The upper left corner describes the system comprised of the qubit and
the readout resonator, while the lower right corner describes the resistor. The interactions
between the qubit-resonator system with the resistor is included in the lower left and upper
right blocks.

Let’s now define a vector a = [0,1]> and e as a vector full of ones. Then we can write the
above matrices in a more concise manner as

C =
[

SC 0
0 Cα

]
, L−1 =

[
SL

M
LRLL

ae>
M

LRLL
ea> L−1

α +L−1
L ee>

]
. (4.16)

The matrices SC and SL are the qubit-resonator system matrices given by the top left blocks
in equation (4.15). Cα and L−1

α are diagonal matrices with the values Cα and L−1
α on their

diagonals.

Now we can present the Lagrangian of our circuit as

L = 1

2
φ̇>C φ̇− 1

2
φ>L−1φ−V (φA) , (4.17)

with the matrices C and L−1 given by equation (4.16). In principle we could now do the
Legendre transformation to obtain the Hamiltonian of the circuit. But that would be in a
cumbersome form due to the existence of interaction between the different resistor modes
α. We would lose a clear separation between system, environment, and resistor Hamilto-
nian. To get the Hamiltonian in a better form, we introduce a coordinate transformation
(or a point transformation) of the flux vectorφ from Refs. [60, 10]:

Z =
[
12 0
0 M−1/2

0 M 1/2
α

]
, Mα = L−1

α +ξee> . (4.18)

Here M0 is a free constant with units of inverse inductance and ξ is a parameter we can
choose freely.
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Following the example of Cattaneo and Paraoanu [10], we apply the transformation Z
giving us new coordinates z = Zφ. This forces the matrices to transform as Cz = Z −1C Z −1

and L−1
z = Z −1L−1Z −1. The transformed capacitance and inductance matrices are

Cz =
[

SC 0
0 M0M−1/2

α CαM−1/2
α

]
, (4.19)

L−1
z =

[
SL

M
LRLL

ae>M−1/2
α M 1/2

0
M

LRLL
M 1/2

0 M−1/2
α ea> M0M−1/2

α

(
L−1
α +L−1

L ee>)
M−1/2
α

]
. (4.20)

Using the definition of Mα from equation (4.18) we can modify the bottom right element of
the L−1

z matrix to get

M0M−1/2
α

(
L−1
α +L−1

L ee>)
M−1/2
α = M01+ (L−1

L −ξ) fα f >
α ,

where we defined fα ≡ M 1/2
0 M−1/2

α e, called a coupling vector. Moreover, the above calcu-
lation presents us with an easy choice for the free parameter ξ. Setting ξ= L−1

L makes the
bottom right part of the L−1

z matrix diagonal, which is what we are looking for. This choice
of ξ also allows us to compute the inverse of Mα. For that we use the Shermann-Morrison
formula, which states that if a matrix A can be written as a sum of some matrix B and a
vector outerproduct A = B +u>v , its inverse is given by

(B +u>v )−1 = B−1 − B−1u>v B−1

1+v>B−1u
. (4.21)

The matrix Mα is exactly of the form above. Thus its inverse is given by

M−1
α = Lα−L−1

R
Lαee>Lα

1+L−1
R e>Lαe

≈ Lα . (4.22)

The second term is negligible given that Lα¿ LR for all α, allowing us to do the approxima-
tion above.3 The result in equation (4.22) is convenient because Lα is a diagonal matrix,
thus commuting with other diagonal matrices such as Cα.

Using the results above we can now write the transformed capacitance and inductance
matrices from equations (4.19) and (4.20) as

Cz =
[

SC 0
0 M0LαCα

]
, L−1

z =
[

SL
M

LRLL
a f >

α
M

LRLL
fαa> M01

]
. (4.23)

Now we can write the Lagrangian from equation (4.17) as

L = 1

2
φ̇>C φ̇− 1

2
φ>L−1φ−V (zA)

= 1

2
φ̇>Z Z −1C Z −1Z φ̇− 1

2
φ>Z Z −1L−1Z −1Zφ−V (zA)

= 1

2
ż>Cz ż − 1

2
z>L−1

z z −V (zA) . (4.24)

3This is something that we assume to hold true. But we can see that it makes sense by looking at the form for
the inductances of the resistor decomposition in equation (2.22). Taking the relevant frequencies ω j to be in
the order of GHz, as is usually the case in cQED, and ∆ω small, then the approximation holds.
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Defining the conjugate variable p = ∂L /∂ż and performing the Legendre transformation
gives us the matrix form Hamiltonian

H = 1

2
ṗ>C−1

z ṗ + 1

2
z>L−1

z z +V (zA) . (4.25)

Inverting Cz and opening the terms explicitly gives us the following Hamiltonian:

H =
p2

A

2

Cf +Cg

D
+V (zA)︸ ︷︷ ︸

Qubit

+
p2

f

2

CA +Cg

D
+

z2
f

2

(
1

Lf
+ 1

LR

)
︸ ︷︷ ︸

Resonator

+
∞∑
α=1

(
p2
α

2M0

1

LαCα
+ M0

2
z2
α

)
︸ ︷︷ ︸

Resistor

+ pApf
Cg

D︸ ︷︷ ︸
Qubit-resonator

interaction

+
∞∑
α=1

M

LRLL
fαzαzf︸ ︷︷ ︸

Resistor-resonator
interaction

.
(4.26)

Above we defined D = CACf +CfCg +CgCA, which is the determinant of SC needed for
computing C−1

z .

This Hamiltonian captures the energies of the circuit in figure 4.4. We can see the emergence
of three free terms corresponding to the qubit, resonator and the resistor. These describe the
energy associated with each of these elements separately. In addition to the free terms, two
interaction terms emerge: qubit-resonator interaction and resonator-resistor interaction.
The strength of these interactions are governed by the corresponding couplings between the
elements. These are inductive coupling (via mutual inductance M) between the resistor and
resonator, and capacitive coupling (via capacitance Cg) between the resonator and qubit.
From the Hamiltonian we can notice that in the limit Cg → 0 and M → 0 the interaction
terms vanish and we are left with a free Hamiltonian.

Up to this point the treatment of circuit has been completely classical. To get a quantum
description of the dynamics, we need to quantize the Hamiltonian (4.26). That is what we
are going to do next.

4.1.3 HAMILTONIAN QUANTIZATION

In the Hamiltonian the terms for resonator and the resistor have the familiar harmonic
oscillator dependency, namely they are of the form p2 +x2 for coordinate x and conjugate
momentum p. Therefore we use the same method as in chapter 2 and try to find a way of
quantizing them as quantum harmonic oscillators. The qubit part has an arbitrary potential
V (zA), which we have not specified. Therefore the qubit is not in a harmonic oscillator
form, but we will return to it a bit later.

Next we are going to quantize the resonator and resistor parts as quantum harmonic
oscillators. This is done in the box below.
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QHO:
The quantum harmonic oscillator of mass m and oscillation frequency ω is quantized,
yielding

HQHO = p2

2m
+ 1

2
mω2x2 ⇒ x =

√
ħ

2mω
(a† +a) , p = i

√
ħmω

2
(a† −a) ,

where a† and a are the creation and annihilation operators respectively.

Resonator:
The resonator Hamiltonian is given by

HResonator =
p2

f

2

CA +Cg

D
+

z2
f

2

(
1

Lf
+ 1

LR

)
. (4.27)

Comparing this to the quantum harmonic oscillator case we can recognize its mass
and frequency as

m = D

CA +Cg
, ω2

f =
(CA +Cg)(L−1

f +L−1
R )

D
. (4.28)

Therefore the (newly promoted) operators zf and pf can be written in terms of the
ladder operators as

zf =
√

ħ(CA +Cg)

2Dωf
(a† +a) , pf = i

√
ħDωf

2(CA +Cg)
(a† −a) . (4.29)

Resistor:
The resistor Hamiltonian is given by

HResistor =
∞∑
α=1

(
p2
α

2M0

1

LαCα
+ M0

2
z2
α

)
. (4.30)

Comparing a single term with a fixed α to the QHO we can write the corresponding
mass and frequency as

mα = M0LαCα , ω2
α = 1

LαCα
. (4.31)

And these give the operators in terms of the ladder operators as

zα =
√

ħωα
2M0

(a† +a) , pα = i

√
ħM0

2ωα
(a† −a) . (4.32)

Now most of the circuit Hamiltonian has been quantized, except for the qubit part. In order
to do that, we need to set the inductive potential V (zA) to that of the transmon potential,
which was discussed and derived in chapter 2 (see Eq. (2.52)). Neglecting the constant we
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have
V (zA) =−EJ cos

(
2π

zA

φ0

)
, (4.33)

with the Josephson energy EJ and magnetic flux quantum φ0. We can now break this down
into a Taylor series to get

V (zA) ≈−EJ +
EJ

2

(2π

φ0

)2
z2

A −
EJ

24

(2π

φ0

)4
z4

A . (4.34)

We assume now that the manufactured transmon qubit has sufficient anharmonicity that
we can confidently pick the computational subspace consisting of only the two lowest
energy levels |0〉 and |1〉. Thus we can neglect also the z4

A term, because that would lead to
terms proportional to a†a†aa, which would affect only higher energy levels [7, 36]. Once
we drop also the constant −EJ for the same reason as always, the Hamiltonian equations
being invariant with respect to addition of a constant, we get the qubit Hamiltonian as

HQubit =
p2

A

2

Cf +Cg

D
+V (zA) =

p2
A

2

Cf +Cg

D
+ EJ

2

(2π

φ0

)2
z2

A . (4.35)

This is also in a form which resembles a harmonic oscillator. Repeating the same procedure
as for the resonator and resistor above gives us the "mass" and frequency of the qubit as

m = D

Cf +Cg
, ω2

A = (Cf +Cg)EJ(2π)2

Dφ2
0

, (4.36)

which gives the operators zA and pA in terms of the ladder operators as

zA =
√

ħ(Cf +Cg)

2DωA
(a†

A +aA) , pA = i

√
ħDωA

2(Cf +Cg)
(a†

A −aA) . (4.37)

Now we need to remember that we are only interested in the two-level subspace of the
qubit. The creation and annihilation operators live in an infinite dimensional Hilbert space,
so we need to truncate them to two dimensions. We choose a basis where the ground state
is |g 〉 = [0 1]> and the excited state is |e〉 = [1 0]>. This gives the following relations

a†
AaA |g 〉 = 0, a†

AaA |e〉 = |e〉 ⇒ a†
AaA ∼

[
1 0
0 0

]
= 1+σz

2
∝ 1

2
σz , (4.38)

(a†
A −aA) |g 〉 = |e〉 , (a†

A −aA) |e〉 =−|g 〉 ⇒ (a†
A −aA) ∼

[
0 1
−1 0

]
= iσy . (4.39)

Above we wrote the truncation in terms of the Pauli sigma operators. Using now the
quantized operators from equations (4.29), (4.32) and (4.37) in the circuit Hamiltonian
(4.26) and applying the above truncation to the qubit operators yields us

H = 1

2
ħωAσz︸ ︷︷ ︸
Qubit

+ħωfa
†
f af︸ ︷︷ ︸

Resonator

+
∞∑
α=1

ħωαa†
αaα︸ ︷︷ ︸

Resistor

− i

2
ħCg

√
ωAωf

(Cf +Cg)(CA +Cg)
σy (a†

f −af)︸ ︷︷ ︸
Qubit-resonator interaction

+ M

LL

∞∑
α=1

√
ħωα

2

√
ħ(CA +Cg)

2Dωf

p
Lα

LR
(a†

α+aα)(a†
f +af)︸ ︷︷ ︸

Resistor-resonator interaction

.

(4.40)
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Above we used the definition of the coupling vector fα =
√

Mo M−1
α e to write the element

of this vector as fα =p
M0Lα. Remember now that the inductances Lα were given by the

Caldeira-Leggett model we derived in chapter 2. We can therefore use the derivation from
there, more specifically equation (2.22) for the inductances and (2.36) for the spectrum
of the resistor. Using these equations in the resistor-resonator interaction term in the
quantized Hamiltonian (4.40) gives this term as

Hint =
M

LL
µ

∞∑
k=1

√√√√ ħ∆ωRω2
c

πωk (ω2
c +ω2

k )L2
R

(a†
k +ak )(a†

f +af) , (4.41)

where we switched the summation index to "dense" index k to comply with the literature
[10] and introduced a factor µ as

µ≡
√

ħ(CA +Cg)

2Dωf
. (4.42)

The square root term in the sum in equation (4.41) describes the current fluctuations in
the circuit for different frequencies ωk . This allows us to define a coupling coefficient gk

that describes the interaction strength between the mode k of the resistor and the readout
resonator as

gk =
√√√√ ħ∆ωRω2

c

πωk (ω2
c +ω2

k )

µ

LR
. (4.43)

Using these definitions allows us to write the quantized Hamiltonian (4.40) as

H = 1

2
ħωAσz︸ ︷︷ ︸
Qubit

+ħωfa
†
f af︸ ︷︷ ︸

Resonator

− iħgfσy (a†
f −af)︸ ︷︷ ︸

Qubit-resonator
interaction

+
∞∑

k=1
ħωk a†

k ak︸ ︷︷ ︸
Resistor

+ M

LL

∞∑
k=1

gk (a†
k +ak )(a†

f +af)︸ ︷︷ ︸
Resistor-resonator interaction

,

(4.44)
where we defined the qubit-resonator coupling strength gf as

g f ≡
Cg

2

√
ωAωf

(Cf +Cg)(CA +Cg)
. (4.45)

One quantity we are interested in when considering the interaction between the bath and
the system (so in this case the resistor and qubit-resonator combination) is the spectral
density of the bath [31]. It tells how strongly does each frequency mode of the bath couple
to the system. In our case we can compute it as

J (ω) = 1

ħ2

∞∑
k=1

|gk |2δ(ω−ωk ) . (4.46)

Now the infinitesimal frequency gap ∆ω, originating from the Caldeira-Leggett model for
the resistor, becomes useful because this allows us to represent the spectral density as an
integral in the limit ∆ω→ 0. Plugging equation (4.43) into (4.46) and taking the continuum
limit yields us

J (ω) =χ ω2
c

πω(ω2
c +ω2)

, (4.47)

where we introduced a factor χ= Rµ2/(ħL2
R).
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4.2 DERIVATION OF THE MASTER EQUATION

Now that we have a fully quantized Hamiltonian (4.44) we are ready to start the process of
finding the master equation that governs the qubit dynamics. As discussed in chapter 3, the
open quantum systems approach allows us to compute the dynamics of a system coupled
to some external bath. Therefore we need to choose now what parts of the Hamiltonian
(4.44) do we regard as our system and what as the bath. We choose the qubit-resonator part
to be our system and that leaves the resistor playing the role of the environment. Thus the
Hamiltonian can be written as follows

H = HSystem +HBath +HInteraction , (4.48)

where

HSystem = 1

2
ħωAσz +ħωfa

†
f af − iħgfσy (a†

f −af) , (4.49)

HBath =
∞∑

k=1
ħωk a†

k ak , (4.50)

HInteraction = M

LL

∞∑
k=1

gk (a†
k +ak )(a†

f +af) . (4.51)

This choice of system and bath makes intuitive sense but poses a problem for our calcu-
lations. In order to obtain the master equation describing the system dynamics, we need
to have a basis where the system Hamiltonian is diagonal (see Eq. (3.50)). Looking at our
chosen system Hamiltonian (4.49), we can see that it would be already in a diagonal form
if the coupling strength gf = 0.4 However the inner interaction between the qubit and
resonator complicates the situation. We need to look for a way to make HSystem diagonal.

4.2.1 THE JAYNES-CUMMINGS HAMILTONIAN

Let’s consider the state of the qubit in its two dimensional Hilbert space. It is either in its
ground state |g 〉 or its excited state |e〉. Similarly to the creation and annihilation operators
a† and a of infinite dimensional Hilbert spaces, we can say that there exists operators σ+
andσ− for the qubit such thatσ+ |g 〉 = |e〉 andσ− |e〉 = |g 〉. Writing these operators in terms
of the qubit basis elements |e〉 and |g 〉 we have

σ+ = |e〉〈g | , σ− = |g 〉〈e| . (4.52)

We can express the Pauli operators in terms of these two operators as

σz = |e〉〈e|− |g 〉〈g | = [σ+, σ−] , (4.53)

σx = |e〉〈g | + |g 〉〈e| =σ++σ− , (4.54)

σy = i(|g 〉〈e|− |e〉〈g |) = i(σ−−σ+) . (4.55)

4If gf = 0 the basis that diagonalizes HSystem would be |nq〉⊗ |nf〉, where nq ∈ {e, g } and |nf〉 is the Fock-basis
of the resonator.
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Using (4.55) in (4.49) gives us the following Hamiltonian

HSystem = 1

2
ħωAσz +ħωfa

†
f af +ħgf(σ−−σ+)(a†

f −af) . (4.56)

If we now open up the interaction part we get terms proportional to σ−a†
f , σ−af, σ+a†

f and
σ+af. In the interaction picture these terms would oscillate at different frequencies with
the following time dependence [61]

σ−a†
f ∼ e−i(ωA−ωf)t

σ−af ∼ e−i(ωA+ωf)t

σ+a†
f ∼ ei(ωA+ωf)t

σ+af ∼ ei(ωA−ωf)t .

(4.57)

We can see that two terms oscillate faster compared to the other two. Moreover, the fast
rotating terms do not conserve energy of the system because σ−af corresponds to both
the qubit and resonator losing a quantum of energy while σ+a†

f corresponds to both of
them gaining a quantum of energy. Therefore we neglect the non energy conserving and
fast rotating terms [61]. This is a valid approximation if ωA +ωf À|ωA −ωf| which requires
that the qubit and resonator frequencies are sufficiently close to each other [62]. Using this
rotating wave approximation allows us to write the Hamiltonian as5

HSystem = 1

2
ħωAσz +ħωfa

†
f af +ħgf(σ−a†

f +σ+af) . (4.58)

This is called the Jaynes-Cummings Hamiltonian. It is used originally in quantum optics
to describe the interaction between light and matter [65] but has found new ground in
solid-state physics, for example in the research of superconducting qubits [62].

4.2.2 DISPERSIVE JAYNES-CUMMINGS MODEL

The Jaynes-Cummings Hamiltonian is still not in a diagonal form in equation (4.58). To get
it into a diagonal form we move into a dispersive regime, where we assume that the coupling
gf between the qubit and the resonator is weak compared to the detuning ∆ = |ωA −ωf|
of resonance frequencies between the same elements. To accomplish this we introduce a
dispersive parameter λ= gf/∆ and require that λ¿ 1. Note that moving to the dispersive
regime might seem contradictory with the application of the rotating wave approximation
in deriving the Jaynes-Cummings Hamiltonian since there we required that ωA and ωf are
sufficiently close to each other. However, our discussion is valid if both conditions are
fulfilled, that is when [62]

gf ¿|ωA −ωf|¿ωA +ωf . (4.59)

Following Ref. [62] we apply a unitary transformation U to the system Hamiltonian (4.58),
where the transformation is parametrized by λ:

U = eλ(σ+af−σ−a†
f ) . (4.60)

5This is not the only way to arrive at the Hamiltonian (4.58). It can be shown that the Hamiltonian (4.56) can
be represented as a continued fraction with respect to the coupling parameter gf [63]. Therefore the rotating
wave approximation is a correction of first order in g 2

f and valid for gf ¿ 1 [63, 64], yielding (4.58).
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Notice the crucial sign difference when compared to the interaction term of the Hamil-
tonian. Without the minus sign the transformation would not be unitary. Applying the
transformation (see Eq. (3.27)) and using the Hadamard lemma we can write the Hamilto-
nian transformation as a series of commutators

H D
Sys =U HSysU

† = eA HSyse−A = H +λ[
A, H

]+ λ2

2

[
A,

[
A, H

]]+O (λ3) , (4.61)

where A =σ+af−σ−a†
f . After a lot of tediuos algebra required to compute the commutators,

we arrive at the dispersive Hamiltonian

H D
Sys =

1

2
ħ(ωA +2gfλ)σz +ħ(ωf + gfλσz)a†

f af +ħgfλσ−σ++O (λ2) . (4.62)

We can see that in this frame the qubit and resonator frequencies have changed a little bit.
The new qubit frequency is ωA → ω′

A = ωA +2gfλ and the resonator frequency becomes
ωf →ω′

f =ωf + gfλσz . The remarkable thing is that the resonator frequency becomes now
dependent on the state of the qubit. This allows for indirect, quantum nondemolition
measurements of the qubit state via probing for the resonance frequency of the readout
resonator [13, 66].

If we now neglect the terms of order O (λ2) (because we set λ¿ 1) in equation (4.62), we
have a Hamiltonian whose eigenstates are qubit-resonator product states. Therefore the
Hamiltonian is diagonal in a basis

{ |e, n −1〉 , |g , n〉}.6 The eigenenergies of the dispersive
Hamiltonian are given by

Eg ,n =
(
n − 1

2

)
ħωf −

ħ∆
2

−nħgfλ ,

Ee,n−1 =
(
n − 1

2

)
ħωf +

ħ∆
2

+nħgfλ .
(4.63)

We have now found a frame in which the system Hamiltonian (4.49) becomes diagonal.
However, moving to the dispersive frame requires the unitary transformation (4.60) which
applies also to other parts of the total Hamiltonian (4.48). In the total Hamiltonian the
transformation changes the system-bath interaction term while leaving the bath term
invariant:

H D =U HSysU
† +U HBathU † +U HIntU

† = H D
Sys +HBath +U HIntU

† . (4.64)

Therefore in order to obtain the full dispersive description, we need to evaluate the trans-
formed interaction term. Just like in equation (4.61), we use the Hadamard lemma, neglect
terms of order O (λ2) and after some more tedious algebra end up with

H D
Int =

M

LL
(a†

f +af +λσx)
∞∑

k=1
gk (a†

k +ak ) . (4.65)

6Note that the basis was chosen such that the total number of quanta is conserved between the elements as
required by the Jaynes-Cummings Hamiltonian. This choice also makes the eigenenergies match well as can
be seen in equation (4.63).
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The interaction part picked up an extra λσx term.

In conclusion, we have now the following Hamiltonian in the dispersive frame:

H D = H D
Sys +HBath +H D

Int , (4.66)

where

H D
Sys =

1

2
ħ(ωA +2gfλ)σz +ħ(ωf + gfλσz)a†

f af +ħgfλσ−σ+ , (4.67)

HBath =
∞∑

k=1
ħωk a†

k ak , (4.68)

H D
Int =

M

LL
(a†

f +af +λσx)
∞∑

k=1
gk (a†

k +ak ) . (4.69)

Now we are ready to construct the master equation.

4.2.3 ARRIVING AT THE MASTER EQUATION

In the master equation derivation we needed the interaction Hamiltonian to be in the
product form given by equation (3.37). Looking at equation (4.69) we can first notice
that the interaction strength α is given by M/LL. Then the interaction Hamiltonian is
decomposed as

H D
Int =αAD ⊗B ⇒ AD = a†

f +af +λσx , B =
∞∑

k=1
gk (a†

k +ak ) . (4.70)

Now we need to write the system operator AD in terms of the jump operators AD(ω) for
different frequencies ω like in equation (3.51). This is done using the eigenstates |g , n〉 and
|e, n −1〉 of the dispersive system Hamiltonian and its eigenenergies (4.63). A similar calcu-
lation has been done in Ref. [67]. In the calculations that follow we drop the superscript
indicating dispersive frame for clarity of notation.

Case 1:
The qubit remains in its ground state:

A(Eg ,m −Eg ,n) = |g ,n〉〈g ,n|A|g ,m〉〈g ,m| .

The matrix element is

〈g ,n|A|g ,m〉 = 〈g ,n|a†
f +af +λσx |g ,m〉 =

p
m +1δn−1,m +p

mδn+1,m .

So we have

A(Eg ,m −Eg ,n) = (p
m +1δn−1,m +p

mδn+1,m
) |g ,n〉〈g ,m| . (4.71)

Case 2:
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The qubit remains in its excited state:

A(Ee,m−1 −Ee,n−1) = |e,n −1〉〈e,n −1|A|e,m −1〉〈e,m −1| .

The matrix element is

〈e,n −1|A|e,m −1〉 = 〈e,n −1|a†
f +af +λσx |e,m −1〉 =p

mδn−1,m +
p

m −1δn+1,m .

So we have

A(Ee,m−1 −Ee,n−1) = (p
mδn−1,m +

p
m −1δn+1,m

) |e,n −1〉〈e,m −1| . (4.72)

Case 3:
Qubit switches from ground state to excited state:

A(Eg ,m −Ee,n−1) = |e,n −1〉〈e,n −1|A|g ,m〉〈g ,m| .

The matrix element is

〈e,n −1|A|g ,m〉 = 〈e,n −1|a†
f +af +λσx |g ,m〉 =λδn−1,m .

So we have
A(Eg ,m −Ee,n−1) =λδn−1,m |e,n −1〉〈g ,m| . (4.73)

Case 4:
Qubit drops from the excited state to the ground state. This is essentially the Hermitian
conjugate of the above case, becoming

A(Ee,m−1 −Eg ,n) =λδn+1,m |g ,n〉〈e,m −1| . (4.74)

Let’s now collect the jump operators together from equations (4.71), (4.72), (4.73) and (4.74).
We sum over m and fiddle with indices to get

A(Eg ,n −Eg ,n+1) =
∞∑

n=0

p
n +1 |g ,n +1〉〈g ,n| ≡ A(−ωg g ) , (4.75)

A(Eg ,n+1 −Eg ,n) =
∞∑

n=0

p
n +1 |g ,n〉〈g ,n +1| ≡ A(ωg g ) , (4.76)

A(Ee,n −Ee,n+1) =
∞∑

n=0

p
n +1 |e,n +1〉〈e,n| ≡ A(−ωee ) , (4.77)

A(Ee,n+1 −Ee,n) =
∞∑

n=0

p
n +1 |e,n〉〈e,n +1| ≡ A(ωee ) , (4.78)

A(Eg ,n −Ee,n) =λ
∞∑

n=0
|e,n〉〈g ,n| ≡ A(−ωeg ) , (4.79)

A(Ee,n −Eg ,n) =λ
∞∑

n=0
|g ,n〉〈e,n| ≡ A(ωeg ) . (4.80)
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Equations (4.75) to (4.80) describe the possible jump operators for different frequencies.
We should remember that according to equation (3.52), if we sum over all the possible
frequencies we should get back the original operator of the system. In our case we should
therefore find that the sum of equations (4.75) to (4.80) becomes A = a†

f +af +λσx . That is
indeed what we get, because the sum of (4.75) and (4.77) gives the matrix representation of
a†

f :

A(−ωg g )+ A(−ωee ) =
∞∑

n=0

(p
n +1 |g ,n +1〉〈g ,n|+

p
n +1 |e,n +1〉〈e,n|

)
= ( |e〉〈e|+ |g 〉〈g |︸ ︷︷ ︸

12

)⊗ ∞∑
n=0

p
n +1 |n +1〉〈n| = 12 ⊗a†

f . (4.81)

Similarly the sum of the positive frequency components (4.76) and (4.78) gives the anni-
hilation operator af. Then summing together (4.79) and (4.80) yields λσx , so indeed the
jump operators are correct.

Now, we need to consider how will we deal with the secular approximation in the derivation
of the master equation (see subsection 3.2.3). Below are listed the frequencies we are
dealing with. They are calculated by taking their definitions from equations (4.75) to (4.80)
and using the eigenenergies of the dispersive Hamiltonian from equation (4.63):

ωg g =ωf − gfλ , (4.82)

ωee =ωf + gfλ , (4.83)

ωeg =ωA + (2n +1)gfλ . (4.84)

The secular approximation deals with the frequency differences so let us compute the
needed differences using the equations above.

|ωg g −ωee | = 2gfλ , (4.85)

|ωg g −ωeg | =∆+2(n +1)gfλ , (4.86)

|ωee −ωeg | =∆+2ngfλ . (4.87)

Since we are working in the dispersive limit where ∆ is taken to be sufficiently large, we
can safely say that crossterms of the master equation dissipator with A(ωg g /ee )ρA(ωeg ) are
negligible and can be disregarded.7 However, we need to be more careful with the other
crossterms of the forms A(ωg g )ρA(ωee ). These cannot be disregarded as the timescale
determined by equation (4.85) is quite large since λ is small.

To obtain a valid master equation we now briefly set λ= 0. This approach gives us a local
master equation8, which will provide us a valid approximation of the system dynamics if the

7Same is true for the crossterm with A(±ωg g /ee )ρA(∓ωg g /ee ).
8The local versus global approach to master equations is discussed in detail in Ref. [49]. In short, the local
master equation sets the inner system coupling to zero, detaching the qubit from the resistor in our case
when deriving the jump operators. The coupling is then reintroduced afterwards. In our case the assumption
of locality does not actually affect the jump operator derivation (terms where λ appears will eventually be of
the order λ2 and can thus be neglected, see Eq. (4.93)) so we are not losing anything by doing it.
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coupling between the qubit and resonator is sufficiently small [49]. This sets the frequencies
ωg g = ωee = ωf and thus ωg g −ωee = 0, which gets rid of the rotation term in the master
equation (see Eq. (3.59)). Note that even though now ωg g =ωee , we still cannot neglect the
cross terms A(ωg g )ρA(ωee ) because they correspond to different jump operators and their
effect is not negligible. We now write the master equation into the following form:9

ρ̇Sys =− i

ħ
[
HSys +HLS,ρSys

]+ α2

ħ2

(
D(ωg g ,ωg g )

[
ρSys

]+D(−ωg g ,−ωg g )
[
ρSys

]
+D(ωee ,ωee )

[
ρSys

]+D(−ωee ,−ωee )
[
ρSys

]
+D(ωg g ,ωee )

[
ρSys

]+D(−ωg g ,−ωee )
[
ρSys

]
+D(ωee ,ωg g )

[
ρSys

]+D(−ωee ,−ωg g )
[
ρSys

]
+D(ωeg ,ωeg )

[
ρSys

]+D(−ωeg ,−ωeg )
[
ρSys

])
.

(4.88)

This master equation is currently in a similar form as presented in [67], where they discussed
the coherent frequency condition. The dissipators are given as

D(ωg g ,ωg g )
[
ρSys

]= γ(ωf)
[

A(ωg g )ρSys A†(ωg g )− 1

2

{
A†(ωg g )A(ωg g ), ρSys

}]
, (4.89)

D(ωee ,ωee )
[
ρSys

]= γ(ωf)
[

A(ωee )ρSys A†(ωee )− 1

2

{
A†(ωee )A(ωee ), ρSys

}]
, (4.90)

D(ωg g ,ωee )
[
ρSys

]= γ(ωf)
[

A(ωg g )ρSys A†(ωee )− 1

2

{
A†(ωee )A(ωg g ), ρSys

}]
, (4.91)

D(ωee ,ωg g )
[
ρSys

]= γ(ωf)
[

A(ωee )ρSys A†(ωg g )− 1

2

{
A†(ωg g )A(ωee ), ρSys

}]
, (4.92)

D(ωeg ,ωeg )
[
ρSys

]=λ2γ(ωA)
[

A(ωeg )ρSys A†(ωeg )− 1

2

{
A†(ωeg )A(ωeg ), ρSys

}]
. (4.93)

The dissipators with negative frequencies switch the place of conjugate transpose between
the jump operators. We can notice that the last dissipator is proportional to λ2 and can
thus be neglected.10

To make some sense of the above master equation (4.88) with the dissipators (4.89) to (4.93),
we use the jump operator definitions in equations (4.75) to (4.80). We can show after some
straighforward algebra that the sum of the positive frequency dissipators becomes∑

i , j∈{ωg g ,ωee }
D(i , j )

[
ρSys

]= γ(ωf)
[

afρSysa†
f −

1

2

{
a†

f af,ρSys
}]

. (4.94)

The sum over the negative frequency dissipators gives a form where the conjugate transpose
has switched its place:∑

i , j∈{−ωg g ,−ωee }
D(i , j )

[
ρSys

]= γ(−ωf)
[

a†
f ρSysaf −

1

2

{
afa

†
f ,ρSys

}]
. (4.95)

9Here we are already in the Schrödinger picture, with HSys given by (4.67). Therefore we have reintroduced λ
in the unitary part of the master equation.

10The λ2 dependency comes from the jump operator (4.79).
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Using the above two equations in (4.88) we get the master equation as

ρ̇Sys =− i

ħ
[
HSys +HLS,ρSys

]+ α2

ħ2
γ(ωf)

[
afρSysa†

f −
1

2

{
a†

f af,ρSys
}]

+ α2

ħ2
γ(−ωf)

[
a†

f ρSysaf −
1

2

{
afa

†
f ,ρSys

}]
.

(4.96)

This is almost the final form for the master equation. What is left to do is to compute the
coefficients γ(ωf) and find out the form of the Lamb-shift Hamiltonian in the dispersive
frame HLS.

To compute γ(ω), we need to calculate the bath correlation function 〈B̃ †(τ)B̃(0)〉, where
the bath operator B is shown in equation (4.70). Moving to the interaction picture via the
unitary transformation U = ei(HSys+HBath)t/ħ gives us

B̃(t ) =
∞∑

k=0
gk (a†

k eiωk t +ak e−iωk t ) . (4.97)

Let’s now compute the bath correlation function.

The bath correlation function is defined the expectation value between the bath operators
with a certain time interval τ. Using the bath operator in the interaction picture we get

〈
B̃ †(τ)B̃(0)

〉=〈 ∞∑
k,l=0

gk gl
(
ak e−iωkτ+a†

k eiωkτ
)(

a†
l +al

)〉
= Tr

[ ∞∑
k,l=0

gk gl
(
ak a†

l e−iωkτ+a†
k a†

l eiωkτ+ak al e−iωkτ+a†
k al eiωkτ

)
ρB

]
=

∞∑
k,l=0

gk gl

(
Tr

[
ak a†

l ρB
]
e−iωkτ+Tr

[
a†

k a†
l ρB

]
eiωkτ

+Tr
[
ak alρB

]
e−iωkτ+Tr

[
a†

k alρB
]
eiωkτ

)
.

(4.98)

Assuming that the bath is in a thermal state given by equation (3.35) the traces become

Tr
[
a†

k a†
l ρB

]= Tr
[
ak alρB

]= 0, (4.99)

Tr
[
ak a†

l ρB
]= δkl

(
1+ n̄(ωk )

)
, (4.100)

Tr
[
a†

k alρB
]= δkl n̄(ωk ) , (4.101)

where n̄(ωk ) is the expected number of quanta of frequency ωk given by the Bose-Einstein
distribution. Using the above equations for the traces in (4.98) we get

〈
B̃ †(τ)B̃(0)

〉= ∞∑
k=1

g 2
k

[(
1+ n̄(ωk )

)
e−iωkτ+ n̄(ωk )eiωkτ

]
(4.102)

Now we use the definition of the spectral density (see Eq. (4.46)) to turn the sum into an
integral as

J (ω) = 1

ħ2

∞∑
k=1

|gk |2δ(ω−ωk ) ⇒
∞∑

k=1
|gk |2 =ħ2

∫ ∞

0
J (ω)dω . (4.103)
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Thus we can write equation (4.102) as

〈
B̃ †(τ)B̃(0)

〉=ħ2
∫ ∞

0
J (ωk )

[(
1+ n̄(ωk )

)
e−iωkτ+ n̄(ωk )eiωkτ

]
dωk . (4.104)

Using this we can calculate the coefficients γ(ωf) of the master equation (4.96), which can
be found by computing the Fourier transform of the bath correlation functions as shown in
equation (3.63). We get

γ(ωf) =ħ2
∫ ∞

−∞
dτ

∫ ∞

0
dωk J (ωk )

[(
1+ n̄(ωk )

)
e−iωkτ+ n̄(ωk )eiωkτ

]
eiωfτ

=ħ2
∫ ∞

−∞
dτ

∫ ∞

0
dωk J (ωk )

[(
1+ n̄(ωk )

)
e−i(ωk−ωf)τ+ n̄(ωk )ei(ωk+ωf)τ

]
. (4.105)

We use the definition of the Dirac delta function

δ(x − y) = 1

2π

∫ ∞

−∞
eip(x−y)dp (4.106)

in the time integrals in equation (4.105) to get

γ(ωf) = 2πħ2
∫ ∞

0
dωk J (ωk )

[(
1+ n̄(ωk )

)
δ(ωf −ωk )+ n̄(ωk )δ(ωf +ωk )

]
. (4.107)

We can see from the above that we get a different result for positive and negative val-
ues of ωf. For ωf > 0 we get γ(ωf) = 2πħ2 J(ω f )(1+ n̄(ωf)) and for ωf < 0 we have γ(ωf) =
2πħ2 J (−ω f )n̄(−ωf). Using these results in the master equation (4.96) we get the following:

ρ̇Sys =− i

ħ
[
HSys +HLS,ρSys

]+γn̄
(
a†

f ρSysaf −
1

2

{
afa

†
f ,ρSys

})
+γ(1+ n̄)

(
afρSysa†

f −
1

2

{
a†

f af,ρSys
})

.
(4.108)

This form of the master equation is studied for example in Ref. [68] in the case of zero
temperature and more generally in [69].

Above we defined the coefficient γ = α22πJ(ωf) with the spectral density J(ω) given by
equation (4.47) and the system Hamiltonian is the dispersive Jaynes-Cummings Hamilto-
nian from equation (4.67). The Lamb-shift Hamiltonian HLS renormalizes the resonator
frequency but does not affect the qubit. Its effect on the resonator is very small so in practice
we could disregard it completely. The Lamb-shift is studied more closely in Appendix D.

The master equation (4.108) describes thermally induced emission and absorbtion pro-
cesses [31]. The absorbtion is governed by the γn̄ term and the emission by the γ(1+ n̄)
term. Since n̄ is the Bose-Einstein distribution we get n̄ = 0 at the absolute zero T = 0. There
only the emission term survives, which makes sense. The resonator is able to emit out the
quanta that are left in but not to absorb anything. Note that the emission and absorbtion
rates depend on the temperature of the resistor, which we took to be our bath.
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We started this chapter by analyzing the micrograph 4.1 of the superconducting circuit with
the qubit and the readout resonator. We were able to represent the distributed element
CPW in a lumped element approximation and thus were able to draw the circuit diagram
describing the superconducting circuit. We then managed to obtain the Hamiltonian of
the circuit and quantize it by noticing that essentially all of the components of the circuit
became quantum harmonic oscillators. Having derived the quantum Hamiltonian of the
circuit we moved on to analyze it using the theory of open quantum systems. After a lot of
calculations and some approximations we managed to derive the master equation (4.108)
describing the dispersive dynamics of the qubit-resonator system coupled to a resistor on
the drive line.

Just as the chapter title states, we made our way from micrograph to master equation. The
obtained equation describes the dynamics of our quantum system and allows us to infer a
very general behaviour directly from its form. But in order to obtain the fine details of the
qubit dynamics we need to solve the said equation.



5 Solving for Qubit Dynamics

In the previous chapter, we first derived the Hamiltonian describing the energies of the
superconducting circuit and then the master equation describing the time evolution of
the qubit-resonator system. In order to gain specific knowledge on how the qubit’s state
behaves in time we have to solve the said master equation. Doing this analytically is
cumbersome due to the appearance of large dimensional matrices. Therefore, we resort to
numerical methods.

In order to understand the solutions we eventually obtain from the master equation, we
need to understand the two different processes that characterize the qubit time evolution.
Therefore we start this chapter by talking about dissipation and decoherence, gaining knowl-
edge on what they mean, what is their effect on the qubit’s state and where do they arise
from. We also introduce the time scales that characterize these phenomena.

After talking about the underlying phenomena that we should observe, we move on to
calculating analytical solutions of specific, solvable, cases of the master equation. We
consider the unitary dynamics to gain understanding on how the qubit superposition sate
evolves in time when no dissipators are present. This allows us to better understand the
results obtained from solving the full system dynamics later. The assumption of unitarity
simplifies our calculations significantly as it gets rid of the open system effects that we
are ultimately interested in. Introducing back the dissipators, we are again left with the
full master equation. This is much more difficult to solve, but we are able to analytically
compute the steady state of the dynamics.

The final step in our analytical calculations is to map the master equation to the Liouville
space. This not only allows us to compute the expectation values of the Pauli operators
analytically as a decomposition into the eigenstates of the Liouvillian, but gives us a form
of the master equation that we can solve numerically using a computer.

Finally, after the analytical considerations, we arrive at the numerical solutions, where we
show how the qubit state behaves in time. We show the dynamics for the circuit we have
been studying in this thesis by giving the circuit elements real numerical values that are
determined during its manufacturing process. We also examine some other parameter
regimes where different behaviours arise. Finally we show the main result of this thesis,
answering how does the qubit decoherence time behave as a function of temperature.

69
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5.1 ABOUT DISSIPATION AND DECOHERENCE

As soon as the quantum state of the qubit is prepared, it is subject to the time evolution
determined by its Hamiltonian. If it were to be in a closed system we would be able to
predict its state at any time in the future. But as stated multiple times already the qubit is
an open quantum system, interacting with the circuitry around it and most notably the
resistor in its drive line. This introduces coupling to uncontrollable degrees of freedom in
the bath, or noise in short [8]. The presence of noise changes the state of the qubit in such
a way that after a sufficiently long time the state is lost and we cannot know what was the
original quantum state subject to the noise.

Two properties of quantum states of qubits that interest us are its energy or the state
population and the superposition of the state or the state coherence.1 External noise on the
qubit can cause loss of energy of the qubit called dissipation or loss of superposition called
decoherence. The effect of noise can be analyzed in the density matrix level by examining
the time evolution of its elements. The diagonal entries of the qubit density matrix are called
populations and they describe the energy eigenstates of the qubit. Therefore dissipation is
seen as a decay of the matrix element corresponding to the excited state. The off-diagonal
entries of the density matrix are called coherences and they describe the superposition
nature of the quantum state. Thus decoherence is observed as the decay of the off-diagonal
elements in the density matrix [8].

Whether our quantum system experiences dissipation or decoherence or both, stems from
its Hamiltonian and the couplings present there. This is discussed in Ref. [8], where it is
stated that dissipation arises from noise coupling that is transverse to the qubit quantization
and dephasing (leading to decoherence) arises from longitudinal coupling. The term
"longitudinal" refers to the direction of qubit quantization axis, which is the ẑ axis in the
Bloch sphere. Therefore any noise that couples to the operator σz in the qubit Hamiltonian
induces dephasing and thus decoherence. Similarly any noise that couples to either σx or
σy (those being transverse to qubit quantization) induces dissipation, thus pulling energy
out from the qubit.2 The effect of both decoherence and dissipation in the Bloch sphere
representation is shown in figure 5.1.

Both dissipation and decoherence have their own time scales, which determine how fast
these phenomena happen. We can describe them as longitudinal relaxation rates Γ1 and
transverse relaxation rate Γ2 [8]:

Γ1 ≡
1

T1
, Γ2 ≡

1

T2
= Γ1

2
+Γφ , (5.1)

where Γφ is the pure dephasing rate. It describes the time scale of dephasing where the
quantum state rotates around the Bloch sphere. In figure 5.1 this is seen on the left, where
the superposition state travels around the sphere as it is slowly losing its coherence and
becoming a maximally mixed state.

1The superposition is between the energy eigenstates |g 〉 and |e〉 of the qubit.
2Intuitively this can be understood as arising from the fact that both σx and σy change the state they operate

on: σx |g 〉 = |e〉 , σx |e〉 = |g 〉 and similarly for σy .
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x̂

ŷ

ẑ = |g 〉

−ẑ = |e〉

Decoherence

|+〉 = 1p
2

(|g 〉+ |e〉)
x̂

ŷ

ẑ = |g 〉

−ẑ = |e〉

Dissipation

Figure 5.1: Decoherence and dissipation presented on a Bloch sphere. On the left a superpo-
sition state |+〉 experiences decoherence due to longitudinal noise. It loses its superposition
and decays to the maximally mixed state 1/2 after a sufficiently long amount of time. On the
right the excited state experiences dissipation due to transverse noise and loses its energy.
After a sufficiently long amount of time it decays to the ground state |g 〉.

The way to actually see dissipation and decoherence in the calculations is to compute
expectation values of the Pauli operators. When we compute the expectation values we are
actually computing the projection of the qubit’s quantum state on the corresponding axis
in the Bloch sphere representation. Thus 〈σz〉 projects the quantum state to the z-axis for
example. Looking at figure 5.1 this measurement would yield 0 for |+〉 state and −1 for |e〉
state. Indeed, computing 〈σz〉 gives us knowledge about the qubit’s mean energy.

To quantify coherence, we use an l1-norm as a measure of coherence [70]

C (ρ) =
∑
i , j

i 6= j

|ρi j | . (5.2)

This computes the sum of the norms of the off-diagonal matrix elements of the density
matrix. In the case of a qubit this can be written in terms of the expectation values of the
σx and σy operators as

C (ρQ) =
∑
i , j

i 6= j

|ρi j | = |ρ01|+ |ρ10| = 2|ρ01| = 2

∣∣∣∣1

2

(〈σx〉− i〈σy〉
)∣∣∣∣=√

〈σx〉2 +〈σy〉2 . (5.3)

So in order to completely describe the qubit time evolution we need to compute the
expectation values of the Pauli operators.
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In our case the qubit is coupled dispersively to the readout resonator and the resonator
is coupled to the resistor. The qubit-resonator Hamiltonian was given by equation (4.67).
From that Hamiltonian we can see that we are dealing with a longitudinal coupling to σz

and no transverse coupling.3 Therefore we could expect to see no dissipation when we
solve the master equation (4.108) for the qubit dynamics but we should see decoherence as
the qubit is interacting with the resonator via σz .

The absence of dissipation in our system can already be seen from the system Hamiltonian.
However, we want to prove it rigorously. This in mind, we will consider the adjoint master
equation of the one we derived in the end of the previous chapter. To get the exact time
evolution of the coherence and more specifically how it changes as a function of tempera-
ture we need to solve the said master equation. In the next section we try to go as far as
possible using analytical methods to gain insight on how the system behaves.

5.2 ANALYTICAL SOLUTIONS

The master equation describing the qubit-resonator system and its coupling to the resistor
is given by

ρ̇Sys =− i

ħ
[
HSys,ρSys

]+γn̄
(
a†

f ρSysaf −
1

2

{
afa

†
f ,ρSys

})
+γ(1+ n̄)

(
afρSysa†

f −
1

2

{
a†

f af,ρSys
})

,
(5.4)

with the system Hamiltonian given by

HSys =
1

2
ħ(ωA +2gfλ)σz +ħ(ωf + gfλσz)a†

f af +ħgfλσ−σ+ . (5.5)

The Lamb-shift term was incorporated into the resonator frequency ωf as it does not affect
the qubit (see Appendix D).

We begin solving the master equation (5.4) by considering the time-evolution of σz . As
argued in the last section the result should be simply that σz stays constant in time as there
is no dissipation on the qubit. To show this rigorously, we apply the adjoint master equation
(see Eq. (3.71)) which in our case reads

Ȯ(t ) = i

ħ
[
HSys,O(t )

]+γn̄
(
afO(t )a†

f −
1

2

{
afa

†
f , O(t )

})
+γ(1+ n̄)

(
a†

f O(t )af −
1

2

{
a†

f af, O(t )
})

.
(5.6)

Let’s then set O =σz . We can immediately see that the dissipators vanish because σz com-
mutes with the ladder operators. What we then have to do is to compute the commutator

3To be precise, if we look at equation (4.69) we see that the qubit is coupled transversely to the resistor via σx .
However, this coupling is mediated by λ, which became λ2 when computing the dissipators of the master
equation (see Eq. (4.93)). Therefore we were able to neglect its contribution. Note that this term is exactly
the one driving transitions |g 〉↔ |e〉, thus associated with dissipation.
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between the system Hamiltonian and σz .

[
HSys,σz(t )

]= 1

2
ħ(ωA +2gfλ)

[
σz ,σz

]︸ ︷︷ ︸
=0

+ħωf
[
a†

f af,σz
]︸ ︷︷ ︸

=0

+ħgfλ
[
σz a†

f af,σz
]︸ ︷︷ ︸

=0

+ħgfλ
[
σ−σ+,σz

]
=ħgfλ

[
σ−σ+,σz

]=ħgfλ
[ |g 〉〈g | , |e〉〈e|− |g 〉〈g |]= 0.

So indeed we can see that σ̇z (t ) = 0. Therefore σz is a constant in time. This means that the
energy of the qubit does not change and dissipation does not occur in our system.

Computing the time evolution of the other Pauli operators is more complicated as we
cannot use the adjoint master equation directly.4 We need to resort either to simple regimes,
where analytical solutions are possible, or to numerical methods. The numerical solutions
are discussed later but let’s now concentrate for a moment on a case with no environmental
interaction. This gives the unitary dynamics of our system.

5.2.1 γ= 0: UNITARY DYNAMICS

Let’s now consider a situation where the qubit-resonator system does not interact with
the resistor in any way. This sets γ= 0 in the master equation (5.4) thus getting rid of the
dissipator terms. Physically this means that the coupling mutual inductance M between
the inductors in figure 4.4 is zero.5

As the dissipator terms disappear we are left with

ρ̇Sys =− i

ħ
[
HSys ,ρSys

]
, (5.7)

which is the Liouville-von Neumann equation governing the unitary dynamics of the system.
Although the unitary dynamics do not represent the open quantum system situation, we
can still gain useful knowledge by solving the unitary Liouville-von Neumann equation in
some specially selected initial value conditions. These solutions help us to understand how
the unitary part affects the solutions of the full master equation that we encounter later.

As shown in equation (3.13) the solution to the Liouville-von Neumann equation depends
on the initial conditions for the density matrix ρ. As HSys is the dispersive Hamiltonian
given by equation (5.5), we know its eigenstates and energy eigenvalues (see subsection
4.2.2). The Hamiltonian is diagonal in the product basis |Ψ〉 = |ΨQ〉⊗ |ΨR〉, where |ΨQ〉 is
the qubit state and |ΨR〉 the resonator state, so if we represent the state |Ψ〉 in terms of the
eigenstates, solving the Liouville-von Neumann equation becomes easier.

In the calculations that follow we assume that the qubit begins in a superposition state
|ΨQ〉 = |+〉 = 1p

2
(|e〉+ |g 〉) like in figure 5.1. This choice sets the initial coherence to C (ρ) = 1

and allows us to track how it evolves in time.

4The problem with calculating σx and σy using the adjoint master equation is that we get terms such
as a†aσy (t), where the time dependency concerns the whole operator. We cannot separate a†aσy (t) →
a†a(t )σy (t ) so we would have to apply the adjoint master equation for a†aσy (t ) and so on. This leads to an
infinite series of differential equations, which we do not want to deal with.

5Remember that we defined γ=α22πJ (ωf) in deriving the master equation (4.108), where α= M/LL.
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The part that we change between the different calculations is the initial state of the resonator.
Let’s first consider a case where the resonator starts in a Fock-state |ΨR〉 = |n〉. Then the full
state of the qubit-resonator system is

|Ψ〉 = |ΨQ〉⊗ |ΨR〉 =
1p
2

(|e〉+ |g 〉)⊗|n〉 = 1p
2

(|e,n〉+ |g ,n〉) . (5.8)

Since the Liouville-von Neumann equation can be solved as ρ(t) = e−iH t/ħρ(0)e iH t/ħ, we
get the density matrix as

ρSys(t ) = e−iHSyst/ħ |Ψ〉〈Ψ|eiHSyst/ħ

= 1

2

[
e−iHSyst/ħ |g ,n〉〈g ,n|eiHSyst/ħ+e−iHSyst/ħ |g ,n〉〈e,n|eiHSyst/ħ

+e−iHSyst/ħ |e,n〉〈g ,n|eiHSyst/ħ+e−iHSyst/ħ |e,n〉〈e,n|eiHSyst/ħ
]

.
(5.9)

Since |e,n〉 and |g ,n〉 are the energy eigenstates of the Hamiltonian HSys with energies Ee,n

and Eg ,n respectively (see equation (4.63)), we can use them directly in the above equation
to obtain

ρSys(t ) = 1

2

[
|g ,n〉〈g ,n|+ |e,n〉〈e,n|+ei(Ee,n−Eg ,n )t/ħ |g ,n〉〈e,n|+e−i(Ee,n−Eg ,n )t/ħ |e,n〉〈g ,n|

]
.

(5.10)
Taking the partial trace over the resonator Hilbert space and computing the energy differ-
ence Ee,n −Eg ,n yields

ρQ(t ) = TrR
(
ρSys(t )

)= 1

2

[
|g 〉〈g |+ |e〉〈e|+ei(ωA+gfλ(2n+1))t |g 〉〈e|+e−i(ωA+gfλ(2n+1))t |e〉〈g |

]
.

(5.11)
Computing now the coherence measure C (ρQ) we see that it is exactly one for all times:

C (ρQ(t )) = 2|ρ01| =
∣∣ei(ωA+gfλ(2n+1))t

∣∣= 1. (5.12)

The above calculation shows that if the resonator is in a single Fock state |n〉, then the qubit
state just rotates around the Bloch sphere with a modified frequency that depends on the
qubit-resonator coupling. However, the qubit does not lose its superposition. This is a
useful result for later, when we analyze the qubit dynamics in the limit of zero temperature.

Since there is no effect on qubit coherences when the resonator stays in a determined state
|n〉, let’s change the resonator state into a superposition of Fock states. Letting the resonator
start our at |ΨR〉 = 1p

2
(|n〉+ |m〉), where n 6= m, we have an initial density matrix of

ρSys(0) = 1

4

(
|g ,n〉〈g ,n|+((((((|g ,n〉〈g ,m|+ |g ,n〉〈e,n|+((((((|g ,n〉〈e,m|

+((((((|g ,m〉〈g ,n|+ |g ,m〉〈g ,m|+((((((|g ,m〉〈e,n|+ |g ,m〉〈e,m|
+|e,n〉〈g ,n|+((((((|e,n〉〈g ,m|+ |e,n〉〈e,n|+((((((|e,n〉〈e,m|
+((((((|e,m〉〈g ,n|+ |e,m〉〈g ,m|+((((((|e,m〉〈e,n|+ |e,m〉〈e,m|

)
.

(5.13)
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The terms that are crossed over can be neglected. Since n 6= m they vanish when we take
the partial trace over the environment. Computing the time evolved density matrix like
previously gives us the following

ρQ(t ) = 1

4

[
2 |g 〉〈g |+2 |e〉〈e|+

(
ei(ωA+gfλ(2n+1))t +ei(ωA+gfλ(2m+1))t

)
|g 〉〈e|

+
(
e−i(ωA+gfλ(2n+1))t +e−i(ωA+gfλ(2m+1))t

)
|e〉〈g |

]
.

(5.14)

After some algebra we find the coherence measure to become

C (ρQ(t )) = 2|ρ01| =
1

2

∣∣∣ei(ωA+gfλ(2n+1))t +ei(ωA+gfλ(2m+1))t
∣∣∣= ... =

∣∣cos
(
gfλ(n −m)t

)∣∣ . (5.15)
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Figure 5.2: Plot of the general behaviour of
the coherence measure in equation (5.15).

We can see that the coherence measure in
the equation above is now not constant in
time as it was previously. Clearly the fact
that the resonator started out in some su-
perposition state allows the qubit and res-
onator to exchange coherences, leading to
non-trivial behaviour of the qubit’s quan-
tum state. This |cos(x)| dependency is plot-
ted in figure 5.2. We can see an oscillatory
behaviour, which resembles the fact that
the qubit dynamics are reversible, due to
the unitary nature of the time evolution
given by the Liouville-von Neumann equa-
tion.

Now that we have analyzed the resonator
starting in a simple superposition state of two Fock states, we can move to a more complex
example, which is also more natural. Let’s next discuss the case where the resonator starts
out in a coherent state given by a superposition of an infinite number of Fock states

|ΨR〉 = |α〉 = e−
1
2 |α|2

∞∑
n=0

αn

p
n!

|n〉 . (5.16)

The coherent states are regarded as the "most classical" quantum states of the harmonic os-
cillator [61]. Their distinguishing feature is that they are the eigenstates of the annihilation
operator, satisfying a |α〉 =α |α〉.
Letting the resonator start out in a coherent state and the qubit in the superposition state
|+〉 as usual, the initial density matrix is given by

ρSys(0) = 1

2
e−|α|

2
∞∑

n,m=0

αnαm

p
n!m!

( |g ,n〉〈g ,m|+ |g ,n〉〈e,m|+ |e,n〉〈g ,m|+ |e,n〉〈e,m|) . (5.17)

We can again neglect terms where n 6= m in the bra and in the ket because those terms
would vanish when taking the trace over the resonator states. This effectively gets rid of the
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sum over m, setting m = n in the above equation. Then evolving the density matrix in time
and taking the partial trace gives us

ρQ(t ) = 1

2
e−|α|

2
[ ∞∑

n=0

|α|2n

n!

( |g 〉〈g |+ |e〉〈e|)
+

∞∑
n=0

|α|2n

n!
ei(ωA+gfλ(2n+1))t |g 〉〈e|+

∞∑
n=0

|α|2n

n!
e−i(ωA+gfλ(2n+1))t |e〉〈g |

]
.

(5.18)

We can use the definition of the exponential as exp(x) =∑∞
n=0

xn

n! to the first sum. From the

second and third terms we can pull out e±i(ωA+gfλ)t from the sums. This process yields

ρQ(t ) = 1

2
e−|α|

2
[

e|α|
2( |g 〉〈g |+ |e〉〈e|)+ei(ωA+gfλ)t

∞∑
n=0

(|α|2ei2ngfλt )n

n!
|g 〉〈e|

+e−i(ωA+gfλ)t
∞∑

n=0

(|α|2e−i2ngfλt )n

n!
|e〉〈g |

]
.

(5.19)
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Figure 5.3: Plot of the general behaviour of
the coherence measure in equation (5.21).

Using the exponential definition in the re-
maining sums and multiplying in the expo-
nential term e−|α|

2
yields us

ρQ(t ) = 1

2

[
|g 〉〈g |+ |e〉〈e|

+ei(ωA+gfλ)t e|α|
2(ei2ngfλt−1) |g 〉〈e|

+e−i(ωA+gfλ)t e|α|
2(e−i2ngfλt−1) |e〉〈g |

]
.

(5.20)
From this we get the following coherence
measure:

C (ρQ(t )) =
∣∣ei(ωA+gfλ)t e|α|

2(ei2ngfλt−1)
∣∣

=
∣∣e|α|2(ei2ngfλt−1)

∣∣
= e−2|α|2 sin2(gfλt ) .

(5.21)
We see again non-trivial behaviour in the qubit coherences but something that is noticeably
different from equation (5.15). When we plot the general behaviour of the coherence
e−2sin2(x), we can see that this time some of the qubit coherence is always preserved. Also
just like in the previous case there is the same kind of reversible behaviour as in figure 5.2.
The qubit first loses coherence but after some time gains it back and this process continues
indefinitely.

The last unitary case that we are studying is the situation where the resonator starts out in a
thermal state. This case is physically interesting if we assume that initially the system is at
thermal equilibrium. As the density matrix of the thermal state is given by equation (3.35),
the initial density matrix of the qubit-resonator system becomes

ρSys(0) = 1

2

1

1+ n̄

∞∑
n=0

( n̄

1+ n̄

)n[ |g ,n〉〈g ,n|+ |g ,n〉〈e,n|+ |e,n〉〈g ,n|+ |e,n〉〈e,n|] . (5.22)
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Applying the time-evolution and taking the trace over the resonator states gives

ρQ(t ) = 1

2

1

1+ n̄

∞∑
n=0

( n̄

1+ n̄

)n[ |g 〉〈g |+ei(ωA+gfλ(2n+1))t |g 〉〈e|+e−i(ωA+gfλ(2n+1))t |e〉〈g |+|e〉〈e|] .

(5.23)
Next let’s bring the sum inside the parenthesis. The diagonal terms have no dependency on
n so we can evaluate the sum on its own there. We have a geometric sum

∑∞
n=0

( n̄
1+n̄

)n =∑∞
n=0

( 1
1+1/n̄

)n = 1+ n̄. From the off-diagonal terms we can pull out a rotation term which is
not proportional to n. This gives

ρQ(t ) = 1

2

1

1+ n̄

[
(1+ n̄)

( |g 〉〈g |+ |e〉〈e|)+ei(ωA+gfλ)t
∞∑

n=0

(
1

1+ 1
n̄

ei2gfλt
)n

|g 〉〈e|

+e−i(ωA+gfλ)t
∞∑

n=0

(
1

1+ 1
n̄

e−i2gfλt
)n

|e〉〈g |
]

. (5.24)

The sum is again a geometric sum, which becomes

∞∑
n=0

(
1

1+ 1
n̄

ei2gfλt
)n

=
1+ 1

n̄

1+ 1
n̄ −ei2gfλt

. (5.25)

Using this in the qubit density matrix equation we get

ρQ(t ) = 1

2

[
|g 〉〈g |+ |e〉〈e|+ei(ωA+gfλ)t 1+ 1

n̄

1+ 1
n̄ −ei2gfλt

|g 〉〈e|

+e−i(ωA+gfλ)t 1+ 1
n̄

1+ 1
n̄ −e−i2gfλt

|e〉〈g |
]

.

(5.26)

From the above equation we can obtain the coherence measure as usual by taking the
absolute value of the |g 〉〈e| element. This time the calculation involves quite a lot of
algebra. After the computations we ultimately get the coherence measure as

C
(
ρQ(t )

)= 1p
2

1

n̄

1√
1+ 1

n̄ + 1
2n̄2 −cos

(
2gfλt

)(
1+ 1

n̄

) . (5.27)

Indeed, also the thermal state gives rise to non-trivial coherence behaviour. However,
this time the coherence measure depends also on temperature, since the Bose-Einstein
distribution n̄ depends on temperature. The general behaviour of the coherence of the
form 1p

2
1p

5/2−2cos(x)
is again plotted in figure 5.4. We can see that the shape is quite close

to what we show in figure 5.3 but this time the minimum level of remaining coherences is
higher and it can be modified by changing the temperature. Also in this case we can notice
the oscillatory behaviour coming from the reversible nature of the equation of motion we
are solving.

In conclusion, we have analyzed the evolution of qubit coherences in four distinct cases.
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Figure 5.4: Plot of the general behaviour of
the coherence measure in equation (5.27).

We saw that if the resonator starts out in
a precisely known Fock state, then coher-
ences do not evolve in time (see Eq. (5.12)).
After the introduction of a simple superpo-
sition between two Fock states the coher-
ences start to behave in a non-trivial man-
ner as seen in equation (5.15). Thus it is
required that the resonator is initially in
some superposition state in order for the
qubit to exchange its coherences with the
resonator. We also saw that in the case of
initial coherent state and thermal state the
qubit coherences behave non-trivially but
in oscillatory fashion (see equations (5.21)
and (5.27) respectively).

5.2.2 THE STEADY STATE

When solving for the dynamics of any system in physics, one particular interesting point is
the possible existence of an equilibrium or steady state. In our case the steady state refers
to the combined qubit-resonator state that does not change in time and towards which the
system will evolve if it is not initially in such a state.

In finding the steady state we are looking for a solution to the equation

ρSys(t ) = eL tρSys(0) = ρSys(0) ∀ t , (5.28)

where L is now the Liouvillian superoperator corresponding to master equation (5.4) given
by

L =− i

ħ
[
HSys, ·]+D[·] . (5.29)

The dissipator part of the master equation is now denoted by D[·]. Essentially we want to
find a state ρS such that

LρS =− i

ħ
[
HSys,ρS

]+D[ρS] = 0. (5.30)

It should be noted that the qubit state does not affect the dissipators at all because the
dissipator is constructed only of operators acting on the resonator Hilbert space. Equation
(5.30) is thus satisfied for a state, which is separable to the qubit and resonator contributions
and where the both parts commute with the system Hamiltonian HSys and where the
resonator contribution is the steady state of the dissipator. Let’s now concentrate on
the latter part. An educated guess for the dissipator’s steady state, based on statistical
mechanical considerations, would be the thermal state, since it is the thermal equilibrium
state of a quantum system [31]. See also the discussion in Appendix B. Now we need to
check if it is indeed the stationary state of the dissipator.
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The dissipator with the thermal state is given by

D[ρTh] = γn̄
(

a†
f ρThaf︸ ︷︷ ︸

1.

− 1

2

{
afa

†
f ,ρTh

}
︸ ︷︷ ︸

2.

)
+γ(1+ n̄)

(
afρTha†

f︸ ︷︷ ︸
3.

− 1

2

{
a†

f af,ρTh
}

︸ ︷︷ ︸
4.

)
. (5.31)

Using the definition for the thermal state from equation (3.35), the four different parts
of the dissipator are given by

1.) a†
f ρThaf =

1

1+ n̄

∞∑
n=0

( n̄

1+ n̄

)n
(n +1) |n +1〉〈n +1| (5.32)

2.)
1

2

{
afa

†
f ,ρTh

}= 1

1+ n̄

∞∑
n=0

( n̄

1+ n̄

)n
(n +1) |n〉〈n| (5.33)

3.) afρTha†
f =

1

1+ n̄

∞∑
n=0

( n̄

1+ n̄

)n
n |n −1〉〈n −1| (5.34)

4.)
1

2

{
a†

f af,ρTh
}= 1

1+ n̄

∞∑
n=0

( n̄

1+ n̄

)n
n |n〉〈n| . (5.35)

If we now plug in the different terms to the dissipator and play with the summation
indices it turns out that eventually the 2nd and 3rd term cancel eachother as will the
1st and 4th term. This of course gives then

D[ρTh] = 0, (5.36)

confirming that the thermal state is the stationary state of the dissipator.

The thermal state being the stationary state of the dissipator is convenient, because it also
commutes with the system Hamiltonian.

When it comes to the qubit part of the steady state, by looking at the Hamiltonian (5.5) it is
evident that initial states |e〉〈e| or |g 〉〈g | of the qubit commute with the system Hamiltonian
due to the lack of σx terms. Thus any linear combination of them stays invariant under the
dynamics governed by HSys. We can thus conclude that the most general steady state of the
master equation (5.4) is

ρSteady = a |e〉〈e|⊗ρTh + (1−a) |g 〉〈g |⊗ρTh , (5.37)

where a ∈ [0,1].

Now we know how the qubit evolves under unitary conditions and what is the equilibrium
state of the system towards which it evolves in time. However, we are of course interested in
what happens in the middle, before the system reaches equilibrium and also how long the
relaxation takes. For that we need to solve the full master equation (5.4) with non-zero γ.

As already discussed, the time evolution of the qubit can be decomposed into the computa-
tion of the time evolution of the Pauli operators. In our case computing 〈σz(t )〉 is trivial as
it’s a constant of motion. However, computing 〈σx(t)〉 and 〈σy (t )〉 is definitely not trivial.
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This needs to be done on a computer but in order to gain qualitative understanding of how
the different parts of the master equation affect the time evolution of coherences, we are
going to go as far as possible using analytical methods.

5.2.3 EXPECTATION OF σx

In order to compute the expectation value of σx (t ) (and similarly of σy (t )) we will consider
the master equation (5.4) in the Liouville space, which was discussed and introduced in
section 3.3. As a reminder, this formulation allows us to represent the d ×d dimensional
quantum state operators as d 2 dimensional vectors, while the superoperators acting on
them become d 2 ×d 2 matrices.

Applying the isomorphism to our master equation (5.4), as given in equation (3.88), trans-
forms the Liouvillian superoperator to the following form:

L =− i

ħ
(
HSys ⊗ 1− 1⊗H>

Sys

)+γn̄
(
a†

f ⊗a†
f −

1

2
afa

†
f ⊗ 1−

1

2
1⊗afa

†
f

)
+γ(1+ n̄)

(
af ⊗af −

1

2
a†

f af ⊗ 1−
1

2
1⊗a†

f af

)
.

(5.38)

Here we used the definitions for the supercommutator and -anticommutator in equations
(3.86) and (3.87) and the fact that a† = a> and a∗ = a since the ladder operators are real
matrices (see Eq. (4.81)).

As the Liouvillian can be represented as a matrix, it is not suprising that the eigenvalues
and eigenvectors of said matrix play an important role in the computation of the associated
dynamics. However, finding the eigenvalues and eigenvectors of a d 2 ×d 2 matrix can be
challenging even numerically when d grows large, let alone in the ideal case of infinite
dimensional Hilbert space.6 Fortunately we can exploit some symmetries of the Liouvillian
superoperator to get a more manageable form for the matrix. These symmetries were
formulated in [71] by Albert and Jiang and recently refined and discussed in detail in [72]
by Cattaneo, Giorgi, Maniscalco and Zambrini.

Motivated by the work done in Ref. [72], we will examine the observable responsible for
the total number of particles in a system. In our case we need to compute separately the
qubit quanta and the resonator quanta. Since the number operator in the two dimensional
truncation of the qubit Hilbert space is σz (see Eq. (4.38)), we have the total number of
particles operator N as

N =σz +a†
f af . (5.39)

From the above we can define the superoperator N = [N , ·], which can be written using the
supercommutator (3.86) as

N = N ⊗ 1− 1⊗N . (5.40)

What we need to compute next is the commutator between the superoperators L and N . If

6In our case d = 2d ′, where d ′ is dimension of the resonator Hilbert space and the factor 2 comes from the
qubit Hilbert space. Therefore we need to find a suitable truncation for the resonator Hilbert space.
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they commute,7 then we can exploit the symmetries of the Liouvillian superoperator related
to this total number of particles superoperator N [72]. The commutator is calculated in
the box below.

The commutator between the superoperators can be decomposed into the following
parts:

[
L ,N

]=− i

ħ
[
HSys ⊗ 1− 1⊗H>

Sys, N
]︸ ︷︷ ︸

1.

+γn̄
([

a†
f ⊗a†

f , N
]︸ ︷︷ ︸

2.

−1

2

[
afa

†
f ⊗ 1, N

]︸ ︷︷ ︸
3.

−1

2

[
1⊗afa

†
f , N

]︸ ︷︷ ︸
4.

)

+γ(1+ n̄)
([

af ⊗af, N
]︸ ︷︷ ︸

5.

−1

2

[
a†

f af ⊗ 1, N
]︸ ︷︷ ︸

6.

−1

2

[
1⊗a†

f af, N
]︸ ︷︷ ︸

7.

)
.

(5.41)

Now we can compute the commutators separately. The first one is clearly zero because
HSys in equation (5.5) consists only of σz , a†

f af, and σ−σ+, all of which commute
separately with N in equation (5.40).

The second commutator needs to be computed more carefully:[
a†

f ⊗a†
f , N

]= [
a†

f ⊗a†
f , a†

f af ⊗ 1
]− [

a†
f ⊗a†

f , 1⊗a†
f af

]
= (

a†
f ⊗a†

f

)(
a†

f af ⊗ 1− 1⊗a†
f af

)− (
a†

f af ⊗ 1− 1⊗a†
f af

)(
a†

f ⊗a†
f

)
= a†

f a†
f af ⊗a†

f −a†
f ⊗a†

f a†
f af −a†

f afa
†
f ⊗a†

f +a†
f ⊗a†

f afa
†
f

= a†
f ⊗

[
a†

f af, a†
f

]− [
a†

f af, a†
f

]⊗a†
f = a†

f ⊗a†
f −a†

f ⊗a†
f

= 0.

(5.42)

Above we used the fact that [N ,a†] = a†. In a similar manner we can show that commu-
tator number 5 is also zero. Last piece that we need to compute carefully is the third
commutator (6. and 7. are trivially zero and 4. is similar to 3.):[

afa
†
f ⊗ 1, N

]= [
afa

†
f ⊗ 1, a†

f af ⊗ 1
]− [

afa
†
f ⊗ 1, 1⊗a†

f af
]

= (
afa

†
f ⊗ 1

)(
a†

f af ⊗ 1− 1⊗a†
f af)−

(
a†

f af ⊗ 1− 1⊗a†
f af

)(
afa

†
f ⊗ 1

)
= afa

†
f a†

f af ⊗ 1−����
��

afa
†
f ⊗a†

f af −a†
f afafa

†
f ⊗ 1+����

��
afa

†
f ⊗a†

f af

=−[
a†

f af, afa
†
f

]⊗ 1
= 0.

(5.43)

7In reference [72] it is proved that L and N do commute if in the derivation of the master equation the
partial secular approximation is used. About the symmetry of the Liouvillian they state that "the symmetry
arises only when considering a global master equation, while it may not be valid anymore when using a local
one." Since we had to assume locality when deriving the jump operators in section 4.2.3 we cannot just
blindly use the results from the referenced article, but have to carefully make sure that the superoperators
do indeed commute.
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Above we used the fact that [a†a, aa†] = 0, which is easy to prove using some arbitrary
state |n〉 as an aid.

The above calculation shows that indeed [L ,N ] = 0. It is stated in Ref. [72] that since
the Liouvillian and the total number of particles superoperator commute, it generates a
symmetry on the Liouvillian level that allows us to block diagonalise the Liouvillian matrix.
In the block form each of the blocks may give insight about certain physical phenomena
of interest, which allows us to focus our efforts in analyzing this one block instead of the
whole matrix.

L0

L1

L−1

L2

L−2

. . .





|n〉⊗ |m〉
d = n −m = 0

d = 1

d =−1

d = 2

d =−2

Example for 2D truncation of the resonator:
Basis states in block L1 are |g 1〉⊗ |g 0〉 ,

|e0〉⊗ |g 0〉 , |e1〉⊗ |g 1〉, |e1〉⊗ |e0〉

Figure 5.5: Block structure of the Liouvillian superoperator
in the Liouville space. The exact order of the blocks can
vary, what is important is that each block is labeled by d
and contains only basis elements where the difference in
quanta between the basis element kets is d . In the given
example the resonator is truncated to 2D giving access only
to states |0〉 and |1〉. The qubit ground |g 〉 corresponds to 0
and excited state |e〉 to 1. In block L1 all the left side kets
have one quanta more compared to the right side kets.

The block diagonalisation arises
from the choice and ordering
of a correct basis in which
to represent the Liouvillian
L . It is notable that the
number of particles operator
N is diagonal in the same
basis which we used in the
derivation of the Liouvillian,
namely the

{ |g ,n〉 , |e,n −1〉}
basis. The eigenvectors of
the corresponding superoper-
ator N are given by the ten-
sor product of the referenced
basis elements with itself.

Let’s now consider the eigen-
values of N and label them d .
These eigenvalues show the
difference in the number of
quanta between the basis el-
ements of the Liouville space,
namely those of |i ,n〉⊗ | j ,m〉, where i , j ∈ {

e,g
}
. The corresponding eigenvectors are the

basis elements of the Liouvillian. If we now regroup the Liouvillian matrix such that the
basis elements corresponding to the same eigenvalue d are next to each other, we see that
the form of the Liouvillian becomes block diagonal as can be seen in figure 5.5. Mathe-
matically we can express the block diagonal form of the Liouvillian as a direct sum of the
sub-matrices

L =
⊕

d

Ld . (5.44)

It is noteworthy that the blocks with negative d can be trivially obtained from the blocks
with positive d due to the relation Ld =L ∗

−d [72].

As we have found a way to describe the Liouvillian in a block form, we can concentrate on
the specific blocks of interest for different physical phenomena. For example the steady
state of the system lives in the L0 block [72]. It is therefore the only block with an eigenvalue
0. Later it turns out that our interest lies mainly in the block L±1 because these blocks
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contribute to the expectation value of the Pauli σx and σy operators. But in order to be able
to compute the expectation value, we need to be able to consider the representation for an
arbitrary quantum state in the Liouville space, where the Liouvillian is block diagonal. To
represent the density matrix in terms of the eigenvectors of the block-diagonal Liouvillian,
we follow references [73] and [74].

Our Liouvillian matrix is in a block diagonal form depicted in figure 5.5. Let us consider
the eigenvectors and eigenvalues of some block Ld . This block has in total

√
dim(Ld )

eigenvalues and -vectors.8 Let us denote the i :th eigenvalue of the block Ld by λ(d)
i and

the corresponding (right) eigenvector by |v (d)
i 〉〉. Then the (vectorized) density matrix can

now be written as a linear combination of these eigenvectors:∣∣ρSys
〉〉=∑

d

∑
i

c(d)
i

∣∣v (d)
i

〉〉
, (5.45)

where d goes over all possible blocks of the Liouvillian and i runs from 1 to
√

dim(Ld ), de-
noting the index of the eigenvector of a specific block. The coefficient c(d)

i is the projection

of |ρSys〉〉 to the eigenvector
∣∣v (d)

i

〉〉
:

c(d)
i = 〈〈

ṽ (d)
i

∣∣ρSys
〉〉= Tr

[
ρSys

(
ṽ (d)

i

)†] . (5.46)

Here 〈〈ṽ (d)
i | denotes the i :th left eigenvector of the block Ld .9 The eigenvectors are taken

to be normalized such that 〈〈ṽ (d)
i |v (d)

j 〉〉 = δi j .

We know that the quantum state evolves as ρ(t ) = eL tρ(0). If we now represent the initial
state ρ(0) as a linear combination of the eigenvectors of the Liouvillian, as in equation
(5.45), we obtain10∣∣ρSys(t )

〉〉= eL t
∣∣ρSys(0)

〉〉= eL t
∑
d

∑
i

c(d)
i

∣∣v (d)
i

〉〉
=

∑
d

∑
i

c(d)
i eL t

∣∣v (d)
i

〉〉=∑
d

∑
i

c(d)
i eλ

(d)
i t

∣∣v (d)
i

〉〉
,

(5.47)

where we used the fact L |v (d)
i 〉〉 = λ(d)

i |v (d)
i 〉〉. The coefficients c(d)

i give us now the initial
conditions.

Now that we have solved for the time evolution of the quantum state in terms of the
eigenstates of the Liouvillian, we can consider the expectation value of σx . That was
defined as 〈σx(t)〉 = Tr[σxρ(t)] = 〈〈σx |ρ(t)〉〉. We know what is |ρ(t)〉〉 due to equation
(5.47). The matrix form of σx is given as

σx = ( |g 〉〈e|+ |e〉〈g |)⊗ 1n = ( |e〉〈g |+ |g 〉〈e|)⊗ ( |0〉〈0|+ |1〉〈1|+ |2〉〈2|+ ...+|n〉〈n|)
= |g 0〉〈e0|+ |g 1〉〈e1|+ |g 2〉〈e2|+ ...+|e0〉〈g 0|+ |e1〉〈g 1|+ |e2〉〈g 2|+ ... .

8Let’s say that Ld is a m ×m matrix, thus it has m eigenvalues and -vectors.
9The Liouvillian blocks (and the full Liouvillian itself) are not necessarily normal, which is a requirement for

the left and right eigenvectors being equal. Therefore we need to distinguish between them.
10An important thing to note is that even though the linear combination of the eigenvectors of the Liouvillian

is a valid density matrix, the eigenvectors themselves are not density matrices. The only eigenvector of the
Liouvillian that is also a valid density matrix is the ground state [73].
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From this we get the vectorized form as

⇒|σx〉〉 =|g 0〉〉⊗ |e0〉〉+ |g 1〉〉⊗ |e1〉〉+ |g 2〉〉⊗ |e2〉〉+ ...︸ ︷︷ ︸
d=−1

+|e0〉〉⊗ |g 0〉〉+ |e1〉〉⊗ |g 1〉〉+ |e2〉〉⊗ |g 2〉〉+ ...︸ ︷︷ ︸
d=1

.
(5.48)

We can notice that the vectorized form contains only the basis elements from the L±1

blocks. Therefore, in studying the decoherence of the qubit we can concentrate only to
these two blocks and forget the rest. Let’s take now the inner product with the quantum
state in order to compute the expectation value:

〈σx(t )〉 = 〈〈σx |ρ(t )〉〉 =
∑
d

∑
i

c(d)
i eλ

(d)
i t〈〈σx

∣∣v (d)
i

〉〉
=

∑
i

[
c(1)

i eλ
(1)
i t〈〈σx

∣∣v (1)
i

〉〉+ c(−1)
i eλ

(−1)
i t〈〈σx

∣∣v (−1)
i

〉〉]
.

(5.49)

From the equivalence between the Liouvillian blocks, Ld =L ∗
−d it follows that c(d)

i = c(−d)∗
i

and 〈〈σx |v (d)
i 〉〉 = 〈〈σx |v (−d)

i 〉〉∗. Also the eigenvalues λd
i follow the same kind of logic, and

thus they can be written as λ(±d)
i = Re[λ(d)

i ]± iIm[λ(d)
i ]. Using these results in equation

(5.49) allows us to write it in the following way:

〈σx(t )〉 =
∑

i

[
ci

〈〈
σx

∣∣vi
〉〉

eRe[λi ]t eiIm[λi ]t + c∗i
〈〈
σx

∣∣vi
〉〉∗eRe[λi ]t e−iIm[λi ]t

]
. (5.50)

The superscripts denoting block d = 1 were dropped to clean up notation. We just need to
remember that the sum is over the eigenspace of L1.

Now the factor ci 〈〈σx |vi 〉〉 is just some complex number with magnitude |ci 〈〈σx |vi 〉〉| and
some argument. Denoting 〈〈σx |vi 〉〉 ≡ pi , we can write equation (5.50) as

〈σx(t )〉 =
∑

i

[
|ci pi |eiArg[ci pi ]eRe[λi ]t eiIm[λi ]t +|ci pi |e−iArg[ci pi ]eRe[λi ]t e−iIm[λi ]t

]
=

∑
i

|ci pi |eRe[λi ]t
(
ei(Im[λi ]t+Arg[ci pi ]) +e−i(Im[λi ]t+Arg[ci pi ])

)
=

∑
i

2|ci pi |eRe[λi ]t cos
(
Im[λi ]t +Arg[ci pi ]

)
. (5.51)

The expectation value 〈σy (t)〉 is given by an equation equivalent to the above, the only
difference is that the coefficient pi becomes in that case pi ≡ 〈〈σy |vi 〉〉.
Equation (5.51) essentially decomposes the time evolution of σx into a sum of different
modes. The oscillation of the different modes is driven by the imaginary part of the corre-
sponding eigenvalue, while the real part is responsible for the decay of the mode.11 Thus we

11The real part indeed is responsible for the decay, since the eigenvalues of the Liouvillian has always a
negative or zero real part [71]. If one eigenvalue would have a strictly positive real part that would be bad
news for our solution since that mode would grow exponentially in time.
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can see that if some eigenvalue is purely real, that induces pure decay for the corresponding
mode without any oscillations. An opposite case is a purely imaginary eigenvalue, where
we see no decay and only oscillations of the coherence. The eigenvalue 0 of the Liouvillian
corresponds to the steady state, but it is not found in the L±1 blocks considered above but
in the L0 block.

Now that we have a formula for the expectation value of σx and σy , we are able to compute

the coherence measure C (ρ(t)) =
√

〈σx〉2 +〈σy〉2. In general this needs to be done on a

computer because the expressions for the eigenvalues λi of the Liouvillian block L1 are
cumbersome already for truncation to two dimensions for the resonator Hilbert space. But
computing the coherence measure is not the only thing that equation (5.51) allows us to do.
Using it we can estimate the decoherence times of the qubit with respect to temperature.

The qubit loses its coherence in time, as explained in the first section of this chapter. Since
the expectation value of σx is decomposed as a sum of different modes, some modes die off
quicker than others. From equation (5.51) we can see that the time scale associated with
this loss of coherence is given by Re[λi ]. Therefore we define the thermalization time scale,
describing how fast the qubit loses all of its coherences, to be the one which has minimum
absolute value of the real part of the eigenvalue, or

Γ2 = min
i

(∣∣Re
[
λ(1)

i

]∣∣) . (5.52)

This thermalization rate is exactly the decoherence rate if the readout resonator is thermal-
ized. This can be seen later in section 5.3.3. However, decoherence can happen also at a
faster time scale if the resonator is not in a thermal state.

The eigenvalues λ(1)
i in equation (5.52) depend on all of the circuit parameters we used in

deriving the circuit Hamiltonian and the master equation. In addition, they depend also on
the temperature of the environment, so we can find the temperature dependency of the
decoherence time by computing the eigenvalues λ(1)

i for different temperatures and using
equation (5.52) to pick the one that describes slowest decay.

We have now come as far as we can analytically. To continue from here we need to resort
to numerical methods in solving the master equation (5.4). This is the topic of the next
section.

5.3 NUMERICAL SOLUTIONS

5.3.1 TRUNCATION OF HILBERT SPACE

To be able to solve the master equation numerically, we begin with the Liouvillian in
equation (5.38). As discussed, here all the elements can be represented as matrices and the
solution for some arbitary time t can be obtained by exponentiating the Liouvillian matrix
ρ(t ) = eL tρ(0). However, one question that arises is how to treat the ladder operators af and
a†

f ? Ideally they operate on an infinite dimensional Hilbert space as infinite dimensional
matrices, which of course is not possible to be implemented in a program that solves the
qubit dynamics. Therefore we need to truncate the Hilbert space to some number M .
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Let’s try to get some intuitive understanding on what is the effect of the truncation on the
system. The truncation M effectively sets the upper limit for the resonator excitations. For
example, by choosing M = 2, we restrict the resonator to behave like a qubit, only having
access to states |0〉 and |1〉. This is of course not very ideal, because at any temperature
higher than absolute zero the resonator is likely to populate also higher energy states in its
steady state, the thermal state. This brings us to the method of determining M : truncation
M should always be large enough such that the resonator can get close enough to its ideal
steady state.

The equation for the steady state is given by (3.35). In a matrix form it looks like the
following:

ρTh =


1

1+n̄(ωf,T ) 0 0 . . .

0 n̄(ωf,T )
(1+n̄(ωf,T ))2 0

0 0 n̄(ωf,T )2

(1+n̄(ωf,T ))3

...
. . .

 . (5.53)

And the Bose-Einstein distribution is given by12

n̄(ωf,T ) = 1

eħωf/kBT −1
. (5.54)

We can see from equation (5.53) that the values become smaller when moving down along
the diagonal, representing the fact that the probability of observing a state with higher
energy becomes smaller. If temperature T is small, such that n̄(ωf,T ) is small, then we
can use relatively small truncation M because the factors on the diagonal of the thermal
state become negligible for rather small values of M . In the extreme case of T = 0 and
therefore n̄(ωf,T ) = 0, we can use truncation M = 2, because only the term corresponding
to the ground state does not vanish. In practice for T > 0 we choose the truncation M
such that the terms of the thermal state corresponding to states above the truncated value
correspond to probability of 10−7 or less.

5.3.2 NUMERICAL VALUES FOR THE PARAMETERS

The analysis we did was based on the qubit chip shown in the micrograph 4.1, which was
taken from [55]. All the numerical values that we need are coming from the circuit diagram
4.4, which sets our analysis concretely to the real world implementation of the qubit circuit.
The values are listed in table 5.1.

The inductances LL and LR are estimated from the micrograph figure 4.1 by calculating the
length of the part of the CPW that couples the drive line to the read out resonator and using
the formula for an inductance of a straight wire. The mutual inductance is estimated by
doing a numerical simulation and making the resonance frequency of the resonator match
the values given in [55].

12Note that the frequency is set to the resonance frequency of the readout resonator ωf in the derivation of
the master equation.
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R(Ω) LL(pH) LR(pH) M Cf(fF) Cg(fF) CA(fF) ωf(GHz) ωA(GHz)
50 80 80 0.025LR 800 5 90 2π ·6.1 2π ·4

Table 5.1: Numerical values for all the needed circuit parameters used in the calculations.
These values are approximate, obtained using crude estimations. They are used to obtain
some numerical values for the solutions presented later.

The capacitance of the readout resonator Cf can be calculated as discussed in section 4.1.1.
The distributed capacitance c0 can be obtained from the geometry of the CPW by using the
w and s parameters [58]. For us these are w = 12µm and s = 6µm. These give capacitance
per unit length as 1.6 ·10−10 F/m. Estimating the length of the CPW to be about 5mm yields
Cf ≈ 800fF.

The coupling capacitance Cg and qubit capacitance to ground CA are values obtained from
discussion with the authors of reference [55]. The frequencies are angular frequencies
(therefore multiplied by 2π) obtained from the bare frequencies of the transition rates.

The values listed in table 5.1 determine the dynamics of the qubit as the qubit-resonator
coupling gf and the environmental coupling parameter γ are completely determined as a
function of the circuit parameters. Collecting the results from the previous chapters of the
thesis we have gf as (see Eq. (4.45)):

gf =
Cg

2

√
ωAωf

(Cf +Cg)(CA +Cg)
≈ 0,281GHz ⇒ g ′

f =
gf

ωA
≈ 0,0112 (5.55)

and γ=α22πJ (ωf) can be opened up as (see Eqs. (4.47), (4.42) and (4.26) for the definition
of D)

γ= 2π

(
M

LL

)2 Rħ(CA +Cg)

2(CACf +CfCg +CgCA)ωfħL2
R

ω2
c

πωf(ω2
c +ω2

f )
≈ 4,12GHz ⇒ γ′ = γ

ωA
≈ 0,164.

(5.56)
The dimensionless values are normalized with respect to the qubit frequency ωA. This
allows us to see the how the different coupling parameters compare to each other. The
cut-off frequency ωc is set to be 1THz in the above.

5.3.3 SIMULATED DYNAMICS

We solve the master equation with the help of QuTiP, the Quantum Toolbox in Python,
which is a Python library specifically designed for solving dynamics of open quantum
systems [75].

As discussed, the starting point of the numerical solution is the Liouville space master equa-
tion (5.4). We can code a program that builds the Liouvillian matrix and then exponentiates
it. Then we are able to get the solutions at any time t by multiplying the initial density
matrix by the exponentiated Liouvillian matrix at that time. It is noteworthy that the we
do not need to set a time step in order to solve the master equation, contrary to the usual
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methods of solving differential equations numerically. This is because of the quantum
dynamical semigroup property [39]

eL t eL t ′ = eL (t+t ′) . (5.57)

Thus only the initial condition affects the evolution of the master equation, not the size of
the time step applied. The simulation of the dynamical semigroup is therefore computa-
tionally exact.

For the initial conditions we set the qubit to be in the superposition state |ΨQ〉 = |+〉 =
1p
2

( |g 〉+ |e〉) and the resonator |ΨR〉 in either the thermal state with the given temperature

or in a coherent state. This will be separately specified in each case studied. The total state
of the qubit-resonator system is initially the product state |Ψ〉 = |ΨQ〉⊗ |ΨR〉.
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Figure 5.6: Qubit decoherence due to the thermal noise emanating from the resistor for

different resistor temperatures. In blue the qubit coherence measure C =
√
〈σx〉2 +〈σy〉2

is plotted. In red is the exponential decay of the form e−t/T2 , where the decay times T2

are obtained from equation (5.52) for each temperature. We can see that the blue and red
curves match each other very well. In black is the qubit population, which stays constant in
time. The initial state of the resonator is the thermal state for each temperature considered.
The parameters listed in the figure annotation, as well as the time scale of the figure, are
normalized with respect to the qubit frequency.

We solve for the qubit coherence with the parameters given in table 5.1, giving the coupling
rates shown in equations (5.55) and (5.56). The results for the coherence decay are shown
in blue in figure 5.6 for three different resistor temperatures T = 100mK, T = 150mK
and T = 200mK. We can also predict the thermalization times for these three different
temperatures by computing the Liouvillian matrices for the three temperatures and using
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the block diagonalization method discussed in section 5.2.3. Applying equation (5.52) gives
the predicted thermalization rates. The exponential decay of coherence of the form e−t/T2

is plotted in red in figure 5.6 for the three temperatures. The initial state of the resonator is
the thermal state.

We can notice that the qubit coherence decays in time, where the time scale is affected by
the choice of temperature of the resistor. As suspected, the qubit coherence decays faster
for higher temperatures due to the addition of thermal noise coming from the resistor. We
also can see that the qubit population does not vary in time, as predicted in the beginning
of section 5.2.

We can also see that the qubit decay follows closely the prediction of exponential decay
shown in red. This confirms that our choice to express the relaxation time of the qubit
coherences as in equation (5.52) makes sense, at least for the case of thermalized resonator.
In other cases faster decoherence modes are present, as we will see soon.

Figure 5.6 shows the time evolution of the qubit for a specific case, where the parameters
driving the evolution are fixed. Next we will consider different cases where the coupling
parameters are varied. Changing γ, gf and ωf allows us to study regimes where more
complex time evolution is present and to predict how these different parameters affect the
qubit dynamics. This is done in the simulations which give the results in figure 5.7.

We choose values for the parameters γ, gf and ωf such that the decay times are relatively
fast. This allows us to see also the direct oscillatory evolution of 〈σx〉, which comes from the
qubit rotating around the Bloch sphere (see figure 5.1). This is the reason why the time scale
changes when moving from 5.6 to 5.7. In these figures we also plot the expected number of
quanta in the resonator 〈a†

f af〉, which gives us information on how the quantum state of
the resonator evolves in time.

Figure 5.7a shows the qubit decoherence when the initial state of the resonator is thermal.
We can see steady decrease in the coherence, while the number of quanta stays constant in
time. This is a sign that the resonator is indeed in a steady state. The value for the expected
number of quanta is in this case n̄(ωf = 4ωA,T = 0,3K) ≈ 0,083, whereωA is taken from table
5.1.

In the next figure 5.7b we change the initial state of the resonator into a coherent state with
α= 1, while keeping everything else unchanged. In this case we notice that in the beginning
the qubit decoheres quite rapidly, while the resonator is moving towards its steady state.
This can be interpreted with the help of equation (5.51), which showed that the coherence
evolution can be decomposed into parts using the eigenstates of the Liouvillian. At times
t < 20 the modes corresponding to large |Re(λi )| decay away, which is seen as the rapid
decrease of qubit coherence. After that the modes that are left are decaying steadily. It is
notable that this shift from fast decoherence to slower one happens at the same time when
the resonator reaches its steady state.
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(a) Qubit coherence decays steadily when the
resonator starts out in a thermal state. Resonator
has a constant number of quanta.
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(b) Qubit experiences different decoherence
when the resonator is initialized into a coherent
state.
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(c) At very low temperatures the qubit decoher-
ence stops after a while, when the resonator
reaches its steady state.
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(d) At very low temperatures and for low γ the
qubit and resonator have time to exchange co-
herences in a reversible fashion.

Figure 5.7: Allowing the different parameters to vary, we can explore regions where different
kinds of dynamics are present. In 5.7a the initial state of the resonator is the thermal state.
We see steady decoherence on the qubit and a constant number of quanta in the resonator.
In 5.7b the resonator is initialized into a coherent state with α = 1. We can notice fast
decay of qubit decoherence in the beginning, which slows down as the resonator reaches
the steady state. In figure 5.7c the resistor temperature has been lowered such that the
steady state of the resonator becomes approximately the ground state |0〉〈0|. When that is
reached, the qubit stops decohering. In 5.7d we decrease γ, which describes the interaction
strength between the resonator and the resistor, essentially being the dissipation rate of
the resonator. We can see that for small γ the resonator and qubit have time to exchange
coherences in a reversible fashion before the resonator reaches its ground state and the
decoherence stops.
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Figure 5.7c shows what happens if we drop the temperature of the resistor significantly. In
this case the steady state of the resonator is very close to the ground state |0〉〈0| (see Eq.
(5.53): since n̄ ≈ 0 all elements except one become zero). Remembering our results from
section 5.2.1, we notice that this corresponds to the case of computing the coherence evo-
lution when the resonator was in a Fock state |n〉〈n|. There we noticed that the coherences
do not decay (see Eq. (5.12)). Therefore, once the resonator reaches its steady state, this
time the coherence decay stops.13

An interesting behaviour can be seen in figure 5.7d, where we decrease the value γ for the
resonator-resistor interaction strength. This makes the resonator move slowly towards its
steady state, giving thus time for the qubit and resonator to exhange coherences reversibly.
This is seen as the oscillatory behaviour of the coherence measure.

The oscillations in the qubit coherence resemble well the oscillations we saw when we
computed the unitary dynamics in the case where the resonator was at a coherent state
(see Eq. (5.21) and figure 5.3). It is also notable that this time the qubit coherence stabilizes
at a lower value than in the case of higher γ in the previous figure. Similarly to the previous
figure, also this time when the resonator reaches its steady state the decoherence stops.

One last aspect we will discuss is how does the decoherence time T2 depend on the tem-
perature of the resistor? As discussed in section 5.2.3 and shown in equation (5.52), we
pick the coherence decay rate from the eigenvalues of the Liouvillian block L1. What we
do in practice is that we compute the eigenvalues for the Liouvillian block for a specific
temperature using a proper Hilbert space truncation for that temperature, determined by
the method discussed in section 5.3.1, and apply equation (5.52) to those eigenvalues. This
gives an estimate on how the decay behaves with respect to temperature.

In figure 5.8 we plot the T2 times for the system whose parameters were given in table 5.1.
In figure 5.8a we see diverging T2 values for low temperatures. This is because near absolute
zero the resonator’s steady state approaches the ground state and thus the absolute value of
the real part of the eigenvalues get smaller, indicating a situation where coherence decays
very slowly. Physically the decoherence times get longer because expected number of
thermal photons that populate the readout resonator is supressed.

The low temperature behaviour in figure 5.8a assumes perfect thermalization of the resistor
and that its temperature can be brought to these arbitrarily low values. However, we know
that experimentally this is very difficult. In reality the T2 times find a constant value when
the temperature of the mixing chamber is decreased [76]. This is explained by the existence
of excess thermal photons that leak to the readout resonator from the attenuators [76, 77].
The excess thermal photons can be modelled by introducing a background decay rate ΓB,
which corresponds to the lower bound of noise temperature. The effects of this background
decay rate are shown in figure 5.8b.

To implement the backgrond decay, we modify equation (5.52) to be

Γ2 = min
i

(∣∣Re
[
λ(1)

i

]∣∣)+ΓB , (5.58)

13In reality the time scale associated to the coherence decay becomes so large that it seems like the qubit
stops decohering.
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Figure 5.8: Plots of the temperature dependency of the decoherence time scale. The figure
5.8a shows the pure effect of the noise coming from the resistor at temperature T . As
temperature is lowered the relevant time scales for the decoherence grow arbitrarily large.
This behaviour is inhibited via the introduction of a phenomenological background decay
rate ΓB. This is shown in figure 5.8b. The background decay rate stops the T2 times from
growing above a certain threshold, which is what is seen experimentally [76, 77].

where ΓB is the background decay rate. To obtain the behaviour in figure 5.8b we set
ΓB = 2 ·10−7 (in the units of ωA), which corresponds to the decay time of around 200µs.

The choice of ΓB is quite arbitrary and its exact value is dependent on for example the
manufacturing details of the qubit chip [77]. However, if this background decay rate could
be controlled and made smaller and if the attenuator thermalization is taken care of, then
longer qubit decoherence times could be achievable.

One last point worth discussing is how does our model compare to the ones that are
frequently used when the qubit coherence times are approximated. One simple way of
deducing the temperature dependency of the thermalization time used in experimental
papers is to assume that the thermalization is driven purely by thermal photons in the
resonator [76]. This approximation can be written as

Γ2 = γn̄ , (5.59)

where γ is the same dissipation rate of the resonator used in earlier calculations and n̄ is the
expected number of quanta. This approximation (5.59) is valid when n̄ is small and when
the coupling rates γ and gf are small compared to the resonance frequency of resonator
ωf [76], which is usually the case experimentally. Another requirement for (5.59) to hold is
that the ratio γ/gf is small [78].

We can plot this approximation (5.59) and compare it to the T2 dependency we get from
equation (5.52). This is done in figure 5.9. We can see that when we use the values from
table 5.1, the approximation (5.59) gives very low relaxation times. This is due to the
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Figure 5.9: Comparison between the decay times obtained by using the block diagonal-
ization method of the Liouvillian (equation (5.52), in red) with the approximation of the
relaxation being caused purely by thermal photons in the resonator (equation (5.59), in
blue). On the left we see that for low qubit-resonator couplings the relaxation times ob-
tained from the full Liouvillian analysis are much longer than what could be predicted by
simply using Γ2 = γn̄ due to small qubit-resonator coupling. Increasing gf shows how our
model includes the approximation as a limiting case shown in the right-side figure, where
we can see how the two approaches match well for low temperatures.

qubit-resonator coupling gf being too small for (5.59) to represent the situation accurately
(γ/gf ≈ 16). Then, when we increase the inner coupling, we see in figure 5.9b how the two
approaches agree with each other well for low enough temperatures (γ/gf ≈ 0.32).

We can thus conclude that our model expands the approximation of relaxation being
linearly dependent on the number of thermal photons in the resonator. For weak qubit-
resonator couplings we predict longer coherence times than the Γ2 = γn̄ model. We recover
the approximation (5.59) in the range γ/gf ¿ 1, which agrees with the results derived in
reference [78].

This chapter began with the discussion of dissipation and decoherence on a qubit and
where do these two phenomena come from. We derived a way to quantify the coherence of
qubits using the coherence measure, which depends on the expectation values of the Pauli
σx and σy operators. We also argued that in our case the qubit should not experience any
dissipation due to the driving Hamiltonian having no transverse coupling to the qubit.

Setting aside the open quantum system dynamics for a moment, we analyzed the unitary
dynamics of the qubit-resonator system and how they exchange coherences. This analysis,
and the derivation of the system’s steady state, was useful later when we solved numerically
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the open system dynamics and saw no coherence decay at low temperature and also some
oscillations in the qubit coherences. Finally we presented the results for the behaviour of
the T2 time with respect to temperature, noticing how it drops quickly when temperature is
raised. We ended the discussion by considering how our model compares to a frequently
used approximation of coherence decay and showed that it is included in our model as a
limiting case.



6 Conclusions and Discussion

The time evolution of the quantum state of the qubit is largely affected by the noise coming
from its environment. In this thesis we have characterized the contribution of the noise
coming from the system’s feedline, which is used for qubit control and readout. The main
question we set out to answer is if we can build a theoretical model for the superconducting
circuit of the qubit and other circuit elements, and use that model to predict qubit behaviour
in the presence of noise coming from a 50Ω resistor installed in the qubit drive line. We have
shown that indeed such a model can be constructed. We are able to precisely characterize
the time evolution of the qubit in terms of the exact values for the circuit elements used to
build the quantum circuit.

Starting from the microscope image of the quantum circuit, we were able to build the
corresponding lumped element model describing the circuit with discrete elements. From
the drawn circuit diagram it was possible to identify the energies involved with each of
the circuit elements. Then, using the Caldeira-Leggett model for the resistor quantization,
we were able to write down first the Lagrangian, and then the Hamiltonian describing the
associated energies. As we quantized the circuit Hamiltonian, we obtained a fully quantum
description of the superconducting circuit.

The Hamiltonian that we obtained for the circuit was essentially a Jaynes-Cummings
Hamiltonian describing the qubit-resonator system with an added coupling between the
resonator and the resistor. Assuming sufficiently large detuning between the resonance
frequencies of the qubit and the resonator allowed us to move to the dispersive regime.
This transformed the Hamiltonian of the circuit into a form that we could use in the open
quantum systems formalism to derive a master equation describing the dynamics of the
quantum system.

The resulting master equation turned out to be relatively simple, describing a system where
the readout resonator absorbs or emits quanta. The rate of these processes is determined
by the temperature of the resistor and the coupling strength between the resonator and
the resistor. The coupling strength in turn is determined by the actual values of the circuit
parameters used to construct the superconducting circuit. Thus we were able to derive a
master equation, where the effect of the chosen circuit parameter values is visible in the
expressions of the coupling parameters.

95
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Having derived the master equation the next step was to solve it. Since the complete so-
lution to the master equation was out of reach using analytical methods, we resorted to
numerical simulations done in Python. The numerical results show how the qubit coher-
ence evolves in time, showing clear decay which is quickened by the raising of temperature.
Finally we were able to obtain predictions for the behaviour of the decoherence times with
respect to the temperature of the resistor in the drive line.

The behaviour of the T2 time with respect to temperature shows that in the ideal case the
thermal noise emanating from the resistor decreases such that arbitrarily large coherence
times could be, in theory, achieved. However, this assumes perfect thermalization of the
qubit drive line attenuator and that it could be brought down to arbitrarily low temperatures.
Experimentally this is very difficult to achieve. Thus in reality an excess of thermal photons
is present inside the resonator, which are driving the decoherence in the background. Using
our model we introduce the background decay rate ΓB by adding it as an extra term to the
model.

As a final step we considered how our model pairs against a fequently used approximation
that the decoherence rate of the qubit is linearly dependent on the amount of thermal
photons in the resonator. We managed to show that this approximation is indeed included
within our model as a limiting case which is reached when γ/gf ¿ 1. However, our model
is not restriced to this range of values but can accomodate also other regimes. Most
notably, we see that our model predicts longer coherence times compared to the often used
approximation, when the qubit-resonator coupling gf is decreased. Thus we can conclude
that if the thermalization of the attenuators is taken care of, the background noise from
other sources minimized and the coupling between qubit and resonator made weak, longer
coherence times could be reached.

The results shown and discussed in this thesis should be experimentally proven. Experi-
mental data would allow us to predict the background decay rate accurately. It would also
show if the model works and in which limits. If the theoretical model held when compared
against experimental evidence, that would be an indication that we could expand the model
by adding more circuit elements and analyzing their effect. Examples could be different
signal filters in the feedline before the readout resonator. Another aspect worth researching
would be for example going from the dispersive regime to the coherent regime, where the
detuning between the qubit and resonator becomes small. This would allow us to study
different dynamics altogether.



A Impedance calculation

Claim:
The impedance of an infinite chain of parallel LC-oscillators is given by equations
(2.34) and (2.35):

Re[Z∞(ω)] = Re[Z (ω)] (A.1)

Im[Z∞(ω)] = 1

π

[
P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j

]
(A.2)

for some impedance of interest Z (ω). The impedance given in equation (2.36)

ZR (ω) = R
ω2

C

ω2
C +ω2

+ iR
ωωC

ω2
C +ω2

(A.3)

fulfills the above equations.

Proof:
The real part of the impedance Z∞(ω) is trivial to get as seen from equation (A.1). Essentially
what needs to be shown is that the imaginary part in equation (A.3) arises from (A.2). Let’s
consider (A.2):

Im[Z∞(ω)] = 1

π

[
P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω+ω j
+P.V.

∫ ∞

0
dω j

Re[Z (ω j )]

ω−ω j

]
= Rω2

c

π

[
P.V.

∫ ∞

0
dω j

1

(ω+ω j )(ω2
c +ω2

j )
+P.V.

∫ ∞

0
dω j

1

(ω−ω j )(ω2
c +ω2

j )

]
. (A.4)

Let’s compute the second integral above. It’s Cauchy principal value so we must be mindful
about the pole at ω j = ω. Let’s therefore split the integral into two parts with a small
parameter ε> 0 and then take the limit ε→ 0.

I2 = P.V.
∫ ∞

0
dω j

1

(ω−ω j )(ω2
c +ω2

j )

=
∫ ω−ε

0
dω j

1

(ω−ω j )(ω2
c +ω2

j )
+

∫ ∞

ω+ε
dω j

1

(ω−ω j )(ω2
c +ω2

j )
. (A.5)
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We compute the indefinite integral using Mathematica or similar software to get

I2 =
ω−ε/

0

−2ωC ln(|ω j −ω|)+ωc ln(ω2
j +ω2

c )+2ωarctan
(ω j

ωc

)
2ωc (ω2

c +ω2)

+
∞/

ω+ε

−2ωC ln(|ω j −ω|)+ωc ln(ω2
j +ω2

c )+2ωarctan
(ω j

ωc

)
2ωc (ω2

c +ω2)
.

Let’s analyze the terms with the natural logarithm as ω j →∞:

−2ωc ln(|ω j −ω|)+ωc ln(ω2
j +ω2

c )︸ ︷︷ ︸
ω j is large, at least ω j>ω

=−2ωc ln(ω j −ω)+ωc ln(ω2
j +ω2

c )

=−2ωc ln
[
ω j

(
1− ω

ω j

)]
+ωc ln

[
ω2

j

(
1+ ω2

c

ω2
j

)]
=−2ωc lnω j −2ωc ln

(
1− ω

ω j

)
+ωc lnω2

j +ωc ln
(
1+ ω2

c

ω2
j

)
=−2ωc ln

(
1− ω

ω j

)
+ωc ln

(
1+ ω2

c

ω2
j

)
.

Both terms become ln1 = 0 as ω j →∞. Now we can substitute the limits of the integral.
Using the above result for the infinity term and doing a bit of algebra gives us

I2 =
2ωc lnω−2ωc lnωc +πω

2ωc (ω2
c +ω2)

, (A.6)

where the limit ε→ 0 was taken. Similarly, we compute the first integral from equation (A.4)
to get

I1 = P.V.
∫ ∞

0
dω j

1

(ω+ω j )(ω2
c +ω2

j )
= 2ωc lnωc −2ωc lnω+πω

2ωc (ω2
c +ω2)

. (A.7)

The sum of equations (A.6) and (A.7) gives

I1 + I2 =
πω

ωc (ω2
c +ω2)

(A.8)

Therefore according to equation (A.4) the imaginary part of the impedance is given as

Im[Z∞(ω)] = Rω2
c

π
[I1 + I2] = R

ωωc

ω2
c +ω2

. (A.9)

So in conclusion, we have shown that the impedance given in equation (A.3) satisfies
equations (A.1) and (A.2) such that

Z∞(ω) = R
ω2

C

ω2
C +ω2

+ iR
ωωC

ω2
C +ω2

. (A.10)

For frequencies ω¿ ωc the above gives that the impedance of the infinite series of LC-
oscillators is approximately R. So for low frequencies the Caldeira-Leggett model gives the
resistance of the resistor, which is a result we were looking for.



B Derivation of the thermal state

Claim:
The thermal state density matrix for an environment at some single mode frequency ω
is given by

ρTh(ω) = 1

1+ n̄(ω)

∞∑
n=0

( n̄(ω)

1+ n̄(ω)

)n
|n〉〈n| ,

where n̄(ω) is the expected number of quanta of frequencyω given by the Bose-Einstein
distribution.

Proof:
It is a well known result of quantum statistical mechanics that the state in a thermal
equilibrium is given by the Gibbs state [79]

ρTh = 1

Z
e−βH , (B.1)

where the partition function Z = Tr(e−βH ) and H is the Hamiltonian. Let’s now assume that
the Hamiltonian describes the environment, which can be thought of as an infinite bath of
harmonic oscillators [31]

H =
∞∑

i=1
ħωi a†

i ai , (B.2)

where a†
i and ai are respectively the creation and annihillation operators of the bath modes

i . Let’s now consider only one mode for simplicity. Then we get the Gibbs state as

ρTh(ω) = 1

Z
e−βħωa†a . (B.3)

This can be diagonalized in the Fock-basis {|n〉} to yield

ρTh(ω) = 1

Z

∞∑
n=0

e−βħωn |n〉〈n| . (B.4)

The exponential in the above equation can be written in terms of the Bose-Einstein distri-
bution n̄(ω) = 1/(eβħω−1) as

n̄(ω)

1+ n̄(ω)
=

1
eβħω−1

1+ 1
eβħω−1

= e−βħω . (B.5)
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Using equation (B.5) in (B.4) gives us

ρTh(ω) = 1

Z

∞∑
n=0

( n̄(ω)

1+ n̄(ω)

)n
|n〉〈n| . (B.6)

Last thing to figure out is the partition function Z . Density matrices have the requirement
of unit trace. Let’s therefore compute the trace of (B.6):

Tr(ρTh(ω)) = 1

Z

∞∑
m=0

∞∑
n=0

( n̄(ω)

1+ n̄(ω)

)n
〈m|n〉〈n|m〉 = 1

Z

∞∑
n=0

( n̄(ω)

1+ n̄(ω)

)n

= 1

Z

∞∑
n=0

(
e−βħω

)n = 1

Z

1

1−e−βħω
.

Setting the trace equal to one yields

1

Z
= 1−e−βħω . (B.7)

Writing this in terms of the Bose-Einstein distributions gives

1

1+ n̄(ω)
= 1

1+ 1
eβħω−1

= e−βħω(eβħω−1) = 1−e−βħω = 1

Z
. (B.8)

Using the above equation in (B.6) yields the thermal state we’ve been looking for

ρTh(ω) = 1

1+ n̄(ω)

∞∑
n=0

( n̄(ω)

1+ n̄(ω)

)n
|n〉〈n| . (B.9)

If our environment is a collection of harmonic oscillators like equation (B.2) (which is
the case when we consider a resistor as an environment to our qubit, see Eq. (2.38)),
then the state of the environment is a tensor product between the different thermal states
corresponding to different modes ωi [10]

ρB =
∞⊗

i=1
ρTh(ωi ) . (B.10)



C Superket triple product identity

Claim:
Let A,B and C be operators that act on Hilbert space Hd . Thus their product is also
an operator on Hd . Applying the bra-flipper operator

Ω
to the product ABC gives us

the corresponding superket in the Liouville space Ld , for which the superket triple
product identity holds:

|ABC〉〉 = (
A⊗C>)|C〉〉 .

Proof:
The proof follows reference [54]. Let Hd have an orthonormal basis {|i 〉}. Let us consider
two operators A and B acting on Hd . The product of their matrix elements satisfies the
following:

Ai j Bkl = 〈i |A| j 〉〈k|B |l〉 = 〈〈i ,l |A⊗B>| j ,k〉〉 . (C.1)

This can be shown to hold as follows:

〈〈i ,l |A⊗B>| j ,k〉〉 = (〈i |⊗〈l |∗ )(
A⊗B>)( | j 〉⊗ |k〉∗ )= (〈i |A| j 〉)(〈l |∗ B> |k〉∗ )

= 〈i |A| j 〉〈k|B |l〉 = Ai j Bkl ,

where we used the superket definition (3.75), the mixed product property of the Kronecker
product and when going to the second line the following result

〈l |∗ B> |k〉∗ = lαB>
αβk∗

β = lαBβαk∗
β = k∗

βBβαlα = 〈k|B |l〉 , (C.2)

where we implicitly sum over the matrix indices α,β.

Let’s now consider the product ABC .

ABC =
d∑

i , j
(ABC )i j |i 〉〈 j | ⇒ Ω

[ABC ] = |ABC〉〉 =
d∑

i , j
(ABC )i j |i , j 〉〉 (C.3)

The coefficient (ABC )i j is given by

(ABC )i j = 〈i |A1d B1dC | j 〉 =
d∑

k,l
〈i |A|k〉〈k|B |l〉〈l |C | j 〉 , (C.4)
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where we wrote the identity as 1d =∑d
k |k〉〈k|.

Next we show that a matrix element of an operator can be expressed as an inner product
between suitable superkets:

〈〈α,β|A〉〉 =
d∑
µ,ν

Aµν〈〈α,β|µ,ν〉〉 =
d∑
µ,ν

Aµνδαµδβν = Aαβ = 〈α|A|β〉 (C.5)

Let’s now work with (C.4).

(ABC )i j =
d∑

k,l
〈i |A|k〉〈k|B |l〉〈l |C | j 〉 =

d∑
k,l

〈i |A|k〉〈l |C | j 〉〈k|B |l〉︸ ︷︷ ︸
(C .5)

=
d∑

k,l
Ai kCl j︸ ︷︷ ︸

(C .1)

〈〈k,l |B〉〉 =
d∑

k,l
〈〈i , j |A⊗C>|k,l〉〉〈〈k,l |B〉〉

= 〈〈i , j |A⊗C>|B〉〉 . (C.6)

And then using (C.6) in (C.3) gives the superket triple product identity

|ABC〉〉 =
d∑

i , j
|i , j 〉〉〈〈i , j |A⊗C>|B〉〉 = (

A⊗C>)|B〉〉 ,

which we wanted to prove.



D Studying the Lamb-shift

The starting point in the discussion about the Lamb-shift in the qubit-resonator system
discussed in chapter 4 is equation (4.104) for the bath correlation function and equation
(3.58) for the coefficient Γ(ω) of the master equation. Equation (3.66) shows how the
Lamb-shift Hamiltonian is constructed from the imaginary parts of Γ(ω) according to the
decomposition (3.62). Thus our goal is to find the coefficients S(ω).

As we have found the form of the bath correlation function, we can write Γ(ωf) as its
one-sided Fourier transform like in (3.58):

Γ(ωf) =ħ2
∫ ∞

0
dτ

∫ ∞

0
dωk J (ωk )

[(
1+ n̄(ωk )

)
e−iωkτ+ n̄(ωk )eiωkτ

]
eiωfτ

=ħ2
∫ ∞

0
dωk J (ωk )

[(
1+ n̄(ωk )

)∫ ∞

0
ei(ωf−ωk )τdτ+ n̄(ωk )

∫ ∞

0
ei(ωf+ωk )τdτ

]
. (D.1)

Here we don’t get straight away the delta functions like in equation (4.105). To evaluate the
above equation we use the formula∫ ∞

0
dτeiaτ =πδ(a)+P.V.

i

a
. (D.2)

Here P.V. means Cauchy principal value. Using the above in (D.1) gives

Γ(ωf) =ħ2π

∫ ∞

0
dωk J (ωk )

[(
1+ n̄(ωk )

)
δ(ωf −ωk )+ n̄(ωk )δ(ωf +ωk )

]
+ iħ2P.V.

∫ ∞

0
dωk J (ωk )

[
1+ n̄(ωk )

ωf −ωk
+ n̄(ωk )

ωf +ωk

]
. (D.3)

The real part of the above gives the coefficient γ(ωf) we already derived in chapter 4. The
imaginary part S(ωf) is what we need for the calcualtion of the Lamb-shift:

S(ωf) =ħ2P.V.
∫ ∞

0
dωk J (ωk )

[
1+ n̄(ωk )

ωf −ωk
+ n̄(ωk )

ωf +ωk

]
. (D.4)

Equation (3.66) shows how the Lamb-shift Hamiltonian is constructed from the jump
operators and coefficients S(ω). In deriving the equation the full secular approximation
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was already done but as discussed in chapter 4 we cannot perform it in our case. Taking
into account the different frequencies for the jump operators gives us the the Lamb shift
Hamiltonian as

HLS =
α2

ħ
∑

ω,ω′∈{ωg g ,ωee }

S(ω)A†(ω)A(ω′)+ α2

ħ
∑

ω,ω′∈{−ωg g ,−ωee }

S(ω)A†(ω)A(ω′) (D.5)

Opening this up explicitly and using the definitions for the jump operators (4.75) to (4.80)
gives us the Lamb-shift Hamiltonian as

HLS =
α2

ħ
[
S(ωf)+S(−ωf)

]
a†

f af . (D.6)

Since the system Hamiltonian was written as

HSys =
1

2
ħ(ωA +2gfλ)σz +ħ(ωf + gfλσz)a†

f af +ħgfλσ−σ+ , (D.7)

we can notice that the Lamb-shift renormalizes the resonator oscillation frequency ωf →
ωf +ωLS, where the Lamb-shift frequency is given by

ωLS =
α2

ħ2

[
S(ωf)+S(−ωf)

]
. (D.8)

Using equation (D.4) in the above leads into an integral

ωLS =α2P.V.
∫ ∞

0
dωk J (ωk )

(
1

ωf −ωk
− 1

ωf +ωk

)
. (D.9)

Using the spectral density from equation (4.47) gives us the integral as

ωLS =α2P.V.
∫ ∞

0
dωk

Rµ2

ħL2
R

ω2
c

πωk (ω2
c +ω2

k )

(
1

ωf −ωk
− 1

ωf +ωk

)
. (D.10)

Rearranging, defining ξ=ωc /ωf and performing a change of variables x =ωk /ωf leads into
the following form:

ωLS

ωf
= α2Rµ2

πL2
Rħω2

f

P.V.
∫ ∞

0
dx

1

x(1+ξ−2x2)

(
1

1+x
− 1

1−x

)
. (D.11)

The integral and the whole equation is now in a dimenionless form. The integral itself can
be evaluated using for example Mathematica. The final result for the Lamb shift frequency
will be

ωLS

ωf
= α2Rµ2

πL2
Rħω2

f

ξπ

1+ξ2
. (D.12)
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