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ABSTRACT

We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies
than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic
models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We
simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered
to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will
be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec−2, and the Euclid Deep Survey
(EDS) down to 24.9 mag arcsec−2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for
stellar masses above 1010.6 M� (resp. 109.6 M�) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to
improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.

Key words. techniques: image processing – surveys – galaxies: structure – galaxies: evolution – cosmology: observations

1. Introduction

The Euclid Survey (Laureijs et al. 2011) will observe 15 000 deg2

(35% of the visible sky) over six years, both in the near-infrared
and in the optical at a spatial resolution approaching that of the

Hubble Space Telescope (HST). With a field of view of 0.53 deg2,
compared to that of the HST (0.003 deg2), it will probe the sky at
a rate around 175 times faster. It will therefore only take around
five hours to observe an area equivalent to the COSMOS field
(Scoville et al. 2007), which is still the largest contiguous area
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ever observed by HST and needed around 40 days of observations.
In addition to the EWS at an expected nominal depth of 24.5 mag
at 10σ for extended sources in the visible (Cropper et al. 2016),
Euclid will also observe 40 deg2 about two magnitudes deeper
(EDS). The limiting surface brightness for the EWS in the visi-
ble will be 29.8 mag arcsec−2. We refer the reader to Scaramella
et al. (in prep.) for precise information about the Euclid surveys
and their depths.

Euclid will produce an unprecedented amount of high spatial
resolution images that will have a lasting legacy value in a vari-
ety of scientific areas, including cosmology and galaxy formation.
In order to ensure that the scientific objectives are met, realistic
simulations are needed for testing and calibrating algorithms. A
standard approach to simulating galaxy images is through ana-
lytic Sérsic models (Sérsic 1963). It is well known that galaxies
can be modelled, to a first approximation, with two Sérsic func-
tions, one for the bulge component and the other for the disk. Sér-
sic models have the advantage of being fully described by three
parameters: the Sérsic index, which controls the steepness of the
profile; the effective radius, which measures a characteristic size
for the galaxy; and the axis ratio, which reflects the overall shape
of the galaxy. Many previous investigations have shown that Sér-
sic models reproduce fairly well the average surface brightness
distribution of galaxies (e.g., Peng et al. 2002). However, because
of their simplicity, they are not well suited to describe complex
galactic structure such as spiral arms, bars, clumps, or more gen-
erally asymmetric features. This is important for the Euclid mis-
sion, however, since the spatial resolution of the visible detec-
tor will permit a significant number of galaxies to be resolved.
Complex galaxy morphologies can have an impact in the core
science of the mission since they can affect the measurement of
shear for weak lensing analysis. They are also central to a vari-
ety of scientific cases in the field of galaxy formation. The Euclid
data will be particularly important to constrain the processes
that shape the structures of galaxies and quench star formation,
and will allow us to study the relations between detailed mor-
phology, environment, active galactic nuclei activity, and stellar
mass, among others (e.g. Lotz et al. 2008; van der Wel et al. 2014;
Huertas-Company et al. 2013; Chen et al. 2020; Kocevski et al.
2012; Ferreira et al. 2020; Conselice 2014). Therefore, in order to
quantify the possible effects of resolved structures on the image
processing pipeline algorithms and to best prepare the scientific
analysis of the data, it is important to produce simulations that
include realistic galaxy morphologies beyond Sérsic models.

In this work we investigate a novel approach based on gener-
ative models to simulate galaxies for the Euclid Survey. We first
show that our method can generate realistic Euclid galaxy fields
with a level of control of the global shapes that is similar to that
of analytic profiles, but with the addition of complex morpholo-
gies. We then use the generated images to forecast the number
of galaxies for which Euclid will resolve the internal structure.

The paper proceeds as follows. In Sect. 2 we introduce the
data sets used to analyse Euclid morphological capacities and for
training our models. In Sect. 3 we describe the deep generative
model used in this work and its training procedure. In Sect. 4
we present our results for the generation of realistic galaxies. In
Sect. 5 we use the simulated galaxies to forecast the Euclid mor-
phological limits. We discuss the results of the paper in Sect. 6,
and conclude in Sect. 7.

2. Data

We use two data sets for this work: the Euclid Flagship galaxy
catalogue (Castander et al., in prep.), hereafter the Euclid Flagship

catalogue, and the COSMOS survey (Scoville et al. 2007). We use
the first to simulate best the expected Euclid data as the goal of the
paper is to forecast Euclid capacities. The second is used to train
our deep learning model so that we lean how to simulate realistic
galaxies.

2.1. Target set: Euclid Flagship catalogue

To quantify the performance of our model in Euclid-like con-
ditions and establish morphological forecasts for the mission,
we used the Euclid Flagship catalogue. We accessed the cata-
logue through CosmoHub, a platform that allows the manage-
ment and exploration of very large catalogues, best described in
Tallada et al. (2020) and Carretero et al. (2017).

The Flagship catalogue was built using a semi-empirical
halo occupation distribution (HOD) model and was intended
to reproduce the global photometric and morphological proper-
ties of galaxies as well as the clustering. We refer the reader to
Merson et al. (2013) for more details. In order to produce a cat-
alogue close to the real Universe, the morphological parameters,
which is what we mainly use in this work, are calibrated on the
CANDELS survey (Dimauro et al. 2018) and 3D model fitting
on the GOODS fields (Giavalisco et al. 2004) by Welikala et al.
(inprep.).Details about thecatalogueproductionwill bepresented
in Castander et al. (in prep.). Each simulated galaxy in the cata-
logue is made of two components, a bulge and a disk. The bulge
component is modelled as a Sérsic profile with an index vary-
ing from n = 0.3 to n = 6. The disk component is rendered
using an exponential profile (n = 1). The version of the Euclid
Flagship catalogue used in this work contains 710 million galax-
ies distributed over 1200 deg2, from which we took a random sub-
sample of 44 million galaxies. The distributions of the main mor-
phological parameters used in this work are presented in Fig. 1:
the half-light radius re, the axis ratio q, and the Sérsic index n. We
also show the apparent magnitudes of the galaxies as measured by
VIS, which is the visible imager of Euclid (Cropper et al., in prep.),
as well as the redshift and the stellar mass distributions, which we
use in Sect. 5 to perform our forecasts. Finally, we show the bulge-
to-disk component flux fraction (hereafter bulge fraction).

We note here that the Euclid Flagship catalogue is a pure tab-
ular catalogue. The procedure currently used within the Euclid
Consortium to generate the galaxies is described in Sect. 4.1.1,
when we compare our galaxies to the current analytic ones. Our
work in this study is to use this catalogue of double Sérsic profile
parameters to generate the 2D images of the internally structured
galaxies.

2.2. Training set: COSMOS

The training set is based on the COSMOS survey. COSMOS
is a survey of a 2 deg2 area with the Hubble Space Telescope
Advanced Camera for Surveys (ACS) Wide Field Channel using
the F814W filter. The final drizzle pixel scale is of 0′′.03 pixel−1

and the limiting point source depth at 5σ is 27.2 mag. The cen-
tral wavelength of the F814W filter roughly corresponds to that
of the VIS filter (550−900 nm) and the spatial resolution and
depth are better than those expected from the Euclid Survey.
Therefore, the data set is well suited and is expected to be close
enough to the Euclid data, allowing us to generate mock Euclid
fields without being affected by the dependence of morphology
on wavelength and without introducing undesired effects owing
to extrapolations.

Our selected sample is based on the catalogue by
Mandelbaum et al. (2012), which has a magnitude limit of 25.2
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Fig. 1. Distributions of the main structural parameters in the data sets
used in this work, along with the redshift and the stellar mass used for
our forecasts. We also show the bulge to disk flux fraction (bulge frac-
tion) for the Flagship. The y axis is the normalised density counts such
that the area over the curve is equal to one. For the magnitude, the COS-
MOS histogram shows the F814W magnitude and the Flagship one cor-
responds to the Euclid VIS magnitude. The range of the training set
(COSMOS) covers most of the Euclid data.

and contains 87 630 objects. The catalogue provides, for each
galaxy, the best-fit parameters of a one-component and a two-
component Sérsic fit by Leauthaud et al. (2007), updated in
2009. In this work, we use only the one-component fitting infor-
mation. In Fig. 1 we show the distribution of the COSMOS
morphological parameters of galaxies compared to those in the
Euclid Flagship catalogue. Although the distributions are simi-
lar, there are some noticeable differences which might cause a
problem. The most obvious one is the magnitude. Since COS-
MOS is magnitude limited, the sample does not contain as many
faint galaxies as the simulation. The half-light radii of the Euclid
Flagship catalogue bulge component also extend to smaller val-
ues than those in the observations. They are also generally

Fig. 2. Illustration of our pre-processing pipeline on a random COS-
MOS image, and the difference between HST and Euclid. The original
image (leftmost) is rotated to be aligned with the x-axis of the stamp in
the second image from the left, then re-scaled to the VIS resolution and
cropped (third image from the left). This is the data used to train our
model. In the rightmost image the galaxy was deconvolved by the HST
PSF and re-convolved with the Euclid PSF. This final step is shown for
illustrative purposes, but is not carried out in the pre-processing of the
training sample.

rounder than the observed ones, but the values of axis-ratios span
a similar range. The Sérsic index distributions are also different
because, as explained previously, the Euclid Flagship disk com-
ponent always has a Sérsic index of 1. In addition, in the COS-
MOS catalogue the Sérsic indices of the bulge component are
clipped at n = 6 to be compatible with GalSim, which creates a
noticeable spike at the edge of the distribution. The mass fraction
and redshift is derived by Laigle et al. (2016). As we show in the
following sections, these differences, although present, do not
have a significant effect on our methodology. The most impor-
tant desirable property is that simulated galaxies cover a similar
range to observations. That way, the neural network used in our
model is not compelled to extrapolate. This is essentially the case
in the distributions shown in Fig. 1, except for very small bulge
components and for very faint galaxies, both of which are not
expected to present significant features. We address these points
in the following sections.

In addition to the catalogue, the authors also provide 128 ×
128 pixel stamps centred on each galaxy where neighbouring
galaxies have been removed. This is important for training our
model on a unique galaxy per stamp. Therefore, the impact of
galaxy blending in the morphology forecasts will not be studied
in this work. In addition, the size of the stamps inherently limits
the size of galaxies that we will be able to generate. The radius of
the stamp being 64 pixels, every galaxy with a half-light radius
larger than ∼2′′ will be cut by the limits of the stamp. For this
reason, in this work we are limited to, and thus only consider,
galaxies smaller than 2′′. Nevertheless, galaxies with a radius
bigger than 2′′ represent only 0.6% of the Euclid Flagship cata-
logue, and thus have no major impact on our results.

The COSMOS images are pre-processed before they are
used for training, as illustrated in Fig. 2. We first degrade the
spatial sampling from 0′′.03 pixel−1 to 0′′.1 pixel−1, which corre-
sponds to the pixel scale of VIS, and then pad the image with
the appropriate noise. We use the GalSim (Rowe et al. 2015)
method described in Sect. 5 of Mandelbaum et al. (2012). Since
the pixel scale increases, the final stamp needs to be padded
with noise to keep the size of 128 × 128 pixel. The method does
this automatically by adding a noise realisation with the same
characteristics as in the original stamps, which also takes into
account the different correlations in the original noise. Doing so,
the resulting images are still at the size of the COSMOS stamps.
Since the pixel size is increased, we can crop up to a factor
of three without losing spatial covering. However, because our
model is more efficient with images that have a number of pixels
which is a power of two (for parity reasons between the compres-
sion and decompression steps of our deep learning network), we
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crop our image by only a factor of two, resulting in images of
64 × 64 pixel. The purpose of this cropping is to accelerate the
training. We finally rotate the stamps so that the galaxy semi-
major axis is aligned with the x-axis of the image. With this con-
figuration we ensure that our model will learn to produce only
‘horizontal’ galaxies and therefore position angles can be man-
ually added in post-processing. This has the additional advan-
tage of reducing the complexity and hence allowing the neural
network to focus the attention on the more important physical
properties of the object. Figure 2 illustrates these pre-processing
steps used for the training of our model, and the final galaxy as it
would be seen by VIS. Because galaxies produced by our model
will be noise-free and not convolved by the PSF, we do not need
to change the noise level and the PSF for the training. Thus, the
inputs of our model have the noise characteristics and the PSF of
the HST images. These two transformations, to go from HST to
Euclid data will be added a posteriori. More information about
those transformations are described Sects. 4.1.1 and 4.2.2.

We use the COSMOS catalogue and images only for the
training of our model. To test the performance of our model
(Sect. 4) and the forecasts (Sect. 5), we only use the Euclid Flag-
ship catalogue described in the previous section.

3. Euclid emulator with generative models

In this section we describe the methodology for emulating Euclid
galaxies using the COSMOS sample described in the previous
section.

The generation of synthetic data (images, language, videos)
has significantly improved in recent years thanks to new deep
learning-based generative models. Generative models are a type
of unsupervised machine learning algorithms that are trained to
generate unseen data. There are several architectures; variational
autoencoders (VAE: Kingma & Welling 2013), generative adver-
sarial networks (GANs: Goodfellow et al. 2014; Arjovsky et al.
2017), and autoregressive models (van den Oord et al. 2016) are
the main ones. They all learn a probability distribution func-
tion of the pixel distribution, which can be sampled to generate
new data. Generative models have already been used in astro-
physics for a variety of different purposes. For example, with
VAEs radio galaxies can be simulated (Bastien et al. 2021) or
images of overlapping galaxies can be reconstructed separately
(LSST Dark Energy Science Collaboration 2021). Using GANs,
Yi et al. (2020) have simulated missing data from the cosmo-
logical microwave background, while Villaescusa-Navarro et al.
(2021) have simulated gas density maps. Storey-Fisher et al.
(2020) and Margalef-Bentabol et al. (2020) have used GANs to
detect outliers in imaging surveys. Autoregressive flows can be
used to compare simulations and observations (e.g., Zanisi et al.
2021).

In this work we use a VAE. Variational autoencoders esti-
mate an explicit latent space, which is an important advantage for
simulating galaxies with known parameters. The compression–
decompression architecture inherent to the VAEs along with the
Kullback–Leibler term in the loss (see Sect. 3.1.1 and Eq. (3))
force the latent representation to be meaningful and regular. In
addition, VAEs are known to be more stable during training, and
less subject to mode collapse (lack of diversity in the generation)
than GANs.

3.1. Model

Our model for generating galaxies is based on the work by
Lanusse et al. (2021, hereafter L2021) who describe in detail

the architecture and specifics of the training procedure. We also
illustrate the architecture of the two components of our model in
Figs. B.1 and B.2.

The goal of our work is to simulate and test galaxies with
more realistic shapes than the classical analytic profiles while
keeping a control on the shape parameters, such as axis ratios,
effective radii, and fluxes. To this end, our model is made of
two distinct parts: a variational autoencoder (Kingma & Welling
2013), which learns how to simulate real galaxies from obser-
vations, and a normalising flow (Jimenez Rezende & Mohamed
2015) in charge of mapping catalogue parameters to the VAE
latent space. Both parts are merged together after training, result-
ing in an architecture called a flow variational autoencoder
(FVAE). We describe in the following the global properties of
these two models.

3.1.1. Galaxy generation with a variational autoencoder

A VAE is a deep generative model which is trained to generate
new data (galaxies) by learning a probability distribution from
the training data. To this end, the VAE first compresses the input
image x into a low-dimensional space, also called latent space,
which contains a compact and meaningful representation of the
input data. Similar objects are compressed into neighbouring
vectors. This is achieved with a convolutional neural network
called the encoder, which can be represented as a non-linear
function EΘ, Θ being its trainable parameters. While a classi-
cal autoencoder compresses the input image only into a vector
z, a VAE replaces that low-dimensional vector with a probabil-
ity distribution function (PDF) pΘ(z | x). In our case, pΘ(z | x) is
set to be a multivariate Gaussian distribution. This is equivalent
to choosing the prior for the distribution of points in the latent
space to be Gaussian. Similar galaxies will be encoded into sim-
ilar regions of the distribution. Having a distribution instead of a
point estimate makes the latent space continuous, allowing one
to sample new regions from it and to produce new galaxies aris-
ing from the same probability density function as the data.

A sample z is then drawn from the distribution pΘ. This con-
stitutes the input of a second convolutional neural network called
the decoder DΘ′ , which typically has an architecture symmetric
to that of the encoder. The decoder decompresses the latent rep-
resentation z using transposed convolutions to produce a new
image x̂, DΘ′ (z) = x̂. The output of the decoder can be seen as
the probability that the input data x effectively come from the
latent space vector z (i.e. DΘ′ (z) = pΘ′ (x | z)). During training,
the goal is to reconstruct x with the best possible accuracy (i.e.
x̂ = x) ensuring that the distribution encoded within the latent
space is a good representation of the data. The amount of infor-
mation loss in the compression–decompression is the first term
of the neural network loss function L, which is used to adapt Θ
and Θ′ through a gradient descent minimisation. From a statis-
tical point of view, this accuracy is defined as the negative log-
likelihood of x given z, which can be written using the expecta-
tion value:

L = −E z∼pΘ(z | x)
[
log pΘ′ (x | z)

]
. (1)

In practice, we can simply see the reconstruction accuracy as
the mean square error between the reconstructed image and the
input:

L = ‖x − x̂‖2. (2)

In addition, in order to regularise pΘ, a second term is added to
penalise the encoder when it produces distributions too far from
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a normal Gaussian distribution N(0, 1). This difference between
pΘ(z | x) and N(0, 1) is estimated using the Kullback–Leibler
divergence (Kullback & Leibler 1951):

KL = E[log pΘ(z | x) − logN(0, 1)] . (3)

The final loss function for the VAE reads

L = −E z∼pΘ′ (z | x)
[
log pΘ′ (x | z)

]
+

βE[log pΘ(z | x) − logN(0, 1)] , (4)

where β allows us to vary the importance of the terms during
training.

Lanusse et al. also introduce two additional features in order
to produce images deconvolved by the PSF and without noise. To
learn noise-free galaxies, a different version of the log-likelihood
for the reconstruction term of the loss function is used. Instead
of applying it directly to the pixels, it is done in Fourier space
in order to weight the reconstruction error less on the high fre-
quencies (noisy regions). The Fourier transform of the input and
of the output is computed, and divided by the power spectrum
of the noise. By dividing the Fourier transform of the image by
the power spectrum of the noise, a smaller weight is given to the
pixels with a high frequency. It ensures that the decoder learns
that producing images without noise is not an error. In order to
produce deconvolved images, the last convolutional layer of the
decoder is not trainable and is set to be equal to the PSF. That
way, the model produces an image that looks like the input image
before being convolved by the PSF in the second last layer.

3.1.2. Sample of the shape parameters with the regressive
flow

The VAE described in the previous subsection can generate real-
istic galaxies by sampling from the encoded latent space. How-
ever, it cannot do so for a given size or ellipticity because it lacks
the information about the mapping between the structural param-
eter space of the galaxy and the latent space.

To learn that mapping, L2021 propose a conditional nor-
malising flow, based on autoregressive algorithms (MAF:
Papamakarios et al. 2017, MADE: Germain et al. 2015). A nor-
malising flow is a bijector gΘ, which transforms a distribution q
into another distribution p with an invertible transformation g.
We use it here to learn the mapping between a latent space with
a fixed distribution q, referred to as the flow latent space, and the
distribution p inside the VAE latent space. This mapping can be
made conditional to some input parameters y such as galaxy size
or ellipticity. In other words, gΘ is a function of both the latent
space vector z and the physical parameters of the galaxy y.

If the mapping is well learnt, when we sample a vector zflow
from the flow latent space distribution q and pass it through gΘ
along with a vector of physical parameter y, it will output a vec-
tor ẑ in the VAE latent space

ẑ = gΘ(zflow, y) , (5)

such that ẑ is very similar to the vector z, which would have been
encoded by the VAE’s encoder from a galaxy x with physical
parameters y

ẑ ≈ EΘ(xy) . (6)

With this mapping, we now know where to sample into the VAE
latent space in order to decode a galaxy with precise physical
parameters: to simulate a galaxy, we need to map zflow and y
to the VAE latent space, and then decode the vector with the

decoder to produce an image of a galaxy that has the physical
properties given by y.

In practice, the training procedure is done the other way
around: we learn how to map a vector z = EΘ(x) into a vector
zflow of the flow latent space. Because gΘ is a bijector, learning
the mapping from the flow latent space to the VAE latent space
or the other way around is the same task, but doing it in this
direction is much easier because of the loss. The loss we use is
the negative log likelihood of z under the distribution of the flow
latent space q

Lflow = Ez∼p
[
− log p(z)

]
= Ez∼p

[
− log q

(
g−1(z)

)
+ log det Jg−1 (z)

]
, (7)

= Ezflow∼q

[
− log q (zflow) + log det Jg(zflow)

]
, (8)

where det Jg, the determinant Jacobian of g, comes from the
transformation between the two distributions.

Choosing a standard Gaussian distribution for q, we ensure
that this loss is tractable (i.e. easy to compute). By construc-
tion, the Jacobian of g is also easy to compute (Kobyzev et al.
2021). Thus, during training, every galaxy x is encoded by the
previously trained encoder E into a vector z drawn from the
encoded distribution pΘ(z | x). This vector z is transformed by
the flow’s bijector g−1

Θ
into a vector zflow conditioned by the phys-

ical parameters of the galaxy y

zflow = g−1
Θ (z, y) , (9)

which is used to compute the loss and optimise the weights of g.
To implement the flow, we use the probabilistic library

of TensorFlow, TensorFlow probability. With this library
it becomes straightforward to implement the bijector g,
with a chain of masked autoregressive layers, described in
Germain et al. (2015). The transformations of the distribution
made by the successive layers (shifts of the mean and stretch
of the dispersion) are conditioned to the physical parameters of
the flow’s input. Then, thanks to the Distribution object of
the library, with only one command it is possible to sample the
transformed distribution (e.g. to get zflow), but also to take the
log likelihood for the computation of the loss.

3.1.3. Final model

The final model (schematic representation in Fig. 3) combines
the decoder part of the VAE with the regressive flow described
in the previous subsection. Therefore, the input of the final model
is a galaxy catalogue. The flow samples a Gaussian noise vector,
which is concatenated with the catalogue parameters to produce
a vector in the latent space. The vector is then decoded by the
generator of the VAE, producing the image of a new galaxy with
the corresponding input parameters from the catalogue. The use
of a continuous distribution enables the generation of new galax-
ies that resemble real ones, but have never been observed before.

3.2. Training procedure

The main goal of this work is to produce Euclid-like realistic
galaxies. We use pre-processed COSMOS galaxies (described in
Sect. 2) to train the VAE. We train it for 250 000 steps, which
means 3900 epochs (one epoch is when the whole training set
has been seen by the network) with a batch size of 64 (the
batch size is the number of images with which we perform each
gradient descent). The latent space has a dimensionality of 32.
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Fig. 3. Schematic representation of the FVAE architecture used to sim-
ulate a galaxy with structural parameters y. A random noise G is passed
through a regressive flow conditioned to the input galaxy parameters y.
The flow outputs a latent space vector ẑ, which is decoded by the VAE in
order to produce a galaxy corresponding to the input shape parameters.

The learning rate has a first phase where it linearly increases,
followed by a square root decay. We use a warm-up phase of
30 epochs where we train only the generative part (β = 0 in
Eq. (4)), and then linearly increase it to have the same weight
between the generative term of the loss function and the KL
(β = 1). Training and validation losses converge long before the
end of training. However, even after the convergence, we still see
a significant improvement in the generated images. The model
first learns the global shape of the galaxies and a Gaussian pos-
terior in the latent space, making the objective function Eq. (4)
already very low. The learning of more complex structures inside
the galaxies does not have a great impact on the loss (most of the
galaxies do not present major structures and the pixels belonging
to the structures represent a small fraction of the image), which
can explain why we need to train longer than the convergence
to learn the complex distribution of the training set. We show in
the following sections that we chose an appropriate number of
epochs to produce complex galaxies without overfitting. We did
not try to optimise this number of epochs, the balance between
results and training time being sufficient for our study. Neverthe-
less, the large number of epochs is not unusual, and generative
models such as VAEs usually require a large number of epochs
to converge.

In a second step, we tackle the regressive flow. We condition
the model with three parameters: Sérsic index n, half-light radius
re, and axis ratio q. We trained it for 470 epochs, ensuring that
both our training and validation loss had converged. We use a
batch size of 128, and the same learning rate strategy as for the
VAE. By design, the dimensionality of the flow latent space is
the same as that of the VAE (i.e. 32 in this work).

4. Emulation of VIS images

In this section we analyse the properties of simulated galax-
ies and assess the accuracy of the emulation. Our emulator is
expected to fulfil two main goals: realistic galaxies and a control
on the global shape parameters.

4.1. Simulation of composite galaxies

4.1.1. Simulations with pure Sérsic profiles

The Euclid Consortium currently creates analytic galaxies with
the GalSim software (Rowe et al. 2015). Each galaxy is created
as the sum of two components, the bulge and the disk. The disk
component is created with an exponential profile (Sérsic pro-
file with n = 1). The bulge component is a 3D Sérsic profile,
which is projected to produce the expected ellipticity. The two
profiles are created with the expected bulge-to-disk flux fraction,
and then summed pixel-wise. The flux is then rescaled to match
the total galaxy magnitude. The image is finally convolved with
the VIS PSF, which has a full width at half maximum (FWHM)

Fig. 4. Example of galaxies simulated by the FVAE presenting obvious
complexity and features. The scale is linear.

of 0′′.17 at 800 nm (Laureijs 2017). This PSF takes into account
all the optical and instrumental effects, and thus goes beyond a
simple Gaussian. It is the result of the detailed analysis of the
VIS instrument performed by the Euclid Consortium. If neces-
sary, we also rotate the galaxy to its corresponding position angle
in the sky. At this stage, the galaxies are noise-free. The method
used to add noise is explained in Sect. 4.2.2.

4.1.2. Simulations with the FVAE

Once trained, our model takes as input the three shape parame-
ters of each component of the galaxy from the Euclid Flagship
catalogue (half-light radius re, Sérsic index n, and axis ratio q)
and generates a galaxy with the expected structure and realistic
morphology. As explained above, galaxies in the Flagship cat-
alogue are described by two components, a bulge and a disk.
To simulate exactly the same field and compare to the current
Euclid simulations, we also need to produce the two components
separately. This way, we can reproduce the same method as the
current Euclid procedure explained in the previous subsection.
Each component (bulge and disk) is simulated separately by our
model, and then added with the appropriate bulge-to-disk flux
ratio. We then use GalSim to scale the flux, to convolve by the
PSF, and to rotate the galaxy to the appropriate position angle.
Since the flux is calibrated in the post-processing step, we can
associate faint magnitudes with our emulation even if not prop-
erly covered by our training set, as shown in Sect. 2. For the
other parameters, as the distributions of the bulges and the disks
in the Flagship are covered by the training set, simulating the
two components separately should not be an issue.

4.2. Qualitative inspection

4.2.1. Individual noise-free galaxy simulation

We first qualitatively evaluate our simulations. Figure 4 shows
eight galaxies with large radius, prone to presenting interest-
ing morphologies. Compared to pure Sérsic profile simulations,
the generated galaxies are more complex and asymmetric (see
Fig. A.2 for some examples of pure Sérsic galaxies). We are able
to generate the commonly observed features such as rings, spiral
arms, irregularities, and clumps with different inclination angles.
This visual inspection is a first indication that we are able to gen-
erate complex behaviour and mimic surface brightness profiles
or features superior to those of Sérsic profile simulations.

The second key element of our emulator is the ability to con-
trol the structural parameters. In order to illustrate this, we show
in Figs. 5 and 6 the impact of varying parameters on the gen-
erated galaxies. Figure 5 shows a series of generated galaxies
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Fig. 5. Galaxies simulated by our model from a catalogue with increas-
ing axis ratios (q) and effective radius (re). The magnitude and the Sér-
sic index are fixed to 24 and 1, respectively, for all galaxies. The images
are all 64 × 64 pixel, the natural output of our model. Each row shows
galaxies with constant re, and linearly increasing q from 0.1 to 0.95.
Each column shows galaxies with fixed q, and linearly increasing re
from 0′′.1 to 1′′. The galaxies are clearly rounder and bigger from left to
right and top to bottom.

with a constant magnitude set to 24, a fixed Sérsic index of
1.5 and a varying axis-ratio q and half-light radius re. Figure 6
shows a grid of galaxies with fixed re and magnitude but varying
axis-ratio and Sérsic index. We can clearly observe the expected
trends. Galaxies become rounder as we move from left to right,
and bigger from top to bottom in Fig. 5. In Fig. 6 galaxies
become more concentrated as the Sérsic index increases from
left to right. The images also show several examples presenting
non-trivial symmetric shapes. An important limitation to note is
that our model is fixed to produce images of size 64 × 64 pixel.
Very large galaxies might therefore be truncated.

4.2.2. Large field simulation

In addition to individual stamps, we also generate two large
fields of 0.4 deg2 at the depths of the EWS and the EDS (see
a portion of those fields in Fig. 7). We take a subsample of the
Euclid Flagship catalogue and generate every galaxy without
noise and deconvolved by the PSF. We then convolve the stamp
by a unique VIS PSF (no PSF variations are modelled). All the
stamps are then placed in the large field into their corresponding
positions according to the catalogue. We finally add the expected
noise level of the EWS and the EDS in two different realisations
of the same field. The background noise (coming mostly from
background sources and from the zodiacal light) is simulated by
Gaussian noise with the expected standard deviation for the VIS
camera (Cropper et al. in prep.; Scaramella et al. in prep.; priv.
comm.). The photon noise is simulated with a Poisson distribu-
tion added to every pixel, considering the cumulative exposure
times presented by Laureijs et al. (2011).

More information will be given about the noise realisations
in Merlin et al. (in prep.). We do not simulate any instrumental

Fig. 6. Galaxies simulated by our model from a catalogue with increas-
ing axis ratios (q) and Sérsic indices (n). The magnitude and the effec-
tive radius are fixed to 24 and 0′′.7, respectively, for all galaxies. Each
row shows galaxies with constant q, and linearly increasing n from 1
to 4. Each column shows galaxies with fixed n, and linearly increasing
q from 0.1 to 0.95. The galaxies clearly show a steeper profile and are
rounder from left to right and top to bottom, respectively.

effects such as cosmic rays, ghosts, charge transfer inefficiency,
or read-out noise, considering thus an ideal case of a VIS image
processing pipeline. In Fig. 7 we show a random region of the
large fields, and highlight some interesting galaxies.

4.3. Quantification of structural properties

This visual assessment of the previous subsection confirms that
our model behaves as expected both in generating complex
shapes and controlling structural parameters. However, in order
for the simulation to be useful to test algorithms, it is required
that the control on the structural parameters is comparable to
what is achieved with analytic profiles.

4.3.1. Surface brightness profiles

We compare the radial profiles of generated galaxies with the
profiles of analytic galaxies with the same global properties.
Figure 8 compares and shows the radial profile for three bulge
components, disk components, and the combination of the two
components, simulated with our model and with GalSim. All the
images are convolved by the VIS PSF but are without noise. We
show both the profile along the major axis and the azimuthally
averaged profile. The former is useful to identify deviations from
a smooth profile, and thus highlights where the irregularities take
place. The latter, computed by averaging the luminosity at a
given radius r from the galaxy centre in all directions, allows
us to check if the average profile behaves as expected com-
pared to the Sérsic model. Overall, the figure shows the expected
behaviour. Some profiles deviate significantly from a Sérsic pro-
file along the major axis. An example for this is the disk com-
ponent shown in the bottom row of Fig. 8, where we can see a
spiral arm feature that creates variation in the radial light profile.
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Fig. 7. Illustration of a large field simulation produced by our FVAE. Top and bottom panels: same field simulated at the depths of the EDS and the
EWS, respectively. The stamps show zoomed-in regions where some galaxies present morphological diversity. In the large field images, we use
the IRAF ‘zscale’ that stretches and clips the low and high values to better highlight the differences between the EWS and the EDS. The stamps are
in linear scale, which better emphasises the structures. With the stretching induced by the zscale, all the structures disappear and only the global
shape is still recognisable. Finally, the apparent different level of background between the stamps and the global image is also due to the different
brightness scale (different maximum and minimum values in each of them).
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Fig. 8. Examples of three radial profiles of galaxies generated with GalSim and our model. Each group of two columns represents the different
components of the galaxy: bulge, disk, and composite (bulge plus disk) from left to right. Within each group the top row shows the images by
our model (left) and by the Sérsic model (right). The bottom line represents the light radial profiles, along the major axis (left) and the average
profile (right). The orange lines correspond to our model, and blue to the Sérsic profile. The dashed grey line represents the EWS noise level. Our
simulations show more diverse profiles, but the average closely matches the analytic expectations. The irregularities at very low S/N on the FVAE
profiles are a sign that the model does not produce perfectly noise-free galaxies.

However, the average profiles tend to follow the analytic expec-
tations since irregularities are averaged out. Therefore, the
generated galaxies seem to present the desired behaviour (i.e.
complex surface brightness distributions), which on average
match a Sérsic profile. An additional interesting result seen
in Fig. 8 is that the combination of the two components also
behaves very similarly when compared to a double-component
analytic galaxy (see the composite galaxy column).

4.3.2. Surface brightness fitting

We now fit Sérsic models to quantify how accurately the
shape parameters are recovered in a statistical sense. For this
purpose we use the Galapagos package (Barden et al. 2012;
Häußler et al. 2013). Galapagos is a high-level wrapper for
SExtractor (Bertin & Arnouts 1996) and Galfit (Peng et al.
2002) to automatically fit large samples of galaxies. Because

two-component Sérsic fits are generally less stable than one-
component fits (e.g. Simard et al. 2011, Bernardi et al. 2014,
Dimauro et al. 2018) we decide to produce the two components
separately in two distinct realisation of the field. Thus, we have
two different fields, one with only the bulge component and one
with only the disk component. We then fit each field with the
one-component Sérsic model. This allows us to test the reliabil-
ity of the fits while reducing the degeneracies. Since our objec-
tive is to compare our simulation to an analytic one, a single
Sérsic fit is enough for our purpose.

Using the Euclid Flagship catalogue, we generate with our
model a galaxy field of 0.4 deg2 (i.e. around 2500 galaxies with
magnitude lower than 25), following the same procedure as in
Sect. 4.2.2. We then use the same procedure and subsample to pro-
duce the same field with the pure Sérsic profiles. The two fields are
therefore identical in terms of number of galaxies and positions,
and contain galaxies with the same structural properties.
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Fig. 9. Results of 2D Sérsic fits to the surface brightness distributions
of bulge components. In every panel, the orange points and histograms
represent the results for the FVAE galaxies and the blue for the analytic
galaxies. Each panel represents a different parameter, as labelled. For
each parameter the true value of the parameter is plotted as a function
of the inferred one from the best-fit model. A perfect fit corresponds
to the diagonal. In addition, above and to the right of each plot are the
projected distributions of the scatter plot. Finally, the inset plot shows
the distribution of the error (fitted value minus true value). To make
the scatter plot less crowded, only half the galaxies are plotted, but the
error histograms and the projected distributions are computed on the
entire field (for more details of the error distributions, see Table 1).

Figures 9 and 10 show the fitting results concerning bulge
and disk components, respectively, for five parameters: half-light
radius re, axis ratio q, Sérsic index n, centroid position X, and
total magnitude. We recall that the goal of this comparison is not
to quantify the absolute accuracy of the fits, but to compare the
relative behaviour of our simulations with a baseline. A future
publication in preparation will quantify in detail the accuracy
of structural parameters in both the EWS and the EDS. Overall,
the structural parameters are recovered with similar dispersion
for the FVAE and the analytic simulation. This is a first quanti-
tative confirmation of the visual inspection of the previous sec-
tions. Our model is able to produce realistic galaxy images while
preserving information on the parametric structure. The global
distributions of the predicted parameters are also very similar,
which confirms that our model has correctly learnt the entire dis-
tribution of the training set, and is thus able to span the entire
parameter space of the Euclid Flagship catalogue.

Fig. 10. Same as Fig. 9, but for the results and description of the disk
component.

Looking in more detail, the FVAE results present a slightly
larger dispersion in all recovered parameters. This is expected
since the analytic simulations represent a perfect match for the
model that is fitted. This is not the case for the FVAE simula-
tions, which present more complex profiles. We give the statis-
tical details of the fitting distribution errors (median, first, and
third quartile) in Table 1, corresponding to the distributions in
the insets in each panel of Figs. 9 and 10.

The systematic offsets might be more problematic. The
figure shows that the systematic shifts for the bulge compo-
nents are very similar for the analytic and the FVAE fields which
means that using a FVAE does not introduce any noticeable sys-
tematic effects. The only parameter that presents a small bias
towards larger values is the axis ratio q. This might be because of
a lack of very elongated bulges in the training data set. The disk
components present a slightly higher systematic bias though, as
shown in Fig. 10. Indeed, FVAE galaxies tend to be systemat-
ically larger and rounder than their analytical counterparts and
show an almost constant offset of 0.15 on the Sérsic index. It
is not obvious whether these offsets are a consequence of the
simulation or whether it is related to the fitting procedure itself.
A possible explanation for the larger offsets is that disk compo-
nents are generally more extended and with flatter profiles than
bulge components, thus they also present more complexity and
structure. Alternatively, it can also be related to the simulation
itself. Our training set is based on a single-component fit with a

A90, page 10 of 21



Euclid Collaboration: Euclid preparation. XIII.

Table 1. Accuracy of fitting results.

Bulges Disks

Analytic

FVAE q1 µ1/2 q3 q1 µ1/2 q3

X
−0.37

−0.36

−0.04

0.01

0.26

0.40

−0.36

−0.90

−0.05

−0.01

0.25

1.00

mag
−0.25

−0.33

−0.04

−0.06

0.03

0.03

−0.11

−0.09

0.01

0.04

0.04

0.10

re
−0.04

−0.23

0.24

0.25

1.25

1.77

−0.07

0.27

0.11

0.65

0.55

1.27

q
−0.10

−0.10

−0.03

0.00

0.00

0.07

−0.05

−0.04

−0.01

0.03

0.01

0.09

n
−0.01

−0.64

0.23

−0.06

1.26

0.52

−0.06

−0.29

0.06

−0.15

0.20

0.04

Notes. For each parameter shown in Figs. 9 (bulges) and 10 (disks), we present the first quartile (q1), the median (µ1/2), and the third quartile (q3)
of the fitting error distributions.

continuous distribution of the Sérsic index. However, the Sérsic
index of the disk component in the Euclid Flagship catalogue is
fixed to n = 1. This means that there is only a small number of
examples in the training set with exactly n = 1, which can affect
the quality of the generation. Finally, we can see that for the
magnitude, the fit of our galaxies also differs very little from the
Sérsic fits, even if the flux is not something that is parametrised
in our model, but re-scaled afterwards with Galsim. This occurs
because the recovering of the flux in a large field, with blended
galaxies for example, is not completely trivial.

5. Forecasts for galaxy morphology with Euclid

The previous sections have shown that our proposed framework
successfully generates galaxies with realistic and resolved struc-
ture. Our simulations can therefore be used to establish some
forecasts on the number of galaxies for which Euclid will be
able to resolve the internal structure beyond a Sérsic profile.

5.1. Identifying galaxies with resolved structure

Our goal is to quantify the fraction of galaxies that present sig-
nificant structures that deviate from a pure analytic profile. For
that purpose we have designed a method to distinguish galaxies
with internal structure from smooth objects. We assume that any
type of complexity in the galaxy surface brightness distribution,
hereafter called structure, will result in a deviation from an ana-
lytical profile. This is particularly clear in the disk component
shown in Fig. 8. We therefore establish a criterion to characterise
the smoothness of a galaxy by computing the derivatives of the
semi-major axis profile. For illustration purposes, we show in
Fig. 11 three toy profiles. A pure analytical profile, a profile pre-
senting a strong structure, and a slightly perturbed one. When
the profile is smooth the first derivative is also smooth, chang-
ing its sign only at the centre of the galaxy. If we consider only
a one-sided profile, the derivative never goes to zero (i.e. it has
no roots). Its second derivative is also smooth, and has only one

root that we call a ‘natural zero’. When the galaxy is strongly
perturbed, the profile will significantly differ from a pure analyt-
ical profile. For a Sérsic profile the light curve decreases from
the centre to the edge of the galaxy; instead, for example in a
galaxy presenting a spiral arm, the major axis profile increases
in the location of the arm. This increase (change of slope) will
cause a sign change in the first derivative, and thus two changes
in sign in the second derivative, as can be seen in the second
column of Fig. 11. However, the roots of the first derivative are
not always enough to detect a variation from a smooth profile,
as illustrated in the third column of the figure; the profile can
be slightly perturbed, with a change of slope in the profile, but
this does not make the profile rise as in the second column of
the figure, but significantly changes the rate of decrease. Thus,
the first derivative will not change in sign (the profile does not
increase), but the second derivative will (the rate of the decrease
changes).

Therefore, we conclude that the presence of a zero on the
second derivative of the light profile (without counting the nat-
ural zero) is a reasonable indicator of a galaxy with complex
structures. We note that there will be additional zeros at the edge
of the profile when it becomes flat. However, these roots will
be all consecutive, giving us a way to distinguish zeros coming
from a structure from ones coming from the end of the profile.
Thus, we can consider a galaxy being structured if its second
derivative has two roots (without considering the first natural
one), which are far enough from each other. This also prevents
the high-frequency perturbations in the profile that we do not
want to consider as a structure. We find that, at the VIS reso-
lution, a minimum distance of 1 pixel (approximately one PSF
FWHM) between roots is a reasonable choice. To make sure that
we do not miss structures that are not along the semi-major axis,
we also search for structures with the same method along the
semi-minor axis of the galaxy.

We show in Appendix A two random selections of galax-
ies which have been classified with and without structure. Our
method successfully isolates galaxies with perturbed or asym-
metric profiles.
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Fig. 11. Three toy profiles that illustrate our structure detection method. Left panel: smooth galaxy without structure, middle panel: strongly per-
turbed galaxy, and right panel: slightly perturbed object. For each profile, its luminosity is plotted as a function of the distance to the galaxy centre
in arbitrary units (blue solid lines). Their corresponding first and second derivatives are also plotted (orange and green solid lines, respectively).
We can see that the number of roots in the second derivative is a good indicator of perturbed galaxies.

Fig. 12. Forecast of the number of galaxies with internal structures for
the EWS and the EDS, regarding surface brightness. Left panel: fraction
of galaxies with resolved structure as a function of surface brightness.
Right panel: total number of galaxies with resolved structure as a func-
tion of surface brightness. The red squares are for structures discernible
for the EWS at 2σ around the noise level. The blue stars represent the
same information, but for the EDS.

5.2. Resolved complex morphologies in Euclid

We use this technique to infer the fraction of galaxies for which
Euclid will be able to resolve internal morphological structure
beyond Sérsic profiles. We simulate galaxies without noise and
compute the semi-major axis profile and consider only pixels 2σ
above the noise level. We then plot in the left plot of Fig. 12
the fraction of galaxies presenting structures as a function of the
surface brightness S b of the galaxy, defined as

S b = m + 2.5 log10(π qtot r2
tot) , (10)

where rtot (in arcsecond) and qtot are the global (disk and bulge
components) half-light radius and axis ratio of the galaxy. Thus,
π qtot r2

tot represents the area of the galaxy.
We can see that the fraction of galaxies with resolved struc-

tures decreases with increasing surface brightness, as expected.
The behaviour of the EWS and the EDS is self-similar, but the
EDS is shifted towards fainter surface brightness. The differ-
ence is of the order of 2 magnitudes: less than 10% of galaxies
present detailed structures above 2σ, beyond a surface bright-
ness of 22.5 mag arcsec−2 for the EWS and 24.9 mag arcsec−2

Fig. 13. Fraction of galaxies with resolved structures in bins of magni-
tude and half-light radius. The first line represents Euclid capacities for
the EWS, and the second for the EDS. First column is the percentage
of galaxies presenting structures above 1σ of the noise level, and the
second column above 2σ. The colour-coding is the same as in Figs. 12
and 14. The blue number in each column (row) indicate the mean per-
centage of the corresponding column (row).

for the EDS. The statistical fluctuations on the curve are similar
because we compute our structure indicator on the same realisa-
tions of galaxies with only the S/N changing.

We also provide the total number of galaxies per bin in the
right panel of Fig. 12. We simply multiply the fraction of objects
with structure by the total number of galaxies in the 15 000 deg2

of the EWS and in the 40 deg2 of the EDS. We conclude that
Euclid will observe around 250 million galaxies that are signif-
icantly more complex than the analytical profiles during the six
years of the mission.

Figure 13 shows a 2D representation of the fraction of galax-
ies with resolved structures above 1σ and 2σ of the noise as
a function of magnitude and half-light radius. We observe the
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Fig. 14. Fraction of galaxies with resolved structures in bins of stel-
lar mass and redshift. Top (bottom) row: the EWS (EDS). Left column:
fractions, while right column: absolute numbers for the six-year survey.
The numbers in blue indicate the average values per row and column.

same behaviour, namely that the EDS goes around two mag-
nitudes deeper to probe morphologies. The fraction of galax-
ies decreases in the limit of the distributions when we increase
the level of acceptance from 1σ to 2σ. The figure summarises
the following expected behaviour: (1) the brighter the galaxy, the
larger the number of resolved structures (top to bottom gradient)
and (2) the fraction becomes smaller for extremes (very small
and very large galaxies) at constant magnitude. The decrease at
small sizes is a consequence of resolution. At large sizes it is
related to S/N. We recall that we did not plot galaxies bigger
than 2′′ because of the built-in size limitation of our model, but
we expect the decreasing trend to continue at larger radii.

Finally, in Fig. 14 we forecast the fraction and the total num-
ber of galaxies with resolved structures as a function of physical
properties of galaxies, namely stellar mass and redshift. We con-
clude that the EWS will be able to reach a 50% completeness
regarding the detection of internal structures of galaxies down to
∼1010.6 M� at z ∼ 0.5. The EDS reaches down to a stellar mass
of 109.6 M� up to z ∼ 0.5.

We note here that we are probing the internal structures of
the galaxies, and not assessing whether the galaxy is resolved or
not. We thus consider, in our forecasts, that intrinsically smooth
galaxies such as spheroids have no structures, even if they are
resolved by Euclid. Since our model is trained on real data, it is
reasonable to assume that the fraction of different morphologies
is well reproduced. The numbers we provide are therefore an
estimate of the fraction of galaxies with complex internal struc-
ture, beyond a Sérsic model.

6. Discussion: A framework to simulate future
surveys

This work presents a novel framework to generate galaxies
with realistic morphologies, while keeping control on the global
structural properties. It can be used to calibrate algorithms for
future experiments such as Euclid in which the impact of com-
plex galaxy shapes might become significant. This is the case

Fig. 15. Comparison of the execution time between our model and the
current Euclid simulations, for different hardware configurations. The y-
axis indicates the ratio of the execution time using our model to the time
from the official Euclid pipeline. The x-axis corresponds to the number
of galaxies simulated. The stars represent GPU runs and squares are
CPU runs. The colour bar indicates the batch size.

for example for galaxy deblending or even shear estimations. We
discuss in this section possible limitations of a large-scale use of
generative models for galaxy generation.

One possible bottleneck is execution time. We therefore
quantify the execution speed of our framework compared to that
of a classical analytic generation. We use two different environ-
ments: with and without GPUs. We used a 16 CPU Intel Xeon
Bronze 3106, and an NVIDIA Tesla P40 GPU. We then tested
our method with increasing batch sizes, going from one galaxy
at a time to 64. The results of the different experiments are sum-
marised in Fig. 15. Each measurement refers to the execution
time of a standard analytic simulation. The training time is not
discussed here as it has to be done only once, and does not enter
execution time discussions.

The figure confirms that a GPU is around four times faster
than a CPU environment in all configurations. We also see that
the batch size has a dramatic impact on the execution speed. For
a batch size of one, our method is more than a 100 times slower
than a traditional approach. However, the difference is reduced to
a factor of around 5 if larger batches are used. It is interesting to
note, however, that the execution time does not depend linearly
on the batch size. This is a well-known behaviour (Wilper et al.
2020). We note that for this figure, as in all this work, we simu-
late galaxies by a sum of two components. As explained before,
we did that to match the current Euclid simulation strategy. Nev-
ertheless, we highlight here that we are capable of creating com-
plex galaxies with only one component, and therefore all the
times of the figure could possibly be divided by two if we were
simulating only one component.

Another possible limitation of our proposed framework is the
fact that it is trained on observations which therefore contain
biases that can propagate the simulation. In particular, we used
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here the COSMOS Galfit fitting as a ground truth to condition
the autoregressive flow. The impact of this could be assessed by
using different independent fitting codes on the same data sets
and comparing the results. This is an ongoing effort as part of
the Euclid Morphology Challenge, which will be presented in a
forthcoming publication. The diversity of generated galaxies is
also limited by the quality of the observations used for training,
in this case HST observations. This restricts the range of param-
eters that our model can probe without extrapolation. This could
be mitigated with additional data sets, but we have not explored
that in this work. For this reason, we do not recommend using
our framework to simulate images without noise as features
below the HST noise level are not constrained. We also note that
our model is limited regarding the size of the galaxies it can gen-
erate because of the fixed size of the training stamps. Simulating
galaxies with half-light radii bigger than 2′′ is not recommended.
Some galaxies larger than 1′′.5 and with a small Sérsic index (flux
above the half-light radius not negligible) can also produce some
flux artefacts at the border of the stamp, being at the limit of the
training distribution, and because the faint end of the galaxy will
be cut. We used this large limit of 2′′ to do our morphological
forecasts because those artefacts do not cause problems in our
structure detection algorithm. In addition, to produce galaxies
fainter than the limiting magnitude of the training set (25.2 mag),
we assumed that the galaxy morphology is not correlated with
the magnitude, which is of course an approximation. Finally, to
establish morphology forecasts, we assume that the amount of
structures produced by our model is the same as in real galax-
ies. Our model may tend to produce galaxies that are smoother
than in real galaxies. Therefore our forecast may have underesti-
mated the number of objects with complex morphologies. On
the contrary, our choice to use fields without any instrumen-
tal effects but the PSF could decrease the effective number of
detected galaxies. Finally, the number of low-magnitude galax-
ies in the Euclid Flagship catalogue could be underestimated, for
example compared to the catalogue (Connolly et al. 2014) used
for the Legacy Survey of Space and Time (LSST) at the Vera C.
Rubin Observatory (Ivezić et al. 2019). This lack of faint galax-
ies could increase the numbers presented here, especially for the
EDS.

7. Summary and conclusion

We have presented a data-driven method for simulating decon-
volved and noise-free galaxies with morphologies more realistic
and complex than pure analytic Sérsic profiles. The proposed
approach is based on a combination of deep generative neural
networks trained on observations, which allows one to generate
realistic galaxies while preserving a control of the global shape
of the surface brightness profiles. We have shown that the struc-
tural parameters of the generated galaxies are recovered with
similar accuracy compared to that derived for analytic profiles.
Our proposed approach, although around five times slower than
an analytic simulation can be used to generate realistic simula-
tions for future missions and experiments, and therefore calibrate
algorithms under more realistic conditions.

We have used this new framework to establish the first fore-
casts on the number of galaxies for which Euclid will be able
to provide resolved morphological structure beyond Sérsic pro-
files. We find that Euclid will resolve the internal structure of
around 250 million galaxies. This corresponds to a 50% stellar
mass complete sample above 1010.6 (109.6) at a redshift z = 0.5
for the EWS (EDS). This is a first estimation of the capabili-
ties of Euclid for estimating galaxy morphologies, which are a

key ingredient for a variety of galaxy evolution-related science
cases.

Looking ahead, there is an ongoing effort of the authors to
adapt the VAE to work in a multi-band mode, which will enable
the generation of galaxies in the two infrared bands of the Euclid
near-infrared imager. We also plan to train a flow on different
sets of parameters. Our method can, for example, be conditioned
on the orientation and the environment of galaxies to take into
account gravitational shear effects. We could also condition our
flow on the redshift and initial mass function in order to find their
impact on the evolution of structures.
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Appendix A: More illustrations of the capabilities of
our model.

Fig. A.1. Simulation by our model of bulge components with radius
smaller than 0′′.1 (i.e. smaller than one pixel). These bulge components
are at the end of the Euclid Flagship radii distribution (Fig. 1) outside
the COSMOS training domain. As can be seen, our model is able to
extrapolate from those cases. Because the object is not resolved, it is
almost purely the VIS PSF.

Fig. A.2. Double-Sérsic component galaxies currently used in the
Euclid Consortium.
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Fig. A.3. Random examples of galaxies considered as having structure. The stamps are cut at twice the effective radius.
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Fig. A.4. Random examples of galaxies considered as having no structure. The stamps are cut at twice the effective radius.
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physical
parameters

Masked Dense Layer

Permutation 3

MADE Block :

SAMPLE

Shift and scale

( )

MADE Block MADE Block 6 more MADE Blocks

...
+

Batch norm
+

Batch norm
+

Batch norm

Fig. B.2. Schematic architecture of the regressive flow. Each dense layer is followed by a ReLU activation.
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