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Abstract: Parent-of-origin effects (POE) and sex-specific parental effects have been reported for
plasma lipid levels, and a strong relationship exists between dyslipidemia and obesity. We aim
to explore whether genetic variants previously reported to have an association to lipid traits also
show POE on blood lipid levels and obesity. Families from the Botnia cohort and the Hungarian
Transdanubian Biobank (HTB) were genotyped for 12 SNPs, parental origin of alleles were inferred,
and generalized estimating equations were modeled to assess parental-specific associations with lipid
traits and obesity. POE were observed for the variants at the TMEM57, DOCK7/ANGPTL3, LPL, and
APOA on lipid traits, the latter replicated in HTB. Sex-specific parental effects were also observed;
variants at ANGPTL3/DOCK7 showed POE on lipid traits and obesity in daughters only, while those
at LPL and TMEM57 showed POE on lipid traits in sons. Variants at LPL and DOCK7/ANGPTL3
showed POE on obesity-related traits in Botnia and HTB, and POE effects on obesity were seen to a
higher degree in daughters. This highlights the need to include analysis of POEs in genetic studies of
complex traits.

Keywords: parent-of-origin; human genetics; dyslipidemia; obesity; ANGPTL3; LPL

1. Introduction

Dyslipidemia is one of the modifiable risk factors for cardiovascular disease (CVD) [1,2],
which is the leading cause of death globally [3]. Dyslipidemias are common traits, with preva-
lence in the adult U.S. population being 43.4% for high total cholesterol (TC) (>200 mg/dL),
13.8% for high low-density lipoprotein-cholesterol (LDL-C) (>130 mg/dL), and 21.8% for low
high-density lipoprotein-cholesterol (HDL-C) (<40 mg/dL) [4].

Plasma cholesterol levels are mediated by a complex interplay of genetic and environ-
mental factors. There is also a strong genetic component, and >350 SNPs corresponding to
>200 loci associated with circulating plasma lipids have been reported so far [5,6]. Currently,
the heritability of plasma cholesterol levels has been estimated in several studies, with
heritability of TC, HDL-C, and LDL-C level ranging from 0 to 89% [7–11], 22 to 93% [11–14],
and 22 to 91% [7,11,14,15], respectively. In the Botnia study, in western Finland and south-
ern Sweden, heritability estimates for TC ranged between 0.47–0.49, 0.52–0.61 for HDL-C,
and 0.48–0.50 for LDL-C [16].
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Sex of the parent also influences the offspring’s lipid levels, and these effects could also
be different depending on the sex of the offspring. For instance, female offspring of diabetic
mothers showing lower HDL-C than male offspring [17] and sex-specific parental effects
were strongest for total cholesterol concentrations [16] in the Botnia families. Other studies
have shown that male offspring of diabetic mothers had higher TG than daughters [18].
Additionally, female offspring of diabetic mothers were shown to have higher TC than
female offspring of diabetic fathers [19]. A South-East Asian study showed an excess
maternal transmission of obesity, insulin resistance, and dyslipidemia to offspring with one
diabetic parent [20].

Some of these findings could be due to genetic parent-of-origin effects (POE), where
an allele might have a different effect on a certain phenotype when inherited from one
parent but be neutral or having opposite effect when inherited from the other. Some of this
could be attributed to epigenetic mechanisms, such as preferential DNA methylation of
one of the alleles even though other mechanisms are possible [21]. POE could be missed
in a standard GWAS of unrelated individuals, or the effect sizes could be underestimated
where parental origin of alleles is not taken into account. Moreover, such POE could also
provide insights into pleotropic relationships, which could only be seen when the parental
origin of the alleles is considered. However, several studies have shown POE for complex
traits, suggesting this to be a possible explanation for the sexual dimorphism and missing
heritability of these traits [22–27]. An example of this is variants in KCNQ1, which showed
an association to T2D in a large scale GWAS but also showed POE in families [28,29].

Given the previous observations of parent-of-origin effects on lipid traits, we selected
12 loci associated with lipid-related traits from genome-wide association studies (GWAS)
published before 2012 to investigate if any of them could account for the parent of origin
(POE) or sex-specific effects (i.e., sons and daughters) in families from the Botnia study.

Dyslipidemia is strongly correlated with obesity. Obese individuals manifest elevated
serum triglyceride, VLDL, apolipoprotein B, and non-HDL-C levels and are at an increased
risk of developing cardiovascular disease [30]. Treatment for dyslipidemia is therefore
often indicated for these patients. Given the strong relationship between lipid levels and
obesity, we also investigated if the parental specific effects of the genetic variants were
also observed on obesity measures in the families from two studies: the Botnia study and
the HTB.

2. Materials and Methods
2.1. Study Cohorts

The Botnia Study was initiated in 1990. All patients with T2D visiting 5 health care
centers in the Botnia region in western Finland and their families were invited to participate.
Later on, these studies were extended to other parts of Finland and southern Sweden [17].
For this study, all individuals who were part of families where at least one parent and at least
one child had participated in the study were selected, resulting in a total of 8066 individuals
(offspring n = 3552) from 2257 families (Table 1).

The Hungarian Transdanubian Biobank (HTB) was initiated in 1992 at the Hungar-
ian Heart Center in Balatonfüred. For this study, families with at least 1 parent and at
least 1 offspring were selected, giving a total of 7884 individuals (offspring n = 3366) in
2264 families (Table 1).

We also tested for POE in unrelated individuals from the Diabetes Genetics Initiative
(DGI) [31]; the Prevalence, Prediction, and Prevention of diabetes-Botnia study (PPP-
Botnia) [32]; and Malmö Diet Cancer (MDC) [33] cohorts (for cohort characteristics, see
Supplementary Table S1).
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Table 1. Cohort characteristics for the Botnia and HTB cohorts.

Botnia

All Parents Offspring Parents/
Offspring Sons Daughters Sons/Daughters

N Mean ± SD N Mean ± SD N Mean ± SD p N Mean ± SD N Mean ± SD p

N 8066 4514 3552 1782 1770
N (male/female) 4039/4027 2257/2257 1782/1770

Age (years) 5548 50.7 ± 16.6 2244 59.93 ± 12.52 3304 44.43 ± 16.09 <0.0001 1666 45.06 ± 16.47 1638 43.79 ± 15.68 0.02
BMI (kg/m2) 5546 26.69 ± 4.61 2244 27.2 ± 4.46 3302 26.34 ± 4.68 <0.0001 1666 26.54 ± 4.08 1636 26.13 ± 5.22 0.01

Waist/Hip Ratio 5332 0.90 ± 0.1 2135 0.91 ± 0.09 3197 0.89 ± 0.1 <0.0001 1615 0.94 ± 0.07 1582 0.84 ± 0.084 <0.0001
Waist/Height Ratio 5335 0.54 ± 0.08 2136 0.55 ± 0.07 3199 0.53 ± 0.078 <0.0001 1616 0.53 ± 0.07 1583 0.52 ± 0.08 0.0002

TC (mmol/L) 5295 5.44 ± 1.11 2119 5.7 ± 1.10 3176 5.27 ± 1.08 <0.0001 1607 5.30 ± 1.06 1569 5.25 ± 1.11 0.19
TG (mmol/L) 5292 1.47 ± 0.94 2119 1.57 ± 1.01 3173 1.41 ± 0.9 <0.0001 1604 1.52 ± 0.98 1569 1.29 ± 0.79 <0.0001

LDL-C (mmol/L) 5145 3.47 ± 0.99 2060 3.7 ± 0.98 3085 3.32 ± 0.96 <0.0001 1551 3.42 ± 0.95 1534 3.23 ± 0.97 <0.0001
HDL-C (mmol/L) 5172 1.31 ± 0.35 2072 1.30 ± 0.36 3100 1.32 ± 0.34 0.045 1566 1.20 ± 0.3 1534 1.43 ± 0.34 <0.0001
APOA1 (mg/L) 4636 135.88 ± 22.98 1866 136.57 ± 23.57 2770 135.42 ± 22.57 0.1 1404 128.40 ± 19.65 1366 142.63 ± 23.11 <0.0001
APOA2 (mg/L) 4372 36.06 ± 12.63 1793 35.75 ± 14.39 2579 36.27 ± 11.24 0.2 1316 36.73 ± 14.34 1263 35.80 ± 6.6 0.03
APOB (mg/L) 4623 93.39 ± 23.84 1862 97.86 ± 23.24 2761 90.37 ± 23.78 <0.0001 1401 93.79 ± 23.49 1360 86.84 ± 23.57 <0.0001
ApoB/ApoA1 4628 0.71 ± 0.22 1862 0.74 ± 0.22 2766 0.69 ± 0.22 <0.0001 1402 0.75 ± 0.22 1364 0.62 ± 0.20 <0.0001

Affection Status N Valid Percent N Valid Percent N Valid Percent N Valid Percent N Valid Percent

Normal Glucose Tolerance 2608 47.01 873 38.90 1735 52.51 818 49.1 917 55.98
Impaired Fasting Glucose 393 7.08 168 7.49 225 6.81 143 8.58 82 5.01

Impaired Glucose Tolerance 514 9.26 215 9.58 299 9.05 121 7.26 178 10.87
Type 2 Diabetes 1814 32.7 925 41.22 889 26.91 506 30.37 383 23.38

Other, mostly T1D 196 3.53 55 2.27 149 4.39 75 4.32 74 4.46
Missing 2533 2278 255 119 136

HTB

All Parents Offspring Parents/Offspring Sons Daughters Sons/Daughters

N Mean ± SD N Mean ± SD N Mean ± SD p N Mean ± SD N Mean ± SD p

N 7884 4518 3366 1548 1818
N (Male/Female) 3807/4077 1548/1818

Age (years) 6918 48.17 ± 16.82 3552 60.08 ± 11.79 3366 35.61 ± 11.29 <0.0001 1548 35.17 ± 11.25 1818 35.99 ± 11.31 0.04
BMI (kg/m2) 6918 27.89 ± 5.45 3552 29.23 ± 5.12 3366 26.48 ± 5.45 <0.0001 1548 27.39 ± 5.06 1818 25.70 ± 5.64 <0.0001

Waist/Hip Ratio 6852 0.86 ± 0.13 3487 0.87 ± 0.12 3365 0.85 ± 0.13 <0.0001 1548 0.95 ± 0.09 1817 0.76 ± 0.09 <0.0001
Waist/Height Ratio 6854 0.52 ± 0.09 3488 0.54 ± 0.088 3366 0.49 ± 0.08 <0.0001 1548 0.51 ± 0.07 1818 0.47 ± 0.09 <0.0001

Affection Status N Valid Percent N Valid Percent N Valid Percent N Valid Percent N Valid Percent

Normal Glucose Tolerance 5119 74.0 2057 57.91 3062 90.97 1398 90.31 1664 91.53
Impaired Glucose Tolerance 439 6.35 366 10.30 73 2.17 34 2.2 39 2.15

Type 2 Diabetes 1345 19.44 1125 31.67 220 6.54 109 7.04 111 6.11
Type 1 Diabetes 15 0.22 4 0.11 11 0.33 7 0.45 4 0.22

Missing 966 966 0 0
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2.2. Phenotypes

Height and weight (in light, indoor clothing) were measured to the nearest cm and BMI
calculated as (weight in kg)/(height in m2). Waist and hip circumference were measured
with a non-elastic soft tape to the nearest cm, the waist halfway between the lowest rib
and the iliac crest and hip as the widest part of the gluteal region. Blood samples were
drawn after overnight fast for measurements of TC, HDL-C, triglycerides (TG) (using
a Cobas Mira analyser (Hoffman–LaRoche, Basel, Switzerland)), and ApoA1, ApoA2
and ApoB (immunochemical assays (Orion Diagnostica, Espoo, Finland)), as previously
described [17]. LDL-C was calculated using the Friedewald formula ((LDL-C = TC − HDL-
C − TG/5) if TG < 400 mg/dL) [34]. The ratio between ApoB and ApoA1 was calculated
as ApoB/ApoA1. For the HTB cohort, no lipid data were available.

Blom’s rank-based inverse normal transformation was applied to TG, APOB, and
LDL values and all obesity measures. All the other plasma lipid level measurements were
natural log transformed to achieve normal distribution. To remove outliers, values outside
of 5 SD were removed; however, remaining data were all within 3 SD.

2.3. Genotyping

The study participants were genotyped using the Sequenom MassARRAY iPLEX
Platform (Sequenom, San Diego, CA, USA) [35] for 172 SNPs already shown to be associated
with diabetes and related traits. From this, 11 SNPs associated with lipids and fatty liver
disease were selected (Supplementary Table S2). The SNPs were selected based on either
showing additional association to other cardiometabolic traits and/or based on biological
plausibility and interest. Additionally, the SNP rs4731702 in KLF14 were genotyped as a
putative positive control using Taqman (Applied Biosystems, Waltham, MA, USA); due to
failed genotyping in HTB, this SNP was only analysed for the Botnia cohort.

The genotyping success rate was >90% for all the SNPs genotyped. A total of 4.8% of
our samples were replicated and showed concordance with previous genotyping results,
and the known genotyping controls showed concordance with expected results. All SNPs
were in Hardy–Weinberg Equilibrium as tested in the individuals from the families.

2.4. Statistical Analyses

In the first model, Spearman rank correlation and partial correlation between father–
offspring (son/daughter), mother–offspring (son/daughter), and father–mother was calcu-
lated including only the oldest child from each family. In the second model, all offspring
from the families were included in a linear mixed model where family ID was used as
random effects. A third model was computed similar to the second but with the addition
of sex (when applicable), age, age2, and BMI of the offspring as covariates.

To assess whether the difference between the paternal and maternal correlation co-
efficients were significant, Fisher r-to-z transformation was implemented. To assess the
difference between the slopes from the linear mixed models, Wald’s test was applied.

Parental origin of alleles was inferred for all offspring. For heterozygous genotypes,
parental origin of the allele was inferred by comparing with parental genotypes, i.e., ApBm
or AmBp, where m was maternal and p was paternal. For the genetic analysis concerning
lipid-related traits, families from the Botnia study were split into 2 random subsets, for
discovery and replication, respectively (Supplementary Table S3). For a small subset of
HTB offspring, we also had triglyceride levels, which were used as a second replication.

To test for POE of genetic variants on the traits in the family-based cohorts, we
performed a generalized estimating equation analysis using IBM SPSS Statistics 22 (IBM,
Armonk, NY, USA), grouping by nuclear family ID. To determine if the allele manifested a
paternal or maternal effect, we compared the effect of the minor allele inherited from the
paternal side and from the maternal side independently, respectively. For the parent-of-
origin effect analysis, we compared the effects of the paternal against the maternal minor
allele in offspring carrying the heterozygous genotype. BMI, sex, age, age2, and diabetes
affection status were included as covariates for all analyses. For replication, p-values of
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<0.05 with the same direction of effect were considered significant. Bonferroni corrected
p-Values were indicated in the result tables.

For POE analyses in unrelated individuals, POE was implemented in QUICKTEST
v0.98 (University of Lausanne, Lausanne, Switzerland) software onto mean genotypes,
as described by Hoggart et al. [36]. The meta-analysis were performed using Metal v.
2011-03-25 (University of Michigan, Ann Arbor, MI, USA) [37].

3. Results
3.1. Parent-of-Origin Effects of Lipid Traits

Comparisons between generations in the Botnia study showed a statistically signif-
icant correlation between the father–offspring and mother–offspring lipid trait values
(Supplementary Table S4). For all the traits, the correlation coefficient was larger between
the mother–offspring pairs than the father–offspring pairs. The difference between maternal
and paternal associations was significant for daughters but not for sons. The parent-of-
origin effects were not significant when adjusted for sex and BMI.

To determine the genetic basis of these parental effects, locus-by-locus paternal, ma-
ternal, and parent-of-origin effects on plasma lipid levels were assessed for the selected
loci in the discovery and replication sub-cohorts of the Botnia study. Seven SNPs showed
nominal POE in the discovery sub-cohort (Table 2). Out of these SNP/Trait combinations,
the parent-of-origin effect of the rs2131925 SNP at the DOCK7/ANGPLT3 locus on ApoA2
levels was replicated in the replication subset.

In the combined analyses, a total of four SNPs showed a POE on at least one trait
(Table 2). These included the rs2131925 SNP at the DOCK7/ANGPLT3 locus, wherein
the G allele was associated with decreased ApoA1 and ApoA2 when paternally inher-
ited. However, the maternally inherited G allele was significantly associated with lower
ApoB/ApoA1 ratio: the differences in the effect of the paternal and maternal G on ApoA1
and APoB/ApoA1 ratio were nominally significant, whereas the POE on ApoA2 was
significant after correction for multiple testing. In addition to the rs2131925 SNP, the re-
sults included variants at TMEM57 (rs12027135) wherein the A allele were associated with
decreased ApoA2 levels when paternally inherited but increased ApoA2 levels when mater-
nally inherited. The A allele of rs10503669 at the LPL locus was associated with decreased
ApoA2 levels when maternally inherited. The rs12272004 SNP near the APOA gene also
showed POE, with the A allele associated with decreasing ApoB and ApoB/ApoA1 ratio
when paternally inherited but with increasing trait values when maternally inherited. The
maternal A allele near the APOA gene was also associated with increased and the paternal
allele with decreased TG levels; while the latter effect was not statistically significant, the
POE was nominally significant. This POE was robustly replicated with the same direction
of effect for the maternal and paternal alleles in the HTB families.

3.2. Sex-Specific POE

Levels of total cholesterol, HDL-C, TG, ApoA1, ApoB, and ApoB/Apo1 ratio showed
stronger correlations between mothers and daughters compared to fathers and daughters,
but no significant differences were seen between father–son and mother–son correlations
(Supplementary Table S4). Therefore, the genetic basis of these POE was analysed in
sons and daughters separately on lipids (Table 3). The ApoA1-lowering association of the
paternal G allele and the POE of the rs2131925 SNP at the DOCK7/ANGPTL3 locus was
seen only in daughters but not in sons. The same paternal G allele was associated with
decreased ApoA2 levels in sons as well as daughters; however, the POE was significant only
in daughters. The paternal G allele also associated with ApoB/ApoA1 ratio in daughters in
a POE manner; however, this association was not observed in sons. The POE of the variants
at the TMEM57 and LPL loci on ApoA2 levels, APOB and KLF14 on ApoB/ApoA1 ratio,
and APOA variant on TG levels were only seen in sons.
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Table 2. Results of POE on lipid related traits.

Trait/SNP Cohort CHR GENE Location E/O N B_MAT P_MAT B_PAT P_PAT P_POE

ApoA1 ln

rs2131925 discovery 1 ANGTPL3/DOCK7 intron G/T 266 −0.002 0.89 −0.028 0.05 0.25
rs2131925 replication 1 ANGTPL3/DOCK7 intron G/T 238 0.017 0.34 −0.027 0.046 * 0.03 *
rs2131925 combined 1 ANGTPL3/DOCK7 intron G/T 504 0.006 0.6 −0.030 0.01 * 0.03 *
ApoA2 ln

rs12027135 discovery 1 TMEM57 intron A/T 336 0.036 0.04 * −0.041 0.02 * 0.001 *
rs12027135 replication 1 TMEM57 intron A/T 278 0.028 0.12 0.016 0.37 0.64
rs12027135 combined 1 TMEM57 intron A/T 614 0.035 0.01 * −0.013 0.33 0.01 *
rs2131925 discovery 1 ANGTPL3/DOCK7 intron G/T 252 −0.008 0.65 −0.064 0.0002 # 0.02 *
rs2131925 replication 1 ANGTPL3/DOCK7 intron G/T 222 0.02 0.31 −0.039 0.06 0.02 *
rs2131925 combined 1 ANGTPL3/DOCK7 intron G/T 474 0.005 0.69 −0.053 0.0002 # 0.001 *

rs10503669 discovery 8 LPL intergenic A/C 147 −0.085 0.0002 # −0.026 0.29 0.14
rs10503669 replication 8 LPL intergenic A/C 128 −0.041 0.09 0.037 0.11 0.11
rs10503669 combined 8 LPL intergenic A/C 275 −0.066 0.0002 # 0.006 0.73 0.03 *

ApoB n

rs673548 discovery 2 APOB intron A/G 240 −0.162 0.10 0.117 0.17 0.02 *
rs673548 replication 2 APOB intron A/G 224 0.21 0.05 0.186 0.07 0.86
rs673548 combined 2 APOB intron A/G 464 0.022 0.76 0.152 0.02 * 0.15

rs12272004 discovery 11 APOA intergenic A/C 102 0.127 0.29 −0.444 0.004 * 0.002 *
rs12272004 replication 11 APOA intergenic A/C 102 0.045 0.75 0.017 0.92 0.89
rs12272004 combined 11 APOA intergenic A/C 204 0.077 0.42 −0.223 0.04 * 0.03 *

LDL-Cholesterol n

rs2479409 discovery 1 PCSK9 nearGene-5 G/A 327 0.020 0.83 −0.223 0.02 * 0.04 *
rs2479409 replication 1 PCSK9 nearGene-5 G/A 325 −0.084 0.36 −0.14 0.11 0.62
rs2479409 combined 1 PCSK9 nearGene-5 G/A 652 −0.03 0.64 −0.178 0.01 * 0.07

Ratio ApoB/ApoA1 ln

rs10503669 discovery 8 LPL intergenic A/C 153 −0.096 0.01 * 0.006 0.86 0.04 *
rs10503669 replication 8 LPL intergenic A/C 132 0.004 0.91 0.004 0.91 0.74
rs10503669 combined 8 LPL intergenic A/C 285 −0.053 0.06 0.004 0.88 0.24
rs12272004 discovery 11 APOA intergenic A/C 102 0.037 0.34 −0.112 0.01 * 0.01 *
rs12272004 replication 11 APOA intergenic A/C 102 0.034 0.41 −0.03 0.52 0.41
rs12272004 combined 11 APOA intergenic A/C 204 0.033 0.26 −0.074 0.01 * 0.01 *
rs2131925 discovery 1 ANGTPL3/DOCK7 intron G/T 266 −0.023 0.4 0.017 0.49 0.33
rs2131925 replication 1 ANGTPL3/DOCK7 intron G/T 238 −0.074 0.02 * 0.036 0.22 0.01 *
rs2131925 combined 1 ANGTPL3/DOCK7 intron G/T 504 −0.046 0.03 * 0.029 0.14 0.01 *

Triglycerides n

rs12272004 discovery 11 APOA intergenic A/C 109 0.188 0.12 −0.203 0.24 0.06
rs12272004 replication 11 APOA intergenic A/C 110 0.228 0.06 −0.023 0.89 0.2
rs12272004 combined 11 APOA intergenic A/C 219 0.223 0.01 * −0.092 0.43 0.03 *
rs12272004 HTB 11 APOA intergenic A/C 13 0.727 0.0001 # −0.313 0.26 0.0001 #

CHR, chromosome; GENE, nearest gene; E/O, effect allele/other allele; N, number of heterozygous offspring tested; B_MAT, B_PAT, effect of maternally/paternally inherited minor
allele compared to major homozygous allele carriers; P_MAT, p-Value for maternal effect; P_PAT, p-Value for paternal effect; P_POE, p-Value for parent-of-origin effect; ln, trait was
naturally log transformed; n, trait was normalized using Blom’s rank-based inverse normal transformation. All analyses were adjusted for sex, BMI, age, age2, and diabetes affection
status. * p < 0.05, # p < 0.0005 (Bonferroni corrected p-value).
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Table 3. POE on lipid levels in sons and daughters separately in Botnia.

TRAIT/SNP CHR GENE Location E/O B_MAT P_MAT B_PAT P_PAT P_POE B_MAT P_MAT B_PAT P_PAT P_POE

Sons Daughters

ApoA1 ln

rs2131925 1 ANGTPL3/DOCK7 intron G/T −0.006 0.74 −0.028 0.05 0.21 0.018 0.28 −0.028 0.05 * 0.03 *
ApoA2 ln

rs12027135 1 TMEM57 intron A/T 0.03 0.07 −0.02 0.25 0.02 * 0.029 0.14 −0.017 0.35 0.07
rs2131925 1 ANGTPL3/DOCK7 intron G/T −0.005 0.81 −0.05 0.01 * 0.1 0.016 0.36 −0.043 0.01 * 0.01 *
rs10503669 8 LPL intergenic A/C −0.056 0.01 * 0.025 0.25 0.04 * −0.071 0.001 * −0.017 0.49 0.35

ApoB n

rs12272004 11 APOA intergenic A/C 0.145 0.26 −0.193 0.25 0.1 0.061 0.63 −0.27 0.07 0.07
Ratio

ApoB/ApoA1 ln

rs2131925 1 ANGTPL3/DOCK7 intron G/T −0.046 0.13 −0.012 0.65 0.33 −0.034 0.24 0.07 0.01 * 0.01 *
rs673548 2 APOB intron A/G −0.001 0.98 0.072 0.002 * 0.03 * 0.023 0.37 −0.006 0.86 0.58

rs4731702 7 KLF14 intergenic T/C −0.059 0.02 * 0.008 0.79 0.03 * 0.013 0.65 0 0.99 0.88
rs12272004 11 APOA intergenic A/C 0.034 0.42 −0.057 0.21 0.17 0.028 0.47 −0.09 0.04 * 0.07

Triglycerides n

rs12272004 11 APOA intergenic A/C 0.344 0.01 * −0.104 0.47 0.02 * 0.098 0.34 −0.069 0.71 0.43

CHR, chromosome; GENE, nearest gene; E/O, effect allele/other allele; B_MAT, B_PAT, effect of maternally/paternally inherited minor allele compared to major homozygous allele
carriers; P_MAT, p-Value for maternal effect; P_PAT, p-Value for paternal effect; P_POE, p-Value for parent-of-origin effect; ln, trait was naturally log transformed; n, trait was normalized
using Blom’s rank-based inverse normal transformation. All analyses were adjusted for BMI, age, age2, and diabetes affection status. * p < 0.05; Bonferroni corrected p-Value < 0.0005.
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3.3. POE on Obesity Traits

Given the strong relationship between obesity and lipid levels, the selected SNPs were
assessed for their POE on obesity traits, including body mass index (BMI), waist–hip ratio
(WHR), waist–hip ratio adjusted for BMI (WHRadjBMI), and waist–height ratio (WHtR)
(Table 4). The rs2131925 SNP at the DOCK7/ANGPTL3 locus showed POE on WHR as
well as WHRadjBMI in the families from the Botnia study, with the paternally inherited
G allele associated with increased whereas maternally inherited G with decreased WHR
and WHRadjBMI. The POE was also replicated in a second cohort of families from the HTB
with directional consistency for the maternal and paternal allelic effects.

The A allele of the rs10503669 SNP at the LPL locus was associated with decreased
WHR, WHRadjBMI, and WHtR when maternally inherited and showed the opposite effect
for the paternal allele. Significant POE was seen for this variant for all the aforementioned
obesity traits in the Botnia families. The meta-analysis POE p-values were significant for all
the traits with directional consistency except for rs10503669 for WH when adjusting for
BMI (Table 4).

This SNP also showed increased variance in obesity related traits in heterozygous
individuals from three cohorts of unrelated individuals (DGI, PPP-Botnia, and MDC),
further supporting our findings (Supplementary Table S5a,b).

3.4. Sex-Specific POE Effects on Obesity Traits

Given the sex-specific parental effects of lipid levels, the genetic sex-specific parental
effects on obesity were next assessed. After meta-analysis of POE on obesity in daugh-
ters/sons from both studies, SNPs at three loci showed significant POE on obesity (Table 5).
The PABPC4 variant rs4660293 showed POE on WHR and WHRadjBMI only in the daugh-
ters, with the paternal allele associated with lower obesity measures. The LPL variant
rs10503669 showed POE on BMI and WHR and WHtR in daughters, with the maternal A
allele associated with lower BMI, WHR, and WHtR than its paternal counterpart in the
Botnia and HTB families. A similar effect was also observed in sons in the Botnia study but
not in HTB. The rs2131925 SNP at the DOCK7/ANGPTL3 locus also showed POE on WHR
and WHRadjBMI in daughters with the paternal G allele associated with increasing WHR
and WHRadjBMI to a higher degree than the maternal G in both family cohorts. A similar
trend was also seen in the Botnia sons before adjusting for BMI but not in HTB.
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Table 4. POE on obesity related traits in Botnia and HTB.

TRAIT/SNP CHR GENE LOCATION E/O N B_MAT P_MAT B_PAT P_PAT P_POE N B_MAT P_MAT B_PAT P_PAT P_POE
Meta-

Analysis
p-Value

Botnia HTB Families

BMI
rs4731702 7 KLF14 intergenic T/C 643 −0.105 0.11 0.045 0.47 0.04 *

rs10503669 8 LPL intergenic A/C 306 −0.098 0.22 0.257 0.001 * 0.001 * 266 0.053 0.61 0.155 0.07 0.44 0.004 *
WHR

rs2131925 1 ANGPTL3/DOCK7 intron G/T 576 −0.101 0.17 0.121 0.11 0.02 * 719 −0.075 0.22 0.097 0.12 0.03 * 0.006 *
rs10503669 8 LPL intergenic A/C 306 −0.337 0.001 * 0.09 0.26 0.001 * 266 0.071 0.55 0.139 0.07 0.63 0.005 *

WHRadjBMI
rs2131925 1 ANGTPL3/DOCK7 intron G/T 576 −0.132 0.08 0.073 0.32 0.03 * 719 −0.026 0.68 0.132 0.02 * 0.04 * 0.009 *

rs10503669 8 LPL intergenic A/C 306 −0.316 0.001 * −0.02 0.81 0.02 * 266 0.041 0.72 0.053 0.48 0.92 0.09
WHtR

rs10503669 8 LPL intergenic A/C 306 −0.235 0.01 * 0.317 0.00004 # 0.000001 # 266 −0.025 0.81 0.154 0.07 0.17 0.000003 #

CHR, chromosome; GENE, nearest gene; E/O, effect allele/other allele; B_MAT, B_PAT, effect of maternally/paternally inherited minor allele compared to major homozygous allele
carriers; N, number of heterozygous offspring tested; P_MAT, p-Value for maternal effect; P_PAT, p-Value for paternal effect; P_POE, p-Value for parent-of-origin effect. All traits was
normalized using Blom’s rank-based inverse normal transformation, and adjusted for sex, age, age2, and diabetes affection status. * p < 0.05, # p < 0.001 (Bonferroni corrected p-Value).
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Table 5. Sex-specific POE effects on obesity traits.

TRAIT/SNP CHR GENE SNP location E/O B_MAT P_MAT B_PAT P_PAT P_POE B_MAT P_MAT B_PAT P_PAT P_POE Meta_P_POE

Botnia—Daughters HTB—Daughters

BMI
rs10503669 8 LPL intergenic A/C −0.273 0.01 * 0.195 0.1 0.002 * −0.038 0.84 0.367 0.001 * 0.05 0.001 *

WHR
rs2131925 1 ANGTPL3/ DOCK7 intron G/T 0.064 0.51 0.219 0.04 * 0.24 −0.152 0.06 0.07 0.41 0.04 * 0.05
rs4660293 1 PABPC4 intron G/A 0.098 0.28 −0.073 0.4 0.15 0.179 0.03 * −0.114 0.11 0.003 * 0.004 *

rs10503669 8 LPL intergenic A/C −0.379 0.01 * 0.103 0.34 0.01 * 0.093 0.54 0.299 0.001 * 0.23 0.02 *
WHRadjBMI

rs2131925 1 ANGTPL3/ DOCK7 intron G/T 0.003 0.98 0.21 0.05 * 0.12 −0.095 0.24 0.128 0.1 0.03 * 0.02 *
rs4660293 1 PABPC4 intron G/A 0.102 0.28 −0.131 0.15 0.05 0.094 0.26 −0.175 0.01 * 0.01 * 0.004 *

WHtR
rs10503669 8 LPL intergenic A/C −0.326 0.01 * 0.302 0.004 * 0.0001 # −0.022 0.88 0.347 0.001 * 0.03 * 0.00004 #

Botnia—Sons HTB—Sons

BMI
rs10503669 8 LPL intergenic A/C 0.081 0.44 0.332 0.002 * 0.08 0.11 0.38 −0.151 0.25 0.14 0.06

WHR
rs2131925 1 ANGTPL3/ DOCK7 intron G/T −0.253 0.01 * −0.004 0.96 0.04 * 0.021 0.82 0.105 0.24 0.47 0.09
rs4660293 1 PABPC4 intron G/A 0.016 0.86 0.048 0.57 0.78 0.007 0.94 0.023 0.77 0.88 0.94

rs10503669 8 LPL intergenic A/C −0.318 0.02 * 0.077 0.51 0.02 * 0.042 0.79 −0.025 0.84 0.74 0.08
WHRadjBMI

rs2131925 1 ANGTPL3/ DOCK7 intron G/T −0.232 0.02 * −0.143 0.11 0.47 0.068 0.46 0.13 0.13 0.59 0.63
rs4660293 1 PABPC4 intron G/A 0.049 0.58 0.144 0.07 0.4 −0.009 0.91 0.093 0.24 0.31 0.38

WHtR
rs10503669 8 LPL intergenic A/C −0.145 0.22 0.347 0.002 * 0.002 * −0.057 0.68 −0.131 0.31 0.69 0.01 *

Parent-of-origin effects on obesity related traits in sons. CHR, chromosome; GENE, nearest gene; E/O, effect allele/other allele; B_MAT, B_PAT, effect of maternally/paternally inherited
effect allele compared to major homozygous for other allele; P_MAT, p-Value for maternal effect; P_PAT, p-Value for paternal effect; P_POE, p-Value for parent-of-origin effect. All traits
was normalized using Blom’s rank-based inverse normal transformation, and adjusted for age, age2, and diabetes affection status. * p < 0.05, # p < 0.001 (Bonferroni corrected p-Value).
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4. Discussion

Sex-specific parental effects of plasma lipid levels have been reported in multiple
family studies, with the lipid levels showing a certain degree of heritability in the families.
However, very few genetic variants have been shown to associate with lipid traits in a
POE manner thus far. In the present study, we investigated the genetic basis of sex-specific
parental effects of plasma lipid levels by examining if common variants associated with
lipid levels from previous GWAS studies also associate with lipid traits in a POE-specific
manner. Given the strong relationship between lipid traits and obesity, we assessed if these
same variants showed POE on obesity.

We discovered genetic parental-specific associations for seven SNPs to at least one
trait, including sex-specific POE. Our key findings were the robust POE of variants at the
LPL and DOCK7/ANGPTL3 loci on obesity measures in both family cohorts, and the same
variants also showed POE on lipid traits in the Botnia family study. The variant at the LPL
loci also showed potential POE in unrelated individuals.

In previous GWAS, the minor allele G of the rs2131925 SNP (ANGPTL3/DOCK7)
associated with a decrease in TC, TG, and LDL-C levels [5,38], which would be benefi-
cial in terms of cardiovascular health. Our study found POE on ApoA1, ApoA2, and
ApoB/ApoA1 ratio, where the G allele, when inherited paternally, was associated with
lower ApoA1 and ApoA2 but when maternally inherited, was associated with lower
ApoB/ApoA1 ratio. When looking at obesity related traits, the G allele showed a trend
to lower waist-hip ratio with and without adjusting for BMI when inherited maternally
and increased ratio when inherited paternally in both Botnia and HTB. For all these traits,
the direction of effect was such as would be beneficial for cardio-vascular health when the
allele was maternally inherited.

The SNP rs10503669 (LPL) showed a POE on ApoA2, with the maternally inherited A
allele associated with decreased ApoA2. The A allele of this SNP has previously shown
association to increased HDL and decreased TG and TC in previous GWAS. This SNP also
showed POE for obesity traits, with the maternally inherited A allele associated with low-er
WH, WHadjBMI, and WHtR in Botnia, while the paternally inherited A allele was associated
to increased BMI and WHtR. The POE tests in HTB families did not reach significance,
but the direction of effect showed the same trend, and the meta-analysis was significant
for POE for BMI, WH, and WHtR. This was seen for both Botnia and HTB daughters
(meta-analysis significant for BMI and WHtR) while only in Botnia sons and not for HTB
sons. The maternal effect seen on ApoA2 would be expected to be negatively associated
with cardiovascular, while the effect on obesity would be expected to be beneficial.

The ANGPTL3 and LPL variants were also eQTLs for their respective genes (GTEx
data [39]) and associated with ApoA2 levels. This is not surprising given that ApoA2 is
the second largest component of HDL, and ANGPTL3 regulates plasma HDL through
endothelial lipase (EL) [40], whereas LPL also contributes to HDL metabolism by facil-
itating FFA availability [30]. ANGPTL3 is almost exclusively expressed in the liver and
released into circulation, where it undergoes cleavage by hepatic proprotein convertases
and is thus activated [41–43]. ANGPTL3 is an important regulator of the lipoprotein lipase
enzyme coding LPL, which is a key enzyme in the lipolysis of triglycerides, VLDLs, and
chylomicrons [44–46]. Given the regulatory effects of ANGPTL3 on LPL, the physiological
consequences of the paternal and maternal effects on the lipid levels are then directionally
consistent.

The association to higher obesity measures of the paternal G allele of rs2131925 and the
paternal A allele of rs10503669 was consistent in both the Botnia and the Hungarian cohorts.
It is possible that this could be a representation of the kinship theory [47], with the paternal
and maternal programming in direct oppositions and in a state of “tug-of-war,” manifested
as maternal programming reducing obesity but paternal programming increasing obesity,
further facilitated by the catch-up effect [48].

Previous studies have demonstrated the sexual dimorphism in lipid traits with
some evidence for a genetic basis [5,49]. Consistent with previous studies, the present
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study showed a significant difference in correlation between father–offspring and mother–
offspring for most of the traits tested. Genetic parent-of-origin effects of common variants
could explain some of the parental discordance of phenotype correlations as well as sex-
specific parental effects in lipid levels in offspring. Some recent studies have shown genetic
differences between the genders, with SNPs either showing an association to a trait only in
one gender or different effect sizes for men and women [5,50].

Analyses of gender-specific effect of genetic variants are possible to perform in unre-
lated groups. However, we also show that the picture is even more complex, with variants
showing not only different effects in males vs. females but also that the parent-of-origin
effect may differ between sons and daughters. This is something that would not be seen in
unrelated individuals and may provide valuable clues to both the missing heritability of
lipid traits as well as an explanation of some of the differences seen in lipid levels among
the sexes.

Studies on POE are limited since family-based studies and especially investigation
of POE require substantial study power. To address this, we selected a limited number
of candidate genes to assess if they could explain some of the parental effects. Given the
lack of replication for the lipid measurements in family data, we further subdivided the
Botnia study into two random, family-based cohorts. Another limitation of our study
regarding the variants showing sex-specific POE, with SNPs showing POE in daughters
but not in sons, could be attributed to low study power or population specific effects.
Another limitation of our study is that, due to low study power, very few SNPs showed
genome-wide significant effects; however, the replication in another large family-based
cohort (HTB) provides a robust validation of the findings.

It is worth pointing out that our study does not investigate whether any of these SNPs
is the functional variant driving these results, and we cannot prove a causal effect. Given
the strong correlation between lipid levels and obesity, it could very well be that POE on
obesity could be mediated by the POE on lipids or vice versa. However, large-scale studies
are required to explore the causality through approaches like Mendelian randomization.

Given the results, it is expected there could be a large number of genetic loci showing
POE on lipid traits and obesity, and further studies in larger family cohorts will be necessary
to determine the genetic basis of the sex-specific parental effects. Our results highlight
the need to consider the possibility of POE in analyses of lipid traits and obesity in order
to gain a correct understanding of their effects. A deeper knowledge of the genetic basis
of dyslipidemia could help us understand the genes and pathways involved and lead to
better ways of prevention, prediction, and treatment of CVD.
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Author Contributions: Conceptualization, R.B.P., A.L. and L.G.; methodology, R.B.P., A.L. and G.H.;
validation, A.L., R.B.P. and G.K.; formal analysis, A.L., R.B.P., G.H. and E.A.; resources, L.G., T.T., L.K.
and M.V.; data curation, A.L., G.K. and R.B.P.; writing—original draft preparation, A.L. and R.B.P.;
writing—review and editing, all authors; supervision, R.B.P.; funding acquisition, T.T., L.G., L.K. and
R.B.P. All authors have read and agreed to the published version of the manuscript.

Funding: The Botnia study has been financially supported by grants from Folkhälsan Research
Foundation, the Sigrid Juselius Foundation, The Academy of Finland (grants no. 263401, 267882,
312063, 336822 to LG; and 336826 to TT), University of Helsinki, Nordic Center of Excellence in Disease
Genetics, EU (EXGENESIS, MOSAIC FP7-600914), Ollqvist Foundation, Swedish Cultural Foundation
in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Signe
and Ane Gyllenberg Foundation, Finnish Medical Society, Paavo Nurmi Foundation, State Research
Funding via the Helsinki University Hospital, Perklén Foundation, Närpes Health Care Foundation,

https://www.mdpi.com/article/10.3390/genes13010091/s1
https://www.mdpi.com/article/10.3390/genes13010091/s1


Genes 2022, 13, 91 13 of 15

and Ahokas Foundation. The study has also been supported by the Ministry of Education in Finland,
Municipal Heath Care Center and Hospital in Jakobstad, and Health Care Centers in Vasa, Närpes
and Korsholm. The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreement n◦ 269045. The study is also supported by the Swedish Research Council (2015-06722,
2021-02623 to RBP and 2020-02191 to EA), Crafoord foundation (project grant 20200891 to RBP),
Hjärt-Lungfonden (project grant: 20180522 to RBP and20180640to EA), and Hjelt Foundation (RBP).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Ethics Committees as follows: Botnia study and
DGI: The Ethics Committee of Helsinki and Uusimaa Hospital District, Finland (Dnro 574/E5/03,
Drno: HUS/3576/2017). Local ethics committee, Balatonfured, Hungary for HTB (Reg nr 99239,
Reg nr 01-020). The Malmö Diet and Cancer study (MDC) (Dnr. LU51-90). The Botnia PPP study:
Ethical committee at Vasa central hospital (Dnr. 6.4.1989) and ethical committee at Jakobstad hospital
(Dnr. 1/95).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: All data related to genotypes and phenotypes are deposited at the
LUDC repository (www.ludc.lu.se/resources/repository, accessed on 15 September 2021) under
the following accession numbers and are available upon request: LUDC2021.10.1 (Botnia study),
LUDC2021.10.2 (Hungarian transdanubian biobank), LUDC2021.10.3 (PPP Botnia), LUDC2021.10.4
(DGI), LUDC2021.10.5 (MDC).

Acknowledgments: The authors wish to thank Jasmina Kravic for masterly managing the databases,
Mattias Borell and Johan Hultman for superb system administration, Jacqueline Postma for skilful
grant management, Peter Almgren for fruitful discussions of statistics, and Gabriella Gremsperger,
Maria Sterner, and Malin Neptin for excellent lab work. The participants in the Botnia study group and
The Hungarian Transdanubian Biobank are greatly appreciated and thanked for their participation.
The skillful assistance of the Botnia study group is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Khot, U.N.; Khot, M.B.; Bajzer, C.T.; Sapp, S.K.; Ohman, E.M.; Brener, S.J.; Ellis, S.G.; Lincoff, A.M.; Topol, E.J. Prevalence of

conventional risk factors in patients with coronary heart disease. JAMA 2003, 290, 898–904. [CrossRef]
2. Greenland, P.; Knoll, M.D.; Stamler, J.; Neaton, J.D.; Dyer, A.R.; Garside, D.B.; Wilson, P.W. Major risk factors as antecedents of

fatal and nonfatal coronary heart disease events. JAMA 2003, 290, 891–897. [CrossRef]
3. WHO. Available online: https://www.who.int/data/gho/publications/world-health-statistics (accessed on 16 March 2016).
4. Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al.

Heart disease and stroke statistics–2014 update: A report from the American Heart Association. Circulation 2014, 129, e28–e292.
[CrossRef]

5. Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman,
D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [CrossRef]
[PubMed]

6. Aulchenko, Y.S.; Ripatti, S.; Lindqvist, I.; Boomsma, D.; Heid, I.M.; Pramstaller, P.P.; Penninx, B.W.; Janssens, A.C.; Wilson, J.F.;
Spector, T.; et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 2009,
41, 47–55. [CrossRef] [PubMed]

7. Iliadou, A.; Snieder, H.; Wang, X.; Treiber, F.A.; Davis, C.L. Heritabilities of lipids in young European American and African
American twins. Twin Res. Hum. Genet. 2005, 8, 492–498. [CrossRef]

8. Jermendy, G.; Horvath, T.; Littvay, L.; Steinbach, R.; Jermendy, A.L.; Tarnoki, A.D.; Tarnoki, D.L.; Metneki, J.; Osztovits, J. Effect of
genetic and environmental influences on cardiometabolic risk factors: A twin study. Cardiovasc. Diabetol. 2011, 10, 96. [CrossRef]

9. Heller, D.A.; de Faire, U.; Pedersen, N.L.; Dahlen, G.; McClearn, G.E. Genetic and environmental influences on serum lipid levels
in twins. N. Engl. J. Med. 1993, 328, 1150–1156. [CrossRef] [PubMed]

10. Iliadou, A.; Lichtenstein, P.; de Faire, U.; Pedersen, N.L. Variation in genetic and environmental influences in serum lipid and
apolipoprotein levels across the lifespan in Swedish male and female twins. Am. J. Med. Genet. 2001, 102, 48–58. [CrossRef]

www.ludc.lu.se/resources/repository
http://doi.org/10.1001/jama.290.7.898
http://doi.org/10.1001/jama.290.7.891
https://www.who.int/data/gho/publications/world-health-statistics
http://doi.org/10.1161/01.cir.0000441139.02102.80
http://doi.org/10.1038/nature09270
http://www.ncbi.nlm.nih.gov/pubmed/20686565
http://doi.org/10.1038/ng.269
http://www.ncbi.nlm.nih.gov/pubmed/19060911
http://doi.org/10.1375/twin.8.5.492
http://doi.org/10.1186/1475-2840-10-96
http://doi.org/10.1056/NEJM199304223281603
http://www.ncbi.nlm.nih.gov/pubmed/8455681
http://doi.org/10.1002/1096-8628(20010722)102:1&lt;48::AID-AJMG1388&gt;3.0.CO;2-4


Genes 2022, 13, 91 14 of 15

11. Souren, N.Y.; Paulussen, A.D.; Loos, R.J.; Gielen, M.; Beunen, G.; Fagard, R.; Derom, C.; Vlietinck, R.; Zeegers, M.P. Anthropometry,
carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: Heritabilities. Diabetologia 2007, 50, 2107–2116.
[CrossRef] [PubMed]

12. Zhang, S.; Liu, X.; Yu, Y.; Hong, X.; Christoffel, K.K.; Wang, B.; Tsai, H.J.; Li, Z.; Liu, X.; Tang, G.; et al. Genetic and environmental
contributions to phenotypic components of metabolic syndrome: A population-based twin study. Obesity 2009, 17, 1581–1587.
[CrossRef]

13. Friedlander, Y.; Austin, M.A.; Newman, B.; Edwards, K.; Mayer-Davis, E.I.; King, M.C. Heritability of longitudinal changes in
coronary-heart-disease risk factors in women twins. Am. J. Hum. Genet. 1997, 60, 1502–1512. [CrossRef]

14. Middelberg, R.P.; Spector, T.D.; Swaminathan, R.; Snieder, H. Genetic and environmental influences on lipids, lipoproteins, and
apolipoproteins: Effects of menopause. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1142–1147. [CrossRef] [PubMed]

15. Kervinen, K.; Kaprio, J.; Koskenvuo, M.; Juntunen, J.; Kesaniemi, Y.A. Serum lipids and apolipoprotein E phenotypes in identical
twins reared apart. Clin. Genet. 1998, 53, 191–199. [CrossRef] [PubMed]

16. Almgren, P.; Lehtovirta, M.; Isomaa, B.; Sarelin, L.; Taskinen, M.R.; Lyssenko, V.; Tuomi, T.; Groop, L.; Botnia Study, G. Heritability and
familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011, 54, 2811–2819. [CrossRef]

17. Groop, L.; Forsblom, C.; Lehtovirta, M.; Tuomi, T.; Karanko, S.; Nissen, M.; Ehrnstrom, B.O.; Forsen, B.; Isomaa, B.; Snickars, B.;
et al. Metabolic consequences of a family history of NIDDM (the Botnia study): Evidence for sex-specific parental effects. Diabetes
1996, 45, 1585–1593. [CrossRef]

18. Kasperska-Czyzyk, T.; Jedynasty, K.; Bowsher, R.R.; Holloway, D.L.; Stradowska, I.; Stepien, K.; Nowaczyk, R.; Szymczak, W.;
Czyzyk, A. Difference in the influence of maternal and paternal NIDDM on pancreatic beta-cell activity and blood lipids in
normoglycaemic non-diabetic adult offspring. Diabetologia 1996, 39, 831–837. [CrossRef]

19. Lee, S.C.; Pu, Y.B.; Chow, C.C.; Yeung, V.T.; Ko, G.T.; So, W.Y.; Li, J.K.; Chan, W.B.; Ma, R.C.; Critchley, J.A.; et al. Diabetes in Hong
Kong Chinese: Evidence for familial clustering and parental effects. Diabetes Care 2000, 23, 1365–1368. [CrossRef]

20. Tan, J.T.; Tan, L.S.; Chia, K.S.; Chew, S.K.; Tai, E.S. A family history of type 2 diabetes is associated with glucose intolerance and
obesity-related traits with evidence of excess maternal transmission for obesity-related traits in a South East Asian population.
Diabetes Res. Clin. Pract. 2008, 82, 268–275. [CrossRef] [PubMed]

21. Lawson, H.A.; Cheverud, J.M.; Wolf, J.B. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 2013,
14, 609–617. [CrossRef]

22. Perry, J.R.; Day, F.; Elks, C.E.; Sulem, P.; Thompson, D.J.; Ferreira, T.; He, C.; Chasman, D.I.; Esko, T.; Thorleifsson, G.; et al.
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014, 514, 92–97. [CrossRef]

23. Prasad, R.B.; Lessmark, A.; Almgren, P.; Kovacs, G.; Hansson, O.; Oskolkov, N.; Vitai, M.; Ladenvall, C.; Kovacs, P.; Fadista,
J.; et al. Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia 2016, 59,
1702–1713. [CrossRef] [PubMed]

24. Hochner, H.; Allard, C.; Granot-Hershkovitz, E.; Chen, J.; Sitlani, C.M.; Sazdovska, S.; Lumley, T.; McKnight, B.; Rice, K.;
Enquobahrie, D.A.; et al. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults. PLoS Genet. 2015, 11,
e1005573. [CrossRef]

25. Granot-Hershkovitz, E.; Wu, P.; Karasik, D.; Peter, I.; Peloso, G.M.; Levy, D.; Vasan, R.S.; Adrienne Cupples, L.; Liu, C.T.; Meigs,
J.B.; et al. Searching for parent-of-origin effects on cardiometabolic traits in imprinted genomic regions. Eur. J. Hum. Genet. 2020,
28, 646–655. [CrossRef] [PubMed]

26. Mozaffari, S.V.; DeCara, J.M.; Shah, S.J.; Sidore, C.; Fiorillo, E.; Cucca, F.; Lang, R.M.; Nicolae, D.L.; Ober, C. Parent-of-origin
effects on quantitative phenotypes in a large Hutterite pedigree. Commun. Biol. 2019, 2, 28. [CrossRef]

27. Lyssenko, V.; Groop, L.; Prasad, R.B. Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Rev. Diabet.
Stud. RDS 2015, 12, 233–242. [CrossRef]

28. Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in
KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [CrossRef] [PubMed]

29. Kong, A.; Steinthorsdottir, V.; Masson, G.; Thorleifsson, G.; Sulem, P.; Besenbacher, S.; Jonasdottir, A.; Sigurdsson, A.; Kristinsson,
K.T.; Jonasdottir, A.; et al. Parental origin of sequence variants associated with complex diseases. Nature 2009, 462, 868–874.
[CrossRef]

30. Feingold, K.R. Obesity and Dyslipidemia. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W.,
Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., et al., Eds.; MDText.com, INC: South Dartmouth, MA, USA,
2000.

31. Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.;
et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336.
[CrossRef]

32. Isomaa, B.; Forsén, B.; Lahti, K.; Holmström, N.; Wadén, J.; Matintupa, O.; Almgren, P.; Eriksson, J.G.; Lyssenko, V.; Taskinen,
M.R.; et al. A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention
of Diabetes (PPP)-Botnia study. Diabetologia 2010, 53, 1709–1713. [CrossRef]

33. Rosvall, M.; Persson, M.; Östling, G.; Nilsson, P.M.; Melander, O.; Hedblad, B.; Engström, G. Risk factors for the progression of
carotid intima-media thickness over a 16-year follow-up period: The Malmö Diet and Cancer Study. Atherosclerosis 2015, 239,
615–621. [CrossRef] [PubMed]

http://doi.org/10.1007/s00125-007-0784-z
http://www.ncbi.nlm.nih.gov/pubmed/17694296
http://doi.org/10.1038/oby.2009.125
http://doi.org/10.1086/515462
http://doi.org/10.1161/01.ATV.0000022889.85440.79
http://www.ncbi.nlm.nih.gov/pubmed/12117729
http://doi.org/10.1111/j.1399-0004.1998.tb02675.x
http://www.ncbi.nlm.nih.gov/pubmed/9630073
http://doi.org/10.1007/s00125-011-2267-5
http://doi.org/10.2337/diab.45.11.1585
http://doi.org/10.1007/s001250050517
http://doi.org/10.2337/diacare.23.9.1365
http://doi.org/10.1016/j.diabres.2008.08.005
http://www.ncbi.nlm.nih.gov/pubmed/18804306
http://doi.org/10.1038/nrg3543
http://doi.org/10.1038/nature13545
http://doi.org/10.1007/s00125-016-3973-9
http://www.ncbi.nlm.nih.gov/pubmed/27155871
http://doi.org/10.1371/journal.pgen.1005573
http://doi.org/10.1038/s41431-019-0568-1
http://www.ncbi.nlm.nih.gov/pubmed/31896779
http://doi.org/10.1038/s42003-018-0267-4
http://doi.org/10.1900/RDS.2015.12.233
http://doi.org/10.1038/ng.207
http://www.ncbi.nlm.nih.gov/pubmed/18711367
http://doi.org/10.1038/nature08625
http://doi.org/10.1126/science.1142358
http://doi.org/10.1007/s00125-010-1776-y
http://doi.org/10.1016/j.atherosclerosis.2015.01.030
http://www.ncbi.nlm.nih.gov/pubmed/25746169


Genes 2022, 13, 91 15 of 15

34. Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma,
without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [CrossRef] [PubMed]

35. Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet.
2009, 60, 2–12. [CrossRef]

36. Hoggart, C.J.; Venturini, G.; Mangino, M.; Gomez, F.; Ascari, G.; Zhao, J.H.; Teumer, A.; Winkler, T.W.; Tšernikova, N.; Luan, J.;
et al. Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index.
PLoS Genet. 2014, 10, e1004508. [CrossRef] [PubMed]

37. Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010,
26, 2190–2191. [CrossRef]

38. Global Lipids Genetics, C.; Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.;
Buchkovich, M.L.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [CrossRef]
[PubMed]

39. Carithers, L.J.; Moore, H.M. The Genotype-Tissue Expression (GTEx) Project. Biopreservation Biobanking 2015, 13, 307–308.
[CrossRef]

40. Shimamura, M.; Matsuda, M.; Yasumo, H.; Okazaki, M.; Fujimoto, K.; Kono, K.; Shimizugawa, T.; Ando, Y.; Koishi, R.; Kohama,
T.; et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler.
Thromb. Vasc. Biol. 2007, 27, 366–372. [CrossRef]

41. Koishi, R.; Ando, Y.; Ono, M.; Shimamura, M.; Yasumo, H.; Fujiwara, T.; Horikoshi, H.; Furukawa, H. Angptl3 regulates lipid
metabolism in mice. Nat. Genet. 2002, 30, 151–157. [CrossRef]

42. Romeo, S.; Yin, W.; Kozlitina, J.; Pennacchio, L.A.; Boerwinkle, E.; Hobbs, H.H.; Cohen, J.C. Rare loss-of-function mutations in
ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Investig. 2009, 119, 70–79. [CrossRef]

43. Ono, M.; Shimizugawa, T.; Shimamura, M.; Yoshida, K.; Noji-Sakikawa, C.; Ando, Y.; Koishi, R.; Furukawa, H. Protein region
important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo.
J. Biol. Chem. 2003, 278, 41804–41809. [CrossRef]

44. Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 2014, 1841, 919–933. [CrossRef] [PubMed]
45. Shimizugawa, T.; Ono, M.; Shimamura, M.; Yoshida, K.; Ando, Y.; Koishi, R.; Ueda, K.; Inaba, T.; Minekura, H.; Kohama, T.; et al.

ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 2002,
277, 33742–33748. [CrossRef]

46. Shan, L.; Yu, X.C.; Liu, Z.; Hu, Y.; Sturgis, L.T.; Miranda, M.L.; Liu, Q. The angiopoietin-like proteins ANGPTL3 and ANGPTL4
inhibit lipoprotein lipase activity through distinct mechanisms. J. Biol. Chem. 2009, 284, 1419–1424. [CrossRef] [PubMed]

47. Haig, D. Genomic imprinting and kinship: How good is the evidence? Annu. Rev. Genet. 2004, 38, 553–585. [CrossRef]
48. Hales, C.N.; Ozanne, S.E. The dangerous road of catch-up growth. J. Physiol. 2003, 547, 5–10. [CrossRef] [PubMed]
49. Weiss, L.A.; Pan, L.; Abney, M.; Ober, C. The sex-specific genetic architecture of quantitative traits in humans. Nat. Genet. 2006, 38,

218–222. [CrossRef]
50. Coban, N.; Onat, A.; Guclu-Geyik, F.; Komurcu-Bayrak, E.; Can, G.; Erginel-Unaltuna, N. Gender-specific associations of the

APOA1 -75G>A polymorphism with several metabolic syndrome components in Turkish adults. Clin. Chim. Acta Int. J. Clin.
Chem. 2014, 431, 244–249. [CrossRef]

http://doi.org/10.1093/clinchem/18.6.499
http://www.ncbi.nlm.nih.gov/pubmed/4337382
http://doi.org/10.1002/0471142905.hg0212s60
http://doi.org/10.1371/journal.pgen.1004508
http://www.ncbi.nlm.nih.gov/pubmed/25078964
http://doi.org/10.1093/bioinformatics/btq340
http://doi.org/10.1038/ng.2797
http://www.ncbi.nlm.nih.gov/pubmed/24097068
http://doi.org/10.1089/bio.2015.29031.hmm
http://doi.org/10.1161/01.ATV.0000252827.51626.89
http://doi.org/10.1038/ng814
http://doi.org/10.1172/JCI37118
http://doi.org/10.1074/jbc.M302861200
http://doi.org/10.1016/j.bbalip.2014.03.013
http://www.ncbi.nlm.nih.gov/pubmed/24721265
http://doi.org/10.1074/jbc.M203215200
http://doi.org/10.1074/jbc.M808477200
http://www.ncbi.nlm.nih.gov/pubmed/19028676
http://doi.org/10.1146/annurev.genet.37.110801.142741
http://doi.org/10.1113/jphysiol.2002.024406
http://www.ncbi.nlm.nih.gov/pubmed/12562946
http://doi.org/10.1038/ng1726
http://doi.org/10.1016/j.cca.2014.01.017

