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Chapter 1

Introduction

We assume the reader has a basic understanding of the concepts of functional
analysis, such as Hahn-Banach theorems, spaces of operators and norms,
Banach-Steinhaus theorem and duality. We start building on this with the
concept of compact operators and their properties. This is a necessary back-
round for introducing the Fredholm-Riesz theory which is the motivator for
our main goal since we will work in the realm of generalizing compactness
and Fredholm-Riesz theory and the new concepts the process gives rise to.

Let £(X,Y) be the space of bounded linear operators from X to Y and
K(X,Y) the space of compact operators from X to Y. Whenever X =Y,
we denote £(X,X) = L(X) and K(X, X) = K£(X). In classical Fredholm-
Riesz theory we deal with bounded linear operators with finite-dimensional
kernels and cokernels. These type of operators are called Fredholm-operators
and they have powerful properties. For example, the definition of Fredholm-
operators be equivalent with invertibility modulo compact-operators. This
equivalence is called the Atkinson theorem, which states that an operator
A € L£(X) is Fredholm if and only if it is invertible in the quotient space
L(X)/K(X).

The space in which we work, is the [P-space E = [P(Z", X), where X is a
fixed Banach space. We generalize the concept of compactness by operating
with a fixed sequence P of projections (P, P, ...), from F to E, where P, — [
as n — 0o. For P-compactness of an operator K € L(F) we require for both
P,K and K P, to approach K in the norm-sense as n — co. These so called
P-compact operators create their own space KC(E, P) of operators on X which
is the basis for the concepts of P-strong convergence, P-Fredholmness and
the generalization of the space L(F) into L(E,P).

Our main results involve the new concepts of band-dominated operators
and limit operators. Band operators are finite linear combinations of shift
and multiplication operators. Band-dominated operators in turn are limits



of band operators. From band operators we continue to limit operators. The
limit operator A, of A € L(E,P) is the P-strong limit of the sequence of op-
erators (V_p(m) AVi(n) )Jnen With respect to a sequence h(0), h(1), h(2), ... € ZV
where Vj,(n) is the shift in the direction of h(n). The existence of limit op-
erators depends on the chosen sequence (h(n)),en and the notion of richness
tells about how commonly the limit operator exists. An operator A € L(FE)
is said to be rich if for every sequence h C Z" there is a subsequence ¢ for
which the limit operator A, exists.

The goal of this thesis is to describe the groundwork in more detail and
prove the claim that for a rich band-dominated operator A there is an equiv-
alence between P-Fredholmness and the property that its limit operators
Ay, are invertible modulo KC(E,P) and also that the inverses are uniformly
bounded. This generalization of the classical Fredholm-Riesz theory was in-
troduced and discussed in detail in the book [1] by Vladimir Rabinovich,
Steffen Roch and Bernd Silbermann. Further advances on this topic can be
found on the publications [5, 6] of Markus Seidel and Marko Lindner, where
they show that it is possible to generalize this core result even further. Specif-
ically the theorem holds true also when omitting either the richness criterion
or the uniform boundedness criterion. This raises the question whether it
would be possible to omit both richness and uniform boundedness criteria
simultaneously, however these recent results and ideas are beyond the scope
of this thesis.



Chapter 2

Fredholm-Riesz theory

In this chapter we review the basics of the classical Fredholm-Riesz the-
ory, which will serve as a model case for our later generalization. We will
start with the compact operators. First in a specific case of the space C(X)
and then go through the their properties and implications in general Ba-
nach spaces. Thereafter we continue with the classical notion of Fredholm
operators and their main properties.

2.1 Definitions and notations

Definition 2.1.1 (Banach spaces). A complete normed vector space X is
called a Banach space. With completeness we mean that all Cauchy se-
quences in X converge in X with respect to the norm. In other words, if the
sequence (z;) C X is Cauchy, then there exists z € X such that

|z; — x|l — 0, as n — oo.

2.2 Compact operators on C(X)

Before considering compact operators between Banach spaces we first look
at a special case C(X), where X is a compact topological space.

Definition 2.2.1 (Pre-compactness). Let (X, d) be a metric space with the
distance metric d. The space (X,d) is called pre-compact if for all € > 0
there exists a finite cover {Ay, ..., A,} of X such that for all £k =1,...,n the
diameters of the sets,

diam(Ag) := sup d(z,y) <e
T, yEAg



and also .
X= A
k=1
Equivalently, (X,d) is pre-compact if for all € > 0 there exists a finite set
of points z1, ..., z, € X such that the open balls {B(z1,¢), ..., B(x,,&)} with
radii € cover X. Here we denote open balls as B(xg,r) := {z € X : d(z,x¢) <

e}. In other words

X C U B(.I'k,S).
k=1
Theorem 2.2.2. Let (X, d) be a metric space. Then the following conditions
are equivalent:

(a) X is compact, that is every open cover D of X has a finite subcover of

X.

(b) Any sequence (x;) C X has a converging subsequence (z;,) in X, that is
X is sequentially compact.

(c) X is pre-compact and complete.
Proof. The proof of (a) < (b) is found in Vaiséld: Topologia I [7]

(b) = (c)

Let X be sequentially compact. From the material of Funktionaaliana-
lyysin peruskurssi [2] we know that if a Cauchy sequence has a converging
subsequence, then the whole sequence converges to the same point as the
subsequence. Also from the assumption of sequential compactness we know
that every Cauchy sequence in X has a converging subsequence. Hence we
deduce that X is complete. For the rest of the proof we follow [4].

Furthermore, to prove pre-compactness we make a counterassumption.
Let us assume X is not pre-compact. Thus there exists an £y > 0 for which
there are no finite set of open balls { By, ..., By} with radii gy such that X C
U?;l B;. We construct a sequence (z,,) as follows. Pick z; € X. Since X ¢
B(z1,€0), we can pick xo € X such that d(xy,x2) > €o. Given {zy,...,2,} C
X, we can pick z,41 € X such that d(z;,z,4+1) > €, for all 1 < j < n since
X ¢ U, B(zj,20). Now by the way the sequence (z,,) C X was constructed,
we have d(z;,x;) > ¢o for all j # k. This means that the sequence (x,,) has
no converging subsequences which again implies that X is not compact. This
is a contradiction. Hence X is pre-compact.

(¢) = (b) Suppose X is pre-compact and complete. Let (z,,) be a sequence
in X. Fix e = 1. Since X is pre-compact we have a finite cover {Ay, ..., A,}
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of X for which diam(A4;) < 1 for 1 < k < n. Since the cover is finite we
know that at least one Ay, contains infinitely many terms of (x,,) so we choose
Zn, € Aj and denote the corresponding Ay as X;.

Similarly, since a subset of a pre-compact space is pre-compact, we know
that X is pre-compact and thus fixing ¢ = % gives us a new cover {Ay, ..., A, }
of Xj such that diam(Ag) < % for 1 < k < n. Again there is an A, which
contains infinitely many terms of (z,). We denote this set A, by X, and
choose such a z,, € X, that ny > n;.

Continuing in this manner, given x,,, ..., Z,,.
and such that the set X, contains infinitely many terms of (z,,). Let ¢ = mi—l
and cover X,,, with a finite cover {Ay, ..., A, }, such that diam(Ay) < #ﬂ for
1 < k < n. Again one of the sets Ay contains infinitely many terms of
(x,,) and we denote it X, and pick x,,,, in X,,41 such that np 1 > ngy,.
Observe that for any j > m we have x,,, € X, and thus d(z,,, z,,) < % for
all ¢, j > m. Hence the sequence (z,) has a Cauchy subsequence (z,,) and
from the completeness of X follows that the subsequence (z,;) converges.
Since (z,) was arbitrary we conclude that X is sequentially compact and
hence compact. []

and X,, C ... C X; C X,

Definition 2.2.3 (Equicontinuity). Let (X, d) and (Y,d’) be metric spaces
and H be a collection of mappings from X to Y. We say that H is equicon-
tinuous at x € X if for all € > 0 there exists an open neighborhood V' C X
of z, such that d'(f(y), f(z)) <e, forany f € H and y € V.

Definition 2.2.4. Let H be a family of mappings X — K. We say that H
is pointwise bounded if for each x € X there is such an M (z) < oo, that

|f(z)] < M(x), for all f € H.

Definition 2.2.5. Let H be a family of mappings X — K and let A C X.
For a subset A C X, H is called uniformly bounded in A if there exists such
an M < oo that

|f(z)] < M, forall f € Hand x € A.

Let X be a Banach space. A subset A C X is called relatively compact
if its closure A is compact. With these concepts we formulate the classical
result of Cesare Arzela and Giulio Ascoli.

Note that we define the sup-norm ||-||  for a function f in C(X,K) as

1/l := supsex [ f ()]

Theorem 2.2.6 (Arzela-Ascoli). Let X be a compact topological space and
H Cc C(X,K) := C(X). Then H is relatively compact in (C'(X),|-]|,.) if
and only if the family H is equicontinuous and pointwise bounded in X.
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Proof. We refer the proof to the course material of Funktionaalianalyysin
peruskurssi at page 177. [2] O

This theorem is a powerful tool and in our case, we now have a way to
identify compact sets in C'(X).

The following classical example from [2] completes the introduction of
compactness in C'(X) and presents a very important operator which is used
in the setting of Fredholm equations. Fredholm equations are a class of
integral equations and the attempts to solve these gave rise to the Fredholm-
Riesz theory.

Example 2.2.7. Let K : [0,1] x [0, 1] — R be a continuous kernel function.
Then the operator T': C'(0,1) — C(0, 1) defined as follows

1
Tf(x) :/ K(z,y)f(y)dy, for x € [0,1] and f € C(0,1)
0
is compact, that is, the image of the closed unit ball
T(Boy) ={Tf: f€C0,1),[[fll <1}
is relatively compact in C(0,1). Here we denote C([0,1]) as C(0, 1).

1] x [0, 1],
1]

Proof. The kernel function K is continuous in the compact set [0,
thus K is bounded and uniformly continuous. Since, for all = € |

1 1
i@ < [ 1K@ Wldy < [ 1K1l dy < Ol

where C' = ||K||, = max{|K(z,y)| : z,y € [0,1]} < oo, it follows that
T(Bc(o,1y) is uniformly bounded, as

ITfllee < Cliflle <€

Y

for ||, <1
Let o € [0,1] and € > 0. Since K is uniformly continuous there exists
such a 0 > 0 that

|K(z,y) — K(z0,y)| <&, whenever |z — zo| < and y € [0, 1].
Thus for all f € Be(o,1) it holds that

740) =TS )] < [ K Ce,) = Ko, )l W)y

1
<e [ Ifledy <=

whenever |z — x| < 0.

These results imply that T'(B¢(o,1y) is uniformly bounded and equicontin-
uous, thus by Arzela-Ascolis theorem, T'(B¢(o,1)) is relatively compact and T
is a compact operator. [



2.3 Compact operators on general Banach spaces

Here we will generalize the concept of compact operators from C'(X) to gen-
eral Banach spaces. We denote the closed unit ball in X as By :={z € X :
Jall < 1.

Let X and Y be Banach spaces. We denote by L£(X,Y) the class of
bounded linear operators S : X — Y equipped with the operator norm

151l .y = sup{l[Szlly -z € X, |z x < 1}

Definition 2.3.1 (Compact operator). Let X and Y be Banach spaces. A
linear operator 7" € L(X,Y) is compact if the closure of the image of the
closed unit ball Bx;

TBX:{TI' : LCEB)(}

is compact in Y. We also denote by IC(X,Y) the set of all compact operators
TeL(X,)Y).

We can thus by Theorem 2.2.2 check if an operator 7' € L(X,Y) is
compact by checking whether the image T'Bx is pre-compact in the Banach
space Y.

The following two properties from [2] show that (X, Y') is an operator
ideal.

Theorem 2.3.2. Let X and Y be Banach spaces. Then K(X,Y) is a closed
linear subspace of £(X,Y").

Proof. Let S,T € K(X,Y) and let € > 0 be arbitrary. Thus there exists vec-
tors zy...,x, € Y and vy, ..., y, € Y such that we have SBx C U, B(x;,¢)
and TBx C Uj_, B(y;,€), where By is the closed unit ball in X. Hence if
we pick any vector z € By, then |[Sz — x;||, < ¢ and ||[Tz — y;|,, < € for
some 1 <7 <m, 1 <7 <n. By the triangle inequality we have

165 +T)z = (2 + y)lly < 152 = ailly + 172 = yll, < 2.
Thus

m n

(S—I—T BX U U Iz+yj72€)-

i=1

We conclude that S+ 7T € £(X,Y).

Now suppose S € K(X,Y) and A € K. Given € > 0 there exists vectors
T1, .y Ty € Y such that SBxy C UL, B(wi,€). For any z € Bx we have
|Sz — x4y < € for some 1 <4 < m. Thus we have

1ASz = Azilly = M ISz — 2.lly < [Ale.
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Hence ASBy C U%; B(Ax;, |Me) and AS € K(X,Y).

Finally assume S € IC(X,Y’). Hence there exists a sequence of operators
(Sp) in K£(X,Y) such that ||.S,, — S|| — 0 as n — oco. Fix € > 0 and such an
n € N that ||.S,, — S|| < e. Since S,, is compact, there exists vectors x1, ..., T,
such that S,,Bx C U~, B(z;,¢). By the triangle inequality, for any z € Bx
there is such an index 1 <7 < m that we have

152 = ailly <[5z = Spzlly + [[Snz = zil| < IS = Sull +& < 2¢.
Thus SBx C U, B(x;,2¢) and S € K(X,Y).

These three results combined prove that K(X,Y") is indeed a closed linear
subspace of L(X,Y). O

Theorem 2.3.3. Let X, Y, X; and Y7 be Banach spaces and T' € K(X,Y)
a compact operator. If S € L(Y,Y]) is a continuous operator, then the
composed operator ST € K(X,Y]) is compact. Moreover if R € £(X7, X)
is a continuous operator, then the composed operator TR € K(X1,Y) is
compact.

Proof. Fix ¢ > 0. Since T € K(X,Y) is compact, there exists vectors
X1, ., Ty € Y such that TBx C UL, B(zy,¢€).
Since R € L£(X;,X) is continuous, for any z € By, we have ||Rz|/, <
[R[]2]] - Thus
RBx, C ||R|| Bx.

Hence we have

TRBx, C |RITBx C J By (lIR] =, || Rl| ),

=1

which implies that TR € I(X;,Y") is compact.
Furthermore if S € L(Y,Y]) is continuous, then SBy C ||S| By, and
additionally

SBy(QTi,E) = S(Q?Z + SBy) = SSL’I + ESBY C SCEZ + e HSH Byl

for all 1 <7 < m. Hence we have

STBy  S(U By(zs,)) € | SBy(s,€) € |J By, (Szi. |15 &).

=1 i=1 i=1

Since £ > 0 was arbitrary it follows that ST € K(X,Y7) is compact. ]
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The following lemma from [2] is needed to show that compact sets are
quite uncommon in infinite dimensional Banach spaces. In fact such basic
sets as closed balls By are not compact when the dimension of X is infinite.

Lemma 2.3.4 (Riesz’s lemma). Let X be a normed space and M C X a
closed linear subspace. Then for all ¢ > 0 there exists such a vector x € X
that ||z|y =1 and

dist(x, M) = nlzrel]fw |z —m|y >1—c¢.

Proof. In the proof, to avoid making the formulae hard to read, we simplify
the norm ||-||y as [|-||. Fixe > 0 and z € X\ M. Thus clearly dist(z, M) > 0,
since M is closed. Now choose such an m € M that

dist(z, M)

dist(z, M) < — <
ist(z, M) < ||z = m]| < =7

which is possible from the definition of the infimum.

Choose z = == Now ||| = Tl H =landz = =0 — o & M,
since z € X \ M.

Thus for any n € M we have

mH

z—m
—n|| = ——— |z = (m+nlz—ml)]|

[ = nll =
Iz = ml

Iz = ml
and since m + n ||z — m|| is an element in M, we can estimate as follows

1—

_ > - =
e =nlf 2 dist(z, M)

dist(z, M) > dist(z, M) =1—¢.

1
Iz = ml
[l

We can now state and prove the fact, that interestingly, closed balls are
never compact in infinite dimensional spaces.

Corollary 2.3.5. If X is an infinite dimensional Banach space, then the
closed unit ball By = {z € X : ||z[|y <1} C X is not compact. Moreover,
any closed ball B(zy,r) C X is not compact.

Proof. Let dim(X) = oo. Fix such a vector x; € Bx that ||z1||, = 1. Now
according to Riesz’s lemma, there exists a vector zo € Bx with |laa]|y =1
and dist(xs, span{z,}) > 3.

Assume we have chosen vectors w1, ..., 2, € Bx where ||z;||, =1 and

1
dist(xj, span{xy,...,xj_1}) > 2

10



for all 2 < j < n. Since dim(X) = oo and span{zi,...,x,} is a finite
dimensional closed linear subspace of X, according to Riesz’s lemma there
exists such a vector z,11 € By that ||z,11]y =1 and

1
dist(xp41, span{zy,...,x,}) > 3
By repeating this argument in this manner we construct a sequence
(Tn)neny C X with the property that

1
lz; — x| > Y whenever j # k.

Hence the sequence (z,)n,en does not have any converging subsequences.
Thus we conclude that the cosed unit ball Bx is not compact.
Furthermore,

B(xo,T) =X +T’BX

and the mapping = — xy + rz is a homeomorphism. Since homeomorphisms
preserve compactness, no closed balls B(xg,7) can be compact. O

Definition 2.3.6 (Strong convergence). Let X be a Banach space and
(An)nen C L(X) be a sequence of continuous operators on X such that
there exists an operator A € L(X) for which

A,z — Azl — 0, for all z € X as n — oo.

Then A is called the strong limit of (A, ),en and we can say that A, — A
strongly.

The following theorem from [1] gives us a connection between compactness
and strong convergence.

Theorem 2.3.7. Let A,,, A € L(X) be continuous operators in X, for n € N.
Then A, — A strongly if and only if

[ AT — AT'[| () — 0, for all T € K(X) as n — oo.

Proof. "'=" Let A, — A strongly and let T" be a compact operator. Thus
the set M = {Tx : |||y < 1} is relatively compact in X.
We argue by a counterargument. Suppose that

14T = ATl x) = sup_[|AnTx — ATzl = sup [|Any — Ayllx
Yy

ll=]l x <1

11



does not converge to zero as n — oo. Hence there exists also such an € > 0
and an infinite sequence (y,)nen C M that

| Anyn — Ayn|| > €, for n € N.

Since M is relatively compact there exists a converging subsequence
(2n)nen Of (Yn)nen Which converges to some z € X as n — oo. Thus for
every n € N the following holds.

& < |[[Anzn = Azn[lx = [I(An — A)zal x
< [[(An = A)(zn — 2)[lx + [I(An — A)2[|x
< S%P [ Ax — AHL(X) 20 = 2llx + [[(An — A)z| x -

From the Banach-Steinhaus theorem we obtain that supy, [[Ar — Al x
is finite. Thus, since A, — A strongly and since ||z, — z||y, — 0 as n — oo,
the right-hand side converges to zero as n — oo. This is a contradiction.
Hence, since T' € C(X) was arbitrary,

AT — AT|| () = 0, for all T € K(X).

'«<" Assume that [|4,T — ATy = 0 as n — oo and let 0 # x €
X. The Hahn-Banach theorem, see [2], allows us to choose such a linear
functional f € X* that || f|y. =1 and f(z) = [|z|| 5.

Let us consider the operator

K,y := f(y)z, where y € X.

Since x is fixed and the range of f is R, the operator K, has rank one, i.e.
dim(K,X) = 1, hence the operator K, is compact. Furthermore we have

1Kl px) = Sup 1FW)zllx = 1l x Nzllx = llzllx -
Since
Ka,2(y) = Kaz(y) = f(y)Anz — f(y) Az = (A, — A)(f(y)x)
- (An - A)Kx(y)a
we get that

[Ane — Azl x = K aue-aall o) = 1 Kane — Kaall g

which converges to zero as n — oo by our assumption. Hereby A, — A
strongly. ]

12



2.4 Fredholm-Riesz theory

In this section we introduce Fredholm operators and some of their basic
properties. This section is based on the book by [3] Caradus, Pfaffenberger
and Yood with the exception being the proof of Theorem 2.4.3., which follows

[2].

Definition 2.4.1 (Fredholm operator). A bounded linear operator A €
L(X) is called Fredholm if its kernel ker A and cokernel coker A := X/Im A

are finite-dimensional.

Theorem 2.4.2. If A € £L(X) is a Fredholm operator, then the image Im A
of A is closed.

Proof. Assume that A € L£(X) is Fredholm. Thus the coker A is finite-
dimensional and X is the direct sum of the image of A and a closed finite-
dimensional linear subspace M C X, and we write X = Im A ® M. Define
an operator Ty : X/ ker A x M — X as

To(x + ker A,m) = Ax + m,

for x € X and m € M. The mapping Ty has full range, Im 7, = X, and is
one-to-one since if Ty(x + ker A,m) = Az +m = 0 then m = 0 and Az = 0,
that is x € ker A. Thus the operator T is a continuous bijection. This
again implies that Tj has a continuous inverse 7}, ', hence there exists such
a constant C' > 0 that

4z + il > C (@ + ket 4,1) L par = Clall g/ rera + Il
Choosing here n = 0 yields us
[Aally = C llol s
Hence, also the mapping 7" : X/ker A — X,
T(x +ker A) := Az,

has a continuous inverse. Since X/ker A is a Banach space, thus the image
of T, ImT = Im A is closed. n

The following classical result from [2] is needed for the proof of the char-
acterization of a Fredholm operator as being invertible modulo the compact
operators.

13



Theorem 2.4.3. The operator [ + K € £(X) is a Fredholm operator, when-
ever K € K(X) is compact.

Proof. Suppose K € K(X) is compact.

First we prove that the kernel ker(/ + K) has finite dimension. We ar-
gue by a counterargument. Suppose that the operator I + K has infinite-
dimensional kernel, that is dim(ker(/ + K)) = oo. By Riesz’s lemma there
exists a sequence of normalized vectors (ey)nen C ker(f + K) with |je, | =1
for all n € N and

e = enllx 2 5
whenever n # m.
For the vectors e, € ker(I + K), we have

(I +K)e, =0« ¢, =—Ke, foralln € N.

The operator K € K(X) is compact, thus the sequence (—Ke,),en has a
converging subsequence and hence also the sequence (e,,),en has a converging
subsequence. This is a contradiction. Thus the dimension of ker(/ + K) is
finite.

We still need to show that the image Im (7 + K) is closed in order to prove
the second claim. Assume y € Im(/ 4+ K) is arbitrary. We want to prove
that y € Im(/ + K'). By our assumption there exists a sequence (z,)neny C X
such that

Yn = (I + K)x,, — y, as n — oc.
From the previous part of the proof we know that ker(7 + K) is finite dimen-
sional and hence closed. Thus we can find a z, € ker(/ + K) for any n € N
such that
dist(xn, ker(/ + K)) = ||lzn — 20l x -

Additionally, since z, € ker(I 4+ K) we have
I+ K)xy—2z) =+ K)x, — I+ K)z, =yp =y,
f
=0
as n — 00.

Next we want to show that the set {z, — z, : n € N} is bounded. For
this we make a counterassumption that there exists such a subsequence that

H:pnj — Zny| — 00, as n — o0.

We normalize these vector by setting v, = —*2==*2— € Bx for n € N. Then

lzn—2nll x

1

Un; + Ky, =
o

(I + K)(xn; — 2n;) = 0,

X
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as j — oo since the sequence (I + K)(z,, — zy,) is bounded. Since K is
compact, also —K is compact and there exists a subsequence (Unjk) such
that — K Up,;, — % as k — oo. Since as we showed before v, + Kv,, — 0 we
have

Up;, = Un; + Kvnjk — Kvnjk — 2, a8 k — 0.

From continuity it follows that Kwv,, — Kz, thus Kz = —z. Hence
I+K)z=2—2=0
and z € ker(I + K). On the other hand z, € ker({ + K) and
|z — zullx = dist(xn,ker(f + K)),

for n € N. Thus
Ty, — Zn

l|zn — anX

dist vy, ker(I + K)) = dist( ker(I + K))

1

N Hxn - Zn”X

dist (i, ker(I + K)) = 1.

This means that ||v, — z|| > 1 for all n € N, which is a contradiction since
we previously showed that v,, — z as j — oo. Hence we conclude that
{x, — 2z, : n € N} is bounded that is

|zn — 20|y < C < o0,

for all n € N.
Since K is compact, the closure {Kv: |[v||, < C} is a compact subset
of X. Thus there exists a converging subsequence

K(xn; — 2n;) wu € X, as j — oo.
Hence

Tn.

S 2y = Ty — 2y, + K (20, — 2n,) — K(2n, — 2n;)

= I+ K)(n, — 2n;) — K(vp; — 2n;) = y — u,
as j — 0o. Thus from continuity we obtain
(I+ K)(y —u) = lim (I + K) (2, — 2,) = lim y,, = .

j—o00 o Jj—00

Hence y = (I + K)(y —u) € Im(I + K) and Im(/ + K) is closed.
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To prove that I+ K has finite-dimensional cokernel, consider the mapping
Q: X — X/Im(I + K), where Qz = z + Im(I + K), for x € X. Notice,
that since Im(/ 4 K) is closed, the quotient space X/Im(I + K) is a Banach
space. By the way @ is defined we have 0 = Q(/ + K) = @ + QK , hence by
Theorem 2.3.3. the operator () = —Q K is compact as a composite operator
of a bounded linear operator and a compact operator. Pick an z+Im(/+K) €
By /tm(1+k) in the closed unit ball of X/Im(I 4+ K'), meaning that

|z + Im(] + K)HX/Im(I—i—K) = dist(z, Im(I + K)) < 1.

Hence there exists such an m € Im(/ + K) that ||z — m||y < 2 and addition-
ally Q(z —m) =z + Im(I + K'). This implies that

1

iBX/ m(r+k) C Q@Bx.

Since @ is compact, by definition Q By is a compact set, and as a closed subset
of a compact set also %BX/ m(7+K) 15 compact. Additionally, since the map
T — %x is a homeomorphism, the closed unit ball Bx,u(1+k) is compact. By
Corollary 2.3.5, closed unit balls of infinite-dimensional Banach spaces are
not compact, hence the cokernel coker X/Im(/ + K') has finite dimension.
We have proved that [ + K has finite-dimensional kernel and cokernel,
hence by definition I + K is Fredholm. O

The following classical result about Fredholm operators is often called
Atkinson’s theorem.

Theorem 2.4.4. The operator A € L£(X) is Fredholm if and only if there
exists an operator B € L(X) such that

BA=1+K,
AB =1+ Ko,
where K, Ky € K(X) are compact operators.

Proof. '=" Let A € L(X) be a Fredholm operator. Thus there exists sub-
spaces X7 and X, such that we can write X as

X=kerAdp X;=ImA&dX,.

The subspaces X; and X, are also closed since we can write X; as X; =
T(X/ker A) where T : X/ker A — X; is the induced map from the Banach
space X/ ker A to X which is defined by T'(z +ker A) := z. Additionally X,

is a finite dimensional subspace of a Banach space and hence closed.
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Denote the operator A’ := A|y,, that is, A restricted to X;. The operator
A’ is one-to-one and thus invertible onto the range Im A. Define the operator
B: X — X as follows: B=(A)"!'inImA and B =0 in X,. Now B is
continuous by the open mapping theorem and hence in £(X).

To choose the compact operators K7 and K5, consider the maps BA and
AB.

BA: X A ImA S5 X, and
AB: X 2 x, & Im A

—1, inker A 0, inIm A
Hence by choosing K; = ' HRe and Ko = ' 1n‘ o gives us
0, in X; —1I, in X,
the desired result:
BA=1T+ K,
AB =1+ K,.

The operators K; and K5 have their values in finite dimensional subspaces

of X, hence they have finite rank and thus are compact.
'«<" Assume there exists such a B € £(X) and K;, Ky € K(X) that

Thus we have

ker(/ + K1) =ker AB ={zx € X : BAz =0}
D{re X:Ax =0} = ker A.

By lemma 2.4.3 the operator I + K; is Fredholm and hence also ker A has
finite dimension.
Additionally we have

Im(/ + Ky) =ImAB = {ABx : z € X}
C{Az:ze X} =ImA.

Again by Lemma 2.4.3 the operator I + K5 is Fredholm and hence has finite-
dimensional cokernel coker(/ + K3) = X/Im(I + K5). Hence also coker A =
X/Im A has finite dimension.

The operator A has finite-dimensional kernel and cokernel, so by defini-
tion it is a Fredholm operator. O]
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The above theorem can also be formulated differently, that is, A € £(X)
is a Fredholm operator if and only if A is invertible in £(X)/K(X). Here
the quotient space £(X)/K(X) is called the Calkin algebra of X. In practice
this means that Fredholm operators are precisely the operators which are
invertible modulo the compact operators. We note here that Theorem 2.4.4.
holds also for operators A : X — Y with a similar proof.

18



Chapter 3

Approximate projections and
limit operators

3.1 Band dominated operators

We will concentrate on the setting of the sequence space IP(Z", X), where
N € N, X is a Banach space and 1 < p < oo. A vector-valued sequence
r = (1;) : Z¥ — X belongs to IP(Z", X) if the norm

1
], = (> llwill%)? < oo
ieZN

An easy modification of the scalar-valued argument shows that the space
IP(ZN, X) equipped with the norm |]|, becomes a Banach space.

We will denote E = IP(ZN, X), where 1 < p < oo and X is a Banach
space to simplify the definitions. Some of the results and properties in this
chapter hold also for p =1 or p = oo, but it is not relevant for this thesis.

Example 3.1.1. Let X = (C([0,1]) be the space of continuous functions
from the closed interval [0, 1] to R equipped with the regular sup-norm |-|| .
Define f,, € X as

fulz) = Sm("Z:”) for n € 72\ {0},

where |n| = 7_, ny is the sum of the components of n = (ny,ny) € Z2 and
fn=0, for n = 0.

Now the sequence f = (f,,)nez2 belongs to the space E = [P(Z?, X), for p > 2.
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Proof. Let f be as above. Consider the sup-norm || f, || for all n € Z*\ {0}.
We have

| follso = Sup |fo(z)] = sup |M

z€[0,1 z€[0,1] ’nl

and since |n| > 1 for all n € Z2 \ {0}, we know that

sin(|n|mTx 1
p (B2l 1
z€[0,1] n| n|
Hence,
1
1= = > lflk= > P

nez? neZ2\{0} neZ2\{0}

Now the sum is a bit more tricky to calculate than a normal one-dimensional
p-series, so we will estimate it from above and below by breaking the sum-
mation into rings

Ak = Sk \ Sk—la for k Z 1,
where Sy = {(n1,n2) € Z* : |ny| < k, |ny| < k} for all & > 0. We have the
properties

kfj A = 72\ {0}

and

Ay MA; =0, for all k # j.

Thus we obtain

1715 = Z Z

17"L€Ak

Next fix k£ € N. In the ring Ay, there are 2(2k—|— 1)+2(2k—1) = 8k points,
and if n = (ny,ng) € Ay then k? < |nfP = (|ny| + |ne2|)? < 2PkP. Hence we
can estimate as an upper bound

1 8k

— =8k'?
ng ‘n|p - kp
and as a lower bound
Z i > 8k — 93=ppl-p
e, [P T (2k)P
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With these estimates we are almost finished. By using the upper bound
and the lower bound we obtain

23 kal p<HfHP ZZ ‘p—SZklp

k=1 nGAk

where we know that 372, k'™7 = M < oo if and only if p > 2.
Hence f € E = [P(Z?, X) if and only if p > 2. O

We shall define some basic operators in E = [P(Z", X) which are shift
operators and multiplication operators. These operators form together a
larger class of operators, the band operators. See also [1].

Definition 3.1.2 (Shift operators). In this thesis we will exclusively use the
notation Vj, k € Z for the shift operators, defined as follows:
If © = (x;) € E, then V;, : E — E where
Note that the indices are in Z", that is
i—k=(iy—ki,...,iy — ky) for i,k € Z".

Definition 3.1.3 (Multiplication operators). Let a = (a;) € I*°(Z", L(X))
be a bounded sequence of operators a; € L£(X) indexed by i € Z". Define
the multiplication operator al : F — E by

alr = (a;x;) for x = (x;) € E.

Now we can define band operators and band-dominated operators with
the help of the shift and multiplication operators.

Definition 3.1.4. Any finite sum of form
> ayVi 1 E — E, where a;, € [®(Z",£(X)) and k € ZV
k

is called a band operator on E.
That is, for (z;) € E = IP(Z", X)), we have

gakwm = ap(zioy) = Y (a) zip),

! k
where a,(j) : X — X is the i:th element of the sequence aj = (ag))iezzv.
Moreover, let (A,,)en be a sequence of band operators on E. The uniform
limit A: B — E, for which ||A — A,z — 0 asn — oo, is called a band-

dominated operator.

We denote the class of band-dominated operators with respect to the
space F as Ag.
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3.2 Approximate projections

Definition 3.2.1. Let U C Z". We define a natural projection operator
Py: IP(ZN, X)) — IP(ZN, X)) by

() = (P) = {0 ifi¢ U

We also have the complementary projection Quy =1 — Py.

The most relevant projections for us are the canonical projections where
U, = {-n,...,n}" for n € N. For simplicity we denote P, = Py, and
@, = I — P,. From these canonical projections we construct the sequence

7): (P17P27P37"')
which is the necessary tool for the theory of approximate projections, see [1].

Proposition 3.2.2. P is a perfect approximate identity, that is, we have
P, — I strongly on £ and P, — I" strongly on E*.

Proof. Let P = (P,)nen be as defined above. Now fix v € E = IP(ZV, X).
The property that the tail-sum of all x = (z,,)mezv € E approaches 0,
Simzn |lzmlls — 0 as n — oo, where [m| = max{|my| : k € Z"}, directly
implies
[Pz = Izl = (3 llemllf)? =0, asn — oo,
m@Un

for all x € E. Thus P, — [ strongly.
Now fix such an = € E that ||z|; < 1. We have

(2, Pra™ = I"a")| = [((Po = Dz, 27)]
Since ¥ = (13)pezy € E = P(ZV, X), we have z* = (2})pezy € E* =

19(ZN, X*), where % + % = 1. Thus we can apply Holder’s inequality as
follows

{(Po = Da,a”) < >0 [y, 25)]

lj|>n—+1
1 1
P q a
(T i) (T lal) o
l7|>n+1 [71>n+1
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as n — 00. Since x € By was arbitrary we conclude that

I(Py = I")a"|| = sup [(z, Pia™ — I"z")| =0,

as n — o0.
Thus we have proved both P,, — I strongly in £ and P} — I* strongly
in £*. O

The following three definitions from [1] are analogies of compactness,
Fredholmness and strong convergence in the setting of the more general P-
theory. Recall that E = IP(ZV, X).

Definition 3.2.3 (P- compactness). Let K € L(E) be a bounded linear
operator on E. K is called P-compact if both ||[KP, — K| — 0 and
|P.K — K| — 0 as n — 0.

We will denote the space of P-compact operators by K(E,P) and also
define the space L(FE,P) to consist of all operators A € L(E) for which AK
and KA are P-compact when K € IC(E,P).

By definition, this means that P,KA — KA, KAP, - KA, P,AK —
AK and AKP, — AK as n — oo for every K € K(E,P).

Definition 3.2.4 (P- strong convergence). Let (A,) C L(E) be a sequence
of bounded operators on E. The sequence (A,) converges P-strongly to
A € L(E) if for any K € K(E,P) we have both [[K(A, — A)|lm — 0
and [|(An, — A)K|| gz — 0 as n — oo. In this case we will denote A =
P-lim,, o0 A,

The following lemma from [1] is useful for checking whether an operator
belongs to L(E,P) or not.

Lemma 3.2.5. Let A € £(E). Then A belongs to L(E,P) if and only if,
| PrnAQn| gpy — 0 and [|QuAPy || ¢z — 0 as n — oo,

for every m € N.

Proof. '=" Let A € L(E,P). Since P,, € K(E,P) for all m € N we know
that P, A, AP, € K(E,P), for all m € N. Fix m € N. By the definition of
P-compactness both

||PmAQn||L(E) = ”PmA - PmAPn“L(E) — 0,
HQnAPmH[:(E) = [|PRAP, — APm,lc(E) — 0,
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as n — 0o.

'<" Suppose ||PnAQul| s — 0 and [|QuAPy |z — 0 as n — oo, for
every m € N. Let K € IC(E,P) be a P-compact operator. Given € > 0 first
choose such a k € N that

€

1K = Pl ooy < 5
B 2| All

and then choose such an M € N that

HQnAPk”ﬁ(E) , for all n > M.

c__ &
2| K|l £
It follows that

[AK — Py AK || g5y = [|QnAK | () = [|@nAK — QuAPK + QuAPK || o)
< N@nAll gy 1K = PK || gy + 1 QuAP| £y 1S 2
€ HQnAHL(E) € HKH[:(E)
2 Az 21K zm)
€ ”AH[:(E) € HKHL(E) .
T2 Al 20K m

For K A, let us again fix ¢ > 0. Now choose as above such k, M € N that

3

IK — K Pl ) < Al
and
£
| P AQ, || < ————, for all n > M.
HE 21K |

Then similarly as before

|KA = Py KA o) = | KAQn () = [KAQn — KPAQn + KPAQy| o)
< AQullz(py 1K = K Pl oy + 1 PeAQn | ) 1K | £ )
€ HAQnHa(E) 5HKH[,(E)
2[Allzey 21Kz
€ HAHL(E) € HKHﬁ(E) _ .
2 Allgm 201K 2my

The cases AK P, and K AP, are analogous.
We conclude that AK, KA € K(E,P) and hence A € L(E,P). O
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The following theorem, following along [1], tells us about the structure
and relations of the spaces L(E,P) and K(E,P). In particular, we verify that

L(E,P) is a Banach algebra and that IC(E,P) is a closed ideal of L(E,P),
analogously to the classical setting of continuous and compact operators.

Theorem 3.2.6. Let (A4, ),en be a bounded sequence of operators in L(E, P)
that converges P-strongly to A € L(FE). Then

(a) Ae L(E,P).
(b) if A € L(E,P) is invertible, then A~ € L(E,P).

(¢) L(E,P) is an inverse-closed closed subalgebra of L(E), and in particular
L(E,P) is a unital Banach algebra. Moreover, K(E, P) is a closed ideal
of L(E,P).

Proof. (a) Let (A,)nen be as above. Since A,, — A P-strongly, also K A,, and
A, K converge P-strongly to KA and AK respectively for all K € K(E,P):
Fix Ko, K € K(E,P). Then we have

[ Ko(K A, — KA)|| g5y < [ Kol ooy 1K An — KAl gy — 0, as n — 00 and
(K Ay — KA)Koll gy < 1K Aw — KA (5 1 Koll o) » as n — o0,
Similarly the case where A, K — AK converges P-strongly.

(b) Let A € L(E,P) and let A be invertible in L(F). Thus A~! € L(E).
Fix K € K(E,P). Now

|AKP, — AT K| =|(A)2AKP, — (AT AK|

L(E) L(E)
< H(Ail)QHL(E) IAK B, — AK|| gy = 0.
Thus A™'K is P-compact for all K € K(FE,P). Similarly
HKA‘an - KA‘lHL(E) — HKA(A‘l)QPn - KA(A‘l)QHE(E)

< H(A_1)2HL(E) IAKP, — AK|| gy = 0.

Hence K A™! is P-compact for all K € K(E,P). The cases with P, and K
on left-hand side are analogous. This shows that A™' € L(F,P). Hence
L(E,P) is inverse-closed in L(E).

(¢) To prove that L(E,P) is closed in L(F) it suffices to prove that
K(E,P) is closed. To prove this let (K,,)men be a sequence of P-compact
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operators which converge to K in operator norm and fix ¢ > 0. Remember
that we have @, = I — P,. To show K € K(E,P), choose such r, N € N
that [|[K — K. || g gy supy, [|Qnll ) < 5 and | K:Qnll o) < 5 for n > N. Now
we have

1K = KPullgimy = 1K Qull gy = 1K Qn — K, Qu + K, Qull £y
< K@ = EKQull gy + 1K+ Qull ()
<K - KT“L(E) S?Zp ||Qn||c(E) + HKrQnHL(E) <E.

Similarly ||K — P.K|[;) as n — oo. Thus we conclude that K(E,P) is
closed. For a sequence (A, )nen of operators in L(E,P), which converges
to A, the sequences (K A,)nen and (A, K),en are sequences of P-compact
operators which converge to KA and AK respectively. Thus by what has
been shown above we conclude that also L(E,P) is closed.

To show that L(E,P) is a subalgebra of L(E) we need only simple calcu-
lations. Let A, B € L(FE,P). This means that AK, KA, BK, KB € K(E,P)
and thus

I(A+ B)KP, — (A+ B)K ||z = |AK P, + BKP, — AK + BE|| zp
< ”AKPn - AK”L(E) + HBKPn - BKHE(E) — 0.

Next fix m € N. Now for any » € N holds

HPmABQn”L(E) < ”PmAPrBanﬁ(E) + ”PmAQTBQnHE(E)
< ClIEBQnl cip) + D1 PnAQr | 25y

with C' and D being constants. Now we can choose such an r to make the
second term as small as desired and choose ng large enough that the first

term is as small as desired for all n > ng. The case of Q),,ABP,, is analogous.
Thus by Lemma 3.2.5 we conclude that AB € L(E,P). Lastly for A € R

INAK P, = MK || ) = (A |AK By — AK ||y — 0.

The cases with P, and K on left-hand side are analogous. Hence L(E,P) is
a subalgebra of L(E).

All this combined with the fact that £(E) is a Banach space imply that
L(E,P) is a Banach algebra. Additionally, by the way L(E,P) is defined,
for any S, T € L(E,P) and any K € K(E,P) we have SK € K(E,P) and
KT € K(E,P), thus making IC(E,P) a closed ideal of L(E,P). O

An example of a non-trivial operator in L(E,P) is the shift operator Vj,
k € ZN. This will be crucial for the properties of limit operators which will
be defined in the next section.
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Example 3.2.7. The shift operators, V;, € L(E) belongs to L(E,P), for all
kezZN.

Proof. Let us fix * = (2;);ezv € E and m € N. Recall U, = {-n,...,n}V
from before. We use the notation (z;)cp, for

()it = x;, for 1 G'Un
0, otherwise.

Now

PoViQur = (P Vi — Py ViePy)x = PpVi(%;)iczvy — P Vi(2i)icu,

= Pm(xifk)ieZN - Pm(xifk%GUn = (xifk)iGUm - (xifk)ieUnﬂUm
= (Ti—)icv\v, = 0, for n. > m.

Similarly for @, Vi P,,. Thus
||PkaQn||£(E) — 0 and ||QndPm||£(E) — 0 as n — oo.

Hence according to Lemma 3.2.5. we get that V, € L(E,P) for all k €
ZN. [

For the next theorem we will introduce a new class of functions on RN

called
BUC(R™):={p: RY — C | ¢ is bounded and uniformly continuous}

and a new "hat"-notation, where ¢ : ZY — C is the restriction to Z~ of the
function ¢ from RY to C and ¢, ,.(z) = p(t(x —r)) for z,r € RY and ¢ > 0.
We omit the subscript r for 7 = 0 so that ¢;o(z) = ¢i(x). Hence ¢, and
@y represent the restrictions to ZY of the functions ¢, and ¢; respectively.
Note, that here ¢, is the multiplication operator (x;) — ($r,(1)z;) on E
and similarly for ¢, 1.

Theorem 3.2.8. Let A € L(F), where E = [?(Z",X). The following
conditions are equivalent:

(a) A is band-dominated

(b) For every p € BUC(RY),

i s 504~ ATy = O
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(c) For every p € BUC(RY),
Pi% [prA — A@tI”c(E) =0

Proof. The proof is skipped here, but can be found in the book [1] (Theorem
2.1.6. page 36) by Rabinovich, Roch and Silbermann. O]

Recall the notation for the space of band-dominated operators Apg, Def-
inition 2.1.4. The following theorem from [1] gives us that the inverses of
band-dominated operators are also band-dominated operators.

Theorem 3.2.9. The algebra A is inverse closed in L(E).

Proof. Let A € Ag be invertible in L(F). Define ¢; = ¢, for ¢ € BUC(RY),
Thus it holds that

oot A = 47 07— 4707,

(E)
1 ~ ~ -1
< HA HE(E) 1AGeT — 21 Al o) HA HL(E)
j— 2 A A
Hence by theorem 3.2.8 (c) also A™! € Ag is band-dominated. [1] O

Recall that I(E, P) C L(E,P) is a closed ideal which makes the quotient
space L(E,P)/K(E,P) into a Banach quotient algebra.

Definition 3.2.10 (P- Fredholmness). An operator A € L(E,P) is called a
P- Fredholm operator, if the coset A + IC(E,P) is invertible in the quotient
algebra L(E,P)/K(E,P).

The above definition means that A is P-Fredholm if and only if there
exist operators C, D € L(E,P) and K1, Ky € K(F,P) such that

AC =1+ K; and DA =1+ K,.

3.3 Limit operators

For it to make sense to define the concept of a limit operator, we need to
define a certain class of sequences from [1]. Let h = (h(n))pen C ZY be
such a sequence that |h(n)| tends to infinity as n tends to infinity. Here we
consider the norm in Z" as the maximum norm, |m| = maxj<,<x |my|, for
m = (my,...,my) € ZN. For such sequences h := (h(n)),eny we define the
class

H:=1{h = (h(n))ney C Z" : |h(n)| = o0, as n — c0}.

For P-strong convergence see Definition 3.2.4.

28



Definition 3.3.1 (Limit operators). Let h € H and A € L(F,P). If the
P-strong limit
Ap =P- lm V_pm)AViw)

exists, we define A, € L(F) to be the limit operator of A with respect to the
sequence h. Here Vj,(,) is the shift operator for h(n) € Z" from Definition
3.1.2. that is, (z;) S (Zi—h(n))-

(n)

We also define the operator spectrum o,,(A) of A as

op(A) = {A) : h € H and the P-strong limit
Ay, =: P- nlil)ﬂoo V—h(n)AVh(n) eXiStS}.
The following theorem from [1] introduces some elementary properties of

limit operators.

Theorem 3.3.2. Let h € H, and let A, B € L(E,P) be operators for which
the limit operators A, and B) exist. Then:

(@) [|4nll gy < CllAll £ () Where C'is independent of h and A.

(b) the limit operators (A + B); and (AB), exist and we get the algebraic
identities (A + B)h = Ah + Bh and (AB)h = AhBh.

(c) if A is invertible, then A is invertible, the limit operator (A™!), exists
and (A_1>h = (Ah>_1.

(d) the limit operator (A*), with respect to P* = (P),en on E* exists and
(A")n = (An)".

Proof. (a) Let Aj, A, : K(E,P) — K(E,P) represent left (1) and right (r)
multiplication with the operator A, that is A;(S) = AS and A,(S) = SA,
for S € K(E,P). We want to prove first that

HArHﬁ(/c(E,P)) < HAHE(E) <cC HATHL(IC(E,P))’
1Al ey < 1Al < C* 1Al ceqs ey

where C' = sup,, || P, z(p- The first part of these inequalities are trivial since

A, = sup KA <||A
ez = o0 1K ALqs) < 14

and identically for A;. For the second inequality for A, let ¢ > 0. Choose
such an zg € E with ||zg]| = 1 that

Azl > ||AH£(E) —&
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This is possible, since by the definition of supremum for any ¢ > 0 we can
always find such a yo € Bg that [[Ayll; > sup,ep, [[Ayll; — ¢ and by

normalizing with y; = IlyZTIE we attain ||y1]|p = 1 and
1
1Al g = = Aol s = [ Avollp = sup [[Ayllg —e.
10l yEBE

Next, by a similar argument let P, € P be such that
|PuAoll > [ Aol — <.
Since P C K(E,P) we have that

1K Ay 1PoAlleiry 1Pl

Al —  sup > >
FREP) KeK(E,P)/{0} ||K||£(E) HPnHz(E) sup, ||Pn||£(E)
|| P Axol| 1
E—> (HAH[,(E) - 2¢).

—osupy [ Pall sy — supn 1 Pall 2 (my

Since € > 0 was arbitrary obtain the desired result

1Al ey < C A 2k py) »

where C' = sup,, || Pal| £
For the second inequality in the A; case, let € > 0. As shown before there
exists such an m that

1P Al £ )

1P Al () = 1Pl oy

1
Z G [All ey — €

Lemma 3.2.5. allows us to choose such an n that
1 PnAQull z () = |1PnA = PrnAP | oy < €

Hence now we have that

||APn||L(E) CQ”APn||,C(E)

) 2
C Al ey = € 1Pallmy — ¢

>C “APnHL(E)
1
2 1P APl 5y 2 1 PnAll ) = 1PnAQnll sy 2 & 1Al — 2¢,

where C' = sup,, || Py | (). Thus, since € > 0 was arbitrary, we have that

3
||A||[,(E) <C ”AIHL(IC(E,P)) '
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Hence we have proved the necessary inequalities and as a result we see that
P-strong convergence is essentially equivalent to regular strong convergence
of the left- and right multiplication operators on K(E,P). Thus by applying
the Banach -Steinhaus theorem to a sequence (A") ¢ L(K(E,P)), for which
A" — A, strongly in K(E,P), we obtain

(r)
||A7’||L(]C(E7D <hm1anAn ’

n—oo

(K(E,P))

and additionally for the sequence (A,) C L(E,P) for which A, — A P-
strongly in £ as n — oo we have a similar result

140 £y < ClUIAM geqpyy < limiinf € [|AS

< liminf C ||An| o)

(K(EP) ~ n—o

It follows that, since V_j(,)AVymy — Ap P-strongly in £ we have

HAh”L(E) < liggio{}fc Hv_h(")AVh(n)HL(E)

< IITILIi)lOI.}fC th(n)HQ ||A||£(E) =C HA”ﬁ(E)

L(E)
=1

where C' = sup,, || Pa| (). Thus we have proved that [|An| gz < C[|All 2 g
and that the constant C' is independent from A and A. In our case actually
C =1, but if one uses a more general approximate projection class P, this
might not be the case. However this is not within the scope of this thesis.

(b) Fix P, € P. Now
H( ) (A + B)Vim) — (An + Bh))pmHL(E)
= | (Vorm AVam) + Vonin) BVaiay — (A + Bi)) P, ’”"H.c(m

< H(V—h(n)AVh(n) - Ah)PmHL(E) + H(V—h(n)BVh(n) - Bh)PquE) — 0,

as n — oo for all m € N. The proof where P, is on the left hand side is
similar. Thus the limit operator (A 4+ B);, = Aj + B, exists.
Also, since I =V = Vj,(,)V_p(n) We have

| (Vo (ABYWiioy = (AuBi) P,
= [| (Vo AViio Voo BVigo) = (41Bn)) P = 0

as n — oo for all m € N. The proof where P,, is on the left hand side is
similar. Thus the limit operator (AB), = A, B, exists.
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(c) Let A € L(F,P) be invertible. Because L(FE,P) is inverse closed,
also A™' € L(E,P). We know from Example 3.2.7 that Vi, € L(E,P) for
all n € N and by Theorem 3.2.6 (c) the product of two operators in L(E,P)
is also in L(E,P) since L(E,P) is a subalgebra. Thus V_pA Vi) €
L(E,P), for all n € N. Additionally

(Vonmy AVhm) ™ = Vi A~ Vo) = VoA~ Vi),

for all n € N. Theorem 3.2.6.(a) states that P-strong limits of sequences of
operators in L(E,P) are in L(E,P), so that A;' € L(E,P) exists and

At = (A"

(d) Suppose A, — A P-strongly. Let K* € K(E*,P*), x € E and
r* € E*. Now,
58V AVhn) = A0 = 50 e K (Vi AV gy = (4) D)
x B>

llzll p<1
= sup [(Vopm) AV Kz, 2") — (A Kz, %)
llzll 5 <1
= | s“up |<(V—h(n)AVh(n) — Ah)K.T7I*> — 0,
z||p<1

since V_pn)AVin) — Ap P-strongly as n — oo.
Furthermore, for any n € N, we have

(Vorm)yAVim)™ = Vi) A V0m) = Von) A Vi) -

This is because the dual space of E = [P(ZY, X) is E* = 19(Z", X*), with ¢
satisfying % + é = 1for 1 < p < oco. Hence we can find the adjoint of the
shift operator Vim)y = (2;-n(n))iczy by operating on a linear functional, that
is

(Vh(n)$7$*> = Z x;k(xz‘—h(n)) = Z x;lh(n)(%) = (z, th(n)x*>'
ieZN icZN

From this we can solve that indeed V') = V_p(n) in the dual space E™.
Hence combining these result we conclude that the limit operator (A*)j,
exists and furthermore that (A*), = (Ax)*. O

Next we will introduce a concept of richness of an operator, regarding the
operator spectrum and how plentiful it is. We equate the notion of a rich
operator with the notion an operator with rich operator spectrum.

32



Definition 3.3.3 (Richness). Let A € L(E,P) be an operator. The op-
erator A is said to have a rich operator spectrum, if for every sequence
h € H there exists a subsequence g C h for which the limit operator
Ay = P-lim, o V_gn)AVy(n) with respect to the subsequence g exists.

We denote the class of rich operators with a dollar sign $ superscript,
for example L3(E,P) := {A € L(E,P) : Aisrich} and A} := {4 € Ap :
A is rich}.

The most trivial examples of rich operators are the identity operator I
and the shift operator V}, since for any h € ‘H we have V_j, ;) I Vi) = I and
Vorm)ViViim) = Von(m)+kthim) = V-

The following lemma from [1] will be useful for proving our main result
and it shows that the P-compact operators form a closed ideal in L%(E, P).

Lemma 3.3.4. Let K € K(FE,P) be a P-compact operator and h € H.
Then K, is the zero-operator.

Proof. Fix P,, € P. Consider
HV—h<k>KVh<k)PmHz:(E> - Hv—h<’f>K(P" +1- P”)V"(’“)PmHaE)
< Voo K PaVao P gy + [Vt K QuVisy P |
< C|PuVawy Py + C 1K Qull iy -

for some constant C. Given any € > 0, choose such n,ky € N that
1K Qull o) < 55 and |PaVigey Pnl| < 5 for k > ko,

L(E)
Thus,
€
Hv_h(k)KVh(k)PmH[:(E) < 20% =¢
and K, is the zero-operator. O
Since Kj, = 0 for any h € H, clearly K, = 0 for all g C h, thus K(E,P) C

L3(E,P). Additionally, the fact that IC(FE,P) is a closed ideal of L(E,P)
implies that IC(E,P) is indeed a closed ideal of £L3(E, P).
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The goal of this thesis is to prove the following fundamental character-
ization of P-Fredholmness for rich band-dominated operators A on E =
IP(ZN, X). According to [8] this result was first proven by B.V. Lange and
V.S. Rabinovich for 1 < p < co. The condition that the inverses

{AY:h € H and A, exists}

are uniformly bounded was removed quite recently by Lindner and Seidel,
see [6], however this stronger result is outside of the scope of this thesis. The
rest of this thesis is dedicated to our main theorem and to the actual proof
of it. From now on we follow along the lines of the proof presented in [1].

Theorem 3.3.5. Let A be a rich band-dominated operator. Then A is P-
Fredholm if and only if all limit operators A, of A are invertible and the
inverses {A; ' : h € H} are uniformly bounded, meaning that there exists

C' < oo such that
|4 0o

for all A € H such that A, exists.

< C,
)

Proof. We first prove the easier part of the theorem. "=
Let A € L(E,P) be a P-Fredholm operator, that is there exists operators
D e L(E,P)and T1,T; € K(FE,P) such that DA = I+T; and AD = [ +T5.
If h € H is a sequence such that the limit operator Aj exists, then for all
K € K(E,P) holds
K =V_ 1) Vi) K = V_pny(DA = T1) Vi) K
= V_htn) DVii) Vo) AVi) K — Vo) 11 Vi) K

where we have the estimate HV,h(n)DVh(n)HE(E) < Dz =: C indepen-
dently of the sequence h € H, so that

1Kl 5 < C Hv—h(n)AVh(")KHc(E) + Hv‘h(")Tlvh(")KHz:(E) '

As n tends to infinity, V_y)AVypmy — Ap in P-limit and by lemma 3.3.4,
since T} is a P-compact operator, we know that V_j )11 Vj,) tends to the
zero-operator. Hence

1K 2y < CIlARK]| £ () -
Similarly for A* € L(E*,P*) we have
K* = Ve IV K* = V) (D* A — T3 ) Vi) K*
= Voh(n) D™ Vi) Vorn) A" Vi) K = Vopn) T3 V) K™,
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where K* € K(E*, P*). As before we have

1K™ | ey < C||Vonim A Vi K| t Vb T3 Vi K

L(E* L(E*)

and by letting n — oo we obtain
K | g ey < CHARK | £y -

Proposition 3.2.2. states that P, — [ strongly in E, that is || P,z — z|| ; —
0 as n — oo for all x € E. Additionally Theorem 2.3.7. states that this is
equivalent to [P, K — K||zp — 0 asn — oo for all K € K(E). Thus
compact operators are also P—compact. The same argument applies in the
dual case K(E*). Hereby, we obtain the fact that both K(E) C K(E, P) and
K(E*) C IC(E*,P*) hold. Thus we can replace K with a rank one operator
similarly as in the proof of Theorem 2.3.7 to get the following estimates

2l < Cl[Anz]l g and |[f]

g < O ALS

E*>
for all x € F and f € E*. This means that
ker A, = {0} = ker 4;.

Firstly, ker A, = {0} implies that the limit operator A, is an injection.
Furthermore ker A; = {0} means that the set

ker Ay = {2" € E* : Aj2" =0}
={z" e B : (z,A;2") =0, for all x € E'}
={z* e B : (Apz,2*) =0, for all x € £} = {0},

is the singleton containing zero. We claim that A, is a surjection, that is
Im A, = E. We argue this by counterargument.

Assume that Im A, # E. Since Ay, is bounded from below, we have that
Im Ay, is a closed linear subspace of E. Thus there exists an xqg € E such
that zo & Im Ay, o # 0 and dist(zo,Im Aj) = 1. Hahn-Banach theorem [2]
states that there exists a linear functional y* € E* such that

y*(Im A) = {0} and
y*(z0) = (w0,y") = 1.

Now (xg,y*) # 0, but (z, Ajy*) = (Apz,y*) = 0 for all x € E. Hence
0 # y* € ker A} and the kernel of A; would not be a singleton, that is
ker A7 # {0}. This is a contradiction. Hence, ImA, = E and A is a
surjection. Thus A is a bijection and hence invertible. Finally, we choose
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an arbitrary o € E \ {0}. There exists a y € F, such that x = A4;'(y) and
applied with ||z| 5 < C'||Apz| 5 yields us the following estimate,

|47 w)||, < CAanAn'y)| = Clvlls.

Taking the supremum over ||y||z < 1 we obtain the result

HAEIHL(E) =C.

O

To prove the other direction of the equivalency we need to introduce some
more building blocks and lemmas.
We start by fixing two continuous functions ¢, 1 : R — [0, 1] such that:

1, for |z| < 3
o(x) = { positive, for % < |z <
0, for 2 < |z

Wi

and
1, for |z| <2

Y(x) = { positive, for 2 < |z| <
0, for 3 < |z|.

[SAF

Suppose that the families {©2} and {¢2}, where ©2(z) = o (2)pa(z) and
va(2) = @(x — a) for a € Z, form a partition of unity on R, that is

Y i(x) =1, forall z € R,

QEZ

and respectively for 1,. This can be forced by choosing continuous functions
f: R —0,1] similarly as ¢ above and g : R — [0, 1] similarly as ¢ above
and then defining

o(x) == J /(@) and (x) == J 9(z)

ZQEZ f(.’lf - Oé) ZaEZ g(&? - Oé)

hence the families {2} and {¢?} form a partition of unity on R, such that
o(z) > 0 and ¥(x) > 0 while still preserving the properties as originally
defined. Hence let ¢ and 1 be as originally defined in this proof.
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For an arbitrary dimension N € N, x = (z1,....,zy) € RY we define
o) 1= (p(r1), -, @(an)) and $M(@) = (G(z1), .., b(zy)) and analo-
gously oM (x) == o™ (z — a) and N (z) := vM(z — a). Finally, for
R > 0, define

and respectively

For these functions we have the property
N) (N T T N
1/1((;{,1«%90((1,1% = QO(N) (R — a>¢(N) (R _ a) _ 90;133

for all @ € Z¥ and R > 0, since by substituting vy = % — a to the previous
equation, we see clearly that ¢(yx) > 0 only when ¢(yx) = 1 and p(yx) =
0 otherwise. In addition the families {gpg’\%}aezz\z and {wgv]%}aezw form a
partition of unity on RY for every fixed R. We also remind of the "hat'-

notation, where @ﬂ% 0 ZN — [0,1]" is the restriction to Z" of the function

9052 from R to [0, 1]V,
The following three lemmas are needed towards the yet unproven direction

of the equivalence. Note that we use the notation @g}%[ for the multiplication

operator @gﬁ%[ : £ — E where @(]Y]%Iu = (@g,\;%(k)uk)kezzv, for all u € E and

(67

respectively for zﬂg\g[ .

Lemma 3.3.6. Let gpfﬁ% and wﬁﬁ% be as constructed above. If {A,} is a
bounded family of operators in L(E,P), then the series

> PRADIRT
aeZN
converges P-strongly in L(F) for every fixed R > 0, and

S eMADT

acZN

<2 sup [ Aullery -
L(E) a€Z

Proof. We start with the dimension N = 1. Fix R > 0 and let o, 5 € 2Z be
even whole numbers such that «a # (.
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Fix a € R such that o r(a) = (% — ) > 0. Then we have

a a
— (L B = (L —atoN
vo.p(a) = o(5 = B) = p(5 —a+2N),
for N € Z\ {0}. Substituting y = % — a and from the definition of ¢ we see
that ¢ r(a) = ¢(y + 2N) must be zero, since the 2N component translates
a outside of the interval —% <y < % The proof is similar for ¢ in place of
. Thus we have

supp(@a,r) N supp(ps,r) = supp(ta,r) N supp(Vpr) = 0.

The same fact is true also whenever «, 8 € 2Z + 1 are odd.
Thus for any u € E = [P(Z, L(X)) we have

p
z @a,RAa@Ea,Ru = oa%za,RuHZ
ag2Z g ag€2Z
< Y JAatanulf, < suplAa ||£(E)ZH%RUH < sup || Aallz Il

a€2Z

Thus the series converges strongly in L(F). Taking the supremum over u € E
with |lul|z < 1 yields us

Z @a,RAo/@a,R[

aEe2Z

< sup [|Aall2x)
Q€
L(E)

Similar estimates are also valid whenever o € 2Z + 1 is odd, thus we have
the estimate

Z @a,RAoﬂﬁa,RI

a€EZ

L(E)

Z @a,RAaqu}a,RI

a€2Z+1

Z @a,RAaﬁa,R]

a€e2Z

+
L(E)

< 2sup || Aall £ () -
a€Z
L(E)

In the case of N > 1 we use induction. By writing the points z € RY as
r = (2/,xy) € R¥"! x R we have the properties

N N—
M) = o V(@) T (a1

and

@) = 0 (@) I (a1
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Thus by defining

N-1 N-1
BaN = Z (p((l,R )A(a’,aN)wé,R )I

a’ezZN -1

we can write

E: %@J{ QNMKD [

aNEZL

S AT

a€eZN

L(E) L(E)
Since B, is also in £(E,P) and by using the induction assumption
B, < 2N=1 gy Ao < 2N=1 qup ||A,
1Basllery < 2% sup [ Awan o) <277 50 Al

it follows that B, is bounded. Applying the result of the one-dimensional
case we get

S O Ba eI

aNEZ

< 2 sup HBaNHc 2 SUP | Aa “ﬁ
£(B) aN€EZ a€Z

Hereby the series >, czn~ goa R aw I converges strongly in £(E) and defines
a bounded linear operator on E.
Finally fixing m € N, for any a czZN large enough we have ngb&NI%I =

0= %R m,y thus PmSOQR w I and goaR Oﬂ/}a RP are zero-operators
for all a € ZV Wlth la] > M for a large enough M. Hence the series

Y oaczN cp(N)A w I converges also in the sense of the P-strong convergence
(You can replace K with Pp,). O

The above result is also true when one switches the places of gpfﬁ% and
Vir:

Corollary 3.3.7. Let gpéﬁ% and w((ﬁ% be as constructed above. If {A,} is a
bounded family of operators in L(E,P), then the series

N ~(N
S AT

a€cZN

converges in the P-strong topology of F for every fixed R > 0, and

Z w(N)Aa aR[

acZN

<2V Sup HAch(E)
L(E) a€Z
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Proof. The proof is 1dent1cal Wlth the above proof. The only difference is
switching the places of gpa R ) and wa B O]

The purpose of the following lemma is to construct regularizers, that is
Fredholm-inverses, of P-Fredholm band-dominated operators.

Lemma 3.3.8. Let A € A be a band-dominated operator in £ and let
wﬁjﬁ% be as above. Suppose there exists an M > 0 such that, for all natural
numbers R € N there exists a p(R) > 0 such that, for all « € Z" with |a| >
p(R) there are operators B, g and C, g in L(E,P) with ||BQ7R||£(E) < M,
|Cokll gy < M and

Ba,RAlﬁg,VI%I = 1;&],\/1%14004,}2 = 1&9}%] :

Then the operator A is P-Fredholm, and the P-essential norm ||-|| 1, /(5 »)
of the regularizers of A is not greater than 2Vt M/

Proof. Assume that the family {B, g : || > p(R)} is uniformly bounded

with the constant M. By the lemma 3.3.6 and the fact that ¢§{Q<p§fg = gp&N,%
the series

A

S o Barg = S B g

la[=p(R) lal=p(R)

converges P-strongly to a certain operator Br with || Bg||,g) < 2NM. By
theorem 3.2.6 we know that Bg belongs to L(E,P).

Furthermore, since dist(supp(gog\g), supp(1 — 1/1((3{]\[1%)) =[2-2[R=1& we
know that

hm dist(supp(gpgf%), supp(l — @ZJSQ)) = 00

and hence @, %A = a R w(N)I for large enough R > 0 and all o € ZV.
Thus for large enough R we have

~(N ~(N A~ N
BpA = Z SOEY,J%Ba,RSOé,J%A = Z Ba rp gRA¢aR
la|>p(R) |a|>p(R)
N ~(N (N ~
= > wi 2B, Rwi,%A@Dé,}%f - 90( RA%R aR[
|a|>p(R) la|>p(R)
+ Y pMBarAD RO,
|a|>p(R)
=> @SE%BmRAwSX%@SE%I + T,
la|>p(R)
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where Ty is defined as

A~

Tr= > SO(N)Ba R @a RI AWS,VJ%I

la|>p(R)

and [@&NI%I VAl = cpa JTA— Aga(N)I is the commutator of @, P)z[ and A. From
the assumption B, RAwi{V]%I = w; ]%I we get

Z Sﬁt(xNRBOé RA¢a R(pa I%I + T - Z ¢ ] + TR
la|>p(R) |e|>p(R)
_ A(N)y2 A(N)\2
= > (@ar) T +Tr=1— > (o p)]+Tr.
la|>p(R) la|<p(R)

First suppose A = Y cq axVi, for a suitable finite subset Q C ZV, is a
band operator. Hence we know that B, R[QOEYNI%] Al is in L(E,P) also. Thus
by lemma 3.3.6 Tk converges P-strongly in L£(FE) and by Theorem 3.2.6
we get that Tg is also in L(E,P). From theorem 3.2.8 we find that since

oM e BUCRY),

S ng RA A, R[HE(E) T Romo [Q&]YI%[’A]HL(E) =0

uniformly with respect to o € Z". Hence ||Tg|| c(p) tends to zero as R tends
to infinity.

Now fix a large enough R such that [Tk, < 1. Since Ty € L(E,P),
clearly also I + Ty € L(E,P) and we know from the Neumann series that
I + T} is invertible on F and

1

|7+ 7)Y, < Z 175 s, ST Talm =2

Also since L(E,P) is inverse closed in £(F) we know that (I + Tg)™*
L(E,P). Multiplying the above identity

BrA=1— Y @YD +Tr=1+Tp— 3 (gV)
la|<p(R) || <p(R)

with (I + Tg)™! from the left-hand side we attain

(I+Tr) 'BrA= (I +Tp) "I+ Tr— > (242
|a|<p(R)

=1 (I+Tp)" > (@UD.

laf<p(R)
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Since the (@&71%)21 is a finite-rank operator for any a € Z" and R > 0, it

is also P-compact. Hence Z|a\<p(3)(¢g}%)21 € K(E,P). Because (I +Tg)™!
belongs to L(E,P) we finally attain

Ky=—(I+Tp)™" Y (@Y € K(E,P).

la[<p(R)

The P-compactness of K7 implies that
(I—FTR)ilBRA:I—i‘Kl, Kl GIC(E7P>
and thus (I + Tg) ' Bg is a left-sided regularizer for A with

H(IJFTR)_IBRHE(E) < 2[|BRll ) < N+

For the right-sided regularizer the proof has a similar structure. The
series

~(N ~(N) 7(N
Cri= > @M0Cardlil= 3 ¢Card bl

la[=p(R) la|=p(R)

converges P-strongly in E with ||Cr|[ g < 2N M and for large enough R > 0

we have A@g]%[ = Q/AJ;{VJ%A@S,V}%] :
Thus
e X AR = Y A
|a|>p(R) |la|Zp(R)
= > w R‘Pa RACoc RS% RI+ Sr= ) A(N)@Z) AC"‘ R@a RI+ Sk
ol >p(R) lol=p(B)
= Y (@RI +Sp=T— 3 (U1 + Sk,
la|>p(R) lal<p(F)
where
A(N
SR = Z )I]CQ,RSO((J,I%I
lo|>p(R)

and [A, 90((1 rl] = Agﬁ((lN}%] - 95047 RA being the commutator. By the same ar-
guments as Tr above, Sk converges P-strongly in F, Sk belongs in L(E,P)
and [|Sg||zz) — 0 as R tends to infinity.

Fix R such that HSRHL(E) < % By the Neumann series I + Sg is invertible
and ||({ + SR)’lllg(@ < 2. Multiplying

ACr =1+ Sg — Z (@éNJ%)QI

|lal<p(R)
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from right-hand side with (I + Sg)~! yields us

ACR(I+Sp) ' =(I+Sr— > (@fx 122) I)(I+ Sg)™

|| <p(R)
=I1— 3 @V + Sk)7!
la|<p(R)
Thus with
Ky i=— Z (@A + Sp) ™!

being P-compact we have
ACR(I + Sg) ' =1+ Ky, K, <€ K(E,P).
Hence Cg(I + Sg)~! is a right sided regularizer of A with

|Cr(I+8p)7|, <M |(T+Sp)7Y|, <2V

L(E) L(E) —

For the case of band-dominated operators, assume that a band-dominated
operator A € L(FE) satisfies our assumptions and let (A, )nen be a sequence
of band operators with [|A — Ay, < L for all n € N. Then

Ba g AnMT = B g ADSHT — Bo (A — AT
= T = Bar(A— A)OCRT = (I — Bor(A— A))D(RT

and [|Ba,r(A = An)lpmy < M[|A = Al < M For large enough n we
have ||Ba.r(A — A,)|| £y < 1, so that by the Neumann series the operator
I — B, r(A — A,) is invertible with

1

L(E)S 1 - M

n

(7= Bund = 40 gy < 3 (Pt = 40|

Define Bc(f])% := (I — Bar(A— A,)) ' Bqy.r, so that one has

H O‘vRHL(E) - H(I — Ban(A - A”)>_1BQ’RHL(E) =

and

BUWAMIT = (I = Ba(A— A,)) "' BagAndi
= (I = Bug(A— A)) (I = Bag(A— A))0N1 = 0001
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Thus A, satisfies the assumptions with respect to a constant M, := 1_%

By what has been proven above, such band operators A, are P-Fredholm
and the P-essential norms of their regularizers are bounded by 2V 1M,
Since Ag/KC(E,P) is a unital Banach algebra, by defining

a, =A,+K(E,P) and a := A+ K(E,P)

we have [[a — anl| 4, /(g p) — 0asn — co. Because the algebra Ap/K(E, P)
is inverse closed in the Calkin algebra L(FE,P)/K(E,P) we know that a~! is
in AE/’C(E,P)

The sequence (M, ) ey tends to M as n tends to infinity and thus for
large enough n we have

-1 _ -1
iﬁg Ha” HAE//C(E,P) N ilég HA” Hc(E) = ilelg My = M,

as n — oo. Hence, since Ap/K(E,P) is a unital Banach algebra, ™! exists.
Furthermore, note that

1 1 1 -1 -1 -1 -1

aYa, —a)a,' =ataya —ataa,t =at —a

for all n € N. Hence

-1 -1 -1

Ha n HAE/IC(E,P) - Hml(a" —a)a, HAE/IC(E,P)

< Ha_lHAE/IC(E,P) lan = all g jcim.p) Har_llHAE/qu,P) =0

as n — 00, since
oz <
a

" lAg/kEp) T 1 - M

n

<2M

for all n > 2M. Thies means that a,;! — a™! as n — oo, so that by continuity

HailHAE/iC(E,m = HCLZIHAE/IC(E,P) <2V

Recall that [Ja, || 4, kep) < 2V M by the first part of the argument, where

a, ! denotes the P-Fredholm regularizer of the band operator A,.
O

Lemma 3.3.9. Let A € Ag be a band-dominated operator and suppose the
limit operator A, with respect to the sequence h € ‘H exists and is invertible.

Then, for each function ¢ € [®°(Z", £(X)) with finite support, there is a
number myg such that, for all m > mg there are operators B,,, and C,, in Ag
with properties || Bull 25 < 2[(An) "l zemyr 1Cmlloimy < 211(AR) " £y and

B AVim)©V-_nim) = Vi) PV-nm)ACm = Vim)PV_n(m)-
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Proof. Given ¢ in [°°(Z", £(X)) with finite support, we choose a sequence
X € I°(ZN, £L(X)) with finite support such that y¢ = ¢, that is X,n@m = ©m
for all m € ZV. For x,, : X — X, with x,, # 0 one may choose x,, = Ix to
be the identity operator on X.

From the definition of a limit operator we have

th(m)AVh(m)XI = AhX[ + Tm7

where Ty, := (V_pm)AVim) — An)xI € Ag are band-dominated operators on
E with ||T,,|| ;g tending to zero as m tends to infinity.

Now by multiplying with A, on the left-hand side we obtain
A;lv_h(m)AVh(m)XI = A;LlAhX] + A}:le

Additionally, by multiplying with ¢V_j ) on the right-hand side and using
the fact xo = ¢, we get

AR Vo) AVinyVonmy = (I + Ay T ) Vo)

By assumption A; ! exists and is bounded, thus by theorem 3.2.9 we can

pick mg such that HA,;leH < % for m > mg. Hence by the Neumann

L(E)
series I + A, 'T,, is invertible and
1

= < 2.
bo1- HAngm"E(E)

H(I T A£1Tm)_1H£(E) = ’i H(A]:ITm)kHL(E

Now by multiplying the equation
AV ) AViny 0V onmy = (I + A3 1) 9V n(om)
with Vi) (I + A4,'T,,) 7" from the left-hand side yields us
Vi) (I + A3 o) ™ AR Vo) AViam) 0 Voiom) = Viim) P V(om) -
Define B,,, € Ag as By, := Vi) (I + A}, ' Trn) LA, ' Vopmy. Thus we now have
Bin AViem)eVnm) = Vi) PV=n(m)

_ _ -1
and because th(m)HL(E) = HV_h(m)HL(E) = 1 wehave || By, z(py < 2 HAh HE(E).
For the right-hand side case we choose such a x € I®(ZN L(X)) with
finite support that ox = ¢. Thus from the definition of a limit operator we

have

XLV _pm) AVim) = XL Ap + S,
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where S, := X (V_p(m)AVi(m)— An) tends to zero when m — oo. Multiplying
from both sides analogously as in the left-hand side case we obtain

XIV_ ) AVim) = XL Ap + Sm
XV AViguy A3 = XTI+ S A7)
& Vigm) @Von(m) AVim Ay = Vi o + SmAy").

Choose again a large enough mg so that we have HSmAngﬁ(E) < % for m >

mp and thus from the Neumann series we know that I + S,, A, is invertible
and H(I + SmA,jl)AHﬁ(E) < 2. Finally by multiplying both sides with (I +

S AR )W pmy from the right-hand side we attain
Vim) P V() AV Ay (1 4+ S Ay ) ™ Vonmy = Vi) ©Von(m)-

Hence, defining C,, as C,, := Vh(m)Agl(I + SmA,jl)_lV_h(m) € Agp we get
the desired result

Vi) V-nm)ACm = Vam)V-_n(m)

with [[Conll oy < 2|43, [1] 0

L(E)

With the help of these lemmas we are ready to prove the other direction
of theorem 3.3.5.

Proof. Let A € A%, be a rich band-dominated operator. Suppose that all
limit operators of A are invertible and let the inverses of the limit operators
be uniformly bounded, meaning that

My = ilelg{ HA’;IHc(E) : Ay € O'Op(A)} < 00.

We will prove the claim by a counter assumption. Thus we assume that
A is missing either the right or left regularizer. We prove the left-regularizer
case here and the proof for missing right-regularizer is handled similarly.
Lemma 3.3.8 implies that for M := 2M, there is a natural number R € N
such that for all p(R) > 0 there is an a; € ZV with |a;| > p(R) and

BA,‘;O&LRI 7& &al,R[

for all B € L(E,P) with || B[ ;g < M.

We construct a sequence as follows. Suppose ay, ..., oy € Z" have been
constructed. By choosing p(R) = |ay_1], there exists an «y, € Z" such that
lag| > p(R) with

BAUa, I # Yoy rl,
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for all B € L(E,P) with ||B| ;) < M. Continuing with this construction
we obtain a sequence (o )gen With |ag| — 0o as k tends to infinity and

BAQ/AJO%,RI 7& @Zak,Rla

for all k € N and for all B € L(E,P) with || B[z < M.
Since A is rich, for the sequence h := (apR)ren € H there exists a
subsequence g = (ay,, R)men which tends to infinity and such that the limit

< My.

Thus by lemma 3.3.9 for every function ¢ € [*°(Z", £(X) with finite support
there is a number my € N such that for all m > mg there is an operator B,,

in Ap C L(E,P) with || Byl < 2 HAQ—IHE(E) < 2M 4 and

B AVym)&V-_g(m) = V(m)EV-g(m)-

operator A, exists. By our assumption A, is invertible and HA;l HL(E)

Choosing ¢ := %73 and any f € E we get

V;J(m)fvfg(m)f(x) = Vakafvfakaf(x)
= Vo RU0R(T) Vo0, rf(7) = VakaT;o,R(ﬁ)f(x + o, R)
= 1&0,3(26 — Oéka)f(SL’ + aka — Oéka>
~ T -
=Y(= — oy, ) f(z) = ¢akm,Rf($>-
Thus we have A
Vom)EV-g(m) = Yoy, .rRI

and as a consequence also

BmA,[onakm ,RI = @Eakm ,RI

for a certain B,, € L(E,P) such that |[Byly4m < 2Ma = M. This is
a contradiction with our construction of the sequence (ay)reny and thus we
conclude that A is P-Fredholm. O
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