
N O V E L C O M P U TAT I O N A L M E T H O D S
F O R S T U D Y I N G T H E R O L E A N D

I N T E R A C T I O N S O F T R A N S C R I P T I O N
FA C T O R S I N G E N E R E G U L AT I O N

tuomo hartonen, msc

Integrative Life Sciences Doctoral Program
Research Programs Unit

Faculty of Medicine
University of Helsinki

and
Department of Biochemistry

University of Cambridge

Academic dissertation
To be publicly discussed with permission of

the Faculty of Medicine of the University of Helsinki,
in Lecture Hall 2, Biomedicum 1, Haartmaninkatu 8, Helsinki

on 2nd May 2022, at 17.00.

Helsinki 2022



supervisors:
Jussi Taipale, PhD, Professor, University of Cambridge, University of Helsinki, Karolinska
Institute
Teemu Kivioja, PhD, Docent, University of Helsinki

reviewers:
Veli Mäkinen, PhD, Professor, University of Helsinki
Markus Heinonen, PhD, Academy Research Fellow, Aalto University and Finnish Center
of AI

official opponent:
Julia Zeitlinger, PhD, Faculty, The Graduate School of the Stowers Institute for Medical
Research. Associate Professor, Department of Pathology and Laboratory Medicine, Division
of Cancer and Developmental Biology, University of Kansas School of Medicine

The Faculty of Medicine uses the Urkund system (plagiarism recognition) to examine all
doctoral dissertations.

ISBN 978-951-51-8007-0 (paperback)
ISBN 978-951-51-8008-7 (PDF)
http://ethesis.helsinki.fi
Unigrafia Oy
Helsinki 2022



I agree with you that the subject is most interesting.
But to express myself in regard to it would

necessitate a concentration of thought which,
in the midst of my present labors, is impossible for me.

— Nikola Tesla, 1908
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A B S T R A C T

Regulation of which genes are expressed and when enables the existence of different cell
types sharing the same genetic code in their DNA. Erroneously functioning gene regulation
can lead to diseases such as cancer. Gene regulatory programs can malfunction in several
ways. Often if a disease is caused by a defective protein, the cause is a mutation in the
gene coding for the protein rendering the protein unable to perform its functions properly.
However, protein-coding genes make up only about 1.5% of the human genome, and
majority of all disease-associated mutations discovered reside outside protein-coding genes.
The mechanisms of action of these non-coding disease-associated mutations are far more
incompletely understood.

Binding of transcription factors (TFs) to DNA controls the rate of transcribing genetic
information from the coding DNA sequence to RNA. Binding affinities of TFs to DNA have
been extensively measured in vitro, and the genome-wide binding locations and patterns
of TFs have been mapped in dozens of cell types. Despite this, our understanding of how
TF binding to regulatory regions of the genome, promoters and enhancers, leads to gene
expression is not at the level where gene expression could be reliably predicted based on
DNA sequence only.

In this work, we develop and apply computational tools to analyze and model the effects
of TF-DNA binding. We also develop new methods for interpreting and understanding
deep learning based models trained on biological sequence data. In biological applications,
the ability to understand how machine learning models make predictions is as, or even
more important as raw predictive performance. This has created a demand for approaches
helping researchers extract biologically meaningful information from deep learning model
predictions.

We develop a novel computational method for determining TF binding sites genome-
wide from recently developed high-resolution ChIP-exo and ChIP-nexus experiments.
We demonstrate that our method performs similarly or better than previously published
methods while making less assumptions about the data. We also describe an improved
algorithm for calling allele-specific TF-DNA binding.

We utilize deep learning methods to learn features predicting transcriptional activity
of human promoters and enhancers. The deep learning models are trained on massively
parallel reporter gene assay (MPRA) data from human genomic regulatory elements,
designed regulatory elements and promoters and enhancers selected from totally random
pool of synthetic input DNA. This unprecedentedly large set of measurements of human
gene regulatory element activities, in total more than 100 times the size of the human
genome, allowed us to train models that were able to predict genomic transcription
start site positions more accurately than models trained on genomic promoters, and
to correctly predict effects of disease-associated promoter variants. We also found that
interactions between promoters and local classical enhancers are non-specific in nature.
The MPRA data integrated with extensive epigenetic measurements supports existence of
three different classes of enhancers: classical enhancers, closed chromatin enhancers and
chromatin-dependent enhancers. We also show that TFs can be divided into four different,
non-exclusive classes based on their activities: chromatin opening, enhancing, promoting
and TSS determining TFs.
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Interpreting the deep learning models of human gene regulatory elements required appli-
cation of several existing model interpretation tools as well as developing new approaches.
Here, we describe two new methods for visualizing features and interactions learned by
deep learning models. Firstly, we describe an algorithm for testing if a deep learning model
has learned an existing binding motif of a TF. Secondly, we visualize mutual information
between pairwise k-mer distributions in sample inputs selected according to predictions by
a machine learning model. This method highlights pairwise and positional dependencies
learned by a machine learning model. We demonstrate the use of this model-agnostic
approach with classification and regression models trained on DNA, RNA and amino acid
sequences.
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T I I V I S T E L M Ä

Monet eliöt koostuvat useista erilaisista solutyypeistä, vaikka kaikissa näiden eliöiden
soluissa onkin sama DNA-koodi. Geenien ilmentymisen säätely mahdollistaa erilaiset
solutyypit. Virheellisesti toimiva säätely voi johtaa sairauksiin, esimerkiksi syövän puhkea-
miseen. Jos sairauden aiheuttaa viallinen proteiini, on syynä usein mutaatio tätä proteiinia
koodaavassa geenissä, joka muuttaa proteiinia siten ettei se enää pysty toimittamaan tehtä-
väänsä riittävän hyvin. Kuitenkin vain 1,5 % ihmisen genomista on proteiineja koodaavia
geenejä. Suurin osa kaikista löydetyistä sairauksiin liitetyistä mutaatioista sijaitsee näiden
ns. koodaavien alueiden ulkopuolella. Ei-koodaavien sairauksiin liitetyiden mutaatioiden
vaikutusmekanismit ovat yleisesti paljon huonommin tunnettuja, kuin koodaavien alueiden
mutaatioiden.

Transkriptiotekijöiden sitoutuminen DNA:han säätelee transkriptiota, eli geeneissä ole-
van geneettisen informaation lukemista ja muuntamista RNA:ksi. Transkriptiotekijöiden
sitoutumista DNA:han on mitattu kattavasti in vitro-olosuhteissa, ja monien transkriptiote-
kijöiden sitoutumiskohdat on mitattu genominlaajuisesti useissa eri solutyypeissä. Tästä
huolimatta ymmärryksemme siitä miten transkriptioitekijöiden sitoutuminen genomin
säätelyelementteihin, eli promoottoreihin ja vahvistajiin, johtaa geenien ilmentymiseen ei
ole sellaisella tasolla, että voisimme luotettavasti ennustaa geenien ilmentymistä pelkästään
DNA-sekvenssin perusteella.

Tässä työssä kehitämme ja sovellamme laskennallisia työkaluja transkriptiotekijöiden
sitoutumisesta johtuvan geenien ilmentymisen analysointiin ja mallintamiseen. Kehitämme
myös uusia menetelmiä biologisella sekvenssidatalla opetettujen syväoppimismallien tul-
kitsemiseksi. Koneoppimismallin tekemimen ennusteiden ymmärrettävyys on biologisissa
sovelluksissa yleensä yhtä tärkeää, ellei jopa tärkeämpää kuin pelkkä raaka ennustetark-
kuus. Tämä on synnyttänyt tarpeen uusille menetelmille jotka auttavat tutkijoita louhimaan
biologisesti merkityksellistä tietoa syväoppimismallien ennusteista.

Kehitimme tässä työssä uuden laskennallisen työkalun, jolla voidaan määrittää trans-
kriptiotekijöiden sitoutumiskohdat genominlaajuisesti käyttäen mittausdataa hiljattain
kehitetyistä korkearesoluutioisista ChIP-exo ja ChIP-nexus kokeista. Näytämme, että kehit-
tämämme menetelmä suoriutuu paremmin, tai vähintään yhtä hyvin kuin aiemmin julkais-
tut menetelmät tehden näitä vähemmä oletuksia signaalin muodosta. Esittelemme myös
parannellun algoritmin transkriptiotekijöiden alleelispesifin sitoutumisen määrittämiseksi.

Käytämme syväoppimismenetelmiä oppimaan mitkä ominaisuudet ennustavat ihmisen
promoottori- ja voimistajaelementtien aktiivisuutta. Nämä syväoppimismallit on opetettu
valtavien rinnakkaisten reportterigeenikokeiden datalla ihmisen genomisista säätelyele-
menteistä, sekä aktiivisista promoottoreista ja voimistajista, jotka ovat valikoituneet satun-
naisesta joukosta synteettisiä DNA-sekvenssejä. Tämä ennennäkemättömän laaja joukko
mittauksia ihmisen säätelyelementtien aktiivisuudesta - yli satakertainen määrä DNA-
sekvenssiä ihmisen genomiin verrattuna - mahdollisti transkription aloituskohtien sijainnin
ennustamisen ihmisen genomissa tarkemmin kuin ihmisen genomilla opetetut mallit. Nä-
mä mallit myös ennustivat oikein sairauksiin liitettyjen mutaatioiden vaikutukset ihmisen
promoottoreilla.

Tuloksemme näyttivät, että vuorovaikutukset ihmisen promottorien ja klassisten paikal-
listen voimistajien välillä ovat epäspesifejä. MPRA-data, integroituna kattavien epigeneettis-
ten mittausten kanssa mahdollisti voimistajaelementtien jaon kolmeen luokkaan: klassiset,
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suljetun kromatiinin, ja kromatiinista riippuvat voimistajat. Tutkimuksemme osoitti, että
transkriptiotekijät voidaan jakaa neljään, osittain päällekkäiseen luokkaan niiden aktii-
visuuksien perusteella: kromatiinia avaaviin, voimistaviin, promotoiviin ja trankription
aloituskohdan määrittäviin transkriptiotekijöihin.

Ihmisen genomin säätelyelementtejä kuvaavien syväoppimismallien tulkitseminen vaa-
ti sekä olemassaolevien menetelmien soveltamista, että uusien kehittämistä. Kehitimme
tässä työssä kaksi uutta menetelmää syväoppimismallien oppimien muuttujien ja niiden
välisten vuorovaikutusten visualisoimiseksi. Ensin esittelemme algoritmin, jonka avulla
voidaan testata onko syväoppimismalli oppinut jonkin jo tunnetun transkriptiotekijän
sitoutumishahmon. Toiseksi, visualisoimme positiokohtaisten k-meerijakaumien keskei-
sinformaatiota sekvensseissä, jotka on valittu syväoppimismallin ennusteiden perusteella.
Tämä menetelmä paljastaa syväoppimismallin oppimat parivuorovaikutukset ja positiokoh-
taiset riippuvuudet. Näytämme, että kehittämämme menetelmä on mallin arkkitehtuurista
riippumaton soveltamalla sitä sekä luokittelijoihin, että regressiomalleihin jotka on opetettu
joko DNA-, RNA-, tai aminohapposekvenssidatalla.
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1
I N T R O D U C T I O N

The human body contains numerous different cell types [1] and they all share the same
genetic code that is guiding their organization and function. The vast spectrum of different
functions of human cells, from oocytes to neurons and from skeletal muscle cells to
photosensitive retinal ganglion cells of the eye, is achieved through regulation of what
part of the "genetic blueprint" encoded into the DNA is read and how it is interpreted.
Regulation of gene expression is a complex, multi-step process involving virtually all steps
required in producing functional proteins starting from the genetic code. Transcription
factors (TFs), the focus of this study, are proteins that recognize specific DNA-sequences
through their DNA-binding domains (DBDs), a domain unique for TFs [2]. How TFs
read the regulatory DNA sequences and control gene expression, is understood on a very
conceptual level only.

The words of the regulatory code, the sequences that bind given TFs have been measured
in vitro (e.g. [3]), but the mechanisms by which the regulatory sentences - combinations of
regulatory DNA elements controlling the expression of a given gene - are constructed at a
systems-level, are not well understood. This is in spite of major efforts in determining the
binding locations of TFs in vivo in multiple cell types (e.g. [4]). Detailed understanding of
how TFs regulate gene expression is of utmost importance when trying to understand the
mechanisms of action of non-coding disease-associated variants. Majority of the disease-
associated variants are located outside of the coding sequence, but their mechanisms of
action are far more incompletely known than those variants that hit the protein-coding
genes [5].

The computational methods developed and applied in this work concentrate on studying
one of the early steps in the chain of processes involved in regulation of gene expression;
initiation of transcription. Transcription is the process where specific proteins, known
as RNA polymerases, synthesize RNA from the DNA templates located at the coding
regions of the genome. DNA in the cell nucleus is wound around nucleosomes and
packed into a tight structure where the coding genomic sequences are inaccessible to the
large protein complexes required for initiation of transcription, such as Mediator and the
RNA polymerases. Making this tightly-packed, chromatin-bound DNA accessible for the
transcriptional machinery is achieved by a combination of different processes such as post-
translational modification of the histone proteins forming the nucleosomes, demethylation
of the DNA and binding of TFs to DNA.

In addition to DBDs, TFs can also contain trans-activation domains (TADs) harboring
binding sites for other proteins, or signal-sensing domains (SSDs) that bind to external
(non-protein) ligands. TFs regulate transcription by binding to regulatory regions of the
genome, to distal enhancers, and to gene proximal promoters. Binding affinities of TFs
have been extensively measured in vitro (e.g. [3, 6–8]) and their binding locations in
different human cell types cataloged in vivo (e.g. [4, 9, 10]). In Publication I we develop a
novel computational tool for separating true TF-DNA binding event signals from noise
and for accurately detecting the binding sites of TFs genome-wide in high-resolution
ChIP-nexus [11] and ChIP-exo experiments [12].
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Recently developed massively parallel reporter gene assays (MPRAs) such as STARR-
seq [13] have allowed researchers to start measuring the effects of TF binding to gene
expression in humans more directly [14–19]. However, the limited diversity of sequences in
the human genome and evolutionary background from processes not directly related to
regulation of transcription can lead to models of transcriptional regulation trained based
on human genomic DNA to over-fit [20]. Recently, completely random synthetic DNA was
used to probe the promoter activities of TFs in yeast [21]. In Publication II, we build on
this idea, and use an array of MPRA experiments to test enhancer and promoter activities
of human genomic sequences, designed regulatory elements and elements enriched from
completely random synthetic input DNA.

Studies of the three dimensional organization of the genome using methods such as Hi-
C [22] and ChIA-PET [23] have increased our understanding of the longer-range interactions
in the genome, for example by revealing the existence of topologically associated domains
(TADs) [24] in mammalian genomes. TADs are regions of the genome with more frequent
interactions withing the TAD than between the TAD and outside regions. The functions of
TADs are still debated due to some conflicting results [25], but disruption of some TAD
boundaries has been shown to be associated with wide range of diseases (see e.g. [26]).

Despite all these advances, we do not currently understand the activities and interactions
of TFs driving gene expression well enough to be able to predict gene expression from the
DNA sequence alone. Examples of strict transcriptional regulatory logic, such as the Inter-
feron enhanceosome [27], exist, but also enhancers and promoters with looser regulatory
logic have been described (see for example [28, 29]). Also the mechanisms of how contacts
between promoters and enhancers are established are incompletely understood. Recently,
liquid-liquid phase separation, where so called intrinsically disordered regions (IDRs)
of trans-activation domains of TFs mediate formation of phase-separated compartments
containing higher concentrations of TFs and other proteins, has been studied as at least
one of the possible mechanisms [30–33].

Some examples exist in the literature, where researchers have been able to show disease-
associated mutations creating or destroying binding sites for TFs (e.g. [34–37]). In Publica-
tion I we present an improved pipeline for studying allele-specific binding (ASB) of TFs
from ChIP-exo/nexus experiments and in Publication II we train deep learning models
that are able to predict and explain the effects of known disease-associated variants. Being
able to predict and explain the effects of non-coding variants is one of the main goals of
modern deep learning-based models of gene regulation.

The applications of deep learning and artificial intelligence (AI) have sky-rocketed in
the last years in all areas of society. According to the AI Index Report for 2021 [38], for
example both corporate investment in AI and the number of peer-reviewed scientific
AI-related publications beat the previous annual records by large margins. The beginning
of the so called "deep learning revolution" is usually dated to around 2011-2012, when
fast implementations of convolutional neural network (CNN) algorithms on graphics
processing units (GPUs) allowed breakthroughs in benchmark problems such as first time
superhuman performance of a machine learning model in a visual recognition contest [39].
Several inventions and improvements on the deep learning model architectures have since
been described, such as max pooling [40] or batch normalization [41], that allow faster
training of deeper networks.

The breakthrough application of deep learning, and more specifically CNNs, to model
biological sequence data was DeepBind [42], that pioneered the use of CNNs in predicting
binding sites of TFs and RNA binding proteins (RBPs). Since then, deep learning has been
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successfully applied to for example learning the regulatory code of the accessible regions
of the human genome [43] and famously, to state-of-the-art in silico protein folding starting
from multiple sequence alignments (MSAs) of protein families [44, 45]. In Publication II,
we train CNNs on unbiased MPRA data probing in aggregate more than hundred times
larger sequence space than what is available for models trained on human genomic data.
This allows us to for example train a model of human promoters that can correctly identify
and predict the effects of known disease-associated variants and to predict the positions of
active transcription start sites in the human genome more accurately than similar models
trained on the genome itself.

Deep learning has been traditionally viewed as a "black box" method, that offers superior
performance at the cost of model interpretability compared to simpler methods like linear
regression, where the contributions of features can be read directly from the regression
coefficients. Deep learning model interpretation has been a hot research topic of late,
especially in context of biological research where model interpretation is often times as
important as model performance in prediction. The early interpretation of CNNs trained
on biological data relied on designing the network architecture so that visualization of the
first layer filters reveals the types of sequence features learned by the model or testing all
possible single position variants of an input sample and scoring them with the model [42,
43]. In Publication II, we develop novel approaches for analyzing features learned by CNNs
trained on DNA sequence data and for comparing the features used by simpler models to
features learned by the CNNs. In Publication III, we develop a general tool for interpreting
and visualizing pairwise dependencies and positional preferences learned by virtually any
type of machine learning models trained on sequence data.

In the following sections, methods and concepts central to this study are introduced in
more detail.

1.1 high-throughput methods for studying transcription factor binding
to dna

On a high level, high-throughput methods for studying binding of TFs to DNA can be
divided into in vitro and in vivo methods. The in vitro methods, such as protein binding
microarrays [46] (PBMs) or HT-SELEX [47] measure binding of purified TFs or DNA-
binding domains (DBDs) of TFs to designed or random DNA sequence probes, whereas in
vivo experiments such as ChIP-seq [48] or CUT&RUN [49] identify the positions bound by
a TF of interest genome-wide. The aim of the in vitro experiments is to measure the binding
affinities of the TFs towards DNA sequences and to build biochemical models of TF-DNA
binding that explain how TFs find their correct binding sites in the genome. The in vivo
experiments aim at pinpointing the exact binding locations of the TF of interest in the cell
type of interest, but can also be used to study and model the DNA sequences bound by the
TF of interest in the cellular conditions.

The in vitro TF-DNA binding experiments are based on the idea of introducing a designed
or random set of DNA sequences to the TF of interest and observing which sequences the
TF binds. This idea was introduced already in the 1980s for studying the common features
in sequences bound by a single TF [50]. The development of DNA microarrays during
the 1990s [51, 52] paved way for development of PBMs [46, 53] allowing high-throughput
characterization of the sequence specificities of TF-DNA interactions. Shortly, in PBMs,
a robot is used to print a library of hundreds of thousands of double-stranded DNA
oligonucleotides on a glass slide. Then, an epitope-tagged TF of interest is introduced, and

17



the TF then binds to those DNA oligonucleotides that contain a sequence recognized by
the DBD of the TF. The microarray slide is then washed to get rid of non-specific binding,
and the TF-bound sequences are retrieved using the epitope-tag.

Development of HT-SELEX (high-throughput systematic evolution of ligands by expo-
nential enrichment) [47] allowed probing of larger sets of longer DNA oligonucleotides,
and with smaller amounts of purified protein needed than PBMs. SELEX was originally
described already in 1990 [54, 55]. The SELEX protocol starts with a synthesis of a large
library of DNA oligonucleotides with a randomized middle region flanked by sequencing
primers. The library is then exposed to a TF (or other ligand) of interest. After washing
and elution, the resulting population of sequences more specific to the ligand of interest
is amplified by polymerase chain reaction (PCR). The resulting amplified population is
then sequenced, and as the name suggests, in HT-SELEX the this is done using the modern
high-throughput ("next generation") sequencers. These elution and washing cycles are
usually repeated multiple times starting from the enriched sequence population from the
previous cycle. The versatile HT-SELEX method has subsequently been successfully applied
to e.g. measure binding specificities of hundreds of human monomer and dimer TFs [3,
56], the effect of cytosine methylation on TF-DNA binding [8] and the binding affinities of
TFs to nucleosome-bound DNA [57].

Many of the current high-throughput, genome-wide in vivo experimental methods for
studying TF binding rely on chromatin immunoprecipitation (ChIP), first described in the
1980s [58]. In ChIP assays, DNA-binding proteins are cross-linked to DNA in living cells
usually using formaldehyde (as pioneered in [59]). The DNA cross-linked to the proteins is
then sheared into fragments and the DNA bound by protein of interest is selected using
an antibody specific to the protein. Similarly to PBMs, microarray techniques were used
to develop a high-throughput version of ChIP, known as ChIP-on-ChIP [60]. In ChIP-on-
ChIP, the sequences selected using the antibody are purified to single stranded DNA, and
introduced to a DNA microarray surface, where single-stranded fragments of the genome of
interest are fixed. By observing which fixed genomic DNA fragments (with known genomic
coordinates) are bound, the binding sites of the TFs can be mapped to the genome. While
ChIP-on-ChIP can cover only part of the genome, as the microarray can only accommodate
a limited number of genomic fragments, the ChIP-based experiments coupled with next
generation sequencing, ChIP-seq [48], ChIP-exo [12] and ChIP-nexus [11], can measure
TF binding to all of the mappable genome. These three techniques are described in more
detail in the Methods chapter.

The recently developed CUT&RUN (cleavage under targets and release using nuclease)
technique [49] is a promising alternative for replacing ChIP-seq, as it does not employ cross-
linking of proteins to DNA, the step in ChIP protocols that is known to easily produce
false-positive binding events [61, 62]. In CUT&RUN, a protein capable of recognizing
antibodies from a certain organism (such as protein-A for human proteins), is genetically
fused with micrococcal nuclease (MNase) that cleaves double-stranded DNA. When this
complex binds to the antibody-tagged TF of interest, the MNase cleaves the bound DNA
and the sequence corresponding to the site bound by the TF can be retrieved and later
identified with high-throughput sequencing.

1.2 modeling the binding affinities of tfs to dna sequences

In principle, the binding affinities of a given TF towards any DNA could be completely
described by listing relative binding affinities of the TF to each possible DNA sequence. In
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practice this kind of a model is not very easily interpretable by humans when the length of
the DNA sequences is longer than a few base pairs and is thus not very useful. Models
describing the affinity of a TF to DNA sequences have two main purposes: 1) to summarize,
and present the binding affinities in a format easily interpretable by humans and 2) to be
able to predict which DNA sequences the TF binds and which not. Usually some models
fulfill the purpose 1 better and some others purpose 2.

The current baseline model for TF-DNA binding affinities is the position weight matrix
(PWM) [63]. The PWM model has stood the test of time even though it is known to predict
the in vivo binding sites of TFs rather poorly (see for example the comparison in [42]). The
main reason of this is likely its simplicity as it assumes independence between positions
of the model. Thus, the sequence logo representation of the PWM model very clearly and
concisely describes the DNA sequences favored by the TF (see example from Figure 1.1).
Moreover, the PWM is still a good model of TF-DNA binding in the absence of for example
nucleosomes and interactions with other proteins.

The main assumption in the PWM model is that the positions of the model are inde-
pendent from each other. The model is constructed by counting the occurrence of each
nucleotide at each position either from simple alignment or using more involved algorithms
designed for finding PWM models from sets of DNA sequences. Review of these algorithms
is outside the scope of this work. A matrix that reports the frequencies of nucleotides
along the positions of the model is called a position frequency matrix (PFM). The position
weight matrix is created from the PFM by computing the position-specific log-likelihoods
relative to expected frequencies of nucleotides given by a background distribution. If the
position-specific nucleotide frequencies from the PFM are denoted as fb,x, where b marks
the nucleotide and x marks the position along the model, PWM is then calculated as

Fb,x = log2( fb,x/Bb), (1.1)

where Bb is the frequency of nucleotide b from the background model. Thus the PWM
model can be used to express the probability of any sequence with same length than the
PWM to bind the TF modeled by the PWM assuming the given background model and
independence of positions.

Numerous more complex models of TF-DNA binding have been proposed over the years,
and some of them are briefly outlined in the following to give a general idea of the different
approaches. Adjacent dinucleotide model (ADM) [64] is an inhomogeneous Markov chain
of order 1, where dependencies are modeled only between adjacent positions of the model.
An example visualization of the ADM model is shown in Figure 1.1. Bayesian Markov
Models (BaMMs) [65] are higher order Markov models where lower order models function
as priors to higher order models. Recently, also deep learning models have been used to
model TF-DNA binding achieving state-of-the-art predictive performance [42], but the
interpretation of these models starts to become more challenging (see example from Figure
1.1). Deep learning models in genomics and their interpretation are discussed in more
detail below.

1.3 deep learning in genomics

Due to the developments in computing hardware and deep learning algorithms during the
last decade, deep learning methods have become a mainstay also in biological research (see
e.g. [67] for a comprehensive review). One of the first applications of modern deep learning
methods in genomics was to predict TF-DNA binding using DNA sequence as input. These
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Figure 1.1: Examples of models describing the affinity of the CTCF protein to DNA sequences. a)
PWM-model (position weight matrix), where the height of each letter is proportional to
the affinity for the given nucleotide at each position. Model positions are independent
of each other. b) ADM (adjacent dinucleotide model), where the size of each letter at
each position is proportional to the affinity for the given nucleotide at that position and
the thickness of the lines connecting adjacent positions is proportional to the transition
probability from position x − 1 to x given the nucleotides connected by the line.
Adjacent positions are dependent. c) DeepBind [42] CNN model (convolutional neural
network), where each logo corresponds to one convolutional filter (motif detector)
learned by the neural network (top 5 filters shown for simplicity). Opacity of the logo
corresponds to the weight of the given filter in the model. The more complex the
models become, the harder it is usually to intuitively visualize the types of sequences
favored by the model. The CNN model can learn interactions between any positions
of the model and between the different filters, and thus the visualization shown here
does not fully describe the model. All models have been generated from the CTCF
HT-SELEX experiment published in [3]. The PWM and ADM were generated using
Moder2 program [66], and the DeepBind model was downloaded from the website
provided by the authors http://tools.genes.toronto.edu/deepbind/.
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convolutional neural network (CNN) models (e.g. [42, 68]) outperformed earlier machine
learning methods and thus paved the way for larger scale application of deep learning
methods to study DNA sequence elements controlling gene expression.

The innovation in applying the CNN methods, that had previously achieved massive
successes in computer vision (see for example [69, 70]), was to consider the DNA sequence
as an "image" of a sort. In computer vision applications, the input for the CNN is a two
dimensional image with usually three color channels (red, green, blue). Analogously, DNA
sequence is a one dimensional image with four channels (A, C, G and T). This means
that if one replaces the two dimensional convolutions used in computer vision with one
dimensional convolutions, the power of the CNN methods can be harnessed to analyze
the DNA sequence. Large datasets of TF-DNA binding were readily available both in
vitro (e.g. [3]) and in vivo (e.g. [4]) allowing training of these new, training data intensive
models. In a recent systematic comparison of neural network architectures for predicting
DNA and RNA binding specificities [71], mixed CNN/RNN (Recurrent Neural Network)
architectures were found to perform better than pure CNN or RNN architectures. Shortly,
in RNNs the hidden layers of the network are connected both to the input and to the
internal state of the model containing information about the previous inputs. This serves
as a sequential memory allowing the RNN to learn interactions between distant elements
in the input sequence. RNNs have been especially successfully used in natural language
processing [72].

A logical next step from models predicting binding of a single TF is predicting activities
of entire gene regulatory elements, promoters and enhancers. The ultimate aim of these
models is to be able reliably explain and predict the effect of non-coding variants to gene
expression. The earliest of these types of methods, DeepSEA [73], was trained to predict
919 chromatin features including DNAse, TF and histone features, using DNA sequence
from the genome as input. This work demonstrated that a CNN based model trained on
genomic DNA sequence was able to predict the effects of individual SNPs on TF binding
and to prioritize functional SNPs (single nucleotide polymorphisms) from non-functional
based on the model predictions. The authors of DeepSEA later presented an even more
comprehensive CNN based model [74] trained on over 2,000 different histone mark, TF
and DNA accessibility profiles in over 200 different cell types. With this updated method
called ExPecto, the authors also introduced a spatial feature transformation module that
allowed integrating signal from a 40 kb window.

CNN models have been shown to perform well in classifying between promoter and non-
promoter sequences [75]. Enhancers are more difficult to model mostly because no single
biochemical assay can reliably identify all enhancers. Because of this, most enhancer models
are actually predicting DNA accessibility, as genome-wide measurements of chromatin
accessibility are available in many tissues (see e.g. [4]). Basset [43] used CNNs to predict
chromatin accessibility in over 100 cell types and showed that a CNN-based method learned
known TF binding motifs associated with open chromatin and predicted greater chromatin
accessibility changes for likely causal GWAS (Genome-Wide Association Study) SNPs.
In contrast to predicting chromatin accessibility profiles like Basset, DeepEnhancer [76]
trained CNN classifiers to separate genomic enhancers from non-regulatory sequences
using an enhancer set defined by bidirectional transcription signal in CAGE experiments
from the FANTOM5 project [77]. With Basenji [78], the receptive field of Basset model
was expanded to cover a much larger 131 kb region of the input DNA sequence to be
able to model distal regulatory interactions, and to predict high-resolution quantitative
genomic measurement profiles instead of binary chromatin accessibility. The increase in the
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receptive field was made possible by use of dilated convolutional layers [79]. Also another
recently published model, BPNet [80] was trained to predict quantitative TF-DNA binding
profiles, but on base-resolution ChIP-nexus data of genome-wide binding of selected TFs.
This led to novel insights into soft motif syntax for mouse TFs Oct4, Sox2, Nanog and Klf4.

Recently, Enformer [81] introduced the use of so called transformer models, that have
been previously successfully applied to for example natural language processing problems
(see e.g. [82]), into modeling gene regulatory elements. In practice, the main difference
between transformers and CNNs is that in transformer models, each position directly sees
(or attends to), all other positions in the model and this can allow a more efficient flow of
information between elements separated by long distances in the input sequences, such as
promoters and enhancers. Using CNNs, distal elements can only be seen by adding more
and more layers to the network. Using this feature of transformers, Enformer seems to be
able to better integrate distal enhancers with promoters to predict gene expression than
earlier CNN-based models [81].

1.4 interpretation of deep learning models in genomics

Increasing popularity and successes of deep learning models in genomics have created a
demand for tools that help translate the rules of gene regulation learned by these complex
models into human understandable format. Even if the ability of deep learning models
to predict the effects of variants is already a great achievement in itself, understanding
how these predictions are made is key to new mechanistic insights of the gene regulatory
processes. Thus already the very first applications of deep learning to prediction of TF-DNA
binding and chromatin accessibility also developed ways to visualize the features learned
by the models.

Directly visualizing the filters of the first convolutional layer, also called the "motif
detector" layer [42], of a CNN is one of the earliest model interpretation strategies. As the
motif detector layer is directly reading in the one-hot encoded DNA sequence, the weights
of the filters in this layer can be visualized as sequence logos similar to PWMs, where the
weight of each letter at each position corresponds to the importance of that given nucleotide.
Subsequent research has shown that care must be taken when designing the CNN model
architecture if the motif detector logos are used to draw conclusions about biologically
meaningful features learned by the model, as the features learned by the first layer filters
heavily depend on the model architecture [83]. An alternative to direct visualization of
the motif detector logos is to align the sequences corresponding to highest activation of
each first layer filter and present this alignment, weighted by the model prediction, as a
sequence logo [43].

Another deep learning model interpretation strategy used already by the early deep
learning applications to genomics [43, 73] is so called in silico saturation mutagenesis (ISM).
In ISM, systematic mutations are introduced to a certain position of input sequences and
the change in the deep learning model predictions is recorded for each mutant. ISM is
motivated by so called saturation mutagenesis experiments, and it is the standard way of
predicting the effects of variants to DNA sequences. The main drawback of ISM is that it
is computationally expensive, as the whole model needs to be evaluated for each variant
scored. Recently developed fastISM [84] alleviates this problem for certain types of CNN
architectures by restricting the calculation of variant effects to those parts of intermediate
convolutional layers that are affected by the variant.
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Similarly to ISM, so called feature attribution methods highlight the positions most
important for the deep learning model predictions in a specific input sample scored by the
model using backpropagation (e.g. [85–87]). Because of the efficiency of backpropagation,
the feature attribution methods can run orders of magnitudes faster than ISM. However,
methods such as DeepLIFT [86] compute the feature attribution scores against certain refer-
ence sequences and the choice of the reference sequence can affect the feature attributions.
Strength of both ISM and feature attribution methods in deep learning model interpre-
tation is that the feature importances and predicted effects of variants can be intuitively
visualized for each input sample as a sequence logo. A drawback is that they operate on
the level of an individual input sample which can sometimes complicate making general
conclusions about features learned by the model. To overcome this caveat, approaches like
motif discovery guided by the predicted attribution scores of the deep learning model [88],
sampling the maximum entropy distribution around sample inputs [89] and visualization
of feature maps learned by the deep learning model [90] have been developed.

In addition to scoring single nucleotide variants, a pre-trained deep learning model
can also be used to score synthetic sequence inputs with embedded known features. This
approach has been described as using the deep learning model as an "oracle" [80] as the
researcher is using the deep learning model directly to test hypotheses. For example in [80]
the BPnet model trained on ChIP-nexus binding profiles was used to score sequences with
different spacings between TF binding sites to discover preferred spacings.

1.5 outline

Despite major developments in both "wet-lab" and "dry-lab" methods in the recent years,
as discussed above, sequence determinants of human gene regulatory elements remain
incompletely understood. Rapid development of high-throughput genomics measurements
has created an increasing demand for novel computational method development and
application of state-of-the art computational modeling tools from other fields to genomics
data.

In this study, we have utilized both approaches to 1) gain novel insights into the sequence
determinants of human promoters and enhancers and interactions between them and
2) to publish computational methods for the research community to use in analysis of
high-throughput genomics data. In Publication I, we describe software tools to determine
TF-DNA binding sites genome-wide from ChIP-exo/nexus experiments and to analyze
allele-specificity of TF-DNA binding. In Publication II we use massively parallel reporter
gene assays to directly assess transcriptional activities of genomic, designed and com-
pletely random DNA-sequences. Testing transcriptional activity of human gene regulatory
elements selected from synthetic sequences with uniform nucleotide frequencies allows
for the first time de-coupling the transcriptionally active features from biases present in
the human genomic sequence such as the GC-content bias in the human promoters. In
Publications II and III we apply and develop new methods for interpreting deep learning
models trained on DNA sequence data that can be applied also to other types of models
trained for example with RNA or protein sequence.

In this thesis, I will first introduce the specific aims of the study in chapter 2. In chapter
3 I will describe the data analyzed and used by the computational methods developed
and applied in this work. I will also go into details of the central computational methods
utilized here. Chapter 4 will present an overview of the results, including both descriptions
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of the novel algorithms and tools developed, and biological results. The results described
in this thesis are discussed in context of the previous literature in chapter 5.
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2
A I M S O F T H E S T U D Y

The primary aim of this study is to develop novel computational approaches to model
and interpret results from large-scale regulatory genomics experiments. The goal is to
better understand the mechanisms of how transcription factors regulate gene expression in
humans. The specific aims can be summarized as follows:

a. Develop a tool to call transcription factor binding sites from novel ChIP-exo and ChIP-
nexus experiments to allow accurate and unbiased determination of transcription
factor binding in vivo.

b. Apply and develop state-of-the-art machine learning methods to model and discover
the DNA sequence elements and their interactions regulating transcription in humans.

c. Apply and develop novel tools that help to interpret machine learning methods in
genomics and especially dependencies and interactions learned by deep learning
models.
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3
M AT E R I A L S A N D M E T H O D S

In this chapter, I will describe in detail the main computational methods and resources
used in this study. I will focus on the methods applied and developed by the author, as
listed in the Author contributions section. The experimental data generated in this study
by co-authors of the publications are listed, and details of generation of these data are in
the corresponding publications. Generation of experimental data used directly as input
in analyses and methods developed by the Author are described in more detail in the
following. Computational analyses performed by co-authors are described in more detail
when they are directly needed for description of methods and analyses performed by the
Author.

3.1 description of the experimental data used as input for the computa-
tional methods discussed in this study

3.1.1 ChIP-seq, ChIP-exo and ChIP-nexus

ChIP-seq [48] has become the standard experiment for measuring TF-DNA binding patterns
genome-wide (see e.g. [4]). In ChIP-seq, the aim is to use an antibody specific to a given TF
or other protein associated with DNA to select fragments of the DNA of a living cell that
were bound by the protein of interest. These DNA fragments can later be mapped back to
the genome, giving researchers a genome-wide map of binding of the protein of interest,
as most of sufficiently long fractions of DNA are unique in the genome.

The first step of ChIP-seq experiments is to crosslink proteins with DNA using formalde-
hyde. Then, the DNA of the cells is sheared into random fragments of desired size (usually
100 bp - 300 bp). Longer fragments map more likely to a unique position in the genome,
but the longer the fragment, the worse is the resolution of the experiment as due to the
random nature of DNA shearing, the true binding site of the TF can be anywhere within
the borders of the DNA fragment (see Figure 3.1a). After shearing of the DNA, the antibody
specific to the protein of interest is used to select those fragments of DNA that are bound to
the protein of interest. It is of crucial importance, that the antibody used is truly specific to
the protein of interest, else the experiment can produce significant amounts of false binding
sites due to the antibody recognizing unintended proteins. Once the DNA fragments of
interest have been selected with the antibody, the cross-linking between the DNA and the
proteins is broken, the DNA purified, and finally the purified DNA is read using DNA
sequencers.

The data from the sequencer consists of strings of nucleotides, called sequencing reads,
describing the observed DNA sequences, and quality scores of the base calls that can be
used to filter the data. These reads are then aligned to a reference genome of the organism
in question by an aligner software such as the Burrows-Wheeler Aligner [91]. The final step
in ChIP-seq data analysis is peak calling, where the reads aligned to the reference genome
are used as an input for a specific software that aims at fitting a model to the aligned
reads so that reads resulting from true binding events of the protein of interest and DNA
are separated from noise generated for example by biases stemming from cross-linking,
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antibody non-specificity, uneven PCR amplification of the sequencing library (e.g. [92]),
base calling errors made by the sequencing machine (e.g. [93]) or alignment uncertainty
(e.g. [94]). Numerous peak calling software have been developed for analysis of ChIP-seq
data over the years, and the performance of the most widely used peak callers have been
benchmarked for example in [95]. The term peak calling comes from the fact that when the
signal from a ChIP-seq experiment is visualized by counting read or fragment coverages,
i.e. the number of mapped reads overlapping each other at each genomic position, TF-DNA
binding sites can be recognized as peaks (see Figure 3.2) in the coverage signal.

In [12], the authors describe a modification to ChIP-seq, called ChIP-exo, adding a step
where the DNA fragments bound to protein of interest and selected using an antibody
specific to the protein are digested using λ-exonuclease. This step greatly improves the
resolution of the experiment, as the λ-exonuclease digests double-stranded DNA in 5’
to 3’ direction until stopped by a physical barrier, in this case the protein cross-linked
to DNA [12]. This means that the 5’ ends of the fragments in ChIP-exo experiment are
in theory always located exactly at the border of the bound protein (Figure 3.1b). ChIP-
nexus [11] is essentially a more efficient ChIP-exo protocol, where re-ligation of the adapter
sequences to the 5’ ends of the reads, removed initially by the λ-exonuclease digestion, is
done using circular ligation instead of more inefficient intermolecular ligation used in the
original ChIP-exo protocol.

The main steps of ChIP-exo/nexus data analysis after the reads have been obtained by
sequencing are similar to ChIP-seq. Reads are aligned to a reference genome and can be
filtered based on base call and alignment quality. Due to the λ-exonuclease digestion, the
signal from ChIP-exo/nexus binding events is however different from ChIP-seq signal,
and thus specialized algorithms are needed to fully leverage the increased resolution of
ChIP-exo/nexus. In ChIP-seq, the reads will pile up into peaks with relatively shallow
slopes due to the random shearing of DNA which means that reads overlapping with a
given binding site have a distribution of start points of alignment. In ChIP-exo/nexus, the
5’ ends of the reads in theory always map to the same positions flanking DNA-bound
proteins, forming "boundaries" around the bound protein. In reality, the reads at TF-DNA
binding site boundaries never pile up to exactly the same position in ChIP-exo/nexus, but
nevertheless the signal is much more accurately localized, as illustrated with an example in
Figure 3.2.

This feature of the ChIP-exo/nexus signal, however, introduces one problem for data
preprocessing: traditionally in ChIP-seq data preprocessing, duplicated reads caused by
uneven PCR-amplification of the sequencing library have been removed by discarding all
but one of sets of reads that map to identical position. In ChIP-exo/nexus, this cannot be
done since the expected signal from the experiment is reads mapping exactly to the same
position. To tackle this problem, Unique Molecular Identifiers (UMIs [96]) have been used
in ChIP-exo/nexus [11] experiments. In short, the idea of UMIs is to tag each molecule
in the initial sequencing library randomly with a constant-length barcode. Given that the
number of UMIs is sufficient relative to the library size, it is extremely unlikely that two
different molecules will have the same UMI label and will map to the same position in the
genome. Thus the final input to a ChIP-exo/nexus peak caller are essentially the 5’ end
positions of the reads describing unique molecules mapped to the genome, and from this
input, the aim of the peak caller is to report positions where the protein of interest was
binding in the genome, and give estimate of the rank of the binding sites by strength as
well as estimate the uncertainty of the binding site calls. This data is used as input for the
PeakXus software described in Publication I.
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Figure 3.1: Schematic presentation of the difference between the TF positions within ChIP-seq
(a) and ChIP-exo/nexus (b) reads. In ChIP-seq, random shearing of DNA means the
real TF binding site can be anywhere within the read boundaries. The λ-exonuclease
treatment in ChIP-exo/nexus digests the 5’ ends of the fragments until the 5’ end
corresponds with the boundary of the bound TF.

3.1.2 ATAC-seq

ATAC-seq [99] (Assay for Transposase-Accessible Chromatin using sequencing) is a high-
throughput, genome-wide method for detecting regions of accessible or open chromatin,
meaning those parts of the genome where DNA is not packed around nucleosomes. In
ATAC-seq, a hyperactive mutated Tn5 transposase cleaves accessible chromatin and tags
it with sequencing adapters. The fragments of accessible DNA are then read using high-
throughput sequencing and mapped to the corresponding reference genome using an
aligner software similarly to ChIP-seq/exo/nexus. The open chromatin, or accessible re-
gions of the reference genome are then determined using a peak calling software that
separates the reads at the real open chromatin regions from background noise. In Publica-
tion II, MACS2 [100] peak caller was used to determine the open chromatin regions from
the ATAC-seq experiments, as per the current default analysis [101]. These open chromatin
regions defined using MACS2 were used as the basis for creating the classification data set
for machine learning.

In Publication II, the GP5d ATAC-seq data was used to train a classifier and to compare
the classification performances of models trained on STARR-seq and ATAC-seq data
in classifying between open and closed chromatin regions in the GP5d colon cancer
cells. To this end, 170 bp long sequences were fetched from the ATAC-seq peaks to
match with the 170 bp long sequences from the random enhancer STARR-seq experiment.
The standardization of the input sequence lengths between the models was done to
allow comparison of models using exactly the same test sets. For the class 1 signal set
(corresponding to open chromatin), fragments overlapping with any ATAC-seq peak were
selected and the 170 bp sequence closest to the overlapping peak summit was retrieved.
Exact duplicate sequences were discarded. A balanced negative set (class 0, corresponding
to closed chromatin) was created by sampling random 170 bp long sequences from the
human genome requiring that they do not overlap with ATAC-seq peaks.

In addition, all regions covered by a so called "extended blacklist" created for the machine
learning analyses were discarded from the genomic machine learning datasets (both ATAC-
seq and STARR-seq). The extended blacklist was created to remove genomic regions
problematic for read mapping that could cause the machine learning models to learn biases.
The use of a blacklist is motivated by the blacklisting of problematic genomic regions in the
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Figure 3.2: IGV genome browser [97] tracks showing the reads mapped to the same reference
genome region from TCF7L2 ChIP-nexus (middle, data from [98]) and TCF7L2 ChIP-
seq (bottom, unpublished data) experiments. The blue and red arrows correspond
to individual reads mapping to the sense (red) and antisense (blue) strands, respec-
tively. Note that not all individual reads are shown in this visualization for positions
with many mapping reads. The gray coverage signals corresponds to the number of
overlapping reads at each position, regardless of strand. The topmost tracks show the
UMI counts of read 5’ end positions from the ChIP-nexus experiment (red = sense
strand, blue = antisense strand). Signal range for each track is shown on the left. Both
experiments have detected TF binding at the same region, but the ChIP-nexus signal is
concentrated as a much more narrow peak. Note that the ChIP-nexus peak summit is
flanked from left by the position with locally highest number of unique read 5’ ends
mapping to the sense strand, and from right by the the position with locally highest
number of unique read 5’ ends mapping to the antisense strand. This feature of the
ChIP-nexus/exo signal allows mapping the TF binding positions with much better
resolution than what can be achieved using ChIP-seq.
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ENCODE analyses [102]. The standard ENCODE blacklist is carefully curated by examining
the vast collection of ENCODE high-throughput sequencing datasets for problematically
behaving genomic regions regardless of the cell type or the exact experimental technique.
To accommodate the blacklist for the machine learning analyses, we added the following
regions to the extended blacklist: all positions ±1 Mb from centromeres, all positions with
Ns in the hg19 reference genome (machine learning models were trained only on A, C, G
and T), and non-uniquely mapping regions defined as follows: all unique 55-mers present
in the hg19 reference genome were fetched and aligned back to hg19 reference genome
with bwa aln aligner [91]. Each position not covered by reads mapping with sufficiently
high quality (MAPQ>20), was added to the extended blacklist. Note that some of the
added regions already overlapped with the standard ENCODE blacklist. This extended
blacklist covers around 12% of the hg19 reference genome and should remove possible
biases stemming from mappability issues fairly conservatively.

After preprocessing, the final input used by the machine learning classifiers trained on
the ATAC-seq data in Publication II are sets of 170 bp long sequences which are divided to
two classes: class 1 (open chromatin), and class 0 (closed chromatin).

3.1.3 STARR-seq

In Publication II, we measure activities of gene regulatory elements in human cells using
STARR-seq [13] MPRA (Massively Parallel Reporter gene Assay) experiments. The STARR-
seq reporter libraries used in this study are designed so that the DNA sequence whose
enhancer activity is investigated is included in the RNA transcript and thus the elements
driving gene expression can be directly identified by sequencing the transcribed RNA.
Figure 3.3 shows the design of the different STARR-seq libraries utilized in this study.
Design i, which we call the motif library, measures enhancer activities of designed 49
bp long sequences that contain either single or multiple copies of known TF binding
motifs in different orientations and spacings. Design ii, the genomic library, measures
enhancer activities of approximately 500 bp long fragments of the human genome. Design
iii measures enhancer activities of 170 bp long completely random synthetic DNA sequences
sampled from uniform nucleotide background. In designs i-iii, transcription is initiated
at the position defined by a weak minimal promoter included in the constructs. In design
iv, both the promoter and the enhancer sequence are synthetic random 150 bp long
sequences. In design iv, only the enhancer sequence is captured by RNA-seq, but the
corresponding promoter sequence can be retrieved by mapping the transcribed enhancer
to the input DNA and taking the corresponding promoter sequence. The different STARR-
seq reporter libraries are transfected into human cells and the RNA produced by the
cellular transcriptional machinery is sequenced after 24 hours (Figure 3.3) to observe the
transcriptionally active sequences. Preprocessing of the STARR-seq datasets used in the
machine learning analyses described in this work is discussed in detail below.

3.1.3.1 Genomic STARR-seq data preprocessing (design i)

In the genomic STARR-seq design the fragments of the human genome capable of driving
gene expression as enhancers were mapped back to the genome using Bowtie2 [103] aligner.
Similarly to ChIP-seq or ATAC-seq, the STARR-seq reads aggregate to peaks when mapped
back to the genome when activities of overlapping genomic fragments are tested. An
example genome browser view of a STARR-seq peak is shown in Figure 3.4. In Publication
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Figure 3.3: Schematic presentation of the STARR-seq designs used in this study: i) Motif library
of designed sequences containing known TF binding motifs and their combinations
cloned to the enhancer position. ii) Genomic library containing fragmented human
genomic sequences cloned to the enhancer position. iii) Random enhancer library
containing synthetic random 170 bp long sequences cloned to the enhancer position.
iv) Random binary STARR-seq library containing synthetic random 150 bp sequences
cloned both to the promoter and to the enhancer positions. The STARR-seq libraries
were transfected into human cell lines and total RNA was isolated 24 hours after
transfection followed by sequencing and data analysis. In designs i-iii, the promoter
is a minimal promoter (see Publication II), while in design iv, only those random
sequences that by chance have elements required for a functional promoter, act as
promoter. ORF = open reading frame, gDNA = genomic DNA. Figure adapted and
modified from Publication II.
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Figure 3.4: IGV genome browser [97] tracks showing the MYC gene locus, its promoter region
(transcription start site, TSS, is marked with asterisk) and four enhancers located
downstream of the MYC gene. The tracks are from top to bottom: genomic STARR-
seq fragment coverage (magenta), ATAC-seq fragment coverage (cyan), EP300 ChIP-
seq read coverage (red), and histone H3 lysine 27 acetylation (H3K27Ac) ChIP-seq
read coverage (yellow). H3K27Ac marks acetylation of the lysine residue at the N-
terminal position 27 of the histone H3 protein and is a mark of active enhancers and
promoters [104]. EP300, or histone acetyltransferase 300 is a chromatin remodeling
enzyme that marks active enhancers and promoters [105–107]. For STARR-seq and
ATAC-seq tracks, a fragment means positions between each mapped paired-end read
pair. Fragment coverage means total number of such fragments overlapping a genomic
position. The EP300 and H3K27Ac ChIP-seq coverage signals were downloaded from
the ENCODE data portal as described in Publication II, and they describe fold change
over control computed from single-end sequencing reads. The MYC promoter is
marked with open chromatin according to ATAC-seq and associated with higher
transcriptional activity according to the H3K27Ac signal, and weak EP300 signal. The
active enhancers, highlighted with boxes, are also marked with ATAC-seq, H3K27Ac
and EP300 signals. One of the enhancers is marked with STARR-seq signal (green box),
others only by the three other types of signal (black boxes). These are examples of
classical and chromatin dependent enhancers, respectively, defined and discussed in more
detail in the Results section. Notice that the genome browser tracks have been cut just
before the first of the four enhancers for clarity of visualization, as indicated by a gap in
the signal tracks. The MYC TSS and the first enhancer are separated by approximately
425 kb. The datasets used are described in Publication II. Figure modified and adapted
from Publication II.

II, the active enhancers were determined with peak calling using MACS2 [100] software.
The STARR-seq input library DNA, meaning a sequenced sample of the reporter library
comprising of the genomic DNA fragments before transfection, was used as a control in
peak calling. Similarly to as described for ATAC-seq above, no sequences mapping to the
genomic regions covered by the extended blacklist were included in the machine learning
analyses.

Similarly to ATAC-seq, the GP5d genomic enhancer STARR-seq fragment lengths were
standardized to 170 bp to allow comparison with the models trained with random enhancer
STARR-seq data. The signal set (class 1, active enhancers) sequences were created by taking
the 170 bp closest to the peak summit from each genomic STARR-seq fragment that overlaps
with a GP5d genomic enhancer STARR-seq peak. Sequences overlapping with the extended
blacklist were discarded. The class 0 sequences (no enhancer activity) were drawn at
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random from the pool of input library sequences, but discarding sequences overlapping
with GP5d genomic STARR-seq peaks or the extended blacklist regions.

In principle it is possible that a CNN classifier could learn some feature correlating with
different input library coverage of the class 1 genomic enhancer STARR-seq sequences
relative to randomly sampled sequences from the input library, if such feature would exists.
Here, input library coverage means the number of copies of a specific sequence present in
the sequenced input library. To control for this possible source of bias, the class 0 sequences
used in the machine learning analyses were sampled so that the input library coverage
histogram of the class 0 sequences matched the input library coverage histogram of the
class 1 sequences.

3.1.3.2 Random enhancer STARR-seq preprocessing (design iii)

Preprocessing of the random STARR-seq data is different from the genomic library, as
the random STARR-seq data is not aligned to a reference genome at any point. The 170
bp long active random enhancer STARR-seq sequences were first filtered for duplicates.
Sequencing errors of PCR duplicates of the same initial molecule can lead to multiple
sequencing products that have few mismatches but originate from the same initial DNA
molecule. To control for this, the random enhancer STARR-seq 170 bp long sequences were
sorted four times based on 40 bases long non-overlapping subsequences from base 6 to 165
and only one sequence per identical subsequence at each sort step was kept. This ensured
that only one sequence out of a set of sequences separated by Hamming distance less than
4 was kept. The final class 1 (corresponding to active enhancers) sequences for machine
learning analyses were these unique 170 bp long sequences. The class 0 (inactive enhancers)
sequences were sampled at random from the random enhancer STARR-seq input library
(sequenced sample of the initial reporter library before transfection) so that their number
matched the number of class 1 sequences for each set (training, test, validation) separately.
Note that each STARR-seq design has its own input library.

3.1.3.3 Random binary STARR-seq preprocessing (design iv)

In the binary STARR-seq experiment, only the enhancer part of the reporter construct was
read using RNA sequencing. Thus the correct promoter responsible for the transcriptional
activity was identified by mapping the 150 bp long active enhancer sequences back to
the original binary STARR-seq input library promoter-enhancer pairs by requiring an
exact match of the first 40 bases to the sequence at the enhancer position. In addition,
duplicate filtering was performed similarly to the random enhancer STARR-seq. The pairs
of active 150 bp long promoters and enhancers were used as the class 1 sequences (active
promoter-enhancer pairs) in the machine learning analyses. The class 0 (inactive) pairs
were sampled at random from the input library pairs matching their number to the number
of class 1 pairs for each set (training, test, validation).

3.1.3.4 Determining the TSS position from the binary STARR-seq active elements

A template switch experiment was conducted to determine precise transcription start
site positions in the binary STARR-seq experiment. Importantly, in the binary STARR-seq
experiment the promoters are completely random synthetic sequences meaning when
such a sequence by chance contains elements required for a functional promoter, the TSS
position is determined by these randomly enriched features and cannot be known without
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a measurement. The template switch experiment was designed to capture the 5’ end of the
transcript, which allowed mapping the transcripts back to the input library promoters using
the sequence after the TSS in the sequenced transcripts. The details of the template switch
chemistry and preprocessing are given in Publication II. Two GP5d template switch libraries
were processed separately and later merged so that only one transcript was kept for each
unique input DNA promoter sequence to prevent including duplicate promoter sequences
in the subsequent analyses. The TSS positions from the template switch experiments were
used to create class 1 (active promoter) sequences for training the STARR-seq promoter
models such that a 120 bp long sequence, where the TSS was at position 100, was fetched
around each TSS from the experiment. Those TSSs where the position of the TSS within the
150 bp promoter sequence did not allow fetching a 120 bp long sequence described above,
were discarded. A balanced number of sequences for each set (training, test, validation)
were sampled at random from the binary STARR-seq input library promoter sequences
and used as class 0 (inactive promoters) in the machine learning analyses.

3.2 note on tf binding motif naming

In Publication II, the STARR-seq experiments measure the ability of TF binding motifs
to drive gene expression either at enhancer or at promoter position. We refer to this as
the (transcriptional) activity of the TF binding motifs. The STARR-seq measurements
only detect the RNA with transcriptional activity, not the TF proteins bound to the DNA
responsible for the transcriptional activity. Many TF binding motifs are recognized and
bound by different proteins, for example the p53 family motif is bound by p53, p63 and
p73 proteins. Thus, in cases where binding motifs for several TFs are highly similar, the
motifs have been named in figures according to TF class or subclass based on previous
literature. Same principle has been applied also when specificities of closely related TFs
have not been measured but can reasonably be expected to be similar. Dimeric TF binding
motifs are named so that the orientations of their core consensus sequences (GGAA for
ETS, ACAA for SOX, AACCGG for GRHL and GAAA for IRF) with respect to each other
are listed: HH head to head, HT head to tail, TT tail to tail, followed by gap length between
the core sequences. Asterisk indicates an A rich sequence 5’ of the IRF HT2 dimer. Exact
PWMs corresponding to the named motifs are listed in Publication II.

3.3 machine learning methods

In Publication II, several different machine learning models were applied to model data
from STARR-seq experiments. I will describe these models in detail in the following. The
classification performance of each CNN and logistic regression model, on each tested
hyperparameter combination, on their respective (unseen) test data is shown in Figure 3.7.

3.3.1 Modeling the STARR-seq experiments with machine learning classifiers

Essentially, in STARR-seq experiments the cell is used to classify the transfected enhancer
and promoter sequences from the input library into those that activate transcription
and to those that do not. The classification is performed by the cellular transcriptional
machinery that requires certain sequence elements to be present in order to activate
transcription. These required sequence elements can be learned from the sequences using
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Figure 3.5: Schematic presentation of modeling the STARR-seq experiment as a classification
problem using machine learning.

machine learning models that try to replicate the classification performed by the cell.
Figure 3.5 shows a schematic describing how the essential sequence elements required for
transcriptional activity can be extracted from a machine learning model that is trained
to act as a similar binary classifier of STARR-seq input library sequences as the cell. The
STARR-seq experiments performed in Publication II are extremely well suited for modern
machine learning methods as they test millions of sequences that can be used in the model
training. In this modeling, the input for machine learning methods are DNA sequences
labeled based on the STARR-seq experiment either as class 0 (inactive) or class 1 (active).
The convolutional neural network models take the raw sequences as input as such, but for
the logistic regression models feature engineering is needed, which is described next.

3.3.2 Logistic regression classification random of STARR-seq data

To test whether activities of gene regulatory elements could be determined by linear
combinations of effects of known TF binding motifs, we used logistic regression to fit
models that use as features either single TF binding motifs only, or both single TF binding
motifs and terms accounting for pairwise cooperative binding of selected TF pairs. We used
the L1 norm, also known as lasso, to regularize the logistic regression models for easier
interpretability. As the set of 880 known TF binding motifs used in this work contains some
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motifs that can be highly similar, a non-regularized model, or a model regularized with
L2 norm (ridge), could converge into a solution where the learned effects are split among
multiple correlating features corresponding to similar TF binding motifs. The L1 norm
penalizes solutions with a higher number of non-zero coefficients and thus enables finding
the best performing model with the lowest number of individual motifs contributing to
the model. Regularization with L1 norm is known to alleviate problems with correlated
features, given that the regularization strength is tuned properly [108]. To model the
activities of random enhancer STARR-seq sequences with logistic regression, we need to
determine the binding sites of each of the 880 known TF binding motifs used in this study
in each of the sequences and estimate the binding probabilities of the corresponding TFs to
these sites. In the following, I will describe how this was implemented.

3.3.2.1 Finding the TF binding sites using MOODS

We used the MOODS [109] software to calculate "PWM match scores" for each of the 880
TFs/DBDs in the set of motifs used in this study against each position in each of the
GP5d random enhancer STARR-seq sequences. The PWM match scores were calculated
separately for both strands using the strand-specific mononucleotide distributions of the
random enhancer STARR-seq input library (see Table 3.3.2.1) as background for the PWM
models.

strand A C G T

+ 2.288e-01 1.915e-01 2.390e-01 3.408e-01

- 3.408e-01 2.390e-01 1.915e-01 2.288e-01

Table 3.1: The strand-specific mononucleotide biases in the random enhancer STARR-seq input
library.

3.3.2.2 TF-specific occupancy probabilities of DNA sequences

To create regression features that account for either single TF binding, or cooperative
binding of TF-TF pairs to DNA, we estimated occupancy probabilities of STARR-seq
sequences by TFs based on PWM models of their binding affinities. A detailed derivation
of these probabilities, which follows the derivation in [110] with some modifications, is
presented in Appendix A. In the following, only the outcome of this derivation is shown.
Given a "PWM match score" SX,i of a PWM corresponding to TF X at position i of a
sequence s, computed using MOODS, the probability of s to be occupied by X is

PX,s = 1 −
Nsites

∏
i=1

(
1

1 + exp (SX,i − SX,10000)

)
. (3.1)

The product runs over all binding sites of X in the sequence and SX,10000 corresponds
to the activity of 10,000th strongest binding site of X in the genome, used to estimate
the concentration of X in the input library (see Appendix A for details). Similarly, the
probability of s to be occupied by a pair of TFs X and Y is

PXY,s = 1 −
Nsites

∏
i=1

(
Msites

∏
j=1

(
1

1 + exp (SX,i + SY,j − SX,10000)

))
. (3.2)
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3.3.2.3 Positional logistic regression classifiers

In contrast to the simple logistic regression described above, in positional logistic regression
the PWM match scores were weighted using the position-specific enrichment of the corre-
sponding PWM over the whole set of sequences. Thus, instead of occupancy probabilities,
scores

AX,seq = ∑
i

aX,i × SX,i, (3.3)

were calculated for each sequence and PWM feature X, where aX,i is the positional
activity score of PWM X at position i, and i runs over all matches of PWM X in a sequence.
Regression coefficients were learned separately for both strands for each PWM.

The positional activity scores required for this analysis were computed by matching
motifs to the TSS-aligned promoter sequences from the binary STARR-seq experiment.
The number of motif matches for each motif was counted separately at each position and
strand so that only the highest affinity motif match per sequence was considered for each
motif. The positional activity scores used are log2 fold changes of the motif match counts
between the TSS-aligned promoter sequences and a control set of sequences from the input
library estimated with the lfc R-package [111].

3.3.2.4 Training of the logistic regression classifiers

The logistic regression models were implemented with the LogisticRegression function in
scikit-learn [112] Python library using L1-regularization. The STARR-seq random enhancer,
and TSS-aligned binary STARR-seq promoter sequences were divided into training (70%),
validation (15%) and test (15%) sets for logistic regression classification. Logistic regression
models using single and pairwise TF features were trained on the random enhancer
STARR-seq sequences and positional logistic regression models on the binary STARR-
seq TSS-aligned promoter sequences. Regularization strength was the only optimized
hyperparameter. The optimal regularization strength was chosen based on area under
precision-recall curve (AUprc) on the validation data. Otherwise regression was run on
default parameters. First, a logistic regression classifier was trained using only features
that count matches of individual PWMs (880 features). After this, a more complex classifier
was fit with additional features counting all self-pairs

Ai + Ai, (3.4)

where i runs over all the 880 features, and all pairs of the top 20 strongest individual
features (20 features with largest absolute value of the regression coefficient) from the
simpler model (see Publication II for the exact features), with all other PWM features

Sj + Ai, (3.5)

where i runs over all the 880 PWMs, and j runs over the top 20 PWMs from the simple
model of 880 single TF features.

Positional logistic regression models were trained using the positional enrichment
patterns of PWM matches in the binary STARR-seq TSS-aligned promoters. The same
880 PWM features included in the simple logistic regression were used, plus additional 7
core promoter PWMs from the literature (see Publication II for details). Figure 3.7 shows
the performance of each trained logistic regression classifier on unseen test data with the
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specific hyperparameter combination resulting to best-performing model on the validation
data highlighted for each model type.

3.3.3 Convolutional neural network classification of STARR-seq data

Convolutional neural networks (CNNs) learn the features and the parameter weights simul-
taneously, so no complicated feature design similar to the logistic regression classification
is needed. In the following I will describe the CNN architectures and model training
strategies used in this study.

3.3.3.1 Convolutional neural network architectures

The CNN architectures used in this study are motivated by several recent successful
applications of CNNs in learning and modeling information from DNA sequence data (see
e.g. [42, 43, 80]). The main building blocks of the networks in this study are convolutional
filters and fully connected neurons. The important difference between a convolutional filter
and a fully connected neuron is that a convolutional filter only sees part of the input from
the preceding layer simultaneously, and it is slid through the input from the preceding
layer calculating a convolution between the filter weights and the input, whereas a fully
connected neuron integrates the whole input from the preceding layer simultaneously. In
this study, layers of convolutional filters form so called convolutional modules, where a 1D
convolutional layer is followed by batch normalization, ReLu activation and a dropout layer.
Each convolutional module contains Nf ilters filters, which is a hyperparameter optimized
during training.

The ReLu (Rectified Linear Unit) is an activation function applied to the input of a
convolutional filter or a neuron that is defined as

f (x) = x+ = max (0, x), (3.6)

where x is the input from the preceding layer. ReLu activation allows the neural networks
to learn non-linear functions (without proper activation function the neural network
would only be able to compute linear matrix products) and has been shown to enable
better training of deeper neural networks [113]. Dropout [114] is a simple technique
where a randomly chosen fraction f of the filters/neurons of a layer are omitted during
each mini-batch training step. Using dropout greatly reduces overfitting and forces the
network to learn generalizeable rules. Dropout is usually (and also in this work) applied
only during training, and the whole model is evaluated when making predictions. Batch
normalization [41] is used to re-center and re-scale the input of a layer and it has been
empirically observed to speed up and stabilize neural network training, even though the
reason for this is still debated.

All CNNs in this study use so called dilated convolutions [115, 116], introduced in the
context of CNNs in [79]. Dilated convolution is a way to expand the receptive field of a
convolutional filter exponentially when the number of parameters (the number of layers in
the network) grows linearly without losing resolution on the input of the network. Receptive
field of a filter means the area of input sample covered by the filter when computing the
filter output at any given time. Dilated convolution is essentially a convolution where
the receptive field of the convolutional filter is expanded by making "holes" into the
filter. In a dilated convolution, l − 1 spaces or holes are inserted between convolutional
kernel elements, where l is a parameter called dilation rate. Notice that the conventional
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Figure 3.6: Schematics of the convolutional neural network (CNN) architectures used in this
study. a) CNN models with single input head were used to model the genomic and
random enhancer STARR-seq, ATAC-seq, genomic promoter and STARR-seq TSS-
aligned promoter data. b) CNN models with two input heads were used to model the
binary STARR-seq data, where one input head was used to read in the promoter part
and the other input head the enhancer part of the sequence. Notice that the signals
from the two input heads are integrated by a fully connected layer.

convolution is a special case of dilated convolution when l = 1. In this study, we used
exponentially increasing dilation rates, so that for first layer l1 = 1, for second layer l2 = 2,
for third layer l3 = 4 and so on. When the dilation rate is increased like this, the receptive
field of the filters grows exponentially while the number of parameters grows linearly,
making the network training easier and faster than training of a traditional CNN with the
same receptive field for the final layer and the same resolution on the input [79].

The two CNN designs used in Publication II are outlined in Figure 3.6. The design with
one input head in Figure 3.6a was used for all other CNN classifiers except the binary
STARR-seq classifiers, which require two input heads (one for the promoter sequence
and one for the enhancer sequence, Figure 3.6b). The other difference between these two
architectures is that the double input model includes a fully connected layer of neurons
that integrates the inputs from the two input heads while the single input model only
contains convolutional modules up until the final output layer. The first layer, or the input
layer of the models is a so called motif detector layer [42] that consists of convolutional
filters of fixed size x (bp). The first layer contains Nf ilters convolutional filters. The motif
detector layer is the only layer of the network that sees the DNA sequences used in the
training directly. The filters of this first layer are somewhat similar to PWMs in the sense
that each of them has a weight for each possible nucleotide at each filter position. The
subsequent layers, whose number is a hyperparameter optimized during training, will
gradually combine and abstract the outputs of the motif detector. The final layer is a dense
layer of two nodes with sigmoid activation that outputs probabilities of belonging to either
of the classes for a given input sequence.
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3.3.3.2 Convolutional neural network training

For training the CNN classifiers, the STARR-seq random enhancer, the binary STARR-seq
promoter-enhancer pairs, and the TSS-aligned binary STARR-seq promoter sequences
were divided into training (70%), validation (15%) and test (15%) sets. The genomic
sequences from STARR-seq and ATAC-seq were divided into training, validation and test
sets in similar proportions based on chromosomes so that no sequences from the same
chromosome are in two or more sets (see Table 3.3.3.2). The sequences were fed to the CNN
models as such after one-hot encoding (A=[1 0 0 0], C=[0 1 0 0], G=[0 0 1 0] and T=[0 0 0
1]).

The CNN classifiers trained on the random enhancer CNN and the genomic enhancer
CNN data were fed also the reverse complement sequences of the training data as it
was observed to slightly boost the performance of the models. This is an example of
data augmentation that aims at boosting the performance of a deep learning model
by generating additional artificial training data by applying some realistic distortion or
permutation operation on the original training data samples. When training CNNs on
images, possible augmentation strategies could be to for example rotating the images or
adjusting their contrast. For enhancers, reverse complementing is a reasonable way to
expand the number of training samples as according to the original functional definition
of enhancers, they should affect gene expression regardless of orientation [117]. For the
models including promoter sequences reverse-complementing was not done to preserve
the orientations and positions of sequence features relative to the TSS in the training data.

We also experimented with weighting the training data based on position-specific
mononucleotide biases present in the STARR-seq input library sequences, but this did
not help the model training indicating that the model was able to easily learn to discard
these biases from the data (as the bias is present in both input library sequences and
the sequenced transcripts). The CNN models were implemented using Keras [118] with
TensorFlow [119] back-end and training was conducted using the Adam optimizer with
default parameter values.
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training set validation set test set

chr1 chr4 chr2

chr3 chr6 chr10

chr5 chr8 chr11

chr7 - -

chr9 - -

chr11 - -

chr13 - -

chr14 - -

chr15 - -

chr16 - -

chr17 - -

chr18 - -

chr19 - -

chr20 - -

chr21 - -

chr22 - -

chrX - -

Table 3.2: Genomic data splits to training, validation and test sets for machine learning analyses.

Early stopping was used for the CNN training so that training was stopped if binary
accuracy on validation data did not improve within 200 epochs or when the total training
time on a single Nvidia Volta V100 GPU exceeded 72 hours (an exception being the "double
input" CNN models trained to classify the binary STARR-seq data where training was
continued up until 144 hours if needed due to the larger size of the networks). Model
parameters were initialized using the He uniform variance scaling initializer [120]. Optimal
hyperparameter combinations (see Publication II) were selected by maximizing binary
accuracy on validation data. Figure 3.7 shows the performance of each trained CNN
classifier on unseen test data, with the specific hyperparameter combination resulting to
best-performing model on the validation data highlighted for each model type.

3.3.4 Gapped k-mer support vector machine classification of random STARR-seq data

In Publication II, we used previously published gapped k-mer SVM (support vector
machine) framework [121, 122] to train an additional random enhancer STARR-seq model
for comparison with the logistic regression and CNN models. The gapped k-mer SVM
models were trained on balanced sets of high-confidence random enhancer STARR-seq
sequences, defined as active enhancers observed in both GP5d random enhancer STARR-
seq replicates (70% of sequences in training, 15% in validation and 15% in test sets). This is
because the full random enhancer STARR-seq dataset was too big for the gapped k-mer
SVM run to finish in approximately one month. The full GP5d random enhancer STARR-seq
dataset consists of approximately 11.5 million sequences, while the high-confidence set has
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Figure 3.7: Test set classification performance (area under precision-recall curve, AUprc, balanced
test set) for the main CNN and logistic regression models trained in this study. Each
tested hyperparameter combination is marked with a dot and the representative "best"
model, based on classification performance on separate validation data, is highlighted
with orange color and arrow. Figure modified and adapted from Publication II.
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less than three percent of that number of sequences. Optimal hyperparameter combination
was selected based on area under precision-recall curve on the validation data.

3.3.5 Prediction of differential gene expression using lasso regression

In Publication II we used lasso regression [123] to predict differential gene expression
between the HepG2 and GP5d cell lines and especially to study which types of enhancers
and promoters are important in these predictions. Lasso regression was used because L1
regularization should not split the effects of correlating features but to select only one
of the features and drive the regression coefficient of the other one to zero [108]. Non-
zero regression coefficients can be interpreted as evidence towards such features having
real predictive effect on differential gene expression. Logarithmic fold change between
GP5d and HepG2 expression values (transcripts per million, tpm) was used as the target
variable for regression and the STARR-seq and ATAC-seq peaks were divided into 12
features based on the cell line in which the peaks were present and the information about
whether the ATAC-seq peaks were promoter proximal (less than 1kb distance to any gene
in the target gene set) or distal. The features were named in such a way that for example
"Common.STARR.noATAC" means STARR-seq peaks present in both cell lines that do not
overlap with an ATAC-seq peak. All features used in the regression model are shown in
Figure 4.7.

Using these features we built a somewhat heuristic model, where the effect of each
feature was expected to decay following an exponential function. For each feature, the
logarithmic fold change at peak summit reported by MACS2 (LFC) was used as the
"strength" of the feature - the higher the peak, the more the feature affects gene expression.
Peak summit position was used as the position of the feature. ATAC-seq peak summits and
fold changes were used for all features except the ones that had no overlap with ATAC-seq.
For STARR-seq-only features, STARR-seq peak summit positions and fold changes were
used. The effect of a feature to a TSS that is d bp away from the peak summit corresponding
to that feature was calculated as

S(peak) = LFC × exp(−c × d/dmax), (3.7)

where LFC is the logarithmic fold change at peak summit, c is a scaling parameter and dmax
is the maximum distance of a peak from the TSS. The peak score S was used to quantify
the effect of each feature in the regression model. No intercept term was included in the
model.

3.3.5.1 Training the differential expression predictors

The differential gene expression predictors were implemented using scikit-learn [112]. The
target genes were split into training (8815 genes), validation (1449 genes) and test (2321
genes) sets according to chromosomes they are in as listed in Table 3.3.3.2. The genes in
this analysis were filtered so that genes with smallest overall tpm (transcript per million)
values (mean tpm < 2 over all experiments) were discarded to avoid them dominating the
fit of the model, in the spirit of "independent filtering" [124].

Optimal regularization strength of the lasso regression model was determined using
5-fold cross-validation during training The other model hyperparameters c and dmax were
optimized using the validation data set with a grid search. Coefficient of determination
was used to select the optimal hyperparameters.
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3.3.6 Pre-trained machine learning models used

In Publication III, the following pre-trained machine learning models were used to demon-
strate the ability of the proposed machine learning model interpretation method to high-
light dependencies learned by different machine learning models: DeepBind [42] models
D00198.001 (RBMS1) and D00123.001 (MSI1) predicting RNA-binding protein binding to
DNA sequences; N-score model [125] predicting nucleosome favoring DNA sequences; The
sequence convolutional neural network, graph convolutional neural network and linear
regression models predicting GB1 protein domain fitness [126].

3.3.7 Convolutional neural network classifier interpretation strategies used

In addition to the novel PlotMI and Nsweep approaches described in detail in Results, sev-
eral other strategies were used to interpret the features learned by the CNN models trained
in this study. These approaches mostly relied on generating synthetic DNA sequences in
silico, scoring the sequences with the CNN models and either observing the scores for
sequences with known features embedded, or studying features enriched in high-scoring
random samples. Also the previously published deep learning model interpretation tool
TF-MoDisCo [80, 88] was used in Publication II.

To test which TF binding motifs the CNN trained on the random enhancer STARR-seq
data had learned, the CNN was used to score random sequences with a known embedded
binding motif in them. 100 sequences drawn randomly from each 880 PWMs used also as
features in the logistic regression classifiers were embedded to random enhancer STARR-
seq input library sequences in such a way that each sequence was embedded at a random
position to one of 100 different randomly chosen input sequences (same input sequences
used for each PWM) and the average enhancer probability over the 100 sequences was
calculated for each PWM. When embedding a single PWM per input sequence, first, the
position for the embedding was drawn from uniform distribution. Next, the embedded
sequence was drawn at random from the corresponding PWM. When embedding a motif
pair, first the positions of the embedded sequences were drawn at random, but not allowing
overlap between the embedded sequences. Then, both of the embedded sequences were
drawn independently from the corresponding PWMs. This means that both the positions of
the embedded sequences and the distance between the embedded sequences are random.
The expected enhancer probability for a sequence with two embedded PWMs given that
there are no interactions between them is

p2 = 1 − (1 − p1)
2, (3.8)

where pi is the enhancer probability of a sequence with i PWMs embedded. Thus p2 is the
cumulative probability for geometric distribution with two trials.

As an orthogonal and supporting approach to scoring sequences with known features
in them, we also used the CNN to score completely random synthetic DNA sequences,
selected a set of highest-scoring sequences and performed de novo motif mining on these
sequences to discover the most enriched motif patterns in them. This approach will reveal
the motif patterns in enhancers that the trained CNN model predicts to be the most likely
active enhancers. For this analysis, we created a set of 10 million 170 bp long in silico DNA
sequences that were sampled from uniform nucleotide distribution. These sequences were
scored with the CNN model trained on the random enhancer STARR-seq data, and the top
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0.5% of the sequences (50,000) obtaining the highest predicted enhancer probabilities were
selected for motif mining analysis using the STREME [127] program.

The sequence features found from the TERT promoter and its variants by the CNN
model trained on the binary STARR-seq TSS-aligned promoters were visualized with
DeepLIFT [86] software. The activation values calculated with DeepLIFT using the CNN
model from the wild type and mutated promoter sequences were compared against 15
randomly chosen sequences from the random promoter STARR-seq input and their average
activation signals were visualized as sequence logos.

3.3.8 Validation of the predicted variant effects with saturation mutagenesis data of the TERT
promoter

Saturation mutagenesis study of the TERT promoter [128] was used to test if the variant
effects predicted by the CNN model trained on the binary STARR-seq TSS-aligned pro-
moters correlate with measured activity changes. Note that the CNN model has not seen
any saturation mutagenesis data during training. The statistical significance of the muta-
tion effects predicted by the CNN was estimated by first scaling the predicted promoter
probabilities (Ppromoter) between − inf and inf by transforming them into log odds scores:

logit(p) = log(p/(1 − p)). (3.9)

Next, the predicted mutation effect (ME) for each mutation was calculated as the logarithm
of odds ratio between the predicted promoter probability of the mutated and the wild type
sequence:

ME = logit(pmutated − pwt). (3.10)

To asses the significance of the predicted effects, an empirical p-value was calculated
for each predicted TERT promoter ME by comparing if the predicted effect in the TERT
promoter is more extreme than the predicted effect in shuffled TERT promoter sequences
at the same position and for the same type of mutation.

For this, 10,000 shuffled versions of the wild type TERT promoter were generated where
dinucleotide frequencies were preserved. All possible SNPs were introduced into each
of the shuffled sequences. Then, the predicted ME was calculated for each of the SNPs
as the logarithm of odds ratio against the Ppromoter of the corresponding shuffled wild
type promoter sequence. For each position and mutation type, the empirical p-value was
calculated as the fraction of the predicted mutation effects on the shuffled sequences
that were more extreme than the predicted ME on the wild type TERT promoter. The
non-significant mutations with p − value > 0.05, either according to the empirical p-value
described above or the p-value from the saturation mutagenesis study, were filtered out
from the correlation analyses.

3.4 computing mutual information between positional k-mer distribu-
tions in sets of sequences

In Publication III we use mutual information (MI) to visualize pairwise dependencies
learned by machine learning models trained on sequence data. In Publication II, MI is
also used to discover interactions from STARR-seq sequences similarly to a previous study
where MI was used to study interactions between TFs and the nucleosome [57]. In the
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following, I will describe how MI is computed given a set of sequences S of equal length l
in any defined alphabet (for example DNA, RNA or protein code).

Let us denote with Pi(a) the observed frequency of k-mer a at position i in S, and with
Pij(a, b) the observed joint frequency of k-mer a at position i and b at position j. A k-mer
means a continuous subsequence of length k. The frequencies Pi(a) are

Pi(a) =
1

NS + γ

(
γ/αk +

NS

∑
n=1

δ(κn
i = a)

)
. (3.11)

Here the summation runs over the NS sequences in set S and δ(κn
i = a) is Kronecker delta

that equals to 1 only if k-mer κ at position i of sequence n is a.
To account for unobserved k-mers when dealing with finite samples, we add a "pseu-

docount mass" γ to the total count of k-mers. The normalization comes from the fact that
there are αk k-mers (where α is the alphabet length, for example 4 for DNA), and pseudo-
count mass γ is divided between all k-mers, while Ns k-mers are observed from the input
sequences. Estimation of MI from finite samples is a non-trivial problem, and different
approaches for estimating it have been thoroughly discussed in [129]. The assumptions
of our pseudocount-based approach are 1) when the observed sample count of a k-mer
approaches zero, the estimated probability of observing this k-mer approaches a non-zero
constant and 2) Pi(a) = ∑j,b Pi,j(a, b).

Similarly, the observed joint frequency of k-mers a and b is

Pij(a, b) =
1

NS + γ

(
γ/α2k +

NS

∑
n=1

δ(κn
i = a, ηn

j = b)

)
, (3.12)

where the number of 2k-mers is α2k. Note that this is equivalent to counting gapped
2k-mers where gap length is equal to the distance between the k-mers. Pseudocount mass
γ is added also to the 2k-mers, as each 2k-mer is a combination of two k-mers, and thus
each k-mer pair was added a pseudocount of γ/α2k. With these observed frequencies, one
can compute MI (originally described in [130]) between pairs of positions in the set S as

MIij = ∑
a∈K

∑
b∈K

Pij(a, b) log2

(
Pij(a, b)

Pi(a)Pj(b)

)
, (3.13)

where K is the set of all k-mers. Only position pairs where the k-mer distributions do not
overlap with each other are considered in the visualization.

3.5 experimental data generated in this study

In Publication I, Dr. Biswajyoti Sahu performed the CTCF ChIP-nexus experiment in human
LoVo colon cancer cells.

In Publication II, Dr. Biswajyoti Sahu performed the following experiments with help
from Dr. Päivi Pihlajamaa: motif STARR-seq in GP5d human colon cancer cells; random
enhancer STARR-seq in GP5d and HepG2 human liver cancer cells; binary STARR-seq in
GP5d; HepG2 and RPE human retinal pigmented epithelium cells; genomic STARR-seq in
GP5d and HepG2 cells; generation of TP53-null GP5d cell line using CRISPR-Cas9 genome
editing; template switch for TSS position determination from binary STARR-seq experiment;
H3K27 acetylation, TP53 and IRF3 ChIP-seq experiments in HepG2 cells; H3K27 acetylation,
TP53, CTCF, SMC1, H3K9 trimethylation, FOXA1, HNF4A, MYC, TCF7L2 and H3K27
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trimethylation ChIP-seq experiments in GP5d cells; ATAC-seq experiments in GP5d and
HepG2 cells; RNA-seq in HepG2 and GP5d cells.

In Publication II, Drs. Kashyap Dave and Carsten O. Daub generated the GP5d CAGE
experimental data and Dr. Bei Wei the GP5d ATI experimental data.

3.6 databases and published datasets used

The MAX and TWIST Drosophila melanogaster ChIP-nexus experiments used in Publication
I were published in [11]. The human CTCF ChIP-exo experiments used in Publication I
were published in [37] and [12]. Variant calls used in Publication I were obtained from the
1000 Genomes database [131].

Most of the PWM models of TF binding motifs used in Publications I, II & III were
originally published in [3, 8, 56], with the exception of Drosophila melanogaster PWMs
(MAX: MA0058.3, TWIST: MA0249.1) used in Publication I which were obtained from
the JASPAR-database [132] and the core promoter motifs used in Publication II which
were curated from the following publications: TATA box, Initiator, CCAAT-box, GC-box
from [133] and BRE, MTE, DPE from [134].

The structure of GB1 protein domain (Protein Data Bank ID: 2QMT [135]) was down-
loaded from the Protein Data Bank [136].

The HepG2 TF ChIP-seq, ATAC-seq and histone modification ChIP-seq data were down-
loaded from the ENCODE data portal [4]. The human transcription start sites used in
Publications II and III were obtained from the Eukaryotic Promoter Database [137]. The
pre-computed hg19 reference genome GERP conservation scores used in Publication II
were published in [138].

For gene set enrichment analysis in Publication II, the gene lists of p53 and interferon
signaling pathways were obtained from the Molecular Signatures Database [139].

3.7 published software used

The Burrows-Wheeler aligner [91] was used in Publications I and II to align next generation
sequencing data to reference, in Publication II, also Bowtie2 [103] was used. In Publication
II, RNA-seq transcript-level counts were estimated using Kallisto [140] and differential
expression analysis was performed with Sleuth [141]. Samtools [142] and Bedtools [143]
were used to process bam- and bed-files in Publications I and II. MACS2 [100] was used
for peak calling in Publication II.

FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ was used for
sequencing data quality assessment in Publications I and II and CutAdapt [144] and
TrimGalore https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ were
used for adapter trimming in Publication II.

Matching of known TF binding motifs to DNA sequences was conducted using
MOODS [109] in Publications I and II. MEME suite [145] tools were used for de novo
motif discovery and motif identification in Publications I, II and III. In Publication II, also
Autoseed [146], and HOMER [147] were used for de novo motif discovery.

In Publication II, also the following software tools were used: ROSE pipeline [148]
for super enhancer calling, Picard http://broadinstitute.github.io/picard/ for ATAC-
seq preprocessing, lfc [111] for estimating fold changes between RNA and input DNA,
FLASH [149] for STARR-seq data preprocessing, Preseq [150] and Starcode [151] for com-
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plexity estimation of the STARR-seq libraries, IDR [152] for merging replicate experiments,
and paraclu [153] for calling CAGE read clusters.
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4
R E S U LT S

4.1 peakxus : a computational tool for accurate transcription factor
binding site discovery from chip-exo and chip-nexus experimental
data

Modifications of ChIP-seq, ChIP-exo [12] and ChIP-nexus [11] introduce an additional
λ-exonuclease digestion step that brings the resolution of in vivo TF-DNA binding studies to
one base pair regime. However, this modification leads to different binding signal meaning
software developed for ChIP-seq data analysis are not optimal for ChIP-exo/nexus. In
Publication I, we develop a peak calling algorithm, PeakXus, tailored for ChIP-exo and
ChIP-nexus data and show that it has several desired properties over earlier methods in
the literature: 1) PeakXus reports more TF-DNA binding sites that overlap with TF-specific
binding motif. 2) PeakXus makes less assumptions about the shape of the signal than its
competitors. 3) By using Unique Molecular Identifiers (UMIs) [96] to filter out duplicated
reads, PeakXus is better able to separate true binding events from experimental artefacts
such as PCR bias.

4.1.1 The peak calling algorithm

Figure 4.1a lists the main steps of PeakXus algorithm. The algorithm takes as input
sequencing reads from a ChIP-exo/nexus experiment and the UMI corresponding to each
read (UMIs can be omitted if necessary) and outputs a list of TF binding sites, or peaks, in
the genome. The first step of the algorithm is to filter out reads with identical UMIs that
map to an identical position. Each molecule in the initial library is assigned its own UMI at
random. Given that the UMIs have been designed properly, it is highly unlikely that two
different molecules with same UMI map exactly to the same position in the genome. Thus
UMIs offer a robust and simple way to avoid including for example PCR duplicates into
the downstream analyses.

Next, read 5’ end counts at each position of the genome are saved for use in downstream
analysis. Read 5’ ends are used as these are a proxy of the λ-exonuclease stop positions
and contain the most accurate information of the 5’ end location of the bound TF. A list of
candidate binding sites is then produced following an algorithm outlined in Figure 4.1b:
we iterate through the genome looking for positions where the total read 5’ end count
c+(i)− c−(i) < 0 and c+(i − 1)− c−(i − 1) ≥ 0. Here, c+(i) is the + strand read 5’-end
count at position i, and c−(i) the same for the - strand. For each such transition point
where total read 5’ end count changes sign, index of the left border of the candidate peak
is k = {c+(k)− c−(k)} such that i − w < k < i and c+(k)− c−(k) > 0. Similarly for each
such position, index of the right border of the candidate peak is j = {c+(j)− c−(j)} such
that i ≤ j < i + w and c+(j)− c−(j) < 0.

The list of candidate peaks computed as described above can contain overlapping peak
candidates. In the final step of the algorithm, we perform significance testing, peak ranking
and removal of overlapping candidate peaks. The significance testing method employed
here is motivated by two main features of ChIP-exo/ChIP-nexus TF-DNA binding events.
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Figure 4.1: a) Schematic presentation of the main steps of PeakXus algorithm. Input for the
algorithm is marked with red and output with green. b) Schematic presentation of
candidate binding site discovery. Whenever the total read 5’ end count is negative,
the position within w bp to the left from i with highest sense strand read count c+(i)
is marked as the left border of a candidate peak/binding site. Similarly, the position
within w bp to the right from i with the highest antisense strand read count c−(i) is
marked as the right border of a candidate binding site. Here w denotes the widest
allowed peak and is an adjustable parameter.
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First, true binding events have a high total read 5’ end count around the binding site,
and secondly, stopping of the λ-exonuclease when it encounters a bound protein creates
borders, or narrow peaks of mapped read 5’ ends, to opposite strands flanking the binding
site. See Figure 4.2a for a schematic example of how a ChIP-exo/nexus binding event looks
like on the read/UMI level data.

Because the λ-exonuclease digests DNA from 5’ to 3’ direction, theoretically only reads
pointing towards the center of a candidate peak come from true binding events. Thus the
positions of a mixture of reads resulting from the binding events together with background
noise point towards the binding site center. On the other hand, the reads pointing away
from the binding site center contain only the background noise. Thus, we compute the
distribution of distances between read 5’ ends and the candidate binding site center for the
background reads only (reads pointing away from the candidate binding site center, blue
background in Figure 4.2) and compare it with the distribution of distances between read
5’ ends and the candidate binding site center for the reads containing the signal and the
background reads (reads pointing towards the candidate peak center, red background in
Figure 4.2). If these two distributions are significantly different, the candidate binding site
is accepted as a real TF-DNA binding event.

The significance testing is conducted using the G-test (see e.g. [154]) and multiple
hypothesis correction is done using the the Benjamini-Hochberg procedure [155]. Finally,
we compute a peak score SCkj for each candidate peak that is used for final ranking of the
peaks. Peak score is also used to filter overlapping peaks so that only the peak with highest
peak score among overlapping peaks is kept. The peak score for a peak with borders k and
j is defined as

SCkj = Gkj
p

⎛
⎝ �m�

∑
i=kkj−d

c+(i)− c−(i) +
jjk+d

∑
i=�m�+1

c−(i)− c+(i)

⎞
⎠ , (4.1)

where the middle position of the candidate peak is m = (kkj + jkj)/2, d is a parameter

allowing some variation for the λ-exonuclease stop position (by default d = 5) and Gkj
p is

the G-test test statistic value. Default value of pseudocount used in computing the distance
histograms is p = 1. To summarize, the following steps are performed for all candidate
peaks:

1. Calculate the p-value using G-test. If p-value is higher than a predefined threshold
value, discard the candidate.

2. Calculate the peak score for all remaining peaks.

3. Find all sets of overlapping peaks, and discard all others but the peak with the highest
peak score from each set.

4. Calculate false discovery rates using the Benjamini-Hochberg procedure, using the
initial number of candidate peaks as the total number of tested null hypotheses.

4.1.2 Comparison to other peak callers

In Publication I, we show that PeakXus finds more peaks overlapping with high-affinity
recognition sites (HARSs), defined as genomic sites with a high-affinity match to a known
binding motif of a specific TF, than the earlier published methods (Peakzilla [156], MACE
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Figure 4.2: Schematic presentation of determining the significance of peak candidates with
PeakXus. a) Determination of a candidate peak in the presence of one true TF-DNA
binding event (green area marks the positions occupied by the TF). b) Determination
of a candidate peak in the presence of two true binding events. Red arrows correspond
to reads mapped to the sense strand and blue to the antisense strand. Reads point
from 5’ to 3’ direction. The red and blue bar charts below the reads correspond to
counts of 5’ ends of reads (or UMIs) on the sense and antisense strands, respectively.
Because the λ-exonuclease stops at the border of the bound TF, reads pointing towards
the candidate peak center (the middle position between the borders on the sense- and
antisense strands) are assumed to be true signal, while reads pointing away from the
candidate peak center are assumed to originate completely from other sources such as
noise. Distance distributions of read 5’ ends and the candidate peak center are com-
pared between the regions on red (signal) and blue (background/noise) backgrounds.
If the distributions are significantly different, candidate binding site is marked as a
true TF-DNA binding site. Figure modified and adapted from Publication I.
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Figure 4.3: Analysis of peak caller-specific peaks in three experiments measuring binding of CTCF
TF. The peak callers are color coded as: cyan = Peakzilla, blue = MACE, red = PeakXus,
and the peaks reported by all methods are plotted in black. Left column (from a1 to
d1) shows results from the in-house ChIP-nexus experiment, middle column (from a2
to d2) from the ChIP-exo experiment from [37] and right column (from a3 to d3) from
the ChIP-exo experiment from [12]. a1-a3) The number of high-affinity binding sites
(HARSs) overlapping with x (value shown on x-axis) top peaks (ranked by method-
specific peak score) is shown on y-axis. For clarity, 20,000 highest-scoring peaks are
shown. A peak was considered to match with an HARS if distance between the HARS
and the peak centers was ≤ 20 bp. Only the peaks not overlapping with any peaks
found by the other two methods were included in the sets of peak caller-specific peaks.
Peakzilla-specific peaks are rare (in-house ChIP-Nexus: 496, Katainen et al. ChIP-exo:
11, Rhee & Pugh ChIP-exo: 94), rendering the corresponding curves hardly visible.
b1-b3) More detailed analysis of the top 1000 peaks specific to PeakXus. Each column
shows on the left the average read 5’ end count profile around the peak center for
sense (red) antisense (blue) strands. On the right are shown both orientations of the
highest-confidence de novo motif from the top 1000 method-specific peaks reported by
MEME. The number of occurrences of the best scoring MEME-motif is shown below
each of the motif pairs along with the corresponding MEME E-value. c1-c3) More
detailed analysis of the top 1000 (or less, if 1000 were not found) peaks specific to
Peakzilla and d1-d3) MACE. Figure modified and adapted from Publication I.
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[157] or GeneTrack [158]). This does not directly measure "goodness" of a peak caller, as
it is well established that TFs also bind locations without HARS to their corresponding
binding motif in vivo (possibly due to for example non-specific binding to open chromatin),
but is a good indicator of how many of the sites where the binding mechanism can be
explained by the binding motif the peak caller finds. Moreover, we also studied the peaks
commonly reported by the three peak callers PeakXus, Peakzilla and MACE, and the peaks
reported specifically by each of the methods and not by the others.

Unsurprisingly, the peaks found by all three methods overlapped more likely with
HARSs than peaks specific to any of the individual methods (Figure 4.3a1, a2 & a3).
Importantly, PeakXus-specific peaks overlap in total more likely with an HARS than peaks
specific to MACE or Peakzilla. Peakzilla reported only less than 100 peaks the other two
methods did not from the three tested experiments which is why the Peakzilla curves are
not visible in Figure 4.3. Curiously enough, de novo motif mining with MEME [159] does
not find the CTCF binding motif from MACE-specific peaks, contrary to PeakXus (3/3
experiments) and Peakzilla (2/3 experiments). Moreover, when reads with identical strand
and 5’ end positions were removed and the analysis re-run, MACE reproduced only 2,005
of the 99,564 peaks from ChIP-exo experiment by Katainen et. al. [37], and 10,549 of the
54,510 peaks from CTCF ChIP-exo experiment by Rhee & Pugh [12]. MACE was unable
to find any peaks from our in-house ChIP-nexus data after duplicate read removal. This
observation highlights the difficulty of separating true ChIP-exo/nexus binding events
from artefacts created by PCR-duplicates if UMIs [96] are not used in the experiment and
supported by the peak caller.

4.1.3 Allele specific binding analysis algorithm for ChIP-exo/nexus data

As an application example of PeakXus and the use of UMIs to filter out duplicated reads,
we developed an improved algorithm for studying allele specificity of TF binding with
ChIP-exo/nexus experiments in Publication I. The main improvements in our algorithm
compared to earlier work in studying allele specific binding (ASB) with ChIP-seq experi-
ments are: 1) ChIP-exo and ChIP-nexus are better suited for ASB analysis than ChIP-seq
as the λ-exonuclease treatment causes the reads originating from a single binding event
to cluster more tightly on top of the binding site giving higher coverage of reads on
top of polymorphism sites overlapping binding motifs of TFs. 2) Use of UMIs to filter
out duplicated reads makes controlling PCR bias easier compared to earlier methods
used in ChIP-seq ASB studies [160]. 3) To control for uncertainty of genomic allelic ratios
(gARs) [161, 162] determined using whole genome sequencing (WGS), we use the Audic-
Claverie test [163] to compute significance of allele specific binding instead of the binomial
test which assumes the genomic allelic ratios are unbiased.

Figure 4.4 summarizes the main steps of the ASB analysis algorithm. The algorithm
takes as input the locations of called peaks from PeakXus, locations of known single
nucleotide polymorphism (SNP) sites, reads from a WGS experiment performed in the
same cell type as the ChIP-exo/nexus experiment, and the aligned reads and UMIs from
the ChIP-exo/nexus experiment. ASB analysis is carried conducted for peaks that overlap
with a SNP or SNPs. For the analysis, we compute the number of unique reads mapping to
each of the alleles both in the WGS and in the ChIP-exo/nexus experiment. Other steps of
the algorithm, except significance testing, are rather straightforward. In the following I will
describe how significance of ASB is assessed.
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Figure 4.4: Schematic presentation of the main steps of the allele specific binding analysis algo-
rithm. UMIs are used to filter reads so that each unique UMI label is counted only
once per position and strand. Input of the algorithm is marked with red and output
with green.

The goal is to compute if the fraction of reads mapping to the reference allele in the
ChIP-exo/nexus experiment is significantly different from the fraction of reads mapping to
the reference allele in the WGS experiment for a given SNP. The Audic-Claverie test [163]
requires that the observed events tested are rare and part of a large population of possible
outcomes. This assumption is satisfied as each read/UMI has approximately a probability
of one over the size of the genome for mapping to a specific position. The number of
possible mapping locations is proportional to the size of the genome. The Audic-Claverie
distribution is a general probability distribution governing occurrence of the same rare
event in duplicate experiments. The WGS and the ChIP-exo/nexus experiments are viewed
as replicate experiments with k reads that overlap with the SNP i mapping to reference
allele in the ChIP-exo/nexus experiment and n reads mapping to the reference allele in the
WGS experiment. Following [163], the probability of observing k given n by chance is

Pi(k|n) =
(

N2

N1

)n (k + n)!
k!n!(1 + N2/N1)k+n+1 , (4.2)

where N1 is the total number of reads overlapping with the SNP i in ChIP-exo/nexus and N2
in the WGS experiment. Pi(k|n) is calculated for each SNP. If Pi(k|n) < 0.01, we conclude
that there is significant difference in binding the TF measured in the ChIP-exo/nexus
experiment between the two alleles.

We demonstrated the ASB analysis algorithm described above with an in-house CTCF
ChIP-nexus experiment. In Publication I, we show that using UMIs to filter out duplicated
reads, a higher fraction of SNPs overlapping a CTCF HARS show significant allele specific
binding compared to SNPs not overlapping a CTCF HARS, than if the analysis is conducted
using raw read counts. It is reasonable to expect that SNPs disrupting the binding motif of
CTCF affect the binding of the TF more than more distal SNPs. This result suggests that
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Figure 4.5: Reference allele ratio as a function of binding affinity change in the in-house CTCF
ChIP-nexus experiment. Reference allele ratio is shown on the y-axis, while x-axis is the
affinity change (reference minus alternate sequence affinity to the CTCF binding motif).
SNPs with p-value > 0.01 are not shown. Red dots represent SNPs where alternate
allele creates a CG-site to the sequence but reference does not. Yellow dots represent
SNPs where sequence with reference allele has an extra CG dinucleotide. Other SNPs
are black. The green circle marks the only SNP overlapping with an imprinting control
region from [164] that overlapped with the ChIP-nexus peaks. Values of Pearson
correlation coefficients (r) along with the corresponding p-values are shown above the
panels. a) p-values were computed using UMIs (73 significant SNPs). b) p-values were
computed using raw read counts (142 significant SNPs). Figure modified and adapted
from Publication I.

58



using UMIs in ASB analysis leads to fewer false positive ASB events than conducting the
analysis without UMIs.

In Figure 4.5, we show how the CTCF binding motif affinity change caused by a SNP
correlates with observed ASB in the ChIP-nexus experiment using UMIs (upper panel)
and without using UMIs (lower panel). The correlation between the reference allele ratio
in the ChIP-nexus experiment and the affinity change of the binding motif induced by
the SNP is stronger when using UMIs indicating that UMIs help to discard false positive
ASB events. Moreover, when the analysis was repeated otherwise similarly, but calculating
the significance using the two-sided binomial test according to the previous literature,
the correlation coefficients were: rUMI,binom = 0.38 (p-value=2.20e − 05, 115 significant
SNPs vs 73 significant SNPs using the Audic-Claverie test) for analysis with UMIs and
rread,binom = 0.31 (p-value=5.23e − 05, 168 significant SNPs vs 142 significant SNPs using
the Audic-Claverie test). Testing the significance of ASB with the Audic-Claverie test results
to fewer significant SNPs but also to stronger correlation between the reference allele ratio
and the affinity change. This suggests that using a significance test that accounts for the
uncertainty of the gARs helps to capture those ASB events that correlate with the affinity
change of the binding motif.

To summarize, in Publication I we describe a novel peak calling algorithm PeakXus,
designed to accurately call TF-DNA binding events from ChIP-exo and ChIP-nexus ex-
perimental data while making as few assumptions about the binding events as possible
to allow discovery of possible new binding modes and patterns. We show that PeakXus
reports more peaks that overlap with the TF-specific HARSs than the methods published
earlier. In addition, we describe an improved algorithm for studying allele specificity of
TF-DNA binding in ChIP-exo/nexus experiments. Both algorithms were made publicly
available for other researchers to use via GitHub.

4.2 sequence determinants of human gene regulatory elements

In Publication II, we employ massively parallel reporter assays (MPRAs), and modern
machine learning methods to directly study transcriptional activities of human promoters
and enhancers. MPRAs have been previously utilized in genome-wide studies of gene
regulatory element activities in yeast [21, 165], fruit fly [13, 166] and humans [14–19]. The
MPRA designs we utilized in Publication II (see Figure 3.3) have two major advantages
over the previous studies in human cells: First, in addition to a traditional design using
human genomic sequences, we also measure enhancer and promoter activities of designed
sequences and completely random synthetic sequences. These approaches help to avoid
the problems related to discovery of sequence determinants of gene regulatory activity
from the human genome which is repetitive and evolved to perform also other functions
in addition to transcription. Second, we measure gene regulatory activities of sequences
that in total cover 100 times the sequence space of the human genome. In the following,
the focus is on the machine learning results from Publication II as those were the major
contribution of the Author.

4.2.1 Sequence determinants of enhancers needed for transcriptional activity

In Publication II, we performed several STARR-seq experiments to characterize the set
of DNA sequence features of human enhancers needed for transcriptional activity. We
trained machine learning models both on the genomic fragments that functioned as active
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Figure 4.6: a) Regression coefficients for TFs and TF pairs from logistic regression (LR) analysis
of GP5d random enhancer STARR-seq, with the most important features labeled. b)
Inserting two instances of the same motif to randomly selected input library sequences
increased the predicted enhancer probability by the random enhancer STARR-seq
CNN above that expected from a single motif (dashed black line), but not above
expectation from a model assuming independent binding to two motifs (red dotted
line). c) Classification (balanced test set) performance of models trained to separate
inactive (input) and active GP5d random enhancer STARR-seq sequences. CNN (or-
ange) outperforms the LR model (blue). Soft voting (green) combining the predictions
of the CNN and the LR does not improve over the CNN (area under precision-recall
curve, AUprc), indicating that the predictive features of the LR are also learned by
the CNN. d) Violin plots showing AUprc in binary classification (balanced test set)
between GP5d ATAC-seq peaks and control genomic sequences for CNNs trained
on: ATAC-seq (blue), genomic enhancer (orange), and random enhancer (green) data.
Dots are unique hyperparameter combinations. Figure modified and adapted from
Publication II.
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enhancers (design ii, genomic enhancer STARR-seq), and on the enhancers enriched from
completely random synthetic sequences (design iii, random enhancer STARR-seq). We
modeled the random enhancer STARR-seq experiment with machine learning classifiers as
described in Methods. The most predictive features in a logistic regression classifier using
single TF binding motifs, and a selected subset of pairs of binding motifs as features (in total
19,360 features) were highly similar to the motifs observed from motif matching analyses
from the motif, and the random enhancer libraries (see Figure 4.6a, and Publication II).
Very few features describing pairs of motifs had strong predictive power, with the "p53
family-p53 family" being the most prominent of the pairwise features, consistent with the
strongest observed spacing in an analysis searching for enriched spacings between motifs
observed between p53 motifs (see Publication II).

We then trained convolutional neural network (CNN)-based classifiers on the STARR-seq
data. These methods do not rely on the assumption of known TF binding motifs, but can
in principle learn any type of sequence features responsible for the observed activities. The
CNNs classified unseen test data better than the logistic regression classifier (Figure 4.6c).
Moreover, a soft voting classifier combining the predictions of the CNN and the regression
models did not improve over the classification obtained by the CNN suggesting that the
logistic regression model did not learn information that would be missing from the CNN.

Comprehensive analysis of the features learned by the CNN classifier presented in
Publication II indicated that the features learned by the CNN were largely similar to
the known TF binding motifs, but in many cases the weaker bases of the motifs learned
by the CNN were different than in the known binding motifs, suggesting that this was
largely the reason for better model performance. Also the activities of the known binding
motifs learned by the CNN were similar to activities observed using the motif matching
analysis from the motif and random enhancer libraries with highest learned activities for
motifs such as p53 family, p53 specific, IRF HT2 and GRHL HH5 (Figure 4.6b, Publication
II). Consistent with the other analyses, the CNN also did not learn evidence for beyond
additive interactions between instances of the same binding motif.

We next used the CNN model trained on the random enhancer STARR-seq data to
predict which sequences in the GP5d cells reside within open chromatin and which not,
according to an ATAC-seq experiment in the same cell line. CNN models trained on the
random and genomic enhancer STARR-seq experiments were able to classify the ATAC-seq
data relatively well, but were still clearly outperformed by a CNN trained on the ATAC-seq
data (Figure 4.6d). This indicates that only part of the ATAC-seq peaks in the genome are
explained by classical enhancer activity.

4.2.2 Differential gene expression predictor supports the observation of different enhancer classes

To characterize the human genomic enhancers in detail, we combined the genomic STARR-
seq experiments performed in the HepG2 liver cancer cell line with comprehensive charac-
terization of the regulatory regions in HepG2 cells with approximately 100 TF ChIP-seq
experiments, histone modification ChIP-seqs and ATAC-seq, partly downloaded from the
ENCODE data portal [4]. This comprehensive integrative analysis, discussed in more detail
in Publication II, revealed six classes of gene regulatory elements including three classes of
active enhancers (see Figure 4.7a): i) closed chromatin enhancers (STARR-seq +, ATAC-seq
-), ii) cryptic enhancers (silenced STARR-seq + regions), iii) promoters (ATAC-seq + with or
without STARR-seq), iv) chromatin-dependent enhancers (STARR-seq -/low, ATAC-seq +
with active histone mark H3K27ac), v) structural chromatin elements (STARR-seq -, ATAC-
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Figure 4.7: Integrative genomic analysis reveals three types of transcriptionally active enhancers.
a) Six types of regulatory elements classified on the basis of STARR-seq signal and
chromatin features such as accessibility (ATAC-seq), TF binding, and epigenetic mod-
ifications (KZFPs = KRAB-Zinc Finger Proteins). Derivation of this classification is
discussed in detail in Publication II. b) Regression coefficients of a lasso regression
model trained to predict differential gene expression between GP5d and HepG2 cell
lines based on the features shown (see Methods for details). The model was able to
explain approximately 12% of the observed variance in target gene differential expres-
sion. Positive values mean overexpression in GP5d and negative overexpression in
HepG2. Features were constructed based on distance from TSSs (distal/proximal) and
overlap with ATAC-seq and/or STARR-seq peaks in corresponding cell lines. Features
are colored so that GP5d-specific features are orange, HepG2 specific features blue, and
common features black. Numbers after the feature names indicate to which regulatory
element classes from panel a the features correspond to. Figure modified and adapted
from publication II.
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seq +, CTCF +) and vi) classical enhancers (STARR-seq +, ATAC-seq +). All three types of
active enhancers detected had independent predictive power in predicting differential gene
expression between the GP5d and the HepG2 cell lines (Figure 4.7b). Cryptic enhancers
appeared silenced by their co-occurrence with repressive chromatin marks H3K27me3 (see
also poised enhancers [167]) and/or H3K9me3 and HP1 (see [168]). Detailed analysis of
the genomic enhancers in the GP5d cells presented in Publication II supported this picture
observed from HepG2 cells.

4.2.3 Additive and non-specific local promoter-enhancer interactions

Figure 4.8: Machine learning identified no sequence features determining specificity of promoter-
enhancer interactions. Four CNN classifiers with identical architecture (see Figure 3.6b)
were trained on different data sets to classify between active and inactive promoter-
enhancer pairs. In the "paired" training data the promoter-enhancer pairing was kept
intact, whereas in the "permutated" data, the pairs were shuffled disrupting any specific
interactions between the promoters and the enhancers. In the "enhancer from input"
and "promoter from input" data, the promoters and enhancers, respectively, were
paired with randomly sampled inactive sequences from the input library. Separate
models were trained for 24 different hyperparameter combinations (x-axis). The area
under precision-recall curve (AUprc) values show that the CNNs trained on paired data
(blue) outperform CNNs trained on enhancer (violet) or promoter (red) data, but not
those trained on permutated data (green, paired Student’s t-test p-value ≈ 1.34× 10−1).
Figure modified and adapted from publication II.

In addition to studying differences between sequence features enriched at promoters
and enhancers (see Publication II), the binary STARR-seq experiment also allows studying
interactions between promoters and relatively local enhancers separated by few hundreds of
base pairs. To establish if there are any specific interactions between the promoters and the
enhancers in the binary STARR-seq experiment, we trained a series of CNN-based classifiers
with two input heads for separately learning the sequence features from the enhancer
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and the promoter positions, which were then combined with a fully connected layer that
can learn interactions between the two inputs (see Methods for details). We trained four
different types of models with identical architectures but with differently arranged training
data (Figure 4.8). The rationale for this in silico experiment was that if there are any specific
interactions between the promoters and the enhancers, these interactions can be removed by
disrupting the pairing of the active promoter and enhancer sequences - by either shuffling
the pairs or by pairing the promoters or the enhancers with inactive sequences from the
input library. Figure 4.8 shows that promoters have more predictive power than enhancers,
when paired with inactive sequences from input. The predictive performance of the model
further improves when pairing the active promoters with active enhancers, but with a
different enhancer than in the experiment thus disrupting any specific interactions. Keeping
the information about the original pairing intact does not improve on this (paired Student’s
t-test p-value ≈ 1.34 × 10−1), indicating that the enhancers interact with the promoters
in a non-specific manner. Analysis of motif match counts between the promoters and the
enhancers presented in Publication II further supported this result.

4.2.4 Prediction of genomic transcriptional activity using sequence features from machine learning
models

To study how well a promoter model trained on the promoters enriched from random
sequences can predict gene expression in the human genome, we trained a CNN model
to classify between the active TSS-aligned promoters from the GP5d promoter capture
template switch experiment and corresponding inactive promoter sequences from the
input library. Figure 4.9a shows that the CNN trained on the TSS-aligned sequences from
the promoter capture STARR-seq is able to predict the active GP5d TSS positions in the
genome (promoter activity measured using CAGE, see Methods) even more accurately than
a similar CNN model trained on the genomic promoters themselves (promoters and TSS
positions downloaded from the EPD database [137]). The CNN trained on the STARR-seq
data outperforms the CNN trained on the EPD data even when not restricting to active TSSs
in the GP5d cells as defined by CAGE, but considering all unseen test set TSSs from the
EPD database (Figure 4.9b). Also a position-specific logistic regression model trained on the
STARR-seq data outperforms the CNN trained on the EPD data suggesting that the training
data plays a major role in observed better performance. Moreover, both the STARR-seq and
the EPD-based CNN models were trained for 72 different hyperparameter combinations,
and the model trained on the STARR-seq data outperformed the model trained on the
EPD data in predicting the TSS position at active GP5d promoters in all but one of these
combinations (Figure 4.10, paired Student’s t-test p-value ≈ 9.68 × 10−23 for rejecting a
null hypothesis of similar performance across the hyperparameter combinations).

To investigate why the CNN trained on STARR-seq data is able to outperform the
CNN trained on the genomic promoters, we used the mutual information-based approach
described in Publication III to visualize the pairwise dependencies learned by these two
models (see Figure 4.11). This analysis revealed that the CNNs trained on STARR-seq
data had learned a stronger position-specific signal of TF enrichment than the CNNs
trained on the genomic promoters, which relied more on information at a relatively short
region around the TSS. This likely makes it easier for the STARR-seq-based CNN to more
accurately predict the TSS position.

In Publication II, we use external validation data not seen by the model during train-
ing to test how well the CNN model trained on the promoters enriched from random
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Figure 4.9: Prediction of genomic transcription start site (TSS) positions. Cumulative distance of
the predicted TSS positions from annotated genomic TSSs is shown for a CNN trained
on human genomic TSS data (orange) and for a PWM model of human genomic
TSSs (red). Same is shown also for a regression model using positional enrichment of
TFs as features (blue) and for a CNN (green) trained on de novo promoters enriched
from random sequences and aligned based on the TSS positions measured using the
template switch experiment described in Methods. The test set genomic TSS positions
are aligned at 0; the curves mark predicted TSS positions for each model, sorted by
distance from the annotated TSS position. The TSS probability of each position within
±500 bp from the known TSS position was evaluated for each model, and the most
likely TSS position, according to each model, was used as the prediction of the model.
The score S in the figure legend indicates the fraction of predicted TSS positions within
±25 bp (the area shaded with green) from the annotated TSS positions. a) Prediction of
active GP5d TSSs defined as intersection of Eukaryotic promoter database (EPD) TSSs
and active promoters in GP5d cells defined using CAGE. b) Prediction of all human
TSSs from EPD. Figure modified and adapted from publication II.
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Figure 4.10: The CNN classifiers trained on the promoters evolved from random sequences
consistently outperform the CNNs trained on genomic promoters in predicting the
TSS position on unseen test data of active GP5d genomic TSSs across the tested
hyperparameter space. Both models were trained on the same set of 72 different
hyperparameter combinations. Fraction of predicted test set TSS positions that are
within ±25 bp from the annotated TSS position is shown on y-axis. The CNNs
trained on STARR-seq data (blue) outperform the CNNs trained on the genomic
promoters from the Eukaryotic Promoter Database (EPD, orange) data on all but one
hyperparameter combination tested (paired Student’s t-test, p-value= 9.68 × 10−23)
Figure modified and adapted from publication II. .
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Figure 4.11: Mutual information (MI) based comparison of pairwise interactions learned by the
CNN models trained on the STARR-seq active promoters (a) and the human genomic
promoters from EPD (b). The triangle-shaped upper panels show the values of
MI between 3-mer distributions at each position of the models. Below is shown a
zoomed-in view of the diagonal of the MI matrix showing the positional enrichment
of TF binding sites. The EPD-trained CNNs seem to rely more strongly on the
presence of the Initiator-motif at the TSS (position 100, see also Publication II),
while the STARR-seq-trained CNNs have learned a stronger pattern of positional
enrichment of TF binding sites downstream of the TSS that is likely to make exact
positioning of the TSS easier. For both models, random sequences with predicted
promoter probability over 0.9 according to 10 best individual CNNs (with different
hyperparameter combinations) were used for the MI analysis. Figure modified and
adapted from publication II.
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sequences has learned to predict effects of mutations on human promoters. The predicted
mutation effects on the TERT promoter activity based on the CNN model correlate well
with previously published saturation mutagenesis experiments [128] in HEK293T cells
achieving Spearman correlation 0.74 (Figure 4.12a; Spearman correlation 0.60 in SF7996
primary glioblastoma cells). The cross-correlation of the HEK293T and SF7996 saturation
mutagenesis experiments is only slightly better at 0.79 suggesting the CNN model has
learned to predict effects of single nucleotide variants on promoter activity. Figure 4.12b
shows the predicted promoter probabilities for all possible TERT promoter single nucleotide
variants (SNVs). Most of the variants are predicted to have a mild effect, but there are
some hotspots, especially at the TSS (position 100), where several possible mutations are
predicted to either hyperactivate or to kill the TERT promoter. As an example, Figure
4.12c shows both the wild type TERT promoter, and the variant (p101:A>C) with highest
predicted promoter probability, and the sequence patterns the CNN model recognized and
used to make the prediction. This visualization, made using DeepLIFT [86], shows that
the mutation would create a binding site for an ETS-class TF (TTCCGG), that the model
predicts would lead to a highly active promoter.

Further analysis of the 14 recurring TERT promoter mutations observed in patient sam-
ples [169] showed that the CNN model trained on the STARR-seq TSS-aligned promoters
correctly predicted the direction of the mutation effect in 13 out of 14 cases (see Publica-
tion II). Interestingly, the variant (p101:A>C) obtaining the highest predicted promoter
probability for the CNN model was not within these recurring TERT variants. Figure 4.13
illustrates how the CNN model has learned to correctly predict the effects of three most
commonly observed cancer-associated mutations at the TERT promoter [34, 169, 170] - the
CNN model correctly predicts that the mutations increase promoter activity by predicting
a higher promoter probability for the mutants versus the wild type promoter. DeepLIFT
visualization of the features used by the CNN in making the predictions highlights that the
CNN has learned to recognize the ETS-class TF binding sites known to be created by these
mutations. Taken together these results highlight that combining modern machine learning
methods with large-scale, unbiased data from human gene regulatory element activities
allows creating even more accurate models of gene regulation than studying only those
sequences that appear in the human genome.

4.3 novel deep learning model interpretation methods for genomics

In Publication II, we used deep learning based classifiers to learn the grammar recognized
by transcription factors in human promoters and enhancers. Interpreting the features
driving gene expression according to the deep learning models was one of the key questions
and led into development of two novel approaches to interpretation of deep learning models
in genomics. These approaches are discussed in the following.

4.3.1 Testing if a convolutional neural network model uses similar features than a logistic regression
model with designed features

In addition to applying previously described interpretation methods described in Methods
such as DeepLIFT, TF-MoDisCo or using the deep learning models to make predictions on
synthetic sequences with designed features, we developed two novel model interpretation
methods. In Publication II we describe how a convolutional neural network (CNN) based
classifier outperforms logistic regression classifiers that use known TF binding motifs as
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Figure 4.12: a) The effects of point mutations predicted by the CNN model trained on STARR-
seq promoters selected from random input sequences (activity measured in GP5d
colon cancer cells) correlate with the measured effect of the same mutations in a
published saturation mutagenesis MPRA study of the human TERT promoter [128]
in HEK293T cells. Correlation is shown between the predicted mutation effect (see
Methods for derivation) and the measurement from the saturation mutagenesis
measurements [128]. Only statistically significant mutations (p<0.05) in both predic-
tions/measurements are shown. b) Predicted effect of each possible single nucleotide
variant (SNV) at the TERT promoter from the CNN model trained on promoters
enriched from random sequences. Colors indicate different mutations, x-axis shows
the position along the promoter (TSS at position 100), and y-axis shows the predicted
promoter probability. The dashed line shows the predicted promoter probability of
the wild type TERT promoter. c) DeepLIFT [86] visualization of the positions that
contribute most towards the CNN predictions for the wild type TERT promoter
(top) and the most active variant (p101:A>C, bottom, arrow indicates the mutated
position) according to the predicted promoter probability (Ppromoter). Height of the
letters indicates the importance of the nucleotide at that position towards the CNN
prediction. Figure modified and adapted from publication II.
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Figure 4.13: The CNN trained on the TSS-aligned promoters enriched from random sequences
correctly identifies cancer-associated mutations in the TERT promoter. Top: predicted
sequence determinants at the TERT promoter as determined by DeepLIFT [86] analysis
of the CNN model. Bottom: the effect of three driver mutations [34, 169, 170] on
the predicted activity of the promoter (mutated bases highlighted). Ppromoter is the
predicted promoter probability and heights of the letters indicate the importance
of the corresponding position towards the prediction verdict. Figure modified and
adapted from publication II.
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features in predicting which sequences are active enhancers and which not. To understand
what different features the CNN model uses to achieve the better predictive performance,
we developed the "Nsweep" algorithm (Algorithm 1), that can be used to determine if a deep
learning model uses specific TF binding motifs in its predictions. Schematic presentation of
the Nsweep algorithm is shown in Figure 4.14.

Shortly, the idea is to systematically score the consensus sequence of a PFM and all
sequences one substitution (Hamming distance 1) away from it with the CNN model
and record the effect of each substitution towards the prediction made by the CNN
model. This was done by embedding the variants into random positions in different
background sequences and recording the contribution of each mutated position, assessed
using DeepLIFT ( [86]), as described in Algorithm 1 and Figure 4.14. As discussed earlier, the
main assumption in a PFM/PWM model is that the positions of the model are independent
of each other and thus each position can be tested separately when assessing whether
a CNN has learned a PWM-like feature. As an end result, the Nsweep algorithm will
produce a sequence logo we call CNN Activity Contribution Weight Matrix (CACWM).
If the CACWM looks similar to the input PFM, the CNN is using a feature similar to the
original PFM.

Figure 4.15 shows an example from Publication II where a CNN classifier trained to
separate active STARR-seq enhancers from inactive input library sequences was used to
re-generate TF binding motifs used by a logistic regression classifier trained to perform
the same task. The figure shows selected examples of cases where the CNN has learned
parts of the HT-SELEX motifs used by the logistic regression classifier (FLI1, IRF3, TP63 &
TCF7), where the CNN has not learned the HT-SELEX motif (HNF4A), or where the real
feature in the data likely is something simple like a stretch of Cs that has predictive power
but that is not present in the set of features available for the logistic regression model, so
the logistic regression has picked up the TF binding motif that is closest to the stretch of
Cs. The Nsweep analysis, together with other model interpretation analyses presented in
Publication II indicated that the main difference between the features learned by the CNN
and the features used by the logistic regression was that the CNN was able to learn TF
binding motifs that are slightly different from the HT-SELEX motifs, and thus likely better
optimized for the classification task.
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Figure 4.14: Schematic overview of the Nsweep algorithm for testing if a deep learning model has
learned a given TF binding motif.

72



/*variables:;
PFM : Position Weight Matrix of TF of interest;
sPFM : Consensus sequence of the PFM;
CACWM : CNN Activity Contribution Weight Matrix;
Npos : Number of positions where each variant sequence is embedded;
Nbg : Number of different background sequences;
Nre f : Number of reference sequences for DeepLIFT;
*/;
foreach column i in PFM do

Create all 4 possible single nucleotide variants of the consensus sequence;
Embed each variant sequence separately to Npos different positions in Nbg

different background sequences;
foreach seq of the resulting 4 × Npos × Nbg sequences do

Compute DeepLIFT contributions for each position of seq with the CNN
model against Nre f dinucleotide-shuffled versions of seq;

Add the resulting contribution at position i of the variant to position i of the
CACWM for the nucleotide n that is at position i in the variant embedded to
seq;

end
Normalize the column i by dividing with the number of variant sequences

created for each column and each variant (Npos × Nbg);
end

Algorithm 1: Pseudocode for the Nsweep algorithm for generating CNN Activity
Contribution Weight Matrices (CACWMs).

4.3.2 General machine learning model interpretation tool to highlight dependencies learned by the
model

One advantage of deep learning models is that they can in principle learn any kind of
complex interactions. It is, however, not straightforward to determine if a deep learning
model has learned interactions between features unless there are specific hypotheses one
can test by embedding the interactions into synthetic input samples and scoring these
samples containing the interactions with a pre-trained deep learning model. In Publication
III, we developed a general machine learning model interpretation tool, PlotMI, that can
intuitively visualize pairwise dependencies learned by a machine learning model trained
on sequence data.

We use a pre-trained machine learning model to score a set of input samples, and select
a subset of the input based on the machine learning model predictions for downstream
analysis. We then compute mutual information (MI) ( [130]) between position-specific
k-mer distributions in this subset and visualize MI as a two-dimensional heat map as
described in Figure 4.16a. PlotMI can highlight spacings between interacting features as
well as positions of interacting features learned by a machine learning model. Figure
4.16b shows an example of a mutual information plot (MI-plot) visualizing dependencies
between pairwise positional 3-mer distributions in a simulated dataset with two mutually
exclusive embedded interactions. MI-plot offers an easily interpretable visualization of
the dependencies in the data, even in presence of multiple interactions, unlike distance
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Figure 4.15: Example CNN activity contribution weight matrices (CACWMs) learned by the
CNN model from the random enhancer STARR-seq data analyzed using the Nsweep
approach. HT-SELEX PFMs are shown on the left and the corresponding Nsweep
motif on the right. The CACWMs reproduce the parts of the HT-SELEX motifs that
the CNN has learned to be important in predicting active enhancers. Motifs not
reproduced by the Nsweep analysis have not been learned by the CNN. Figure
modified and adapted from Publication II.
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measures like Jensen-Shannon divergence that measure similarity between probability
distributions (Figure 4.16c, see also Publication III).

As an example of using the MI-plot to visualize dependencies learned by a deep learning
model, we applied PlotMI to interpret a CNN model trained to recognize human genomic
promoters. The promoter sequences were downloaded from the Eukaryotic Promoter
Database (EPD, [171]) and the CNN was trained to separate the real promoters from
dinucleotide-shuffled versions of the promoter sequences. Figures 4.17a-b show that the
CNN model has learned an interaction between the canonical TATA-box position approxi-
mately 30 bp before the transcription start site (TSS), and the TSS itself, highlighting the
ability of PlotMI analysis to visualize dependencies learned by a deep learning model from
real biological data.

A strength of PlotMI as a model interpretation tool is that it is not dependent on the
machine learning model architecture as it only operates on the input sequences selected
based on the model predictions. As an example of a non-deep learning model, Figure
4.17c shows PlotMI visualization of pairwise dependencies learned by N-score ( [125]),
a wavelet-based logistic regression classifier trained to predict which sequences bind to
nucleosomes in yeast genome. The analysis of MI within high-scoring random sequences
scored by N-score shows that the model has learned a dependency pattern, where each
position interacts with positions equidistant from the middle position of the 131 bp long
model. Separately plotting the maximum MI of each diagonal in the MI-plot (from main
diagonal to bottom left corner) further illustrates the periodic interaction learned (Figure
4.17d).

In Publication III we also used PlotMI to visualize different protein fitness models trained
to predict the insulin binding affinity of GB1 protein. The models were based on linear
regression (LR), sequence convolutional neural network (CNN) and graph convolutional
neural network (GCN) architectures, and were published in [126]. Only single and double
mutants of the wild type GB1 sequence were seen by the models during training. This
means that only a small fraction of the possible sequence space, and only very near the
wild type sequence, was sampled. Thus the ability of the models to generalize to unseen
mutations will be heavily tested when using them to score random amino acid sequences.
Additionally, a three dimensional structure of GB1 protein domain was used in training of
the GCN model, but not in training of the other models. Contact map showing the physical
distances between each amino acid residue pair computed from this structure is shown in
Figure 4.18a.

We scored 10 million random synthetic amino acid sequences with each of the three
models to see what pairwise dependencies the models had learned. We visualized top
100,000 (1%) of the random sequences according to the predicted fitness with PlotMI
(Figures 4.18b-d). MI was computed between position-specific 1-mer distributions. The
GCN model, being the only model where structural information was utilized during
training, had learned more of the important pairwise dependencies visible from the
contact map than the other models. In [126] the authors report no significant difference in
performance of the GCN and CNN models in predicting unseen GB1 variant (single or
double mutant) fitnesses tested in deep mutational scanning experiments, even though the
MI-plots show that the CNN has learned only a small fraction of the pairwise dependencies
from the contact map. It seems that the structural information used in training of the GCN
helps in assigning realistic fitness values for proteins that are further away from the wild
type sequence than any training samples from the mutational scanning data. In contrast
to the GCN and CNN model architectures, the LR model can only learn additive effects
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Figure 4.16: Mutual information (MI) based visualization reveals pairwise and positional de-
pendencies in a set of sequences. a) Two possible visualization workflows using
PlotMI. MI reveals the distance between interacting features if the visualized model
of interest (MOI) is trained on unaligned data and the PlotMI input sequences are
also unaligned (blue arrows). If either the MOI is trained on aligned data, or the
PlotMI input sequences have been aligned, MI can reveal the exact positions of the
interacting features (orange arrows). The axes indicate positions along the input
sequences. b) Example MI visualization of a dataset where two different pairs of
transcription factor binding motifs have been embedded with different spacings (30bp
and 50bp) on DNA sequences drawn from uniform nucleotide distribution creating
two mutually independent dependencies. MI was computed between position-specific
3-mer distributions. Signal on the main diagonal of the MI-plot highlights parts of
the sequences where adjacent positions have dependencies with each other. Signal off
the main diagonal corresponds to longer-range dependencies. Exact positions of the
interacting pairs can be found by drawing lines parallel to the x- and y-axes towards
the main diagonal, as illustrated with the white arrows. c) Importantly, measures of
similarity of position-specific 3-mer distributions cannot be used to highlight multiple
independent interactions from a dataset, as illustrated here using Jensen-Shannon
divergence for the same data set visualized using MI in panel b. Figure modified and
adapted from Publication III.
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Figure 4.17: PlotMI-visualizations of machine learning models trained on genomic DNA sequences.
a) The MI-plot shows that a CNN classifier trained on 100bp long sequences centered
at human genomic transcription start site (TSS) positions has learned an interaction
between the TSS and TATA-box region around 30 bp upstream from TSS. b) Mutual
information (MI) of the main diagonal of the MI-plot from panel a. c) PlotMI visu-
alization of N-score model trained to distinguish 131 bp long nucleosome binding
DNA from non-nucleosomal DNA [125] in yeast genome shows that N-score has
learned a periodic interaction pattern where 3-mer distributions at positions sepa-
rated from each other by multiplicatives of a fixed period are dependent on each
other. The learned interaction is symmetric relative to the middle position of the 131
bp sequences such that the strongest pairwise dependencies are observed between
positions same distance away from the middle position, but to opposite directions. d)
Maximum MI of each diagonal of the MI-plot shown in panel c. Figure modified and
adapted from Publication III.
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between positions [126]. Still the dependency pattern learned by the LR model is largely
similar to the CNN. Based on the PlotMI-analysis, it seems that the limited sequence space
available for these protein models during training prohibits the CNN and LR models from
learning a realistic representation for the functional GB1 protein, even though the models
can still make good predictions for mutational effects near the wild type sequence.
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Figure 4.18: PlotMI-visualizations of models predicting protein fitness reveal different types of
dependencies learned by models with different architectures. a) Contact map of GB1
protein domain derived from 2QMT PDB structure that is used in training of the
GCN model but not in training of the CNN and LR models. Color indicates distance
between each pair of α-carbons. Note that darker colors mean longer distance so that
the heat map is easier to compare against the MI-plots, where darker colors mean
lower pairwise MI. b-d) MI-plots created using position-specific 1-mer distributions
showing the pairwise dependencies learned by the GCN model (b), the CNN model
(c) and the linear regression model (d). Figure modified and adapted from Publication
III.
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5
C O N C L U D I N G D I S C U S S I O N

The rapid advancement of high-throughput sequencing based experiments has lead to
explosion of available experimental data for scientists studying gene regulation. This
has caused a situation where the major bottleneck in research is not anymore so much in
experimentation and data generation, but in analysis and interpretation of the vast amounts
of experimental data generated. In the work described in this thesis, we both developed
new tools and applied existing state-of-the art methods to analyze and interpret data
from modern high-throughput regulatory genomics experiments such as ChIP-exo/nexus
and STARR-seq. Specifically, in Publication I we developed a software called PeakXus for
accurate and unbiased determination of TF-DNA binding sites genome-wide from novel
ChIP-exo and ChIP-nexus experiments. In Publication II, we performed highly complex
massively parallel reporter gene assay (MPRA) experiments and integrated this data with
both new and publicly available large genome-wide measurements of TF-DNA binding,
chromatin accessibility and histone modification status. Modeling these experiments with
state-of-the-art convolutional neural network (CNN) models allowed us to comprehensively
characterize the sequence determinants of human enhancers and promoters and revealed
unexpected lack of specific interactions between promoters and local classical enhancers.
In Publication III, we presented a novel application of computing mutual information (MI)
between position-specific k-mer distributions to interpret dependencies learned by any
machine learning model, but specifically deep learning models, trained on sequence data.

To allow the scientific community to better build on the results presented in this thesis,
most of the generated new data and software tools have been released for public use. The
algorithms developed in Publications I and III are available in GitHub as described in the
publications, and the essential custom code and the pre-trained machine learning models
along with the respective training, validation and test data sets from Publications II and III
are archived to Zenodo. The raw experimental data generated in Publication II is archived
to GEO.

The main design principle of the PeakXus peak calling algorithm presented in Publication
I was to make as few assumptions about the shape of the signal from the ChIP-exo/nexus
experiments as possible. The only major assumption we made stems from the fact that
the λ-exonuclease treatment causes 5’ ends of reads overlapping a binding site to pile at
same bases adjacent to the bound TF. We showed that PeakXus achieves similar accuracy
in localizing the TF-DNA binding sites than previous methods, and reports more binding
events that overlap with the TF-specific binding sequence. Importantly, PeakXus achieves
this while not fitting the shape of the expected binding signal to the locations with highest
overall signal genome-wide, a feature that likely makes PeakXus more flexible in detecting
different types of signals that could originate for example from multiple TFs binding
together or in very close proximity from each other.

In Publication I, we also demonstrated how the improved resolution of ChIP-exo and
ChIP-nexus compared to ChIP-seq can be leveraged to more accurately study allele specific
binding (ASB) of TFs. We presented a novel algorithm for studying ASB which improved
and simplified duplicate read filtering by the use of unique molecular identifiers (UMIs, [96].
We also applied, to our knowledge first time, the Audic-Claverie test [163] to measure ASB
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in such a way that the uncertainty in the fraction of reads mapping to the reference allele
in whole genome sequencing (WGS) is taken into account.

Despite major efforts in measuring TF-DNA binding specificities in vitro [3, 6–8, 172] and
in determining the TF-DNA binding positions in vivo [4, 9, 10], most sequence features
that drive the activity of human promoters and enhancers remain poorly understood. TFs
regulate gene expression by binding DNA at promoters and enhancers [9, 117, 173], and
many features correlate with promoters and enhancers genome-wide. Both promoters and
enhancers correlate with RNA transcription [77, 174], open chromatin [99, 175, 176] and
histone H3 lysine 27 acetylation (H3K27ac) [104, 177], whereas promoters are marked by
trimethylation and enhancers by monomethylation of histone H3 lysine 4 (H3K4) [178]. All
these features can be used to predict promoter and enhancer positions and activities, but
they do not establish what are the atomic DNA sequence elements required for promoter
or enhancer activity.

The picture of transcriptional regulation in humans revealed by interrogation of the gene
regulatory machinery of the cell by massively parallel reporter gene assays in Publication II
was surprisingly simple. We trained CNN models capable of learning interactions between
virtually any type of sequence features between promoters and classical enhancers enriched
from random sequence, but no specific interactions were found. Counting pairwise enrich-
ment of TFs between promoters and enhancers supported this result - enhancer motifs
and promoter motifs enriched independent of each other. Non-specificity of most interac-
tions between promoters and enhancers was also observed in a very recent independent
report [179].

We probed the sequence features required for human enhancer activity by studying
features enriched from completely random sequences that had enhancer activity. This
revealed only a few TF binding motifs are highly active per cell type, and that motif
grammar in these enhancers is weak on the level of spacing and orientation preferences of
specific TFs, although some active heterodimer motifs were found. Machine learning models
trained on the enhancers enriched from random sequences revealed that only a handful
of TF binding motifs are needed for optimal classification between active and inactive
enhancer sequences. Furthermore, no beyond additive interactions between TF binding
motifs were found within the enhancers enriched from random sequences. These results
are consistent with a recent report showing that independent actions of TFs can explain
over 92% of the transcriptional activity measured from random yeast promoters [21].

Large-scale integrative analysis of enhancer activities measured with genomic STARR-seq
and measurements of TF binding, histone modification status and chromatin accessibility
genome-wide revealed two other types of active enhancers in addition to classical enhancers.
We call these chromatin-dependent enhancers and closed chromatin enhancers. Here,
classical enhancers are defined according to their original functional definition as sequences
that can trans-activate a promoter regardless of position and orientation [117]. We found
that chromatin-dependent enhancers are characterized by motifs of forkhead family TFs,
binding of Mediator and p300 proteins, and strong signal for H3K27 acetylation. A lasso
regression predictor using features defined based on the different regulatory element
classes revealed that the presence of chromatin-dependent enhancers is strongly predictive
of tissue-specific gene expression. The third type of active enhancers, closed chromatin
enhancers, are located in regions with only moderate or no signal for ATAC-seq and are
not silenced by CpG methylation. The closed chromatin enhancers appear to consist of
only a single TF, such as p53, or a set of closely bound TFs that fit between or associate
directly with well-ordered nucleosomes [57]. Importantly, all three active enhancer classes
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had independent predictive power according to the gene expression predictor suggesting
that they all play a role in regulation of transcription.

The finding in Publication II that most of the TF motif activities are similar between
the tested cell types in the enhancers enriched from random sequences contrasts with the
known tissue-specificity of some human enhancers in vivo [180, 181]. Also, based on analysis
described in Publication II, the level of conservation of many human genomic enhancers
appears to be higher than the information content of active elements selected in the random
enhancer STARR-seq assay. The simplest explanation for these observations would be, that
in vivo it is more difficult for enhancers to evolve to become specific than active. And as
the STARR-seq assay is designed on purpose to reveal the sequence features determining
transcriptional activity, the possible logic needed for tissue specificity will not be found
from these enhancers selected from random sequences. Specificity will naturally require
specific TF combinations, and also fine-tuning using motif number, spacing, orientation
and affinity (see, for example [27, 182, 183].

In Publication II, analysis of features present in promoters enriched from random
sequences led to discovery of a novel G-rich element downstream of the TSS. This element
interacts with the TSS, potentially positioning RNA polymerase II independently of the
TATA box. Also a very strict positioning preference of the YY motif right after the TSS
was observed. A CNN model trained on the promoters enriched from random sequences
predicted the active TSS positions in the genome better than a similar model trained on the
human genomic promoters. This model was also able to predict the effects and mechanisms
of action of known cancer-associated mutations in the human TERT promoter. These results
demonstrate the usefulness of the approach where transcriptionally active sequences are
selected from a random pool of input in learning models of gene regulation. Moreover, the
ability of random STARR-seq experiments to interrogate a larger sequence space than what
is available in the human genome is advantageous in training machine learning models
that are able to better generalize the rules of transcriptional regulation. After all, the human
reference genome, the only input sequence used in training of most of the machine learning
models of gene regulation, is only one sample from the ensemble of possibly equally well
functioning human genomes.

Overall the study presented in Publication II showed that the transcriptional activities
of TF binding motifs can be classified into three groups that are not mutually exclusive:
TSS-position determining activity (e.g. TATA-box, YY), promoter specific activity (e.g.
NRF1) and enhancing activity localized both at the promoter and at the enhancer position
(most of the TFs). Notably, no enhancer-specific TF binding motifs were found.

Taken together, the lack of enhancer-specific motifs and the lack of specific interactions
between the promoters and the enhancers points towards a rather simple mechanism
of action, where the activities of individual TFs bound to an enhancer are integrated
irrespective of the specific TFs in question, and their total activity then activates the
promoter. These results are consistent with the least specific type of molecular interaction,
steric hindrance. The simplest mechanism of enhancer action would thus rely upon the
size difference between TFs (∼ 50 kDA) and the proteins of the transcriptional machinery
such as Mediator and RNA-polymerases (∼ 1 − 3 MDa), along the lines suggested in [184].
Briefly, in this model the binding of small TFs to DNA in condensed chromatin could "lock"
the regulatory regions near the surface of condensed chromatin domains as these regions of
DNA with multiple bound TFs could not anymore penetrate the condensed chromatin due
to steric hindrance, unlike smaller individual TFs. This would then allow the larger protein
complexes of the transcriptional machinery to access the regulatory regions locked at the
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surface of the condensed chromatin domains. The simple model describe above cannot,
however, be the complete picture of enhancer action, as it has been previously shown that in
the highly evolved genomic context, more specific interactions do exist between enhancers
and particular promoters, as reported in cases such as multi-chromosome structures that
control the expression of the repertoire of olfactory receptor genes [185] or the complex
regulatory landscape of the HOX genes [186]. The results presented in this work suggest
that specific TF-TF interactions allowing enhancers to act selectively at a long range would
be associated with the chromatin-dependent and not the classical enhancers. However,
experiments with longer distance between the tested promoter and enhancer pairs are
needed for better understanding the effect of distance separating the elements. It is worth
noting, that the observations presented in Publication II are not in conflict with the recently
proposed formation of super enhancers via liquid-liquid phase separation [30] mediated
by non-specific interactions between low complexity domains of TFs [31, 187].

The enrichment of active promoter and enhancer sequences from random input library,
the approach used to study the sequence determinants of gene regulatory elements in
Publication II, is a bottom-up style approach studying how easy it is to select functional gene
regulatory elements from completely random pool of input sequences. A complementary
top-down study would systematically mutate complex genomic enhancers, for example
using CRISPR genome editing, that are too complex to be enriched from totally random
input, and study the effect of these mutations on gene expression. Repetition of the STARR-
seq experiments described here in additional cell types would further validate how much of
the regulatory activities of TFs are shared between cell types. With modern deep learning
methods, data from the top-down and bottom-up experiments in multiple cell types could
be integrated together to train more accurate and generalizeable models of gene expression,
for example using transfer learning approaches that have been recently shown to boost
prediction of TF binding affinities for TFs with little experimental data available [188].

Training of accurate enhancer models able to predict the effects of mutations on gene
expression from enhancers enriched from random input is more difficult than training
such promoter models, partly because enhancers lack general "anchor" features such as
the TSS or TATA-box, that help learning position-specific effects at promoters. Accurate
and unbiased modeling of the effect of mutations at enhancers is of great importance,
as only a small fraction of non-coding disease associated mutations occur at very close
proximity of the TSS and can be covered with promoter models such as the one presented in
Publication II. In the near future, comprehensive models of gene regulation, able to predict
the effects of non-coding mutations accurately, can probably be achieved by carefully
training machine learning models able to handle very long-range interactions (such as
the Enformer [81]) on data from different types of experiments combining the top-down
and bottom-up approaches as well as activities measured from the genomic regulatory
elements and activities of designed or random sequences.

The PlotMI tool presented in Publication III tackles one of the main problems in ap-
plying state-of-the-art deep learning methods to study sequence-based problems - model
interpretability. Previously, several methods for interpreting the individual features learned
by sequence-based deep learning methods have been developed (e.g. [42, 43, 86]), but to
our knowledge a general and easy-to-use tool for interpreting pairwise dependencies and
positional preferences learned by a deep learning model has been missing. We show that
using a pre-trained sequence-based machine learning model to filter random input based
on model predictions, and then computing pairwise mutual information (MI) between
positional k-mer distributions from the filtered sequences produces a visualization that
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reveals pairwise dependencies learned by the machine learning model. The resulting vi-
sualization shows qualitatively the pairwise interactions learned by the model, but could
be in the future extended to provide quantitative information of the effect sizes of the
observed interaction patterns by integrating with the recently introduced global importance
analysis [189].

Model interpretation using PlotMI is independent of the machine learning model archi-
tecture, and was demonstrated to work for binary classification and regression tasks as
well as with DNA, RNA and amino acid sequence based models. The implementation of
PlotMI is agnostic of the sequence alphabet used in model training and thus the tool can
be applied also to interpreting models trained with very different types of sequence data,
including, but not limited to, temporal sequences. The caveat is that in order to have an
interpretation for the distance between interacting features, an interpretation must exist for
distances within the samples used in model training.

The general idea behind PlotMI, feeding random input to a pre-trained model and
filtering using model predictions, can also be applied to other types of visualizations in the
future. Essentially, this idea is very similar to some high-throughput biological experiments
such as HT-SELEX [47], where an initial library of random sequences is exposed to a target
ligand such as a specific TF, and the sequences bound by the TF are selected and analyzed
for common patterns. With this approach, we basically perform in silico experiments on the
machine learning model. The model can be fed completely random input which is then
filtered based on model predictions as in majority of the analyses in Publication II, but
the input can also be designed to test a specific hypothesis. For example in Publication II,
we took a data driven approach to studying regulation of gene expression by studying the
transcriptional activities of completely random synthetic DNA sequences. We then trained
deep learning models on this data and posed the questions about specific hypotheses, such
as presence of specific interactions between promoters and enhancers to these models. Deep
learning models can also be used to generate specific hypotheses for testing in validation
experiments, for example deep neural network hallucination has been shown to generate de
novo proteins "designed" by the neural network that fold into monomeric stable structures
in vivo [190]. Following a similar strategy, one could validate the activities of deep learning
model generated "optimal" human promoters and enhancers not present in the human
genome by editing them into genomes of cell lines or model organisms.

This thesis describes computational tools that can help the genomics research community
to understand the effects of variation in the regulatory genome to gene expression in
disease. We described how high-resolution ChIP-exo/nexus experiments can be used to
study allele specificity of TF-DNA binding, and trained machine learning models that can
predict and explain the effects of promoter variants to gene expression. We also developed
new ways to interpret deep learning models that hopefully help researchers in the future
better understand how interactions learned by deep learning models affect their predictions.
By interrogating the gene regulatory activities of a vast collection of DNA sequences, and
integrating this data with genomic measurements of chromatin accessibility, TF-DNA
binding, histone modification status etc. using machine learning and other approaches,
we obtained novel insights into regulation of transcription in humans. We for example
learned that TFs can be divided into mutually non-exclusive classes of TSS-positioning,
promoter-specific, and enhancing activities. We also learned that local interactions between
promoters and enhancers seem to be additive and non-specific. Importantly, we show that
measuring the transcriptional activities of random synthetic DNA sequences in human
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cells and modeling these data using modern deep learning methods is a powerful approach
that can outperform models trained on genomic data and measurements only.
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A
A P P E N D I X

a.1 derivation of occupancy probabilities of dna sequences by individual
tfs , or pairs of tfs

This section describes in detail the derivation and assumptions in modeling the occupancy
probabilities of enhancer sequences by TFs and pairs of TFs in the logistic regression
analysis conducted in Publication II.

a.1.1 Converting PWM scores into free energies of binding

For each variable (each variable corresponds to one TF binding motif, or later a pair of
TF binding motifs) a single score per each 170 bp long STARR-seq sequence is calculated.
This score estimates the probability that a given sequence is occupied by a given TF or
TF-pair. The score derivation follows closely [110]. We start by noting that the equilibrium
dissociation constant between a TF X and DNA can be approximated using TF-DNA
affinity measurements. The equilibrium dissociation constant is defined as:

Kd,X = exp
(−ΔGX

RT

)
, (A.1)

where ΔGX is the free energy of binding between the TF and DNA, R is the molar gas
constant and T is temperature. Now if we make the assumption that each DNA base
in a binding site of a TF makes an independent contribution to the total free energy of
binding between the TF and DNA, ΔGX can be calculated using the PWM describing the
binding specificity of TF X. Denoting the frequency of base b at position x with fb,x and
the background frequency of base b with pb we can write

ΔGX = RT ∑
x

ln
(

fb,x

pb

)
, (A.2)

where the summation runs over the length of the PWM. With this we can calculate the
equilibrium dissociation constant for a binding site starting at position i in a sequence:

Kd,X,i = exp
(−ΔGX,i

RT

)
. (A.3)

a.1.2 TF-DNA binding of single TF

Now assuming that the binding between the TF X and DNA is non-cooperative, meaning
that binding of one molecule of X does not change the affinity of other possible nearby
binding sites, we can write the probability that a given binding site i is occupied according
to the Hill equation (originally described in [191]):

Pi =
[X]

Kd,X,i + [X]
, (A.4)
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where [X] is the free concentration of TF X. The free concentration is difficult to measure
in practice, so we follow the convention used in [110] and set it to equal the equilibrium
dissociation constant of the optimal binding site of X (the consensus sequence) for now.
The probability of at least one molecule of X binding a given DNA sequence s is obtained
by considering all binding sites within the sequence:

PX,s ≈ 1 −
Nsites

∏
i=1

(
1

1 + Ka,X,i[X]

)
, (A.5)

where Nsites is the number of binding sites of TF X on the sequence with affinity > 2 and
Ka,X,i = 1/Kd,X,i is the equilibrium association constant for binding site i. A minimum
threshold for a binding site is used to speed up the calculations instead of going through
each possible binding site position along each sequence. Notice that in case we suspect that
the binding is cooperative in nature, the equation would include the Hill coefficient n [192]
as an additional parameter:

PX,s ≈ 1 −
Nsites

∏
i=1

(
1

1 + (Ka,X,i[X])n

)
. (A.6)

However, in the following we follow the example of [110] and assume the TF-DNA
interaction is non-cooperative. Denoting the PWM match score of TF X at position i with
SX,i and the match score of the consensus sequence as Sconsensus, the final score for each
sequence is calculated as:

PX,s = 1 −
Nsites

∏
i=1

(
1

1 + exp (SX,i − Sconsensus)

)
. (A.7)

a.1.3 Cooperative TF-DNA binding of TF-pairs

In [110], cooperative interactions between TF-pairs are introduced via the notion that
binding of XY complex to DNA is thermodynamically equivalent to X binding DNA with
higher affinity if Y is already bound. Thus we can calculate the occupancy probability of
the XY dimer for a sequence by accounting for all binding site pairs on the sequence:

PXY,s ≈ 1 −
Nsites

∏
i=1

(
Msites

∏
j=1

(
1

1 + Ka,XY,ij[XY]

))
. (A.8)

Here Ka,XY,ij is the equilibrium association constant for the XY dimer binding to sites i and
j, respectively. In [110] it is defined as the product of the individual equilibrium association
constants of X and Y multiplied by a weight function κC,ij that can for example favor
adjacent sites over distant ones.

Ka,XY,ij = κC,ijKa,X,iKa,Y,j. (A.9)

For simplicity we chose κC,ij = 1 meaning that the interaction between two binding sites
is similar regardless of how they are positioned within the 170 bp long random enhancer
sequences, although in general this is not true since we know that certain TFs form dimers
with specific spacings (see e.g. [56]). The concentration of the dimer XY can be calculated
if the dimerization constant is known:
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[XY] =
[X][Y]
Kd,dimer

= [X][Y]Ka,dimer. (A.10)

The choice in [110] is to set Ka,dimer = Ka,Y = 1
[Y] , which we follow, leading to

[XY] = [X]. (A.11)

Thus the final score per sequence for a variable considering a pair of TFs X and Y is

PXY,s = 1 −
Nsites

∏
i=1

(
Msites

∏
j=1

(
1

1 + exp (SX,i + SY,j − SX,consensus)

))
. (A.12)

The interpretation of this equation is that in the presence of a binding site for Y (and the
protein Y), X prefers to bind as a dimer by a factor that is relative to the affinity of the site
j for factor Y. As long as the affinity of site j for factor Y is > 0, X binds as a dimer XY
more likely to the sites i and j than as a monomer X to site i.

a.1.4 Determining the values of free concentration [X]

In [110] the free concentration of each TF was set to equal the kd of their consensus
sequences. In our case this turned out to be problematic since for some TFs with a long
PWM (such as p53) matches to the exact consensus sequence are quite rare. This means
that setting the scoring as described above will drive the occupancy scores of many
functional binding sites to 0 thus greatly reducing the variance of the scores of the variables
corresponding to these TFs.

To overcome this problem we decided to use a normalization that is motivated by the fact
that generally speaking TFs have approximately 10, 000 − 30, 0000 active binding sites in
the human genome. Thus we defined the free concentration of each protein to correspond
to the strength of the binding site that corresponds to the 10, 000th strongest binding site
in the human genome. This means that if a sequence has a single binding site with affinity
that would give 10, 000 hits in human genome, this sequence will get occupancy probability
of 0.5. To express this mathematically, let us denote with Y the target number of binding
sites in the human genome (in our case this is 10, 000), lx the length of the PWM of TF X, L
the length of the input sequences, N the number of sequences in the input library and g
the genome size. With these we can calculate how many binding sites need to be calculated
from the input library for the strength of the binding site to correspond to the strength of
Yth binding site in the human genome:

MX =
(L − nx)N

g
Y. (A.13)

This rank is calculated from the input library specifically because the binding of the TFs to
the enhancer sequences happens in the conditions and concentrations of the input library.
Now when we calculate the PWM hits for TF X and sort them, the MXth score (SX,Y) is the
one that corresponds to the affinity of the Yth strongest hit in the genome. With this we
can define

[X] = exp (−SX,Y). (A.14)

In reality going through all possible binding sites for all TFs becomes computationally
very expensive when we are dealing with over ten million 170 bp long sequences. To make
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the computation of the PWM scores faster we decided to consider only the binding sites
that give occupancy values of Pocc > 0.01 and set the scores of weaker binding sites to
zero. We can calculate the affinity threshold corresponding to this cut-off, S0X for each TF
separately from:

P0 = 1 − 1
1 + exp (S0X − SMX )

, (A.15)

where P0 = 0.01 is the minimum occupancy considered. Solving this equation we get

S0X = ln
(
−P0 exp (SMX )

P0 − 1

)
. (A.16)

With these, the final equation for the occupancy probability of sequence s with TF X is

PX,s = 1 −
Nsites

∏
i=1

(
1

1 + exp (SX,i − SX,10000)

)
, (A.17)

where the product runs over all binding sites of X with affinity stronger than S0X . Similarly,
the occupancy probability of s by a TF-TF pair X and Y becomes

PXY,s = 1 −
Nsites

∏
i=1

(
Msites

∏
j=1

(
1

1 + exp (SX,i + SY,j − SX,10000)

))
. (A.18)
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