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Clinical Impact of Immune Cells and Their Spatial
Interactions in Diffuse Large B-Cell Lymphoma
Microenvironment
Matias Autio1,2,3, Suvi-Katri Leivonen1,2,3, Oscar Br€uck4,5,6, Marja-Liisa Karjalainen-Lindsberg7,
Teijo Pellinen8, and Sirpa Lepp€a1,2,3

ABSTRACT
◥

Purpose: Tumor-infiltrating immune cells have prognostic sig-
nificance and are attractive therapeutic targets. Yet, the clinical
significance of their spatial organization and phenotype in diffuse
large B-cell lymphoma (DLBCL) is unclear.

Experimental Design: We characterized T cells, macrophages,
and their spatial interactions by multiplex IHC (mIHC) in 178
patients with DLBCL and correlated the data with patient demo-
graphics and survival. We validated the findings on gene expression
data from two external DLBCL cohorts comprising 633 patients.

Results: Macrophage and T-cell contents divided the samples
into T cell–inflamed (60%) and noninflamed (40%) subgroups. The
T cell–inflamed lymphomamicroenvironment (LME) was also rich
in other immune cells, defining immune hot phenotype, which did
not as such correlate with outcome. However, when we divided the

patients according to T-cell and macrophage contents, LME char-
acterized by high T-cell/low macrophage content or a correspond-
ing gene signature was associated with superior survival [5-year
overall survival (OS): 92.3% vs. 74.4%, P ¼ 0.036; 5-year progres-
sion-free survival (PFS): 92.6% vs. 69.8%, P ¼ 0.012]. High pro-
portion of PD-L1- and TIM3-expressing CD163� macrophages in
the T cell–inflamed LME defined a group of patients with poor
outcome [OS: HR ¼ 3.22, 95% confidence interval (CI), 1.63–6.37,
Padj ¼ 0.011; PFS: HR ¼ 2.76, 95% CI, 1.44–5.28, Padj ¼ 0.016].
Furthermore, PD-L1 and PD-1 were enriched on macrophages
interacting with T cells.

Conclusions: Our data demonstrate that the interplay between
macrophages and T cells in the DLBCL LME is immune checkpoint
dependent and clinically meaningful.

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most common

lymphoid malignancy in adults. Approximately two thirds of the
patients are cured in response to standard rituximab, cyclophos-
phamide, doxorubicin, vincristine, and prednisone (R-CHOP)-
based immunochemotherapy (1). Based on the cell of origin,
DLBCL is divided into germinal center B-cell like (GCB) and
activated B-cell like (ABC) subgroups (2), which are addicted to
different oncogenic pathways and differ in their clinical course (3, 4).
In addition, novel genomic entities, which can better delineate
GCB and ABC subgroups have recently been identified (5–7). To

date, however, subtype-targeted therapies have not been superior to
R-CHOP regimen (8, 9).

Beyond tumor cell–derived factors, clinical course of DLBCL is
impacted by the tumor microenvironment (10–15). B-cell lymphoma
microenvironment (LME) is heterogeneous, consisting of blood ves-
sels, extracellular matrix, stromal cells, and immune cells, including
T cells, macrophages, and natural killer (NK) cells (16). LME can
constitute an immune response against cancer cells (16). However, it
can also support lymphoma cells by inhibiting T-cell infiltration into
lymphoma tissues or by preventing T-cell priming (17). It can also
suppress T cells already present in the lymphoma by inducing exhaus-
tion (18). In summary, LME can create an immune compromised
milieu allowing malignant cells to proliferate without a risk of being
detected by the immune system.

Based on T-cell infiltration, lymphomas can be divided into T cell–
inflamed and non-T cell–inflamed phenotypes (19). In addition to
harboring rich T-cell infiltrates, inflamed lymphomas are character-
ized by overactivation of NF-kB signaling (20, 21), and promotion of
immune evasion mechanisms, resulting in downregulation of human
leukocyte antigen (HLA) I and II, which are needed for effective T-cell
detection (16, 22–25). Recruitment of immune-suppressive macro-
phages and upregulation of immune checkpoint molecules, such as
programmed death-1 (PD-1) and PD-ligand-1 (PD-L1) are other
common immuneevasion techniquesof inflamed lymphomas (26–28).
Immune checkpoint molecules can modify active immune cells to
become inactive, and suppress the immune response against the
tumor (18). PD-1–targeting checkpoint blockade therapies (CBT)
have shown promising response rates in inflamed lymphomas, such
as classical Hodgkin lymphoma (cHL), and primary mediastinal large
B-cell lymphoma (PMBL; refs. 29, 30).

Conversely, noninflamed lymphomas aremostly devoid of immune
cells. This may be because of the alterations preventing immune cell
recruitment, or because of physical exclusion of immune cells from the
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LME (31). DLBCL has traditionally been classified as a non-inflamed
lymphoma (19). It appears to be more heterogeneous in its LME
constitution than previously anticipated, and in someDLBCLs an anti-
lymphoma immune response can be triggered (32, 33). Recently,
subtyping of DLBCL based on the composition of the LME has been
proposed (14). Several genetic alterations have also been found to
correlate with inflamed and noninflamed LME (23, 33, 34). Unlike in
cHL, responses to CBT are scarce in relapsed/refractory (r/r)
DLBCL (35), and the identification of patients benefitting from CBT
remains a challenge.

Previously, we studied the clinical significance of immune check-
point–expressing T cells in the DLBCL microenvironment, and
observed that a high proportion of TIM3þ T cells at diagnosis
predicted poor outcome (13). Here, we sought to investigate the
network between T cells, macrophages, and NK cells in the DLBCL
microenvironment. We also addressed the impact of immune check-
point molecules on the relations between these cells.

Materials and Methods
Patients and samples

A flowchart showing the patient cohorts used in this study is
presented in Supplementary Fig. S1. Multiplex IHC (mIHC) cohort
consisted of 178 patients diagnosed with primary DLBCL and
treated with immunochemotherapy. Tissue microarrays (TMA)
were constructed from formalin-fixed paraffin-embedded (FFPE)
lymphoma samples. RNA-sequencing data were available from 77
patients, and digital multiplexed gene expression profiling data
(NanoString nCounter Human PanCancer Immunoprofiling Panel)
from 38 of the patients (13). Patients and corresponding clinical
data were retrospectively extracted from electronic and/or paper-
based medical records. For validation, we used gene expression data
from Reddy and colleagues (EGAS00001002606; n ¼ 624) and
Chapuy and colleagues (GSE98588; n ¼ 137) cohorts (5, 7). In the
Reddy and colleagues cohort, 128 patients overlapping with the
mIHC cohort were excluded from the original cohort, resulting in
496 patients. Patient data were handled according to Good Scientific
Practice (GSP) Guidelines. The study was approved by the Ethics

Committee in Helsinki University Hospital and by the Finnish
National Authority for Medicolegal Affairs, which waived the
requirement to obtain informed consent.

IHC
We performedmIHC on TMAs to characterize macrophage, B-cell,

T-cell, and NK-cell immunophenotypes (panel 1: CD68, CD163,
CD20, PD-L1, TIM3; Panel 2: CD68, CD163, CD3, CD4, PD-1,
PD-L1; Panel 3: CD56, CD3, CD45, TIM3, Granzyme B) using the
protocol described earlier, with some modifications (Supplementary
Table S1; ref. 36). Two targets were detected using Alexa Fluor 488 and
Alexa Fluor 555 channels amplified using tyramide signal amplifica-
tion (TSA; PerkinElmer). A pair of primary antibodies raised in
different species was used to detect another two targets using Alexa
Fluor 647 and Alexa Fluor 750 fluorochrome-conjugated secondary
antibodies without amplification. We counterstained nuclei using
DAPI and mounted and applied coverslips on the slides. After first-
round staining and whole-slide imaging of the TMAs, we removed the
coverslips by soaking the slides in wash buffer at 4�C.We then soaked
the slides in TBS buffer containing 25 mmol/L NaOH and 4.5% H2O2

to bleach the previous Alexa Fluor staining. Finally, we heated
the slides in 1 mmol/L Tris/10 mmol/L EDTA pH 9 solution for
20 minutes at 99�C to denature the antibodies from the first-round
staining. We then preformed a second-round staining to detect
one or two additional targets using Alexa Fluor 647 and Alexa Fluor
750 secondary antibodies.

Imaging
We acquired digital, fluorescence images ofmIHC slides using Zeiss

Axio Scan.Z1 with Zeiss 20X (0.8NA, M27) Plan-Apochromat objec-
tive, Hamamatsu ORCA-Flash 4.0 V2 Digital CMOS camera (16-bit;
0.325 mm/pixel resolution), and Zeiss Colibri.7 LED Light Source. We
used the following filter specifications: DAPI cube (Zeiss Filter Set 02),
FITC cube (Zeiss Filter Set 38 HE), Cy3 cube (Chroma Technology
Corp 49004 ET CY3/R), Cy5 cube (Chrome Technology Corp 49006
ET CY5), Cy7 cube (Chroma Technology Corp 49007 ET CY7). After
image acquisition, we converted images to 8-bit JPEG2000 format
(100% quality).

Image analysis
We used the Ilastik v.1.3.3 software to filter out areas with staining

artefacts due to autofluorescence (37). We performed automated
quantification using CellProfiler v.3.1.8 software, as described previ-
ously (13, 38). We determined cell classes using pixel colocalization
analysis. Each channel intensity was thresholded using Adaptive Otsu.
We determined double or triple channel positive pixels with “Mask-
Image”, determined thresholded channel pixel areas with “Measur-
eImageAreaOccupied” and counted areal proportions by dividing the
area with pixel area occupied by all the channels combined (Image-
Math Add command). We exported cell class areas as CSV files with
“ExportToSpreadsheet”. By visual inspection, we determined the
quality of TMA cores and excluded low quality cores (e.g., ruptured
or folded tissue) from further analyses. Furthermore, we excluded
some samples from specific clustering and survival analyses due to
staining artefacts. We also utilized data from proportions of CD8þ,
FoxP3þ, and LAG3þ cells from previously performed mIHC analy-
ses (13). Finally, we utilized data on the expression of MYC, BCL2,
HLA-ABC, and HLA-DR from previously performed IHC analy-
ses (13, 39). Cases with overexpression of both MYC and BCL2 were
classified as double protein expressors (DPE).

Translational Relevance

Unlike in inflamed lymphomas, such as classical Hodgkin
lymphoma (cHL), responses to immune checkpoint blockade
therapy (CBT) have been low in diffuse large B-cell lymphoma
(DLBCL). Here we characterize DLBCLmicroenvironment (LME)
on a cellular level, extending beyond the gene expression level,
which has been the focus of previous studies. We show that tumor
infiltrating T cells and macrophages divide DLBCLs into inflamed
and noninflamed subgroups and that their proportions, immuno-
phenotypes, and spatial interactions in the LME have prognostic
impact on the survival in patients with DLBCL. Together, our
results demonstrate that the interplay between different immune
cells in the LME is clinically moremeaningful than the proportions
of single-cell subtypes alone. In particular, themacrophage content
seems to impair the antitumoral activity of T cells, possibly by
immune checkpoint–related mechanisms. We speculate that
inflamed DLBCLs with a high proportion of macrophages are
potential targets of CBT.
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In silico immunophenotyping
We performed CIBERSORTx deconvolution analyses utilizing the

web portal (http://cibersortx.stanford.edu) on gene expression data
from the Reddy and colleagues cohort to infer the proportions of
tumor-infiltrating immune cell subtypes and their gene expressions.
We ran the algorithm using the 547-gene Leukocyte gene signature
matrix (LM22) with 100 permutations as described by Newman and
colleagues (40, 41).

Differentially expressed genes and pathway analyses
For the differential gene expression analyses, we used the R/Bio-

conductor package limma (42). The cut-off for differentially expressed
(DE) genes in the T-cell high/macrophage-low group compared to the
rest was FDR-adjusted P value < 0.001 and absolute log2 fold change
(log2FC) > 0.9. We used single-sample Gene Set Enrichment Analysis
(ssGSEA) to calculate scores for the specific pathways in the KEGG,
Reactome, and Biocarta databases for every individual sample (43).
The differential pathway scores between the T cell–high andT cell–low
groups, as well as between the T cell high/macrophage low and T cell
high/macrophage high or T cell low groups were compared by Mann-
Whitney U test with FDR correction.

Cell interaction analyses
We performed cell-cell interaction analyses using the method

developed by Br€uck and colleagues (44). First, we performed cell
segmentation of the mIHC-stained tissue samples using the Cell-
Profiler software, and identified the phenotype of each individual
cell. For segmentation we thresholded each channel intensity using
Adaptive Otsu. Clumped objects were separated based on intensity.
The distance between two cells was calculated as the Euclidean
distance between the center points of the cells. Cells were defined to
interact when they were closer than 100 pixels (22 mm) from each
other (45). The number of interacting cells in each sample was
normalized to the total number of cells by calculating an interaction
index Iab using the formula:

Iab ¼
Pab

0 iabffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aP
c �

P
bP
c

r

where iab is the interaction between any two cells a and b,
P

a is the
sum of a cells,

P
b is the sum of b cells, and

P
c is the sum of all cells in

the sample. The fold change (FC) between the expression of immune
checkpoint molecules in cells a when they interacted with cells
b compared to when they did not, was calculated as the median
number of immune checkpoint positive cells a interacting with cells
b divided by the median number of noninteracting immune check-
point positive cells a in all samples. Finally, the difference between the
proportion of cells a expressing immune checkpoint molecules when
they interacted with cells b between any two groups 1 and 2 was
calculated as the median of the proportion of cells a expressing
immune checkpoint molecules when they interacted with cells b. The
FC was then calculated by dividing the median in group 1 with the
median in group 2.

Statistical analyses
We performed all statistical analyses with R v.4.0.1. We performed

unsupervised hierarchical clustering for z-score normalized data with
the pheatmap package using Euclidean distance with Ward’s linkage.
We estimated the prognostic impact of variables using univariate and
multivariate Cox regression models. We estimated the difference in

survival between patient groups using the Kaplan–Meier method with
log-rank test. The median follow-up time was calculated by reverse
Kaplan–Meier estimator. OS was defined as the time from diagnosis to
death from any cause and PFS as the time from diagnosis to progres-
sion or death from any cause. To compare two ormore groups, we used
Mann–Whitney U and Kruskal–Wallis H tests, respectively. We
corrected P-values for the errors due to multiple testing using the
FDR method.

Data availability
The data generated in this study are available upon request from the

corresponding author.

Results
DLBCL microenvironment is heterogeneous

Our mIHC cohort consisted of 178 patients with DLBCL treated
with R-CHOP or R-CHOP-like immunochemotherapy (Table 1). The
median follow-up time was 63 months [interquartile range (IQR):
48months–69months], duringwhich 33 patients relapsed and 37 died,
translating to 74% progression-free survival (PFS) and 78% overall
survival (OS) rates at 5 year, respectively. Of the established risk
factors, International Prognostic Index (IPI) score, molecular subtype,
andMYC and BCL2 double-protein expression (DPE) associated with
unfavorable survival (Supplementary Table S2).

First, we characterized the composition of LME by analyzing
macrophage, B-cell, T-cell, and NK-cell proportions and their
immunophenotypes (Fig. 1A; Supplementary Fig. S2; Supplemen-
tary Table S3). We found high variability between the samples
in terms of LME cell composition. The median proportion of
T cells was 15.1% (0.4%–61.5%), macrophages 9.9% (0.6%–
23.8%), and B cells 60.4% (0.1%–92.2%). The proportion of NK
cells was generally low with a median of 0.004% (0%–0.3%), most
samples having no or very few NK cells in their LME (Fig. 1B). The
most abundant immune checkpoint molecule was PD-1 (Fig. 1C),
the expression of which was prominent especially on T cells, while
PD-L1 expression was more abundant on macrophages (Fig. 1C–
F). The proportions of cells expressing the studied markers
correlated well with the corresponding gene expression (Supple-
mentary Fig. S3).

To explore the heterogeneity of the LME, we performed unsuper-
vised hierarchical clustering for the mIHC cohort with all the studied
cell phenotypes (Fig. 1G). DLBCL samples clustered into immune cell
high (inflamed) and low (noninflamed) LME subgroups. Within the
inflamed LME group, samples further formed smaller clusters, which
were characterized by high proportions of cells expressing one ormore
immune checkpoint molecule, high proportion of T cells, or high
proportion ofmacrophages. Finally, few sampleswere characterized by
high proportion of NK cells. The samples with high proportion of B
cells were generally associated with fewer T and NK cells, as well as
macrophages.

Clinical impact of immune cells in the LME
Next, we performed unsupervised hierarchical clustering sepa-

rately for macrophages, NK cells, and T cells. According to the
proportion of macrophages, the samples formed three separate
clusters: macrophage low, CD163þ (M2-like) macrophage high,
and CD163� (M1-like) macrophage high clusters (Supplementary
Fig. S4A). According to the NK-cell proportion, samples clustered
into NK cell–low and -high groups (Supplementary Fig. S4B).
Finally, approximately half of the samples had high T-cell content

DLBCL Microenvironment and Survival
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(T cell-inflamed; Fig. 2A), as previously reported (13). The T cell–
inflamed group could further be divided into T-cell intermediate
and T cell–high groups. None of the immune cell clusters correlated
with outcome (data not shown).

We found that DLBCLs with a T cell–inflamed microenvironment
generally had high proportions of other immune cells, including
macrophages, NK cells, and regulatory T cells (Tregs), as well as cells
expressing immune checkpoint molecules PD-1, TIM3, PD-L1, and
LAG3 (Fig. 2B–D; Supplementary Fig. S4C–S4O). Interestingly,
T cell-inflamed DLBCLs differed in the proportion of macrophages,
resulting in identification of a T cell–high/macrophage-low group
(Fig. 2E). Patients with T cell–high/macrophage-low LME had a less
aggressive disease defined by lower IPI scores and the GCB phenotype
(Supplementary Table S4). This correlated with better survival (5-year
OS: 92.3% vs. 74.4%, P ¼ 0.038; 5-year PFS: 92.6% vs. 69.8%, P ¼
0.012; Fig. 2F and G; Supplementary Fig. S4P). T cell-noninflamed
group could also be divided according to the proportion of macro-
phages (Supplementary Fig. S5A). However, no correlation with
survival was found between T cell–low/macrophage-low and T cell–
low/macrophage-high groups (Supplementary Fig. S5B–S5C). When
double-hit lymphomas were excluded from the survival analyses, the
prognostic impact of macrophages on survival in the T cell–inflamed
and noninflamed groups remained unchanged (Supplementary
Fig. S6). Finally, we studied the proportion between macrophages and
T cells in the LME. In accordance with the positive prognostic impact
of the T cell–high/macrophage-low group, the patients with low
macrophage/T-cell proportion had a better OS and PFS than the
patients with high macrophage/T-cell proportion (5-year OS: 81.7%
vs. 62.0%, P ¼ 0.0015; 5-year PFS: 76.9% vs. 62.0%, P ¼ 0.013;
Supplementary Fig. S7).

Validation of the mIHC data with CIBERSORT deconvolution
analyses

Next, we utilized gene expression data from a validation cohort of
624 patients (Table 1), and estimated the immune cell proportions by
CIBERSORT deconvolution analysis. When using data from the 77
samples overlapping with the mIHC cohort, distinct immune cell
subtypes (Supplementary Table S5) correlated well with the mIHC
data, with the exception of Tregs and NK cells, which were driven by
outliers (Supplementary Fig. S8). In concordance with the mIHC
cohort, unsupervised hierarchical clustering of the 496 nonoverlap-
ping samples separated the patients into subgroups with high and low
T cell (Fig. 2H), high and low macrophage, and high and low NK-cell
proportions (Supplementary Fig. S9A and S9B). While no correlation
between the proportions ofmacrophages norNK cells and survival was
seen, high proportion of T cells in the LME translated to better survival
(5-yearOS: 65.4% vs. 58.7%,P¼ 0.040, Supplementary Fig. S9C). As in
our mIHC cohort, DLBCLs with high proportion of T cells displayed
higher proportions of other immune cells, such as macrophages, NK
cells, and Tregs, and higher gene expression of immune checkpoint
molecules, such as PDCD1, HAVCR2, CD274, and LAG3, suggesting
an immune-inflamed phenotype (Supplementary Fig. S9D–S9Q).
Finally, when we clustered the T cell–high samples according to the
proportion of macrophages, we identified a group with low number of
macrophages (Fig. 2I), which associated with less aggressive clinical
course (Supplementary Table S4), and better survival when compared
with the patients with T cell–high andmacrophage-high, or T cell–low
LME (5-year OS: 69.7% vs. 58.3%, P ¼ 0.004), thus, validating our
initial findings (Fig. 2J andK). The impact of T cell–high/macrophage
low LME on survival was independent of the IPI and molecular
subtype (Fig. 2L).

Table 1. Patient demographics.

Characteristics mIHC cohort, n (%)
Reddy et al.
cohort, n (%)

No. of patients 178 (100) 496 (100)
Age

Median (range) 60 (16–84)
<60 88 (49) 205 (43)
≥60 90 (51) 268 (57)
ND 23

Gender
Male 103 (58) 270 (54)
Female 75 (42) 226 (46)

Molecular subtype
GCB 62 (45) 217 (44)
ABC 55 (40) 203 (41)
Unclassified 21 (15) 76 (15)
ND 40

WHO PS
0–1 125 (71) 349 (76)
≥2 50 (29) 112 (24)
ND 3 35

Stage
I–II 77 (44) 179 (37)
III–IV 100 (56) 307 (63)
ND 1 10

IPI
0–2 91 (52) 212 (55)
3–5 84 (48) 176 (45)
ND 3 108

Elevated LDH
Yes 113 (65) 235 (53)
No 62 (35) 206 (47)
ND 3 55

EN
0–1 122 (73) 341 (73)
≥2 46 (27) 123 (27)
ND 10 32

B-symptoms
Yes 65 (38)
No 108 (62)
ND 5

Double expressor
Yes 49 (34)
No 97 (66)
ND 32

Double hit
Yes 8 (5)
No 141 (95)
ND 29

Treatment
R-CHOP 116 (65)
R-CHOEPa 58 (33)
Otherb 4 (2)

5-year PFS 74%
5-year OS 78% 63%

Abbreviations: ABC, activated B-cell; GCB, germinal center B; IPI, international
prognostic index; LDH, lactate dehydrogenase; EN, extranodal site; R-CHOP,
rituximab, cyclophosphamide, doxorubicine, vincristine, prednisone; R-CHOEP,
R-CHOP þ etoposide.
aPatients <65 years with high-risk features were treated with R-CHOEP-14 and
systemic CNS prophylaxis consisting of high-dose methotrexate and high-dose
cytarabine.
bOther, one R-CHOP/R-CHEP, one R-CHOP/R-CNOP, one R-CHOP/R-mini-
CHOP, one R-ICE (excluded from survival analyses).
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Figure 1.

The heterogeneity of the DLBCL microenvironment revealed by mIHC. A, Representative images from mIHC analyses performed on TMAs. Macrophages
and B cells: CD20, blue; CD68, green; CD163, magenta; TIM3, red; PD-L1, yellow; DAPI, gray. Macrophages and T cells: CD3, blue; CD4, cyan; CD68, green;
CD163, magenta; PD-1, red; PD-L1, yellow; DAPI, gray. NK cells: CD45, magenta; CD3, blue; CD56, yellow; TIM3, red; Granzyme B, green; DAPI, gray. Scale
bar, 50 mm. B and C, Boxplots depicting the proportions of different immune cell subtypes (B) and immune checkpoint–expressing cells (C) out of all cells
in the DLBCL LME. D–F, Boxplots depicting the proportions of T cells (D), macrophages (E), and NK cells (F) expressing immune checkpoint molecules in
the DLBCL LME. G, Unsupervised hierarchical clustering of all quantified immune cells and their immunophenotypes. Heat map represents z-score
normalized data; red color denotes expression above mean, blue color expression below mean, and white color mean. Gray color denotes missing data.
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Differential pathway enrichment between the distinct LME
phenotypes

To study the differences in the cellular pathways between the
distinct T-cell and macrophage groups, we performed ssGSEA. First,
we used the RNA-sequencing data from 77 patients from the mIHC
cohort to determine specific pathway scores for each individual
sample, and then calculated differences in the pathway scores between
T cell–high and low LME subgroups. As expected, the highest ranking
pathways in the T cell high LME groupwere pathways related to T cells

and T-cell signaling (Fig. 3A; Supplementary Table S6). On the
contrary, the highest ranking pathways in the T cell–low LME group
were the pathways related to cell division and DNA repair, perhaps
representing greater cell division activity of themalignant B cells and a
disease that is more independent from the surrounding LME. These
findings were replicated in the Reddy and colleagues (5) validation
cohort (Supplementary Fig. S10A; Supplementary Table S7).

We also studied how the T cell–high/macrophage low LME
subgroup differed from the rest of the samples and the T cell–

Figure 2.

The clinical impact of T cells and macrophages in the DLBCL microenvironment. A, Unsupervised hierarchical clustering of T-cell subtypes quantified by
mIHC. B–D, Boxplots depicting the proportions of macrophages (B), NK cells (C), and regulatory T cells (D) in the groups with high and low proportion of
T cells in the mIHC cohort. E, Unsupervised hierarchical clustering of macrophage subtypes in the T cell–high group quantified by mIHC. F and G, Kaplan–Meier
(log-rank test) survival plots depict OS in the T cell–high/macrophage-low (T cell–high/M low) and T cell–high/macrophage-high (T cell–high/M high) or
T cell–low groups (F), as well as in the T cell–high/macrophage-low (T cell–high/M low), T cell–high/macrophage-high (T cell–high/M high), and the T cell–low
groups (G) in the mIHC cohort. H, Unsupervised hierarchical clustering of T-cell subtypes in the Reddy and colleagues’ cohort inferred by CIBERSORT.
I, Unsupervised hierarchical clustering of macrophage subtypes in the T cell–high group in the Reddy and colleagues’ cohort inferred by CIBERSORT. J and K,
Kaplan–Meier (log-rank test) survival plots depict OS in the T-cell high/macrophage-low (T cell–high/M low), T cell–high/macrophage-high (T cell–high/M
high), and T cell–low groups (J), as well as in the T cell–high/macrophage-low (T cell–high/M low) and T cell–high/macrophage high (T cell–high/M high) or
T cell–low groups (K) in the Reddy and colleagues’ cohort. L, Forest plot visualizing the impact of the T cell–high/macrophage-low group on OS in a Cox
regression multivariate analysis with IPI and molecular subtype in the Reddy and colleagues’ cohort. In A, E, G, and H, heat maps represent z-score normalized
data; red color denotes expression above mean, blue color expression below mean, and white color mean. Gray color denotes missing data.
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high/macrophage-high subgroup in the Reddy and colleagues val-
idation cohort and found that the highest ranking pathways were
related to T-cell signaling, but also to B-cell receptor signaling
(Fig. 3B; Supplementary Fig. S10B; Supplementary Tables S8 and
S9). In contrast, the lowest ranking pathways were related to cell
division and DNA repair.

Gene expression signature representing
T cell–high/macrophage-low LME

To define a gene expression signature corresponding to the T cell–
high/macrophage-low LME, we analyzed differentially expressed
genes between the T cell–high/macrophage-low LME group and the
others in the Reddy and colleagues cohort (5). The most upregulated

Figure 3.

Differentially enriched pathways and differentially expressed genes between distinct LME phenotypes. A, A volcano plot depicting differentially enriched pathways
between the T cell–high (inflamed) andT cell–low (noninflamed) groups in themIHC cohort.B andC,Volcanoplots depictingdifferentially enrichedpathways (B) and
differentially expressed genes (C) between the T cell–high/macrophage-low (T cell–high/M low) and T cell–high/macrophage-high or T cell–lowgroups in the Reddy
and colleagues’ cohort.D,Unsupervisedhierarchical clustering of samples in theReddy and colleagues’ cohort based on the expression of the 18-gene signaturemost
differentially expressed between the T-cell high/macrophage-low and T cell–high/macrophage-high or T cell–low groups. E, Kaplan–Meier (log-rank test) survival
plot depicts OS in the groupswith high and low expression of the T cell–high/macrophage-low gene signature in the Reddy and colleagues’ cohort. F, Unsupervised
hierarchical clustering of samples in the Chapuy and colleagues’ cohort based on the expression of the 18-gene signature most differently expressed between the
T cell–high/macrophage-low and T cell–high/macrophage-high or T cell–low groups. TRBC2 was not expressed in this cohort. G, Kaplan–Meier (log-rank test)
survival plot depicts OS in the groupswith high and low expression of the T cell–high/macrophage-low gene signature in the Chapuy and colleagues’ cohort. InD and
F, heat maps represent z-score normalized data; red color denotes expression above mean, blue color expression below mean, and white color mean. Gray color
denotes missing data.
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genes in the T cell–high/macrophage-low LME group were genes
related to T cells, such as CD3D, CD7, and CD28, but also other genes,
such as BCL11B, CCL21, and SH2D1 (Fig. 3C; Supplementary
Table S10).

We selected the most differentially expressed genes to represent a
T cell–high/macrophage-low gene expression signature. Hierarchical
clustering with this 18-gene signature divided the patients into two
groups (Fig. 3D). The patients in the high expression cluster had a

better prognosis than patients in the low expression cluster (5-year OS:
68.7% vs. 58.6%,P¼ 0.009;Fig. 3E). Thus, the prognostic impact of the
gene signature on survival was concordant with that of the T cell–high/
macrophage-low LME phenotype it represented.

To validate the prognostic impact of the T cell–high/macrophage-
low LME gene signature, we used the signature to cluster the Chapuy
and colleagues (7) data (n ¼ 137; Fig. 3F; Supplementary Table S11).
The samples clustered into three subgroups. Patients belonging to the

Figure 4.

Clinical impact of immune checkpoint–expressing macrophages in the DLBCL microenvironment. A, A forest plot visualizing the impact of immune checkpoint–
expressing macrophages on OS in the mIHC cohort, as evaluated by Cox regression univariate analyses with continuous variables. B, Kaplan–Meier (log-rank test)
survival plots depict OS in patients with high and low proportion of PD-L1þTIM3þCD163� macrophages using median cutoff in the mIHC cohort. C–E, Forest plots
visualizing the impact of PD-L1þTIM3þCD163� macrophages on OS in Cox regression multivariate analyses with IPI (C), IPI and molecular subtype (D), and IPI,
molecular subtype anddouble protein expression (E) in themIHCcohort.F andG,Forest plots visualizing the impact of immune checkpoint–expressingmacrophages
on OS in the T cell–high (F) and low (G) groups, as evaluated by Cox regression univariate analyses with continuous variables in the mIHC cohort. H, Forest plot
visualizing the impact of the gene expression of immune checkpoint molecules in macrophages/monocytes, inferred with CIBERSORTx, on OS in the T cell–high
group in the Reddy and colleagues’ cohort, as evaluated by Cox regression univariate analyses with continuous variables. � , P ≤ 0.05 after FDR correction.
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high gene expression group had a better prognosis compared with the
patients belonging to the low/intermediate expression group (5-year
OS: 90.6% vs. 65.3%, P ¼ 0.021; 5-year PFS: 79.9% vs. 59.5%, P ¼
0.038; Fig. 3G; Supplementary Fig. S10C), thus validating our findings.

Immune checkpoint–expressing macrophages have adverse
impact on survival

To further understand the adverse prognostic impact of macro-
phages on survival, we analyzed the contribution of immunopheno-
types and immune checkpoint protein expression on macrophage-
associated outcome. We discovered that a high proportion of
CD163�PD-L1þ/TIM3þ macrophages translated to poor outcome
[OS: HR ¼ 2.60, 95% confidence interval (CI), 1.47–4.56, Padj ¼
0.014; PFS: HR¼ 2.36, 95% CI, 1.37–4.06, Padj¼ 0.028; Fig. 4A andB;
Supplementary Fig. S11A–S11D). The survival was independent of IPI,
molecular subtype, and DPE status (Fig. 4C–E; Supplementary
Fig. S11E–S11G). The adverse prognostic impact of the immune
checkpoint–expressing macrophages was dependent on the propor-
tion of T cells, since the prognostic impact of PD-L1þTIM3þCD163�

M1-like macrophages was evident in the patients with T cell–high, but
not in patients with T cell–low LME (Fig. 4F and G; Supplementary
Fig. S11H–S11I). When double-hit lymphomas were excluded from
the survival analyses, prognostic impact of immune checkpoint–

expressing macrophages on survival remained unchanged (Supple-
mentary Fig. S12).

Next, we utilized CIBERSORTx to study whether the expression of
immune checkpoint molecule genes in macrophages associated with
survival in the Reddy and colleagues (5) validation cohort. Consistent
with the mIHC cohort, high expression of CD274 (PD-L1) and
PDCD1LG2 (PD-L2) in macrophages correlated with poor overall
survival in patients with T cell high LME (HR ¼ 1.32, 95% CI, 1.04–
1.69, P ¼ 0.024 and HR ¼ 2.06, 95% CI, 1.04–4.08, P ¼ 0.038,
respectively). A trend was also seen for the HAVCR2 (TIM3) expres-
singmacrophages (HR¼ 2.38, 95%CI, 0.88–6.41, P¼ 0.087; Fig. 4H).
In contrast, we did not see correlation between checkpoint molecule–
expressing macrophages and outcome in the patients with T cell–low
LME (Supplementary Fig. S11J).

Immune cells interacting with each other express immune
checkpoint molecules

As the adverse impact of immune checkpoint–expressing macro-
phages on survival was dependent on the T-cell content of the tumor,
we speculated that the negative signal is translated through the
inhibition of T cells. Therefore, we studied the spatial relations between
the immune cells in the mIHC cohort and calculated the number of
their interactions (Fig. 5A). First, there were more interactions

Figure 5.

Interactions between different immune cell subtypes in the DLBCL microenvironment. A, The Euclidean distance d between two cells. B, Boxplots depicting
differences in the number of interactions between B cells and macrophages, T cells with other T cells, as well as T cells and macrophages in HLA-DR–positive (pos),
moderate (mod), and negative (neg) DLBCLs. C, Bubble plot depicting the expression of immune checkpoint molecules on macrophages that interact with other
immune cells comparedwithmacrophages that donot interactwith these cells, aswell as on T cells andB cells that interactwithmacrophages compared to T cells and
B cells that do not interactwithmacrophages. The size of the bubbles is proportional to�log10(FDR-adjusted P value), and the color of the bubbles resembles log10FC
of interacting versus noninteracting cells. D, Bubble plot depicting differences in the expression of immune checkpoint molecules on immune cells that interact
(TRUE) and do not interact (FALSE) with other immune cell subtypes between HLA-ABC–positive and moderate/negative DLBCLs. The size of the bubbles is
proportional to �log10(FDR-adjusted P value), and the color of the bubbles resembles log10FC of HLA-ABC–positive versus moderate/negative.
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between B cells and macrophages (Padj ¼ 0.003), between T cells
with themselves (Padj ¼ 0.002), and between T cells and macro-
phages (Padj ¼ 0.017) in HLA-DR–positive lymphomas than HLA-
DR–negative lymphomas (Fig. 5B). Interestingly, PD-1 and PD-L1
expression was enriched on macrophages that interacted with
T cells (Padj < 0.001; Fig. 5C), suggesting that immune checkpoint
molecules are involved in mediating the negative signal between
macrophages and T cells. Moreover, PD-L1 and TIM3 expression,
as well as PD-1, PD-L1, and TIM3 expression was enriched on
macrophages that interacted with lymphoma cells and other macro-
phages, respectively (Padj < 0.001 for all; Fig. 5C).

Finally, we investigated whether the expression of immune
checkpoint molecules on immune cells differed between the bio-
logical subgroups. HLA-ABC positivity associated with PD-L1 and
TIM3 expression on both macrophages and lymphoma cells when
these cells interacted with each other. PD-L1 expression was also
enriched on both macrophages and T cells when they interacted
with each other in HLA-ABC–positive cases. In addition, immune
checkpoint molecule expression was increased on the immune cells
when they interacted with other cells displaying the same phenotype
(Fig. 5D).

Discussion
Recently, the molecular and genetic landscape of DLBCL has been

thoroughly characterized (5–7). In addition, classification based on the
DLBCL microenvironment is emerging, and for example four distinct
LME gene expression signatures, titled “GC-like”, “mesenchymal”
(MS), “inflammatory” (IN), and “depleted” (DP) have been identi-
fied (14). Based on the number of tumor-infiltrating immune cells,
lymphomas can also be divided into inflamed and noninflamed
phenotypes, with DLBCL usually grouped as a noninflamed lympho-
ma, where the microenvironment has little biological and clinical
significance (19). In this study, we characterized DLBCLs according
to tumor-infiltrating immune cells and their interactions, and could
classify the patients into clinically meaningful subgroups with
differential impact on outcome. Our results indicate that DLBCLs
exhibit both inflamed and noninflamed LMEs. Furthermore, the
results show that while the division, based on the proportion of T
cells, is sufficient to separate the two LME subgroups, the DLBCLs
with inflamed LME have also higher proportions of other immune
cell subtypes.

Previous studies addressing the clinical impact of the LME have
mostly focused on analyzing the association of single-cell subtypes
with survival with conflicting findings (13, 46–49). Our work
represents a comprehensive analysis of the DLBCL LME integrating
immunophenotyping and gene expression profiling with clinical
characteristics and survival. In addition of studying lymphoma-
infiltrating macrophage, T-cell, and NK-cell proportions separately,
we addressed whether their relationships affected the outcome. Our
results indicate that the amount of distinct immune cells in relation
to each other in the LME has more clinical impact than the amount
of these immune cells alone. While we found neither T-cell,
macrophage, nor NK-cell proportions as such to associate with
outcome, we could identify a group of patients with T cell–high/
macrophage-low LME to have a superior outcome compared with
the patients with a T cell–high/macrophage-high or T cell–low
LME. Thus, it appears that macrophages can neutralize the favor-
able prognostic impact of T cells on survival.

In our previous study, we showed that high proportion of immune
checkpoint–positive CD3�CD4þ cells translated to poor outcome, and

speculated that these cells represented immune checkpoint–expressing
macrophages (13). In this work, high proportion of immune check-
point–expressingmacrophages, and immune checkpoint–expressing
M1-like macrophages in particular, translated to poor outcome. It
is, therefore, possible that checkpoint-expressing M1-like macro-
phages represent the cells identified in our previous study. We also
found that the adverse impact of immune checkpoint–expressing
macrophages on survival was dependent on high proportions of T
cells in the LME. We speculate that the negative impact of macro-
phages is mediated through the inhibition of T cells by immune
checkpoint molecules. This theory is further strengthened by the
finding that the expression of immune checkpoint molecules is
enriched on macrophages that interact with T cells. Similar findings
have also been seen in cHL (50).

To date, the response rates to CBT have been low in patients with
DLBCL (35). This may be partially due to low incidence of genetic
alterations leading to overexpression of PD-L1, which is commonly
seen in cHL where CBT has shown promising efficacy (29, 51).
Another possible explanation is the upregulation of other immune
checkpoint molecules than PD-L1, and in such cases combination
CBT may lead to better response rates. As some patients with
DLBCL benefit from CBT, better patient selection may improve the
efficacy of these therapies. Upregulation of immune checkpoint
molecules is mainly seen in inflamed lymphomas (27, 28). There-
fore, inflamed DLBCLs can be expected to respond better to CBT
than noninflamed DLBCLs. The patients with high expression of
the targeted immune checkpoint molecules may show better
response rates as well. Furthermore, we speculate that especially
the patients with inflamed DLBCLs and high proportion of macro-
phages may respond to CBT.

Our study has some limitations. First, as we performed mIHC
analyses on TMAs, we have only studied a small fraction of lymphoma
tissue in each case. It would be interesting to study whether there is
intratumoral or intertumoral heterogeneity within the DLBCL micro-
environment. Second, we validated our data using deconvolution
analysis, and although robust and well validated, it is not equal to
mIHC-based cell identification. Third, we have not studied the inter-
actions between B cells and T cells, which may be central in explaining
the positive impact T cells have in the absence ofmacrophages. Finally,
the lownumber ofNKcells identified in our analysesmay at least partly
be due to technical issues.

In conclusion, our results show that the interplay between different
immune cells in the LME is clinically more meaningful than the
proportions of single-cell subtypes alone. In particular, the macro-
phage content seems to impair the antitumoral activity of T cells,
possibly by immune checkpoint–related mechanisms. However, func-
tional experiments showing that macrophages inhibit the activity of
T cells are warranted. Furthermore, our results suggest that CBT
should be investigated in clinical trials in the patients with inflamed
DLBCLs and high proportions of immune checkpoint–expressing
immune cells.
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