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We comprehensively study the effects of bubble wall thickness and speed on the gravitational wave
emission spectrum of collisions of two vacuum bubbles. We numerically simulate a large dynamical range,
making use of symmetry to reduce the dimensionality. The high-frequency slope of the gravitational wave
spectrum is shown to depend on the thickness of the bubble wall, becoming steeper for thick-wall bubbles,
in agreement with recent fully 3 + 1 dimensional lattice simulations of many-bubble collisions. This
dependence is present, even for highly relativistic bubble wall collisions. We use the reduced
dimensionality as an opportunity to investigate dynamical phenomena which may underlie the observed
differences in the gravitational wave spectra. These phenomena include “trapping,” which occurs most for
thin-wall bubbles, and oscillations behind the bubble wall, which occur for thick-wall bubbles.
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I. INTRODUCTION

Observations of gravitational waves can provide a new
probe of fundamental physics. In particular, the detection of
a stochastic gravitational wave background could provide
some of the first experimental data on the very early
universe, long before recombination. Due to the univer-
sality of the gravitational coupling, gravitational waves can
also shed light on dark sectors, even if they are not coupled
directly to visible matter.

A first-order phase transition in the early universe would
produce a stochastic gravitational wave background with
characteristic broken power law spectral shape. The shape is
known to depend on several macroscopic thermodynamic
quantities, such as the temperature, strength and duration of
the phase transition as well as the speed at which bubble walls
expand [1-4]. Gravitational wave detectors, such as the
planned space-based experiment LISA [1,3,5], offer the
exciting prospect of measuring a stochastic gravitational
wave background from a first-order phase transition, and
therefore of measuring these properties of the early universe.
From this one can learn important information about the
underlying particle physics at the time of the first-order phase
transition.

If the phase transition completes before much super-
cooling can take place, the expanding bubble walls quickly
reach a constant terminal speed at which the vacuum
pressure and the friction from the plasma balance. In this
case sound waves propagating through the fluid medium
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are thought to dominate the production of gravitational
waves [6—11]. On the other hand, if there is sufficiently
large supercooling, the vacuum pressure may dominate
over the friction from the plasma, and the bubble wall will
continue to accelerate until collision. This is referred to as a
vacuum transition, and is the case we study here. In this
case the fluid dynamics of the plasma and its interactions
with the bubble wall are neglected. Such a circumstance
appears fine-tuned in Higgs transitions within minimal
electroweak extensions, due both to the relatively small
supercooling necessary for percolation to complete in
allowed regions of parameter space [12—18] and also the
relatively large friction caused by the Higgs field’s inter-
actions with Standard Model particles [19-23]. On the
other hand, in dark sectors with relatively few degrees of
freedom [24-27], in near-conformal extensions of the
Standard Model [28-30], and in certain QCD axion models
31]], a large degree of supercooling is more feasible.

Early studies of vacuum first-order phase transitions
focused on the collisions of two isolated bubbles, a system
which has O(2,1) (hyperbolic) symmetry [32,33], with the
production of black holes and the structure of the surround-
ing spacetime of principal interest. There was also interest
in the efficiency of particle production [34].

The gravitational wave (GW) power spectrum from
colliding pairs of bubbles was also studied, first in pairs
of isolated bubbles [35]. Although gravitational waves are
not produced by two perfectly isolated bubbles, due to their O
(2,1) symmetry, the finite duration of the phase transition
breaks this symmetry and yields sizeable gravitational wave
production. This study led directly to the development of the
“envelope approximation,” where the bubble wall stress-
energy is approximated by a Dirac delta function which

© 2021 American Physical Society
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vanishes upon collision [34,36]. Furthermore, both the scalar
field simulations and the envelope approximation it inspired
produce a clear broken power law shape to the gravitational
wave power spectrum, with the peak frequency determined
by the typical bubble separation. In particular, the envelope
approximation gravitational wave power spectrum for many-
bubble collisions increases as @° at low frequencies, and
above the peak it decreases as ™!, where o is the angular
frequency [37].

However, for highly relativistic bubble collisions, the large
separation of scales between the Lorentz-contracted bubble
wall and the distance between bubbles meant that direct
numerical simulation of large numbers of colliding bubbles
was difficult, and so the envelope approximation became the
main technique used to study gravitational waves from first-
order phase transitions [37,38]. When direct numerical
simulations of gravitational waves from thermal phase
transitions became possible, it was found that long-lived
sound waves were the principal source of gravitational
waves [0,7].

Nevertheless, for vacuum transitions the stress-energy
was perceived as being concentrated on the bubble wall.
Therefore, the use of the envelope approximation still
seemed justified, until direct numerical simulation showed
rather a rather different spectral shape [39,40]. The sim-
ulations found a steeper high-frequency power law of ™!,
and additional high-frequency gravitational wave produc-
tion due to the dynamics of the field about the true vacuum.

Further new insights have been gained from simulations
of vacuum transitions in recent years, as computational
capabilities have improved and simulation volumes have
increased [41-43]. These have revealed a surprisingly rich
parameter space due to the nonlinear phenomena present
during and after the collisions of two bubble walls.

As a result of these new computer simulations, and
renewed interest in phase transitions more generally, vacuum
phase transitions have become the subject of a recent debate.
In Ref. [41] a phenomenon was studied whereby the kinetic
energy released in a bubble collision causes the field to
bounce back to the metastable false vacuum.'

The term trapping was coined to describe this phenome-
non, which was observed to occur for thin-wall bubbles, but
not for thick-wall bubbles. For the collision of two planar
walls, trapping was shown to occur permanently, with a
region of space unable to escape to the true vacuum. This
qualitative difference between the collisions of thick and
thin wall bubbles motivated the possibility of an observable
effect in the gravitational wave spectrum.

Furthermore, Ref. [41] showed that the effect of trapping
also depends on the velocity of the bubble walls at collision.
Many direct numerical simulations of bubble collisions in
vacuum transitions have been carried out in three

"This phenomenon had previously been described in
Refs. [32,33,44], though not explored specifically.

dimensions. In three dimensions computational limitations
on lattice sizes significantly limit the dynamic range for
bubbles to accelerate to large gamma factors; a system with
reduced dimensionality would allow more extensive stud-
ies. However, the geometry of (1 4 1)-dimensional planar
bubble walls studied in Ref. [41] is physically very different
to that of colliding spherical bubbles in (3 + 1)-dimensions.
Working with the reduced dimensionality of the hyperbolic
two-bubble collision system will allow us to explore the
parameter space of trapping more thoroughly while retain-
ing the three-dimensional geometry.

Perhaps for this very reason, the hyperbolic two-bubble
system has seen some recent interest. Ref. [42] studied the
GW spectrum of two-bubble collisions, for two sets of
parameter choices, one producing thinner and the other
thicker bubble walls. They found that the GW spectra were
very similar for their two benchmark points, which led
them to conclude that there was no difference between the
GW spectra of collisions of thick- and thin-wall bubbles.
Reference [43] simulated collisions of many vacuum
bubbles for four different bubble wall thicknesses. By
contrast, they found a strong dependence of the GW
spectrum on the bubble wall width. In particular, there it
was shown that the gravitational wave power spectrum
high-frequency power-law @~ with index b was steeper
for thick-wall bubbles than for thin-wall bubbles, varying
from b = 1.36 £ 0.05 to b = 2.25 £ 0.18.

To resolve this debate requires a thorough study of the
parameter space of vacuum bubble collisions. In the
simplest model, the real scalar theory, there are two
parameters: the bubble wall thickness, and the Lorentz
factor of the bubble wall at collision. Ideally, one would
perform fully 3 + 1 dimensional simulations of many-
bubble collisions. However, such simulations use a sig-
nificant amount of computer resources for a single run. In
this paper, we study two-bubble collisions, for which one
can reduce the problem to (1 4+ 1)-dimensions in hyper-
bolic coordinates, and comprehensively study the param-
eter space of the minimal real scalar theory.

Properly understanding the spectral shape of vacuum
bubble collisions will allow us to infer properties of the
phase transition, if a stochastic gravitational wave back-
ground is detected. It is therefore important to study both the
power law dependence and the nonlinear dynamics that
result. Today, the spectral shape remains a significant source
of uncertainty [45].

In Sec. II we introduce our scalar field model, the
symmetries of the problem, and the geometry in which
we study bubble collisions. Next, in Sec. III, we discuss the
methods we use to compute the gravitational wave power
spectrum and extract the spectral shape. Our results are
presented in Sec. IV, with discussion following in Sec. V.

II. BUBBLE DYNAMICS

The basic principles of vacuum bubble nucleation and
collision can be studied with a single-component scalar
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field ¢, for which the potential has a tree-level barrier. We
therefore have the action

sl = [ #a(0000 3w 450 =40). )

with m the mass parameter, and  and A the cubic and
quartic couplings. This is the simplest renormalizable field
theory with a first-order phase transition; the simpler Z,-
symmetric theory has only a second-order phase transition.
More complicated theories with additional field content
may lead to qualitatively different dynamics [41,46-52].

In principle ¢ may be a scalar field in a fundamental UV
theory, or simply an effective operator describing the order
parameter of the transition.” We consider potential param-
eters such that there is a first-order phase transition from a
metastable false vacuum at () = 0 to a stable frue vacuum
at (¢) #0. Note that any linear (tadpole) term in the
Lagrangian can be removed by a shifting of the field origin.
The parameters should be understood to be the effective
parameters of the low-energy theory which describes
physics at the length-scales relevant for bubble nucleation.

Bubble nucleation may proceed either via quantum
mechanical tunneling or a thermal over-barrier transition.
We assume the transition to take place via quantum
mechanical tunneling, and hence that the temperature is
much smaller than the inverse of the bubble radius at
nucleation [53]. In this case the nucleation process effec-
tively happens in vacuum, and the bubble has O(4)
symmetry. At higher temperatures, for which there is a
thermal over-barrier transition, the nucleated bubble instead
has O(3) symmetry.

In either case, after nucleation the bubble is highly
occupied and hence semiclassical. In this paper, we will
assume that the smooth classical field equations resulting
from Eq. (1) provide a sufficiently accurate description for
the time evolution. Corrections to this description, arising
from the effect of thermal or quantum mechanical fluctua-
tions, can be incorporated by adding stochastic fluctuation
and dissipation terms to the equations of motion, or to the
initial conditions. We further assume that the field under-
going the transition does not interact sufficiently strongly
with other fields to affect its dynamics.

The time evolution of both O(3) and O(4) bubbles in
vacuum was considered in Ref. [42], where it was found
that at late times no significant difference between the two
was observed. Note however that for O(3) bubbles, the
presence of the thermal bath may significantly affect the
time evolution equations, except perhaps in the case of
thermal runaways [19].

*For example, the gauge-invariant condensate (H'H), which
distinguishes between the two phases of a Higgs-like phase
transition, is a real scalar.

We also assume a flat Minkowski background spacetime,
so that for example the transition is not so slow and strong
that the nucleation of bubbles causes inflation by virtue of
the vacuum energy released [54].

The parametric dependence of the classical theory can be
simplified by the following transformation:

o
¢ —’145 (2)

Xt — 5 xH,

Under this transformation the action transforms to

1 Am? 1 1
Slpl == | d*x[0,p0"p ——* +=¢p> —=* ). (3
0= [ (000 -G 430 -30). O

Thus the classical dynamics after nucleation only depends
nontrivially on the combination,

2 2

- m~ 9m

A=—5=—5 (4)
mz 26

where m,. is the critical mass, at which point the two phases

are degenerate in energy. In this parametrization, the

potential energy density reads,

V() =507 =34+ 40 5

This parametrization was introduced in Ref. [55], and has
been used since in, for example, Ref. [43]. For conven-
ience, the relation to some other conventions is given in
Appendix A. The minima for this potential are located at

and we will focus on the case where these are a metastable
false vacuum and a stable true vacuum respectively, i.e.,
where V(¢;) > V(¢,) and both are minima. For 2 > 1 the
extremum at ¢p = 0 is the global minimum, and at 2 = 1 it
is degenerate with the other minimum at ¢ # 0. At and
below A = 0 there is no longer a barrier between the two
vacua, and hence there can be no first-order phase tran-
sition; starting from ¢ = 0, spinodal decomposition will
occur for such values of 1. A first-order phase transition
from ¢ to ¢, may take place for A € (0, 1). The thick- and
thin-wall limits are given by

¢r =0,

thick: 1 — 0, thin: 1 — 1_. (7)
We plot the potential used in Fig. 1.
The critical bubble solves the bounce equations [56,57],

&Pgy 3dp, dv
P 202 o, 8
dp* pdp dgy ®)
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FIG. 1. Sketch of the potential (5) used in this paper. The values

of 1 at which we simulate are indicated by horizontal white lines
in the color bar. The false and true vacua, ¢ and ¢, respectively,
are indicated with small vertical lines in the potential curves. See
also Fig. 1 in Ref. [43], in which the curves are normalized by the
vacuum energy difference AV = V(¢,) — V().

with boundary conditions such that ¢y — ¢; as p — oo and
depo/dp = 0 at the origin. In this paper we solve the bounce
equation using the COSMOTRANSITIONS code [58]. In all
cases tunnelling takes place from the false vacuum through
the potential barrier, ending somewhat short of the true
vacuum [57]. For thin-wall bubbles, tunnelling takes place
almost up to ¢, whereas for thick-wall bubbles the
tunnelling trajectory falls far short. As we will later show,
this difference has important consequences for the dynam-
ics of the phase transition.

Note that, for bubble nucleation to take place at a given
cosmological time, it must be that the bubble nucleation
rate is at least as fast as the Hubble expansion. This implies
the following relation between A, 1 and the Hubble rate H in
units of the particle mass [55,59]

%S(Z) ~ 4log <g> , 9)

where S(1) = 15(m, 8, 1) is the scaled action of the critical
bubble, which ranges from 0 to infinity as 4 ranges from 0
to 1 [see Eq. (3)]. As a consequence of Eq. (9), for a given
m/H, more weakly coupled particles (smaller 1) will
nucleate with thicker wall bubbles (smaller A).

As long as both m and the energy density of the universe
are far sub-Planckian, it will be that m/H > 1. Therefore
bubble nucleation will take place when the (unscaled)
action of the critical bubble is large. As long as the rate of
change of the bubble nucleation rate is not so large as to
counteract the m/H > 1 hierarchy, the average distance
between nucleated bubbles R, will be large compared with
their initial radius R,; for details see for example
Refs. [32,55,59]. In this case the bubbles have a long time
to expand before collision, and hence, under constant

acceleration due to the vacuum energy difference between
phases, they will reach highly relativistic velocities.

A. Symmetries

The critical bubble is invariant under a Euclidean O(4)
symmetry about its center. Its time evolution is determined
by the Wick rotation of the bounce equation, and hence,
after nucleation, it has an O(3, 1) symmetry,

d(x) = po(—1* + x> + y* + 2%). (10)

However, in performing the Wick rotation, a choice for the
initial time slice is made, which would appear to break the
O(3,1) down to O(3). The question arises though, as to
what physically breaks this symmetry. The answer, as made
clear in Refs. [60,61], is that an observer is required to
break this symmetry, as all inertial observers will see
bubbles preferentially nucleated at rest. Therefore, in the
absence of an observer the evolution of a vacuum bubble
has O(3, 1) and not just O(3) symmetry.

In the presence of a second critical bubble, nucleated in a
spacelike separated region, the line joining their centers
defines a preferred direction. We may define this line as
being along the z axis and choose a Lorentz frame in which
the bubbles are nucleated simultaneously. As a result of this
preferred direction half of the symmetries are broken. The
remaining unbroken symmetry generators are the rotations
about the z axis, J,, and the boosts in the x and y directions,
K, and K, which together form the generators of O(2,1),
[Jva]:Kyv [JZ’K}‘]:_KX’ [vaKy]:_Jm (11)
with all other commutators zero. Just as in the case of a
single bubble, the initial conditions defined at some initial
time, t =0, break the boost symmetries, reducing the
symmetry group down to the O(2) group generated by
J.. However, due to the bubbles being spacelike separated,
the notion of simultaneous nucleation is contingent upon an
inertial observer. Thus, in the absence of an observer, the
evolution of two vacuum bubbles has O(2,1) and not just
O(2) symmetry.

To make manifest the O(2,1) symmetry, one can use
hyperbolic coordinates (s, y, 8, z), defined in two patches in
terms of the Cartesian coordinates (z,x,y,z). Following
Ref. [42], we label the patches by + and — for the
complementary regions 72> x> +y? and > <x?+y?
respectively. In region + the coordinates and metric, dI?,
are given by:

t=scoshy, x=ssinhycosd, y=ssinhysing, (12)

dl?> = ds* — s’dy? — s? sinh®(y)d0* — dz?, (13)

and in the complementary region —, they are

075039-4



VACUUM BUBBLE COLLISIONS: FROM MICROPHYSICS TO ...

PHYS. REV. D 104, 075039 (2021)

t=ssinhy, x=scoshycosf, y=scoshysing, (14)

dl> = —ds® + s*dy? — s* cosh?(y)d6? — dz*,  (15)

where we have adopted the mostly minus signature.

The coordinates y and 0 are transformed nontrivially
under O(2,1) transformations, whereas s and z are left
unchanged. As a consequence the field describing the two-
bubble system is independent of y and 6. The equations of
motion are

Pp.  20p. P av

£+ z
Os? s Os 07> dep,

=0,  (16)

where + and — in = refer to the regions > > x> + y? and
> < x* +y* respectively. This is a hyperbolic partial
differential equation (PDE) for > > x* + y* and an elliptic
PDE for > < x> + y~.

There is an important caveat to this O(2,1) symmetry. The
bounce, the most likely path between minima, has O(4)
symmetry. However, the weight of any single, specific field
configuration in the path integral is zero. When considering
the process of bubble nucleation, one must sum over the
phase space in the vicinity of the bounce, giving the so-called
fluctuation prefactor in the rate of bubble nucleation [62].
The addition of statistical fluctuations to the background
field breaks the O(4) symmetry of the bounce by a small
amount, and in their evolution some fluctuations may be
exponentially amplified [63—65]. Once the fluctuations have
grown sufficiently large and nonlinear, the symmetry of the
original background field configuration is completely
broken.

In our analysis, we choose to utilize the O(2,1) symmetry
of the two-bubble system without statistical fluctuations.
The consequent reduction in computational effort allows us
to study a much greater dynamical range than would be
possible if we were to study the full 3 + 1 dimensional
problem. In particular, this allows us to study significantly
larger collision velocities than were possible in the 3 + 1
dimensional studies of Refs. [40,65]. However, in our setup
we cannot study the growth of small symmetry-breaking
fluctuations and the eventual breakdown of the approxi-
mate O(2,1) symmetry. Cause for optimism can never-
theless be found in the 3 4+ 1 dimensional simulations of
Ref. [65], in which the effect of small symmetry-breaking
fluctuations was investigated. There two-bubble collisions
were studied, one with thin and the other with thick walls,
equivalent to A~ 0.941 and 1~ 0.0223 respectively. The
thin-wall case showed exponential growth of fluctuations
partially resulting from the trapping phenomenon, with
significant deviation from the O(2,1) symmetry only after
approximately twice the time taken for the bubbles to
accelerate and collide. We will stop our simulations at or
before this time. Further, for their thick-wall bubble

collision Ref. [65] found that the symmetry-breaking
fluctuations did not grow significantly even at late times.

B. Solving the equations of motion

Here we briefly describe how we set initial conditions
and solve the field equations of motion, Eq. (16). In
general, our approach utilizes a rectangular lattice in
(z,s), with derivatives approximated by finite differences.
Tests of this approximation, and of our numerical imple-
mentation [66] are collected in Appendix D.

Two bubble configurations are initialized at s =0,
solutions of the bounce equations. Their origins are located
a distance d apart, with d chosen such that the two bubbles
will collide with a given Lorentz factor,

_d
=R

4 (17)

Here R, is the bubble radius, defined to be the point at
which ¢o(Ry) = 1¢(0). For highly relativistic bubble
collisions, the bubbles are initially far apart, though for
small enough y, their exponential tails may overlap. This
overlap issue is handled as in Ref. [40]. The definition of
the Lorentz factor given in Eq. (17) is based on the speed of
movement of the field profile, or more specifically of the
point with field value ¢ = ¢y (R).

An alternative definition of y, based upon the Lorentz
contraction of the bubble wall, was put forward in Ref. [43],

Rout - Rin
\/R%llt + sgol - \/Rlzn + sgol

d 2
= (5) -8 (19)

written in terms of the inner and outer bubble radii, defined as
Po(Rin) = 0.731¢h9(0) and ¢b(Rou) = 0.269¢(0) respec-
tively. The differences between these two definitions of the
Lorentz factor are largest for thick-wall bubbles, and vary
from less than 0.1% for 1 = 0.9 to as much as 5% for
A =0.01.

The equations of motion are solved separately in the two
regions referred to in Eq. (16). In the timelike + region,
> > x> +y?, the bubbles collide and the (hyperbolic)
equations of motion must be solved numerically. To do
so, we have adopted a leap-frog algorithm, which con-
verges quadratically as the discretization scales, dz and ds,
are taken to zero. Given the presence in Eq. (16) of both
first and second order derivatives in s, our algorithm takes
the form of a Crank-Nicolson algorithm [67,68]. The
explicit discrete equations are collected in Appendix B.
From the initial conditions at s = 0, this algorithm calcu-
lates the field at positions ds,2ds,3ds, ... and the field
momentum at positions ds/2,3ds/2,5ds/2,.... To
describe the initial half-step of the momentum field with

Valt =

(18)
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the same accuracy as the following steps, we have used the
trick of splitting it up into many smaller steps with
size < ds.

In the spacelike — region, #* < x> + y?, the bubbles
never meet and the (elliptic) equation of motion (16) is
equivalent to the tunneling equation, Eq. (8). Thus, the
solution in this region can be written simply in terms of the
bounce solution [42]

b-(5.2) = do(\/* + (2= d/2)?)

+ (/52 + (2 +d/22).  (20)

C. Linear modes

In general, in both regions, the equation of motion must
be solved numerically. However, in the + region, for small
oscillations around one of the minima, ¢y € {¢;, P}, we
can expand Eq. (16) to linear order in ¢ = ¢ — ¢,

7 20 O
(w+;a—8—Z2+M2><¢_¢O)_O' (21)

For the scaled potential, Eq. (5), the scaled masses, M,
around the false and true vacua are,

2 1 8- | 8-

The original dimensionful masses are attained from these
scaled masses by multiplication by &°/4, so that
8*M? /A = m*. Note that in the thick-wall limit A — 0,
M; — 0, and M, — 1_, while in the thin-wall case 4 — 1,
M; and M, both tend to v/2/3.

The solution to the linearized equation of motion can be
found by Fourier transforming Eq. (21) with respect to z
and then noting that the resulting equation is a Bessel
equation. The general solution to Eq. (21) is

b=bo+ [ Gelafils. D)+ @ (W52, (23)

where the wave modes are,

e—i\/M2+k2S+ikz
fi(s, ) = ——. (24)

N

These modes describe the free-particle or linear-wave
solutions about the minima, with dispersion relation,

@ = M? + K. (25)

Relaxing the dispersion relation, the modes form a com-
plete basis with which to expand the field. If the field is well

described by a superposition of linear excitations about one
of the minima, the dominant modes in the expansion will
satisty Eq. (25).

On the lattice, we adopt a discrete mode expansion
which is orthogonal and approaches Eq. (23) in the
continuum limit. The details of our numerical implemen-
tation [66] are given in Appendix C.

III. GRAVITATIONAL WAVES

Gravitational waves are sourced by shear stresses, by the
transverse, traceless part of the energy-momentum tensor.
In highly symmetric systems, such as those with spherical
O(3) symmetry, the net gravitational wave production is
zero. In fact, it was shown in Ref. [33] that this is also the
case for the O(2,1)-symmetric collision of two vacuum
bubbles. As gravitational waves are sourced locally, but the
symmetry is a global property, their absence can be
understood as due to precise cancellations between the
gravitational waves produced by different regions.

In a cosmological first-order phase transition, the O(2,1)
symmetry of two-bubble collisions is broken by their
coming into contact with additional bubbles, which even-
tually fill the universe with the new phase and end the
transition. For our two-bubble collisions, this process can be
modelled by cutting off the collision in an O(2,1)-breaking
way. We follow Refs. [35,42] in choosing a constant time
slice t = . to end the simulation of the collision, thereby
breaking the two boost symmetries. The duration of the phase
transition is determined by the interplay of the cosmological
expansion and the rate of change of the bubble nucleation rate
[55]. It is found to scale linearly with the average bubble
separation, 7. « d, where the constant of proportionality is
independent of 1. We will assume the completion of the phase
transition to be after the two-bubble collision that we will
focus on, in which case the Lorentz factor at collision is
independent of the precise choice of 7.. While alternative
choices for modeling the end of the transition will lead to
different gravitational wave spectra, we will be interested in
the dependence of the spectrum on the parameters 4 and 7,
and such dependence may be revealed using any reasonable,
fixed cutoff model.

We will work in the linearized gravity approximation,
meaning that we consider only small metric fluctuations
about the background Minkowski space, and ignore gravi-
tational backreaction. This means, in particular, that we do
not include the effect of the false vacuum inflating, which
becomes relevant for very slow transitions, and neither are
we able to study black hole formation. Our analysis is
however fully (special) relativistic, which is necessary as
the bubble walls and subsequent scalar field oscillations
move with relativistic speeds.

We are interested in the gravitational wave power
radiated to infinity. This can be determined in terms of
the Fourier transform of the energy-momentum tensor,

075039-6



VACUUM BUBBLE COLLISIONS: FROM MICROPHYSICS TO ...

PHYS. REV. D 104, 075039 (2021)

.. 1 . . .
T(0,K) = - / dt e / P xeRXTi(x, 1), (26)
T

where  is the angular frequency and k is the momentum
vector. Only the components with null four-momentum,
k = wk where k is a unit vector, contribute to the
gravitational wave spectrum.

The power radiated as gravitational waves from a
localized source in a direction k is given by the
Weinberg formula [69],

dEGw

—— =2 SA lA( Tii* Kk)T!m Kk 2
dQd log(a)) Go l],lm( ) (0)7 ) (CO, ), (7)

1

A 1 A
25ijklkm+—51mk,~kj. (28)

= 5001 + >

2
Note that this formula has been derived in the far-field
approximation (or wave-zone), i.e., at distances from the
source, r, much larger than the wavelengths under consid-
eration, r > 1/w, much larger than the size of the source,
r > Rouees and 7> wR2 ... We will however follow
previous literature [34,35,42,50] in using the formula down
to its breaking point, wr ~ 1 and r/Ryyyee ~ 1. We justify
this by noting that we are chiefly interested in the
differences between the gravitational wave spectrum of
collisions at different 2 and y, rather than their absolute
gravitational wave spectrum. Further, by focusing on two-
bubble collisions, we are anyway unable to describe the
low-frequency physics of a system of many colliding
bubbles. Thus we focus on the high-frequency tail of the
gravitational wave spectrum, between the peak and the
microscopic mass scale. These wavelengths are smaller
than the distance between bubbles and hence should be well
captured by two-bubble collisions, and for them the far-
field approximation is better justified. Going beyond the
far-field approximation can be achieved either at the
expense of more difficult numerical integrals, or by
dynamically evolving the metric fluctuations.

The translation of the Weinberg formula into hyperbolic
coordinates has been given in Eqgs. (32) and (A1)—(AS8) of
Ref. [35], which we have verified and utilized.® The result
is a set of four integrals over the coordinates (s,y, 0, z),
which we perform numerically. As discussed in Ref. [35],
the integrals over s, y and z take the form of a pair of
double integrals, rather than a full triple integral, which
reduces significantly the numerical effort.

To implement the O(2,1)-breaking end of the two-bubble
collision, the gravitational wave integrals are multiplied by
a cutoff function C. The cutoff function used has the same

*The same equations are also given in Egs. (20)—(21) of
Ref. [42], though they differ there by an overall factor of 1/4.

form as in Ref. [35], having an exponentially decreasing
factor after a certain cutoff time 7,

1 1<t

C(t = us) = { e~ (=1 ps (29)
C

where the coordinates s, ¢ and u are those given in
Egs. (12)—(15). In our final simulations, we have chosen
te = 0.9 maxs o = 0.25(Smax — 2.) and s, = 1.2d.

The numerical integrations were performed using the
trapezium rule, which converges quadratically to the
continuum limit as the discretization scales are decreased.
This therefore matches the accuracy of the leap-frog
algorithm used to solve the scalar equations of motion.
Further details and tests of the numerical implementation
[66] are collected in Appendix D.

The gravitational wave spectrum produced by two-
bubble collisions has a global maximum peak at wpex ~
n/d and power-law tails [35]. The same is true for the
gravitational waves produced by the many-bubble colli-
sions of a full phase transition, with the peak position at
Wpeak X /R, where R, is the mean separation of bubbles
at nucleation [40]. In both cases, the spectrum shows
additional structure at frequencies of order the mass of
the scalar particle @ ~ M < e, though with a much
lower amplitude than the main peak. For gravitational wave
experiments with limited sensitivity, the vicinity of the
main peak of the spectrum is of primary interest.

The gravitational wave spectrum in the vicinity of the
peak can be fit with the function [43],

(a + b) w@®
aa)a+b + b&)a-&-b ’

dQg ~
where a, b, @ and Qg are the fit parameters. The
parameters a and b correspond to the low-frequency w*
and high-frequency o™ power laws respectively, while &
and Qgw approximately correspond to the peak position
and amplitude. Note that here high frequencies correspond
to those in the window wpe < 0 < M.

Fits were performed by minimising the sum of squared
residuals, the default behavior of the scipy.optimize.
curve_fit function in SciPy 1.5.3. The fit is performed on a
restricted range of data, satisfying @ < ., Where
Wey = min(M¢, M, 10z/d), to avoid both mass-scale con-
tributions and numerical artefacts. This choice was further
motivated by the desire not to cut off the peak for the smallest
values of the Lorentz factor. We have verified that varying
@, by a factor of 2 has no significant effect on the fit results
aty = 4, because points in the vicinity of the peak dominate
the sum of squared residuals. Therefore, we do not anticipate
substantial bias from the low- or high-frequency power laws.

The low-frequency power law for the gravitational wave
spectrum can be argued to be »® based on causality [70].
Within our current framework the same result can be
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arrived at as follows. For a localized source of gravitational
waves, such as we consider, the small-frequency limit of
the Fourier-transformed energy-momentum tensor is a
finite constant. Assuming this constant is nonzero, from
Eq. (27) we can see that the low-frequency power law for
the gravitational wave spectrum is @*. We therefore set
a =3 in Eq. (30).
We follow Refs. [35,40] in normalizing the spectrum

DGy 1 dQqv
d log(w) - (H,R.Q,,.)* d log(w)’
_ 1 dEGw (31)
B d?) () V(gy)? d log(@) |

to factor out expected scalings. The quoted values for the fit
parameter Qgw apply to the scaled spectrum.

IV. RESULTS

In this section, we present the results of our classical
simulations of the collisions of two vacuum bubbles, and of
their gravitational wave signals. The parameters for the
simulations performed are collected in Appendix F.
Building on and extending previous studies, we focus on
how the dynamics of these collisions depend on two key
parameters: A, which determines the bubble wall thickness
(or degree of supercooling), and y, the Lorentz factor at
collision. Both 4 and 1/y lie in the range (0,1). We will be
particularly interested in y > 1, which is expected to be
relevant to those very strong transitions which yield the
largest gravitational wave amplitude.

A. Bubble dynamics

Early studies of bubble nucleation [71-73] were premised
upon the thin-wall approximation, which underlies much of
our intuition about bubble nucleation and dynamics (see also
Ref. [74], which uses the thin-wall approximation within
classical thermodynamics). A constant outward pressure,
due to the difference in potential energy density between the
two phases, causes supercritical bubbles to grow and accel-
erate, until eventually they collide.

Within this picture, the dynamics of the full field reduces
to that of a thin surface, separating regions with different
energy density.

Mathematically, the field equations in the thin-wall limit
reduce to equations describing the time evolution of the
position of the bubble wall, i.e., from partial to ordinary
differential equations. These equations have been formulated
and studied in Refs. [32,33], and are analytically tractable.
For relativistic two-bubble collisions, the following picture
emerges: The pressure difference between the two phases
accelerates the bubble walls until they collide. At the point of
collision, the only way to conserve energy is for the bubble
walls to pass through each other, creating a trapped region of
the false vacuum between them. However, now the pressure
is reversed and acts to decelerate the bubble walls, causing

them eventually to stop, turn around and then recollide. This
process takes a time

Strap 1/3 / 1
=(2 1)4/1 , 32
/ ( ) ]/2 ( )

and the trapped region is of a spatial extent

Sww 173y —3i+ 0<10g(y)>- (33)
y

d 72

After recollision, the process repeats, with the size of
successive trapped regions decreasing. After many consecu-
tive collisions, the bubble walls eventually become non-
relativistic and cease to recollide.

As discussed in Sec. II, parametrically the thin-wall limit
corresponds to 4 — 1_ in this real scalar theory. Figure 2(a)
shows the collision of two bubbles with (4,7) = (0.9,4)
and reproduces the known thin-wall behavior, seen also in
Fig. 3(a). The trapping phenomenon is shown clearly in the
plot of the field: in the collision region, approximately
diamond-shaped regions of the false vacuum are produced,
as the bubble walls pass through each other before slowing
and bouncing back. Each successive trapped region is
smaller than the last, and in fact we have verified that
Eq. (32) holds rather well. The lower plot in Fig. 2a shows
that the energy density is heavily concentrated in the bubble
walls. In addition, one can see that the bubble walls lose
energy by radiating wavelike fluctuations, a phenomenon
not captured by the thin wall limit.

Away from the thin-wall limit, trapping occurs less and
less. To quantify this, in our simulations we define the
trapping fraction as the fraction of time that ¢)(s, 0) spends
in the false vacuum after the collision and before the end of
the simulation, or mathematically

trapping fraction

S / " O — $(5.0)) s (34)

Smax — Scol

where 0 is the step function, ¢, is the position of the
maximum between phases, and 5, & 5. 1S taken to be the
first local maximum in ¢ (s, 0) after s, [see Eq. (19)]. This
is plotted in Fig. 4(a). The largest trapping fractions occur
for ultrarelativistic thin-wall bubbles, however very thick-
wall bubbles also briefly bounce back to the false vacuum,
with a trapping fraction <0.1. Note that the one-dimen-
sional trapping equation of Ref. [41] predicts trapping to
occur for 1> 0.876088(1), shown as the dashed orange
line in Fig. 4(a).!

*The definition of trapping from Ref. [41] corresponds to the
limit s,,,,, — oo of Eq. (34), i.e., to the infinite time limit. However,
while for planar domain walls, trapping may occur for infinite
times, for spherical bubbles this does not seem to be the case.
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(a) Thin-wall bubble collision, at (,v) = (0.9, 4).
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(b) Thick-wall bubble collision, (X,~) = (0.01, 4).

FIG. 2. The field ¢ and energy density £ as a function of coordinates s and z for moderate y in the thin- and thick-wall regimes. The
field and energy density have been normalized by their values in the true vacuum.

In the opposite limit, that of thick bubble walls, the
dynamics of bubble collisions is qualitatively different. As
one considers thicker and thicker wall bubbles, i.e., as
2 — 0., the maximum of the potential separating the two

minima moves closer and closer to the false vacuum. The
maximum also becomes smaller and smaller relative to the
depth of the true vacuum (as seen in Fig. 1). The initial
bounce configuration in this limit is a roughly Gaussian
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FIG. 3. The bubble collision scenarios plotted in Fig. 2, shown at time ¢ = 1.5 s, (see Eq. (19) in cylindrical coordinates; the choice
of slicing plane x is arbitrary.
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FIG. 4. Plots of the trapping fraction (a) and rolling fraction (b), defined in Eqs. (34) and (35) respectively. Trapping occurs most for
ultrarelativistic thin-wall bubbles, however also very thick-wall bubbles have a small nonzero trapping fraction. In Fig. 4(a), data points
are shown as black dots, which has been linearly interpolated onto a 20% uniform grid before constructing the contours. The trapping
fraction is zero in the central white region. The dashed orange line shows 1 = 0.876088(1), to the right of which the one-dimensional
trapping equation of Ref. [41] predicts trapping to occur. Only thick-wall bubbles have a significant rolling fraction. In both plots, we
also show parameter points studied in the literature: blue squares from Refs. [40,43], green triangles from Refs. [35,44] and red crosses
from Ref. [42].

blob with a very small amplitude (proportional to A), just tall hill of potential energy, and upon time evolution it rolls
sufficient to peak out beyond the maximum separating the ~ down toward the true vacuum. To quantify this, we define
phases. At nucleation the field is therefore near the top of a  the quantity rolling fraction as the fraction of the height of
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FIG. 5. Two-dimensional linear mode expansions of the field @1, for thick- and thin-wall bubbles. In each case only times after the
collision of the two bubbles, in the range s € [d/2, d], are included in the mode expansion. Linear excitations of the field about the
minima necessarily lie along the dotted and dashed lines shown, while nonlinear excitations need not. Note that the linear excitations are
significantly more prominent in the thick-wall case. The modes along @ = vk arise because the bubbles are highly relativistic at collision
(v = 0.97), and largely pass through each other. The lower left corners contain the low-frequency modes which produce the peak of the

gravitational wave spectrum.

the potential energy hill that the field rolls down, or
mathematically

Vo) = V(d)

V(¢max) - V(¢t) ’ (35)

rolling fraction =

where ¢, is the central value of the bounce configuration.
The rolling fraction is plotted in Fig. 4(b), with points
studied in the literature identified. This reveals that thick-
wall bubbles, with a sizeable rolling fraction, have been
relatively little studied.

Figure 2(b) shows the collision of two thick-wall bubbles
with (4,7) = (0.01, 4). Differences from the thin-wall case
are immediately apparent in the overall shape of the field
and energy density. At s = 0, the central value of a thick-
wall bubble is far from the true vacuum, and there is little
energy density in the initial condition. The energy density
grows as the field value rolls down the potential energy
slope toward the true vacuum, and as it does so, oscillations
develop on top of the growing bubbles, forming a wave
train in the wake of the bubble wall. These are visible as the
ribbed pattern in the plot of the field in Fig. 2(b). As the
bubble grows and accelerates, these oscillations become
more and more Lorentz contracted.

For thick-wall bubble collisions, first the bubble walls
collide; then the oscillations in their wakes collide one-by-
one. A significant amount of energy is stored in these
oscillations. This energy density largely passes through the
collision centre, approximately along the light cone, though
it appears slowed by the collision. Upon closer inspection,
it can be seen that each oscillation continues on at close to
its collision speed, yet its amplitude damps, thereby

creating the illusion of slowing in Fig. 2(b). The first
oscillations to collide are also the first to die out after the
collision. Altogether a complicated diffractionlike wave
pattern is created within the future light cone of the collision
center. This effect is also clearly seen in Fig. 3(b). Unlike for
thin-wall bubbles, trapping is all but absent, as the high-
amplitude oscillations in the colliding wave trains prevent the
field from remaining near the false vacuum for long. Very
little energy density remains near the z = 0 axis after the
collision.

To gain additional insight into the difference between the
thin- and thick-wall bubble collisions, in Fig. 5 we show the
expansion of the field into linear wave modes in each case;
see Sec. IIC. The thin-wall case, Fig. 5(a), shows the
largest occupation of modes for small wave numbers k <«
M, M; and small frequencies w <« M, M;, in the bottom
left corner of the plot. These modes reflect the structure of
¢ atlong scales and times, and, as we will see, contribute to
the peak of the gravitational wave spectrum. In addition
there is significant occupation of modes along @ = k. This
reflects the relativistic bubble walls which pass through
each other, moving at an approximately constant speed.
The thick-wall case, Fig. 5(b) also shows the largest
occupation of modes for small wave numbers and frequen-
cies. However, there appear to be fewer structures present in
this region than in the thin-wall case. In addition to this, and
in contrast to the thin-wall case, there is a significant
occupation of modes along w> = M? + k>, reflecting the
presence of packets of linear excitations about the true
vacuum.

A possible dynamical feature that we have not fully
explored is the presence or absence of oscillons [75,76]:
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FIG. 6. Gravitational wave spectra of two-bubble collisions. Fits (dashed) using Eq. (30) are shown alongside the numerical data (full),
as well as the result of the envelope approximation (black). The pluses and crosses show the location of the masses in the true and false
vacua respectively. Note that the up tick visible in the (4,y) = (0.01, 16) line for wR, 2 50 is a lattice artefact: decreasing the lattice

spacing moves this feature to larger values of wR,.

long-lived, localized nonlinear structures in the scalar field.
Their existence, abundance and longevity depend on the
form of the microphysical potential, and they in turn may
contribute to the production of gravitational waves [77,78].
However, a static oscillon produced at z = 0 would break
the two boost symmetries of O(2,1), essentially because it
is of an approximately fixed size, and not growing con-
tinuously. This suggests that oscillon production requires
collisions of more than two bubbles. Though we have not
found any conclusive evidence of the presence of oscillons,
in principle they may be discernible in the Fourier mode
decomposition as states lying at just under the M? + k?
dispersion relation [79-81].

B. Gravitational waves

The dynamics of thin-wall and thick-wall bubble colli-
sions are rather different, as we have demonstrated above.
This difference is determined by the parameters of the
theory on microphysical scales, yet it may be observable
today on macroscopic scales if it has a significant effect on
the resulting GW signals. In this section, we present our
results for the GW spectra of two-bubble collisions, using
the formalism outlined in Sec. III. We focus our attention
on how the spectra depend on the parameters 4 and y.

For each studied parameter point in the (4,7) plane, we
have calculated the GW spectrum at a number of angular
frequencies, typically 61, evenly spaced in log-space in the
range [@min, @max)- We used @i, = /L., where L_ is the
size of the simulation lattice in the z-direction, and
Wmax = min(z/8z, 10M,).

Fig. 6 shows the GW spectra calculated for two values of
A, one thin-wall with 1= 0.84 and one thick-wall with

1=0.01. In common with the literature on GWs, we
normalize the frequency with R,, which for two-bubble
collisions we may identify with the input parameter d.
Lorentz factors y =2, 4, 8, 16 are plotted together. For
comparison, the GW spectrum from the envelope approxi-
mation is shown in black [82].

For a fixed value of /, it can be seen that the spectra
appear to converge as the Lorentz factor grows. At large
enough Lorentz factors, the dependence on the Lorentz
factor is accounted for by the overall scalings of Ref. [35]:
the peak frequency scales as @pey y~! and the peak
amplitude as Qe o y>. Further, the values of the peak
frequency and amplitude agree relatively well with the
prediction of the envelope approximation.

There are clear differences between the thin- and thick-
wall spectra in Figs. 6(a) and 6(b). For the smaller Lorentz
factors studied, both the amplitude and the high-frequency
slope @™ of the spectra differ significantly. At large
Lorentz factors, the spectra in Figs. 6(a) and 6(b) appear
to converge toward a similar peak amplitude. However, the
high-frequency slope of the thick-wall spectrum is steeper
even at large Lorentz factors.

Figures 7 and 8 quantify how the exponent b of the high-
frequency slope varies with 4 and y. Figure 8(b) summa-
rizes these results in a contour plot of b across the (4,7)
plane. This reveals a great deal of structure. The most
shallow high-frequency slopes, with b ~ 0.9, are produced
by relatively slow moving thin-wall bubbles, in the lower
right-hand corner of the contour plot. The steepest high-
frequency slopes, with b =~ 1.9 are produced by relatively
slow moving thick-wall bubbles, in the lower left hand
corner of the contour plot. As the Lorentz factor grows, the
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FIG. 7. The fit parameter b(Z,y) of Eq. (30), the high-frequency power law of the GW spectrum, here plotted together with the fit
errors at two fixed values of the Lorentz factor. In Fig. 7(a) the results for the largest Lorentz factor studied, y = 16, are plotted against
the parameter 1 determining the degree of supercooling. In Fig. 7(b) the results for y = 4 are plotted together with those from Ref. [43]

for many-bubble collisions.

differences between thin and thick walls become less
pronounced. However, even at Lorentz factors as large
as y = 16, a significant difference remains. This can be
seen in Figs. 7(a) and 8(a), together with the estimated fit
errors. Figure 7(b) shows how the exponent b for two-
bubble collisions compares to that for many-bubble colli-
sions, taken from Ref. [43]. While the 1-dependence agrees
qualitatively between the two cases, the high-frequency
slope is somewhat larger for many-bubble collisions.

2.2

A oA A

IR
J

T
o]
1.2 1 T % &

e o —e—
—— —6—

¢

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
1/y
(a)

The other two fit parameters for the gravitational wave
spectrum are shown in Appendix E. In both cases there is a
significant amount of structure at small Lorentz factors,
which washes out as the Lorentz factor increases.
Notwithstanding, at large Lorentz factors, the peak frequency
@ is marginally higher for thin-wall bubbles, and the peak
amplitude Qg is marginally smaller for intermediate thick-
ness bubble walls. The high-frequency exponent b shows the
strongest dependence on / at large Lorentz factors.

1.80

1.65

r1.50

r1.20

1.05

0.90

0.75

FIG. 8. The fit parameter b(/_l, y) of Eq. (30), the high-frequency power law of the GW spectrum. In Fig. 8(a) the results are plotted
against the inverse Lorentz factor, 1/y, for four different values of the parameter 1. Figure 8(b) summarizes our results for b(4, y). Black
dots denote the locations of our numerical data, which have been linearly interpolated onto a 20 uniform grid before constructing the
contours. Some data points in the lower left corner have been omitted as the peak frequency is too near the fit cut off w.;. In Fig. 8(b) we
also show the locations of simulations carried out in the literature: blue squares from Refs. [40,43], green triangles from Refs. [35,44]

and red crosses from Ref. [42].
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The results of Sec. IVA on the scalar field dynamics
suggest some possible explanations for the differences in
the GW spectra of thin and thick-wall bubble collisions. In
Fig. 5 it was shown that only thick-wall bubbles show a
significant occupation of linear modes about the true
vacuum, perhaps due to the oscillations initiated through
rolling down the potential barrier. An arbitrary super-
position of linear scalar modes, satisfying w®> = M? + k2,
does not source GWs at O(Gy ), simply due to kinematics,
and hence their presence would naturally lead to a reduced
gravitational wave amplitude, at least at these larger wave
numbers. In addition, the phenomenon of trapping, which
occurs predominantly for thin-wall bubbles, is a time-
dependent nonlinear phenomenon with the potential to
source significant GWs at frequencies higher than @pe.y.
Each of these factors, or their combination, may explain the
steeper high-frequency power law produced by thick-wall
bubble collisions.

V. CONCLUSIONS

In this article, we have studied vacuum two-bubble
collisions and their GW spectra, focusing on the depend-
ence on the Lorentz factor y and the microphysical
Lagrangian parameter A, which determines how thick or
thin the bubble walls are at nucleation. In agreement with
previous studies, we have found that at fixed 2 and as
y — oo the GW spectrum appears to converge toward a
fixed spectrum, up to known scalings. However, the
converse is not true. At fixed Lorentz factors, even at
y> 1, we have shown that the GW spectrum depends
significantly on 4, which determines how thick or thin the
bubble walls are at nucleation. This corroborates the
conclusions of Ref. [43] at higher Lorentz factors. In
particular we have shown that the high-frequency power
law ™" is steeper than that of the envelope approximation,
which for two-bubble collisions is b = 0.88 4= 0.02, vary-
ing between b = 1.74+0.12 and b = 1.25+£0.07 as 1
varies from 0.01 to 0.84 at y = 16; see Fig. 7(a).

This conclusion is perhaps quite surprising, as the GW
spectrum peaks at frequencies of order 1/R,, much smaller
than the frequencies of particle oscillations M > 1/R,
which characterize the underlying Lagrangian parameters.
Thus, microphysics and macrophysics do not decouple in
vacuum bubble collisions; the value of A determines large-
scale qualitative features of the bubble collision dynamics.

We have characterized these large-scale features in a
variety of ways. The phenomenon of trapping occurs for
thin-wall bubbles at 2~ 1. On the other hand new oscil-
latory phenomena appear for thick-wall bubbles at 1 < 1,
as a result of the field rolling down the true vacuum
potential well, after nucleation. These phenomena have
discernible effects on the overall shape of the field

evolution, on its energy density and on its Fourier mode
decomposition.

While our simulations were performed only for two-
bubble collisions, our qualitative conclusions should hold
also in many-bubble collisions, as a result of the presence
of the same underlying physical phenomena. However, the
power laws of the GW spectrum will differ for many-
bubble collisions. In fact Ref. [43] found that the high-
frequency power law b in many-bubble collisions has an
even stronger dependence on / than we have found in the
two-bubble case, as can be seen in Fig. 7(b). Thus, more
work is needed in future to determine these power laws for
many-bubble collisions at larger Lorentz factors.

In the full many-bubble simulations of Ref. [43], long-
lived, localized fluctuation regions appear to be present
after the bubbles have coalesced; for a video of the
simulation see [83]. We conjecture that field oscillations
in these regions are responsible for the formation of a
gravitational wave peak at the mass scale in those simu-
lations. Furthermore, if these regions are nascent oscillons,
they are expected to rapidly become spherical [80,84] and
would then cease to source gravitational waves. As dis-
cussed at the end of Sec. IVA, these localized regions do
not expand with time, and hence do not obey the O(2,1)
symmetry of two-bubble collisions. Therefore, the time-
scale on which these processes occur, and their broader
importance, are deferred to future work on many-bubble
collisions.

In summary, in the stochastic gravitational wave back-
ground of a vacuum first-order phase transition, we have
shown that the high-frequency power law »~” depends on
2, a microphysical Lagrangian parameter. This extends the
scope of GW experiments to probe particle physics in the
early universe, by breaking otherwise limiting degenera-
cies [85].
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APPENDIX A: POTENTIAL CONVENTIONS

For ease of comparison with other works, we list here
the relations between the convention of Refs. [43,55],
which we adopt, and some other conventions in the
literature. The relation to the convention of Refs. [34—
36,39,44] is

I 1 -1
3 2 + cos (4505 e ) + \/§SIH (40053 (s))
—4

7-3.3
2 2 2_C0S(2cos I e) + \/§SIH<ZCOS3](S)) ’
(A1)
e = 3V3e, (A2)

where the phase transition occurs for € € (0, 1/(3v/3)).
In these references, most simulations were carried out
for € =0.1 = 1~0.853, and hence in the relatively
thin-wall regime. The relation to the convention of
Refs. [41,42] is,

- a(a+3)
4= (a+2)*’ (A3)
where the phase transition occurs for a € (0, o0). The two
simulations of Ref. [42] were carried out for a =2,
10 = 1~ 0.625, 0.903, in the intermediate and thin-wall
regimes, respectively.

Reference [65] carried out two runs using two different
potentials, which can be related to 1 via the conventions
given above. Explicitly, for their linear potential 6., = 2€
and for their cubic potential Sy = 3/(3 + a). Their
thin- and thick-wall runs were equivalent to 1~ 0.941

and 1~ 0.0223 respectively.
APPENDIX B: DISCRETE EQUATION
OF MOTION

For the lattice simulation of the scalar field, we discretize
the equation of motion, Eq. (16), in the form

¢s+1,z = ¢x.z + Hs+%.15s’ (Bl)
s —0s s0S
M, =(—)n
s-‘r%,z <S +5S> s—%,z (S +5S) (9¢ (¢x Z)
$6s ¢s z+1 2¢sz + ¢s z—1
: : : B2
T e < 52 ' (B2)

where IT = % denotes the momentum conjugate to ¢.

APPENDIX C: DISCRETE MODE EXPANSION

For the lattice-discretized field, we utilize a discrete
mode expansion which reduces to that of Sec. Il C in the

continuum limit. Here we take z and s to be integers
labeling the lattice sites, and running over the ranges [0, N )
and [0, N,) respectively. In the z-direction the transform is a
type-I discrete cosine transform, and in the s-direction itis a
sinc-type transform. The transform is orthogonal with
weight (s + 1)2. Explicitly, it takes the form:

N.—1N,-1
¢kw - Z Z fka)z\d)z\? (Cl)
N.—1N,-1
Z Z zfzs km¢km’ (Cz)
=0 w=0
where the discrete Fourier modes are
2 1 7ij i ﬂab)
igip = ————C0S{ —— | sin| — |, C3
4 b NS<NZ—1)b (Nz_l) (NS ( )
and we have introduced
1 1
UZ = 1 - Eﬁz’o - Eéz’Nz_l' (C4)

This mode expansion is utilized in Fig. 5.

APPENDIX D: NUMERICAL TESTS

The numerical results of this article rely chiefly on three
numerical computer codes [66], written in PYTHON, which
respectively evolve the scalar field, calculate the discrete
mode expansion of the scalar field, and perform the
integrals for calculating the gravitational wave spectrum.
Here we report the results of consistency and convergence
tests performed on these three codes.

A common test for simulation codes performing time
evolution is to test the conservation of energy. However,
due to the damping term in Eq. (16), the evolution of the
scalar field does not conserve ‘“energy” on constant s-
slices.” Instead, one can test the rate of decay of the energy,
which can be shown to be [35]

dE 4z d 8(]5

ds s Ds
At the parameter point (1,7) = (0.5,4), Fig. 9 demon-
strates that as the lattice spacing is decreased, 6z, os = 0.,

the exact equality (D1) is approached quadratically, as
expected for the leap-frog algorithm.

(D1)

Here, by energy, we refer simply to the sum of scalar kinetic
and potential energy density terms integrated over a surface of
constant s. This is not conserved because translations in s are not
a symmetry. Of course, the true energy corresponding to trans-
lations in ¢ is conserved.
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0s

FIG. 9. Approximately quadratic convergence for Eq. (D1) at
(2,7) = (0.5,4). The number in brackets shown gives the fit error
in the slope. The production run with default lattice spacing
corresponds to ds = 0.01. Here we have fixed 6z = 0.094.

For the default lattice spacing choice [see Eq. (D2)], the
maximum relative error in Eq. (D1) occurs near the
collision point and is approximately 0.1%, while the mean
relative error is 0.003%.

The implementation of the discrete mode expansion in
Appendix C was demonstrated to be orthogonal, at the level
of machine precision. In addition, it was shown to agree to
high accuracy with the analytic result for a Gaussian blob.

The implementation of the numerical integrations deter-
mining the gravitational wave spectrum was compared with
an independent implementation in Mathematica using the
inbuilt function NIntegrate. For a set of specific
analytic field configurations, the two implementations were
shown to agree to high accuracy, with the discrepancy
approaching zero quadratically as the lattice spacing
decreased, as expected for the trapezium rule.

For one benchmark point, at (1,y) = (0.5,4), Fig. 10
demonstrates the approximately quadratic convergence for
the gravitational wave spectrum as dz and ds are decreased
toward the continuum limit. Shown are the maximum and
the mean absolute discrepancies between the gravitational
wave spectrum in the run at a given s and that at
0s = 0.005. Only the fitted range, @ < @, is included.
For the production run at this parameter point, which used
o6s = 0.05, the fractional error is less than 1%.

In addition to the aforementioned tests, which demon-
strate the expected behavior of the numerical codes as the
continuum limit is approached, it is important to test the
stability of our final results to changes in lattice spacing.
This is to test whether the values of 6z and Js used, and
enumerated in Appendix F, are small enough for our
quantitative conclusions to be reliable. For the scalar field
simulation runs, the default lattice spacing 6z was chosen
according to

1071 4

1072 4

/1Qaw]

|AQaw

107% 5

- + max

X mean

1072 10!

0s

FIG. 10. Approximately quadratic convergence for the GW
spectrum, at (/_1, 7) = (0.5,4), over the frequency range which is
fitted. The number in brackets shown gives the fit error in the
slope. The production run corresponds to ds = 0.05. Here we
have fixed the ratio 6z/ds = 2.

1
6z=min | 0.1, —— (Ryys — Rin) |, D2
<= mi ( 10 71 ( ' )> ( )

where y,, & y is defined in Eq. (18). This ensures that there
are at least ten lattice points across the bubble wall at the
collision point. For some runs at 4 = 0.01, a smaller value
of 6z was chosen. The lattice spacing ds was chosen to be
smaller than 6z. The complete list of all run parameters are
enumerated in Appendix F. As the computation of the
gravitational wave signal is the most computationally
intensive step, for this step the field was down-sampled
in the s-direction, with only one in Ny, points used.

In Fig. 11, we demonstrate the 6z and ds dependence of
the gravitational wave spectrum for two-bubble collisions
with y = 16, one thin-wall with 2 = 0.84 and one thick-
wall with A = 0.01. In each case the lattice spacing used in
the production run is compared to runs with two and four
times larger lattice spacings. The two parameter points are
those with the largest hierarchies of scale, and hence where
we expect the largest lattice discretization errors. A
comparison of the discretization errors at different param-
eter points bears this expectation out; the differences shown
in Fig. 11 are larger than those at all other parameter points
tested. Nevertheless, significant disagreements between the
spectra occur only for w 2 @, 1.e., frequencies that are not
included in the fit.

Further, the fit is dominated by the region around the
peak, so disagreement in the vicinity of @ ~ @, has only a
minor effect on the fit parameters. Discrepancies between
the fit parameters for the smaller two lattice spacings are in
the range 2-9%, for those results shown in Fig. 11. This is
comparable in magnitude with the fit error. In addition, the
largest discrepancies occur for the largest lattice spacings,
suggesting convergence.
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ds =0.10, dz = 0.20
ds =0.05, dz=0.10
ds = 0.05, dz = 0.025

100 10! 102 100 10! 102

wR, wR,
(a) (A7) = (0.84,16) (b) (A,7) = (0.01,16)

FIG. 11. Lattice discretization effects in the gravitational wave spectrum for the two runs with the largest hierarchies of scale, i.e.,
worst case scenarios. In each case the production runs correspond to those with smallest lattice spacing. Note that while the
discrepancies in the spectrum are large toward wR, ~ 100, the resulting effect on the fits is minimal. The mass scales which are not
shown are greater than 100/R,.

3.2

0.8

FIG. 12. The other fit parameters in Eq. (30), @ and Qg , approximately equal to the peak position and amplitude respectively. Data
points and contours are as Fig. 8(b).

APPENDIX E: ADDITIONAL FIT PARAMETERS APPENDIX F: TABLE OF SIMULATIONS

For completeness, in Fig. 12 we present the 1 and y Note that this table only includes simulation runs used in
dependence of the other two fit parameters in Eq. (30), @  the preparation of the final results for this paper. See
and QGW, Note that we fix ¢ = 3. Appendix D for details of simulations carried out as

numerical tests.
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Parameters Bubble geometry Simulation Integration Fitting results

/_1 4 RO Rin Rout d oz os Nés QGW X 103 CDR* b

0.01 2 19.98 12.88 29.31 79.92 0.10 0.01 5 0.518 £0.008 4.135+£0.161 0.612 £ 0.087
0.01 4 1998 12.88 29.31 159.85 0.10 0.01 5 0.818 £0.018 3.142+£0.039 1912 £0.125
0.01 5 1998 12.88 29.31 199.81 0.10 0.01 5 0.922£0.020 3.109 £0.039 1.863 £0.116
0.01 6 1998 12.88 29.31 239.77 0.10 0.01 5 0.960 £0.023 3.088 £0.046 1.686 £0.103
0.01 8 1998 12.88 2931 31970 0.05 0.01 5 0.991 £0.023  3.092 £0.045 1.650 £0.092
0.01 10 1998 12.88 2931 399.62 0.10 0.01 5 1.003 £0.025 3.038 +0.048 1.661 £ 0.096
0.01 12 1998 12.88 2931 479.55 0.05 0.01 5 1.020 £0.022  3.058 0.043  1.679 £0.085
0.01 16 1998 12.88 2931 639.39 0.05 0.03 1 0.984 £0.028 3.068 £0.051 1.743 £0.118
0.07 2 7.99 520 11.67 3195 0.10 0.01 5 1.087 £0.008 3.302 £0.054 1.124 £0.106
0.07 3 7.99 520 11.67 4792 0.10 0.01 5 1.198 £0.017 3.097 £0.024 1.920 £ 0.100
0.07 4 7.99 520 11.67 63.89 0.10 0.01 5 1.227£0.016  3.100+0.025 1.595 £ 0.065
0.07 5 7.99 520 11.67 79.86 0.10 0.01 5 1.248 £0.027 3.087+£0.043  1.525 £0.092
0.07 6 7.99 520 11.67 95.84 0.10 0.01 5 1.251 £0.028 3.073 +£0.045 1.481 £0.087
0.07 8 7.99 520 11.67 12778 0.09 0.01 5 1.234 £0.028 3.063 £0.046  1.476 £ 0.081
0.07 10 7.99 520 11.67 159.73 0.07 0.01 5 1.204 £0.026  3.060 £0.045 1.485£0.074
0.07 16 7.99 520 11.67 255.56 0.04 0.01 5 1.147+£0.024  3.063 £0.044 1.556 £0.074
0.10 2 6.94 455 10.09 2777 0.10 0.02 5 1.353 £0.012 3.142+£0.037 1.344 £0.113
0.10 3 6.94 455 10.09 41.66 0.10 0.02 5 1.355+£0.020 3.0754+0.025 1.813 £0.092
0.10 4 6.94 455 10.09 5555 0.10 0.02 5 1.327£0.029 3.0924+0.042 1.525 £0.100
0.10 5 6.94 455 10.09 69.43 0.10 0.02 5 1.326 £0.031 3.080 £0.046  1.487 £0.093
0.10 6 6.94 455 10.09 83.32 0.10 0.02 5 1.313+£0.031 3.073 £0.048 1.474 £0.089
0.10 7 6.94 455 10.09 97.20 0.08 0.02 5 1.299 £0.031 3.069 £0.048 1.474 £0.085
0.10 8 6.94 455 10.09 111.09 0.07 0.01 5 1.277 £0.027 3.066 +0.044  1.457 +0.075
0.10 16 6.94 455 10.09 22218 0.04 0.03 1 1.168 £0.022  3.070 +0.040  1.521 £ 0.066
0.18 2 5.79 3.81 8.26 23.18 0.10 0.01 5 2.003 £0.025 2.9714+0.023 1.652£0.106
0.18 3 5.79 3.81 8.26 3476 0.10 0.01 5 1.656 £0.032  3.057 £0.037 1.452 £0.097
0.18 4 5.79 3.81 826 4635 0.10 0.01 5 1.532+0.019 3.073 £0.025 1.394 £0.052
0.18 5 5.79 3.81 8.26 5794 0.09 0.01 5 1.464 £0.031 3.074 £0.043 1.355£0.075
0.18 6 5.79 3.81 8.26 69.53 0.08 0.01 5 1.421 £0.029 3.073+£0.043 1.366 £+ 0.070
0.18 8 5.79 3.81 8.26 92,70 0.06 0.01 5 1.359 £0.027 3.071 +£0.042  1.405 £ 0.066
0.18 10 5.79 3.81 826 11588 0.05 0.01 5 1.316 £0.026  3.070 £0.041  1.440 £ 0.065
0.18 16 5.79 3.81 826 18540 0.03 0.01 5 1.231+£0.025 3.072£0.043 1.508 £ 0.069
0.20 2 5.65 3.75 8.03 22.61 0.10 0.02 5 2.1244+£0.026 2.963 £0.023  1.637 £ 0.106
0.20 3 5.65 3.75 8.03 3392 0.10 0.02 5 1.723 £0.034  3.049 £0.037  1.449 £ 0.098
0.20 4 5.65 3.75 8.03 4522 0.10 0.02 5 1.566 £0.033  3.075+0.043 1.365 £0.084
0.20 5 5.65 3.75 8.03 56.53 0.09 0.02 5 1.495£0.033 3.074 +£0.045 1.357 £0.079
0.20 6 5.65 3.75 8.03 67.83 0.07 0.02 5 1.449 £0.032 3.071 £0.046  1.373 £0.075
0.20 7 5.65 3.75 8.03 79.14  0.06 0.02 5 1.411 £0.031 3.073+£0.046 1.397 £+ 0.073
0.30 2 5.40 3.65 7.53 21.59 0.10 0.02 5 2.695+0.030 2.912+£0.019 1.602 £ 0.073
0.30 3 5.40 3.65 7.53 3239 0.10 0.02 5 1.953 £0.041 3.054 £0.042 1.246 £ 0.085
0.30 4 5.40 3.65 7.53 43.19 0.10 0.02 5 1.715+£0.036  3.070 £0.045 1.236 £0.073
0.30 5 5.40 3.65 7.53 5398 0.08 0.02 5 1.602 £0.033  3.076 £0.045 1.275 £ 0.068
0.30 6 5.40 3.65 7.53 64.78 0.07 0.02 5 1.537£0.031 3.074 +£0.044 1.312 £0.065
0.30 7 5.40 3.65 7.53 7558 0.06 0.02 5 1.492 £0.030 3.073+£0.044 1.346 £ 0.064
0.30 8 5.40 3.65 7.53 86.37 0.05 0.01 5 1.451+£0.027 3.074 £0.040 1.356 £ 0.059
0.30 10 5.40 3.65 753 107.97 0.04 0.01 5 1.395+£0.026  3.076 £0.040  1.397 £ 0.058
0.30 16 5.40 3.65 753 172775 0.03 0.01 5 1.286 £0.026  3.077 £0.043  1.456 £ 0.066
0.40 2 5.60 3.89 7.61 2240 0.10 0.02 5 3.001 £0.055 2.947+0.036 1.241 £0.090
0.40 3 5.60 3.89 7.61 33.61 0.10 0.02 5 2.093 £0.044 3.058 £0.045 1.121 £0.072
0.40 4 5.60 3.89 7.61 4481 0.10 0.02 5 1.809 £0.037 3.074 £0.045 1.185 £ 0.066
0.40 5 5.60 3.89 7.61 56.01 0.08 0.02 5 1.678 £0.033  3.074 £0.043  1.230 £ 0.059
0.40 6 5.60 3.89 7.61 67.21 0.06 0.02 5 1.599 £0.031 3.077 £0.042  1.280 £ 0.058
0.40 7 5.60 3.89 7.61 7841 0.05 0.02 5 1.549 £0.030 3.076 £0.043 1.318 £0.059
0.40 8 5.60 3.89 7.61 89.61 0.05 0.01 5 1.504 £0.027 3.080 +0.039  1.335 £0.054
0.40 10 5.60 3.89 7.61 112.02 0.04 0.01 5 1.445£0.026 3.083+0.039 1.371 £+ 0.055
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(Continued)

Parameters Bubble geometry Simulation Integration Fitting results

/_1 Y Ro Rin Rom d 52 s Nés QGW X 103 C‘Z)R* b

0.50 2 6.21 4.45 8.16 24.83 0.10 0.01 5 3.166 £0.065 2983 +0.044 1.024 +0.078
0.50 3 6.21 4.45 8.16 3725 0.10 0.01 5 2.158 £0.044 3.066 = 0.046 1.051 £ 0.060
0.50 4 6.21 4.45 8.16 49.66 0.09 0.01 5 1.866 £0.023 3.073 +£0.027 1.156 +0.037
0.50 5 6.21 4.45 8.16 62.08 0.08 0.01 5 1.725 £0.032 3.077 £0.041 1.208 £+ 0.053
0.50 6 6.21 4.45 8.16 74.50 0.06 0.01 5 1.642 £0.029 3.082 +£0.040 1.259 + 0.051
0.50 7 6.21 4.45 8.16 8691 0.05 0.02 5 1.592 £0.030 3.082 +0.041 1.305 £ 0.055
0.50 8 6.21 4.45 8.16 99.33 0.05 0.01 5 1.547 £0.027 3.088 =0.039 1.319 £ 0.052
0.50 10 6.21 4.45 8.16 124.16 0.04 0.01 5 1.470 £0.027 3.092 +0.040 1.332 +0.054
0.50 16 6.21 4.45 8.16 198.65 0.02 0.01 5 1.296 £0.026  3.089 +0.042 1.442 +0.063
0.60 2 7.29 5.47 9.24 29.16 0.10 0.02 5 3.129 £ 0.064 3.029 £0.048 0.892 + 0.060
0.60 3 7.29 5.47 9.24 4374  0.10 0.02 5 2.155+0.042 3.077 £0.045 1.029 £+ 0.053
0.60 4 7.29 5.47 9.24 58.32  0.09 0.02 5 1.880 £0.035 3.081 £0.043 1.140 + 0.051
0.60 5 7.29 5.47 9.24 7290 0.08 0.02 5 1.754 £0.032 3.086 =0.041 1.215 £ 0.050
0.60 6 7.29 5.47 9.24 87.48 0.06 0.02 5 1.681 =20.030 3.091 £0.040 1.264 +0.051
0.60 7 7.29 5.47 9.24 102.06 0.05 0.02 5 1.626 =20.030  3.095 +0.042 1.284 +0.054
0.60 8 7.29 5.47 9.24 116.64 0.05 0.01 5 1.557 £0.028 3.100 £0.041 1.279 + 0.051
0.60 10 7.29 5.47 9.24 14579 0.04 0.01 5 1.450 £0.026  3.098 +0.039  1.346 £ 0.053
0.60 16 7.29 5.47 9.24 23327 0.02 0.01 5 1.237 £0.024 3.117 £0.042 1.447 +0.061
0.70 2 9.25 735 11.21 37.01 0.10 0.02 5 2.970 £0.059 3.062 +0.049 0.855 £+ 0.050
0.70 3 9.25 735 11.21 5551 0.10 0.02 5 2.139 £0.039 3.080 +0.043 1.042 +0.046
0.70 4 9.25 735 11.21 74.02 0.10 0.02 5 1.901 £0.034 3.088 £0.041 1.157 £0.047
0.70 5 9.25 735 11.21 92.52 0.08 0.02 5 1.787 £0.032 3.099 £ 0.041 1.213 £0.049
0.70 6 9.25 735 1121 111.03 0.06 0.02 5 1.665 £0.031 3.108 £0.043 1.218 £0.052
0.70 7 9.25 735 1121 12953 0.06 0.02 5 1.554 £0.029 3.102+0.042 1.281 +0.054
0.70 8 9.25 735 1121 148.04 0.05 0.01 5 1.453 £0.025 3.106 =0.038 1.345 £ 0.052
0.70 10 9.25 735 11.21 185.05 0.04 0.01 5 1.293 £0.023 3.103+0.039 1.374 £0.054
0.70 16 9.25 735 11.21 296.07 0.02 0.01 5 1.170 £0.023  3.105+0.043 1.412 +£0.063
0.80 2 13.17 11.19 15.15 52.68 0.10 0.02 5 2774 +£0.051 3.081 £0.047 0.872 +0.041
0.80 3 13.17 11.19 15.15 79.02 0.10 0.02 5 2.129 +£0.037 3.095 +£0.042 1.077 £0.043
0.80 4 13.17 11.19 15.15 10536 0.10 0.01 5 1.870 £0.024 3.118 £0.030 1.104 £ 0.034
0.80 5 13.17 11.19 15.15 131.70 0.08 0.02 5 1.610 £0.028 3.110+0.039 1.261 0.049
0.80 6 13.17 11.19 15.15 158.04 0.07 0.02 5 1.380 £0.025 3.109 0.040 1.292 £ 0.052
0.80 7 13.17 11.19 15.15 184.38 0.06 0.02 5 1.285+£0.024 3.107 £0.042 1.318 =0.055
0.80 8 13.17 11.19 15.15 210.72 0.05 0.01 5 1.175 £ 0.022 3.107 £0.041 1.283 £ 0.052
0.80 10 13.17 11.19 15.15 263.39 0.04 0.01 5 1.124 £0.021  3.108 £=0.043  1.298 + 0.055
0.84 2 16.06 14.07 18.02 64.23 0.10 0.01 5 2.719 +£0.049 3.083 £0.046 0.899 + 0.039
0.84 4 16.06 14.07 18.02 12846 0.10 0.01 5 1.721 £0.020 3.109 +0.027 1.192 +0.032
0.84 6 16.06 14.07 18.02 192.69 0.07 0.01 5 1.211£0.022 3.110+£0.041 1.236 £ 0.050
0.84 8 16.06 14.07 18.02 25692 0.05 0.01 5 1.114 £0.021  3.111 £0.044 1.246 £+ 0.053
0.84 16 16.06 14.07 18.02 513.84 0.02 0.01 5 1.001 £0.025 3.100 £ 0.057 1.246 £+ 0.067
0.90 2 2438 22.37 26.39 97.54 0.10 0.02 5 2.654 +0.049 3.101 £0.047 0.930 + 0.040
0.90 4 2438 2237 2639 195.08 0.10 0.01 5 1.273 £0.028 3.116 20.046  1.196 £ 0.048
0.90 6 2438 2237 2639 292,62 0.07 0.02 5 1.043 £0.021 3.122 +0.048 1.156 0.053
0.90 8 2438 2237 2639 390.15 0.05 0.01 5 1.026 £0.020 3.126 =0.046  1.186 0.053
0.90 10 2438 2237 2639 487.69 0.04 0.01 5 1.001 £0.021 3.124 +0.048 1.198 +0.056
0.95 3 4596 4392 48.01 27579 0.10 0.01 5 1.207 £0.022  3.089 +£0.041 1.211 £0.048
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