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Chapter 1

Introduction

We assume the reader has a basic understanding of the concepts of functional
analysis, such as Hahn-Banach theorems, spaces of operators and norms,
Banach-Steinhaus theorem and duality. We start building on this with the
concept of compact operators and their properties. This is a necessary back-
round for introducing the Fredholm-Riesz theory which is the motivator for
our main goal since we will work in the realm of generalizing compactness
and Fredholm-Riesz theory and the new concepts the process gives rise to.

Let L(X, Y ) be the space of bounded linear operators from X to Y and
K(X, Y ) the space of compact operators from X to Y . Whenever X = Y ,
we denote L(X,X) = L(X) and K(X,X) = K(X). In classical Fredholm-
Riesz theory we deal with bounded linear operators with finite-dimensional
kernels and cokernels. These type of operators are called Fredholm-operators
and they have powerful properties. For example, the definition of Fredholm-
operators be equivalent with invertibility modulo compact-operators. This
equivalence is called the Atkinson theorem, which states that an operator
A ∈ L(X) is Fredholm if and only if it is invertible in the quotient space
L(X)/K(X).

The space in which we work, is the lp-space E = lp(ZN , X), where X is a
fixed Banach space. We generalize the concept of compactness by operating
with a fixed sequence P of projections (P1, P2, ...), from E to E, where Pn → I
as n→∞. For P-compactness of an operator K ∈ L(E) we require for both
PnK and KPn to approach K in the norm-sense as n→∞. These so called
P-compact operators create their own spaceK(E,P) of operators onX which
is the basis for the concepts of P-strong convergence, P-Fredholmness and
the generalization of the space L(E) into L(E,P).

Our main results involve the new concepts of band-dominated operators
and limit operators. Band operators are finite linear combinations of shift
and multiplication operators. Band-dominated operators in turn are limits
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of band operators. From band operators we continue to limit operators. The
limit operator Ah of A ∈ L(E,P) is the P-strong limit of the sequence of op-
erators (V−h(n)AVh(n))n∈N with respect to a sequence h(0), h(1), h(2), ... ∈ ZN
where Vh(n) is the shift in the direction of h(n). The existence of limit op-
erators depends on the chosen sequence (h(n))n∈N and the notion of richness
tells about how commonly the limit operator exists. An operator A ∈ L(E)
is said to be rich if for every sequence h ⊂ ZN there is a subsequence g for
which the limit operator Ag exists.

The goal of this thesis is to describe the groundwork in more detail and
prove the claim that for a rich band-dominated operator A there is an equiv-
alence between P-Fredholmness and the property that its limit operators
Ah are invertible modulo K(E,P) and also that the inverses are uniformly
bounded. This generalization of the classical Fredholm-Riesz theory was in-
troduced and discussed in detail in the book [1] by Vladimir Rabinovich,
Steffen Roch and Bernd Silbermann. Further advances on this topic can be
found on the publications [5, 6] of Markus Seidel and Marko Lindner, where
they show that it is possible to generalize this core result even further. Specif-
ically the theorem holds true also when omitting either the richness criterion
or the uniform boundedness criterion. This raises the question whether it
would be possible to omit both richness and uniform boundedness criteria
simultaneously, however these recent results and ideas are beyond the scope
of this thesis.
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Chapter 2

Fredholm-Riesz theory

In this chapter we review the basics of the classical Fredholm-Riesz the-
ory, which will serve as a model case for our later generalization. We will
start with the compact operators. First in a specific case of the space C(X)
and then go through the their properties and implications in general Ba-
nach spaces. Thereafter we continue with the classical notion of Fredholm
operators and their main properties.

2.1 Definitions and notations
Definition 2.1.1 (Banach spaces). A complete normed vector space X is
called a Banach space. With completeness we mean that all Cauchy se-
quences in X converge in X with respect to the norm. In other words, if the
sequence (xi) ⊂ X is Cauchy, then there exists x ∈ X such that

‖xi − x‖X → 0, as n→∞.

2.2 Compact operators on C(X)
Before considering compact operators between Banach spaces we first look
at a special case C(X), where X is a compact topological space.

Definition 2.2.1 (Pre-compactness). Let (X, d) be a metric space with the
distance metric d. The space (X, d) is called pre-compact if for all ε > 0
there exists a finite cover {A1, ..., An} of X such that for all k = 1, ..., n the
diameters of the sets,

diam(Ak) := sup
x,y∈Ak

d(x, y) < ε
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and also
X =

n⋃
k=1

Ak.

Equivalently, (X, d) is pre-compact if for all ε > 0 there exists a finite set
of points x1, ..., xn ∈ X such that the open balls {B(x1, ε), ..., B(xn, ε)} with
radii ε cover X. Here we denote open balls as B(x0, r) := {x ∈ X : d(x, x0) <
ε}. In other words

X ⊂
n⋃
k=1

B(xk, ε).

Theorem 2.2.2. Let (X, d) be a metric space. Then the following conditions
are equivalent:

(a) X is compact, that is every open cover D of X has a finite subcover of
X.

(b) Any sequence (xi) ⊂ X has a converging subsequence (xik) in X, that is
X is sequentially compact.

(c) X is pre-compact and complete.

Proof. The proof of (a) ⇔ (b) is found in Väisälä: Topologia I [7]

(b) ⇒ (c)
Let X be sequentially compact. From the material of Funktionaaliana-

lyysin peruskurssi [2] we know that if a Cauchy sequence has a converging
subsequence, then the whole sequence converges to the same point as the
subsequence. Also from the assumption of sequential compactness we know
that every Cauchy sequence in X has a converging subsequence. Hence we
deduce that X is complete. For the rest of the proof we follow [4].

Furthermore, to prove pre-compactness we make a counterassumption.
Let us assume X is not pre-compact. Thus there exists an ε0 > 0 for which
there are no finite set of open balls {B1, ..., Bk} with radii ε0 such that X ⊂⋃k
j=1Bj. We construct a sequence (xn) as follows. Pick x1 ∈ X. Since X 6⊂

B(x1, ε0), we can pick x2 ∈ X such that d(x1, x2) ≥ ε0. Given {x1, ..., xn} ⊂
X, we can pick xn+1 ∈ X such that d(xj, xn+1) ≥ ε0, for all 1 ≤ j ≤ n since
X 6⊂ ⋃nj=1B(xj, ε0). Now by the way the sequence (xn) ⊂ X was constructed,
we have d(xj, xk) ≥ ε0 for all j 6= k. This means that the sequence (xn) has
no converging subsequences which again implies that X is not compact. This
is a contradiction. Hence X is pre-compact.

(c)⇒ (b) SupposeX is pre-compact and complete. Let (xn) be a sequence
in X. Fix ε = 1. Since X is pre-compact we have a finite cover {A1, ..., An}
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of X for which diam(Ak) < 1 for 1 ≤ k ≤ n. Since the cover is finite we
know that at least one Ak contains infinitely many terms of (xn) so we choose
xn1 ∈ Ak and denote the corresponding Ak as X1.

Similarly, since a subset of a pre-compact space is pre-compact, we know
thatX1 is pre-compact and thus fixing ε = 1

2 gives us a new cover {A1, ..., An}
of X1 such that diam(Ak) < 1

2 for 1 ≤ k ≤ n. Again there is an Ak which
contains infinitely many terms of (xn). We denote this set Ak by X2 and
choose such a xn2 ∈ X2 that n2 > n1.

Continuing in this manner, given xn1 , ..., xnm and Xm ⊂ ... ⊂ X1 ⊂ X,
and such that the set Xm contains infinitely many terms of (xn). Let ε = 1

m+1
and cover Xm with a finite cover {A1, ..., An}, such that diam(Ak) < 1

m+1 for
1 ≤ k ≤ n. Again one of the sets Ak contains infinitely many terms of
(xn) and we denote it Xm+1 and pick xnm+1 in Xm+1 such that nm+1 > nm.
Observe that for any j ≥ m we have xnj

∈ Xm and thus d(xnj
, xni

) < 1
m

for
all i, j ≥ m. Hence the sequence (xn) has a Cauchy subsequence (xnj

) and
from the completeness of X follows that the subsequence (xnj

) converges.
Since (xn) was arbitrary we conclude that X is sequentially compact and
hence compact.

Definition 2.2.3 (Equicontinuity). Let (X, d) and (Y, d′) be metric spaces
and H be a collection of mappings from X to Y . We say that H is equicon-
tinuous at x ∈ X if for all ε > 0 there exists an open neighborhood V ⊂ X
of x, such that d′(f(y), f(x)) < ε, for any f ∈ H and y ∈ V.

Definition 2.2.4. Let H be a family of mappings X −→ K. We say that H
is pointwise bounded if for each x ∈ X there is such an M(x) <∞, that

|f(x)| ≤M(x), for all f ∈ H.

Definition 2.2.5. Let H be a family of mappings X −→ K and let A ⊂ X.
For a subset A ⊂ X, H is called uniformly bounded in A if there exists such
an M <∞ that

|f(x)| ≤M, for all f ∈ H and x ∈ A.

Let X be a Banach space. A subset A ⊂ X is called relatively compact
if its closure A is compact. With these concepts we formulate the classical
result of Cesare Arzelà and Giulio Ascoli.

Note that we define the sup-norm ‖·‖∞ for a function f in C(X,K) as
‖f‖∞ := supx∈X |f(x)|.

Theorem 2.2.6 (Arzela-Ascoli). Let X be a compact topological space and
H ⊂ C(X,K) := C(X). Then H is relatively compact in (C(X), ‖·‖∞) if
and only if the family H is equicontinuous and pointwise bounded in X.
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Proof. We refer the proof to the course material of Funktionaalianalyysin
peruskurssi at page 177. [2]

This theorem is a powerful tool and in our case, we now have a way to
identify compact sets in C(X).

The following classical example from [2] completes the introduction of
compactness in C(X) and presents a very important operator which is used
in the setting of Fredholm equations. Fredholm equations are a class of
integral equations and the attempts to solve these gave rise to the Fredholm-
Riesz theory.
Example 2.2.7. Let K : [0, 1]× [0, 1] −→ R be a continuous kernel function.
Then the operator T : C(0, 1) −→ C(0, 1) defined as follows

Tf(x) =
∫ 1

0
K(x, y)f(y)dy, for x ∈ [0, 1] and f ∈ C(0, 1)

is compact, that is, the image of the closed unit ball
T (BC(0,1)) = {Tf : f ∈ C(0, 1), ‖f‖∞ ≤ 1}

is relatively compact in C(0, 1). Here we denote C([0, 1]) as C(0, 1).
Proof. The kernel function K is continuous in the compact set [0, 1]× [0, 1],
thus K is bounded and uniformly continuous. Since, for all x ∈ [0, 1]

|Tf(x)| ≤
∫ 1

0
|K(x, y)f(y)|dy ≤

∫ 1

0
‖K‖∞ ‖f‖∞ dy ≤ C ‖f‖∞ ,

where C = ‖K‖∞ = max{|K(x, y)| : x, y ∈ [0, 1]} < ∞, it follows that
T (BC(0,1)) is uniformly bounded, as

‖Tf‖∞ ≤ C ‖f‖∞ ≤ C,

for ‖f‖∞ ≤ 1.
Let x0 ∈ [0, 1] and ε > 0. Since K is uniformly continuous there exists

such a δ > 0 that
|K(x, y)−K(x0, y)| < ε, whenever |x− x0| < δ and y ∈ [0, 1].

Thus for all f ∈ BC(0,1) it holds that

|Tf(x)− Tf(x0)| ≤
∫ 1

0
|K(x, y)−K(x0, y)||f(y)|dy

≤ ε
∫ 1

0
‖f‖∞ dy ≤ ε,

whenever |x− x0| < δ.
These results imply that T (BC(0,1)) is uniformly bounded and equicontin-

uous, thus by Arzela-Ascolis theorem, T (BC(0,1)) is relatively compact and T
is a compact operator.
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2.3 Compact operators on general Banach spaces
Here we will generalize the concept of compact operators from C(X) to gen-
eral Banach spaces. We denote the closed unit ball in X as BX := {x ∈ X :
‖x‖ ≤ 1}.

Let X and Y be Banach spaces. We denote by L(X, Y ) the class of
bounded linear operators S : X → Y equipped with the operator norm

‖S‖L(X,Y ) = sup{‖Sx‖Y : x ∈ X, ‖x‖X ≤ 1}.

Definition 2.3.1 (Compact operator). Let X and Y be Banach spaces. A
linear operator T ∈ L(X, Y ) is compact if the closure of the image of the
closed unit ball BX ;

TBX = {Tx : x ∈ BX}
is compact in Y . We also denote by K(X, Y ) the set of all compact operators
T ∈ L(X, Y ).

We can thus by Theorem 2.2.2 check if an operator T ∈ L(X, Y ) is
compact by checking whether the image TBX is pre-compact in the Banach
space Y .

The following two properties from [2] show that K(X, Y ) is an operator
ideal.

Theorem 2.3.2. Let X and Y be Banach spaces. Then K(X, Y ) is a closed
linear subspace of L(X, Y ).

Proof. Let S, T ∈ K(X, Y ) and let ε > 0 be arbitrary. Thus there exists vec-
tors x1..., xm ∈ Y and y1, ..., yn ∈ Y such that we have SBX ⊂

⋃m
i=1B(xi, ε)

and TBX ⊂
⋃n
j=1B(yj, ε), where BX is the closed unit ball in X. Hence if

we pick any vector z ∈ BX , then ‖Sz − xi‖Y < ε and ‖Tz − yj‖Y < ε for
some 1 ≤ i ≤ m, 1 ≤ j ≤ n. By the triangle inequality we have

‖(S + T )z − (xi + yj)‖Y ≤ ‖Sz − xi‖Y + ‖Tz − yj‖Y < 2ε.

Thus
(S + T )BX ⊂

m⋃
i=1

n⋃
j=1

B(xi + yj, 2ε).

We conclude that S + T ∈ K(X, Y ).

Now suppose S ∈ K(X, Y ) and λ ∈ K. Given ε > 0 there exists vectors
x1, ..., xm ∈ Y such that SBX ⊂

⋃m
i=1B(xi, ε). For any z ∈ BX we have

‖Sz − xi‖Y < ε for some 1 ≤ i ≤ m. Thus we have

‖λSz − λxi‖Y = |λ| ‖Sz − xi‖Y < |λ|ε.
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Hence λSBX ⊂
⋃m
i=1B(λxi, |λ|ε) and λS ∈ K(X, Y ).

Finally assume S ∈ K(X, Y ). Hence there exists a sequence of operators
(Sn) in K(X, Y ) such that ‖Sn − S‖ → 0 as n→∞. Fix ε > 0 and such an
n ∈ N that ‖Sn − S‖ < ε. Since Sn is compact, there exists vectors x1, ..., xm
such that SnBX ⊂

⋃m
i=1B(xi, ε). By the triangle inequality, for any z ∈ BX

there is such an index 1 ≤ i ≤ m that we have

‖Sz − xi‖Y ≤ ‖Sz − Snz‖Y + ‖Snz − xi‖ ≤ ‖S − Sn‖+ ε ≤ 2ε.

Thus SBX ⊂
⋃m
i=1B(xi, 2ε) and S ∈ K(X, Y ).

These three results combined prove that K(X, Y ) is indeed a closed linear
subspace of L(X, Y ).

Theorem 2.3.3. Let X, Y,X1 and Y1 be Banach spaces and T ∈ K(X, Y )
a compact operator. If S ∈ L(Y, Y1) is a continuous operator, then the
composed operator ST ∈ K(X, Y1) is compact. Moreover if R ∈ L(X1, X)
is a continuous operator, then the composed operator TR ∈ K(X1, Y ) is
compact.

Proof. Fix ε > 0. Since T ∈ K(X, Y ) is compact, there exists vectors
x1, ..., xm ∈ Y such that TBX ⊂

⋃m
i=1B(xi, ε).

Since R ∈ L(X1, X) is continuous, for any z ∈ BX1 we have ‖Rz‖X ≤
‖R‖ ‖z‖X1

. Thus
RBX1 ⊂ ‖R‖BX .

Hence we have

TRBX1 ⊂ ‖R‖TBX ⊂
m⋃
i=1

BY (‖R‖xi, ‖R‖ ε),

which implies that TR ∈ K(X1, Y ) is compact.
Furthermore if S ∈ L(Y, Y1) is continuous, then SBY ⊂ ‖S‖BY1 and

additionally

SBY (xi, ε) = S(xi + εBY ) = Sxi + εSBY ⊂ Sxi + ε ‖S‖BY1

for all 1 ≤ i ≤ m. Hence we have

STBX ⊂ S(
m⋃
i=1

BY (xi, ε)) ⊂
m⋃
i=1

SBY (xi, ε) ⊂
m⋃
i=1

BY1(Sxi, ‖S‖ ε).

Since ε > 0 was arbitrary it follows that ST ∈ K(X, Y1) is compact.
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The following lemma from [2] is needed to show that compact sets are
quite uncommon in infinite dimensional Banach spaces. In fact such basic
sets as closed balls BX are not compact when the dimension of X is infinite.

Lemma 2.3.4 (Riesz’s lemma). Let X be a normed space and M ( X a
closed linear subspace. Then for all ε > 0 there exists such a vector x ∈ X
that ‖x‖X = 1 and

dist(x,M) = inf
m∈M

‖x−m‖X > 1− ε.

Proof. In the proof, to avoid making the formulae hard to read, we simplify
the norm ‖·‖X as ‖·‖. Fix ε > 0 and z ∈ X \M . Thus clearly dist(z,M) > 0,
since M is closed. Now choose such an m ∈M that

dist(z,M) ≤ ‖z −m‖ < dist(z,M)
1− ε ,

which is possible from the definition of the infimum.
Choose x = z−m

‖z−m‖ . Now ‖x‖ =
∥∥∥ z−m
‖z−m‖

∥∥∥ = 1 and x = z
‖z−m‖−

m
‖z−m‖ 6∈M ,

since z ∈ X \M .
Thus for any n ∈M we have

‖x− n‖ =
∥∥∥∥∥ z −m
‖z −m‖

− n
∥∥∥∥∥ = 1
‖z −m‖

‖z − (m+ n ‖z −m‖)‖

and since m+ n ‖z −m‖ is an element in M , we can estimate as follows

‖x− n‖ ≥ 1
‖z −m‖

dist(z,M) > 1− ε
dist(z,M)dist(z,M) = 1− ε.

We can now state and prove the fact, that interestingly, closed balls are
never compact in infinite dimensional spaces.

Corollary 2.3.5. If X is an infinite dimensional Banach space, then the
closed unit ball BX = {x ∈ X : ‖x‖X ≤ 1} ⊂ X is not compact. Moreover,
any closed ball B(x0, r) ⊂ X is not compact.

Proof. Let dim(X) = ∞. Fix such a vector x1 ∈ BX that ‖x1‖X = 1. Now
according to Riesz’s lemma, there exists a vector x2 ∈ BX with ‖x2‖X = 1
and dist(x2, span{x1}) > 1

2 .
Assume we have chosen vectors x1, ..., xn ∈ BX where ‖xj‖X = 1 and

dist(xj, span{x1, ..., xj−1}) >
1
2 ,
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for all 2 ≤ j ≤ n. Since dim(X) = ∞ and span{x1, ..., xn} is a finite
dimensional closed linear subspace of X, according to Riesz’s lemma there
exists such a vector xn+1 ∈ BX that ‖xn+1‖X = 1 and

dist(xn+1, span{x1, ..., xn}) >
1
2 .

By repeating this argument in this manner we construct a sequence
(xn)n∈N ⊂ X with the property that

‖xj − xk‖X >
1
2 , whenever j 6= k.

Hence the sequence (xn)n∈N does not have any converging subsequences.
Thus we conclude that the cosed unit ball BX is not compact.

Furthermore,
B(x0, r) = x0 + rBX

and the mapping x 7→ x0 + rx is a homeomorphism. Since homeomorphisms
preserve compactness, no closed balls B(x0, r) can be compact.

Definition 2.3.6 (Strong convergence). Let X be a Banach space and
(An)n∈N ⊂ L(X) be a sequence of continuous operators on X such that
there exists an operator A ∈ L(X) for which

‖Anx− Ax‖X → 0, for all x ∈ X as n→∞.

Then A is called the strong limit of (An)n∈N and we can say that An → A
strongly.

The following theorem from [1] gives us a connection between compactness
and strong convergence.

Theorem 2.3.7. Let An, A ∈ L(X) be continuous operators inX, for n ∈ N.
Then An → A strongly if and only if

‖AnT − AT‖L(X) → 0, for all T ∈ K(X) as n→∞.

Proof. "⇒" Let An → A strongly and let T be a compact operator. Thus
the set M := {Tx : ‖x‖X ≤ 1} is relatively compact in X.

We argue by a counterargument. Suppose that

‖AnT − AT‖L(X) = sup
‖x‖X≤1

‖AnTx− ATx‖X = sup
y∈M
‖Any − Ay‖X
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does not converge to zero as n → ∞. Hence there exists also such an ε > 0
and an infinite sequence (yn)n∈N ⊂M that

‖Anyn − Ayn‖ > ε, for n ∈ N.

Since M is relatively compact there exists a converging subsequence
(zn)n∈N of (yn)n∈N which converges to some z ∈ X as n → ∞. Thus for
every n ∈ N the following holds.

ε < ‖Anzn − Azn‖X = ‖(An − A)zn‖X
≤ ‖(An − A)(zn − z)‖X + ‖(An − A)z‖X
≤ sup

k
‖Ak − A‖L(X) ‖zn − z‖X + ‖(An − A)z‖X .

From the Banach-Steinhaus theorem we obtain that supk ‖Ak − A‖L(X)
is finite. Thus, since An → A strongly and since ‖zn − z‖X → 0 as n→∞,
the right-hand side converges to zero as n → ∞. This is a contradiction.
Hence, since T ∈ K(X) was arbitrary,

‖AnT − AT‖L(X) → 0, for all T ∈ K(X).

"⇐" Assume that ‖AnT − AT‖L(X) → 0 as n → ∞ and let 0 6= x ∈
X. The Hahn-Banach theorem, see [2], allows us to choose such a linear
functional f ∈ X∗ that ‖f‖X∗ = 1 and f(x) = ‖x‖X .

Let us consider the operator

Kxy := f(y)x, where y ∈ X.

Since x is fixed and the range of f is R, the operator Kx has rank one, i.e.
dim(KxX) = 1, hence the operator Kx is compact. Furthermore we have

‖Kx‖L(X) = sup
y∈X
‖f(y)x‖X = ‖f‖X∗ ‖x‖X = ‖x‖X .

Since

KAnx(y)−KAx(y) = f(y)Anx− f(y)Ax = (An − A)(f(y)x)
= (An − A)Kx(y),

we get that

‖Anx− Ax‖X = ‖KAnx−Ax‖L(X) = ‖KAnx −KAx‖L(X)

= ‖AnKx − AKx‖L(X) ,

which converges to zero as n → ∞ by our assumption. Hereby An → A
strongly.
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2.4 Fredholm-Riesz theory
In this section we introduce Fredholm operators and some of their basic
properties. This section is based on the book by [3] Caradus, Pfaffenberger
and Yood with the exception being the proof of Theorem 2.4.3., which follows
[2].

Definition 2.4.1 (Fredholm operator). A bounded linear operator A ∈
L(X) is called Fredholm if its kernel kerA and cokernel cokerA := X/ ImA
are finite-dimensional.

Theorem 2.4.2. If A ∈ L(X) is a Fredholm operator, then the image ImA
of A is closed.

Proof. Assume that A ∈ L(X) is Fredholm. Thus the cokerA is finite-
dimensional and X is the direct sum of the image of A and a closed finite-
dimensional linear subspace M ⊂ X, and we write X = ImA ⊕M . Define
an operator T0 : X/ kerA×M → X as

T0(x+ kerA,m) = Ax+m,

for x ∈ X and m ∈ M . The mapping T0 has full range, ImT0 = X, and is
one-to-one since if T0(x+ kerA,m) = Ax+m = 0 then m = 0 and Ax = 0,
that is x ∈ kerA. Thus the operator T0 is a continuous bijection. This
again implies that T0 has a continuous inverse T−1

0 , hence there exists such
a constant C > 0 that

‖Ax+ n‖X ≥ C ‖(x+ kerA, n)‖X/ kerA×M = C(‖x‖X/ kerA + ‖n‖X).

Choosing here n = 0 yields us

‖Ax‖X ≥ C ‖x‖X/ kerA .

Hence, also the mapping T : X/ kerA→ X,

T (x+ kerA) := Ax,

has a continuous inverse. Since X/ kerA is a Banach space, thus the image
of T , ImT = ImA is closed.

The following classical result from [2] is needed for the proof of the char-
acterization of a Fredholm operator as being invertible modulo the compact
operators.

13



Theorem 2.4.3. The operator I+K ∈ L(X) is a Fredholm operator, when-
ever K ∈ K(X) is compact.
Proof. Suppose K ∈ K(X) is compact.

First we prove that the kernel ker(I + K) has finite dimension. We ar-
gue by a counterargument. Suppose that the operator I + K has infinite-
dimensional kernel, that is dim(ker(I + K)) = ∞. By Riesz’s lemma there
exists a sequence of normalized vectors (en)n∈N ⊂ ker(I+K) with ‖en‖X = 1
for all n ∈ N and

‖en − em‖X ≥
1
2 ,

whenever n 6= m.
For the vectors en ∈ ker(I +K), we have

(I +K)en = 0⇔ en = −Ken for all n ∈ N.

The operator K ∈ K(X) is compact, thus the sequence (−Ken)n∈N has a
converging subsequence and hence also the sequence (en)n∈N has a converging
subsequence. This is a contradiction. Thus the dimension of ker(I + K) is
finite.

We still need to show that the image Im(I+K) is closed in order to prove
the second claim. Assume y ∈ Im(I +K) is arbitrary. We want to prove
that y ∈ Im(I+K). By our assumption there exists a sequence (xn)n∈N ⊂ X
such that

yn = (I +K)xn → y, as n→∞.
From the previous part of the proof we know that ker(I+K) is finite dimen-
sional and hence closed. Thus we can find a zn ∈ ker(I + K) for any n ∈ N
such that

dist
(
xn, ker(I +K)

)
= ‖xn − zn‖X .

Additionally, since zn ∈ ker(I +K) we have

(I +K)(xn − zn) = (I +K)xn − (I +K)zn︸ ︷︷ ︸
=0

= yn → y,

as n→∞.
Next we want to show that the set {xn − zn : n ∈ N} is bounded. For

this we make a counterassumption that there exists such a subsequence that∥∥∥xnj
− znj

∥∥∥
X
→∞, as n→∞.

We normalize these vector by setting vn = xn−zn

‖xn−zn‖X
∈ BX for n ∈ N. Then

vnj
+Kvnj

= 1∥∥∥xnj
− znj

∥∥∥
X

(I +K)(xnj
− znj

)→ 0,

14



as j → ∞ since the sequence (I + K)(xnj
− znj

) is bounded. Since K is
compact, also −K is compact and there exists a subsequence (vnjk

) such
that −Kvnjk

→ z as k →∞. Since as we showed before vnj
+Kvnj

→ 0 we
have

vnjk
= vnjk

+Kvnjk
−Kvnjk

→ z, as k →∞.

From continuity it follows that Kvnjk
→ Kz, thus Kz = −z. Hence

(I +K)z = z − z = 0

and z ∈ ker(I +K). On the other hand zn ∈ ker(I +K) and

‖xn − zn‖X = dist
(
xn, ker(I +K)

)
,

for n ∈ N. Thus

dist
(
vn, ker(I +K)

)
= dist

( xn − zn
‖xn − zn‖X

, ker(I +K)
)

= 1
‖xn − zn‖X

dist
(
xn, ker(I +K)

)
= 1.

This means that ‖vn − z‖ ≥ 1 for all n ∈ N, which is a contradiction since
we previously showed that vnj

→ z as j → ∞. Hence we conclude that
{xn − zn : n ∈ N} is bounded that is

‖xn − zn‖X ≤ C <∞,

for all n ∈ N.
Since K is compact, the closure {Kv : ‖v‖X ≤ C} is a compact subset

of X. Thus there exists a converging subsequence

K(xnj
− znj

)→ u ∈ X, as j →∞.

Hence

xnj
− znj

= xnj
− znj

+K(xnj
− znj

)−K(xnj
− znj

)
= (I +K)(xnj

− znj
)−K(xnj

− znj
)→ y − u,

as j →∞. Thus from continuity we obtain

(I +K)(y − u) = lim
j→∞

(I +K)(xnj
− znj

) = lim
j→∞

ynj
= y.

Hence y = (I +K)(y − u) ∈ Im(I +K) and Im(I +K) is closed.
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To prove that I+K has finite-dimensional cokernel, consider the mapping
Q : X → X/ Im(I + K), where Qx = x + Im(I + K), for x ∈ X. Notice,
that since Im(I +K) is closed, the quotient space X/ Im(I +K) is a Banach
space. By the way Q is defined we have 0 = Q(I +K) = Q+QK, hence by
Theorem 2.3.3. the operator Q = −QK is compact as a composite operator
of a bounded linear operator and a compact operator. Pick an x+Im(I+K) ∈
Bx/ Im(I+K) in the closed unit ball of X/ Im(I +K), meaning that

‖x+ Im(I +K)‖X/ Im(I+K) = dist(x, Im(I +K)) ≤ 1.

Hence there exists such an m ∈ Im(I+K) that ‖x−m‖X < 2 and addition-
ally Q(x−m) = x+ Im(I +K). This implies that

1
2BX/ Im(I+K) ⊂ QBX .

SinceQ is compact, by definitionQBX is a compact set, and as a closed subset
of a compact set also 1

2BX/ Im(I+K) is compact. Additionally, since the map
x 7→ 1

2x is a homeomorphism, the closed unit ball BX/ Im(I+K) is compact. By
Corollary 2.3.5, closed unit balls of infinite-dimensional Banach spaces are
not compact, hence the cokernel cokerX/ Im(I +K) has finite dimension.

We have proved that I + K has finite-dimensional kernel and cokernel,
hence by definition I +K is Fredholm.

The following classical result about Fredholm operators is often called
Atkinson’s theorem.

Theorem 2.4.4. The operator A ∈ L(X) is Fredholm if and only if there
exists an operator B ∈ L(X) such thatBA = I +K1

AB = I +K2,

where K1, K2 ∈ K(X) are compact operators.

Proof. "⇒" Let A ∈ L(X) be a Fredholm operator. Thus there exists sub-
spaces X1 and X2 such that we can write X as

X = kerA⊕X1 = ImA⊕X2.

The subspaces X1 and X2 are also closed since we can write X1 as X1 =
T (X/ kerA) where T : X/ kerA → X1 is the induced map from the Banach
space X/ kerA to X1 which is defined by T (x+ kerA) := x. Additionally X2
is a finite dimensional subspace of a Banach space and hence closed.
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Denote the operator A′ := A|X1 , that is, A restricted to X1. The operator
A′ is one-to-one and thus invertible onto the range ImA. Define the operator
B : X → X as follows: B = (A′)−1 in ImA and B = 0 in X2. Now B is
continuous by the open mapping theorem and hence in L(X).

To choose the compact operators K1 and K2, consider the maps BA and
AB.

BA : X A−→ ImA
B−→ X1 and

AB : X B−→ X1
B−→ ImA.

Hence by choosing K1 =

−I, in kerA
0, in X1

and K2 =

0, in ImA

−I, in X2
gives us

the desired result: BA = I +K1

AB = I +K2.

The operators K1 and K2 have their values in finite dimensional subspaces
of X, hence they have finite rank and thus are compact.

"⇐" Assume there exists such a B ∈ L(X) and K1, K2 ∈ K(X) thatBA = I +K1

AB = I +K2.

Thus we have

ker(I +K1) = kerAB = {x ∈ X : BAx = 0}
⊃ {x ∈ X : Ax = 0} = kerA.

By lemma 2.4.3 the operator I + K1 is Fredholm and hence also kerA has
finite dimension.

Additionally we have

Im(I +K2) = ImAB = {ABx : x ∈ X}
⊂ {Ax : x ∈ X} = ImA.

Again by Lemma 2.4.3 the operator I+K2 is Fredholm and hence has finite-
dimensional cokernel coker(I +K2) = X/ Im(I +K2). Hence also cokerA =
X/ ImA has finite dimension.

The operator A has finite-dimensional kernel and cokernel, so by defini-
tion it is a Fredholm operator.
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The above theorem can also be formulated differently, that is, A ∈ L(X)
is a Fredholm operator if and only if A is invertible in L(X)/K(X). Here
the quotient space L(X)/K(X) is called the Calkin algebra of X. In practice
this means that Fredholm operators are precisely the operators which are
invertible modulo the compact operators. We note here that Theorem 2.4.4.
holds also for operators A : X → Y with a similar proof.
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Chapter 3

Approximate projections and
limit operators

3.1 Band dominated operators
We will concentrate on the setting of the sequence space lp(ZN , X), where
N ∈ N, X is a Banach space and 1 < p < ∞. A vector-valued sequence
x = (xi) : ZN −→ X belongs to lp(ZN , X) if the norm

‖x‖p := (
∑
i∈ZN

‖xi‖pX)
1
p <∞.

An easy modification of the scalar-valued argument shows that the space
lp(ZN , X) equipped with the norm ‖x‖p becomes a Banach space.

We will denote E = lp(ZN , X), where 1 < p < ∞ and X is a Banach
space to simplify the definitions. Some of the results and properties in this
chapter hold also for p = 1 or p =∞, but it is not relevant for this thesis.

Example 3.1.1. Let X = C([0, 1]) be the space of continuous functions
from the closed interval [0, 1] to R equipped with the regular sup-norm ‖·‖∞.
Define fn ∈ X as

fn(x) = sin(|n|πx)
|n|

, for n ∈ Z2 \ {0},

where |n| = ∑2
k=1 nk is the sum of the components of n = (n1, n2) ∈ Z2 and

fn ≡ 0, for n = 0.

Now the sequence f = (fn)n∈Z2 belongs to the space E = lp(Z2, X), for p > 2.
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Proof. Let f be as above. Consider the sup-norm ‖fn‖∞ for all n ∈ Z2 \{0}.
We have

‖fn‖∞ = sup
x∈[0,1]

|fn(x)| = sup
x∈[0,1]

|sin(|n|πx)
|n|

|

and since |n| ≥ 1 for all n ∈ Z2 \ {0}, we know that

sup
x∈[0,1]

|sin(|n|πx)
|n|

| = 1
|n|
.

Hence,
‖f‖pp =

∑
n∈Z2

‖fn‖p∞ =
∑

n∈Z2\{0}
‖fn‖p∞ =

∑
n∈Z2\{0}

1
|n|p

.

Now the sum is a bit more tricky to calculate than a normal one-dimensional
p-series, so we will estimate it from above and below by breaking the sum-
mation into rings

Ak = Sk \ Sk−1, for k ≥ 1,

where Sk = {(n1, n2) ∈ Z2 : |n1| ≤ k, |n2| ≤ k} for all k ≥ 0. We have the
properties

∞⋃
k=1

Ak = Z2 \ {0}

and
Ak ∩ Aj = ∅, for all k 6= j.

Thus we obtain
‖f‖pp =

∞∑
k=1

∑
n∈Ak

1
|n|p

.

Next fix k ∈ N. In the ring Ak there are 2(2k+1)+2(2k−1) = 8k points,
and if n = (n1, n2) ∈ Ak then kp ≤ |n|p = (|n1| + |n2|)p ≤ 2pkp. Hence we
can estimate as an upper bound

∑
n∈Ak

1
|n|p
≤ 8k
kp

= 8k1−p

and as a lower bound
∑
n∈Ak

1
|n|p
≥ 8k

(2k)p = 23−pk1−p.
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With these estimates we are almost finished. By using the upper bound
and the lower bound we obtain

23−p
∞∑
k=1

k1−p ≤ ‖f‖pp =
∞∑
k=1

∑
n∈Ak

1
|n|p
≤ 8

∞∑
k=1

k1−p,

where we know that ∑∞k=1 k
1−p = M <∞ if and only if p > 2.

Hence f ∈ E = lp(Z2, X) if and only if p > 2.

We shall define some basic operators in E = lp(ZN , X) which are shift
operators and multiplication operators. These operators form together a
larger class of operators, the band operators. See also [1].
Definition 3.1.2 (Shift operators). In this thesis we will exclusively use the
notation Vk, k ∈ ZN for the shift operators, defined as follows:

If x = (xi) ∈ E, then Vk : E −→ E where

Vkx = Vk(xi) = (xi−k).

Note that the indices are in ZN , that is

i− k = (i1 − k1, ..., iN − kN) for i, k ∈ ZN .

Definition 3.1.3 (Multiplication operators). Let a = (ai) ∈ l∞(ZN ,L(X))
be a bounded sequence of operators ai ∈ L(X) indexed by i ∈ ZN . Define
the multiplication operator aI : E −→ E by

aIx = (aixi) for x = (xi) ∈ E.

Now we can define band operators and band-dominated operators with
the help of the shift and multiplication operators.
Definition 3.1.4. Any finite sum of form∑

k

akVk : E → E, where ak ∈ l∞(ZN ,L(X)) and k ∈ ZN

is called a band operator on E.
That is, for (xi) ∈ E = lp(ZN , X), we have∑

k

akVk(xi) =
∑
k

ak(xi−k) =
∑
k

(a(i)
k xi−k),

where a(i)
k : X → X is the i:th element of the sequence ak = (a(i)

k )i∈ZN .
Moreover, let (An)n∈N be a sequence of band operators on E. The uniform

limit A : E → E, for which ‖A− An‖L(E) → 0 as n → ∞, is called a band-
dominated operator.

We denote the class of band-dominated operators with respect to the
space E as AE.
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3.2 Approximate projections
Definition 3.2.1. Let U ⊂ ZN . We define a natural projection operator
PU : lp(ZN , X) −→ lp(ZN , X) by

(xi) 7→ (PUxi) :=

xi if i ∈ U
0 if i /∈ U.

We also have the complementary projection QU := I − PU .

The most relevant projections for us are the canonical projections where
Un = {−n, ..., n}N for n ∈ N. For simplicity we denote Pn = PUn and
Qn = I − Pn. From these canonical projections we construct the sequence

P = (P1, P2, P3, ...)

which is the necessary tool for the theory of approximate projections, see [1].

Proposition 3.2.2. P is a perfect approximate identity, that is, we have

Pn −→ I strongly on E and P ∗n −→ I∗ strongly on E∗.

Proof. Let P = (Pn)n∈N be as defined above. Now fix x ∈ E = lp(ZN , X).
The property that the tail-sum of all x = (xm)m∈ZN ∈ E approaches 0,∑
|m|≥n ‖xm‖

p
X → 0 as n → ∞, where |m| = max{|mk| : k ∈ ZN}, directly

implies
‖Pnx− Ix‖E = (

∑
m6∈Un

‖xm‖pX)
1
p → 0, as n→∞,

for all x ∈ E. Thus Pn −→ I strongly.
Now fix such an x ∈ E that ‖x‖E ≤ 1. We have

|〈x, P ∗nx∗ − I∗x∗〉| = |〈(Pn − I)x, x∗〉|

Since x = (xk)k∈ZN ∈ E = lp(ZN , X), we have x∗ = (x∗k)k∈ZN ∈ E∗ =
lq(ZN , X∗), where 1

p
+ 1

q
= 1. Thus we can apply Hölder’s inequality as

follows

|〈(Pn − I)x, x∗〉| ≤
∑
|j|≥n+1

|〈xj, x∗j〉|

≤
( ∑
|j|≥n+1

‖xj‖pX

) 1
p
( ∑
|j|≥n+1

∥∥∥x∗j∥∥∥qX∗
) 1

q

→ 0,
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as n→∞. Since x ∈ BE was arbitrary we conclude that

‖(P ∗n − I∗)x∗‖ = sup
‖x‖E≤1

|〈x, P ∗nx∗ − I∗x∗〉| → 0,

as n→∞.
Thus we have proved both Pn −→ I strongly in E and P ∗n −→ I∗ strongly

in E∗.

The following three definitions from [1] are analogies of compactness,
Fredholmness and strong convergence in the setting of the more general P-
theory. Recall that E = lp(ZN , X).

Definition 3.2.3 (P- compactness). Let K ∈ L(E) be a bounded linear
operator on E. K is called P-compact if both ‖KPn −K‖ −→ 0 and
‖PnK −K‖ −→ 0 as n −→∞.

We will denote the space of P-compact operators by K(E,P) and also
define the space L(E,P) to consist of all operators A ∈ L(E) for which AK
and KA are P-compact when K ∈ K(E,P).

By definition, this means that PnKA → KA, KAPn → KA, PnAK →
AK and AKPn → AK as n→∞ for every K ∈ K(E,P).

Definition 3.2.4 (P- strong convergence). Let (An) ⊂ L(E) be a sequence
of bounded operators on E. The sequence (An) converges P-strongly to
A ∈ L(E) if for any K ∈ K(E,P) we have both ‖K(An − A)‖L(E) → 0
and ‖(An − A)K‖L(E) → 0 as n → ∞. In this case we will denote A =
P- limn−→∞An.

The following lemma from [1] is useful for checking whether an operator
belongs to L(E,P) or not.

Lemma 3.2.5. Let A ∈ L(E). Then A belongs to L(E,P) if and only if,

‖PmAQn‖L(E) → 0 and ‖QnAPm‖L(E) → 0 as n→∞,

for every m ∈ N.

Proof. "⇒" Let A ∈ L(E,P). Since Pm ∈ K(E,P) for all m ∈ N we know
that PmA,APm ∈ K(E,P), for all m ∈ N. Fix m ∈ N. By the definition of
P-compactness both

‖PmAQn‖L(E) = ‖PmA− PmAPn‖L(E) → 0,
‖QnAPm‖L(E) = ‖PnAPm − APm‖L(E) → 0,
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as n→∞.
"⇐" Suppose ‖PmAQn‖L(E) → 0 and ‖QnAPm‖L(E) → 0 as n → ∞, for

every m ∈ N. Let K ∈ K(E,P) be a P-compact operator. Given ε > 0 first
choose such a k ∈ N that

‖K − PkK‖L(E) <
ε

2 ‖A‖L(E)
,

and then choose such an M ∈ N that

‖QnAPk‖L(E) <
ε

2 ‖K‖L(E)
, for all n ≥M.

It follows that

‖AK − PnAK‖L(E) = ‖QnAK‖L(E) = ‖QnAK −QnAPkK +QnAPkK‖L(E)

≤ ‖QnA‖L(E) ‖K − PkK‖L(E) + ‖QnAPk‖L(E) ‖K‖L(E)

<
ε ‖QnA‖L(E)

2 ‖A‖L(E)
+
ε ‖K‖L(E)

2 ‖K‖L(E)

≤
ε ‖A‖L(E)

2 ‖A‖L(E)
+
ε ‖K‖L(E)

2 ‖K‖L(E)
= ε.

For KA, let us again fix ε > 0. Now choose as above such k,M ∈ N that

‖K −KPk‖L(E) <
ε

2 ‖A‖L(E)

and

‖PkAQn‖L(E) <
ε

2 ‖K‖L(E)
, for all n ≥M.

Then similarly as before

‖KA− PnKA‖L(E) = ‖KAQn‖L(E) = ‖KAQn −KPkAQn +KPkAQn‖L(E)

≤ ‖AQn‖L(E) ‖K −KPk‖L(E) + ‖PkAQn‖L(E) ‖K‖L(E)

<
ε ‖AQn‖L(E)

2 ‖A‖L(E)
+
ε ‖K‖L(E)

2 ‖K‖L(E)

≤
ε ‖A‖L(E)

2 ‖A‖L(E)
+
ε ‖K‖L(E)

2 ‖K‖L(E)
= ε.

The cases AKPn and KAPn are analogous.
We conclude that AK,KA ∈ K(E,P) and hence A ∈ L(E,P).
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The following theorem, following along [1], tells us about the structure
and relations of the spaces L(E,P) and K(E,P). In particular, we verify that
L(E,P) is a Banach algebra and that K(E,P) is a closed ideal of L(E,P),
analogously to the classical setting of continuous and compact operators.

Theorem 3.2.6. Let (An)n∈N be a bounded sequence of operators in L(E,P)
that converges P-strongly to A ∈ L(E). Then

(a) A ∈ L(E,P).

(b) if A ∈ L(E,P) is invertible, then A−1 ∈ L(E,P).

(c) L(E,P) is an inverse-closed closed subalgebra of L(E), and in particular
L(E,P) is a unital Banach algebra. Moreover, K(E,P) is a closed ideal
of L(E,P).

Proof. (a) Let (An)n∈N be as above. Since An → A P-strongly, also KAn and
AnK converge P-strongly to KA and AK respectively for all K ∈ K(E,P):

Fix K0, K ∈ K(E,P). Then we have

‖K0(KAn −KA)‖L(E) ≤ ‖K0‖L(E) ‖KAn −KA‖L(E) → 0, as n→∞ and
‖(KAn −KA)K0‖L(E) ≤ ‖KAn −KA‖L(E) ‖K0‖L(E) , as n→∞.

Similarly the case where AnK → AK converges P-strongly.

(b) Let A ∈ L(E,P) and let A be invertible in L(E). Thus A−1 ∈ L(E).
Fix K ∈ K(E,P). Now∥∥∥A−1KPn − A−1K

∥∥∥
L(E)

=
∥∥∥(A−1)2AKPn − (A−1)2AK

∥∥∥
L(E)

≤
∥∥∥(A−1)2

∥∥∥
L(E)
‖AKPn − AK‖L(E) → 0.

Thus A−1K is P-compact for all K ∈ K(E,P). Similarly∥∥∥KA−1Pn −KA−1
∥∥∥
L(E)

=
∥∥∥KA(A−1)2Pn −KA(A−1)2

∥∥∥
L(E)

≤
∥∥∥(A−1)2

∥∥∥
L(E)
‖AKPn − AK‖L(E) → 0.

Hence KA−1 is P-compact for all K ∈ K(E,P). The cases with Pn and K
on left-hand side are analogous. This shows that A−1 ∈ L(E,P). Hence
L(E,P) is inverse-closed in L(E).

(c) To prove that L(E,P) is closed in L(E) it suffices to prove that
K(E,P) is closed. To prove this let (Km)m∈N be a sequence of P-compact
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operators which converge to K in operator norm and fix ε > 0. Remember
that we have Qn = I − Pn. To show K ∈ K(E,P), choose such r,N ∈ N
that ‖K −Kr‖L(E) supn ‖Qn‖L(E) <

ε
2 and ‖KrQn‖L(E) <

ε
2 for n ≥ N . Now

we have

‖K −KPn‖L(E) = ‖KQn‖L(E) = ‖KQn −KrQn +KrQn‖L(E)

≤ ‖KQn −KrQn‖L(E) + ‖KrQn‖L(E)

≤ ‖K −Kr‖L(E) sup
n
‖Qn‖L(E) + ‖KrQn‖L(E) < ε.

Similarly ‖K − PnK‖L(E) as n → ∞. Thus we conclude that K(E,P) is
closed. For a sequence (An)n∈N of operators in L(E,P), which converges
to A, the sequences (KAn)n∈N and (AnK)n∈N are sequences of P-compact
operators which converge to KA and AK respectively. Thus by what has
been shown above we conclude that also L(E,P) is closed.

To show that L(E,P) is a subalgebra of L(E) we need only simple calcu-
lations. Let A,B ∈ L(E,P). This means that AK,KA,BK,KB ∈ K(E,P)
and thus

‖(A+B)KPn − (A+B)K‖L(E) = ‖AKPn +BKPn − AK +BK‖L(E)

≤ ‖AKPn − AK‖L(E) + ‖BKPn −BK‖L(E) → 0.

Next fix m ∈ N. Now for any r ∈ N holds

‖PmABQn‖L(E) ≤ ‖PmAPrBQn‖L(E) + ‖PmAQrBQn‖L(E)

≤ C ‖PrBQn‖L(E) +D ‖PmAQr‖L(E) ,

with C and D being constants. Now we can choose such an r to make the
second term as small as desired and choose n0 large enough that the first
term is as small as desired for all n ≥ n0. The case of QnABPm is analogous.
Thus by Lemma 3.2.5 we conclude that AB ∈ L(E,P). Lastly for λ ∈ R

‖λAKPn − λAK‖L(E) = |λ| ‖AKPn − AK‖L(E) → 0.

The cases with Pn and K on left-hand side are analogous. Hence L(E,P) is
a subalgebra of L(E).

All this combined with the fact that L(E) is a Banach space imply that
L(E,P) is a Banach algebra. Additionally, by the way L(E,P) is defined,
for any S, T ∈ L(E,P) and any K ∈ K(E,P) we have SK ∈ K(E,P) and
KT ∈ K(E,P), thus making K(E,P) a closed ideal of L(E,P).

An example of a non-trivial operator in L(E,P) is the shift operator Vk,
k ∈ ZN . This will be crucial for the properties of limit operators which will
be defined in the next section.
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Example 3.2.7. The shift operators, Vk ∈ L(E) belongs to L(E,P), for all
k ∈ ZN .

Proof. Let us fix x = (xi)i∈ZN ∈ E and m ∈ N. Recall Un = {−n, ..., n}N
from before. We use the notation (xi)i∈Un for

(xi)i∈Un =

xi, for i ∈ Un0, otherwise.

Now

PmVkQnx = (PmVk − PmVkPn)x = PmVk(xi)i∈ZN − PmVk(xi)i∈Un

= Pm(xi−k)i∈ZN − Pm(xi−k)i∈Un = (xi−k)i∈Um − (xi−k)i∈Un∩Um

= (xi−k)i∈Um\Un = 0, for n ≥ m.

Similarly for QnVkPm. Thus

‖PmVkQn‖L(E) → 0 and ‖QnVkPm‖L(E) → 0 as n→∞.

Hence according to Lemma 3.2.5. we get that Vk ∈ L(E,P) for all k ∈
ZN .

For the next theorem we will introduce a new class of functions on RN

called

BUC(RN) := {ϕ : RN → C | ϕ is bounded and uniformly continuous}

and a new "hat"-notation, where ϕ̂ : ZN → C is the restriction to ZN of the
function ϕ from RN to C and ϕt,r(x) = ϕ(t(x− r)) for x, r ∈ RN and t > 0.
We omit the subscript r for r = 0 so that ϕt,0(x) = ϕt(x). Hence ϕ̂t,r and
ϕ̂t represent the restrictions to ZN of the functions ϕt,r and ϕt respectively.
Note, that here ϕ̂t,rI is the multiplication operator (xi) 7→ (ϕ̂t,r(i)xi) on E
and similarly for ϕ̂tI.

Theorem 3.2.8. Let A ∈ L(E), where E = lp(ZN , X). The following
conditions are equivalent:

(a) A is band-dominated

(b) For every ϕ ∈ BUC(RN),

lim
t→0

sup
r∈RN

‖ϕ̂t,rA− Aϕ̂t,rI‖L(E) = 0
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(c) For every ϕ ∈ BUC(RN),

lim
t→0
‖ϕ̂tA− Aϕ̂tI‖L(E) = 0

Proof. The proof is skipped here, but can be found in the book [1] (Theorem
2.1.6. page 36) by Rabinovich, Roch and Silbermann.

Recall the notation for the space of band-dominated operators AE, Def-
inition 2.1.4. The following theorem from [1] gives us that the inverses of
band-dominated operators are also band-dominated operators.
Theorem 3.2.9. The algebra AE is inverse closed in L(E).
Proof. LetA ∈ AE be invertible in L(E). Define ϕt = ϕt,0 for ϕ ∈ BUC(RN).
Thus it holds that∥∥∥ϕ̂tA−1 − A−1ϕ̂tI

∥∥∥
L(E)

=
∥∥∥A−1Aϕ̂tA

−1 − A−1ϕ̂tAA
−1
∥∥∥
L(E)

≤
∥∥∥A−1

∥∥∥
L(E)
‖Aϕ̂tI − ϕ̂tA‖L(E)

∥∥∥A−1
∥∥∥
L(E)

=
∥∥∥A−1

∥∥∥2

L(E)
‖ϕ̂tA− Aϕ̂tI‖L(E) → 0, as t→ 0.

Hence by theorem 3.2.8 (c) also A−1 ∈ AE is band-dominated. [1]

Recall that K(E,P) ⊂ L(E,P) is a closed ideal which makes the quotient
space L(E,P)/K(E,P) into a Banach quotient algebra.
Definition 3.2.10 (P- Fredholmness). An operator A ∈ L(E,P) is called a
P- Fredholm operator, if the coset A+K(E,P) is invertible in the quotient
algebra L(E,P)/K(E,P).

The above definition means that A is P-Fredholm if and only if there
exist operators C,D ∈ L(E,P) and K1, K2 ∈ K(E,P) such that

AC = I +K1 and DA = I +K2.

3.3 Limit operators
For it to make sense to define the concept of a limit operator, we need to
define a certain class of sequences from [1]. Let h = (h(n))n∈N ⊂ ZN be
such a sequence that |h(n)| tends to infinity as n tends to infinity. Here we
consider the norm in ZN as the maximum norm, |m| = max1≤n≤N |mn|, for
m = (m1, ...,mN) ∈ ZN . For such sequences h := (h(n))n∈N we define the
class

H := {h = (h(n))n∈N ⊂ ZN : |h(n)| → ∞, as n→∞}.
For P-strong convergence see Definition 3.2.4.
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Definition 3.3.1 (Limit operators). Let h ∈ H and A ∈ L(E,P). If the
P-strong limit

Ah = P- lim
n−→∞

V−h(n)AVh(n)

exists, we define Ah ∈ L(E) to be the limit operator of A with respect to the
sequence h. Here Vh(n) is the shift operator for h(n) ∈ ZN from Definition
3.1.2. that is, (xi) 7→

Vh(n)
(xi−h(n)).

We also define the operator spectrum σop(A) of A as

σop(A) = {Ah : h ∈ H and the P-strong limit
Ah =: P- lim

n−→∞
V−h(n)AVh(n) exists}.

The following theorem from [1] introduces some elementary properties of
limit operators.

Theorem 3.3.2. Let h ∈ H, and let A,B ∈ L(E,P) be operators for which
the limit operators Ah and Bh exist. Then:

(a) ‖Ah‖L(E) ≤ C ‖A‖L(E), where C is independent of h and A.

(b) the limit operators (A + B)h and (AB)h exist and we get the algebraic
identities (A+B)h = Ah +Bh and (AB)h = AhBh.

(c) if A is invertible, then Ah is invertible, the limit operator (A−1)h exists
and (A−1)h = (Ah)−1.

(d) the limit operator (A∗)h with respect to P∗ = (P ∗n)n∈N on E∗ exists and
(A∗)h = (Ah)∗.

Proof. (a) Let Al, Ar : K(E,P) → K(E,P) represent left (l) and right (r)
multiplication with the operator A, that is Al(S) = AS and Ar(S) = SA,
for S ∈ K(E,P). We want to prove first that

‖Ar‖L(K(E,P)) ≤ ‖A‖L(E) ≤ C ‖Ar‖L(K(E,P)) ,

‖Al‖L(K(E,P)) ≤ ‖A‖L(E) ≤ C3 ‖Al‖L(K(E,P))

where C = supn ‖Pn‖L(E). The first part of these inequalities are trivial since

‖Ar‖L(K(E,P)) = sup
‖K‖L(E)≤1

‖KA‖L(E) ≤ ‖A‖L(E)

and identically for Al. For the second inequality for Ar let ε > 0. Choose
such an x0 ∈ E with ‖x0‖ = 1 that

‖Ax0‖E ≥ ‖A‖L(E) − ε.
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This is possible, since by the definition of supremum for any ε > 0 we can
always find such a y0 ∈ BE that ‖Ay0‖E ≥ supy∈BE

‖Ay‖E − ε and by
normalizing with y1 = y0

‖y0‖E
we attain ‖y1‖E = 1 and

‖Ay1‖E = 1
‖y0‖E

‖Ay0‖E ≥ ‖Ay0‖E ≥ sup
y∈BE

‖Ay‖E − ε.

Next, by a similar argument let Pn ∈ P be such that

‖PnAx0‖E ≥ ‖Ax0‖E − ε.

Since P ⊂ K(E,P) we have that

‖Ar‖L(K(E,P)) = sup
K∈K(E,P)/{0}

‖KA‖L(E)

‖K‖L(E)
≥
‖PnA‖L(E)

‖Pn‖L(E)
≥
‖PnA‖L(E)

supn ‖Pn‖L(E)

≥ ‖PnAx0‖E
supn ‖Pn‖L(E)

≥ 1
supn ‖Pn‖L(E)

(‖A‖L(E) − 2ε).

Since ε > 0 was arbitrary obtain the desired result

‖A‖L(E) ≤ C ‖Ar‖L(K(E,P)) ,

where C = supn ‖Pn‖L(E)
For the second inequality in the Al case, let ε > 0. As shown before there

exists such an m that

‖PmA‖L(E) =
‖PmA‖L(E)

‖Pm‖L(E)
≥ 1
C
‖A‖L(E) − ε.

Lemma 3.2.5. allows us to choose such an n that

‖PmAQn‖L(E) = ‖PmA− PmAPn‖L(E) < ε.

Hence now we have that

C2 ‖Al‖L(K(E,P)) ≥ C2‖APn‖L(E)

‖Pn‖L(E)
≥ C2‖APn‖L(E)

C
≥ C ‖APn‖L(E)

≥ ‖PmAPn‖L(E) ≥ ‖PmA‖L(E) − ‖PmAQn‖L(E) ≥
1
C
‖A‖L(E) − 2ε,

where C = supn ‖Pn‖L(E). Thus, since ε > 0 was arbitrary, we have that

‖A‖L(E) ≤ C3 ‖Al‖L(K(E,P)) .
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Hence we have proved the necessary inequalities and as a result we see that
P-strong convergence is essentially equivalent to regular strong convergence
of the left- and right multiplication operators on K(E,P). Thus by applying
the Banach -Steinhaus theorem to a sequence (A(r)

n ) ⊂ L(K(E,P)), for which
A(r)
n → Ar strongly in K(E,P), we obtain

‖Ar‖L(K(E,P)) ≤ lim inf
n→∞

∥∥∥A(r)
n

∥∥∥
L(K(E,P))

and additionally for the sequence (An) ⊂ L(E,P) for which An → A P-
strongly in E as n→∞ we have a similar result

‖A‖L(E) ≤ C ‖Ar‖L(K(E,P)) ≤ lim inf
n→∞

C
∥∥∥A(r)

n

∥∥∥
L(K(E,P))

≤ lim inf
n→∞

C ‖An‖L(E) .

It follows that, since V−h(n)AVh(n) → Ah P-strongly in E we have

‖Ah‖L(E) ≤ lim inf
n→∞

C
∥∥∥V−h(n)AVh(n)

∥∥∥
L(E)

≤ lim inf
n→∞

C
∥∥∥Vh(n)

∥∥∥2

L(E)︸ ︷︷ ︸
=1

‖A‖L(E) = C ‖A‖L(E) ,

where C = supn ‖Pn‖L(E). Thus we have proved that ‖Ah‖L(E) ≤ C ‖A‖L(E)
and that the constant C is independent from h and A. In our case actually
C = 1, but if one uses a more general approximate projection class P , this
might not be the case. However this is not within the scope of this thesis.

(b) Fix Pm ∈ P . Now∥∥∥(V−h(n)(A+B)Vh(n) − (Ah +Bh)
)
Pm
∥∥∥
L(E)

=
∥∥∥(V−h(n)AVh(n) + V−h(n)BVh(n) − (Ah +Bh)

)
Pm
∥∥∥
L(E)

≤
∥∥∥(V−h(n)AVh(n) − Ah)Pm

∥∥∥
L(E)

+
∥∥∥(V−h(n)BVh(n) −Bh)Pm

∥∥∥
L(E)
→ 0,

as n → ∞ for all m ∈ N. The proof where Pm is on the left hand side is
similar. Thus the limit operator (A+B)h = Ah +Bh exists.

Also, since I = V0 = Vh(n)V−h(n) we have∥∥∥(V−h(n)(AB)Vh(n) − (AhBh))Pm
∥∥∥
L(E)

=
∥∥∥(V−h(n)AVh(n)V−h(n)BVh(n) − (AhBh))Pm

∥∥∥
L(E)
→ 0

as n → ∞ for all m ∈ N. The proof where Pm is on the left hand side is
similar. Thus the limit operator (AB)h = AhBh exists.
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(c) Let A ∈ L(E,P) be invertible. Because L(E,P) is inverse closed,
also A−1 ∈ L(E,P). We know from Example 3.2.7 that Vh(n) ∈ L(E,P) for
all n ∈ N and by Theorem 3.2.6 (c) the product of two operators in L(E,P)
is also in L(E,P) since L(E,P) is a subalgebra. Thus V−h(n)A

−1Vh(n) ∈
L(E,P), for all n ∈ N. Additionally

(V−h(n)AVh(n))−1 = V −1
h(n)A

−1V −1
−h(n) = V−h(n)A

−1Vh(n),

for all n ∈ N. Theorem 3.2.6.(a) states that P-strong limits of sequences of
operators in L(E,P) are in L(E,P), so that A−1

h ∈ L(E,P) exists and

A−1
h = (A−1)h.

(d) Suppose An → A P-strongly. Let K∗ ∈ K(E∗,P∗), x ∈ E and
x∗ ∈ E∗. Now,∥∥∥K∗(V−h(n)AVh(n) − Ah)∗

∥∥∥
E∗

= sup
‖x‖E≤1

|〈x,K∗(V ∗h(n)A
∗V ∗−h(n) − (Ah)∗)x∗〉|

= sup
‖x‖E≤1

|〈Kx, V ∗h(n)A
∗V ∗−h(n)x

∗〉 − 〈Kx, (Ah)∗x∗〉|

= sup
‖x‖E≤1

|〈V−h(n)AVh(n)Kx, x
∗〉 − 〈AhKx, x∗〉|

= sup
‖x‖E≤1

|〈(V−h(n)AVh(n) − Ah)Kx, x∗〉 → 0,

since V−h(n)AVh(n) → Ah P-strongly as n→∞.
Furthermore, for any n ∈ N, we have

(V−h(n)AVh(n))∗ = V ∗h(n)A
∗V ∗−h(n) = V−h(n)A

∗Vh(n).

This is because the dual space of E = lp(ZN , X) is E∗ = lq(ZN , X∗), with q
satisfying 1

p
+ 1

q
= 1 for 1 < p < ∞. Hence we can find the adjoint of the

shift operator Vh(n) = (xi−h(n))i∈ZN by operating on a linear functional, that
is

〈Vh(n)x, x
∗〉 =

∑
i∈ZN

x∗i (xi−h(n)) =
∑
i∈ZN

x∗i+h(n)(xi) = 〈x, V ∗−h(n)x
∗〉.

From this we can solve that indeed V ∗h(n) = V−h(n) in the dual space E∗.
Hence combining these result we conclude that the limit operator (A∗)h

exists and furthermore that (A∗)h = (Ah)∗.

Next we will introduce a concept of richness of an operator, regarding the
operator spectrum and how plentiful it is. We equate the notion of a rich
operator with the notion an operator with rich operator spectrum.
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Definition 3.3.3 (Richness). Let A ∈ L(E,P) be an operator. The op-
erator A is said to have a rich operator spectrum, if for every sequence
h ∈ H there exists a subsequence g ⊂ h for which the limit operator
Ag = P- limn−→∞ V−g(n)AVg(n) with respect to the subsequence g exists.

We denote the class of rich operators with a dollar sign $ superscript,
for example L$(E,P) := {A ∈ L(E,P) : A is rich} and A$

E := {A ∈ AE :
A is rich}.

The most trivial examples of rich operators are the identity operator I
and the shift operator Vk, since for any h ∈ H we have V−h(m)IVh(m) = I and
V−h(m)VkVh(m) = V−h(m)+k+h(m) = Vk.

The following lemma from [1] will be useful for proving our main result
and it shows that the P-compact operators form a closed ideal in L$(E,P).

Lemma 3.3.4. Let K ∈ K(E,P) be a P-compact operator and h ∈ H.
Then Kh is the zero-operator.

Proof. Fix Pm ∈ P . Consider∥∥∥V−h(k)KVh(k)Pm
∥∥∥
L(E)

=
∥∥∥V−h(k)K(Pn + I − Pn)Vh(k)Pm

∥∥∥
L(E)

≤
∥∥∥V−h(k)KPnVh(k)Pm

∥∥∥
L(E)

+
∥∥∥V−h(k)KQnVh(k)Pm

∥∥∥
L(E)

≤ C
∥∥∥PnVh(k)Pm

∥∥∥
L(E)

+ C ‖KQn‖L(E) ,

for some constant C. Given any ε > 0, choose such n, k0 ∈ N that
‖KQn‖L(E) <

ε
2C and

∥∥∥PnVh(k)Pm
∥∥∥
L(E)

< ε
2C for k ≥ k0.

Thus, ∥∥∥V−h(k)KVh(k)Pm
∥∥∥
L(E)

< 2C ε

2C = ε

and Kh is the zero-operator.

Since Kh = 0 for any h ∈ H, clearly Kg = 0 for all g ⊂ h, thus K(E,P) ⊂
L$(E,P). Additionally, the fact that K(E,P) is a closed ideal of L(E,P)
implies that K(E,P) is indeed a closed ideal of L$(E,P).
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The goal of this thesis is to prove the following fundamental character-
ization of P-Fredholmness for rich band-dominated operators A on E =
lp(ZN , X). According to [8] this result was first proven by B.V. Lange and
V.S. Rabinovich for 1 < p <∞. The condition that the inverses

{A−1
h : h ∈ H and Ah exists}

are uniformly bounded was removed quite recently by Lindner and Seidel,
see [6], however this stronger result is outside of the scope of this thesis. The
rest of this thesis is dedicated to our main theorem and to the actual proof
of it. From now on we follow along the lines of the proof presented in [1].

Theorem 3.3.5. Let A be a rich band-dominated operator. Then A is P-
Fredholm if and only if all limit operators Ah of A are invertible and the
inverses {A−1

h : h ∈ H} are uniformly bounded, meaning that there exists
C <∞ such that ∥∥∥A−1

h

∥∥∥
L(E)

< C,

for all h ∈ H such that Ah exists.

Proof. We first prove the easier part of the theorem. "⇒"
Let A ∈ L(E,P) be a P-Fredholm operator, that is there exists operators

D ∈ L(E,P) and T1, T2 ∈ K(E,P) such that DA = I+T1 and AD = I+T2.
If h ∈ H is a sequence such that the limit operator Ah exists, then for all
K ∈ K(E,P) holds

K = V−h(n)IVh(n)K = V−h(n)(DA− T1)Vh(n)K

= V−h(n)DVh(n)V−h(n)AVh(n)K − V−h(n)T1Vh(n)K

where we have the estimate
∥∥∥V−h(n)DVh(n)

∥∥∥
L(E)

≤ ‖D‖L(E) =: C indepen-
dently of the sequence h ∈ H, so that

‖K‖L(E) ≤ C
∥∥∥V−h(n)AVh(n)K

∥∥∥
L(E)

+
∥∥∥V−h(n)T1Vh(n)K

∥∥∥
L(E)

.

As n tends to infinity, V−h(n)AVh(n) → Ah in P-limit and by lemma 3.3.4,
since T1 is a P-compact operator, we know that V−h(n)T1Vh(n) tends to the
zero-operator. Hence

‖K‖L(E) ≤ C ‖AhK‖L(E) .

Similarly for A∗ ∈ L(E∗,P∗) we have

K∗ = V−h(n)IVh(n)K
∗ = V−h(n)(D∗A∗ − T ∗2 )Vh(n)K

∗

= V−h(n)D
∗Vh(n)V−h(n)A

∗Vh(n)K
∗ − V−h(n)T

∗
2 Vh(n)K

∗,
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where K∗ ∈ K(E∗,P∗). As before we have

‖K∗‖L(E∗) ≤ C
∥∥∥V−h(n)A

∗Vh(n)K
∗
∥∥∥
L(E∗)

+
∥∥∥V−h(n)T

∗
2 Vh(n)K

∗
∥∥∥
L(E∗)

and by letting n→∞ we obtain

‖K∗‖L(E∗) ≤ C ‖A∗hK∗‖L(E) .

Proposition 3.2.2. states that Pn → I strongly in E, that is ‖Pnx− x‖E →
0 as n → ∞ for all x ∈ E. Additionally Theorem 2.3.7. states that this is
equivalent to ‖PnK −K‖L(E) → 0 as n → ∞ for all K ∈ K(E). Thus
compact operators are also P−compact. The same argument applies in the
dual case K(E∗). Hereby, we obtain the fact that both K(E) ⊆ K(E,P) and
K(E∗) ⊆ K(E∗,P∗) hold. Thus we can replace K with a rank one operator
similarly as in the proof of Theorem 2.3.7 to get the following estimates

‖x‖E ≤ C ‖Ahx‖E and ‖f‖E∗ ≤ C ′ ‖A∗hf‖E∗ ,

for all x ∈ E and f ∈ E∗. This means that

kerAh = {0} = kerA∗h.

Firstly, kerAh = {0} implies that the limit operator Ah is an injection.
Furthermore kerA∗h = {0} means that the set

kerA∗h = {x∗ ∈ E∗ : A∗hx∗ = 0}
= {x∗ ∈ E∗ : 〈x,A∗hx∗〉 = 0, for all x ∈ E}
= {x∗ ∈ E∗ : 〈Ahx, x∗〉 = 0, for all x ∈ E} = {0},

is the singleton containing zero. We claim that Ah is a surjection, that is
ImAh = E. We argue this by counterargument.

Assume that ImAh 6= E. Since Ah is bounded from below, we have that
ImAh is a closed linear subspace of E. Thus there exists an x0 ∈ E such
that x0 6∈ ImAh, x0 6= 0 and dist(x0, ImAh) = 1. Hahn-Banach theorem [2]
states that there exists a linear functional y∗ ∈ E∗ such that

y∗(ImAh) = {0} and
y∗(x0) = 〈x0, y

∗〉 = 1.

Now 〈x0, y
∗〉 6= 0, but 〈x,A∗hy∗〉 = 〈Ahx, y∗〉 = 0 for all x ∈ E. Hence

0 6= y∗ ∈ kerA∗h and the kernel of A∗h would not be a singleton, that is
kerA∗h 6= {0}. This is a contradiction. Hence, ImAh = E and Ah is a
surjection. Thus Ah is a bijection and hence invertible. Finally, we choose
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an arbitrary x ∈ E \ {0}. There exists a y ∈ E, such that x = A−1
h (y) and

applied with ‖x‖E ≤ C ‖Ahx‖E yields us the following estimate,∥∥∥A−1
h (y)

∥∥∥
E
≤ C

∥∥∥Ah(A−1
h y)

∥∥∥
E

= C ‖y‖E .

Taking the supremum over ‖y‖E ≤ 1 we obtain the result∥∥∥A−1
h

∥∥∥
L(E)
≤ C.

To prove the other direction of the equivalency we need to introduce some
more building blocks and lemmas.

We start by fixing two continuous functions ϕ, ψ : R→ [0, 1] such that:

ϕ(x) =


1, for |x| ≤ 1

3
positive, for 1

3 < |x| <
2
3

0, for 2
3 ≤ |x|

and

ψ(x) =


1, for |x| ≤ 3

4
positive, for 3

4 < |x| <
4
5

0, for 4
5 ≤ |x|.

Suppose that the families {ϕ2
α} and {ψ2

α}, where ϕ2
α(x) = ϕα(x)ϕα(x) and

ϕα(x) = ϕ(x− α) for α ∈ Z, form a partition of unity on R, that is∑
α∈Z

ϕ2
α(x) = 1, for all x ∈ R,

and respectively for ψα. This can be forced by choosing continuous functions
f : R → [0, 1] similarly as ϕ above and g : R → [0, 1] similarly as ψ above
and then defining

ϕ(x) :=

√√√√ f(x)∑
α∈Z f(x− α) and ψ(x) :=

√√√√ g(x)∑
α∈Z g(x− α)

hence the families {ϕ2
α} and {ψ2

α} form a partition of unity on R, such that
ϕ(x) ≥ 0 and ψ(x) ≥ 0 while still preserving the properties as originally
defined. Hence let ϕ and ψ be as originally defined in this proof.
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For an arbitrary dimension N ∈ N, x = (x1, ..., xN) ∈ RN we define
ϕ(N)(x) := (ϕ(x1), ..., ϕ(xN)) and ψ(N)(x) := (ψ(x1), ..., ψ(xN)) and analo-
gously ϕ(N)

α (x) := ϕ(N)(x − α) and ψ(N)
α (x) := ψ(N)(x − α). Finally, for

R > 0, define

ϕ
(N)
α,R(x) = ϕ(N)

α

(
x

R

)
= ϕ(N)

(
x

R
− α

)
and respectively

ψ
(N)
α,R(x) = ψ(N)

α

(
x

R

)
= ψ(N)

(
x

R
− α

)
.

For these functions we have the property

ψ
(N)
α,Rϕ

(N)
α,R = ϕ(N)

(
x

R
− α

)
ψ(N)

(
x

R
− α

)
= ϕ

(N)
α,R

for all α ∈ ZN and R > 0, since by substituting yk = xk

R
− α to the previous

equation, we see clearly that ϕ(yk) ≥ 0 only when ψ(yk) = 1 and ϕ(yk) =
0 otherwise. In addition the families {ϕ(N)

α,R}α∈ZN and {ψ(N)
α,R}α∈ZN form a

partition of unity on RN for every fixed R. We also remind of the "hat"-
notation, where ϕ̂(N)

α,R : ZN → [0, 1]N is the restriction to ZN of the function
ϕ

(N)
α,R from RN to [0, 1]N .
The following three lemmas are needed towards the yet unproven direction

of the equivalence. Note that we use the notation ϕ̂(N)
α,RI for the multiplication

operator ϕ̂(N)
α,RI : E → E where ϕ̂(N)

α,RIu = (ϕ̂(N)
α,R(k)uk)k∈ZN , for all u ∈ E and

respectively for ψ̂(N)
α,RI.

Lemma 3.3.6. Let ϕ(N)
α,R and ψ

(N)
α,R be as constructed above. If {Aα} is a

bounded family of operators in L(E,P), then the series∑
α∈ZN

ϕ̂
(N)
α,RAαψ̂

(N)
α,RI

converges P-strongly in L(E) for every fixed R > 0, and∥∥∥∥∥∥
∑
α∈ZN

ϕ̂
(N)
α,RAαψ̂

(N)
α,RI

∥∥∥∥∥∥
L(E)

≤ 2N sup
α∈ZN

‖Aα‖L(E) .

Proof. We start with the dimension N = 1. Fix R > 0 and let α, β ∈ 2Z be
even whole numbers such that α 6= β.
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Fix a ∈ R such that ϕα,R(a) = ϕ( a
R
− α) > 0. Then we have

ϕβ,R(a) = ϕ( a
R
− β) = ϕ( a

R
− α + 2N),

for N ∈ Z \ {0}. Substituting y = a
R
− α and from the definition of ϕ we see

that ϕβ,R(a) = ϕ(y + 2N) must be zero, since the 2N component translates
a outside of the interval −2

3 ≤ y ≤ 2
3 . The proof is similar for ψ in place of

ϕ. Thus we have

supp(ϕα,R) ∩ supp(ϕβ,R) = supp(ψα,R) ∩ supp(ψβ,R) = ∅.

The same fact is true also whenever α, β ∈ 2Z + 1 are odd.
Thus for any u ∈ E = lp(Z,L(X)) we have∥∥∥∥∥∥

∑
α∈2Z

ϕ̂α,RAαψ̂α,Ru

∥∥∥∥∥∥
p

E

=
∑
α∈2Z

∥∥∥ϕ̂α,RAαψ̂α,Ru∥∥∥p
E

≤
∑
α∈2Z

∥∥∥Aαψ̂α,Ru∥∥∥p
E
≤ sup

α∈Z
‖Aα‖pL(E)

∑
α∈2Z

∥∥∥ψ̂α,Ru∥∥∥p
E
≤ sup

α∈Z
‖Aα‖pL(E) ‖u‖

p
E .

Thus the series converges strongly in L(E). Taking the supremum over u ∈ E
with ‖u‖E ≤ 1 yields us∥∥∥∥∥∥

∑
α∈2Z

ϕ̂α,RAαψ̂α,RI

∥∥∥∥∥∥
L(E)

≤ sup
α∈Z
‖Aα‖L(E) .

Similar estimates are also valid whenever α ∈ 2Z+1 is odd, thus we have
the estimate

∥∥∥∥∥∥
∑
α∈Z

ϕ̂α,RAαψ̂α,RI

∥∥∥∥∥∥
L(E)

≤

∥∥∥∥∥∥
∑
α∈2Z

ϕ̂α,RAαψ̂α,RI

∥∥∥∥∥∥
L(E)

+

∥∥∥∥∥∥
∑

α∈2Z+1
ϕ̂α,RAαψ̂α,RI

∥∥∥∥∥∥
L(E)

≤ 2 sup
α∈Z
‖Aα‖L(E) .

In the case of N > 1 we use induction. By writing the points x ∈ RN as
x = (x′, xN) ∈ RN−1 × R we have the properties

ϕ
(N)
α,R(x)I = ϕ

(N−1)
α,R (x′)Iϕ(1)

α,R(xN)I

and
ψ

(N)
α,R(x)I = ψ

(N−1)
α,R (x′)Iψ(1)

α,R(xN)I.
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Thus by defining

BαN
:=

∑
α′∈ZN−1

ϕ
(N−1)
α,R A(α′,αN )ψ

(N−1)
α,R I

we can write∥∥∥∥∥∥
∑
α∈ZN

ϕ
(N)
α,RAαψ

(N)
α,RI

∥∥∥∥∥∥
L(E)

=

∥∥∥∥∥∥
∑
αN∈Z

ϕ
(1)
α,RBαN

ψ
(1)
α,RI

∥∥∥∥∥∥
L(E)

Since BαN
is also in L(E,P) and by using the induction assumption

‖BαN
‖L(E) ≤ 2N−1 sup

α′∈ZN−1

∥∥∥A(α′,αN )

∥∥∥
L(E)
≤ 2N−1 sup

α∈ZN

‖Aα‖L(E) ,

it follows that BαN
is bounded. Applying the result of the one-dimensional

case we get∥∥∥∥∥∥
∑
αN∈Z

ϕ
(1)
α,RBαN

ψ
(1)
α,RI

∥∥∥∥∥∥
L(E)

≤ 2 sup
αN∈Z

‖BαN
‖L(E) ≤ 2N sup

α∈ZN

‖Aα‖L(E) .

Hereby the series∑α∈ZN ϕ
(N)
α,RAαψ

(N)
α,RI converges strongly in L(E) and defines

a bounded linear operator on E.
Finally fixing m ∈ N, for any α ∈ ZN large enough, we have Pmϕ̂(N)

α,RI =
0 = ψ̂

(N)
α,RPm, thus Pmϕ̂(N)

α,RAαψ̂
(N)
α,RI and ϕ̂

(N)
α,RAαψ̂

(N)
α,RPm are zero-operators

for all α ∈ ZN with |α| ≥ M for a large enough M . Hence the series∑
α∈ZN ϕ

(N)
α,RAαψ

(N)
α,RI converges also in the sense of the P-strong convergence

(You can replace K with Pm).

The above result is also true when one switches the places of ϕ(N)
α,R and

ψ
(N)
α,R.

Corollary 3.3.7. Let ϕ(N)
α,R and ψ(N)

α,R be as constructed above. If {Aα} is a
bounded family of operators in L(E,P), then the series∑

α∈ZN

ψ̂
(N)
α,RAαϕ̂

(N)
α,RI

converges in the P-strong topology of E for every fixed R > 0, and∥∥∥∥∥∥
∑
α∈ZN

ψ̂
(N)
α,RAαϕ̂

(N)
α,RI

∥∥∥∥∥∥
L(E)

≤ 2N sup
α∈ZN

‖Aα‖L(E) .
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Proof. The proof is identical with the above proof. The only difference is
switching the places of ϕ(N)

α,R and ψ(N)
α,R.

The purpose of the following lemma is to construct regularizers, that is
Fredholm-inverses, of P-Fredholm band-dominated operators.

Lemma 3.3.8. Let A ∈ AE be a band-dominated operator in E and let
ψ

(N)
α,R be as above. Suppose there exists an M > 0 such that, for all natural

numbers R ∈ N there exists a ρ(R) > 0 such that, for all α ∈ ZN with |α| ≥
ρ(R) there are operators Bα,R and Cα,R in L(E,P) with ‖Bα,R‖L(E) ≤ M ,
‖Cα,R‖L(E) ≤M and

Bα,RAψ̂
(N)
α,RI = ψ̂

(N)
α,RACα,R = ψ̂

(N)
α,RI.

Then the operator A is P-Fredholm, and the P-essential norm ‖·‖AE/K(E,P)
of the regularizers of A is not greater than 2N+1M

Proof. Assume that the family {Bα,R : |α| ≥ ρ(R)} is uniformly bounded
with the constant M . By the lemma 3.3.6 and the fact that ψ(N)

α,Rϕ
(N)
α,R = ϕ

(N)
α,R

the series ∑
|α|≥ρ(R)

ϕ̂
(N)
α,RBα,Rϕ̂

(N)
α,RI =

∑
|α|≥ρ(R)

ϕ̂
(N)
α,RBα,Rϕ̂

(N)
α,Rψ̂

(N)
α,RI

converges P-strongly to a certain operator BR with ‖BR‖L(E) ≤ 2NM . By
theorem 3.2.6 we know that BR belongs to L(E,P).

Furthermore, since dist(supp(ϕ(N)
α,R), supp(1 − ψ(N)

α,R)) = |34 −
2
3 |R = R

12 we
know that

lim
R→∞

dist(supp(ϕ(N)
α,R), supp(1− ψ(N)

α,R)) =∞

and hence ϕ̂(N)
α,RA = ϕ̂

(N)
α,RAψ̂

(N)
α,RI for large enough R > 0 and all α ∈ ZN .

Thus for large enough R we have

BRA =
∑

|α|≥ρ(R)
ϕ̂

(N)
α,RBα,Rϕ̂

(N)
α,RA =

∑
|α|≥ρ(R)

ϕ̂
(N)
α,RBα,Rϕ̂

(N)
α,RAψ̂

(N)
α,RI

=
∑

|α|≥ρ(R)
ϕ̂

(N)
α,RBα,Rϕ̂

(N)
α,RAψ̂

(N)
α,RI −

∑
|α|≥ρ(R)

ϕ̂
(N)
α,RBα,RAψ̂

(N)
α,Rϕ̂

(N)
α,RI

+
∑

|α|≥ρ(R)
ϕ̂

(N)
α,RBα,RAψ̂

(N)
α,Rϕ̂

(N)
α,RI

=
∑

|α|≥ρ(R)
ϕ̂

(N)
α,RBα,RAψ̂

(N)
α,Rϕ̂

(N)
α,RI + TR,
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where TR is defined as

TR =
∑

|α|≥ρ(R)
ϕ̂

(N)
α,RBα,R[ϕ̂(N)

α,RI, A]ψ̂(N)
α,RI,

and [ϕ̂(N)
α,RI, A] = ϕ̂

(N)
α,RIA−Aϕ̂

(N)
α,RI is the commutator of ϕ̂(N)

α,RI and A. From
the assumption Bα,RAψ̂

(N)
α,RI = ψ̂

(N)
α,RI we get

∑
|α|≥ρ(R)

ϕ̂
(N)
α,RBα,RAψ̂

(N)
α,Rϕ̂

(N)
α,RI + TR =

∑
|α|≥ρ(R)

ϕ̂
(N)
α,Rψ̂

(N)
α,Rϕ̂

(N)
α,RI + TR

=
∑

|α|≥ρ(R)
(ϕ̂(N)

α,R)2I + TR = I −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I + TR.

First suppose A = ∑
k∈Ω αkVk, for a suitable finite subset Ω ⊂ ZN , is a

band operator. Hence we know that Bα,R[ϕ̂(N)
α,RI, A] is in L(E,P) also. Thus

by lemma 3.3.6 TR converges P-strongly in L(E) and by Theorem 3.2.6
we get that TR is also in L(E,P). From theorem 3.2.8 we find that since
ϕ

(N)
α,R ∈ BUC(RN),

lim
R→∞

∥∥∥ϕ̂(N)
α,RA− Aϕ̂

(N)
α,RI

∥∥∥
L(E)

= lim
R→∞

∥∥∥[ϕ̂(N)
α,RI, A]

∥∥∥
L(E)

= 0

uniformly with respect to α ∈ ZN . Hence ‖TR‖L(E) tends to zero as R tends
to infinity.

Now fix a large enough R such that ‖TR‖L(E) <
1
2 . Since TR ∈ L(E,P),

clearly also I + TR ∈ L(E,P) and we know from the Neumann series that
I + TR is invertible on E and

∥∥∥(I + TR)−1
∥∥∥
L(E)
≤
∞∑
k=0

∥∥∥T kR∥∥∥L(E)
= 1

1− ‖TR‖L(E)
< 2.

Also since L(E,P) is inverse closed in L(E) we know that (I + TR)−1 ∈
L(E,P). Multiplying the above identity

BRA = I −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I + TR = I + TR −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I

with (I + TR)−1 from the left-hand side we attain

(I + TR)−1BRA = (I + TR)−1(I + TR −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I)

= I − (I + TR)−1 ∑
|α|<ρ(R)

(ϕ̂(N)
α,R)2I.
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Since the (ϕ̂(N)
α,R)2I is a finite-rank operator for any α ∈ ZN and R > 0, it

is also P-compact. Hence ∑|α|<ρ(R)(ϕ̂
(N)
α,R)2I ∈ K(E,P). Because (I + TR)−1

belongs to L(E,P) we finally attain

K1 := −(I + TR)−1 ∑
|α|<ρ(R)

(ϕ̂(N)
α,R)2I ∈ K(E,P).

The P-compactness of K1 implies that

(I + TR)−1BRA = I +K1, K1 ∈ K(E,P)

and thus (I + TR)−1BR is a left-sided regularizer for A with∥∥∥(I + TR)−1BR

∥∥∥
L(E)
≤ 2 ‖BR‖L(E) ≤ 2N+1M.

For the right-sided regularizer the proof has a similar structure. The
series

CR :=
∑

|α|≥ρ(R)
ϕ̂

(N)
α,RCα,Rϕ̂

(N)
α,RI =

∑
|α|≥ρ(R)

ϕ̂
(N)
α,RCα,Rϕ̂

(N)
α,Rψ̂

(N)
α,RI

converges P-strongly in E with ‖CR‖L(E) ≤ 2NM and for large enough R > 0
we have Aϕ̂(N)

α,RI = ψ̂
(N)
α,RAϕ̂

(N)
α,RI.

Thus

ACR =
∑

|α|≥ρ(R)
Aϕ̂

(N)
α,RCα,Rϕ̂

(N)
α,RI =

∑
|α|≥ρ(R)

ψ̂
(N)
α,RAϕ̂

(N)
α,RCα,Rϕ̂

(N)
α,RI

=
∑

|α|≥ρ(R)
ψ̂

(N)
α,Rϕ̂

(N)
α,RACα,Rϕ̂

(N)
α,RI + SR =

∑
|α|≥ρ(R)

ϕ̂
(N)
α,Rψ̂

(N)
α,RACα,Rϕ̂

(N)
α,RI + SR

=
∑

|α|≥ρ(R)
(ϕ̂(N)

α,R)2I + SR = I −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I + SR,

where
SR :=

∑
|α|≥ρ(R)

ψ̂
(N)
α,R[A, ϕ̂(N)

α,RI]Cα,Rϕ̂(N)
α,RI

and [A, ϕ̂(N)
α,RI] = Aϕ̂

(N)
α,RI − ϕ̂

(N)
α,RA being the commutator. By the same ar-

guments as TR above, SR converges P-strongly in E, SR belongs in L(E,P)
and ‖SR‖L(E) → 0 as R tends to infinity.

Fix R such that ‖SR‖L(E) <
1
2 . By the Neumann series I+SR is invertible

and ‖(I + SR)−1‖L(E) ≤ 2. Multiplying

ACR = I + SR −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I
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from right-hand side with (I + SR)−1 yields us

ACR(I + SR)−1 = (I + SR −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2I)(I + SR)−1

= I −
∑

|α|<ρ(R)
(ϕ̂(N)

α,R)2(I + SR)−1.

Thus with
K2 := −

∑
|α|<ρ(R)

(ϕ̂(N)
α,R)2(I + SR)−1

being P-compact we have

ACR(I + SR)−1 = I +K2, K2 ∈ K(E,P).

Hence CR(I + SR)−1 is a right sided regularizer of A with∥∥∥CR(I + SR)−1
∥∥∥
L(E)
≤ 2NM

∥∥∥(I + SR)−1
∥∥∥
L(E)
≤ 2N+1M.

For the case of band-dominated operators, assume that a band-dominated
operator A ∈ L(E) satisfies our assumptions and let (An)n∈N be a sequence
of band operators with ‖A− An‖L(E) <

1
n
for all n ∈ N. Then

Bα,RAnψ̂
(N)
α,RI = Bα,RAψ̂

(N)
α,RI −Bα,R(A− An)ψ̂(N)

α,RI

= ψ̂
(N)
α,RI −Bα,R(A− An)ψ̂(N)

α,RI = (I −Bα,R(A− An))ψ̂(N)
α,RI

and ‖Bα,R(A− An)‖L(E) ≤ M ‖A− An‖L(E) <
M
n
. For large enough n we

have ‖Bα,R(A− An)‖L(E) < 1, so that by the Neumann series the operator
I −Bα,R(A− An) is invertible with

∥∥∥(I −Bα,R(A− An))−1
∥∥∥
L(E)
≤
∞∑
k=0

∥∥∥(Bα,R(A− An))k
∥∥∥
L(E)
≤ 1

1− M
n

.

Define B(n)
α,R := (I −Bα,R(A− An))−1Bα,R, so that one has

∥∥∥B(n)
α,R

∥∥∥
L(E)

=
∥∥∥(I −Bα,R(A− An))−1Bα,R

∥∥∥
L(E)
≤ M

1− M
n

and

B
(n)
α,RAnψ̂

(N)
α,RI = (I −Bα,R(A− An))−1Bα,RAnψ̂

(N)
α,RI

= (I −Bα,R(A− An))−1(I −Bα,R(A− An))ψ̂(N)
α,RI = ψ̂

(N)
α,RI.

43



Thus An satisfies the assumptions with respect to a constant Mn := M
1−M

n

.
By what has been proven above, such band operators An are P-Fredholm
and the P-essential norms of their regularizers are bounded by 2N+1Mn.

Since AE/K(E,P) is a unital Banach algebra, by defining

an := An +K(E,P) and a := A+K(E,P)

we have ‖a− an‖AE/K(E,P) → 0 as n→∞. Because the algebra AE/K(E,P)
is inverse closed in the Calkin algebra L(E,P)/K(E,P) we know that a−1 is
in AE/K(E,P).

The sequence (Mn)n∈N tends to M as n tends to infinity and thus for
large enough n we have

sup
n∈N

∥∥∥a−1
n

∥∥∥
AE/K(E,P)

= sup
n∈N

∥∥∥A−1
n

∥∥∥
L(E)
≤ sup

n∈N
Mn →M,

as n→∞. Hence, since AE/K(E,P) is a unital Banach algebra, a−1 exists.
Furthermore, note that

a−1(an − a)a−1
n = a−1ana

−1
n − a−1aa−1

n = a−1 − a−1
n

for all n ∈ N. Hence∥∥∥a−1 − a−1
n

∥∥∥
AE/K(E,P)

=
∥∥∥a−1(an − a)a−1

n

∥∥∥
AE/K(E,P)

≤
∥∥∥a−1

∥∥∥
AE/K(E,P)

‖an − a‖AE/K(E,P)

∥∥∥a−1
n

∥∥∥
AE/K(E,P)

→ 0,

as n→∞, since ∥∥∥a−1
n

∥∥∥
AE/K(E,P)

≤ M

1− M
n

≤ 2M

for all n ≥ 2M . Thies means that a−1
n → a−1 as n→∞, so that by continuity∥∥∥a−1

∥∥∥
AE/K(E,P)

= lim
n→∞

∥∥∥a−1
n

∥∥∥
AE/K(E,P)

≤ 2N+1M.

Recall that ‖a−1
n ‖AE/K(E,P) ≤ 2N+1M by the first part of the argument, where

a−1
n denotes the P-Fredholm regularizer of the band operator An.

Lemma 3.3.9. Let A ∈ AE be a band-dominated operator and suppose the
limit operator Ah with respect to the sequence h ∈ H exists and is invertible.

Then, for each function ϕ ∈ l∞(ZN ,L(X)) with finite support, there is a
number m0 such that, for all m ≥ m0 there are operators Bm and Cm in AE
with properties ‖Bm‖L(E) ≤ 2 ‖(Ah)−1‖L(E), ‖Cm‖L(E) ≤ 2 ‖(Ah)−1‖L(E) and

BmAVh(m)ϕV−h(m) = Vh(m)ϕV−h(m)ACm = Vh(m)ϕV−h(m).
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Proof. Given ϕ in l∞(ZN ,L(X)) with finite support, we choose a sequence
χ ∈ l∞(ZN ,L(X)) with finite support such that χϕ = ϕ, that is χmϕm = ϕm
for all m ∈ ZN . For χm : X → X, with χm 6= 0 one may choose χm = IX to
be the identity operator on X.

From the definition of a limit operator we have

V−h(m)AVh(m)χI = AhχI + Tm,

where Tm := (V−h(m)AVh(m)−Ah)χI ∈ AE are band-dominated operators on
E with ‖Tm‖L(E) tending to zero as m tends to infinity.

Now by multiplying with A−1
h on the left-hand side we obtain

A−1
h V−h(m)AVh(m)χI = A−1

h AhχI + A−1
h Tm.

Additionally, by multiplying with ϕV−h(m) on the right-hand side and using
the fact χϕ = ϕ, we get

A−1
h V−h(m)AVh(m)ϕV−h(m) = (I + A−1

h Tm)ϕV−h(m).

By assumption A−1
h exists and is bounded, thus by theorem 3.2.9 we can

pick m0 such that
∥∥∥A−1

h Tm
∥∥∥
L(E)

< 1
2 for m ≥ m0. Hence by the Neumann

series I + A−1
h Tm is invertible and

∥∥∥(I + A−1
h Tm)−1

∥∥∥
L(E)
≤
∞∑
k=0

∥∥∥(A−1
h Tm)k

∥∥∥
L(E)

= 1
1−

∥∥∥A−1
h Tm

∥∥∥
L(E)

< 2.

Now by multiplying the equation

A−1
h V−h(m)AVh(m)ϕV−h(m) = (I + A−1

h Tm)ϕV−h(m)

with Vh(m)(I + A−1
h Tm)−1 from the left-hand side yields us

Vh(m)(I + A−1
h Tm)−1A−1

h V−h(m)AVh(m)ϕV−h(m) = Vh(m)ϕV−h(m).

Define Bm ∈ AE as Bm := Vh(m)(I+A−1
h Tm)−1A−1

h V−h(m). Thus we now have

BmAVh(m)ϕV−h(m) = Vh(m)ϕV−h(m)

and because
∥∥∥Vh(m)

∥∥∥
L(E)

=
∥∥∥V−h(m)

∥∥∥
L(E)

= 1 we have ‖Bm‖L(E) ≤ 2
∥∥∥A−1

h

∥∥∥
L(E)

.
For the right-hand side case we choose such a χ ∈ l∞(ZN ,L(X)) with

finite support that ϕχ = ϕ. Thus from the definition of a limit operator we
have

χIV−h(m)AVh(m) = χIAh + Sm,
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where Sm := χI(V−h(m)AVh(m)−Ah) tends to zero whenm→∞. Multiplying
from both sides analogously as in the left-hand side case we obtain

χIV−h(m)AVh(m) = χIAh + Sm

⇔ χIV−h(m)AVh(m)A
−1
h = χI(I + SmA

−1
h )

⇔ Vh(m)ϕV−h(m)AVh(m)A
−1
h = Vh(m)ϕ(I + SmA

−1
h ).

Choose again a large enough m0 so that we have
∥∥∥SmA−1

h

∥∥∥
L(E)

< 1
2 for m ≥

m0 and thus from the Neumann series we know that I + SmA
−1
h is invertible

and
∥∥∥(I + SmA

−1
h )−1

∥∥∥
L(E)
≤ 2. Finally by multiplying both sides with (I +

SmA
−1
h )−1V−h(m) from the right-hand side we attain

Vh(m)ϕV−h(m)AVh(m)A
−1
h (I + SmA

−1
h )−1V−h(m) = Vh(m)ϕV−h(m).

Hence, defining Cm as Cm := Vh(m)A
−1
h (I + SmA

−1
h )−1V−h(m) ∈ AE we get

the desired result

Vh(m)ϕV−h(m)ACm = Vh(m)ϕV−h(m)

with ‖Cm‖L(E) ≤ 2
∥∥∥A−1

h

∥∥∥
L(E)

. [1]

With the help of these lemmas we are ready to prove the other direction
of theorem 3.3.5.

Proof. Let A ∈ A$
E be a rich band-dominated operator. Suppose that all

limit operators of A are invertible and let the inverses of the limit operators
be uniformly bounded, meaning that

MA := sup
n∈N

{ ∥∥∥A−1
h

∥∥∥
L(E)

: Ah ∈ σop(A)
}
<∞.

We will prove the claim by a counter assumption. Thus we assume that
A is missing either the right or left regularizer. We prove the left-regularizer
case here and the proof for missing right-regularizer is handled similarly.
Lemma 3.3.8 implies that for M := 2MA, there is a natural number R ∈ N
such that for all ρ(R) > 0 there is an α1 ∈ ZN with |α1| > ρ(R) and

BAψ̂α1,RI 6= ψ̂α1,RI

for all B ∈ L(E,P) with ‖B‖L(E) ≤M .
We construct a sequence as follows. Suppose α1, ..., αN ∈ ZN have been

constructed. By choosing ρ(R) = |αk−1|, there exists an αk ∈ ZN such that
|αk| > ρ(R) with

BAψ̂αk,RI 6= ψ̂αk,RI,
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for all B ∈ L(E,P) with ‖B‖L(E) ≤ M . Continuing with this construction
we obtain a sequence (αk)k∈N with |αk| → ∞ as k tends to infinity and

BAψ̂αk,RI 6= ψ̂αk,RI,

for all k ∈ N and for all B ∈ L(E,P) with ‖B‖L(E) ≤M .
Since A is rich, for the sequence h := (αkR)k∈N ∈ H there exists a

subsequence g = (αkmR)m∈N which tends to infinity and such that the limit
operator Ag exists. By our assumption Ag is invertible and

∥∥∥A−1
g

∥∥∥
L(E)
≤MA.

Thus by lemma 3.3.9 for every function ξ ∈ l∞(ZN ,L(X) with finite support
there is a number m0 ∈ N such that for all m ≥ m0 there is an operator Bm

in AE ⊂ L(E,P) with ‖Bm‖L(E) ≤ 2
∥∥∥A−1

g

∥∥∥
L(E)
≤ 2MA and

BmAVg(m)ξV−g(m) = Vg(m)ξV−g(m).

Choosing ξ := ψ̂0,R and any f ∈ E we get

Vg(m)ξV−g(m)f(x) = VαkmRξV−αkmRf(x)
= VαkmRψ̂0,R(x)V−αkmRf(x) = VαkmRψ̂0,R(x)f(x+ αkmR)

= ψ̂0,R(x− αkmR)f(x+ αkmR− αkmR)

= ψ̂( x
R
− αkm)f(x) = ψ̂αkm ,Rf(x).

Thus we have
Vg(m)ξV−g(m) = ψ̂αkm ,RI

and as a consequence also

BmAψ̂αkm ,RI = ψ̂αkm ,RI

for a certain Bm ∈ L(E,P) such that ‖Bm‖L(E) ≤ 2MA = M . This is
a contradiction with our construction of the sequence (αk)k∈N and thus we
conclude that A is P-Fredholm.
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