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Summary

� The plant area index (PAI) is a structural trait that succinctly parametrizes the foliage distri-

bution of a canopy and is usually estimated using indirect optical techniques such as digital

hemispherical photography. Critically, on-the-ground photographic measurements forgo the

vertical variation of canopy structure which regulates the local light environment. Hence new

approaches are sought for vertical sampling of traits.
� We present an uncrewed aircraft system (UAS) spherical photographic method to obtain

structural traits throughout the depth of tree canopies. Our method explained 89% of the

variation in PAI when compared with ground-based hemispherical photography.
� When comparing UAS vertical trait profiles with airborne laser scanning data, we found

highest agreement in an open birch (Betula pendula/pubescens) canopy. Minor disagreement

was found in dense spruce (Picea abies) stands, especially in the lower canopy.
� Our new method enables easy estimation of the vertical dimension of canopy structural

traits in previously inaccessible spaces. The method is affordable and safe and therefore read-

ily usable by plant scientists.

Introduction

The vertical density of foliage relates to photosynthetic produc-
tivity by determining the distribution and interception of sun-
light through a plant canopy. As a measure of vertically
integrated foliage density, the leaf area index (LAI) is therefore an
important canopy structural trait and has been used to model a
diverse range of processes including photosynthesis (Duchemin
et al., 2006) evaporation and transpiration (Jongschaap, 2006;
Cleugh et al., 2007), and rainfall interception (Dietz et al.,
2006).

Destructive measurement of LAI, generally defined as the one-
sided leaf area per unit area of ground (Zheng & Moskal, 2009),
is laborious and impractical. Indirect optical techniques including
hemispherical photography are usually used instead (Jonckheere
et al., 2004; Majasalmi, 2015). Indirect approaches typically
invert the following model to arrive at the LAI:

PðθÞ ¼ exp
�G ðθÞ � ΩðθÞ � LAI

cos θ

� �
Eqn 1

where PðθÞ is the probability of a ray of light passing through the
canopy without encountering foliage or other plant elements at
zenith angle θ, and G parameterizes the projection of leaf area rel-
ative to the zenith direction. It is the gap fraction PðθÞ that is
measured by the optical instrument (Danson et al., 2007).
Clumping is accounted for with the clumping index Ω (Nilson,
1971), but Eqn 1 does not explicitly correct for woody elements.
In uncorrected form, the LAI is referred to as the plant area index
(PAI), which we use here (Chen et al., 1991).

In digital hemispherical photography (DHP), a single lens
reflex camera is combined with a wide-angle lens, and possibly
levelling equipment to ensure that the camera points directly
upwards or downwards (Yan et al., 2019). Specialist software is
used to segment captured imagery into gap fraction or vegetation,
and to derive structural traits via Eqn 1. Importantly, DHP has
several limitations that if unaccounted for can produce significant
errors. Issues include the requirement for uniform, and usually
overcast sky conditions (Leblanc & Chen, 2001); sensitivity to
camera settings and hardware, including exposure (Macfarlane
et al., 2000), camera and lens types (Wagner, 1998), and image
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format and size (Frazer et al., 2001); and choice of postprocessing
steps, including gamma correction (Macfarlane et al., 2007) and
segmentation algorithm (Nobis & Hunziker, 2005). Recent work
has shown how the use of raw format image files can overcome
some of these issues (Macfarlane et al., 2014).

Despite the above limitations, DHP remains a popular option
when field estimates of LAI are required (Chianucci, 2020).
However, it is an additional limitation that motivated the devel-
opment of the method described here: the restriction of sampling
to on-the-ground photography. This limits DHP to places acces-
sible on foot, and more importantly precludes measurement of
vertical heterogeneity in canopy structure, a topic of much inter-
est to plant scientists (Disney, 2019). Note that it is the vertical
plant area density (PAD), or one-sided leaf area per unit volume
(Hosoi & Omasa, 2006), that dictates the local light environ-
ment (Smith et al., 2019) and transfer of energy within a canopy
(Lalic & Mihailovic, 2004), and this is a trait that is unmeasur-
able from ground-based DHP.

For DHP to circumvent the on-the-ground restriction requires
impractical structures such as ropes (Fauset et al., 2017), towers
(Leuchner et al., 2011; Dengel et al., 2015), cranes (Parker et al.,
2001), portable hydraulic hoists (Canham et al., 1994) or bal-
loons (Meir et al., 2000; Parker et al., 2001), all of which can
interfere with measurements. An alternative approach is laser
scanning technology, conducted either airborne (ALS; Korhonen
et al., 2011; Korpela et al., 2014) or from terrestrial platforms
(TLS; Calders et al., 2020). TLS (Hosoi & Omasa, 2006) or
ALS (Lim et al., 2003; Lovell et al., 2003) can be used to retrieve
LAI and to model canopy light interception (S. Tian et al., 2021)
in three dimensions. However, the cost and complexity of laser
scanning represent two major drawbacks that prevent its
widespread adoption. For plant scientists, laser scanning systems
have a high ‘barrier to entry’ (Calders et al., 2020).

Recently, uncrewed aircraft systems (UASs) have gained trac-
tion as platforms capable of measuring spatial variation in
canopy structure (McNeil et al., 2016; Brüllhardt et al., 2020;
Krisanski et al., 2020; Umarhadi & Danoedoro, 2021). Laser
scanning instrumentation can be mounted on UAS platforms to
expand the horizons of ALS from piloted aircraft to smaller,
more manoeuvrable systems (Wallace et al., 2012; Brede et al.,
2019; Yin & Wang, 2019). A recent study demonstrated that
within-canopy flight is possible with a laser scanning UAS,
although the UAS was relatively large and therefore potentially
challenging and risky to fly in dense forest canopies (Hyyppä
et al., 2021). Additionally, recent studies have shown that
above-canopy ALS-like canopy trait estimation algorithms can
be applied to Structure from Motion photogrammetry data col-
lected from UAS platforms (Brüllhardt et al., 2020; Lin et al.,
2021).

UAS-based DHP is also in active development, downwards
looking in agricultural crop fields (Brown et al., 2020) and
upwards looking in forest canopies (Brüllhardt et al., 2020).
The motivation for such systems is the low cost and complexity
relative to laser scanning systems, coupled with the access that
an airborne system can provide. However, and as with laser
scanning, current UAS–DHP approaches require nonintegrated

imaging systems and/or relatively large and heavy platforms.
We developed the UAS-based spherical photography method
presented here to address these limitations. The new method
uses computational spherical photography and relies on stan-
dard cameras which are integrated into mass-produced UAS air-
frames.

A panoramic spherical image is produced by combining multi-
ple individual images to cover an extremely large angle of view,
up to and including the full viewing sphere. To produce a
panorama, individual images are algorithmically stitched together
and mapped onto a virtual spherical surface, which is
subsequently reprojected onto the 2D plane typically using the
equirectangular projection (Zhang & Huang, 2021). Spherical
panoramas are acquired either with a combination of two wide-
angle lenses via specially designed cameras systems, or by rotating
a conventional camera about its horizontal and vertical axes
whilst acquiring imagery (Fangi & Nardinocchi, 2013; Barbero-
Garcı́a et al., 2018). In terms of plant science applications, spher-
ical imagery has been used to estimate individual tree heights,
diameters at breast height, basal area and canopy openness (Wang
et al., 2021). Spherical panoramas captured by a mobile phone
have also been used to reproduce gap fraction and LAI estimates
from a traditional DHP system (Andis-Arietta, 2021). In these
studies, the spherical panoramas were reprojected to hemispheri-
cal fisheye projections, which are equivalent to imagery collected
by DHP systems.

In addition to mobile phones, panoramic photography is also
possible using mass-produced UASs. However, most off-the-shelf
systems cannot be readily used as a full 180° vertical field of view
is required, a feature that is relatively rare as it requires a special-
ized gimbal capable of rotating the camera viewing direction
upwards (see Fig. 1a inset drawing of a UAS sensor). Our main
goal was to replace cumbersome and restrictive DHP equipment
with miniaturized UAS technology capable of imaging the full
180° vertical field of view and therefore retrieving vertical infor-
mation related to canopy structural traits, driving light and func-
tional gradients within a plant canopy environment. To validate
our methodology, UAS-mounted spherical imagery was com-
pared with traditional DHP across species and stand types. To
improve on DHP, vertical profiles of PAD were derived, which
were compared to airborne laser scanning data. Fig. 1 provides
an overview of the new method.

Materials and Methods

Overview of measurements

There were two main objectives to the data collection:
(1) comparison of UAS-estimated PAI and gap fraction with
DHP;
(2) retrieval of vertical trait profiles using UAS.

To achieve these objectives, measurements were conducted at
two sites in Finland during spring and early summer 2021. The
UAS was flown through mature Norway spruce (Picea abies (L.)
H. Karst), Scots pine (Pinus sylvestris L.) and silver/downy birch-
dominated (Betula pendula Roth/Betula pubescens Ehrh) stands,
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taking spherical images at different heights. Vertical profiles of
PAI were used to derive PAD and compared to ALS data, and
DHP was used to validate near-ground imagery. Data were col-
lected at the Viikki Arboretum (Helsinki – 60.2°N, 25.0°E) of
the University of Helsinki between February and April 2021, and
in the surroundings of the Station for Measuring Ecosystem-
Atmosphere Relations II (SMEAR II), Hyytiälä (61.8°N,
24.3°E) in May and June 2021. Spherical panoramic imagery
was reprojected using a PYTHON script and analysed using HEMIS-

FER software v.3.1 (Patrick Schleppi, WLS Swiss Federal Institute
for Forest, Snow and Landscape research, Switzerland) to opti-
cally derive the gap fraction and estimate PAI. The same software
was used for the DHP data.

UAS description and camera calibration

The mass-produced Parrot ANAFI drone was used to capture
spherical panoramas (Parrot Drones SAS, Paris, France). The
ANAFI is compact (240 mm maximum dimension) and
lightweight (320 g), with a high-resolution camera (21 million
pixels) capable of looking directly upwards thanks to its 180° tilt
gimbal (Fig. 1). The main characteristics of the UAS are given in
Table 1.

To calibrate the ANAFI camera, we followed the protocol
found in the HEMISFER documentation (Schleppi et al., 2007;
Thimonier et al., 2010). The output of the calibration is a lens
function which characterizes radial distortion in the reprojected

hemispherical image (see Supporting Information Notes S2; Fig.
S1). This was performed outside under a small bridge, as the
ANAFI stitching method failed indoors due to movement of the
UAS. Minimal radial distortion was found in the UAS sensor,
and hence we proceeded with the built-in linear lens function to
analyse UAS imagery.

UAS imagery acquisition and processing

Each UAS-based spherical image was formed from 42 images in
JPEG format taken automatically using the 360° image mode.
These were stitched together using either the inbuilt Panorama
mode in the FREEFLIGHT 6 Parrot flight application (Parrot Drones
SAS) or Microsoft Image Composition Editor (Microsoft Corp.,
Redmont, WA, USA). The latter was used when FREEFLIGHT 6
failed due to software processing errors. The resulting spherical
images were in the equirectangular projection, where the x-axis
represents the azimuth angle and the y-axis the zenith angle (Fangi
& Nardinocchi, 2013). The built-in UAS sensors (gyroscope,
compass and barometer) allow the spherical image to be accurately
levelled, and thus the upper and lower half correspond to the
upper and lower hemisphere (Li & Ratti, 2019). A PYTHON script
(https://github.com/HowcanoeWang/Spherical2TreeAttributes,
Wang, 2019) was adapted to reproject panoramas to DHP
equivalent imagery (see Notes S1). These UAS-based hemi-
spherical images had a size of 4000 × 4000 pixels and a radius
of 2000 pixels.

(a) (b) (c)

(d)

(e)

Fig. 1 Schematic of the uncrewed aircraft system (UAS) spherical photographic method. The UAS (a) takes spherical panoramas (b) using its gimbal, that
are reprojected to hemispherical upward-looking images (c) using the upper hemisphere (φ > 0). The UAS is flown at different heights of the canopy
(e) and therefore a vertical distribution of the trait, e.g. plant area index and density (PAI, PAD), is obtained (d). For details on the reprojection see
Supporting Information Notes S1.
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To process UAS imagery, we used the HEMISFER built-in linear
lens function with a 90° field of view. The Nobis & Hunziker
(2005) method was used to binarize the image into black (plant
material) and white (sky) pixels. It was binarized either manually
or following the Ridler & Calvard (1978) method when the
former failed in open and heterogenous sky conditions. The
gamma value was set by default at 2.2 and all bands of the RGB
image were used. The gap fraction was calculated by dividing the
hemispherical image into five annuli of 15° and the Miller (1967)
method was used for PAI. Shoot-level clumping was corrected by
dividing the PAI by four times the mean Silhouette to Total Area
Ratio (STAR) (Oker-Blom & Smolander, 1988). A STAR value
of 0.147 was used for pine stands and 0.161 for spruce. Clump-
ing correction was not applied to birch (Majasalmi et al., 2013)
and we did not correct for stand-level clumping. We also did not
correct the woody-to-nonwoody ratio, as the purpose was not to
achieve accuracy in LAI estimation but rather to assess the relative
accuracy of the UAS method (Brüllhardt et al., 2020).

For the UAS–DHP intercomparison, UAS imagery was taken
at the same height as DHP, as close in time as possible. After tak-
ing off and stabilizing the drone, the spherical image protocol
was started. Exposure settings were set to optimize the final
image: ISO 200 and light-dependent shutter speed (set to opti-
mize first image), manually set looking at the UAS histogram.

After capture, images were inspected manually and then run
through HEMISFER to produce estimates of gap fraction and PAI.

DHP data collection for comparison with UAS imagery

We collected DHP imagery coincident with UAS-based spherical
images and taken under differing plant canopy architectures at
both sites (total n = 60). DHP images were taken with a single
lens reflex camera, an extreme-wide field of view fisheye lens, a
self-levelling mount with circular bubble level and a tripod. The
camera was a Canon EOS 70D (Canon Inc., Ōta, Tokyo, Japan).
The fisheye lens was a Sigma 4.5 mm F2.8 EX DC Circular
Fisheye HSM (Sigma Corp., Kawasaki, Kanawanga, Japan), with
a full 180° field of view, a focal length of 17–55 mm and mini-
mum aperture of F22. The self-levelling mount was a Delta-T
SLM9 (Delta-T Devices Ltd, Cambridge, UK) which was
mounted on top of a Slik Pro 400DX tripod (Slik Corp., Hidaka,
Hokkaido, Japan).

The camera was mounted at 100 cm height from the ground,
aligned towards magnetic north and levelled. Exposure was opti-
mized using the image histograms (Beckschäfer et al., 2013),
exposing the image to the brightest pixels. ISO was set to a con-
stant value of 200 to avoid grain, the sensor openness was also set
to a constant value of F20/22 (Hartikainen et al., 2018), and the
focus was set to optimize the clarity and quality of the image. As
above, HEMISFER was used to process imagery. DHP images had a
size of 3648 × 3648 pixels and radius of 1530 pixels and a verti-
cal and horizontal Instantaneous Field of View (H/VIFOV) of
0.118°. As with the UAS, the HEMISFER calibration protocol was
followed, and in this case we used the estimated lens function in
our subsequent analysis (Fig. S1).

PAD estimation

To obtain vertical profiles of PAI and PAD, we first selected suit-
able locations for flying vertical profiles requiring canopy gaps of
at least c. 12 m2. Three repetitions of two profiles per main
species were conducted by taking three images at each height,
starting at the minimum flight height (< 50 cm) and then flying
upwards and stopping at 2 m increments. PAI profiles were cal-
culated as above using images taken at each measurement height.
We derived PAD profiles from adjacent-in-height PAI values
using the following formula (Neumann et al., 1989):

PAD≈
PAIi � PAIj

z j � z i
Eqn 2

where i is the first layer (lower height), j is the second layer (upper
height) and z is height from the ground.

Comparison of vertical PAD profiles to ALS data

We used ALS data to assess the accuracy of our PAI and PAD
profiles. ALS acquisition took place on 3 June 2020 using an
aeroplane-mounted Riegl Q1560 sensor (λ = 1064 nm). The

Table 1 Summary of uncrewed aircraft system (UAS) characteristics.

UAS characteristics

Physical properties

Size unfolded 175 × 240 × 65 mm
Weight (take-off weight) 320 g
Maximum flight time (one battery) 25 min
Operating temperature range −10 to 40°C
Satellite positioning systems GPS and GLONASS
Imaging system
Sensor 1/2.4″ CMOS: 5.9 × 4.43 mm
Lens ASPH (sharper images)
Aperture f/2.4
Focal length (specifications) Photo: 3.92–11.76 mm
Shutter speed electronic shutter 1–1/10 000 s
ISO range 100–3200
Image resolution
Wide 21 megapixels

(5344 × 4016)/4 : 3/84° HFOV
Rectilinear 16 megapixels

(4608 × 3456)/4 : 3/75.5°
HFOV.IHFOV:
0.016°–IVFOV: 0.022°

Image formats JPEG, DNG (raw)
Stabilization
Image stabilization 3-axis hybrid: Mechanical – 2-axis

Roll/Tilt angles;
Electronic (EIS) – 3-axis Roll/Pan/
Tilt angles

Gimbal tilt Controllable –90° to +90°
(180° total)

Additional information
Cost in 2021 (Finland) 650–800 Euros
Pending EULA class C1
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scanning range was 1.2 km and the area was covered by three
overlapping strips. Scan zenith angles were 1–24° and the pulse
density was 40–60 pulses m–2. The sensor operates two laser
scanners. These had been calibrated to provide a 3D relative
point match (c. 68% precision) of better than 20 cm. This was
verified against man-made targets such as power line cables. Each
pulse transmitted resulted in one to nine echoes (discrete points)
with a minimal spacing (along the pulse) of c. 1.5 m.

To calculate a PAD proxy from LiDAR point cloud data, we
first excluded points greater than 10 m radius from the UAS pro-
file location. Points below 1.5 m height were assigned as ground
returns ðN gÞ. Next, the cylindrical point cloud was divided into
50 vertical segments, which corresponded to an c. 0.5 m height
interval at each location. We used the ratio of points above each
level to total returns, which included ground returns, from Solberg
et al. (2006) to estimate transmission (T ) through the canopy:

T ¼ 1� N c

N t
¼ 1� N c

N g þN c
Eqn 3

where Nc is the returns above a certain height and Nt is the total
number of returns. The following equation was then used to esti-
mate ALS PAI:

PAI ¼ �1

k
� logeðT Þ Eqn 4

where k is the extinction coefficient value. (Note that Eqn 4 is a
modified form of Eqn 1 assuming T is equal to P.) We estimated
k and PAI from Eqn 4 using ordinary least squares and UAS PAI
measurements. The differential values of PAI throughout the
canopy height were used to estimate the PAD values using Eqn 2,
and summary statistics were calculated between ALS and UAS
PAD profiles.

Statistical and error analyses

Linear regression was used to analyse the relationship between
DHP and UAS estimated traits. The coefficient of determination
(R2) and the regression standard error were calculated. The rela-
tive regression standard error (RSE) was calculated as:

RSE ¼ SE

y
� 100 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�2 �∑N
i¼1 yi � ŷ i

� �2q
y

� 100 Eqn 5

where y is the mean value of the DHP trait observations, yi is the
observed DHP values, ŷ i is each of the predicted UAS values and
N is the number of observations, with the traits being either gap
fraction or PAI.

We also investigated three categories of error in DHP and
UAS images: exposure variability, image resolution and stitching
error. To investigate exposure errors, the histogram values of each
picture were analysed. The difference in mean value of the pixels
(using the blue band) for each image was related to the difference
in gap fraction between the DHP and UAS images. A

relationship between these two values suggests that part of the
unexplained variance of the model is attributable to exposure.
Linear regression analysis was used the quantify the relationship.
Additionally, and for UAS imagery only, we conducted repeated
sampling at eight locations. This was needed because for UAS
imagery the exposure was set at the start of the data collection
and a single set of panoramic imagery takes 2–3 min to collect.

Error could also have resulted from differences in image reso-
lution between the two systems, and hence the computer vision
algorithm Structural Similarity Index Measure (SSIM) from the
Scikit-image PYTHON package (Van der Walt et al., 2014) was
used to highlight differences between DHP and UAS imagery.
Finally, we analysed stitching error due to discontinuities in the
matching of individual photos in the spherical image-building
process. These errors were defined qualitatively as unnatural vege-
tation or image discontinuities, and four examples are shown in
Fig. S2. To quantify this, all 60 UAS-based hemispherical images
were visually inspected to assess the relative importance of this
error. The percentage of photos with no error and more than one
error was obtained, as well as the average number of errors per
image. To test the significance of the error, we performed a
Welch’s t-test (significance level of 0.05) on the residuals of the
linear regressions between DHP- and UAS-based imagery of gap
fraction and PAI linear models, split by the error rate (no error,
or more than one error).

Results

Comparison of reprojected spherical imagery with on-the-
ground hemispherical imagery

Fig. 2 is a comparison of imagery taken using the two systems
under a mixed birch, pine and spruce canopy. Qualitatively, the
UAS imagery is similar in composition to the DHP system, yet
there are also subtle differences such as the higher resolution of
the UAS image.

The main results of the comparison between the UAS-based
method and the DHP datasets are shown in Fig. 3. The coeffi-
cient of determination between the two methods was 0.89 for
PAI and 0.92 for gap fraction across all annuli. The SE of the
UAS-based PAI was 0.520 m2 m−2, which in percentage terms
gives an RSE of 24.2%; in terms of gap fraction estimation, the
RSE was 16.1%.

Error analysis of gap fraction

We conducted an error analysis to pinpoint the cause of differ-
ences in DHP and UAS gap fraction and PAI estimates. Starting
with exposure, we found a coefficient of determination of R2 =
0.64 (Fig. 4) between mean pixel values and gap fraction differ-
ences between DHP and UAS, suggesting a probable influence of
exposure on the results. In Fig. 4, negative values indicate that
DHP was underexposed relative to UAS and positive values indi-
cate that DHP was overexposed relative to UAS.

Next, we analysed the replicability of gap fraction estimates in
UAS imagery. The results showed that the variability between
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repetitions remained approximately constant at each location,
with a median deviation of 3.4% for all locations (median of
maximum deviation between the three measurements divided by
its average, per location). Most repetitions (87.5%) demonstrated
a deviation in gap fraction of < 10%.

The next source of error studied was the image resolution and
resulting quality difference. The increased resolution of the UAS
was evident when comparing images side by side (Fig. 2) and has
been previously noted in reprojected panoramic imagery by
Andis-Arietta (2021). Fig. 5 provides a closer view of a small

section of the example comparison imagery that highlights this
issue and shows structural image differences, which are summa-
rized by the SSIM value. Although the UAS-based hemispherical
image had an IFOV of 0.09°, whereas DHP had a value of
0.118°, in the analysis in Fig. 5 the UAS image was downsam-
pled to the same number of pixels (IFOV) as the DHP. The qual-
ity difference persisted even when the number of pixels were set
as equal.

The final source of error studied was stitching error. We found
that 50% of images were visually clear of errors, and the average

(a) (b)

Fig. 2 Example comparison of hemispherical imagery using the two differing approaches: (a) is an image from the uncrewed aircraft system (UAS) and (b)
is the digital hemispherical photography (DHP) image. Images were taken in May 2021 close to Hyytiälä SMEAR II station, in a thinned stand of Scots pine,
birch and Norway spruce.

(a) (b)

Fig. 3 Comparison between the uncrewed aircraft system (UAS)- and digital hemispherical photography (DHP)-derived plant area index (PAI) (a) and gap
fraction (b). A total of 60 locations (n = 60) were selected, of which 22 pairs of images were in Viikki Arboretum. The following canopy structures were
represented: open field, unthinned dense Norway spruce, mixed Scots pine and birch, pure birch, mature Scots pine, Norway spruce and birch, and thinned
pure Scots pine.
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number of errors per image was 1.07. The results of the Welch’s
t-test performed on the PAI and gap fraction residuals, grouped
into errors present and no errors are shown in Table 2. There
were no statistically significant differences between the groups for
PAI or gap fraction.

Vertical profiles of PAI and PAD

Next, we used the UAS method to retrieve vertical profiles of PAI
and PAD in different canopies. The results are presented in Fig.
6, which shows six vertical profiles, two per species, obtained in a

Fig. 4 Relationship between gap fraction difference and the histogram mean pixel value difference between the digital hemispherical photographic (DHP)
imagery and the uncrewed aircraft system (UAS) imagery for the blue channel. The inset plots are examples of blue channel image histograms, with values
from 0 to 255, demonstrating overexposure in each of the two systems.

(a1) (a2)

(b1) (b2)

Fig. 5 Detail of the comparison of the first annulus of two images (zenith angle between 0° and 15°). Top row, uncrewed aircraft system (UAS)
downsampled image (a); bottom row, digital hemispherical photography (DHP) image (b). From left to right: direct subimage comparison (a1, b1) and
comparison of the binarized image (a2, b2). The gap fraction for each subimage was obtained, as well as the Structural Similarity Index Measure (SSIM), in
order to quantitatively compare the two images. The UAS image was downsampled to the same number of pixels as the DHP image.
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Norway spruce stand, a Scots pine stand and a birch-dominated
stand. The figure also shows the ALS proxies of PAI and PAD.

UAS PAD profiles in the top row of Fig. 6 demonstrate the
characteristic conical shape of a dense Norway spruce stand. By
contrast, in P. sylvestris 1 and 2, the typical lollipop-like elliptical
profile of Scots pine is evident in the PAD estimate. The stand
was thinned in 2020, resulting in an opened stand, with a low
PAI value and trees with few branches below the height of the
crown. Finally, the B. pendula shown on the bottom row of Fig.
6 differs in crown shape in comparison with the other two
species. The birch trees had longer crowns compared to the
pines.

ALS PAI and PAD proxy profiles are shown as grey lines in
Fig. 6 and estimated ALS extinction coefficients (k) and statistical
summary results between the two methodologies are presented in
Table 3. Estimated extinction coefficients were lowest in spruce
(0.30, 0.35) and highest in birch (0.45, 0.61). Comparisons
between ALS and UAS showed similar PAD profile shapes across
species, although there was some divergence at the lower levels of
the two spruce sites, which had the largest residual sum of squares
between ALS and UAS profiles.

Discussion

Evaluation of UAS spherical photography

A major limitation of hemispherical photography is that it is usu-
ally restricted to ground-based imagery, precluding the estima-
tion of vertical traits. This limitation has stimulated recent
research into UAS-based hemispherical image collection (Brown
et al., 2020; Brüllhardt et al., 2020). Such systems use self-
mounted cameras, which are potentially problematic to fly under
the forest canopy. By contrast, the low-cost UAS used here is
small, lightweight and has an integrated imaging system that can
produce upwards looking imagery. Using our method, hemi-
spherical fisheye-type images are reproduced by utilizing a com-
putational imaging technique, rather than the bulky DHP
hardware used in other studies. This raises the question: does the
use of panoramic imagery result in lower quality hemispherical
imagery?

The correlations shown in Fig. 3 demonstrate that the spheri-
cal panorama-based estimation of the gap fraction and PAI is very
similar to that obtained by ground-based hemispherical photog-
raphy across a range of species and canopy structures. Nonethe-
less, the differences in gap fraction and PAI between UAS and

DHP imagery that we did find were related to a number of fac-
tors common to both systems.

As expected, we found that exposure differences between sys-
tems had a nonnegligible effect on the gap fraction estimation
(Fig. 4). Overexposure of imagery results in an overestimation of
gap fraction, as small branches or foliage elements are incorrectly
segmented as sky. An example of an overexposed DHP histogram
is shown in the top left corner inset of Fig. 4. There were also a
few overexposed UAS images in the dataset, with an example his-
togram shown as an inset in the lower right corner of Fig. 4. This
inset graph also shows an underexposed DHP histogram. Note
that exposure can be difficult to set correctly in panoramic
imagery, as the parameters are set at the start of image collection
and then remain constant across all camera viewing angles. From
our analysis, exposure variability appeared to influence DHP and
UAS imagery, but as we arrived at our conclusions by comparing
two uncalibrated cameras a note of caution is required.

A further issue related to exposure and UAS measurements was
our strong preference for overcast days rather than clear dusks
and dawns. This was because complete profiles could take more
than 40 min to collect, during which time dusk or dawn light
conditions change substantially. Raw format imagery could help
with exposure- and light condition-related errors (Macfarlane
et al., 2014; Hartikainen et al., 2018), bypassing automatic
gamma correction performed by the camera, but custom software
would need to be developed for the UAS to collect raw format
panoramas.

The lower quality of DHP imagery relative to the UAS
resulted in a reduced number of small gaps. Even when down-
sampling reprojected panoramic imagery to the same number of
pixels as DHP imagery, the angular resolution of the UAS was
lower than the DHP, resulting in a higher image quality. In the
thresholded binary images, lower quality leads to a greater pro-
portion of misclassified pixels, and hence to an underestimation
of small gaps (Macfarlane, 2011; Andis-Arietta, 2021). This is
known as ‘blooming’, occurring when light saturation on the sen-
sor spills over onto neighbouring pixels, and is enhanced by over-
exposure, which occurred in a few of our DHP images (Leblanc
et al., 2005). To summarize, the lower resolution of DHP results
in a lower gap fraction and accordingly a higher PAI. This pat-
tern was found to exist independently of canopy species and
structures.

Stitching errors were found to be of less importance than expo-
sure or resolution. Though generally high, stitching quality
depended on the UAS stability when taking the individual
images. This was probably related to turbulence in the crown
layer (Brüllhardt et al., 2020). We therefore encourage careful
inspection of imagery before gap fraction estimation for stitching
errors, such as those presented in Fig. S2. A final source of error
that we did not consider was reprojection error. In theory, the
spherical-to-hemispherical transformation could cause errors or
loss of information, especially in the top of the image where the
highest expansion and compression occur.

We used reprojected imagery in our study for two reasons.
First, it meant we could compare imagery directly to that cap-
tured by a conventional DHP system. The second, and related,

Table 2 Results of the statistical tests relating to panoramic stitching errors
in plant area index (PAI) and gap fraction estimates.

Statistics

Residuals PAI Residuals gap fraction

No error Error No error Error

Mean 0.0038 −0.0023 0.0025 −0.0025
Variance 0.2842 0.2597 0.0042 0.0040
P value (Welch’s test,
two-tailed)

0.964 0.765
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reason was that we could use standard software, HEMISFER, to
compute gap fractions and PAI. Andis-Arietta (2021) stated the
hemispherical reprojection is not a requirement for PAI or gap
fraction estimation from panoramas, but did not calculate gap

fractions directly from panoramic imagery. Wang (2019) did cal-
culate gap fractions directly from panoramic imagery, using an
area-based weighting function to correct for the cylindrical
panoramic projection. Interestingly, and almost three decades

(a) (b) (a) (b)

(a) (b) (a) (b)

(a) (b) (b)(a)

Fig. 6 Vertical profiles obtained from
uncrewed aircraft system (UAS) spherical
imagery (continuous lines) and airborne laser
scanning (ALS) data (grey dashed lines). Each
row shows two different profiles in a Picea
abies stand, Pinus sylvestris stand and Betula

pendula-dominated stand. Letters represent
the cumulative plant area index (PAI) (a) and
plant area density (PAD) (b) vertical
distribution. In each profile location, three
repetitions (spherical photos) were taken per
layer (height).
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ago, Andrieu et al. (1994) calculated bidirectional gap fractions
from panoramic-like imagery reprojected from fisheye imagery,
effectively inverting the projection applied here. Taken together,
these studies suggest a fruitful path forward would be the devel-
opment of software, and appropriate theory, to operate directly
on the common panoramic projections, and relatedly, the fisheye
image.

Vertical profiles of canopy structural traits and ALS
comparison

We retrieved vertical profiles of PAI and PAD by flying the UAS
in canopy gaps. Although more stable in heavy winds, it is
unlikely that larger UASs carrying heavier payloads (Brüllhardt
et al., 2020; Hyyppä et al., 2021) can fly with a similar degree of
safety in such areas. However, before we can reach a potential
lower limit of gap size with our UAS in the upper canopy, the
issue of UAS drift requires attention.

UAS drift was a source of variability in vertical profiles of
structural traits. When ascending throughout the canopy, the
UAS occasionally drifted from the starting location in the hori-
zontal plane. This was the main reason why large enough gaps
were required when choosing the sampling location. Between 6
and 10 m height, drifting was a critical issue, as that height was
where the largest crown diameter was situated. Drift is a potential
cause of stitching errors, which show up as image discontinuities
(Andis-Arietta, 2021) related to alignment errors (Fangi &
Nardinocchi, 2013). A further effect of drifting was to change
the sampling location at different heights, potentially altering the
PAI value and in extreme cases halting image collection. Further
research is needed to better understand the causes of UAS drifting
behaviour and to program the UAS so that spherical image col-
lection would not stop even when the pilot manually changed the
UAS position.

To explore the effectiveness of our new method, we compared
UAS-based spherical photography-derived PAD profiles to sim-
ple ALS-estimated PAI and PAD proxies. In general, pine, birch
and spruce profiles were well matched between the UAS and ALS
approaches. Though dependent on the specific ALS instrumenta-
tion and proxy method applied (Korhonen et al., 2011), esti-
mated extinction coefficients were similar to literature values,

with the birch plots closest to the theoretical spherical leaf angle
distribution-derived k of 0.5 (Lintunen et al., 2013). This is not
surprising as we used UAS imagery to estimate extinction coeffi-
cients, but the parameter estimation does demonstrate a novel
use of the UAS profiles.

The largest errors between ALS and UAS PAD profiles
occurred in the denser spruce plots. Differences between ALS
and UAS profiles could relate to a saturation effect at higher LAI
values (L. Tian et al., 2021) or to differences in the measurement
geometries of the two systems, including the effect of laser scan
angles. The UAS samples a cone-like area around the imaging
system, whereas the ALS data were restricted to points collected
within a 10 m radius cylinder, centred at the UAS location (Fig.
S3). Hence, the laser scanned surface was considerably smaller
than the surface imaged from the UAS (Korhonen et al., 2011).
This could have contributed to errors in the method comparison.
Using only the inner annuli of the UAS imagery could have
potentially lessened the error in the comparison (Solberg et al.,
2006), but we deemed this step unnecessary based on the strength
of our results. Likewise, a more sophisticated PAD method could
have been applied (Hosoi & Omasa, 2006; L. Tian et al., 2021).

Expanding the horizons of UAS spherical imagery

The main advance of our method is the ability to capture imagery
under a canopy some distance away from the researcher. Aside
from the vertical profiles, there are several interesting applications
for this. Most obviously, the method can be used to produce
hemispherical photographs in previously inaccessible locations. A
specific example from our own research is the requirement for
hemispherical photography adjacent to light-exposed upper
crowns, where we were previously limited to locations with tower
infrastructure. Other examples of difficult to access locations
include wetland canopies that are partially flooded with water
such as marshes, swamps or mangroves, with the UAS potentially
piloted from a boat. Forests with thick understoreys are another
example, as are dangerous or pristine environments where human
impact should be minimized, keeping in mind that the range of
any UAS is potentially restricted by battery capacity, controller
signal strength and local legislation.

There are several additional parameters that can be calculated
from hemispherical or panoramic photography that we did not
investigate here. These include basal area estimation (Wang et al.,
2021), leaf angle distribution (Qi et al., 2019), clumping (Andis-
Arietta, 2021), and the fraction of vegetation cover or intercepted
photosynthetically active radiation (Li et al., 2015). Both under-
storey (Law & Waring, 1994) and crop PAI (Brown et al., 2020)
could be estimated with the lower portion of the spherical
panorama. Above-canopy Structure fromMotion photogrammetry,
from which it is now possible to estimate LAI profiles (Lin et al.,
2021), could be complemented with within-canopy spherical pho-
togrammetry (Fangi & Nardinocchi, 2013). Finally, a recent study
showed the potential of upward-looking thermal imaging to obtain
canopy temperatures, which relate to transpiration (Su et al., 2020).
A UAS thermal approach could be developed, with the caveat that
complementary visible imagery should be used for binarization.

Table 3 Statistical analysis results of the ALS–UAS comparison.

Profile

PAD residual
sum of
squares
(m2 m−3)

Height of
maximum
PAD
residual (m) k estimated

Picea abies 1 0.055 5 0.30
Picea abies 2 0.116 13 0.35
Pinus sylvestris 1 0.025 13 0.37
Pinus sylvestris 2 0.022 21 0.48
Betula pendula 1 0.008 7 0.45
Betula pendula 2 0.003 9 0.61

Note that in the statistical comparison, ALS plant area density (PAD) values
were calculated using the same height step size as the UAS PAD values.
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Conclusions

We have demonstrated a new method that used UAS-based
spherical panoramic imagery to estimate vertical profiles of PAI
and PAD from canopies of different tree species and structures.
The method is inexpensive and safe relative to laser scanning and
larger UAS operation. The technique is complementary to laser
scanning, which has a higher barrier to entry (Calders et al.,
2020), and is readily deployable by the working plant scientist.
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canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote
Sensing Letters 4: 157–160.

Dengel S, Grace J, MacArthur A. 2015. Transmissivity of solar radiation within a

Picea sitchensis stand under various sky conditions. Biogeosciences 12: 4195–
4207.

Dietz J, Hölscher D, Leuschner C, Hendrayanto H. 2006. Rainfall partitioning

in relation to forest structure in differently managed montane forest stands in

Central Sulawesi, Indonesia. Forest Ecology and Management 237: 170–178.
Disney M. 2019. Terrestrial LiDAR: a three-dimensional revolution in how we

look at trees. New Phytologist 222: 1736–1741.
Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A,

Escadafal R, Ezzahar J, Hoedjes JCB, Kharrou MH et al. 2006.Monitoring

wheat phenology and irrigation in Central Morocco: on the use of relationships

between evapotranspiration, crops coefficients, leaf area index and remotely-

sensed vegetation indices. Agricultural Water Management 79: 1–27.
Fangi G, Nardinocchi C. 2013. Photogrammetric processing of spherical

panoramas. The Photogrammetric Record 28: 293–311.
Fauset S, Gloor MU, Aidar MPM, Freitas HC, Fyllas NM, Marabesi MA,

Rochelle ALC, Shenkin A, Vieira SA, Joly CA. 2017. Tropical forest light

regimes in a human-modified landscape. Ecosphere 8: e02002.
Frazer GW, Fournier RA, Trofymow JA, Hall RJ. 2001. A comparison of

digital and film fisheye photography for analysis of forest canopy structure

and gap light transmission. Agricultural and Forest Meteorology 109: 249–
263.
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