

https://helda.helsinki.fi

Tracheid dimensions of Norway spruce in uneven-aged stands

Pyörälä, Jiri

2022-03

```
Pyörälä, J, Piispanen, R, Valkonen, S & Lundqvist, S-O 2022, 'Tracheid dimensions of Norway spruce in uneven-aged stands', Canadian Journal of Forest Research, vol. 52, no. 
þÿ3, pp. 346 356. https://doi.org/10.1139/cjfr-2021-0140
```

http://hdl.handle.net/10138/342207 https://doi.org/10.1139/cjfr-2021-0140

unspecified acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s):	Jiri Pyörälä, F	Riikka Piispanen,	Sauli Valkonen	and Sven-Olof	Lundqvist
		,			

Title: Tracheid dimensions of Norway spruce in uneven-aged stands

- **Year:** 2021
- Version: Final draft
- **Copyright:** The Author(s) 2021
- **Rights:** This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s)

Rights url: https://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Mr. Jiri Pyörälä, Dr. Riikka Piispanen, Dr. Sauli Valkonen, and Mr. Sven-Olof Lundqvist. Tracheid dimensions of Norway spruce in uneven-aged stands. Canadian Journal of Forest Research. Just-IN https://doi.org/10.1139/cjfr-2021-0140

All material supplied via *Jukuri* is protected by copyright and other intellectual property rights. Duplication or sale, in electronic or print form, of any part of the repository collections is prohibited. Making electronic or print copies of the material is permitted only for your own personal use or for educational purposes. For other purposes, this article may be used in accordance with the publisher's terms. There may be differences between this version and the publisher's version. You are advised to cite the publisher's version.

1	Tracheid dimensions of Norway spruce in uneven-aged stands
2	
3	List of authors:
4	Jiri Pyörälä ¹⁾ , email: jiri.pyorala@helsinki.fi and
5	Riikka Piispanen ²⁾ , email: ext.riikka.piispanen@luke.fi
6	Sauli Valkonen ³⁾ , email: sauli.valkonen@luke.fi
7	Sven-Olof Lundqvist ⁴⁾ email: svenolof.lundqvist@indic.se
8	
9	For 1) Affiliation: University of Helsinki, Department of Forest Sciences
10	Address: Latokartanonkaari 7, P.O. Box 27, 00014 University of Helsinki
11	For 2) and 3) Affiliation: Natural Resources Institute Finland, Luke
12	Address: Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland
13	For 4) Affiliation: IIC
14	Address: Rosenlundsgatan 48B, 11863 Stockholm, Sweden
15	Corresponding author: Name: Riikka Piispanen
16	Affiliation: Natural Resources Institute Finland, Luke
17	Address: Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland
18	Tel. +358 029 532 5473
19	e-mail: ext.riikka.piispanen@luke.fi

20 Abstract

21 Tracheid length and width patterns from pith to bark at a height of 0.6 m in uneven-aged 22 Norway spruce (*Picea abies* L. (H.) Karst) trees were addressed. The identification of the 23 main factors and a comparison with even-aged stands were also pursued. 96 trees were 24 sampled from experimental stands in Southern Finland. The material encompassed the 25 variation in tracheid properties from early years to silvicultural maturity, i.e. from corewood 26 to outerwood up to a cambial age of 111 years. Data from 39 Norway spruce trees from even-27 aged stands we utilized for comparison. Models fitted to the data indicated that annual ring 28 widths did not influence mean tracheid dimensions but the latewood proportion showed a 29 significant influence on tracheid dimensions. Tracheids in uneven-aged stands were slightly 30 wider and longer at the base of the stem with a similar tree diameter, cambial age, and annual 31 ring number.

32 Keywords

Wood properties, Norway spruce, tracheid length, tracheid width, uneven-aged stands

35

34

Page 3 of 45

Can. J. For. Res. Downloaded from cdnsciencepub.com by METLA/LEHTISALI on 12/08/21 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record. 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

36	1.	Introduc	ction

The management of even-aged stands (EAS) has been the overwhelmingly predominant mode of silviculture in the Nordic countries of Finland, Norway, and Sweden since the 1950s, and contemporary forests are characterized by uniform stands with the predominance of a single species with homogenous spacing, stem diameter, height, and canopy characteristics. Clear-cutting is the main method for forest renewal in EAS used throughout the boreal forest zone. Homogeneous stands and large-scale clear-cuts have been increasingly associated with reducing biodiversity and the loss of various ecosystem functions and services (Gauthier et al. 2015; Boucher et al. 2017; García-Tejero et al. 2018).

In contrast with EAS, ecosystem-based forest management practices such as the management of uneven-aged stands (UAS) are associated with a greater degree of structural heterogeneity which may increase the biodiversity in managed forests (Assmuth and Tahvonen 2018; Nolet et al. 2018). Single-tree and group selection is currently considered the primary UAS method in the management of Norway spruce (*Picea abies* L. (H.) Karst) dominated stands in the Nordic countries. Uneven-aged stands are made up of trees of multiple ages and sizes, mixed at small spatial scales, resulting in complex competitive interactions between the trees. Selection harvesting is applied, targeting mainly large tree individuals that are considered economically mature. Trees are removed individually or in small groups or patches. Trees typically experience consecutive suppression and release phases, especially at early ages (Schütz 2001).

The management of uneven-aged stands is expected to gradually achieve a minor but established status in practical forestry in Nordic boreal forests. There is a great demand for research results on the effects of uneven-aged management on tree growth

and wood formation in comparison to those in EAS. Such information is needed for the development of practical guidelines and management services for uneven-aged methods throughout the boreal forest zone (Puettmann et al. 2015), with respect to the expected quantity and quality of wood products produced.

The primary wood products in uneven-aged management are sawlogs, and the wood properties and quality of logs and sawn timber from UAS has been previously studied (Seeling 2001; Macdonald et al. 2010; Piispanen et al. 2014; Pretzsch and Rais 2016; Pamerleau-Couture et al. 2019; Piispanen et al. 2020). However, a considerable portion of the harvested volume is used for pulp from culled logs that are unsuitable for producing lumber (an average of 33% was reported by Laamanen (2014)), and from chips produced from the outside of the logs during lumber manufacturing (slabs, chips, and sawdust make up approximately 33% of the sawlog volume according to Natural Resources Institute Finland, Statistics database, https://stat.luke.fi/en/, statistics 2018). Tracheid dimensions are important pulp quality indicators that can be used to predict final pulp properties, for instance, the stiffness and coarseness of pulp fibers and density of sheets produced.

The development of tracheid dimensions in xylem exhibits well-established relationships with the cambial aging and radial growth of the stem (Lindström 1997; Fabris 2000; Sirviö and Kärenlampi 2001, Savva et al. 2010). The dependency reflects the processes of wood formation, adapting to changes in water conductivity and mechanical load, regulated through hormonal responses that are also affected by the environment, e.g. silviculture, climate, and canopy position (Schrader et al. 2003; Rathgeber et al. 2011; Sorce et al. 2013). Wood formation and patterns of tracheid size development from pith to bark are in large part genetically encoded (Zobel and Jett 2012), but forest management also influences tree growth and tracheid formation

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

ord.	86	via its effect on the growth conditions. Due to heterogeneous canopy structures and
ı of rec	87	the repeated removal of neighboring trees in UAS, multiple changes in the ranking of
version	88	the trees' canopy positions occur throughout the life-cycle of a tree, in contrast with
fficial	89	EAS where trees mainly maintain similar canopy positions over the entire rotation. In
final o	90	trees from UAS, reflections of shifting canopy positions can be found in the wood
om the	91	properties. For example, the corewood had narrower annual rings and larger
/08/21 liffer fr	92	proportions of latewood, while the outermost annual rings were wider and had less
I on 12 t may c	93	latewood (Piispanen et al. 2014). These are likely consequences of slow growth in
TISAL ition. I	94	young trees, suppressed by the older trees, and faster growth in old trees in dominant
A/LEH	95	positions among younger trees. To date, very few studies have investigated tracheid
METL ^A page c	96	properties in UAS-grown trees (Pamerleau-Couture et al. 2019), and to our
om by l ing and	97	knowledge, the effect from early suppression during the corewood production phase
epub.co py edit	98	on the development of tracheid dimensions from pith to bark has not been studied
scienc r to co	99	before.
om cdr ipt pric	100	
aded fr ianuscr	101	The objectives of this study were to
ownlo pted m	102	1) characterize the patterns of tracheid width and tracheid length along the stem
Res. D he acce	103	radius (pith-to-bark) in Norway spruce trees in uneven-aged stands;
J. For. ript is ti	104	2) identify the effects of varying growth rates (in terms of ring width, and latewood
Can. nanusci	105	percentage) of tracheid dimensions along the stem radius;
st-IN n	106	3) compare the tracheid dimensions between even-aged and uneven-aged
This Ju	107	management.
only.	108	
nal use		
r perso	109	2. Materials and Methods
Fo	110	2.1. UAS data source

	111	Sample trees were harvested from permanent UAS experiments belonging to a set of
	112	25 experimental stands at three geographic locations in southern Finland (60.6–62.6
	113	N, 25.1–27.1 E): Lapinjärvi (LAP), Vesijako (VES) and Suonenjoki (SUO). Five
	114	stands (LAP01 and 13; VES; SUO03 and 04) were selected for studies of wood
	115	properties (Piispanen et al. 2014, 2020 and this study). The selection criteria were: <i>i</i>) a
	116	balanced coverage of geographic area and site conditions; and <i>ii</i>) stand properties
	117	resembling those associated with single-tree selection (i.e. balanced spatial and size
•	118	distribution of vigorous trees). The stands were located on mineral soil and classified
	119	as the submesic Myrtillus site type, except stand LAP01, which was on a mesic
•	120	Oxalis-Myrtillus site type (Cajander 1949). All were dominated by Norway spruce but
)	121	also contained admixtures of Scots pine (Pinus sylvestris L.) and various broadleaf
)	122	species, mainly silver birch (Betula pendula Roth), downy birch (Betula pubescens
	123	Ehrh.) and aspen (<i>Populus tremula</i> L.) with a 10–50% proportion of volume.
	124	All the stands could at that time be characterized as truly multi-aged (with trees aged
•	125	up to 170 years present) and full-storied, as defined by Ahlström and Lundqvist
	126	(2015). Single-tree selection targeting the maintenance or enhancement of the existing
	127	complex stand structures was adopted in the 1980s, and a single-tree selection cutting
	128	was carried out in all of the stands in 1985–1988. After the establishment of the
4	129	experiments in 1991–1996, the selection cutting was repeated in 1996 and 2011 in
	130	LAP01 and LAP13, 2007 at VES, and 2008 at SUO03 and SUO04. All trees with
	131	defects or damage were removed first, then healthy trees mainly from the larger
	132	diameter classes (>25 cm) were removed until a target basal area was achieved.
•	133	
	134	Each stand comprised an area of 1–2 ha. One experimental plot was placed in the
	135	central area of each stand. In LAP01 and LAP13, each stand had only one plot (40 m

ord.	136	\times 40 m) with a single basal area level within the plot (14.2 m ² ha ⁻¹ for LAP01 and
ı of rec	137	18.7 for LAP 13, respectively). The stand outside the plot was treated similarly to that
version	138	inside the plot. In the three stands, VES, SUO03, and SUO04, the plots were larger
official	139	(80 m \times 100 m) and were divided into eight subplots of different basal areas introduce
e final c	140	density variation within the stand. A series of four basal area levels was therefore
om the	141	established in two replications on each of these three plots. In VES, the levels were 8,
/08/21 liffer fr	142	12, 16, and 20 m ^{2} ha ^{-1} , while in SUO03 and SUO04, they were 10, 15, 20, and 25
J on 12 t may c	143	m ² ha ⁻¹ . The subplot sizes were 40 m \times 20 m or 40 m \times 30 m (edge plots). The stand
TISAL ition. I	144	adjoining the subplot on the outside was harvested similarly to the subplot. The
A/LEH compos	145	sampling for this study was evenly distributed between subplots to ensure a wide
METL. I page (146	representation of stand densities. More details on silvicultural and experimental issues
om by j ing and	147	can be found in Saksa and Valkonen (2011), Eerikäinen et al. (2014), and Hynynen et
epub.c py edit	148	al. (2019).
nscienc or to co	149	
ipt pric	150	A total of 96 Norway spruce trees was sampled (Piispanen et al. (2014),), 32 trees
aded fi nanuscr	151	from each experimental stand. The sampling was evenly stratified across subplots in
Jownlo pted m	152	stands where subplots existed (VES, SUO3, SUO4), and the tree diameter classes (or
Res. I he acce	153	size classes) to ensure even representation. Four trees (eight trees at VES) were taken
J. For. ript is t	154	from each size class (0–9.99 cm, 10–19.99 cm, 20–29.99 cm and > 30 cm stem
Can. nanusci	155	diameter at breast height). In VES, no trees were available in the size class of 10-
st-IN n	156	19.99 cm on subplots 7 and 8. Consequently, more trees were sampled from subplot 1.
aly. This Ju	157	2.2. EAS data source
l use oi	158	A combination of existing Finnish and Swedish datasets was used to constitute
ersona	159	comparable EAS data. Five stands from southern Sweden were selected, which
For p	160	represented different levels of soil fertility on mineral soil in normal commercial

forests (57.1–57.2N, 14.8–15.3E; plots SWE 1–5) (Piispanen et al. 2014,). Two of the 161 162 stands were approaching maturity, and three stands had undergone their first 163 commercial thinning. At least 10 years had elapsed since the last thinning, and the 164 stand basal areas (22-30 m²ha⁻¹ with a dominant height of 15-17 m) were consistent with the guidelines for best practices in Finnish Forestry (Rantala 2011). The stands 165 166 had been planted, except the oldest one (SWE 5), for which the regeneration method 167 was unknown. A circular plot was subjectively placed at a representative point in each 168 stand. The plot size was adjusted to include at least 25 healthy trees (radius 6–12 m). 169 Tree species and stem diameter at breast height were recorded for each tree. On each 170 plot, the cumulative basal area distribution of the trees was divided into three classes 171 of equal size, and one sample tree was randomly chosen from each class. The sample trees had to be healthy, i.e. no visible damage was allowed. 27 trees were sampled. 172 173 174 In Finland, the EAS materials were collected from two thinning experiments in Heinola and Parkano (FIN 6 and FIN 8), in southern Finland (61.2–62.2N, 22.9– 175 26.0E). The stands represented mesic Oxalis-Myrtillus and submesic Myrtillus site 176 types (Cajander 1949). Experiments FIN 6 and FIN 8 were established in 1970 and 177 1966, respectively. Both stands had been planted and were at the final cut stage at the 178 179 time of this study. In both experiments, a plot representing the stand density 180 recommended in best practices was selected (Valkonen 2011). The cumulative basal 181 area distributions of the trees were divided into three classes of equal size, and two 182 sample trees were randomly sampled from each class. 12 trees were sampled. Detailed 183 experimental design and stand descriptions are given in Piispanen et al. (2014).

184

185

2.3. Measurement of tracheid width

© The Author(s) or their Institution(s)

ord.	186	Disks were sawn at a height of 0.6 m and 1 m from each UAS and EAS tree
of rec	187	respectively. Radial sample bars with cross-sections approximately 1 cm x 1 cm were
versior	188	sawn from the pith to the bark along the northern radius. The bars were air-dried, after
fficial	189	which a radial sample strip (2 mm tangentially and 7 mm longitudinally) was sawn
final o	190	from each bar. They were extracted with acetone in a Soxhlet Extractor at 56.2 °C for
om the	191	6 h, and their upper surfaces were finely polished. They were stored in the
/08/21 liffer fr	192	conditioned measurement laboratory for even moisture content before characterization
I on 12 t may c	193	of the radial variations in several tracheid and wood properties from pith to bark with
TISAL ition. I	194	the SilviScan instrument (Innventia Ab, Stockholm, Sweden) (Evans et al. 1995).
A/LEH compos	195	SilviScan integrates three measurement principles: image analysis of tracheid cross-
METL/ page c	196	sections; X-ray absorption to measure wood density; and X-ray diffraction to measure
m by l ng and	197	the microfibril angle of wood strips (Evans 1994; Evans and Elic 2001). In this study,
epub.cc oy editi	198	image analysis and X-ray absorption were used for measuring tracheid width, widths
science r to coj	199	in the radial and tangential directions, in radial intervals of 25 μm (Piispanen et al.
om cdn ipt prio	200	2014).
aded fr anuscri	201	The locations of all annual rings and the interfaces between their parts of earlywood,
ownlo pted m	202	transition wood, and latewood were determined from the radial variations in wood
Res. D ne acce	203	density (Lundqvist et al. 2018). The ring boundaries were determined using an
J. For. ipt is th	204	algorithm that detected the steep density decrease that occurs between the latewood
Can. nanusci	205	and the earlywood. As many annual rings in UAS trees were exceptionally narrow,
st-IN m	206	cross-checking was conducted to assure the locations of annual ring boundaries
l'his Ju	207	optically on samples taken perpendicular to those for the SilviScan measurements
only.	208	(Piispanen et al. 2014). The same samples were remeasured using a computer-aided
nal use	209	system consisting of an Olympus SZ51 stereo microscope (Olympus corporation,
ır perso		
Fo		

	210	Tokyo, Japan) connected to a Heidenhein LS 303C transducer (Encoders UK Ltd.
	211	Birmingham, UK) with an accuracy of 0.001 mm (Piispanen et al. 2014).
	212	After the setting of ring boundaries and the cross-checking, a "20-80" density
	213	threshold definition was applied for separating three compartments within each ring.
	214	The span from minimum to maximum wood density was determined based on the
	215	SilviScan measurements: The part from 0 to 20% of the span was classified as
	216	earlywood, the part from 80 to 100% as latewood, and the part between as transition
•	217	wood (Lundqvist et al. 2018).
	218	
-	219	From the locations, ring distance from pith (stem radius, R), ring number from the
)	220	pith (cambial age, CA), ring widths (RW), latewood and transitionwood widths and
)	221	proportions (LWW, TWW, LWP and TWP, respectively) were calculated. Arithmetic
•	222	means of radial tracheid widths was calculated for each ring (Width), as well as for its
-	223	earlywood (<i>WidthEW</i>), latewood (<i>WidthLW</i>) and transitionwood (<i>WidthTW</i>). A total
-	224	of 6004 and 1191 annual rings in the UAS and EAS trees were measured,
	225	respectively.
_	226	The first five rings were excluded as the innermost rings are too curved to allow
	227	precise data acquisition for each ring and its parts with the x-ray beam passing
-	228	through the 2 mm thick sample strip.
	229	2.4. Measurement of tracheid length
	230	Disks were sawn just below a height of 0.6 m and 1.0 m from each UAS and EAS tree
•	231	respectively. In UAS, only trees from sites LAP and VES were included. A radial
	232	strip (0.5 cm tangentially and 1.5 cm longitudinally) was sawn from the pith to the
	233	bark along the north radius from each disk. For UAS trees, one-centimeter-long radial

samples were cut from the 0.5-cm-wide strip from pith to cambium and cut into

	235	match-size sticks for maceration. For UAS trees, the R and CA of the samples refer to
	236	the values of the rings of the oldest cambial age of the 1-cm section of the radial
	237	samples, and RW, LWW, and TWW were defined as sample-specific averages. For
	238	EAS trees, earlywood samples were taken from selected single annual rings and cut
	239	into match-size sticks for maceration. After analysis, the means of the tracheid lengths
	240	in the EW samples were calculated. In EAS trees, R and CA referred to the exact
	241	rings. A total of 754 and 30 samples with 50 tracheids each was gained for UAS and
	242	EAS trees respectively.
	243	Prior to the analyses of tracheid length, the samples were macerated in glacial acetic
•	244	acid/30% hydrogen peroxide (1:1, v/v) overnight at 60 °C. The resulting suspension
)	245	of the liberated washed fibers of each sample was applied to four microscope slides.
)	246	Fifty unbroken tracheids per sample were measured with an Olympus BH-2
•	247	microscope (Olympus Optical, Tokyo, Japan) and a CCDC Camera (COHU MOD
	248	4912-5000/0000, Cohu, San Diego, CA) in conjunction with the Image-Pro Plus 3.0
•	249	program for Windows (Media Cybernetics, Silver Spring, MD). One pixel
	250	corresponded to 1.08 μ m. The mean of the tracheid lengths measured was used to
	251	describe the tracheid length (<i>L</i>).

2.5. Statistical analysis

We analyzed the variation of tracheid *Width* and *Length* in UAS and EAS, using modeling as the primary statistical approach. Linear mixed modeling was applied to account for the random variances arising from the hierarchical structure of the data (Dutilleul et al. 1998; Downes et al. 2002). Variance components (VC) for plot, tree, and growth ring levels were incorporated in the mixed models to allow individual

252

253

254

255

256

257

Can. J. For. Res. Downloaded from cdnsciencepub.com by METLA/LEHTISALI on 12/08/21 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record. 262 263 264 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

265

259 observations to vary around the population, plot, and tree means respectively. First-260 order autoregression (AR(1)) was applied to adjacent rings, as they are often 261 correlated (Dutilleul et al. 1998; Downes et al. 2002).

The data from the first five annual rings were excluded from both modeling datasets, according to the limitations in measuring the narrow rings near the pith (see above). Upon screening the linear mixed model candidates, we found that one tree had exceptionally small tracheids, probably due to a very high compression wood content, and that tree was excluded from the modeling data. The eventual number of samples used for modeling Width and Length was then 5598 and 709 respectively.

Because our response variables were mean values of entire growth rings (or several rings in the case of Length of UAS trees), they were modeled with respect to ringlevel attributes: R, CA, RW, and the widths and proportions of LW and TW (LWW, TWW, LWP, and TWP).

The growth trends of cell dimensions in the radial direction are well established several studies have used e.g. logarithmic or exponential functions to describe the pith-to-bark developments (Lundqvist et al. 2005; Franceschini et al. 2012; Piispanen et al. 2014). In this study, we used logarithmic transformations of the response variables, and R and CA were the first to be tested in models for both dimensions. Subsequently, *RW* and its various transformations were tested in the models, with the assumption that they could explain additional variance along the radial trend caused by differences in growth conditions, tree position, and other factors affecting RW. In addition, LWP (and TWP, to a lesser extent) is known to be an important explanatory variable for the ring-specific means of tracheid dimensions, due to LW tracheid properties that differ from those in EW (Lindström 1997). It has also been argued that

LWP (often negatively correlated with RW) could actually express most of the 283 284 variance often attributed to RW (Downes et al. 2002). We therefore also tested LWP 285 and TWP in our models. 286 Relative stem size (dbh/dbh_{dom}) , where dbh is the individual tree stem diameter at 287 breast height and dbh_{Dom} is the average stem diameter of the 100 thickest trees ha⁻¹) 288 was tested as a fixed variable explaining tree-specific variations of tracheid 289 dimensions. Site was tested as a fixed variable to account for the differences between 290 the studied sites that were not captured by the selected explanatory variables. 291 Following the screening of various combinations of the explanatory variables and 292 their transformations and mutual correlations (Tables A1 and A2 in Supplementary 293 material), final models were selected based on visual inspections. Model fit and 294 unbiasedness were ensured by the visual examination of model residuals with respect 295 to the observed values, as well as the explanatory variables, and the statistical 296 significance of the parameter estimates. The predicted response variable values $\ln(\hat{y})$ 297 were retransformed to the original scale (um and mm for Width and Length 298 respectively) using the following equation:

$$\hat{y} = e^{\ln(y) + (\delta_{k_j} + \alpha_j)/2}$$
(1),

where δ_{kj} and α_j are the random terms for tree- and plot-level effects, respectively. The correction term was added to the estimates of the intercepts.

Differences of tracheid dimensions between EAS and UAS were examined by applying the UAS models (2 and 3) to the data for EAS and analyzing the errors.

All statistical analyses were carried out using SPSS[©] version 25 (IBM 2018).

299

300

301

302

303

304

306		
307	3.	Results
308		3.1. Empirical results
309		Both tracheid dimensions increased logarithmically with greater R and CA (Figures 2,
310		3). In UAS, differences in the tracheid dimensions between the size classes of trees
311		were notable with respect to CA, while the differences were less pronounced with
312		respect to R.
313		Tracheid Width showed a larger range of variation in UAS trees of different sizes than
314		in EAS trees, in general and when related to <i>R</i> , <i>CA</i> , <i>RW</i> , and <i>LWP</i> (Figure 2, Table 2).
315		A major difference between the two treatments was observed for the innermost 10
316		annual rings, where the UAS trees had a much steeper increase in the tracheid widths,
317		synchronous to the rapid decrease in LWP (Figure 1).
318		In UAS, tracheid Length was largely independent of RW. However it differed among
319		the size classes (Figure 3, Table 2), and had a negative correlation with <i>LWP</i> .
320		3.2. Tracheid dimension models
321		The finally selected tracheid dimension models were:
322		$\ln Width_{ijkl} = b_0 + b_1 * Site_i + b_2 * \ln R_{ijkl} + b_3 * CA^2_{ijkl} + b_4 * RW_{ijkl} + b_5 * RW^2_{ijkl}$
323		$+ b_6 * \ln LWP_{ijkl} + b_7 * lnTWP_{ijkl} + \varepsilon_{ij} + \varepsilon_{ijk} + \varepsilon_{yearl} + \varepsilon_{ijkl} (2)$
324 325		$\ln Length_{ijkm} = b_0 + b_1 * Site_i + b_2 * \ln R_{ijkm} + b_3 * lnCA_{ijkm} + b_4 * CA^2_{ijkm} + b_5 * RW_{ijkm} + b_6 * \ln LWP_{ijkm} + b_7 * lnTWP_{ijkm} + \varepsilon_{ij} + \varepsilon_{ijk} + \varepsilon_{yearm} + \varepsilon_{ijkm} (3)$
326		Readers are referred to the parameter definitions in Table 1, except:

ord.	327	<i>i</i> , <i>j</i> , <i>k</i> , <i>l</i> , $m =$ Indicators of hierarchy in the data: annual ring <i>l</i> in tree <i>k</i>
of rec	328	on plot <i>j</i> at site <i>i</i> ;
version	329	in model 3 for L, R_{ijkm} and CA_{ijkm} represent the edge furthest from the pith of the 1-cm
fficial	330	thick sample m in tree k on plot j at site i , and other fixed variables in model 3 are
e final o	331	averages in the 1-cm thick sample;
3/21 er from th	332	ε_{ij} = Random effect of plot within site
I on 12/08 t may diff	333	ε_{ijk} = Random effect of tree on plot within site
HTISAL sition. It	334	ε_{yearl} or ε_{yearm} = Random effect of calendar year (when the annual ring was
A/LEF compo	335	established), also including an autocorrelation parameter ρ_{ijkl} with the AR(1) structure
METL d page	336	between successive calendar years
oub.com by editing an	337	ε_{ijkl} or ε_{ijkm} = Residual.
ciencep to copy	338	In total, the models explained 92.4% and 84.2% of the variance of Width and Length
m cdns t prior	339	in UAS data respectively. We found <i>R</i> and <i>RW</i> the most important predictors of <i>Width</i>
led fro nuscrip	340	(Table 3), while <i>Length</i> was mostly explained by <i>R</i> and <i>CA</i> (Table 4). The combined
wnload ted ma	341	effects of the independent variables CA, RW, and LWP on Width and Length in trees
kes. Do e accep	342	under UAS management were simulated across relevant ranges and are illustrated in
J. For. H ipt is the	343	Figure 4.
Can. manusci	344	In general, our model (Equation 2) predicted increasing Width for UAS trees with
ust-IN	345	ageing cambium, increasing RW, and decreasing LWP (Table 3). More specifically,
This J	346	the effects of <i>RW</i> and <i>LWP</i> were limited during the juvenile phase ($CA < 20$) but
e only.	347	became increasingly influential as the cambium aged (Figure 4). The most distinct
onal us	348	enlargement of <i>Width</i> was predicted with $CA > 60$ a, $RW > 4$ mm and $LWP < 10$ (Figure
For pers	349	4).

According to the model (Equation 3), Length increased with CA and showed a

negligible decrease with increasing RW and LWP, most pronouncedly at ages between

16

352 30 and 50 (Table 4), after which the influence of CA fully dominated (Figure 4). 353 354 3.3. Comparison between UAS and EAS 355 356 The application of the models (Equations 2 and 3) to EAS data—i.e. predictions of tracheid dimensions in EAS trees using the parameter estimates fitted to UAS data 357 (Tables 3 and 4)—resulted in notable prediction errors in *Width* and *Length*. Smaller 358 359 values were underestimated and larger values overestimated, and the overestimation increased toward the stem surface (Figure 5). These errors reflected the smaller range 360 of Width values in the EAS data (Figure 2), but also the trend of increasing RW 361 synchronously to decreasing LWP towards stem surface (Figure 1) that was associated 362 363 with increasing *Width* in the UAS data but was absent in the EAS data (Figure 5). The 364 similar prediction errors of *Length* were slightly affected by the differences in the 365 growth rates between EAS and UAS (Figure 5). 366 367 368 4. Discussion 369 Tracheid length and width patterns from pith to bark in uneven-aged Norway spruce 370 (Picea abies L. (H.) Karst) trees were addressed. The identification of main factors 371 and a comparison with even-aged stands were also pursued.

350

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

Can. J. For. Res. Downloaded from conscience pub.com by METLA/LEHTISALI on 12/08/21 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

17

The wood samples were taken near the stem base (0.6 m) to cover the full range of the annual ring width patterns in uneven-aged stands. However, the study material cannot be considered representative of tracheid properties at other heights along the stem. The difference in sampling heights (1.0 m for EAS vs. 0.6 m for UAS) should not have had a major influence on the results The sample size for tracheid length for EAS (30 samples, 1500 tracheids) is not large enough to yield valuable insight into the patterns beyond general trends.

We observed patterns of tracheid dimensions developments that reflected the effects of the initial suppression in the early years, and the gradual release toward the dominant phase. In the UAS material, the latewood proportions in the innermost rings were at relatively high levels (~30%), followed by a steep decrease. Correspondingly rapid increases in the tracheid dimensions in the corewood of the UAS trees were also observed. On the other hand, low latewood percentages and large ring widths were observed in the UAS outerwood, where the tracheids were wider and longer.

Both cambial age and stem radius were included in the final models despite their obvious autocorrelation, as their counteraction reflected the effects of shifting canopy positions characteristic of trees grown under the UAS regime. The intra-annual variations of tracheid dimensions due to differing compositions of early-, transition-, and latewood were accounted for in our models by including ring width, latewood, and earlywood proportion in the fixed parts. Their application in the model estimation and application also accounted for the different sampling designs used in the UAS and EAS study materials: tracheid length for UAS trees was measured from 1-cm radial samples entailing entire growth rings including early-, transition-, and latewood proportions, while that of EAS was measured from pure earlywood samples.

396 In our models, ring width had more pronounced positive effects onto tracheid widths 397 in the outerwood than in the corewood, and showed only negligible, negative effects 398 on tracheid lengths in addition to the dominant effects of cambial age and stem radius. 399 It is noteworthy that total tree age has been found to be positively correlated with the 400 rate of cell division (Rathgeber et al. 2011; Lundqvist et al. 2018), which is a main 401 determinant of ring width. Subsequently, the observed positive effects of ring width 402 on tracheid width could also be corollary to increasing tree age and stem radius, rather 403 than causal per se.

404 Based on our data and literature, corewood in EAS trees exhibits large ring widths 405 with high earlywood contents, and the proportion of corewood in stems is high 406 (Downes et al. 2002; Sarén et al. 2004; Lundqvist et al. 2005; Lasserre et al. 2009). However, we observed contrasting trends in the UAS trees. The differences may be 407 408 related to the maturation processes in cambium due to the long period of slow growth 409 resulting from the suppression phase typical in UAS. Most UAS trees in our data had 410 thinner rings and higher latewood proportion in their corewood, as opposed to the wider rings with a higher earlywood proportion in the EAS corewood. At a similar 411 412 stem radius, the cambium in UAS was thus generally older than in EAS (i.e. had 413 higher cambial age). Tracheids from dominant UAS trees (DBH≥30 cm; wider rings 414 and lower latewood proportion) reached larger dimensions at smaller stem radius and 415 younger cambial age compared to EAS. The outerwood in dominant UAS trees had 416 wider tracheids than those in EAS. In contrast, tracheids from the outerwood of 417 suppressed UAS trees (DBH<10 cm; thinner rings and higher latewood proportion), 418 remained narrower than their EAS counterparts.

419 Despite the differences, our results concur with similar observations about the age-420 and size-mediation of tracheid dimension maturation in the major body of the

© The Author(s) or their Institution(s)

421 previous literature, e.g. Lindström (1997); Mäkinen et al. (2007); Franceschini et al. Can. J. For. Res. Downloaded from cdnsciencepub.com by METLA/LEHTISALI on 12/08/21 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record. 422 (2012) and Sirviö and Kärenlampi (2001). The predominant relationships of tracheid 423 dimensions with cambial age and stem radius reflect the structural-functional 424 relationship of tracheid dimensions with turgor pressure and hydraulic resistance in 425 water transport, which change as the tree ages and grows in height and crown size 426 (Mansfield et al. (2007), Kuprevicius et al. (2013), Sorce et al. 2013). Large UAS 427 Norway spruces may maintain long vigorous crowns when in dominant positions 428 (Kumpu et al. 2020), and produce wood with high earlywood content and wide 429 tracheids at the base of the stem to sustain the water conductivity. 430 In a study of the wood properties of black spruce (Picea mariana (Mill.) in even- and 431 uneven-aged boreal stands in Eastern Canada, Pamerleau-Couture et al. (2019) 432 concluded that most measured wood properties were correlated with ring width, and 433 there were major differences between even-aged and uneven-aged stands submitted to 434 partial cutting. Ring width, tracheid length, latewood and maximum wood density 435 were higher in the even-aged trees than in the uneven-aged trees. These findings 436 diverge partly from those of this study and those of Piispanen et al. (2014) on wood 437 density in our experimental stands. However, direct comparisons are not very 438 meaningful due to the large differences between the materials (geographical location, 439 tree species, intensity and type of cuttings, time elapsed after cuttings). 440 In conclusion, the development of tracheid dimensions between UAS and EAS trees 441 follows similar age and size-dependent relationships. However, the extended 442 suppression phase in the early growth of UAS trees tends to increase the proportion of 443 wider and longer tracheids at the base of the stem. Moreover, old UAS trees in 444 dominant positions produce wood with a high earlywood content. The results suggest

© The Author(s) or their Institution(s)

that extending the growth of mature trees before harvesting increases the recovery of

wood with properties well-suited for most end uses. In UAS, the conditions for
prolonging the lifespan of trees may be superior to those in EAS, due to the increased
ring widths (as a proxy for growth rate) in the wood of the dominant UAS trees. Our
results mainly apply to the lower parts of trees, which constitute the main product of
UAS as valuable sawlogs. The outermost parts are often used in pulping, for which
their fiber properties seem very good.

Acknowledgements

We gratefully acknowledge the technical skills of Pekka Helminen, Tapio Järvinen, Juhani Korhonen, Tapio Nevalainen, and Hilkka Ollikainen (Natural Resources Institute Finland) and Thomas Grahn, Åke Hansson, and Lars Olsson (RISE Innventia AB, Sweden). Södra Cell is acknowledged for wood material from Swedish Norway spruce even-aged sites. The EAS data reused for this study had originally been created in terms of the project "Multi-sectorial database, model system and case studies, supporting innovative use of wood and fibres" (Innovood), which belonged to the Wood Material Science and Engineering Finnish–Swedish Research Program, which had been funded by BUSINESS FINLAND (formerly Tekes) and VINNOVA on the Swedish side. We thank Harri Mäkinen for kindly providing the EAS tracheid length data.

464 **Comp**

Competing interests statement

The authors declare there are no competing interests.

References

452

453

454

455

456

457

458

459

460

461

462

463

465

467	Ahlström, M.A., and Lundqvist, L. 2015. Stand development during 16-57 years in partially
468	harvested sub-alpine uneven-aged Norway spruce stands reconstructed from
469	increment cores. For. Ecol. Manage. 350, 81-86. doi:10.1016/j.foreco.2015.04.021.
470	Assmuth, A., and Tahvonen, O. 2018. Optimal carbon storage in even-and uneven-aged
471	forestry. For. Policy Econ. 87, 93-100. doi:10.1016/j.forpol.2017.09.004.
472	Boucher, Y., Perrault-Hébert, M., Fournier, R., Drapeau, P., and Auger, I. 2017. Cumulative
473	patterns of logging and fire (1940-2009): consequences on the structure of the eastern
474	Canadian boreal forest. Landscape Ecol. 32 (2), 361-375. doi:10.1007/s10980-016-
475	0448-9.
476	Cajander, A.K. 1949. Forest types and their significance. Acta For. Fenn. 56 (4), 1-69.
477	Downes, G.M., Wimmer, R., and Evans, R. 2002. Understanding wood formation: gains to
478	commercial forestry through tree-ring research. Dendrochronol. 20 (1-2), 37-51.
479	doi:10.1078/1125-7865-00006.
480	Dutilleul, P., Herman, M., and Avella-Shaw, T. 1998. Growth rate effects on correlations
481	among ring width, wood density, and mean tracheid length in Norway spruce (Picea
482	abies). Can. J. For. Res. 28 (1), 56-68.
483	Eerikäinen, K., Valkonen, S., and Saksa, T. 2014. Ingrowth, survival and height growth of
484	small trees in uneven-aged Picea abies stands in southern Finland. For. Ecosys. 1 (1),
485	5. doi:10.1186/2197-5620-1-5.
486	Evans, R. 1994. Rapid measurement of the transverse dimensions of tracheids in radial wood
487	sections from Pinus radiata. Holzforsch. 48 (2), 168-172.
488	doi:10.1515/hfsg.1994.48.2.168.
489	Evans, R., Downes, G., Menz, D., and Stringer, S. 1995. Rapid measurement of variation in
490	tracheid transverse dimensions in a radiata pine tree. Appita J. 48 (2), 134-138.
491	https://search.informit.org/doi/epdf/10.3316/informit.252935342865527.

492	Evans, R., and Elic, J. 2001. Rapid prediction of wood stiffness from microfibril angle and
493	density. For. Prod. J. 51 (3), 53-57.
494	Fabris, S. 2000. Influence of cambial ageing, initial spacing, stem taper and growth rate on
495	the wood quality of three coastal conifers. Ph.D. Thesis. University of British
496	Columbia. Canada. doi: 10.14288/1.0089742.
497	Franceschini, T., Lundqvist, SO., Bontemps, JD., Grahn, T., Olsson, L., Evans, R., and
498	Leban, J-M. 2012. Empirical models for radial and tangential fibre width in tree rings
499	of Norway spruce in north-western Europe. Holzforsch. 66 (2), 219-230.
500	doi:10.1515/HF.2011.150.
501	García-Tejero, S., Spence, J.R., O'Halloran, J., Bourassa, S., and Oxbrough, A. 2018. Natural
502	succession and clearcutting as drivers of environmental heterogeneity and beta
503	diversity in North American boreal forests. PloS ONE, 13 (11), e0206931.
504	doi:10.1371/journal.pone.0206931.
505	Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A., and Schepaschenko, D. 2015.
506	Boreal forest health and global change. Sci. 349 (6250), 819-822.
507	doi:10.1126/science.aaa9092.
508	Hynynen, J., Eerikäinen, K., Mäkinen, H., and Valkonen, S. 2019. Growth response to
509	cuttings in Norway spruce stands under even-aged and uneven-aged management.
510	For. Ecol. Manage. 437, 314-323. doi:10.1016/j.foreco.2018.12.032.
511	Kumpu, A., Piispanen, R., Berninger, F., Saarinen, J., and Mäkelä, A. 2020. Biomass and
512	structure of Norway spruce trees grown in uneven-aged stands in southern Finland.
513	Scan. J. For. Res. 35, 252-261. doi:10.1080/02827581.2020.1788138.
514	Kuprevicius, A., Auty, D., Achim, A., and Caspersen, J.P. 2013. Quantifying the influence of
515	live crown ratio on the mechanical properties of clear wood. For. 86 (3), 361-369.
= 1 (

517	Laamanen, V. 2014. Structure of selection cutting stands, logging conditions, logging costs
518	and logging damages. Master's thesis, University of Helsinki. 85 + 5 p. In Finnish
519	with English abstract.
520	Lasserre, JP., Mason, E.G., Watt, M.S., and Moore, J.R. 2009. Influence of initial planting
521	spacing and genotype on microfibril angle, wood density, fibre properties and
522	modulus of elasticity in Pinus radiata D. Don corewood. For. Ecol. Manage. 258 (9),
523	1924-1931. doi:10.1016/j.foreco.2009.07.028.
524	Lindström, H. 1997 Fiber length, tracheid diameter, and latewood percentage in Norway
525	spruce: development from pith outward. Wood Fiber Sci. 29 (1), 21-34.
526	https://wfs.swst.org/index.php/wfs/article/view/2081
527	Lundqvist, SO., Grahn, T., Hedenberg, Ö. 2005. Models for fibre dimensions in different
528	softwood species. Simulation and comparison of within and between tree variations
529	for Norway and Sitka spruce, Scots and Loblolly pine. In: 5th workshop on "Wood
530	quality modelling", IUFRO Working Party 5.01.04, Auckland, New Zealand, Nov
531	22–27 2005.
532	Lundqvist, SO., Seifert, S., Grahn, T., Olsson, L., García-Gil, M.R., Karlsson, B., and
533	Seifert, T. 2018. Age and weather effects on between and within ring variations of
534	number, width and coarseness of tracheids and radial growth of young Norway
535	spruce. Eur. J. For. Res. 137 (5), 719-743. doi:10.1007/s10342-018-1136-x.
536	Macdonald, E., Gardiner, B., and Mason, W. 2010. The effects of transformation of even-
537	aged stands to continuous cover forestry on conifer log quality and wood properties in
538	the UK. Forestry, 83 (1), 1-16. doi:10.1093/forestry/cpp023.
539	Mäkinen, H., Jaakkola, T., Piispanen, R., and Saranpää, P. 2007. Predicting wood and
540	tracheid properties of Norway spruce. For. Ecol. Manage. 241 (1), 175-188.
541	doi:10.1016/j.foreco.2007.01.017.

542	Mansfield, S.D., Parish, R., Goudie, J.W., Kang, KY., and Ott, P. 2007. The effects of
543	crown ratio on the transition from juvenile to mature wood production in lodgepole
544	pine in western Canada. Can. J. For. Res. 37 (8), 1450-1459. doi:10.1139/X06-299.
545	Natural Resources Institute Finland. 2018. Statistics database, https://stat.luke.fi/en/uusi-
546	etusivu.
547	Nolet, P., Kneeshaw, D., Messier, C., and Béland, M. 2018. Comparing the effects of
548	even-and uneven-aged silviculture on ecological diversity and processes: A review.
549	Ecol. Evol. 8 (2), 1217-1226. doi:10.1002/ece3.3737.
550	Pamerleau-Couture, É., Rossi, S., Pothier, D., and Krause, C. 2019. Wood properties of black
551	spruce (Picea mariana (Mill.) BSP) in relation to ring width and tree height in even-
552	and uneven-aged boreal stands. Ann. For. Sci. 76 (2), 43. doi:10.1007/s13595-019-
553	0828-9.
554	Piispanen, R., Heinonen, J., Valkonen, S., Mäkinen, H., Lundqvist, SO., and Saranpää, P.
555	2014. Wood density of Norway spruce in uneven-aged stands. Can. J. For. Res. 44
556	(2), 136-144. doi:10.1139/cjfr-2013-0201.
557	Piispanen, R., Heikkinen, J., and Valkonen, S. 2020. Deformations of boards from uneven-
558	aged Norway spruce stands. Eur. J. Wood Wood Prod. 78, 533-544.
559	doi:10.1007/s00107-020-01524-x.
560	Pretzsch, H. and Rais, A. 2016. Wood quality in complex forests versus even-aged
561	monocultures: review and perspectives. Wood Sci. Technol. 50 (4), 845-880.
562	doi:10.1007/s00226-016-0827-z.
563	Puettmann, K.J., Wilson, S.McG., Baker, S.C., Donoso, P.J., Drössler, L., Amente, G.,
564	Harvey, B.D., Knoke, T., Lu, Y., Nocentini, S., Putz, F.E., Yoshida, T., and Bauhus,
565	J. 2015. Silvicultural alternatives to conventional even-aged forest management-what
566	limits global adoption? For. Ecosyst. 2 (1), 8. doi:10.1186/s40663-015-0031-x.

567	Rantala, S. 2011. Finnish forestry practice and management. Metsäkustannus, Helsinki,
568	Finland. 271 p.
569	Rathgeber, C.B.K., Rossi, S., and Bontemps, JD. 2011. Cambial activity related to tree size
570	in a mature silver-fir plantation. Ann. Bot. 108 (3), 429-438. doi:10.1093/aob/mcr168.
571	Saksa, T., and Valkonen, S. 2011. Dynamics of seedling establishment and survival in
572	uneven-aged boreal forests. For. Ecol. Manage. 261 (8), 1409-1414.
573	doi:10.1016/j.foreco.2011.01.026.
574	Sarén, MP., Serimaa, R., Andersson, S., Saranpää, P., Keckes, J., and Fratzl, P. 2004. Effect
575	of growth rate on mean microfibril angle and cross-sectional shape of tracheids of
576	Norway spruce. Trees, 18 (3), 354-362. doi:10.1007/s00468-003-0313-8.
577	Savva, Y., Koubaa, A., Tremblay, F., and Bergeron, Y. 2010. Effects of radial growth, tree
578	age, climate, and seed origin on wood density of diverse jack pine populations. Trees,
579	24 , 53–65. doi: 10.1007/s00468-009-0378-0.
580	Schrader, J., Baba, K., May, S., Palme, K., Bennett, M., Bhalerao, R., and Sandberg, G. 2003.
581	Polar auxin transport in the wood-forming tissues of hybrid aspen is under
582	simultaneous control of developmental and environmental signals. PNAS, 100 (17),
583	10096-10101. doi:10.1073/pnas.1633693100.
584	Schütz, JP. 2001. Opportunities and strategies of transforming regular forests to irregular
585	forests. For. Ecol. Manage. 151 (1-3), 87-94. doi:10.1016/S0378-1127(00)00699-X.
586	Seeling, U. 2001. Transformation of plantation forests – expected wood properties of Norway
587	spruce (Picea abies (L.) Karst.) within the period of stand stabilisation. For. Ecol.
588	Manage. 151(1-3): 195-210. doi:10.1016/S0378-1127(00)00708-8.
589	Sirviö, J., and Kärenlampi, P. 2001. The effects of maturity and growth rate on the properties
590	of spruce wood tracheids. Wood Sci. Technol. 35 (6), 541-554.
591	doi:10.1007/s002260100119.

- 592 Sorce, C., Giovannelli, A., Sebastiani, L., and Anfodillo, T. 2013. Hormonal signals involved 593 in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant 594 Cell Rep. **32** (6), 885-898. doi:10.1007/s00299-013-1431-4.
- 595 Valkonen, S. 2011 Tree species. In Finnish Forestry-Practice and Management. Edited by S. 596 Rantala. Metsäkustannus, Helsinki, Finland. pp. 35-36.
- 597 Zobel, B.J., and Jett, J.B. 1995. Genetics of wood production. In Springe Series of Wood

Science. 1st ed. Springer-Verlag Berlin Heidelberg, Germany. 337 p.

record.	600 601	Table 1. List of variables, their abbreviations, explanations, and units.
ersion of	602	Table 2. Averages, standard deviations and minimum and maximum values for radial
official v	603	tracheid width and tracheid length by tree size classes.
ie final c	604	Table 3. Parameter coefficient estimates for the linear mixed model of radial tracheid
l îrom th	605	width (Eq. 2), and standard errors (SE) and statistical significances (p). For
12/08/2] y differ f	606	abbreviations see Table 1.
SALI on on. It ma	607	Table 4. Parameter coefficient estimates for the linear mixed model of tracheid length
EHTI	608	(Eq. 3), and the standard errors (SE) and statistical significances (p). For
ETLA/L age com	609	abbreviations see Table 1.
m by M ng and p	610	Table A1. Pearson correlation coefficients (r) and significance levels (p) between key
cepub.co opy editii	611	variables in the data used for modeling tracheid width.
dnscienc rior to co	612	Table A2. Pearson correlation coefficients (r) and significance levels (p) between key
d from c iscript pi	613	variables in the data used for modeling tracheid length.
wnloade ed manu	614	
Res. Do le accept	615	
n. J. For. cript is th		
I manuso		
s Just-IN		
nly. Thi		
nal use o		
or perso		
цц,		

616 Figure captions

3		
	617	Figure 1. Observed ring widths and latewood and transition wood percentages in
	618	uneven-aged and even-aged stands (UAS and EAS) with respect to cambial age in the
	619	four size classes. Lines indicate class means at 15 equal intervals with respect to the
	620	x-axis. The data correspond to those used in the measurement of the tracheid widths:
	621	for UAS and EAS $n = 6004$ and $n = 1191$ respectively.
in fair	622	Figure 2. Observed tracheid widths in uneven-aged and even-aged stands (UAS and
	623	EAS) with respect to stem radius, cambial age, ring width and latewood percentage in
modu	624	the four size classes. Lines indicate class means at 15 equal intervals with respect to
Pues eard	625	the x-axis. For UAS and EAS, $n = 6004$ and $n = 1191$, respectively.
200	626	Figure 3. Observed tracheid lengths in uneven-aged and even-aged stands (UAS and
L' ca	627	EAS) with respect to stem radius, cambial age, ring width and latewood percentage in
2	628	the four size classes. Lines indicate class means at 15 equal intervals with respect to
	629	the x-axis. For UAS and EAS $n = 754$ and $n = 30$, respectively.
	630	Figure 4. Predicted tracheid widths and predicted tracheid lengths in UAS trees with
2	631	respect to cambial age, ring width and latewood percentage, using the models fitted to
	632	data from the UAS trees. The colors indicate the width (upper panes) and length
	633	(lower panes) of the tracheids with respect to the combined effects of cambial age (x-
	634	axis), and ring width, or latewood percentage (y-axis).
	635	Figure 5. Prediction errors of the tracheid dimensions in even-aged stands (EAS),
	636	when EAS data are used as inputs to the models fitted to uneven-aged data. The
	637	prediction errors are given with respect to the predicted values and the fixed variables
	638	stem radius, ring width, and latewood percentages in EAS.

Table 1. List of main variables studied in this study, their abbreviations, explanations and units.

Abbreviation	Explanation	Unit
Width	Radial tracheid width	μm
WidthLW	Radial tracheid width in latewood	μm
WidthEW	Radial tracheid width in earlywood	μm
WidthTW	Radial tracheid width in transitionwood	μm
Length	Tracheid length	mm
R	Stem radius at the position of a specific sampling point,	mm
CA	Cambial age	a
RW	Annual ring width	mm
EWW	Earlywood width	mm
LWW	Latewood width	mm
TWW	Transitionwood width	mm
LWP	Latewood percentage	%
TWP	Transitionwood percentage	%
dbh	Diameter-at-breast-height	mm
dbh_{dom}	Mean d of 100 largest trees per hectare	mm
Site	The locality of studied stand (as below)	dummy
- LAP	Lapinjärvi	
- VES	Vesijako	

- SUO Suonenjoki

Table 2. Averages, standard deviations and minimum and maximum values for radial

 tracheid width and tracheid length by tree size classes.

Radial tracheid width (µm)								
	UAS				EAS			
Size class (cm)	mean	sd	min	max	mean	sd	min	max
0-9.99	24.84	3.15	15.42	33.10	29.63	1.70	24.90	32.83
10 - 19.99	27.58	3.47	17.59	35.79	30.67	1.87	25.63	35.95
20 - 29.99	29.21	3.89	17.10	38.26	30.54	1.65	23.49	34.75
30 -	31.67	3.85	18.92	40.43	30.48	1.89	24.45	35.94
Tracheid lei	ngth (mm)							
	UAS				EAS			
Size class	mean	sd	min	max	mean	sd	min	max
0-9.99	2.41	0.54	1.08	3.32	NA	NA	NA	NA
10 - 19.99	2.65	0.61	1.15	3.80	NA	NA	NA	NA
20 - 29.99	2.80	0.62	1.15	4.23	3.44	0.67	2.18	4.55
30 -	3.04	0.61	1.02	4.20	3.21	0.59	2.19	3.95

Table 3. Parameter estimates for the model of radial tracheid width (Eq. 2), and the standard errors (SE) and statistical significances (p). For abbreviations see Table 1.

Parameter	Estimate	SE	р
Fixed effects			
Intercept, b_0	3.0390	0.0158	<0.01
$Site_i, b_I$			
LAP	-0.0710	0.0123	<0.01
VES	0.0033	0.0112	0.77
SUO	0.0000	0.0000	
$\ln R_{ijk}, b_2$	0.1194	0.0019	<0.01
CA^2_{ijkl}, b_3	-0.00000177	0.000000883	0.05
RW_{ijkl}, b_4	0.0487	0.0027	<0.01
RW^2_{ijkl}, b_5	-0.0053	0.0005	<0.01
$\ln LWP_{ijkl}, b_6$	-0.0331	0.0012	<0.01
ln <i>TWP_{ijkl}</i> , <i>b</i> ₇	-0.0253	0.0014	<0.01
Random effects			
Plot, σ^2_{ij}	0.0001	0.0001	0.61
Tree, σ^{2}_{ijk}	0.0017	0.0003	<0.01

$\operatorname{Year}_{\sigma}^{2}_{\operatorname{yearl}}$	0.0002	0.0000	< 0.01
Year AR(1), ρ	0.5019	0.0139	< 0.01
Residual, σ^{2}_{ijkl}	0.0017	0.0000	<0.01

Table 4. Parameter estimates for the model of tracheid length (Eq. 3), and the standard errors(SE) and statistical significances (p). For abbreviations see Table 1.

Parameter	Estimate	SE	р			
Fixed effects						
Intercept, b_0	-0.0824	0.0600	0.14			
Site _i , b_1						
LAP	-0.1747	0.0263	<0.01			
VES	0.0000	0.0000				
$\ln R_{ijk}, b_2$	0.2016	0.0210	<0.01			
$lnCA_{ijkl}, b_3$	0.1698	0.0278	<0.01			
CA^2_{ijkl}, b_4	-0.00003060785	0.000005165204	<0.01			
RW_{ijkl}, b_5	-0.0184	0.0045	<0.01			
$\ln LWP_{ijkl}, b_6$	-0.0156	0.0071	0.03			
$\ln TWP_{ijkl}, b_7$	-0.0212	0.0099	0.03			
Random effects						
Plot, σ^{2}_{ij}	0.0004	0.0007	0.59			
Tree, σ^{2}_{ijk}	0.0026	0.0017	0.13			
$Year, \sigma^2_{yearl}$	0.0001	0.0001	0.34			

Year AR(1), ρ	0.9353	0.0133	<0.01
Residual, σ^{2}_{ijkl}	0.0012	0.0020	<0.01

Figure 1. Observed ring widths and latewood and transition wood percentages in uneven-aged and evenaged stands (UAS and EAS) with respect to cambial age in the four size classes. Lines indicate class means at 15 equal intervals with respect to the x-axis. The data correspond to those used in the measurement of the tracheid widths: for UAS and EAS n = 6004 and n = 1191 respectively.

1089x769mm (96 x 96 DPI)

Figure 2. Observed tracheid widths in uneven-aged and even-aged stands (UAS and EAS) with respect to stem radius, cambial age, ring width and latewood percentage in the four size classes. Lines indicate class means at 15 equal intervals with respect to the x-axis. For UAS and EAS, n = 6004 and n = 1191, respectively.

176x236mm (300 x 300 DPI)

Figure 3. Observed tracheid lengths in uneven-aged and even-aged stands (UAS and EAS) with respect to stem radius, cambial age, ring width and latewood percentage in the four size classes. Lines indicate class means at 15 equal intervals with respect to the x-axis. For UAS and EAS n = 754 and n = 30, respectively.

1060x1481mm (96 x 96 DPI)

Figure 4. Predicted tracheid widths and predicted tracheid lengths in UAS trees with respect to cambial age, ring width and latewood percentage, using the models fitted to data from the UAS trees. The colors indicate the width (upper panes) and length (lower panes) of the tracheids with respect to the combined effects of cambial age (x-axis), and ring width, or latewood percentage (y-axis).

171x99mm (300 x 300 DPI)

Figure 5. Prediction errors of the tracheid dimensions in even-aged stands (EAS), when EAS data are used as inputs to the models fitted to uneven-aged data. The prediction errors are given with respect to the predicted values and the fixed variables stem radius, ring width, and latewood percentages in EAS.

236x118mm (300 x 300 DPI)

	<i>Width_{ijkl}</i>	<i>WidthEW</i> _{ijkl}	$WidthTW_{ijkl}$	$WidthLW_{ijkl}$	R _{ring ijkl}	CA_{ijkl}	RW_{ijkl}	LWP _{ijkl}	TWP _{ijkl}
<i>WidthEW</i> _{ijkl}	0.962								
	<0.001								
$WidthTW_{ijkl}$	0.881	0.825							
	<0.001	<0.001							
$WidthLW_{ijkl}$	0.574	0.538	0.670						
	<0.001	<0.001	<0.001						
R _{ring ijkl}	0.765	0.769	0.707	0.503					
	<0.001	<0.001	<0.001	<0.001					
CA_{ijkl}	0.627	0.667	0.616	0.491	0.850				
	<0.001	<0.001	<0.001	<0.001	<0.001				
RW _{ijkl}	0.492	0.425	0.398	0.245	0.364	0.096			
	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001			
LWP _{ijkl}	-0.445	-0.346	-0.204	0.113	-0.181	0.008	-0.497		
	<0.001	<0.001	<0.001	<0.001	<0.001	0.527	< 0.001		
TWP _{ijkl}	-0.125	-0.092	0.064	0.082	-0.056	-0.077	0.203	-0.042	
	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
dbh _{ijk} /dbh _{dom ij}	0.588	0.554	0.493	0.292	0.584	0.317	0.499	-0.340	-0.049

Table A1. Pearson correlation coefficients (r) and significance levels (p) between key variables in the data used for modeling tracheid width.

_

	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
where											
	$Width_{ijkl}$ = Average radial tracheid width in annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , µm										
	<i>WidthEW</i> _{<i>ijkl</i>} = Average radial tracheid width in latewood of annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , μ m										
	$WidthTW_{ijkl}$ = Average radial tracheid width in transition wood in annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , µm										
	<i>WidthLW</i> _{<i>ijkl</i>} = Average radial tracheid width in latewood in annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , μ m										
	$R_{ring ijkl}$ = Distance from pith of annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , mm										
	CA_{ijkl} = Cambial age of annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , years										
	RW_{ijkl} = Width of annual ring <i>l</i> in tree <i>k</i> on plot <i>j</i> at site <i>i</i> , mm										
	$LWP_{ijkl} = Latewo$	ood proportion o	of annual ring <i>l</i>	in tree k on plo	ot <i>j</i> at site <i>i</i> , %						
	<i>TWP_{ijkl}</i> = Transit	ion wood propo	ortion of annua	l ring <i>l</i> in tree <i>k</i>	on plot <i>j</i> at sit	te i, %					
	$d_{ijk}/d_{dom_{ij}} = \text{Relat}$	tive tree diamete	er (stem diame	ter of tree k on	plot j at site i o	livided by the	average diamet	ter of the 100 th	ickest trees on		
	plot j at site i)										

i ,j, k, l = indicators of hierarchy in the data: annual ring l in tree k on plot j at site i

	Length _{ijkm}	$Width_{ijkm}$	$WidthEW_{ijkm}$	$WidthLW_{ijkm}$	$R_{sample\ ijkm}$	CA_{ijkl}	RW_{ijkm}	LWP_{ijkm}	TWP_{ijkm}
Width _{ijkm}	0.816								
	<0.001								
$WidthEW_{ijkm}$	0.833	0.980							
	<0.001	<0.001							
$WidthLW_{ijkm}$	0.637	0.702	0.676						
	<0.001	<0.001	<0.001						
R _{sample} ijkm	0.754	0.784	0.796	0.611					
	<0.001	<0.001	<0.001	<0.001					
CA_{ijkl}	0.713	0.621	0.667	0.538	0.837				
	<0.001	<0.001	<0.001	<0.001	<0.001				
RW_{ijkm}	0.189	0.461	0.400	0.286	0.341	0.025			
	<0.001	<0.001	<0.001	<0.001	<0.001	0.498			
LWP _{ijkm}	-0.252	-0.485	-0.409	-0.005	-0.194	0.025	-0.563		
	<0.001	<0.001	<0.001	0.897	<0.001	0.495	<0.001		
TWP _{ijkm}	-0.205	-0.222	-0.206	0.013	-0.127	-0.193	0.200	0.097	
	<0.001	<0.001	<0.001	0.719	0.001	<0.001	<0.001	0.009	
dbh _{ijk} /dbh _{dom ij}	0.369	0.534	0.508	0.365	0.511	0.241	0.438	-0.323	-0.020

Table 42 Pearson correlation coefficients (r) and significance levels (n) between key variables in the data used for modeling tracheid length

	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.590
where									

Length_{ijkm} = Average tracheid length in the 1-cm thick sample m in tree k on plot j at site i, mm

 $Width_{ijkm}$ = Average tracheid radial width in the 1-cm thick sample m in tree k on plot j at site i, mm

 $WidthEW_{ijkm}$ = Average tracheid radial width in earlywood in the 1-cm thick sample m in tree k on plot j at site i, mm

 $WidthLW_{ijkm}$ = Average tracheid radial width in latewood in the 1-cm thick sample m in tree k on plot j at site i, mm

 $R_{sample ijkm}$ = Distance from pith (of the edge furthest from the pith) of the 1-cm thick sample m in tree k on plot j at site i, mm

 CA_{ijkl} = Cambial age of the annual ring l that lies nearest to the pith in the 1-cm thick sample *m* in tree *k* on plot *j* at site *i*, years

 RW_{ijkm} = Average width of annual rings in the 1-cm thick sample m in tree k on plot j at site i, mm

 LWP_{ijkm} = Average latewood proportion in annual rings in the 1-cm thick sample *m* in tree *k* on plot *j* at site *i*, %

 TWP_{ijkm} = Average transition wood proportion in annual rings in the 1-cm thick sample m in tree k on plot j at site i, %

 $dbh_{ijk}/dbh_{dom_{ij}}$ = Relative tree diameter (stem diameter of tree k on plot j at site i divided by the average diameter of the 100 thickest trees on plot j at site i)

i, *j*, *k*, *l* or m = indicators of hierarchy in the data: sample *m* or annual ring *l* in tree *k* on plot *j* at site *i*