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ARTICLE

Integration of questionnaire-based risk factors
improves polygenic risk scores for human coronary
heart disease and type 2 diabetes
Max Tamlander 1, Nina Mars1, Matti Pirinen 1,2,3, FinnGen*, Elisabeth Widén1 & Samuli Ripatti 1,2,4✉

Large-scale biobank initiatives and commercial repositories store genomic data collected

from millions of individuals, and tools to leverage the rapidly growing pool of health and

genomic data in disease prevention are needed. Here, we describe the derivation and vali-

dation of genomics-enhanced risk tools for two common cardiometabolic diseases, coronary

heart disease and type 2 diabetes. Data used for our analyses include the FinnGen study

(N= 309,154) and the UK Biobank project (N= 343,672). The risk tools integrate con-

temporary genome-wide polygenic risk scores with simple questionnaire-based risk factors,

including demographic, lifestyle, medication, and comorbidity data, enabling risk calculation

across resources where genome data is available. Compared to routinely used clinical risk

scores for coronary heart disease and type 2 diabetes prevention, the risk tools show at least

equivalent risk discrimination, improved risk reclassification (overall net reclassification

improvements ranging from 3.7 [95% CI 2.8–4.6] up to 6.2 [4.6–7.8]), and capacity to be

improved even further with standard lipid and blood pressure measurements. Without the

need for blood tests or evaluation by a health professional, the risk tools provide a powerful

yet simple method for preliminary cardiometabolic risk assessment for individuals with

genome data available.

https://doi.org/10.1038/s42003-021-02996-0 OPEN

1 Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland. 2 Clinicum, Department of Public Health, University of
Helsinki, Helsinki, Finland. 3 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland. 4 Broad Institute of MIT and Harvard,
Cambridge, MA, USA. *A list of authors and their affiliations appears at the end of the paper. ✉email: samuli.ripatti@helsinki.fi

COMMUNICATIONS BIOLOGY |           (2022) 5:158 | https://doi.org/10.1038/s42003-021-02996-0 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02996-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02996-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02996-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02996-0&domain=pdf
http://orcid.org/0000-0003-2249-0971
http://orcid.org/0000-0003-2249-0971
http://orcid.org/0000-0003-2249-0971
http://orcid.org/0000-0003-2249-0971
http://orcid.org/0000-0003-2249-0971
http://orcid.org/0000-0002-1664-1350
http://orcid.org/0000-0002-1664-1350
http://orcid.org/0000-0002-1664-1350
http://orcid.org/0000-0002-1664-1350
http://orcid.org/0000-0002-1664-1350
http://orcid.org/0000-0002-0504-1202
http://orcid.org/0000-0002-0504-1202
http://orcid.org/0000-0002-0504-1202
http://orcid.org/0000-0002-0504-1202
http://orcid.org/0000-0002-0504-1202
mailto:samuli.ripatti@helsinki.fi
www.nature.com/commsbio
www.nature.com/commsbio


Approaches to utilize genome data in healthcare have been
increasingly investigated during recent years, resulting in
development of genetic prediction algorithms with a

major focus on the prevention of common complex diseases such
as coronary heart disease (CHD), type 2 diabetes (T2D), and
breast and prostate cancer1–5. Several genetic testing platforms
now allow calculation of polygenic risk scores (PRS)2, which
combine the effects of numerous genetic markers across the
genome to a single measure of genetic risk6. PRSs are able to
stratify people effectively to distinct trajectories of future disease
risk4,5, but their utility is limited when used in the absence of
other known risk factors.

Clinical practice guidelines for the prevention of CHD and
T2D advocate risk calculators to estimate the 10-year risk of
disease, to identify and target individuals at high risk7–10. The risk
is calculated with clinical risk factors such as sex, age, smoking,
and blood lipid levels. In case of high total risk, individuals are
offered preventative medication and encouraged to adhere to a
healthy lifestyle. Current clinical risk calculators are, however,
failing to identify up to 40% high-risk individuals7,11, and as
prevention has broader benefits than treating diseases, improving
identification of at-risk individuals is an important public health
challenge.

Although CHD and T2D are known to be highly heritable12,13,
current risk prediction tools do not utilize directly measured
genetic information. CHD and T2D develop predominantly as a
combination of unfavorable lifestyle and hereditary factors14,15,
with effects accumulating over the course of life. Identifying high-
risk individuals using both genetic and non-genetic risk factors at
an early stage for targeted preventative efforts could therefore
have substantial benefits over the current prevention strategies for
CHD and T2D. As a growing number of individuals have genome
data available, one potential approach for improving risk esti-
mation is to utilize PRSs together with simple online ques-
tionnaires to preselect people from the population for further
comprehensive clinical risk evaluation. Here, we (1) show that
PRSs combined with simple and easily surveyable risk factors,
including demographic and lifestyle factors, and comorbidities,
provide a viable tool to identify high-risk individuals in CHD and
T2D, (2) show that Genomics-enhanced RIsk Tools (GRIT)
combining genome-wide risk and these simple risk factors for
CHD and T2D (GRIT-CHD and GRIT-T2D) have at least
comparable performance to risk scores advocated by clinical
guidelines, and (3) show that adding standard lipid and blood

pressure measurements to our GRIT scores leads to notable
performance improvements over current clinical risk scores for
CHD and T2D. We derive our risk tools in the Finnish biobank
study, FinnGen, and externally validate them in an independent
cohort, the UK Biobank.

Results
Study characteristics and GRIT derivation. First, we built
genome-wide PRSs for CHD and T2D by obtaining weights from
the largest genome-wide association studies (GWASs) on
European-ancestry individuals that do not overlap with UK
Biobank12,13. We tested the association of these PRSs in FinnGen
(N = 309,154 Finnish individuals) with 33,628 cases of CHD and
44,266 cases of T2D and in the UK Biobank (N= 343,672) with
18,698 cases of CHD and 24,192 cases of T2D. We observed
improved performance over previously published scores4 (Sup-
plementary Table 1), and therefore chose our PRSCHD and
PRST2D built with PRS-CS for our subsequent analyses. In
FinnGen, 61,878 individuals met our inclusion criteria for model
derivation for CHD and 69,159 for T2D (see “Methods” for
details). The median follow-up time was 10.0 years (interquartile
range [IQR] 7.8–10.0) for CHD and 10.0 years (IQR 7.5–10.0)
for T2D.

We constructed three sex-specific 10-year risk tools for each
disease in FinnGen: (1) Baseline; (2) Genomics-enhanced RIsk
Tool (GRIT-CHD and GRIT-T2D) combining PRSs with simple
and easily surveyable risk factors; and (3) GRIT requiring
measurements for systolic blood pressure (SBP) and lipids
(GRIT-CHD+ and GRIT-T2D+). We then estimated the
predictive performance of the PRSs and the GRIT scores in the
UK Biobank for 10-year incident disease (Fig. 1). The validation
datasets for the GRIT scores comprised 242,687 UK Biobank
individuals with 4469 incident cases for CHD and 121,113
individuals with 2544 incident cases for T2D who met our
inclusion criteria (see “Methods”, Table 1). Supplementary Table 2
shows the number of incident and prevalent cases by type of
event and data source in the validation cohort. Median follow-up
was 10.0 years (IQR 8.6–10.0) for CHD and 10.0 years (IQR
8.3–10.0) for T2D.

We tested the incremental value of each risk factor included in
the GRIT scores by adding them individually to a model with age
and sex in the final FinnGen derivation datasets. The area under
the receiver operating characteristic curve (AUC) increments
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 Compare GRIT-T2D to established 
clinical risk scores (FINDRISC, 

QDiabetes) in 121,113 individuals with 
2,544 incident T2D cases 

Compare GRIT-CHD to established 
clinical risk scores (PCE, QRISK3) in 

242,687 individuals with 4,469 
incident CHD cases 

GRIT-CHD 
Derive PRSCHD-based risk tool using 

61,878 individuals with 3,536 incident 
CHD cases 

GRIT-T2D 
Derive PRST2D-based risk tool using 

69,159 individuals with 4,892 incident 
T2D cases  

Build genome-wide polygenic risk scores for CHD (PRSCHD) and T2D (PRST2D) with  
PRS-CS using summary sta�s�cs from published genome-wide associa�on studies 

and an external LD reference (1000 Genomes Europeans, N = 503) 

Fig. 1 Derivation and validation of Genomics-enhanced RIsk Tools (GRIT) for CHD and T2D. Genome-wide PRSs for CHD and T2D were derived using
the algorithm PRS-CS by obtaining weights from GWAS summary statistics from two large GWASs that do not overlap with UK Biobank. We derived two
risk tools to estimate 10-year risk of incident disease, GRIT-CHD and GRIT-T2D, which integrate PRSs and simple, easily surveyable risk factors. We then
assessed discrimination, reclassification, calibration, and risk stratification of the risk tools in the UK Biobank and compared their performance to
established clinical risk scores (Pooled Cohort Equations and QRISK3 for CHD, FINDRISC and QDiabetes for T2D). The derivation and validation of the
baseline, GRIT-CHD+, and GRIT-T2D+ scores were analogous.
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ranged from +0.002 to +0.03 in CHD and from +0.006 to +0.17
in T2D in UK Biobank (Fig. 2). The largest increments in AUC
over age and sex came from PRSCHD (in CHD analyses) and BMI
(in T2D analyses). The models combining PRSs and the
conventional risk factors, GRIT-CHD and GRIT-CHD+, had
AUCs of 0.774 (95% confidence interval [CI] 0.768–0.780) and
0.795 (0.789–0.801), respectively. Similarly, GRIT-T2D and
GRIT-T2D+ had AUCs of 0.810 (0.803–0.818) and 0.827
(0.820–0.834).

Subgroup analyses displayed better absolute discrimination for
women and younger individuals, and non-obese (BMI < 30)
individuals in T2D. The greatest performance was seen in
individuals younger than 55 years old at baseline, with AUCs of
0.805 (0.791–0.819) for GRIT-CHD and 0.846 (0.830–0.861) for
GRIT-T2D (Fig. 3, Supplementary Table 3).

Discrimination of GRIT versus clinical risk scores. Next, we
compared our risk tools to routinely used clinical risk calculators:

Table 1 Baseline participant characteristics.

Coronary heart disease Derivation, N= 61,878 (FinnGen) Validation, N= 242,687 (UK Biobank)

Men, N= 33,774 Women, N= 28,104 Men, N= 105,439 Women, N= 137,248

Cases
N= 2938

Non-cases
N= 30,836

Cases
N= 598

Non-cases
N= 27,506

Cases
N= 3272

Non-cases
N= 102,167

Cases
N= 1197

Non-cases
N= 136,051

Age, mean ± SD 60.2 ± 8.1 52.7 ± 10.7 61.4 ± 8.1 51.1 ± 10.7 59.9 ± 6.9 56.1 ± 8.2 61.2 ± 6.4 56.4 ± 7.9
Current smoker, n (%) 1945 (66.2) 13,978 (45.3) 148 (24.7) 5339 (19.4) 551 (16.8) 11,816 (11.6) 216 (18.0) 11,338 (8.3)
Any diabetesa, n (%) 233 (7.9) 1167 (3.8) 96 (16.0) 1100 (4.0) 119 (3.6) 1804 (1.8) 30 (2.5) 1293 (1.0)
Use of antihypertensive
medications, n (%)

368 (12.5) 2933 (9.5) 196 (32.8) 3765 (13.7) 617 (18.9) 12,021 (11.8) 261 (21.8) 14,582 (10.7)

BMI, kg/m2, mean ± SD 27.6 ± 4.1 27.0 ± 4.1 28.4 ± 5.5 26.6 ± 5.2 28.1 ± 4.0 27.4 ± 4.0 27.6 ± 4.9 26.7 ± 4.9
Family history of CHD, n (%) n/a n/a n/a n/a 1599 (48.9) 37,375 (36.6) 672 (56.1) 59,195 (43.5)

Type 2 diabetes Derivation, N= 69,159 (FinnGen) Validation, N= 121,113 (UK Biobank)

Men, N= 38,861 Women, N= 30,298 Men, N= 55,898 Women, N= 65,215

Cases
N= 3234

Non-cases
N= 35,627

Cases
N= 1658

Non-cases
N= 28,640

Cases
N= 1532

Non-cases
N= 54,366

Cases
N= 1012

Non-cases
N= 64,203

Age, mean ± SD 58.9 ± 8.5 54.2 ± 10.9 57.6 ± 9.7 52.1 ± 11.1 60.2 ± 7.0 57.2 ± 8.1 59.9 ± 7.1 56.9 ± 7.9
Current smoker, n (%) 1612 (49.8) 16,656 (46.8) 374 (22.6) 5501 (19.2) 218 (14.2) 6076 (11.2) 136 (13.4) 5406 (8.4)
Use of antihypertensive
medications, n (%)

948 (29.0) 4644 (13.0) 646 (39.0) 4727 (16.5) 669 (43.7) 11,365 (20.9) 366 (36.2) 9254 (14.4)

Statin therapy, n (%) 458 (14.2) 2,274 (6.4) 280 (16.9) 1,902 (6.6) 551 (36.0) 9645 (17.7) 257 (25.4) 5795 (9.0)
BMI, kg/m2, mean ± SD 30.3 ± 4.7 26.7 ± 3.8 31.6 ± 6.0 26.4 ± 4.9 31.1 ± 4.7 27.5 ± 3.9 31.8 ± 6.0 26.7 ± 4.8
Prevalent CVD, n (%) 744 (23.0) 3,896 (11.0) 217 (13.1) 1494 (5.2) 350 (22.8) 4811 (8.9) 124 (12.3) 2430 (3.8)
Gestational diabetes, n (%) n/a n/a 64 (3.9) 473 (1.7) n/a n/a 22 (2.2) 220 (0.3)
Family history of T2D, n (%) n/a n/a n/a n/a 452 (29.5) 9756 (17.9) 403 (39.8) 13,268 (20.7)

The baseline participant characteristics are shown for cases and non-cases in the derivation (FinnGen) and validation (UK Biobank) datasets for CHD and T2D stratified by sex.
Age age at enrollment, BMI body mass index.
aT1D, T2D, and unspecified diabetes.

GRIT−CHD GRIT−CHD+

Predictors for CHD

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80

GRIT−CHD+
GRIT−CHD+ without PRSCHD

GRIT−CHD
GRIT−CHD without PRSCHD

   + Systolic Blood Pressure
   + HDL
   + LDL

   + Diabetes
   + Family history of CHD
   + Antihypertensives
   + BMI

   + Smoking status
   + PRSCHD

Age and sex

AUC (95% CI)

a

GRIT−T2D GRIT−T2D+

Predictors for T2D

0.60 0.65 0.70 0.75 0.80 0.85

GRIT−T2D+
GRIT−T2D+ without PRST2D

GRIT−T2D
GRIT−T2D without PRST2D

   + Systolic Blood Pressure
   + HDL
   + TG

   + Gestational Diabetes
   + Smoking status
   + Family history of Diabetes
   + CVD
   + Statin
   + Antihypertensives
   + BMI
   + PRST2D

Age and sex

AUC (95% CI)

b

Fig. 2 AUC for combinations of age, sex, and individual risk factors and the GRIT scores in UK Biobank. Panel a shows results for CHD (N= 242,687
participants) and panel b for T2D (N= 121,113). The AUC was first calculated for age and sex and additionally for each individual risk factor integrated with
age and sex. Lastly, the AUC was calculated for the GRIT scores and the GRIT scores without PRSs. Points indicate AUC estimates and error bars represent
the 95% CIs for each factor with incident disease as endpoint. BMI body mass index, LDL low-density lipoprotein, HDL high-density lipoprotein, TG
triglycerides, CVD cardiovascular disease.
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GRIT-CHD to the QRISK3 and Pooled Cohort Equations (PCE)
algorithms and the GRIT-T2D to the QDiabetes and the Finnish
Diabetes Risk Score (FINDRISC) algorithms (Fig. 4 and Supple-
mentary Fig. 1). We used sex-specific baseline models that
included age and PRS, and additionally BMI for the T2D model
analyses, as benchmarks for the performance of both the clinical
risk scores and the GRIT scores. Measured with AUC, the dis-
crimination of the baseline model for CHD was 0.756
(0.750–0.763) and for the baseline model for T2D, 0.789
(0.780–0.797). GRIT-CHD had a slightly higher AUC compared
to QRISK3 (incremental AUC +0.007 against QRISK3,
P= 0.0013), and ranging from -0.006 to 0.008 in sex and age

subgroups. The AUC increment over PCE was slightly larger
(+0.010, P= 1.89 × 10−6) and ranged from 0.003 to 0.015 in the
subgroups. For the GRIT-T2D, the AUC compared to QDiabetes
was similar (incremental AUC +0.005, P= 0.022) and from 0.003
to 0.011 in sex, age, and BMI subgroups. Lastly, the AUC
increment over FINDRISC was larger (+0.031, P= 2.05 × 10−18),
ranging from 0.022 to 0.049 in subgroup analysis. Enriching
GRIT-CHD and GRIT-T2D by clinical measurements (GRIT-
CHD+ and GRIT-T2D+) resulted in pronounced and statisti-
cally significant (P < 2.2 × 10−16 for all comparisons) perfor-
mance improvements for the GRIT-CHD+ (incremental AUC
+0.028 against QRISK3 and +0.031 against PCE) and the

Predictors for CHD

0.65 0.70 0.75 0.80

Age ≥ 55

Age < 55

Female

Male

AUC (95% CI)

Age and sex
+  PRSCHD

+  Smoking status
+  BMI
+  Antihypertensives
+  Family history of CHD
+  Diabetes
+  LDL
+  HDL
+  Systolic Blood Pressure
GRIT−CHD without PRSCHD

GRIT−CHD
GRIT−CHD+ without PRSCHD

GRIT−CHD+

a Predictors for T2D

0.55 0.60 0.65 0.70 0.75 0.80 0.85

Age ≥ 55

Age < 55

Female

Male

AUC (95% CI)

Age and sex
+  PRST2D
+  BMI
+  Antihypertensives
+  Statin
+  CVD
+  Family history of Diabetes
+  Smoking status
+  Gestational Diabetes
+  TG
+  HDL
+  Systolic Blood Pressure
GRIT−T2D without PRST2D
GRIT−T2D
GRIT−T2D+ without PRST2D
GRIT−T2D+

b

Fig. 3 AUC for combinations of age, sex, and individual risk factors and the GRIT scores in UK Biobank stratified by sex and age. Panel a shows results
for CHD and panel b for T2D. The AUC was first calculated for age and sex and additionally for each individual risk factor integrated with age and sex.
Lastly, the AUC was calculated for the GRIT scores and the GRIT scores without PRSs. Points indicate AUC estimates and error bars represent the 95% CIs
for each factor with incident disease as endpoint. The CHD analysis sample sizes were 105,439 (men), 137,248 (women), 101,508 (age < 55), and 141,179
(age≥ 55). The T2D analysis sample sizes were 55,898 (men), 65,215 (women), 46,238 (age < 55), and 74,875 (age≥ 55). BMI body mass index, LDL
low-density lipoprotein, HDL high-density lipoprotein, TG triglycerides, CVD cardiovascular disease.

Fig. 4 AUC for the GRIT scores compared with the clinical risk scores in UK Biobank. Panel a shows results for CHD (N= 242,687 participants) and
panel b for T2D (N= 121,113). The sex-specific baseline models include age and PRS, and additionally BMI for the T2D model. Our sex-specific Genomics-
enhanced RIsk Tools (GRIT-CHD and GRIT-T2D) were compared to established clinical risk scores (Pooled Cohort Equations and QRISK3 for CHD,
FINDRISC and QDiabetes for T2D). Points indicate AUC estimates and error bars represent the 95% CIs for each factor with incident disease as endpoint.
All tests were two-sided. PCE Pooled Cohort Equations.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02996-0

4 COMMUNICATIONS BIOLOGY |           (2022) 5:158 | https://doi.org/10.1038/s42003-021-02996-0 | www.nature.com/commsbio

www.nature.com/commsbio


GRIT-T2D+ (+0.022 against QDiabetes and +0.048 against
FINDRISC).

Calibration and reclassification. To assess model calibration in
UK Biobank, we plotted the observed incidences across deciles of
predicted risk. All risk models, including the established clinical
risk calculators, showed poor calibration by overestimating
absolute risk. After recalibration by estimating the baseline
hazard and mean component in the validation datasets, we
observed greatly improved goodness-of-fit (Supplementary Figs. 2
and 3) in all but the FINDRISC model which we did not recali-
brate and therefore did not consider in downstream analyses.
Model discrimination was similar after recalibration (Supple-
mentary Fig. 4).

Next, we used the recalibrated estimates to assess reclassifica-
tion over risk thresholds broadly applied for the established risk
calculators (10-year risk ≥7.5% for CHD and ≥5.6% for T2D)
(Table 2). We compared the GRIT-CHD and GRIT-CHD+ to
PCE and the GRIT-T2D and GRIT-T2D+ to QDiabetes. The
event net reclassification improvement (NRI), interpretable as the
net percentage of individuals with the event of interest correctly
upclassified, was 4.7 (GRIT-CHD), 10.9 (GRIT-CHD+), 8.7
(GRIT-T2D), and 15.0 (GRIT-T2D+) in incident disease cases. In
non-cases, the nonevent NRIs (the net percentage of individuals
without the event of interest correctly downclassified) were −0.7
(GRIT-CHD), −1.8 (GRIT-CHD+), −2.5 (GRIT-T2D) and −3.8
(GRIT-T2D+).

Overall categorical NRI (the sum of the proportion of cases
that are reclassified to a higher risk category and the proportion
of non-cases reclassified to a lower category) was 4.0 (95% CI
3.0–5.3) for the GRIT-CHD, 9.1 (7.9–10.2) for the GRIT-CHD+,
6.2 (4.6–7.8) for the GRIT-T2D and 11.1 (9.3–12.9) for the GRIT-
T2D+. The continuous NRI and the integrated discrimination
improvement (IDI) had positive and statistically significant shifts,
with the exception for GRIT-T2D against QDiabetes (Supple-
mentary Table 4). The reclassification of individuals, NRI, and
IDI against QRISK3 is detailed in Supplementary Tables 5 and 6.

Risk stratification. Lastly, we estimated the effects across risk
categories of GRIT-CHD and GRIT-T2D, comparing individuals
between the 25 and 75th percentiles and the top 5% of the dis-
tribution. For GRIT-CHD, the hazard ratio (HR) for the top 5%
was 6.23 (95% CI 5.73–6.77) and for GRIT-T2D, 10.9 (9.84–12.2).
Similarly, for GRIT-CHD+ the HR for the top 5% was 8.28
(7.62–9.00) and for GRIT-T2D+ 12.6 (11.3–14.0). The

corresponding HRs for the clinical risk scores were 5.43
(5.00–5.91) for QRISK3, 5.54 (5.10–6.02) for PCE, 10.3
(9.31–11.5) for QDiabetes, and 6.83 (6.14–7.60) for FINDRISC.
The Kaplan–Meier estimates of cumulative incidence for the
GRIT scores are shown in Supplementary Fig. 5. The cross-
predictive performance of the GRIT scores is shown in Supple-
mentary Fig. 6.

Discussion
In this cross-biobank analysis utilizing longitudinal health and
genomics data from Finland and the United Kingdom, we derived
Genomics-enhanced RIsk Tools, GRIT-CHD, and GRIT-T2D, to
serve as early risk indicators for two common cardiometabolic
diseases, CHD and T2D. First, we show that PRSs for CHD and
T2D greatly benefit from being used in risk prediction together
with simple, easily surveyable risk factors. Secondly, we show that
GRIT-CHD and GRIT-T2D, which integrate PRSs with risk
factors easily obtainable by questionnaires, have at least com-
parable performance to established risk scores recommended in
respective clinical practice guidelines. Third, we demonstrate that
further enriching the GRIT scores with routine clinical mea-
surements results in further performance improvements,
improving prediction beyond established clinical risk scores.
Together these findings show that PRSs combined with simple
clinical risk factors could serve in early risk identification of
individuals in need of further clinical risk assessment and targeted
prevention.

PRSs have been shown to perform well in predicting lifetime
risk, demonstrating usefulness in targeted identification of high-
risk individuals missed by traditional methods for risk
stratification4,5. In previous studies investigating the incremental
value of PRSs integrated to clinical risk scores, CHD PRSs have
yielded varying performance improvements over routinely used
clinical risk assessment tools, such as PCE or QRISK34,16–18. For
T2D, the improvements with PRS over clinical risk assessment
tools have been moderate4,19. Here, when added on top of with
age and sex, the PRSCHD had a higher AUC for incident CHD
than any of the eight other individual risk factors of GRIT-CHD.
A largely corresponding effect of the PRSCHD was recently
demonstrated also among symptomatic patients with suspected
CHD20. Similarly, when added on top of with age and sex, the
PRST2D had a similar or a higher AUC for incident T2D than
seven of the ten included conventional risk factors.

Our GRIT-CHD and GRIT-T2D scores showed at least com-
parable predictive performance with widely applied clinical risk

Table 2 NRI between GRIT scores and clinical risk scores in UK Biobank.

Upclassified to
higher risk (%)

Both high risk (%) Downclassified to
lower risk (%)

Both low risk (%) Category-based
NRI [95% CI]

GRIT-CHD vs PCE Cases 428 (9.6%) 320 (7.2%) 221 (4.9%) 3500 (78.3%) 4.7 [3.6, 6.0]
Non-cases 5463 (2.3%) 3110 (1.3%) 3864 (1.6%) 225,781 (94.8%) −0.7 [−0.8, −0.6]
All 5891 (2.4%) 3430 (1.4%) 4085 (1.7%) 229,281 (94.5%) 4.0 [3.0, 5.3]

GRIT-CHD+ vs PCE Cases 616 (13.8%) 411 (9.2%) 130 (2.9%) 3312 (74.1%) 10.9 [9.7, 12.0]
Non-cases 6903 (2.9%) 4356 (1.8%) 2618 (1.1%) 224,341 (94.2%) −1.8 [−1.9, −1.7]
All 7519 (3.1%) 4767 (2.0%) 2748 (1.1%) 227,653 (93.8%) 9.1 [7.9, 10.2]

GRIT-T2D vs QDiabetes Cases 330 (13.0%) 628 (24.7%) 108 (4.2%) 1478 (58.1%) 8.7 [7.1, 10.4]
Non-cases 4453 (3.8%) 4603 (3.9%) 1452 (1.2%) 108,061 (91.1%) −2.5 [−2.6, −2.4]
All 4783 (3.9%) 5231 (4.3%) 1560 (1.3%) 109,539 (90.4%) 6.2 [4.6, 7.8]

GRIT-T2D+ vs QDiabetes Cases 463 (18.2%) 654 (25.7%) 82 (3.2%) 1345 (52.9%) 15.0 [13.1, 16.7]
Non-cases 5840 (4.9%) 4727 (4.0%) 1328 (1.1%) 106,674 (90.0%) −3.8 [−3.9, −3.7]
All 6303 (5.2%) 5381 (4.4%) 1410 (1.2%) 108,019 (89.2%) 11.1 [9.3, 12.9]

The reclassification numbers and proportion of cases, non-cases, and all participants were assessed alongside the category-based net reclassification improvement (event NRI, nonevent NRI, overall NRI)
by comparing the Genomics-enhanced RIsk Tools (GRIT-CHD and GRIT-CHD+ for CHD, GRIT-T2D and GRIT-T2D+ for T2D) to established clinical risk scores (PCE for CHD and QDiabetes for T2D).
Based on the established clinical risk scores, the thresholds for 10-year risk were 7.5% for CHD and 5.6% for T2D.
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scores for CHD and T2D, and the overall reclassification
improvements with GRIT-CHD and GRIT-T2D were driven by
improvements particularly in incident disease cases. In addition
to categorical NRI, the continuous NRI and IDI, metrics not
based on fixed risk thresholds, showed a similar trend in
improved reclassification over clinical risk scores. The GRIT
scores upclassified many non-cases to a higher risk at the
thresholds aligned with the established clinical risk scores, but
considering that they were derived to serve as preliminary risk
indicators, the harms caused by these false-positive classifications
are minimal as the individuals would still require more detailed
clinical risk assessment before possible preventative interventions.
In addition to PRSCHD, the GRIT scores for CHD include age,
sex, smoking status, BMI, blood-pressure-lowering medication
use, history of diabetes, and family history of CHD and addi-
tionally SBP, high-density lipoprotein (HDL), and low-density
lipoprotein (LDL) in GRIT-CHD+, all of which are also included
in QRISK3 and mostly in PCE (both algorithms use total cho-
lesterol [TC] instead of LDL). Similarly, in addition to PRST2D,
the GRIT scores for T2D include age, sex, BMI, smoking status,
current blood-pressure-lowering medication use, current statin
use, history of cardiovascular disease (CVD), history of gesta-
tional diabetes, and family history of diabetes and additionally
SBP, triglycerides (TG), and HDL in GRIT-T2D+, all of which
(except SBP and lipid measurements) are also included in
QDiabetes and most of which also in FINDRISC. The clinical risk
scores also include components we could not include in the GRIT
scores due to data limitations, such as measures for diet, physical
activity, socioeconomic factors, and waist circumference, but their
effects may be mediated to an extent by risk factors that were
included, such as smoking and BMI. Therefore, in addition to
PRSs, the higher predictive value of the GRIT scores compared to
the clinical risk scores in UK Biobank is also likely to be impacted
by differences in the model input variables, model complexity,
and participant characteristics between the derivation cohorts.

In contrast to previous studies, we studied the role of PRSs
combined with clinical risk factors obtainable by simple ques-
tionnaires, without the need of additional laboratory and clinical
measurements such as blood pressure and lipids. With the
decreasing costs of sequencing, rapidly expanding knowledge of
genomics, and increasing public interest, genome data is
becoming increasingly available for applications of disease pre-
vention and care1,2. Our approach allows for efficient and rela-
tively effortless risk estimation across resources where genome
data is readily available, but measurements of quantitative risk
factors used in clinical care such as lipids might not be. Examples
include population-based biobanks and commercial genomics
databases, or when clinical variables from healthy, asymptomatic
individuals have not yet been measured. As the effects of unfa-
vorable lifestyle and high genetic risk accumulate over the course
of life, early identification of high-risk individuals is critical to
effectively manage cardiometabolic disease risk. Moreover, indi-
viduals with a high PRS are more likely to benefit from pre-
ventative efforts for CHD and T2D, such as healthy lifestyle
changes21,22 and statin therapy23,24.

While we observed improved performance in all included
subgroups when adding supplemental risk factors to PRS-based
risk models, the PRSs and the GRIT scores had the best dis-
crimination in women and younger individuals, highlighting the
performance of PRS-based risk tools in these groups of indivi-
duals in which clinical risk scores often have limited utility7. As
both the GRIT scores and the clinical risk scores failed to classify
as high risk many of the individuals who had first disease events
during the follow-up, continuous preventative efforts are crucial
to combat the development of both lifestyle and clinical risk
factors early on in younger individuals, particularly in those at

high polygenic risk, to reduce the socioeconomic impact of car-
diometabolic diseases on society.

The study has several strengths. It uses extensive health registry
data with high validity from both Finland and the United
Kingdom25,26. Compared to most previous studies in the UK
Biobank, we used a recent release of incident data with a median
follow-up of over 10 years and used an interim primary care data
release from general practices across the United Kingdom. This
enabled more accurate identification of conditions often diag-
nosed outside of a hospital inpatient setting, such as T2D, where
nearly half of incident cases are recorded only in primary care
databases27. The impact of utilizing primary care data in this
study should be relatively small, as the number of CHD and T2D
cases identified using only the general practice data was small.
However, the primary care data allowed us to calculate the
QRISK3 and QDiabetes clinical scores more accurately as they
were derived using the same data sources28,29. Following the
recommendations in recently published reporting guidelines for
genetic prediction studies30, and in contrast to previous
studies5,16–19, we used the external UK Biobank cohort for out-
of-sample evaluation of our risk tools. As the predictive perfor-
mance of risk models can greatly worsen when assessed outside of
their derivation datasets31, our results indicate that GRIT-CHD
and GRIT-T2D may generalize well also to other cohorts.

The study needs to be interpreted considering some limita-
tions. The QRISK3 and PCE algorithms were optimized to predict
10-year risk of CVD rather than CHD alone, which may affect
their performance. We did not consider rare genetic variants
known to considerably increase disease risk in some individuals,
such as in familial hyperlipidemia32. Additionally, our data was
limited to middle-aged individuals of European ancestry, which
increases the risk of lack of generalizability outside of European
populations. Expanding validation of the GRIT-CHD and GRIT-
T2D scores to more diverse populations is needed before possible
clinical implementation, including integration of ancestry-specific
PRSs to improve applicability across ethnic groups. Despite a very
low response rate resulting in oversampling of healthy individuals
in UK Biobank, the risk factor associations have been considered
to be generalizable33,34. As data on some clinical risk factors were
not available in FinnGen, we used effect sizes from our previous
analyses of FinnGen subcohorts with more phenotypic data
available. Finally, as a small number of overlapping input weight
samples for the PRSCHD within the FinnGen study possibly
inflated the effect size of polygenic risk in the joint modeling, the
performance of the GRIT-CHD scores in UK Biobank may have
been decreased to some degree.

In conclusion, our approach demonstrates an effective appli-
cation of genome data in a prospective setting, offering indivi-
duals accessible and simple, yet powerful disease risk assessment
without the need for blood tests and initial evaluation in a
healthcare setting. In addition to CHD and T2D, similar PRS-
based approaches as described here could also be useful for
improving risk prediction in a number of other complex diseases,
such as common cancers and atrial fibrillation, by targeting more
detailed risk assessment and earlier preventative interventions to
high-risk individuals. Further research is warranted to explore the
practical application and effectiveness of genome-based risk
information in the clinical setting.

Methods
Study populations. FinnGen Data Freeze 7 with 309,154 Finnish individuals
comprises prospective epidemiological and disease-based cohorts and hospital
biobank samples. The data were linked by the unique national personal identifi-
cation numbers to national hospital discharge (available from 1968), death (1964–),
cancer (1953–) and medication reimbursement (1964–) and purchase (1995–)
registries. To have sufficient follow-up and representative estimates in our analyses,
we selected individuals aged 30 to 75 at recruitment who were recruited before
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2017 (N= 95,182). Of these individuals, we excluded 20,413 (21.2% of the dataset)
with no recorded BMI or smoking status, and additionally 10,471 (11.0%) with
prevalent CVD and 8839 (9.3%) with statin use at baseline (in CHD analyses), and
7877 (8.3%) with prevalent diabetes (in T2D analyses). After these exclusions, the
derivation datasets included 61,878 individuals with 3536 incident cases for CHD,
and 69,159 with 4892 incident cases for T2D (Supplementary Table 7). The
baseline characteristics were similar between the included and excluded individuals
(Supplementary Tables 8 and 9).

The UK Biobank is a prospective cohort study that recruited over 500,000
participants from the United Kingdom between 2006 and 201025. Age at baseline
ranged from 40 to 69. At baseline, individuals completed extensive questionnaires
and an interview by a trained nurse about sociodemographic, lifestyle, and health-
related factors, along with a range of physical and biomarker measurements. The
British ancestry subset included 343,672 unrelated individuals with 18,698 cases of
CHD and 24,192 cases of T2D. For our CHD analyses, we excluded 24,133
individuals (7.0% of the dataset) with prevalent CVD and further 38,632
individuals (11.2%) using statins at baseline. We additionally excluded 38,220
individuals (11.1%) in the CHD analyses with missing data on predictors required
to calculate our risk tools and clinical risk scores. The final CHD validation dataset
comprised 242,687 individuals with 4469 incident CHD cases.

A subset of the British ancestry dataset (N= 160,338) had primary care data
available and was chosen for our T2D analyses. Further 7722 individuals (4.8% of
individuals with primary care data) with prevalent diabetes and 31,503 individuals
(19.6%) who had missing data on predictors were excluded. The final T2D
validation dataset included 121,113 individuals with 2544 incident T2D cases. We
ascertained disease outcomes based on linkage to hospital inpatient episodes, the
death registry from the Office of National Statistics and the primary care data from
English, Scottish, and Welsh GP practices provided to the UK Biobank from four
different data providers. The baseline characteristics were similar between the
included and excluded individuals in UK Biobank (Supplementary Tables 10
and 11).

Disease endpoints and risk factor definitions. Detailed descriptions of endpoints
and risk factors are described in Supplementary Data 1 and 2. We defined disease
outcomes and morbidities in FinnGen following the International Classification of
Diseases (ICD) ICD-10, ICD-9, and ICD-8, Nordic Medico-Statistical Committee
(NOMESCO), and National League of Hospitals classifications, and Finnish Heart
Patients V1 and V2 codes. Similarly, in UK Biobank, we used ICD-10 and ICD-9
codes together with OPCS Classification of Interventions and Procedures version 4
(OPCS-4) and General Practice Read V2 and Read V3 clinical codes to identify
comorbidities and cases for our main disease outcomes. To capture prevalent
morbidities at baseline, we used also non-cancer illness codes (UK Biobank field
20002) recorded by healthcare professionals at the UK Biobank assessment centers.
To capture prevalent cases of diabetes from the UK Biobank baseline data for
exclusion and as covariates to our analyses, we used methods proposed by East-
wood et al. to identify probable and possible (i.e., likely) prevalent cases of type 1
diabetes (T1D), T2D, and gestational diabetes27.

Primary care clinical codes and self-reported prescription medication codes
(field 20003) were identified using the UK Biobank coding system lookups and
mapping35. We identified primary care clinical codes (Read V2 and Read V3) used
in recording primary care data using corresponding ICD-10 codes and examined
matched codes by hand to detect anomalies. We manually matched relevant codes
for regularly taken prescription medications recorded by a trained nurse (field
20003) following the Anatomical Therapeutic Chemical Classification System
(ATC) and the British National Formulary (BNF).

Follow-up ended at first diagnosis of the disease of interest, death, or at the
censoring date December 31, 2019 (FinnGen), or at the censoring date of hospital
inpatient data (UK Biobank; English hospital inpatient records up to May 2020,
Scottish up to November 2016, Welsh up to March 2016), whichever came first.

Genotyping, imputation, and PRS calculation. FinnGen individuals were geno-
typed with Illumina and Affymetrix arrays (Illumina Inc., San Diego, CA, USA, and
Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with
the GenCall or zCall (for Illumina) and the AxiomGT1 algorithm (for Affymetrix).
Genotype imputation was performed with Beagle 4.1 (described in the following
protocol: https://doi.org/10.17504/protocols.io.xbgfijw) by using the SISu v3
population-specific reference panel developed from high-quality data for 3775
high-coverage (25–30×) whole-genome sequences in Finns. Samples with ambig-
uous gender, high genotype missingness (>5%), excess heterozygosity (+-4SD) and
non-Finnish ancestry were excluded, as well as all variants with high missingness
(>2%), low Hardy–Weinberg equilibrium p value (< 1 × 10−6), and minor allele
count (MAC < 3). BCFtools 1.7 and 1.9 and PLINK v2.00a2.3LM were used for
data and variant handling and PRS calculation. Cromwell 61 was used for workflow
handling. Array data pre-phasing was carried out with Eagle 2.3.536 with the
number of conditioning haplotypes set to 20,000.

UK Biobank participants were genotyped using the Affymetrix UK BiLEVE
Axiom array37 or the Affymetrix UK Biobank Axiom array25. The dataset has been
phased and imputed centrally using the Haplotype Reference Consortium and the
merged UK10K and 1000 Genomes (phase 3) reference panels38,39. We limited our

analyses to 343,672 unrelated British ancestry individuals passing genotype
imputation quality control.

We built genome-wide PRSs for CHD (PRSCHD) and T2D (PRST2D) with the
software PRS-CS40 (PRS-CS-auto, with 1000 Genomes Project European sample,
N= 503, as the external linkage disequilibrium [LD] reference panel) using
HapMap3 variants. The input weights came from two large GWASs independent of
UK Biobank, but with some sample overlap in FinnGen12,13, as we could not
accurately exclude the overlapping samples for CHD (1208 individuals free of CHD
in the FINRISK 1992–2007 cohorts included in FinnGen) from the FinnGen
dataset. Our PRSs showed acceptable goodness-of-fit. The final variant counts for
the PRS-CS PRSs were 1,090,048 for CHD and 1,091,673 for T2D in FinnGen and
1,087,714 for CHD and 1,089,342 for T2D in UK Biobank.

Derivation of risk tools in FinnGen. We derived three sex-specific 10-year risk
tools for both CHD and T2D in FinnGen. We used only incident cases and
excluded individuals who had prevalent CVD or used statins at baseline (in CHD
analyses) or individuals with prevalent diabetes (in T2D analyses) and individuals
with missing data on predictors. To derive the risk tools, we used a Cox propor-
tional hazards model to estimate beta coefficients, baseline hazard, and mean
component, adjusting for the first 10 principal components of Finnish ancestry and
stratified the analyses by sex. The tools (linear predictors from Cox proportional
hazards models) were based on risk factors available in the FinnGen datasets
(PRSCHD or PRST2D, sex, age, smoking status, BMI, blood-pressure-lowering
medication use, statin use, history of diabetes, gestational diabetes and CVD), and
we additionally integrated beta coefficients for self-reported first-degree family
history and clinical measurements (SBP, HDL, LDL, and TG) from FinnGen
subcohorts4,41 to the linear predictors derived in FinnGen. The beta coefficients for
family history and clinical measurements were from our previous analyses from
multivariate models (including PRS) for incident CHD/T2D obtained from the
population-based cohort FINRISK4,41, which is included in FinnGen.

The three sex-specific risk tools for incident CHD included (1) PRSCHD and age;
(2) PRSCHD, age, current smoking status, BMI, current blood-pressure-lowering
medication use, history of diabetes, and self-reported first-degree family history of
CHD; and (3) Model 2 integrated with clinical measurements for SBP, HDL, and
LDL. For incident T2D, the three sex-specific risk tools included (1) PRST2D, age,
and BMI; (2) PRST2D, age, BMI, current smoking status, current blood-pressure-
lowering medication use, current statin use, history of CVD, history of gestational
diabetes (women only), and self-reported first-degree family history of diabetes;
and (3) Model 2 integrated with clinical measurements for SBP, HDL, and TG. We
separately evaluated the incremental value of each individual risk factor when
added on top of with age and sex. The beta coefficients, baseline hazard, and mean
component of all risk models are detailed in Supplementary Tables 12–15.

Criteria for inclusion of individual risk factors to our risk models were
consistency of the association in established literature, data availability in FinnGen,
and being an independent risk factor in sex-specific multivariate Cox proportional
hazards models with P < 0.01.

Risk tool validation in UK Biobank. The risk tools derived in FinnGen were tested
in UK Biobank first by using the models’ original baseline hazard and mean
component estimated in FinnGen and second by estimating and integrating the
baseline hazard and mean component from the UK Biobank validation datasets to
the linear predictor alongside the original beta coefficients following a recalibration
process, as detailed below. For both CHD and T2D, we compared our tools to two
established clinical risk scores measuring 10-year risk.

For CHD, we compared our risk tools to two algorithms for CVD (a composite
outcome including CHD) prevention: the QRISK3 risk algorithm and the
American College of Cardiology/the American Heart Association 2013 PCE.
QRISK3 is the latest version of the QRISK algorithm and is currently
recommended by the National Institute for Health and Care Excellence for use in
the United Kingdom for disease prevention in primary care, with 10% absolute risk
as threshold for recommending preventative treatments such as statins28. The PCE
is a US-derived risk score with preventative statin treatment recommended in
individuals with an elevated risk (absolute risk over 7.5%)8. Both QRISK3 and PCE
are sex-specific and include age, TC, HDL, SBP, blood-pressure-lowering
medication, diabetes, and smoking status as covariates. QRISK3 also includes BMI,
additional comorbidities, as well as socioeconomic risk factors.

For T2D, we compared our risk tools to the QDiabetes-2018 score and the
FINDRISC algorithm. The QDiabetes-2018 score is the latest version of the
QDiabetes algorithm validated for use in the United Kingdom population, with a
risk threshold of 5.6% absolute 10-year risk selected to optimize sensitivity for
identifying individuals for further risk evaluation29. FINDRISC is a widely utilized
count-based risk tool originally derived in a Finnish population-based sample.
FINDRISC has been validated in numerous studies and populations, with an
optimal risk threshold in the range of 11–14 points42. Both tools include age, sex,
BMI, use of blood-pressure-lowering medication or diagnosis of hypertension,
history of high blood glucose or gestational diabetes, and family history of any
diabetes as covariates. QDiabetes includes additional comorbidities and
socioeconomic risk factors, and we used a nonlaboratory model (Model A) that
does not include diagnostic blood tests for T2D (fasting glucose or HbA1c).
FINDRISC additionally considers waist circumference and measures of physical
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activity as well as consumption of vegetables, fruits, and berries as risk factors.
Current smokers with missing data on smoking frequency were set as moderate
smokers in the QRISK3 and QDiabetes algorithms.

Calculating risks with the original clinical risk calculators required a few small
modifications in UK Biobank: first, the QRISK3 and QDiabetes algorithms
consider use of drugs at baseline as at least two prescriptions, with the most recent
one no later than 28 days before the date of cohort entry28,29. The UKB treatment/
medication codes (field 20003) include regularly taken medications at baseline.
Second, we used the reported means from the QRISK3 derivation and validation
cohorts for SBP variability, 9.3 (women) and 9.9 (men), as this data was not
available in UKB. Third, in QRISK3, family history of disease is defined as disease
cases of CHD aged less than 60 years, but in UK Biobank, fields 20107 (illnesses of
father), 20110 (illnesses of mother), and 20111 (illnesses of siblings) contain only
family history of heart disease without specifications. Fourth, the FINDRISC
algorithm assigns values of five and three for positive history in first- and second-
degree relatives, respectively42. Second-degree family history was not available in
UK Biobank. UK Biobank datafields used to calculate the clinical risk scores are
described in Supplementary Data 3.

Statistics and reproducibility. We restricted the follow-up for incident disease
analyses to a maximum of ten years after baseline. We used only complete cases
with respect to the diseases and predictors, with the exception for smoking fre-
quency in UK Biobank. We used Schoenfeld residuals and log–log inspection to
assess the proportional hazards assumption.

In external validation in UK Biobank, we assessed metrics for discrimination,
calibration, goodness-of-fit, and reclassification. To assess discrimination of our
risk models and clinical risk scores, we computed the AUC with 95% CIs. AUC
estimates with 95% CIs (nonparametric approach, DeLong) and AUC comparisons
were calculated with the R package pROC. We also assessed AUC separately in
men and women, stratifying by age and BMI (in T2D analyses), with a cut-off at 55
years in both the CHD and the T2D analyses and a BMI of 30 in T2D analyses.
Calibration and goodness-of-fit were assessed graphically by plotting the absolute
risks against the mean predicted probability within deciles of the predicted
probabilities. We recalibrated all models except FINDRISC by using Cox
proportional hazards models to estimate the baseline survival function and
calculated the mean component (the sum of the predictor variable means weighted
by respective coefficients) in the final UK Biobank validation datasets and
combined these with the models’ published coefficients in the risk equations to
obtain recalibrated 10-year risk estimates (recalibration parameters in
Supplementary Table 16). We calculated categorical NRI43 values for the
recalibrated models over established clinical risk thresholds and obtained
bootstrapped 95% CIs based on 200 replications. We also calculated the continuous
NRI and IDI44 values after recalibration. A Cox proportional hazards model was
used to estimate HRs and 95% CIs for the risk models. Kaplan–Meier survival
curves were estimated using the R package survminer. All statistical tests were two-
sided. Analyses were performed in R versions 4.1.1 (FinnGen) and 3.6.0 (UK
Biobank).

Ethics statement. Patients and control subjects in FinnGen provided informed
consent for biobank research, based on the Finnish Biobank Act. Alternatively,
separate research cohorts, collected prior the Finnish Biobank Act came into effect
(in September 2013) and start of FinnGen (August 2017), were collected based on
study-specific consents and later transferred to the Finnish biobanks after approval
by Fimea (Finnish Medicines Agency), the National Supervisory Authority for
Welfare and Health. Recruitment protocols followed the biobank protocols approved
by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki
and Uusimaa (HUS) statement number for the FinnGen study is Nr HUS/990/2017.

The FinnGen study is approved by Finnish Institute for Health and Welfare
(permit numbers: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/
6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/
2019, THL/1524/5.05.00/2020, and THL/2364/14.02/2020), Digital and population
data service agency (permit numbers: VRK43431/2017-3, VRK/6909/2018-3, VRK/
4415/2019-3), the Social Insurance Institution (permit numbers: KELA 58/522/
2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, KELA 138/
522/2019, KELA 2/522/2020, KELA 16/522/2020, Findata THL/2364/14.02/2020
and Statistics Finland (permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020
(earlier TK-53-90-20).

The Biobank Access Decisions for FinnGen samples and data utilized in
FinnGen Data Freeze 7 include: THL Biobank BB2017_55, BB2017_111,
BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, BB2019_8,
BB2019_26, BB2020_1, Finnish Red Cross Blood Service Biobank 7.12.2017,
Helsinki Biobank HUS/359/2017, Auria Biobank AB17-5154 and amendment #1
(August 17, 2020), Biobank Borealis of Northern Finland_2017_1013, Biobank of
Eastern Finland 1186/2018 and amendment 22 § /2020, Finnish Clinical Biobank
Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), Central Finland
Biobank 1-2017, and Terveystalo Biobank STB 2018001.

This project was conducted with permission of the UK Biobank Resource under
application no. 22627. Informed consent was obtained from all UK Biobank
participants.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Finnish biobank data can be accessed through the Fingenious® services (web link:
https://site.fingenious.fi/en/, email: contact@finbb.fi) managed by FINBB. The UK Biobank
resource is available to bona fide researchers for health-related research in the public interest
at https://www.ukbiobank.ac.uk/researchers/. The GWAS summary statistics used for
constructing our PRSs are available at http://www.cardiogramplusc4d.org/data-downloads/
and https://diagram-consortium.org/downloads.html. LD reference panels constructed
using the 1000 Genomes Project38 phase 3 samples can be downloaded at https://
github.com/getian107/PRScs. The weights for our PRSs are available at PGS Catalog45 (pgs-
info@ebi.ac.uk) at https://www.pgscatalog.org/score/PGS001780/ and https://
www.pgscatalog.org/score/PGS001781/. Supplementary Data 4 contains the raw data
underlying the figures in the main text and Supplementary Information.

Code availability
The full genotyping and imputation protocol for FinnGen is described at https://doi.org/
10.17504/protocols.io.xbgfijw. The PRS-CS pipeline in FinnGen is described in
Supplementary Note 1. All software packages and programs used to perform these
analyses are freely available, and can be found within the manuscript, Supplementary
Information, Supplementary Data, and the Reporting Summary. The code used for these
analyses are available from the corresponding author upon reasonable request.
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