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ARTICLE

Fully-automated and ultra-fast cell-type
identification using specific marker combinations
from single-cell transcriptomic data
Aleksandr Ianevski 1,2, Anil K. Giri 1✉ & Tero Aittokallio 1,2,3,4✉

Identification of cell populations often relies on manual annotation of cell clusters using

established marker genes. However, the selection of marker genes is a time-consuming

process that may lead to sub-optimal annotations as the markers must be informative of both

the individual cell clusters and various cell types present in the sample. Here, we developed a

computational platform, ScType, which enables a fully-automated and ultra-fast cell-type

identification based solely on a given scRNA-seq data, along with a comprehensive cell

marker database as background information. Using six scRNA-seq datasets from various

human and mouse tissues, we show how ScType provides unbiased and accurate cell type

annotations by guaranteeing the specificity of positive and negative marker genes across cell

clusters and cell types. We also demonstrate how ScType distinguishes between healthy and

malignant cell populations, based on single-cell calling of single-nucleotide variants, making it

a versatile tool for anticancer applications. The widely applicable method is deployed both as

an interactive web-tool (https://sctype.app), and as an open-source R-package.
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Accurate identification of distinct cell types in complex
tissue samples is a critical prerequisite for elucidating the
roles of cell populations in various biological processes

including hematopoiesis, embryonic and intestinal
development1–4. Traditionally, cell sorting and microscopic
techniques have been extensively used to isolate cell types, fol-
lowed by molecular profiling of the sorted cells using, for
instance, mRNA or protein measurements5–7. Decades of
research has led to several collections of cell-specific features,
including expression of marker genes in various tissues that are
being used to distinguish various cell types in new tissue
samples8,9. However, the entire process is manually tedious and
technically challenging. Recently, single-cell RNA sequencing
(scRNA-seq) has been established as a high-throughput approach
to routinely chart diverse cell populations in tissue samples and to
study various biological processes in disease and
development2,10–12. The scRNA-seq technology has provided an
unprecedented view of various cell types and it has become the
leading technology in large-scale cell mapping projects such as
the Human Cell Atlas13.

Identification of cell populations often relies on unsupervised
clustering of cells based on their transcriptomic profiles, followed
by cluster annotation using marker genes that are differentially-
expressed between the clusters14,15. These marker genes are then
manually inspected using available information in the literature
or cell marker databases8,9 to assign cell type labels to each
detected cluster. However, the manual selection of cluster-specific
marker genes is a time-consuming and error-prone task, since the
marker genes are often (i) expressed in multiple cell clusters, and
(ii) correspond to multiple cell types. In addition, the expression
of negative marker genes, which provide evidence against a cell
being of a particular type, should also be incorporated into the
cell-type identification process. The cell annotation procedure is
further complicated by the lack of curated cell marker databases
that include both known and de novo positive and negative
markers to annotate cell-types with confidence. For example,
selection of CD44 as marker gene may compromise the accuracy
of cell annotation as CD44 is expressed in various immune cell
populations8. Another popular approach for cell-type assignment
is to utilize a reference dataset, a collection of previously anno-
tated cell types in single-cell data, to train a classification algo-
rithm and to apply it to new single-cell datasets. However, such
supervised approaches require that the reference and new datasets
resemble each other, which often pose a problem in scRNA-seq
studies16.

One important application of single-cell characterization is to
design personalized treatments that selectively target malignant
cell types in a patient-derived sample, while avoiding severe
inhibition and toxic effects on healthy cells17. In cancers and
other complex diseases, monotherapy resistance often emerges
and requires multi-drug co-inhibition of various disease- and
resistance-driving cell populations. We recently demonstrated
how our comprehensive ScType marker database helped an AI-
guided identification of personalized drug combination therapies
for patients with refractory acute myeloid leukemia (AML), which
led to synergistic co-inhibition of leukemic cell subpopulations
that emerged in various stages of the disease pathogenesis and
treatment regimens18. These cancer-selective and patient-specific
combinations were shown to be relatively less toxic to lymphoid
cells (non-malignant cells in the AML case), thereby increasing
their likelihood for clinical translation. However, how to accu-
rately distinguish between multiple malignant and non-malignant
cell populations for targeted treatments remains a translational
challenge and requires both systematic and highly selective stra-
tegies that are applicable to various diseases and tissue types. In
many biomedical applications, reference single-cell data and cell-

type annotations are not available, rather the cell population
identification needs to be done individually for each patient
sample.

To solve these challenges, we developed a computational ScType
platform (marker database and cell-type identification algorithm),
which requires only a single scRNA-seq dataset for accurate and
unsupervised cell-type annotation (Fig. 1a). The unbiased yet
selective cell-type annotation is achieved by compiling the largest
database of established cell-specific markers (ScType database), and
by ensuring the specificity of marker genes across both the cell
clusters and cell-types (ScType specificity score, see Fig. 1b, c). We
carried out a systematic benchmarking of ScType and related
methods across 6 scRNA-seq datasets from four human and two
mouse tissues, and showed that ScType platform correctly anno-
tated a total of 72 out of 73 cell-types (98.6% accuracy), including 8
newly-reannotated cell-types that were incorrectly or non-
specifically annotated in the original studies. In addition, ScType
implements a single-cell single-nucleotide variant (SNV) calling
option to distinguish between malignant and non-malignant cells
(Fig. 1a), exemplified here using scRNA-seq data from AML patient
sample. This case study demonstrates how the ScType platform can
be used for anticancer applications, such as data-driven identifica-
tion of leukemic cell populations toward personalized and selective
treatment selection. ScType platform is implemented as an open-
source and interactive web-tool (https://sctype.app), connected to
the ScType marker database, to enable ultra-fast and fully-
automated cell-type annotation in a wide range of biomedical
applications.

Results
ScType improves annotation of cell types based solely on a
given scRNA-seq data. We first investigated the performance of
ScType by re-analyzing a published scRNA-seq study of human
liver cells10. Using only the raw scRNA-seq data from the liver
atlas dataset, ScType automatically identified 17 clusters and
correctly assigned them to 11 identified liver-related cell types
that were manually annotated in the original study (Fig. 1d). This
demonstrates the benefits of the comprehensive marker databases
and the accuracy of the fully-automated annotation process.
Additionally, ScType was able to automatically distinguish
between two closely-related cell populations of B-cells (immature
and plasma B cells) that were not differentiated in the original
manuscript10. This segregation between immature and plasma B
cells was done based on the positive and negative information in
the ScType database that plasma cells do not express common
B-cell markers, such as CD19 and CD20, but instead they express
CD138 (Fig. 1e)19.

Next, we re-analyzed another published scRNA-seq data of mouse
retinal cells (Supplementary Fig. 1a)20. ScType automatically
identified three closely-related cell populations of amacrine cell types
(GABAergic, glycinergic and startbust), which were originally-
identified by an extensive and deep analysis of selectively-expressed
markers20. Furthermore, ScType correctly distinguished between the
two subtypes of bipolar cells–rod (expressing PRKCA21 and CAR822,)
and cone (expressing SCGN23, Supplementary Fig. 1b) bipolar cells,
which were manually assigned to a single group in the original study,
therefore enhancing the resolution of the cell-type annotation. Taken
together, these results indicate that ScType enables a fully-automated
prioritization of highly-specific markers for accurate annotation of
even rare cell-types with distinct and selective molecular features.

Systematic benchmarking of ScType in human and mouse
scRNA-seq data sets. To investigate the wider applicability of the
automated method, we next benchmarked the performance of
ScType in terms of its ability to automatically assign cell-types in
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comparison to the cell-type annotations given by the original
authors of additional four published scRNA-seq studies. We fur-
ther utilized all the six datasets to compare ScType performance
against the other recent cell-type annotation methods in terms of
their accuracy and running time. The RNA-seq datasets used in
the benchmarking originated from various tissues, including
human liver10, pancreas24, peripheral blood mononuclear cells
(PBMCs)25, brain26, as well as mouse lung27 and retina samples20.
These scRNA-seq datasets enabled us to investigate the perfor-
mance of ScType and the related methods in the context of various
sequencing platforms, tissues types and organisms.

Among the six scRNA-seq datasets from various human and
mouse tissues, ScType correctly annotated a total of 72 cell types
out of 73 cell-types (98.6% accuracy), including 8 correctly

reannotated cell-types that were originally incorrectly or non-
specifically annotated (Fig. 2a). The only cell-type ScType was
unable to automatically label as known was fetal cells in the
human brain dataset, as there are no fetal cell markers available
for human brain in the current version of the ScType database.
However, ScType correctly identified all the other cell populations
of the human brain tissues (oligodendrocytes, astrocytes, micro-
glial cells, neurons, endothelial and oligodendrocyte precursor
cells), according to the annotations made in the original study26.
Furthermore, ScType was able to refine the originally-annotated
neuron cell population into cholinergic (expressing SLC17A7)28

and glutamatergic (expressing ACHE)29 subtypes.
Next, we compared ScType against the state-of-the-art cell-type

annotation methods with reported (i) highest accuracy (scSorter30

Fig. 1 A schematic view of cell-type annotation using ScType. a ScType requires only the raw or pre-processed single-cell transcriptomics dataset(s) as
input. ScType implements options for additional quality control and normalization steps, where needed, followed by unsupervised clustering of cells based
on scRNA-seq profiles. The results here are based on the Louvain clustering; however, also SC3, DBSCAN, GiniClust and k-means clustering options are
available in ScType (see Methods). In the next step, ScType performs a fully-automated cell-type annotation using an in-built comprehensive marker
database. Finally, ScType implements novel options for somatic single-cell SNV calling to distinguish between healthy and malignant cell populations. b, c
ScType specificity score guarantees that the marker genes show specificity both across clusters and cell types for accurate unsupervised cell-type
annotation with high cell subpopulation selectivity. d UMAP example of automated cell subtype identification by ScType in the liver atlas dataset, where it
automatically labelled the same cell-types as assigned manually in the original study10. e Based on the information that plasma cells do not express
common B-cell markers, such as CD19 and CD20, but instead express CD138, ScType enhanced the resolution of cell-type annotations of two cell clusters,
which were jointly annotated as B-cells in the original study, by segregating them into immature B-cell and plasma (B) cell types (lower UMAP plot of panel
(d).
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that was recently shown to outperform several popular tools such
as Garnett31 and CellAssign32), (ii) fastest running time
(SCINA33), and (iii) full-automated process (scCATCH34). For
an unbiased comparison, we provided scSorter and SCINA with
our in-built database markers, while scCATCH utilized its own
integrated marker database. Overall, ScType correctly annotated
more than 94% of the cells in each dataset (Fig. 2b, upper panel),
outperforming the other algorithms in 5 out 6 datasets. We note
that the differences between ScType and the next best performing
method scSorter were not large, as both methods showed a high
accuracy in all the datasets, but importantly ScType was more
than 30 times faster than scSorter (Fig. 2b, bottom panel). In
particular, ScType showed almost perfect accuracy in the
challenging human PBMC dataset (Fig. 2c), where there exist
multiple closely-related subtypes. In contrast, scSorter and
scCATCH did not identify natural killer cell populations, and
they incorrectly identified several T cell subtypes, while SCINA
was not able to distinguish between the two monocyte
subpopulations as well as several subsets of T cells (Fig. 2c).

These benchmarking results indicate that ScType enables ultra-
fast and highly accurate separation even between closely related
subtypes by utilizing the novel concepts of marker gene specificity
across both cell clusters and cell types.

Evaluation of dropout effects and unknown cell types in
simulated scRNA-seq data. The dropout rates can be significant
in single-cell data (up to 80%), which may notably impact the
clustering solutions and annotation results. To investigate this
effect, we utilized the Splatter method35, and generated 45 simu-
lated datasets with various dropout rates: 15 datasets with ~50%
dropouts, 15 datasets with ~65% dropouts, and 15 datasets with
~80% dropouts (see Methods). For each cell type, we generated
both highly-specific markers (ten top-ranked marker genes sepa-
rately for each cell type), and low-specificity markers (ten top-
ranked marker genes for a mixture of cell types including the cell
type in question), which were used as the input for the ScType and
the other methods (note: scCATCH was not used in this

Fig. 2 ScType performs ultra-fast and accurate cell-type annotation across various tissues. a The overall performance of ScType across six human and
mouse scRNA-seq datasets. ScType automatically assigned cell-types according to the original studies, and it also correctly reannotated five cell types in
the human brain, liver and pancreas tissues, compared to the original studies (marked as novel cell types). ScType labelled only single cluster (fetal cells)
as unknown cell-type in the human brain dataset (marked as not assigned). Similarly, in the mouse lung and retina datasets, ScType enabled automated
identification of all the cell types, and it also correctly reassigned three novel mouse cell types. b Comparison of ScType with three recently developed cell-
type annotation methods in terms of percentage of correctly annotated cells (upper panel) and running time (lower panel; note: the time axis is log-scaled).
c Detailed cell-type annotations of the human PBMC dataset with the methods under comparison.
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comparison since its implementation does not allow for the use of
custom markers). The comparison results in the simulated data-
sets showed that the ScType annotations are relatively robust
against high percentages of cells with missing expression, with the
annotation accuracy remaining above 90% even at 80% dropout
rate, generally outperforming the other methods both in terms of
the annotation accuracy and running time (Supplementary Fig. 2).

Due to the limited amount of information currently available on
the markers expressed in many of the cell types, accurate
identification of “unknown” cell types is an important practical task.
To investigate the impact of unknown cell types on the performance
of ScType, scSorter and SCINA methods, we utilized the same
45 simulated datasets and used a cross-validation scheme of “leave-
one-cell-type-out” to evaluate the accuracy of identifying the
unknown cell groups. More specifically, we removed the specific
marker signatures of one of the cell types at a time in each of the 45
datasets, and then performed the cell type annotations with all the
methods. In ScType, we considered a low ScType score (less than
quarter the number of cells in a cluster) or a negative ScType score as
low-confidence cell type annotations, which were assigned as
“unknown” cell types. We observed that ScType and SCINA were
able to correctly assign unknown cell types in most of the simulated
datasets, 43 out of 45 datasets (95.5%) and 41 out of 45 datasets
(91.1%), respectively, while ScSorter correctly identified unknown cell
types only in 22 out of 45 datasets (48.8%).

ScType utilizes both positive and negative markers for the cell
type annotation. As a unique feature, ScType accepts and makes
use of not only positive markers, but also negative marker genes,
i.e., markers that are not expected to be expressed in a particular
cell type, with the aim to differentiate between closely related cell
types. In general, we note that the same gene can be a positive
marker for one cell type and a negative marker for another cell
type. Supplementary Fig. 3 shows an illustrative example of how
ScType calculates the marker specificity and enrichment scores
based on both positive and negative marker genes. Compared to
the number of positive markers, there is still only a relatively small
number of negative markers in the current database, which ori-
ginated from our literature search36–40, but the users can apply
their custom sets of negative (and positive) markers based on their
domain knowledge and emerging studies to improve the anno-
tation process and the coverage of the ScType marker database.
This is expected to further increase the accuracy of automatic
annotation of new scRNA-seq datasets in the future studies.

As an example, we found the negative markers to be
informative when distinguishing between two closely-related
groups of T-cells in the human PBMC dataset. It is known that
both naïve and memory T cells express CCR7 and SELL genes,
which are required for lymph node migration, whereas these
genes are not expressed in effector T cells36,37. Therefore, we
added CCR7 and SELL genes as negative markers for the effector
T cells in the ScType database. When using both positive and
negative markers, ScType was able to correctly distinguish naïve
and memory T cells (Fig. 3a, left panel), whereas when using only
positive markers, ScType assigned naïve T cells as effector T cells
(Fig. 3a, right panel). In the latter case, an almost equal ScType
score was assigned for both T cell types (4 and 7, respectively),
even though SELL and CCR7 genes were expressed in this cluster
(Fig. 3b). The original study also annotated the same cluster as
naïve T cells25, whereas the other methods were not able to
correctly annotate the cluster (see Fig. 2c).

Single-cell SNV calling distinguishes between healthy and
malignant cell types. To enable genetic analyses in cancer
applications, we further implemented an option for single-

nucleotide variation (SNV) calling directly from the scRNA-seq
data. As an example, we re-analyzed the scRNA-seq tran-
scriptomic profile and cell-type composition of an AML patient
sample from our recent study18 using the ScType platform
(Fig. 4a). After performing automated single-cell SNV calling (see
Methods), we investigated whether the number of SNVs within a
cell-type could distinguish between healthy and cancerous
populations present in the patient sample (Fig. 4b). More speci-
fically, ScType quantified the percentage of cells in a cell-type
above the median SNV in the cancer consensus genes across all
cells within the sample (ScType SNV score). As expected, we
observed a higher SNV score in the CD34+ progenitor (HSC/
MPP) cells and CD34+ interferon-stimulated gene (ISG)+ blast
cells, as compared to CD24+ CD66+ neutrophils and memory
CD+ T cells, which are usually considered as non-malignant cell
types in AML11 (Fig. 4c). As another validation for correctly
distinguishing normal cells from malignant cells, we considered
aneuploidy (unbalanced number of chromosomes), which is
common for most human tumors41. To identify aneuploidy, we
incorporated the recent Bayesian segmentation approach,
CopyKAT41, that classified majority of CD2+ CD66+ neutrophils
and memory CD8+ T cells as diploid cells (Fig. 4d), suggesting
their non-malignancy. These two validations demonstrated how
ScType correctly assigned CD2+ CD66+ neutrophils and mem-
ory CD8+ T cells as non-malignant cells (ScType SNV score <20
and the majority of cell within the cell-type are classified as
diploid cells, Fig. 4e).

To further investigate the ScType cell population classification,
we studied the associations between the various cell-types based
on the occurrence of common SNVs in the cancer consensus
genes, and observed that non-malignant cell-types (i.e. memory
CD8+ T cells and CD24+ CD66+ neutrophils) were closely
similar to each other, while showing almost no SNV similarity
with the malignant cell types (e.g. HSC/MPP and ISG+ blast cells,
see Fig. 4f). These results demonstrate how the ScType platform
enables one to distinguish between malignant and non-malignant
cell populations, based directly on scRNA data from a given
patient sample, which is critical for the selection of safe and
effective targeted treatment regimens for individual AML
patients. For other cancer types and malignancies, the platform
similarly supports automated options for the marker selection
and cell population classification into healthy and diseased cells.
In addition, ScType enables the visualization of the genome-wide
copy number profiles from scRNA-seq data using CopyKAT to
identify larger-scale copy number alterations (CNAs), such as
somatic gains or deletions of large segments of chromosomes (see
Supplementary Fig. 4 as an example in the AML patient sample).
In the downstream analyses, the identified CNAs may explain
difference in the cellular phenotypes of specific cell types and
subclones, including their apoptotic potential or drug sensitivity.
This case study shows how the general purpose ScType platform
can be used for anticancer applications, where single-cell analyses
are increasingly being used both for better understanding of the
disease processes and precision treatment selection for individual
patients.

Discussion
We presented ScType, a fully-automated platform for cell-type
identification that enables accurate and ultra-fast single-cell-type
annotations based solely on the given scRNA-seq data, using our
comprehensive ScType marker databases as background infor-
mation. To the best of our knowledge, ScType is currently the
only unsupervised method that makes use of the marker gene
specificity across both cell clusters and cell types to automatically
identify highly-specific positive marker genes, along with negative
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marker genes to provide evidence against cells being of a parti-
cular cell-type for cell-type selective annotations. To promote its
wide application, either as a stand-alone tool or together with
other popular single-cell data analysis software (e.g., Seurat42,
MAST43, PAGODA44), we have deployed ScType both as an
interactive web-platform (http://sctype.app), and as an open-
source R implementation (https://github.com/IanevskiAleksandr/
sc-type).

We anticipate the ScType platform will accelerate unbiased
phenotypic profiling of cells when applied either to large-scale
single-cell sequencing projects or smaller-scale profiling of
patient-derived samples. For example, the integrative marker
information in the ScType database may enable the identification
of rare cell subtypes that have distinct combinations of molecular
markers, suggesting specific functions and phenotypic profiles.
We recently demonstrated how the ScType database provided
information for patient-tailored identification of cancer-selective
combinatorial therapies for relapsed AML patients, each with
different genetic background and resistance mechanisms18. The
ScType annotation algorithm, together with the novel methods to
distinguish between malignant and non-malignant cells, are
expected to enable design of targeted treatment regimens also for
other cancer types.

The existing computational methods for automatic identifica-
tion of cell types can be broadly categorized into two groups: (1)
supervised methods that require carefully-annotated training
datasets labelled with correct cell populations to train the

classifiers (e.g. CaSTLe45 and ACTINN46 that annotate cell types
based on pre-defined reference set of cells without the need of cell
marker input), and (2) a prior knowledge-based methods that
require either a marker gene set or a pre-trained classifier for the
selected cell populations (e.g. scSorter30, SCINA33, and
scCATCH34). The supervised methods may have severe limita-
tions when annotating especially rare populations of cells, due to
lack of reference data to train the machine learning algorithms.
Furthermore, supervised methods are notoriously time-
consuming to train, as well as error prone to technical artifacts
in the training data, which affect their prediction ability for new
scRNA-seq data47.

Similarly, the prior knowledge-based cell classification
approaches have certain limitations. For instance, their perfor-
mance heavily depends on the available gene lists provided as
markers for each cell type, typically obtained from manual lit-
erature search or matching to marker databases that are still
suboptimal both in coverage and specificity. Ideally, one would
like to use an appropriate number of specific markers to achieve a
maximally accurate cell-type classification. However, most exist-
ing methods utilize a limited number of markers, thereby
potentially masking the identification of a subpopulation of cells
that do not express the selected marker genes. Furthermore, the
use of inconsistent cell-type markers across experiments and
laboratories may compromise the reproducibility of the
findings47. These caveats become even more pronounced when
the number of cell types and samples increases, thus preventing

Fig. 3 ScType utilizes negative markers when distinguishing between groups of T-cells. a Automated cell type annotations with ScType in the human
PBMC dataset when utilizing both positive and negative marker genes (left panel), and only positive marker genes (right panel). b Expression of CCR7 and
SELL genes, which are required for lymph node migration, and are therefore not expected to be expressed in the effector T cells (i.e., negative markers).
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fast and reproducible annotations. It has been therefore argued
that prior information does improve the automated cell-type
identifications32,47.

ScType implements a number of improvements compared to
the existing cell-annotation tools. Our unsupervised approach
outperformed the prior knowledge-based methods scSorter30,
SCINA33, and scCATCH34, which were recently shown to enable
accurate annotation of multiple cell types47. Another group of
supervised methods, such as CaSTLe45, ACTINN46, SingleR48

and CHETAH49, utilize reference bulk or single-cell tran-
scriptomic data for cell-type predictions, and therefore require
comprehensive, manually-annotated and high-quality reference
datasets for training; furthermore, these methods do not allow
identification of novel cell-type marker genes. In contrast, ScType
requires neither reference scRNA-seq datasets nor manual
selection of marker genes; instead, all the background informa-
tion for established or de novo markers comes from the ScType
database that is to date the most comprehensive database of
specific markers for human and mouse cells.

In comparison with many other computational approaches
that require manual interference31,32, ScType takes a fully data-
driven approach, and it annotates the cell-types at once in a
totally unsupervised manner. The only input needed for the
ScType tool is the raw sequencing data file, although uploading of
pre-processed scRNA-seq data is also an option. This saves

considerable time and costs in the scRNA-seq analysis, especially
when searching for cell-types in a tissue that involves a large
variety of cell-types with similar transcriptomic profiles (e.g. bone
marrow samples from mixed lineage leukemia subjects). The
running time of ScType is also orders of magnitude faster than
the supervised methods. Furthermore, ScType implements
options for SNV and CNV calling from the raw scRNA-seq
profiles of individual samples. The users may compare SNV levels
across different cell types, and study associations between cell
clusters based on their SNV load.

Using six scRNA-seq datasets from the human and mouse tissues,
we demonstrated that ScType provides scalable and accurate iden-
tification of cell-clusters, and it is compatible with data formats from
various sequencing techniques (e.g. Drop-seq and Smart-seq). These
benchmarking results against the existing cell annotation approaches
indicated that ScType is widely-applicable to various biomedical
problems, and it provides fast and accurate cell-type classifications.
Furthermore, we expect that the comprehensive ScType database will
lead to the development of new and improved cell-type detection
methods, as well as accelerate the implementation of single-cell
pipelines for translational applications, such as monitoring of therapy
resistant cancer cell sub-populations and designing of targeted
combinatorial therapies to overcome the monotherapy resistance in
cancer patients, which require fast and automated analyses for real-
time clinical implementation.

Fig. 4 ScType enables SNV calling directly from the scRNA-seq profiles. a UMAP plot of the cell types in the AML patient sample automatically
annotated with ScType. b Distribution of somatic SNVs in the cancer consensus genes across the various cell types of the patient. c ScType SNV score
summarizes the number of point mutations in the cancer genes for each cell type, shown as the percentage of SNVs above the median SNV value within
the particular cell cluster. d UMAP showing aneuploid and diploid cell classification based on Bayesian segmentation approach CopyKAT41. e ScType
assigns cell types as non-malignant when the ScType SNV score is below 20 and more than 50% of cells within the cell-type are classified as diploid.
f Chord diagram shows the associations between different cell types in terms of the similarity of their SNVs in the cancer genes (i.e., occurrence of
common SNVs, see Methods for details). The width of a connection corresponds to the degree of SNV similarity between cell-types, while the connection
color indicates a specific cell-type as shown in the UMAP plot in panel a.
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Due to both biological and technical reasons, certain genes may
not be detected in a specific cell type50, which can be considered
as a negative marker in ScType for the cell type. In the future
extensions of ScType, we plan to incorporate correction methods
for drop-out events in scRNA-seq data, such as scDoc51, which
should help to identify true and robust negative markers. Even if
the number of negative markers is still relatively low, compared to
the number of positive markers, we expect the annotation results
of ScType will further improve once more negative markers are
identified in future studies and incorporated into the ScType
database. In addition, ScType utilizes z-score transformation for
computationally-efficient combination of multiple markers,
which may be suboptimal when dealing with single-cell tran-
scriptomic data. However, our results in the simulated datasets
showed a drastic decrease in the annotation accuracy when
removing the z-score transformation (P < 0.001, Wilcoxon test;
Supplementary Fig. 5).

In conclusion, ScType provides fully-automated cell-type
identification using its own in-built marker database, as well as
identification of malignant cell populations and cancer targets
based on SNV calling and aneuploidy identification, requiring
only raw scRNA-seq data as an input. As increased number of
scRNA-seq datasets from various tissue types become available
from the Human Cell Atlas and other projects, the accuracy and
coverage of the ScType platform is expected to increase
accordingly.

Methods
ScType database construction. ScType database is the largest database to date of
human and mouse cell-specific markers, compiled by integrating the information
available in the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/) and
PanglaoDB (https://panglaodb.se), which are currently the two largest available
databases for cell-type markers. In the CellMarker database, 13,605 cell markers for
467 cell types in 158 human tissues/sub-tissues and 9,148 cell makers for 389 cell
types in 81 mouse tissues/sub-tissues were manually collected and curated from
more than 100,000 published papers8. In the PanglaoDB, 6,631 gene markers
mapping to 155 cell types have been identified by differential expression analysis in
the particular cell types using single-cell data and a community-based crowd-
sourcing approach for curation of gene expression markers9. However, these two
databases differ in the number of tissues, cell types and marker numbers, as well as
in the way the markers have been assigned to each cell type. Therefore, we firstly
converted the non-uniform gene IDs to approved gene symbols within and
between the databases. Next, we removed the low evidence marker genes from the
CellMarker database (i.e., genes having only one reference to support the cell-type
marker), and genes that appeared in less than five clusters of specific cell-type from
PanglaoDB. Additionally, we excluded genes showing no expression across all the
datasets in PanglaoDB. Ultimately, we unified the cell and tissue naming from the
two databases and excluded tissues comprising less than 5 cell types. Fifteen novel
cell types with corresponding marker genes were added by manual curation of >10
papers to the current version of the compiled ScType database (https://sctype.app/
database.php), as relatively few brain and eye tissue cell types were provided in the
first version of the database. Furthermore, we extracted 37 negative markers for the
cell types studied in this work based on literature search36–40. The users can also
apply their custom sets of both positive and negative markers, based on their
domain knowledge and emerging studies, both in R code and web-app, and the
community can suggest new marker genes for the cell type annotation to be
included into future versions of ScType database either using GitHub’s “Pull
Request” feature or by sending an email to the authors. In total, the current version
of the ScType database comprises 3,980 cell markers for 194 cell types in 17 human
tissues and 4,212 cell markers for 194 cell types in 17 mouse tissues.

Cell-type specificity of markers. Cell-type specificity score provides a quantitative
measure of how uniquely a particular marker i identifies a specific cell-type of the
given tissue (t), with higher scores corresponding to highly-specific markers and lower
scores to the promiscuous markers. The cell-type specificity score (S) was calculated
separately for each marker gene Mi within a tissue t by firstly pooling all the cell-type
specific markers within the tissue into marker pool M, and then calculating the cell-

type specificity score for each marker as Sti ¼ 1� Mij jt�minð Mj jt Þ
max Mj jtð Þ�minð Mj jt Þ

. Here, |Mi | t

denotes the number of cell types of tissue t where the ith marker is enlisted, min Mj jt
� �

and max Mj jt
� �

are the minimum and maximum number of cell types for which any
of the provided genes is enlisted as a marker in the ScType database. A toy example of
the calculation of the cell-type specificity score is shown in Supplementary Fig. 3a.

ScType workflow options. ScType provides a complete pipeline for single-cell
RNA-seq data analysis and cell-type annotation. We utilized Seurat v4.042 for data
processing and normalization. For clustering analysis, the default option is Louvain
clustering based on a shared nearest neighbor graph (using FindClusters function
with the resolution parameter set to 0.8 and 20 principal components given as
input), which was used to generate the current results; however, also SC352,
DBSCAN53, GiniClust54 and k-means clustering options are available in ScType.
The clusters are visualized using either principal components analysis (PCA),
t-distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP), Isomap55,
Diffusion Map56, largeVis57 or by means of expression heatmaps. For the inte-
grated multi-scRNA-seq dataset analysis, ScType uses FindIntegrationAnchors and
IntegrateData functions from Seurat v4.0 that were shown to enable an effective
identification of anchor correspondences across multiple single-cell datasets42. As a
key unique component, ScType implements an ultra-fast and fully-automated cell-
type identification, using highly-specific marker genes (see above), and allows the
user to explore each gene’s contribution to cell type annotations (see Supple-
mentary Fig. 1). Finally, Sctype implements options for SNV calling and aneu-
ploidy identification, and it automatically suggests separation between non-
malignant and malignant cell types (see below).

ScType cell-type annotation. In order to assign each cell-type to a cluster (p),
given the input scRNA-seq data (X) with m genes and n cells, ScType first stan-
dardizes each gene expression profile into z-score across all cells. Only positive and
negative markers genes corresponding to different cell types of the specified tissues
are considered (extracted either from ScType database or using user-provided
custom cell-type gene sets as an alternative option). Then, each gene expression level

is multiplied with its cell type-specificity (Sti ) score: X
0 ¼ ððZðXT ÞÞT � MtÞ � Sti ,

where X0 is a transformed scRNA-seq expression matrix of n cells and |Mt| genes,
Mt is the vector of marker genes of all cell types within the tissue t, and Z denotes
the z-score-transformation. The transformed expression values for each cell-type (c)
are further summarized into cell type-specific marker-enrichment-score as the
normalized sum of all the individual genes supporting a cell-type:

x0c ¼ ∑j
i¼1 x

0
iffi

j
p � ∑l

k¼1 x
0
kffi

l
p , where x0 is the unique column of X0 corresponding to one cell,

c is the specific cell-type within the tissue, and i, …, j are the indices corresponding
to cell-type-specific marker genes, while k, …, l are the indices of negative marker
genes that are not expected to be expressed in the cell type. Such transformation
results in normalized expression matrix of c-by-n dimension, where each row
represents one of the cell types and each column represents an individual cell.
Finally, by summing up the values of each row (cell type) across the cells corre-
sponding to a specific cluster p, the cluster summary enrichment-score (called
ScType score, Supplementary Fig. 3b) for each cell-type is calculated:
ScType scorec ¼ ∑z2p x

z
c . A cell-type with the highest ScType score is used for

assignment to the cluster p. Such formulation guarantees marker gene specificity
across both the cell-types (Sti ) and cell clusters ð∑z2px

z
c Þ (Fig. 1b, c), thus allowing

for a highly accurate cell-type annotation. We consider a low ScType score (less
than quarter the number of cells in a cluster), or a negative ScType score to indicate
a low-confidence cell-type annotation, which are assigned as “unknown” cell type in
the web-tool. In addition to the cell-type assignments, the ScType web-portal
(http://sctype.app) allows users to view the metadata based on which the assignment
was made, view the markers that are enriched in each specific cluster, and plot the
cumulative gene-specificity for different cell types as bar graphs.

Systematic comparison in publicly available datasets. In order to benchmark the
ScType against the other cell-type annotation methods, we utilized six scRNA-seq
datasets from public domain and re-analysed these using ScType platform. Five
datasets were downloaded from Gene Express Omnibus (GEO): Human Liver
(GSE124395), Human Brain (GSE67835), Human Pancreas (GSE85241), Mouse Lung
(GSE63269) and Mouse Retina (GSE63473). Human PBMC dataset was downloaded
from the 10x Genomics Dataset Repository (https://s3-us-west-2.amazonaws.com/
10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz).

The human brain dataset was used to define the markers in the ScType marker
gene database based on the publication list in the PangloDB paper9 and website
(https://panglaodb.se/papers.html). To make the comparison unbiased, we
excluded the markers identified from the human brain data while annotating the
cell cluster in the comparative study. The other marker source, CellMarker
database, is based on manual curation of more than 100 000 publications8, but it
did not list the studies used for defining its marker genes. Hence, we could not
confirm whether the CellMarker database have incorporated markers from the
experimental dataset used in the comparative study.

Comparison with other cell-type annotation tools. We compared the accuracy,
running time and requirement of hardware resources of ScType against scSorter30,
SCINA33, and scCATCH34 using the six scRNA-seq datasets (see Publicly available
datasets). We used the default parameters to run all the methods. To provide
unbiased comparisons, we used the same cell-type marker gene information (based
on our ScType database) in scSorter and SCINA. scCATCH has its own in-built
database that was used in the analysis.
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We utilized the Splatter method35 to generate 45 simulated datasets with
various dropout rates: 15 datasets with ~50% dropouts, 15 datasets with ~65%
dropouts, and 15 datasets with ~80% dropouts (dropout.shape -0.5 and
dropout.mid −2.5, 0, 2.5, respectively). Each simulated dataset contained 10 cell
types with varying cell proportions using scaled lognormal random deviates (e.g.,
42.3%, 22.7%, 12.6%, 4.5%, 4.5%, 4.1%, 4.0%, 2.9%, 1.8%, 0.3%). Each dataset has
“Moderate” similarity among the cell types (i.e., de.facScale parameter was
randomly set to either 0.5, 0.6 or 0.7). Using the simulated datasets, we also
compared the performance and running time of ScType, scSorter, and SCINA
methods. We note that the scCATCH method was not used in these comparisons
since its implementation does not allow for the use custom markers.

We extracted marker genes from the simulated reference data by performing
differential expression analysis using the Wilcoxon rank sum test, similarly to the
recent comparative evaluation work58. For each cell type, we generated both
highly-specific markers (ten top-ranked marker genes separately for each cell type),
identified through differential expression, and low-specificity markers (ten top-
ranked marker genes for a mixture of all simulated cell types including the cell type
in question), which were used as the input for the ScType and other methods. To
generate low-specificity markers for nth cell type, we took all the pairs of two cell
types including nth cell type (e.g. nth and n+ 1, or nth and n+ 2 cell types), and
identified differentially expressed genes between each group of two cell types vs
other cells; finally, we combined all “unspecific” genes together and randomly
selected 10 of them.

SNV identification using single-cell RNA sequencing. ScType utilizes raw
scRNA-seq data to identify single-nucleotide variants (SNVs) present in each cell.
ScType processes the raw input scRNA-seq BAM file using samtools59 and call the
SNVs using Strelka260. Next, ScType connects the SNV to each cluster using vartrix
(https://github.com/10XGenomics/vartrix). As an extended feature, ScType also
calculates the sum of total number of SNV present in the COSMIC cancer census
genes61 as the combined SNV score (ScType SNV score) for each cluster in a
cancerous tissue profile. More specifically, ScType SNV score summarizes the
number of point mutations in the cancer genes for each cell type, calculated as the
percentage of SNVs above the median SNV value within the particular cell cluster.

ScType also incorporates the recently implemented Bayesian segmentation
approach, called CopyKAT41, to distinguish between aneuploid and diploid cells.
Based on these two analyses, ScType automatically makes a classification between
malignant and non-malignant cells. ScType assigns cells as non-malignant if
ScType SNV score <20 and the majority of cell within the cell-type (>50%) are
classified as diploid and the others as malignant. Users can use these two analyses
to assign healthy and cancerous cell-type labels to the cell clusters, based on the
assumption that cancerous cell clusters tend to have more SNVs in the cancer
genes and aneuploidy is common for most human tumors41. The list of cancer
consensus genes was downloaded from the catalogue of somatic mutation in cancer
database (COSMIC v92)61.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Publicly available scRNA-seq datasets for methods benchmarking: Human Liver
(GSE124395) Human Brain (GSE67835), Human Pancreas (GSE85241), Mouse Lung
(GSE63269), and Mouse Retina (GSE63473); Human PBMC dataset was downloaded
from the 10x Genomics Dataset Repository [https://s3-us-west-2.amazonaws.com/
10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz].
Previously published scRNA-seq data from an AML patient sample18:

EGAS00001004614. Source data are provided with this paper.

Code availability
R source-code of the ScType algorithm is available at https://github.com/
IanevskiAleksandr/sc-type/ to allow reproduction of the results and its further
comparison against or integration with other algorithms62. ScType is also freely available
as an interactive web-tool at http://sctype.app. The ScType database is freely available at
https://sctype.app/database.php. Quick start instructions and a step-by-step analysis
example is provided at GitHub (https://github.com/IanevskiAleksandr/sc-type/), and a
step-by-step tour that guides the new users through the web-application, as well as
documentation of the analysis steps is provided on the landing-page of the app (http://
sctype.app).
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