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Abstract 

Context:  Antenatal hyperglycemia is associated with increased risk of future adverse 
health outcomes in both mother and child. Variations in offspring’s epigenome can 
reflect the impact and response to in utero glycemic exposure, and may have different 
consequences for the child.
Objective: We examined possible differences in associations of basal glucose status 
and glucose handling during pregnancy with both clinical covariates and offspring cord 
tissue DNA methylation.
Research Design and Methods: This study included 830 mother-offspring dyads from 
the Growing Up in Singapore Towards Healthy Outcomes cohort. The fetal epigenome 
of umbilical cord tissue was profiled using Illumina HumanMethylation450 arrays. 
Associations of maternal mid-pregnancy fasting (fasting plasma glucose [FPG]) and 
2-hour plasma glucose (2hPG) after a 75-g oral glucose challenge with both maternal 
clinical phenotypes and offspring epigenome at delivery were investigated separately.
Results:  Maternal age, prepregnancy body mass index, and blood pressure measures 
were associated with both FPG and 2hPG, whereas Chinese ethnicity (P  = 1.9 × 10-4), 
maternal height (P = 1.1 × 10-4), pregnancy weight gain (P = 2.2 × 10-3), prepregnancy alcohol 
consumption (P = 4.6 × 10-4), and tobacco exposure (P = 1.9 × 10-3) showed significantly 
opposite associations between the 2 glucose measures. Most importantly, we observed 
a dichotomy in the effects of these glycemic indices on the offspring epigenome. 
Offspring born to mothers with elevated 2hPG showed global hypomethylation. CpGs 
most associated with the 2 measures also reflected differences in gene ontologies and 
had different associations with offspring birthweight.
Conclusions:  Our findings suggest that 2 traditionally used glycemic indices for 
diagnosing gestational diabetes may reflect distinctive pathophysiologies in pregnancy, 
and have differential impacts on the offspring’s DNA methylome.

Key Words: epigenome wide association study, gestational diabetes, fasting plasma glucose, 2h oral glucose toler-
ance test, DNA methylation

Maternal hyperglycemia is associated with increased risk 
of adverse perinatal outcomes, including fetal macrosomia, 
intrauterine growth restriction, neonatal hypoglycemia, and 
neonatal intensive care unit admission (1). Furthermore, 
children born to mothers with antenatal hyperglycemia 
are at increased risk of developing childhood obesity (2), 
adult obesity, and diabetes (3), thus exacerbating a vicious 
health cycle. Gestational diabetes mellitus (GDM), defined 
by maternal hyperglycemia during pregnancy (4), is clin-
ically diagnosed by oral glucose tolerance tests (OGTTs), 
with several definitions in use worldwide. A positive clin-
ical diagnosis typically entails an abnormality in at least 1 
of several glucose measures: fasting plasma glucose (FPG) 
collected after an overnight (8-10 hours) fast, and plasma 
glucose collected 1, 2, and/or 3 hours (x-hPG, where 
x = 1, 2, or 3 and hPG is hour plasma glucose) after ad-
ministration of a fixed OGTT (5). Globally, American and 
European cohorts report lower prevalences of GDM (gen-
erally below 10%), whereas Asian cohorts typically reflect 
higher prevalences (up to 28%) (6). Outside of pregnancy, 

fasting and 2hPG measures are also used in the diagnosis of 
type 2 diabetes mellitus (T2DM). Closely related to T2DM 
are 2 prediabetic metabolic states (7), impaired fasting glu-
cose (8) and impaired glucose tolerance (9), conditions as-
sociated with an abnormal FPG and an abnormal 2hPG, 
respectively. Different but overlapping physiological mech-
anisms are involved in maintaining fasting glucose levels 
and in determining the glycemic response to an oral glucose 
load. The differential effects of an elevated gestational FPG 
and x-hPG on maternal (10), birth (11), and childhood out-
comes (12) further suggest that these 2 parameters have 
different underlying etiologies and pathophysiologies, even 
in pregnancy.

Maternal hyperglycemia may affect an offspring’s fu-
ture health outcomes through perturbations in the fetal 
methylome (13). Previous epigenome-wide association 
studies (EWAS) investigating effects of maternal gestational 
hyperglycemia on offspring methylome at delivery were 
primarily conducted on Caucasian cohorts (14-16), did 
not compare differences between elevated FPG and x-hPG 
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on the offspring methylome (16-18), or had small sample 
sizes (< 100) (17-20). Because the incidence of GDM is high 
in Asian populations, our study focuses on developing in-
sights into the preconception and antenatal factors asso-
ciated with FPG and 2hPG status mid-pregnancy (such as 
maternal anthropometry, pregnancy plasma biomarkers, 
environmental and mental health measures), as well as 
investigating the associated impact of antenatal glycemic 
levels on the offspring’s DNA methylome.

Materials and Methods

Study population

Expecting mothers were enrolled in the Growing Up in 
Singapore Towards Healthy Outcomes (GUSTO) birth 
cohort as previously described (21). Briefly, women were 
recruited from 2 public hospitals (National University 
Hospital [NUH] and Kandang Kerbau Women’s and 
Children’s Hospital [KKH]) in Singapore during their first 
trimester visit. Women ≥ 18 years of age, homogenous ethnic 
background (up to grandparents), and of Chinese/Malay/
Indian ethnic origin were recruited. Subjects on chemo-
therapy or psychotropic medication, or with diabetes be-
fore recruitment, or had second trimester OGTTs fulfilling 
the clinical threshold for possible undiagnosed preexisting 
diabetes (FPG ≥ 7.0 mmol/L, 2hPG ≥ 11.1 mmol/L) were 
excluded from this study. To prevent outlier-driven results, 
2 subjects whose OGTT values below the 0.001th centile 
were also removed (1 with FPG  =  2.9  mmol/L, another 
with 2hPG = 2.9 mmol/L). Written informed consent was 
obtained from the participants. The GUSTO study was ap-
proved by the Centralized Institutional Review Board of 
KKH and the Domain-Specific Review Board of NUH. In 
this study, only live, singleton, full-term births with no con-
genital anomalies, with complete information of maternal 
OGTT results, and infant umbilical cord DNA methylome 
were included (n = 830, Tables 1 and 2).

Maternal anthropometry and pregnancy 
environmental exposures

Midpregnancy (approximately 26 weeks gestation), after 
overnight fasting of at least 8 hours, fasting, and 2 hours 
after 75-g OGTT (as recommended by World Health 
Organization at the time of collection (5)) plasma was 
collected from pregnant mothers and measured on a col-
orimeter (Advia 2400 Chemistry system [Siemen Medical 
Solutions Diagnostics] in NUH; Beckman LX20 Pro ana-
lyser [Beckman Coulter] in KKH) within 4 hours of sam-
pling. Additional plasma was collected to determine fatty 
acid (n-6 polyunsaturated fatty acids, n-3 polyunsaturated 
fatty acids, monounsaturated fatty acids, saturated fatty 

acids), and micronutrient concentrations (folate; vitamins 
B6, B12, D; and minerals Ca and Zn) on the same visit. 
Micronutrient extraction and quantification, as well as ac-
quisition of other risk factors/predictors are elaborated in 
Lim et al (22).

Cord tissue DNA methylation data

Methylation profiling of DNA from infant umbilical cords 
was performed using the Illumina HumanMethylation450 
BeadChip arrays per the manufacturer’s instructions (23) 
and processed as described previously (24), including the re-
moval of cross-hybridizing probes (25, 26). Randomization 
of samples was performed across chip and chip position 
with respect to important clinical covariates such as ethni-
city, infant sex, and gestational age. Although both glucose 
measures did not associate with chip or chip position, the 
first principal component of a principal component ana-
lysis on raw infant cord tissue DNA methylation data re-
vealed a significant association with chip. COMBAT (27) 
was used to adjust cord tissue DNA methylation data for 
chip effects, removing CpGs with missing values across all 
12 positions on any chip. DNA extraction batch, bisulfite 
conversion batch, and hospital remained significantly as-
sociated with the top principal components of the chip-
adjusted cord tissue DNA methylation data, as well as both 
glucose measures, and thus were included in regression 
models involving cord tissue DNA methylation. Cellular 
composition of neonatal umbilical cords was estimated 
using a reference panel of stromal, endothelial, epithelial, 
and granulocytes as a surrogate for potential residual cord 
blood contamination within the cord tissue samples (28). 
Their principal components were adjusted as covariates 
in all cord tissue DNA methylation regression models. To 
ensure statistical robustness, probes with low cord tissue 
DNA methylation variation (2.5th-97.5th centile range 
below 10%), absent in > 10% of samples, containing single 
nucleotide polymorphisms on the CpG dinucleotide, and 
showing multimodal distributions (ENmix (29), minimum 
distance between nodes = 0.2) were removed, resulting in a 
total of 102 498 autosomal CpGs for analysis. The majority 
of the removed probes had low interindividual variability 
(234  186 probes, 61% of all removed probes). Random 
technical variations make probes with such low variability 
prone to false-positive results and thus these were removed 
as recommended (30). Homer annotatePeaks function 
(hg19) was used to annotate CpGs with respect to gene 
features (promoter, 5′-UTR, exon, intron, 3′-UTR, TTS, 
and intergenic regions) and CpG islands (island, shore, 
shelf, open sea). With respect to enhancer regions, CpGs 
were annotated using the combination of the Infinium 
HumanMethylation450 manifest file, predicted enhancers 
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Table 1.  Study cohort characteristics (categorical)

Covariate (N) Category No. Proportion

Hospital (N = 830) KKH 619 74.6%
 NUH 211 25.4%
Ethnicity (N = 830) Chinese 486 58.6%
 Malay 207 24.9%
 Indian 137 16.5%
Maternal education (N = 830) Secondary and below 443 53.4%
 Tertiary and above 387 46.6%
Maternal occupation (N = 830) Others 355 42.8%
 White collar 475 57.2%
Monthly household income (N = 782) <S$4,000 331 42.3%
 ≥S$4,000 451 57.7%
Familial T2DM (N = 830) No history 586 70.6%
 Yes 244 29.4%
Previous GDM (N = 830) No 799 96.3%
 Yes 31 3.7%
Previous pregnancy (N = 641) Non-first pregnancy 373 58.2%
 First pregnancy 268 41.8%
Previous delivery (N = 641) Non-firstborn 321 50.1%
 Firstborn 320 49.9%
IVF status (N = 818) No 761 93%
 Yes 57 7%
Prepregnancy alcohol consumption (N = 822) No 534 65%
 Yes 288 35%
Pregnancy alcohol consumption (N = 808) No 794 98.3%
 Yes 14 1.7%
Prepregnancy tobacco exposure (N = 825) No 470 57%
 Yes 355 43%
Pregnancy tobacco exposure (N = 824) No 519 63%
 Yes 305 37%
Overall tobacco exposure (N = 825) No 456 55.3%
 Yes 369 44.7%
Depression (BDI) (N = 784) < 14 655 83.5%
 ≥ 14 129 16.5%
Depression (EPDS) (N = 805) < 14 740 91.9%
 ≥ 14 65 8.1%
Depression (BDI/EPDS/STAI) (N = 791) Not depressed 640 80.9%
 Depressed 151 19.1%
Plasma folate (N = 731) ≤ 6 ng/mL 68 9.3%
 > 6 ng/mL 663 90.7%
Plasma vitamin B6 (PLP) (N = 730) ≤ 20 nmol/L 115 15.8%
 > 20 nmol/L 615 84.2%
Plasma vitamin B12 (N = 731) ≤ 300 pg/mL 415 56.8%
 > 300pg/mL 316 43.2%
Plasma vitamin D (N = 695) ≤ 50 nmol/L 88 12.7%
 > 50nmol/L 607 87.3%
Plasma calcium (N = 730) ≤ 81.8 mg/L 64 8.8%
 > 81.8mg/L 666 91.2%
Plasma zinc (N = 730) ≤ 700 μg/L 120 16.4%
 > 700 μg/L 610 83.6%

Abbreviations: BDI, Beck Depression Inventory; EPDS, Edinburgh Postnatal Depression Scale; GDM, gestational diabetes mellitus; IVF, in vitro fertilization; KKH, 
Kandang Kerbau Women’s and Children’s Hospital; NUH, National University Hospital; PLP, pyridoxal 5′ phosphate; STAI, State-Trait Anxiety Inventory; T2DM, 
type 2 diabetes mellitus. 
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from the Encyclopedia of DNA Elements consortium (31), 
as well as the Functional Annotation of the Mammalian 
Genome consortium’s FANTOM5 phase 1 and 2 data (32).

Analysis of association between midpregnancy 
FPG/2hPG and clinically relevant variables

Linear regression models were first used to investigate 
the relationship between maternal midpregnancy plasma 
glucose concentrations and various prenatal/pregnancy 
covariates, adjusting for hospital and ethnicity. We note 
that the different clinical variables were examined indi-
vidually with the glucose measures. For clinical covariates 
that were associated with at least 1 of the OGTT meas-
ures (P  <  0.05), general linear models with unstructured 
covariance structure were used to examine whether the as-
sociations of the covariates with the OGTT measures were 
different.

Analysis of association between infant cord 
tissue DNA methylation and midpregnancy 
FPG/2hPG

Linear regression models were then used to examine the as-
sociation of neonatal cord tissue DNA methylation values 
with maternal plasma glucose concentrations, with adjust-
ment for hospital, infant sex, ethnicity, gestational age at de-
livery, principal components of cellular composition, DNA 
extraction batch, and bisulfite conversion batch effects. To 
allow for the associations between cord tissue DNA methy-
lation and cellular proportions to be ethnicity dependent, 
models also included the interaction between ethnicity and 
principal components of cellular proportions. Because both 

maternal glucose measures possessed different ranges, levels 
were normalized with mean = 0, SD = 0.5 before analysis 
to ensure effect sizes were comparable. Because of this nor-
malization, regression effect sizes are reported as increase 
in cord tissue DNA methylation Z-score for every 2 SD in-
crease in maternal glucose levels. Additionally, to ensure re-
sults are not driven by outliers, outlier values in cord tissue 
DNA methylation and continuous variables were truncated 
to the next possible boundary values.

As a technical sensitivity analysis, also reported are 
results additionally adjusted for chip row, as well as ad-
justed for unaccounted technical covariates with the use 
of surrogate variable analysis (33). Five surrogate vari-
ables (SVs) were generated from scaled infant umbilical 
cord tissue DNA methylation values, with covariates 
protected in generating the SVs (FPG or 2hPG, ethni-
city, gestational age, infant sex, DNA extraction batch, 
bisulfite conversion batch, chip position, and cell type 
proportion Principal Components). These SVs were in-
cluded in linear regression models in addition to the pre-
viously mentioned covariates.

For the top 50 CpGs most associated with either OGTT 
measure, general linear models with unstructured co-
variance structure were used to examine whether the as-
sociations of the cord tissue DNA methylation with the 
respective OGTT measure were significantly different, 
reporting CpGs passing Bonferroni as well as nominal 
P = 0.05 thresholds.

Effect sizes between the glucose measures are denoted 
as β 

f for FPG and β 2h for 2hPG associations, respect-
ively. Similarly, P values between the glucose measures 
are denoted as pf and p2h for FPG and 2hPG associations, 
respectively.

Table 2.  Study cohort characteristics (numerical)

Covariate Category No. Mean SD

OGTT (mmol/L) FPG 830 4.3 0.4
 2hPG 830 6.5 1.4
Maternal age (y)  830 30.9 5.1
Maternal height (cm)  819 158.3 5.6
Adiposity Prepregnancy BMI (kg/m2) 781 22.7 4.4
 Pregnancy weight gain (kg) 777 8.6 4.5
Midpregnancy blood pressure (mmHg) Systolic 830 114.5 13.0
 Diastolic 830 66.2 9.2
Midpregnancy caloric intake (kCal)  807 1886.4 571.5
Midpregnancy plasma fatty acids (mcg/mL) Total saturated 730 1116.2 372.7

Total omega-3 730 159.2 80.4
Total omega-6 730 828.6 274.1
Total monounsaturated 730 328.3 109.2
Total polyunsaturated 730 987.9 337.4
Total 730 2432.4 788.8

Abbreviations: 2hPG, 2-hour plasma glucose; BMI, body mass index; FPG, fasting plasma glucose; OGTT, oral glucose tolerance test.
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Gene ontology enrichment

To identify biological pathways (GO and Kyoto 
Encyclopedia of Genes and Genomes pathways) poten-
tially affected by the differential associations maternal 
antenatal glycemic measures have on infant cord tissue 
DNA methylation, the top 500 most associated CpGs 
per glucose measure were input into missMethyl (34). 
missMethyl adjusts GO enrichments for both the number 
of CpGs per gene, as well as the length of the gene, miti-
gating the nonuniform coverage of genes on the Infinium 
HumanMethylation450 array. Because CpGs may map 
onto more than 1 gene, a single CpG with multiple gene 
annotations may skew GO results; hence, CpGs with more 
than 3 gene annotations were removed before GO ana-
lysis. Subsequently, missMethyl results provide a compre-
hensive list of GO terms, including GOs with very large 
parent gene lists, as well as GOs with very similar gene 
lists between them. Because GOs with large parent gene 
lists may not inform gene functionalities, GOs with more 
than 400 genes were removed. GOs with very few genes 
present in the enriched CpG list may also be prone to false 
positives; hence, GOs with < 3 genes present within the 
enriched CpG list were also removed. To address highly 
similar GOs, REVIGO (35) was used to condense the GO 
terms obtained. REVIGO removes GO terms with > 70% 
semantic similarity measure between gene lists, retaining 
the GO term with a more unique gene list.

Comparison against existing EWAS

We compiled a list of known differentially methylated 
CpGs associated with gestational diabetes across various 
EWASs to find CpG candidates that may have biomarker 
potential for diabetes-related pathophysiologies. Because 
this is the first study investigating offspring cord tissue 
DNA methylation with antenatal glycemic levels, we ex-
panded the scope of comparable EWAS to include fetal-
origin biosamples (such as cord blood) and different GDM 
diagnostic criteria. However, given known reproducibility 
issues among DNA methylation studies (36, 37), we limited 
our comparison to genome-wide (as opposed to candidate-
based) studies investigating offspring DNA methylation 
with study cohorts greater than 100 participants.

Analysis of association between infant cord 
tissue DNA methylation and birthweight

To assess whether these differences in cord tissue DNA 
methylation corresponded to differences in infant out-
comes, we performed additional linear regression models 
to examine the association of neonatal cord tissue DNA 

methylation values with infant birthweight, with adjust-
ment for hospital, infant sex, ethnicity, gestational age at 
delivery, principal components of cellular composition, 
DNA extraction batch, bisulfite conversion batch effects, 
and interactions between ethnicity and principal compo-
nents of cellular proportions.

Results

Study demographics

This analysis used 830 mother-offspring dyads that had 
complete maternal glucose, gestational age, infant sex, eth-
nicity, and umbilical cord tissue DNA methylation data 
(Tables 1 and 2). This study comprised 59% Chinese, 25% 
Malay, and 17% Indian participants. Average prepregnancy 
body mass index (BMI) was 22.7 kg/m2 and average weight 
gain was 8.6 kg. The mean midpregnancy glucose concen-
trations were 4.3  mmol/L and 6.5  mmol/L for FPG and 
2hPG, respectively. Fifty-three percent of infants were born 
male; 47% of infants were born female. The average gesta-
tion was 39 weeks (SD 1 week) and the average birthweight 
was 3.2 kg (SD 0.4 kg). Because maternal glycemia is known 
to associate with adverse maternal and infant outcomes on 
a continuous basis (38), we investigated these glucose meas-
ures as continuous variables as opposed to a clinically de-
fined GDM status. Nevertheless, as a benchmark reference, 
18% of participants were diagnosed with GDM given the 
prevailing GDM criteria during recruitment (1999 World 
Health Organization GDM criteria: FPG  ≥  7.0  mmol/L, 
2hPG  ≥  7.8  mmol/L) (39). Proportionally, this affected 
Indian women the most (24%), followed by Chinese (19%), 
and then Malay women (9.0%).

Common and distinct prenatal variables 
contributing to midpregnancy FPG and 
2hPG status

Looking at the relationship between both pregnancy glucose 
measures with various clinical covariates independently (ie, 
FPG vs clinical covariates; 2hPG vs clinical covariates), 
4 covariates were significant associated (at a Bonferroni 
adjusted P value of P  < 0.05/38 = 1.3 × 10-3) with both 
glucose measures: maternal age (β f = 0.11, pf = 1.1 × 10-3; 
β 2h = 0.23, p2h = 3.0 × 10-11), prepregnancy BMI (β f = 0.24, 
pf  = 3.6 × 10-11; β 2h = 0.20, p2h = 5.8 × 10-8), and blood 
pressure (systolic [β f  =  0.17, pf  =  1.3  ×  10-6; β 2h  =  0.13, 
p2h = 1.9 × 10-4] and diastolic [β f = 0.13, pf = 2.0 × 10-4;  
β 2h  =  0.14, p2h  =  1.0  ×  10-4]) (Table 3). Several other 
covariates, however, were only significantly associated with 
1 pregnancy glucose measure and not the other. Indian eth-
nicity (β f  = 0.18, pf  =  5.8 × 10-5; β 2h  = 0.04, p2h  = 0.40) 
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Table 3.  Relationship of maternal midpregnancy OGTT with clinical covariates adjusted by hospital and ethnicity

Covariate FPGa,c 2hPGb,d 

Effect size 95% CI P value Effect size 95% CI P value

Demographics ±Chinese ethnicityb -6.46e-02 -0.13 to 0 6.42e-02 8.76e-02 0.02 to 0.16 1.30e-02
Malay ethnicityd -5.37e-02 -0.13 to 0.02 1.78e-01 -1.44e-01 -0.22 to -0.07 3.50e-04
Indian ethnicityc 1.85e-01 0.1 to 0.27 5.78e-05 3.96e-02 -0.05 to 0.13 3.97e-01
Education -1.89e-02 -0.09 to 0.05 5.89e-01 -1.65e-03 -0.07 to 0.07 9.63e-01
± Occupation -7.53e-04 -0.07 to 0.07 9.83e-01 2.62e-02 -0.04 to 0.1 4.60e-01
±Household incomeb -5.02e-03 -0.08 to 0.07 8.97e-01 8.65e-02 0.01 to 0.16 2.64e-02
Agec,d 1.14e-01 0.05 to 0.18 1.11e-03 2.32e-01 0.16 to 0.3 3.03e-11
Familial T2DM 6.10e-02 -0.01 to 0.14 1.07e-01 3.94e-02 -0.04 to 0.11 3.05e-01
Previous GDMa,d 2.27e-01 0.05 to 0.4 1.15e-02 4.85e-01 0.31 to 0.66 8.13e-08
Previous pregnancya -1.15e-01 -0.19 to -0.04 3.52e-03 -7.30e-02 -0.15 to 0.01 6.97e-02
Previous deliverya -1.09e-01 -0.18 to -0.03 5.06e-03 -7.44e-02 -0.15 to 0 6.12e-02
IVF statusd 8.09e-02 -0.05 to 0.22 2.37e-01 2.55e-01 0.12 to 0.39 2.21e-04

Adiposity/anthro-
pometry

± Heightd 3.52e-02 -0.03 to 0.1 3.12e-01 -1.22e-01 -0.19 to -0.05 5.40e-04
Prepregnancy BMIc,d 2.42e-01 0.17 to 0.31 3.57e-11 2.03e-01 0.13 to 0.28 5.80e-08
± Pregnancy weight gaina 7.88e-02 0.01 to 0.15 2.53e-02 -4.80e-02 -0.12 to 0.02 1.82e-01
Systolic BPc,d 1.65e-01 0.1 to 0.23 1.28e-06 1.30e-01 0.06 to 0.2 1.87e-04
Diastolic BPc,d 1.33e-01 0.06 to 0.2 1.95e-04 1.40e-01 0.07 to 0.21 1.03e-04

Environment/  
mental health

± Prepregnancy alcohol 
consumptionb

6.99e-02 0 to 0.14 6.65e-02 -8.56e-02 -0.16 to -0.01 2.63e-02

± Pregnancy alcohol con-
sumption

1.40e-01 -0.12 to 0.4 2.87e-01 -5.69e-02 -0.32 to 0.21 6.72e-01

± Prepregnancy tobacco 
exposureb

4.99e-02 -0.02 to 0.12 1.79e-01 -9.41e-02 -0.17 to -0.02 1.27e-02

± Pregnancy tobacco 
exposureb

6.81e-02 -0.01 to 0.14 7.31e-02 -9.67e-02 -0.17 to -0.02 1.23e-02

± Overall tobacco 
exposureb

3.36e-02 -0.04 to 0.11 3.60e-01 -1.00e-01 -0.17 to -0.03 7.28e-03

Depression (BDI) 2.89e-02 -0.06 to 0.12 5.45e-01 2.78e-02 -0.07 to 0.12 5.70e-01
± Depression (EPDS) 1.20e-02 -0.11 to 0.14 8.49e-01 -8.68e-02 -0.21 to 0.04 1.81e-01
Depression (BDI/EPDS/

STAI)
2.39e-02 -0.06 to 0.11 5.93e-01 9.65e-03 -0.08 to 0.1 8.33e-01

Pregnancy plasma 
biomarkers

± Caloric intake 1.45e-02 -0.05 to 0.08 6.78e-01 -4.54e-02 -0.12 to 0.02 2.02e-01
± Plasma folateb -3.95e-02 -0.17 to 0.09 5.39e-01 1.61e-01 0.04 to 0.29 1.14e-02
Plasma vitamin B6 1.04e-02 -0.09 to 0.11 8.39e-01 5.45e-02 -0.05 to 0.15 2.83e-01
Plasma vitamin B12c -1.36e-01 -0.21 to -0.06 2.66e-04 -1.71e-02 -0.09 to 0.06 6.46e-01
± Plasma vitamin D -6.46e-03 -0.12 to 0.11 9.12e-01 9.49e-02 -0.02 to 0.21 1.01e-01
Plasma calciumb 9.16e-02 -0.04 to 0.22 1.63e-01 1.58e-01 0.03 to 0.28 1.52e-02
Plasma zincb 2.37e-02 -0.07 to 0.12 6.34e-01 1.19e-01 0.02 to 0.22 1.57e-02
Plasma ∑ saturated FA 7.90e-03 -0.06 to 0.08 8.30e-01 1.08e-02 -0.06 to 0.08 7.68e-01
Plasma ∑ omega-3 FA 2.08e-03 -0.07 to 0.07 9.55e-01 2.97e-02 -0.04 to 0.1 4.21e-01
Plasma ∑ omega-6 FA 2.49e-02 -0.05 to 0.1 4.97e-01 7.16e-03 -0.06 to 0.08 8.44e-01
Plasma ∑ monounsaturated 

FA
-8.41e-03 -0.08 to 0.07 8.23e-01 -2.13e-02 -0.09 to 0.05 5.68e-01

Plasma ∑ polyunsaturated 
FA

1.96e-02 -0.05 to 0.09 5.94e-01 1.20e-02 -0.06 to 0.08 7.42e-01

Plasma ∑ FA 1.28e-02 -0.06 to 0.08 7.29e-01 7.00e-03 -0.06 to 0.08 8.48e-01

Clinical covariates were analyzed using linear regression, adjusted for hospital and ethnicity except in the case of individual ethnicities, where specific ethnicities 
were analyzed as a binary variable (yes/no) where only hospital was adjusted in the model. Clinical covariates were generally classified into 4 major categories 
labelled on the left side of the table. Standardized effect size of the regression is presented alongside the 95% CIs and P values. 
Clinical covariates found to have P < 0.05 with respect to afasting plasma glucose (FPG) or b2-hour plasma glucose (2hPG) have P values indicated in bold type, 
represented in Fig. 1. Those found to have P values below the Bonferroni threshold (0.05/38 = 1.3 × 10−3) for cFPG or d2hPG have a different superscript suffix. 
Antagonistic effect sizes with relation to the same clinical covariate is prefixed with a ±. 
Abbreviations: BDI, Beck Depression Inventory; BP, blood pressure; CI, Confidence Interval; EPDS, Edinburgh Postnatal Depression Scale; FA, fatty acid; STAI, 
State-Trait Anxiety Inventory. 
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and midpregnancy maternal vitamin B12 status (β f = -0.14, 
pf = 2.7 × 10-4; β 2h = -0.02, p2h = 0.65) were significantly as-
sociated with FPG but not 2hPG, whereas Malay ethnicity 
(β f = -0.05, pf = 0.18; β 2h = -0.14, p2h = 3.5 × 10-4), history 
of previous GDM (β f = 0.23, pf = 1.1 × 10-2; β 2h = 0.48, 
p2h = 8.1 × 10-8), current pregnancy IVF status (β f = 0.08, 
pf = 0.24; β 2h = 0.26, p2h = 2.2 × 10-4), and maternal height 
(β f = 0.04, pf = 0.31; β 2h = -0.12, p2h = 5.4 × 10-4) were sig-
nificantly associated with 2hPG but not FPG.

We examined whether the association of a covariate 
with 1 glucose measure was significantly different from the 
corresponding association with other glucose measure (ie, 
[FPG vs clinical covariate] vs [2hPG vs the same clinical 

covariate]). As such, we selected 22 covariates nominally 
associated (P < 0.05) with at least 1 OGTT measure (Fig. 1, 
Table 4). Maternal midpregnancy (approximately 26 weeks 
gestation) FPG and 2hPG measurements were significantly 
different (Bonferroni threshold = 0.05/22 = 2.3 × 10-3) with 
respect to 7 of these 22 clinical covariates, including Chinese 
ethnicity (P = 1.9 × 10-4), maternal height (P = 1.1 × 10-4), 
pregnancy weight gain (P = 2.2 × 10-3), prepregnancy al-
cohol consumption (P = 4.6 × 10-4), and tobacco exposure 
(prepregnancy P  = 9.2 × 10-4; pregnancy P  = 2.1 × 10-4; 
overall P  =  1.9  ×  10-3). Another 7 covariates were sig-
nificant at P  <  0.05 but not passing Bonferroni cutoff, 
including Indian ethnicity (P  =  7.1  ×  10-3), household 

Figure 1.  Clinical covariates significantly associated with either glucose measure, adjusted for hospital and ethnicity. Linear regression analyses of 
maternal mid-pregnancy FPG and 2hPG was performed on 38 different risk factors/predictors, adjusting for hospital and ethnicity. Individual ethni-
cities were analyzed as a binary variable (yes/no) adjusted for hospital. Risk factors/predictors which were found to have P < 0.05 are grouped into 
4 categories here on the horizontal axis: demographics (orange), adiposity/anthropometry (green), environment (gray), and pregnancy plasma bio-
markers (purple). On the vertical axis, point estimates (height of bars) and 95% confidence intervals (top and bottom whiskers) reflect standardized 
effect sizes. For reporting of standardized effect sizes, OGTT and continuous variables were scaled to have an SD of 0.5, and binary variables retained 
their original coding (0 vs 1). Risk factors/predictors that significantly associate (passing Bonferroni, P < 0.05/38 = 1.3 × 10-3) with either glucose 
measure are indicated with an asterisk on that respective glucose measure. Of these 22 covariates plotted, general linear models with unstructured 
covariance structure were used to examine whether the associations of the covariates with the OGTT measures were different. Covariates found 
Bonferroni significantly different in the associations between FPG and 2hPG are indicated by a star prefix on the x-axis label. B, Before pregnancy; 
D, during pregnancy; GDM, gestational diabetes; IVF, in vitro fertilization.
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income (P = 4.3 × 10-2), maternal age (P = 3.6 × 10-3), his-
tory of previous GDM (P  =  0.014), in vitro fertilization 
(IVF) status (P = 0.030), midpregnancy plasma folate status 
(P  =  7.4  ×  10-3), and midpregnancy plasma vitamin B12 
status (P = 6.5 × 10-3). If ethnicity was modelled jointly as 
2 binary variables, the associations remain different for the 
2 glucose measures (22). Supplementary analyses such as 
this, generated during this study, are included in the data 
repository listed in Lim et al (22).

Maternal FPG and 2hPG influences umbilical 
cord tissue DNA methylation

In total, 336  684 CpGs from the infant umbilical cord 
tissue DNA methylome passed quality control, of which 
102 498 probes had DNA methylation 2.5th to 97.5th cen-
tile range > 10%, and were selected for subsequent ana-
lysis. The correlation between the 2 glucose measures was 
low (Fig. 2A, Pearson correlation = 0.31), and there were 
differences in association of cord tissue DNA methylation 
with respect to maternal FPG and 2hPG measures. The as-
sociation of FPG with the infant umbilical cord tissue DNA 

methylome appeared to be equally balanced between hypo- 
and hypermethylation (Fig. 2B), whereas the association 
of 2hPG appeared to skew toward hypomethylation, es-
pecially among the more statistically associated CpGs (Fig. 
2C). Although the directionality of change in cord tissue 
DNA methylation appeared to be mostly preserved among 
differentially methylated CpGs from 1 glucose measure to 
the other (Fig. 2D), statistical association was typically lost 
(Fig. 2E). Notably, the top 50 most associated CpGs with 
respect to FPG (Fig. 2F, (22)) were mostly different from the 
corresponding CpGs with respect to 2hPG (Fig. 2G, (22)). 
Genes in proximity to the most strongly associated CpGs 
also differed markedly between the 2 glucose measures 
(22). Although none of CpGs attained genome-wide signifi-
cance on either glucose measure, among the top 500 most 
associated CpGs, all 500 retained effect size directionality 
with nominal P value < 0.005 in sensitivity analysis 1 in 
both glucose measures, and 497 (99.4%) and 495 (99.0%) 
CpGs retained directionality with nominal P value < 0.005 
in sensitivity analysis 2 for FPG and 2hPG, respectively.

For the top 50 CpGs most associated with each glucose 
measure, we examined whether the association of that CpG 

Table 4.  P values for testing whether there are significant differences between the associations of the 2 Maternal 

midpregnancy OGTT measures with clinical covariates

Covariate P value

Demographics Chinese ethnicitya 1.85e-04
Malay ethnicity 5.35e-02
Indian ethnicityb 7.07e-03
Household incomeb 4.32e-02
Ageb 3.61e-03
Previous GDMb 1.40e-02
Previous pregnancy 3.62e-01
Previous delivery 4.46e-01
IVF statusb 2.95e-02

Adiposity/anthropometry Heighta 1.09e-04
Prepregnancy BMI 3.69e-01
Pregnancy weight gaina 2.25e-03
Systolic blood pressure 3.75e-01
Diastolic blood pressure 8.58e-01

Environment Prepregnancy alcohol consumptiona 4.61e-04
Prepregnancy tobacco exposurea 9.18e-04
Pregnancy tobacco exposurea 2.05e-04
Overall tobacco exposurea 1.85e-03

Pregnancy plasma biomarkers Plasma folateb 7.44e-03
Plasma vitamin B12b 6.46e-03
Plasma calcium 3.89e-01
Plasma zinc 1.01e-01

Twenty-two clinical covariates were found to associate with at least 1 of the OGTT measures shown in Table 3 (P < 0.05). These were further evaluated, comparing 
whether the associations of the clinical covariates with the OGTT measures were different using general linear models with unstructured covariance structure. 
Specific ethnicities were analyzed as a binary variable (yes/no). Clinical covariates found to have differential association with fasting plasma glucose (FPG) as op-
posed to 2-hour post OGTT plasma glucose at aBonferroni threshold (0.05/22 = 2.3 × 10−3) are indicated in bold type. Those at bP < 0.05 have a different suffix.
Abbreviations: BMI, body mass index; GDM, gestational diabetes mellitus; IVF, in vitro fertilization; OGTT, oral glucose tolerance test.
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with 1 glucose measure was significantly different from the 
corresponding association with other glucose measure. 
More than one-half of the top 50 most associated CpGs 
with each glucose measure showed evidence that the asso-
ciation between cord tissue DNA methylation and glucose 
was different in the 2 measures. Specifically, of the top 50 
CpGs most associated with FPG, 1 CpG (cg19969650) was 
significant at Bonferroni cutoff (P < 0.05/50 = 1.0 × 10-3),  

and 29 were significant at P < 0.05. Of the top 50 CpGs 
most associated with 2hPG, 8 CpGs (cg12314012, 
cg16617297, cg04297995, cg11996741, cg25271525, 
cg126098727, cg01181499, and cg13429145) were sig-
nificant at Bonferroni cutoff, and 30 were significant at 
P < 0.05.

Gene ontology (GO) enrichment using the top 500 most 
associated CpGs with respect to either glucose measures 

Figure 2.  Comparing midpregnancy fasting plasma glucose (FPG) and 2h plasma glucose (2hPG). (A) Scatterplot of raw OGTT. Vertical axis rep-
resents raw 2hPG values, whereas the horizontal axis represents corresponding FPG values. The red line in this scatterplot is the regression line 
between both glucose measures. Pearson correlation between both glucose measures given as r, whereas the Spearman correlation coefficient pro-
vided as ρ. (B, C) Volcano plot of FPG/2hPG on CpG. Horizontal axis represents the change in cord tissue DNA methylation Z-score per 2 SD change 
in glucose measure (standardized effect size; FPG in panel B, 2hPG in panel C), whereas the vertical axis represents the corresponding negative 
logarithmic significance of corresponding regression betas. Black dots represent 500 CpGs most associated ranked by P value, whereas the rest 
of the CpGs are represented in gray. (D) Cloud scatter of OGTT on CpG effect size. Vertical axis represents the change in cord tissue DNA methyla-
tion Z-score per 2 SD change in 2hPG (standardized effect size), whereas the horizontal axis represents the change in cord tissue DNA methylation 
Z-score per 2 SD change in FPG (standardized effect size). (E) Cloud scatter of OGTT on CpG significance. Horizontal axis represents the negative 
logarithmic significance of corresponding regression betas previously indicated in panel B (FPG), whereas the vertical axis represents the negative 
logarithmic significance of corresponding regression betas previously indicated in panel C (2hPG). The red line on both cloud scatters represents 
y = x. Associations between CpGs and midpregnancy PGs in panel B-E were adjusted for hospital, DNA extraction batch, bisulfite conversion batch, 
infant sex, gestational age, ethnicity, principal components of cellular proportions, and interactions between ethnicity and principal components of 
cellular proportions. (F, G) Heatmap of the top 50 CpGs most associated with respect to FPG/2hPG ranked by P value. These CpGs with respect to 
FPG (F) and 2hPG (G) are represented in a heatmap, ordered by standardized effect sizes, with increasing magnitudes reflected by a color change 
from yellow to blue (for positive beta coefficients) or yellow to red (for negative coefficients). Significances of each CpG to corresponding glucose 
measure: *P < 0.05, **P < 0.01, ***P < 0.001, ... , *****P < 10-5. In each heatmap, the effect size and significance of the same CpG to the corresponding 
glucose measure is provided for comparison.
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suggested CpGs differentially methylated with respect to 
FPG were associated with processes relating to regulation 
of reactive oxygen species metabolism, nerve development, 
and regulation of membrane potential; those differentially 
methylated with respect to 2hPG were enriched in processes 
relating to sense of taste and antigen processing and pres-
entation (22). GO enrichment using CpGs from sensitivity 
analysis 2 (surrogate variable analysis) yielded similar ob-
servations (22). Notably, although both glucose measures 
had almost completely different enriched GOs, they shared 
some REVIGO-defined general GO clusters (22).

In comparing our findings against 142 CpGs reported to 
be differentially methylated with respect to maternal ante-
natal hyperglycemia (from offspring cord and peripheral 
blood, summarized in Lim et al (22)), approximately two-
thirds (96 of 142) of these CpGs either did not show suffi-
cient variation in DNA methylation in cord tissue or pass 
the required quality control criteria. Specific breakdown 
included: 28 cross-hybridization probes, presence of single 
nucleotide polymorphisms on or a single-base pair away 
from the probe, or located on a sex chromosome, or probes 
significantly associated with batch variables; 13 with de-
tection P < 0.01; and 55 with cord tissue DNA methyla-
tion of the 2.5th to 97.5th centile was below 10%.) Of 
the remaining 46 of these 142 CpGs found in our GUSTO 
infant cord tissue dataset that passed quality control fil-
tering (22), cg12140144 (LINC00982 promoter [PRDM16 
divergent transcript]) was suggestively associated to FPG 
(β 

FPG = 0.17, pFPG = 9.5 × 10-4; β 2hPG = 0.05, p2hPG = 0.28) 
within this pool of candidate CpGs.

We also examined the associations of cord tissue DNA 
methylation with birthweight as a proxy for infant outcomes 
within the top 50 CpGs most associated with each glucose 
measure. Eighteen (associated with 13 unique genes) of the 
50 CpGs most associated with FPG were associated with 
birthweight (passing Bonferroni, 0.05/50  =  1.0  ×  10-3).  
Thirteen of these 18 CpGs showed positive association, 
whereas the remaining 5 CpGs showed negative associ-
ation with birthweight (22). In contrast, only 7 (associated 
with 4 unique genes) of the 50 CpGs most associated with 
2hPG were significantly associated with birthweight, and 
all showed a negative association (22).

Discussion

This is the first study differentiating the relationship be-
tween midpregnancy FPG and 2hPG and their differential 
impact on offspring cord tissue DNA methylation at birth. 
We found that although general risk factors such as ma-
ternal age, prepregnancy BMI, and pregnancy blood pres-
sure correlated strongly with both FPG and 2hPG, other 
clinical covariates associated independently with only 1 

glucose measure. Interestingly, although most covariates 
share similar correlative directionalities between either glu-
cose measures, albeit with differing magnitudes, a small 
group of covariates also reflected significant antagonistic re-
lationships between FPG and 2hPG, such as Chinese ethni-
city, maternal height, pregnancy weight gain, prepregnancy 
alcohol consumption, and cigarette smoke exposure. 
Importantly, although others have highlighted differences 
between FPG and x-hPG in the context of maternal (38) 
and childhood outcomes (12), we found that antenatal FPG 
and 2hPG also have differential influences on the offspring 
cord DNA methylome. Comparing associations between 
individual CpGs with each glucose measure, the associ-
ation was nominally different (P < 0.05) from the corres-
ponding glucose measure in more than one-half of the top 
50 most associated CpGs. Additionally, we found associ-
ations in cg12140144 in agreement with another GDM-
related EWAS. Collectively, our findings suggest the need 
to decouple fasting and x-hPG measures in the diagnosis of 
GDM to better appreciate the different pathophysiological 
contributions each glucose measure has, in context of the 
metabolic status of both mother and offspring.

Although maternal hyperglycemia has been character-
ized by either an elevated FPG or 2hPG, our data demon-
strate that these 2 glucose measures associate with various 
conditions with differing magnitudes, just as impaired 
fasting glucose and impaired glucose intolerance manifest 
differently in nonpregnant populations (10). In prediabetes 
pathophysiology, these 2 groups of participants were dem-
onstrated to belong to different populations with altered 
glucose metabolism (40), with considerable variation be-
tween ethnic groups and sex (41-44). Interestingly, although 
many of these associations (vitamin B12 (45–47), IVF (48), 
maternal height (49)) have been previously reported in con-
text of GDM or poor insulin sensitivity and obesity, studies 
examining whether associations of clinical phenotypes 
with individual glucose measures differ between the glu-
cose measures themselves are far fewer in number (50). In 
our study, these 2 glucose measures not only differ in the 
associations with ethnicity, but also with maternal height, 
pregnancy weight gain, alcohol, and tobacco exposure. The 
lack of resolution between associations of differential glu-
cose measures and comparative associations between glu-
cose measures is unfortunate, as our observations suggest, 
for one, ethnic differences in glucose handling may require 
different treatment methods (lower basal glucose levels 
as opposed to improving glucose tolerance), necessitating 
differential therapeutic options for a person with diabetes 
diagnosed based on how each glucose measurement pre-
sents as opposed to a generic treatment plan based on some 
combination of FPG or x-hPG levels. Second, our observa-
tions also suggest some environments reflect antagonistic 
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associations with either glucose measure. In fact, although 
certain covariates share similar directionalities, most ap-
pear to possess differential effect sizes between either glu-
cose measures. This phenomenon does not appear to be 
unique to pregnancy (50). Different correlations observed 
between FPG and 2hPG, varying from poor (r < 0.3) (51) 
to strong (r > 0.8) (52), could lead to different proportional 
diagnosis of diabetes depending on the glucose measure 
used (53, 54). Hence, resolving between glucose measures 
within a single patient would perceivably provide more 
medically useful information.

The dissemblance between fasting and 2hPG is re-
inforced by the differential associations observed on the 
infant cord tissue DNA methylome. Both glucose meas-
ures are associated with unique epigenome-wide effect size 
profiles despite no individual CpG attaining epigenome-
wide significance. In particular, elevated mid-pregnancy 
2hPG appears to associate with global hypomethylation, 
a phenomenon also observed among significantly methy-
lated CpGs in the livers of obese subjects with T2D (55). 
Moreover, ranking CpGs by statistical significance with 
respect to either glucose measure, both glucose measures 
share very few commonalities at the CpG, gene, or GO 
level. Among the top 50 CpGs most associated with each 
glucose measure, only 1 CpG overlaps between both glu-
cose measures. A further examination of whether the asso-
ciation of CpGs with 1 glucose measure was significantly 
different from the corresponding association with other 
glucose measure also revealed more than one-half of the 
top 50 most associated CpGs with each glucose measure 
was nominally different (P < 0.05). Most of the CpGs that 
were highly associated with FPG also have a positive asso-
ciation with birthweight, whereas those highly associated 
with 2hPG were almost exclusively negatively associated 
with birthweight. Differences were also observed between 
gene ontological associations of the top 500 CpGs per glu-
cose measure. That said, grouping GOs into more general 
clusters expectedly revealed some shared ontological pro-
cesses that may have contributed to the amalgamation of 
the 2 measures for diagnostic purposes. Nevertheless, taken 
together, the distinct global cord tissue DNA methylation 
associations between both glucose measures lend credence 
to the notion that FPG and 2hPG may be reflective of 2 
dissimilar pathologies under 1 disease condition (10), and 
that the differences between cord tissue DNA methylation 
associations could potentially relate to differential infant 
outcomes.

In our consolidation of existing known offspring dif-
ferentially methylated CpGs associated with antenatal ma-
ternal glycemia, only 5 separate studies fit our selection 
criteria: 4 being individual studies and 1 a meta-analysis 
of 7 independent study cohorts, with all 5 investigating 

the exposure of GDM cases in association with the DNA 
methylation profile of offspring blood (cord (16, 56) and 
peripheral (36, 57, 58), summarized in Lim et  al (22)). 
Notably, the meta-analysis study did not identify any CpG 
to be differentially methylated by maternal GDM status at 
a false discover rate (FDR)-adjusted P value threshold of 
0.05, but did find 6 CpGs passing a less stringent FDR-
adjusted P value of 0.10. This meta-analysis study of 7 co-
horts predominantly comprised participants (n = 3677) of 
Caucasian ethnicity from the United Kingdom, Denmark, 
United States, Spain, Greece, Belgium, and Italy, with each 
cohort having distinct GDM diagnostic criteria (16). This 
meta-analysis also did not include cohorts from the other 4 
individual studies we previously selected. Given the import-
ance of such a large DNA methylation meta-analysis across 
7 cohorts, we added these 6 CpGs to our list compiled from 
the studies of CpGs reported to be differentially methylated 
in association with maternal GDM, resulting in a total of 
142 CpGs.

The reproducibility issues among DNA methylation 
studies have been pointed out by many authors (36, 37). 
This lack of replication with GDM EWAS cohorts can 
probably be attributed to small sample sizes used in cur-
rently published GDM EWAS cohorts, differences in the 
types of samples used (placenta, cord tissue, cord blood), 
as well as differences in GDM criteria between individual 
studies. Given GDM is diagnosed primarily through clinical 
thresholds derived from a combination of FPG and 2hPG, 
this incongruency between GDM studies with differing 
GDM diagnostic guidelines is concordant with our find-
ings that FPG and 2hPG have differing associations with 
offspring cord tissue DNA methylation. It has important 
implications both for defining GDM and for studying its 
transgenerational influences.

Interestingly, in spite of tissue differences, 1 CpG 
(cg12140144) found on the LINC00982 promoter was 
hypermethylated in the peripheral blood of nondiabetic off-
spring born to mothers with type 2 diabetes at least 1 year 
before pregnancy (58) as well as with respect to GUSTO 
fasting glucose levels. This long intergenic nonprotein 
coding RNA is also known to be a PRDM16 divergent 
transcript (59), hypermethylation of which was associ-
ated with increased future diabetes risk (58). Although 
this exact CpG was not investigated/identified, CpGs in 
PRDM16 were associated with differential methylation 
with respect to maternal fasting glucose in the second and 
third trimesters of human placenta in another candidate-
based study design (60), as well as in pancreatic islets of 
patients with T2DM (61). PRDM16 is well known for its 
crucial role in brown adipose tissue development (62), en-
ergy expenditure (63), as well as increasing importance in 
pancreatic development (64). The presence of differentially 
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methylated CpGs across tissues highlights its potential as a 
biomarker for diabetes-related screenings and its potential 
as a key player in multiorgan regulatory mechanisms influ-
enced by antenatal maternal glycemia.

Our observation of differential DNA methylation pat-
terns in cord tissue between fasting and 2hPG measures may 
be more clinically relevant than studies investigating cord 
blood samples. Previous analyses comparing DNA methy-
lation profiles between cord tissue and cord blood samples 
demonstrated DNA methylation profiles obtained from cord 
tissue samples have more variability for subsequent pheno-
type association, are less likely to be associated with genotype, 
are equally likely to be associated with prenatal factors, and 
are likely to be better surrogates for target tissues of mesen-
chymal stem cell origin (65). Mesenchymal stem cells have the 
potential to differentiate into numerous clinically important 
tissues for metabolic disease, including but not limited to car-
diac muscle cells, skeletal muscle cells, kidney tubule cells, fat, 
and bone (66-68). Because this is a clinical study, participants 
were given appropriate diet recommendations/treatment 
upon diagnosis of GDM, which may explain the lack of indi-
vidual CpGs passing genome-wide significance in cord tissue 
despite a relatively large sample size of 830 mother-offspring 
dyads. Notably, a recent meta-analysis of 7 pregnancy cohorts 
with a total sample size of 3677 using cord blood samples 
(16) also did not identify any differentially methylated CpGs 
at an FDR < 0.05. The lack of significant changes at any single 
genomic loci (in cord blood or cord tissue) does not neces-
sarily reflect an unperturbed methylome but perhaps an ameli-
orated response as a result of diet/therapeutic interventions 
(69). Additionally, differential DNA methylation patterns may 
thus be the reticent indications of maternal antenatal hyper-
glycemia, similar to indications of “metabolic memory” (70).

Within the Developmental Origins of Health and 
Disease paradigm, maternal pregnancy environments play 
an important role in influencing offspring future health 
and growth outcomes (71, 72). Such influences may be 
inherited by subsequent generations through persistent 
epigenetic markers (73). Specifically in maternal hypergly-
cemia, recent studies investigated associations of offspring 
DNA methylome in the placenta and cord blood through 
clinically defined GDM diagnoses (17-20), potentially 
missing differential changes associated with glycemic status 
of fasting vs 2 hours after OGTT. This is concordant with 
existing literature highlighting key differences in the fac-
tors contributing to glucose metabolism for the mainten-
ance of basal glucose levels (potentially reflected by FPG 
levels) compared with response toward a glucose challenge 
(potentially reflected by 2hPG levels) (74).

Our study has several strengths and weaknesses. 
Strengths include the relatively large and diverse study 
population based in Singapore where ethnically diverse 

participants dwell in a relatively homogenous environment, 
with a thorough in-depth antenatal phenotyping of envir-
onmental exposures accounting for the multifactorial na-
ture of diabetes pathophysiology. The main limitation was 
not obtaining robust CpGs with genome-wide significance, 
potentially because of insufficient sample size numbers. 
Despite such limitations, not only we observed significant 
differences in global cord tissue DNA methylation associ-
ation between the 2 glucose measures analyzed, but also 
effect size directionalities and nominal significances were 
preserved among the top 500 most associated CpGs within 
our sensitivity analyses. Such findings are concordant with 
the differential attributes that impaired fasting glucose 
and impaired glucose tolerance conditions possess in their 
contributions to the progression toward T2DM. In sum-
mary, our results suggest the need to address both FPG and 
x-hPG separately in the analysis of GDM-related patho-
physiological factors and outcomes, just as in nonpregnant 
diabetes-related studies.
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