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Abstract

We develop a game-theoretic semantics (GTS) for the fragment ATL+ of the

alternating-time temporal logic ATL∗, thereby extending the recently introduced

GTS for ATL. We show that the game-theoretic semantics is equivalent to the

standard compositional semantics of ATL+ with perfect-recall strategies. Based

on the new semantics, we provide an analysis of the memory and time resources

needed for model checking ATL+ and show that strategies of the verifier that

use only a very limited amount of memory suffice. Furthermore, using the GTS,

we provide a new algorithm for model checking ATL+ and identify a natural

hierarchy of tractable fragments of ATL+ that substantially extend ATL.

Keywords: game-theoretic semantics, alternating-time temporal logic,

algorithmic model checking, tractable fragments, finite memory strategies

1. Introduction

The full Alternating-time Temporal Logic ATL∗ [1] is one of the main logical

systems used for formalising and verifying strategic reasoning about agents in

multi-agent systems. It is very expressive, and that expressiveness comes at a

high (2-EXPTIME) price of computational complexity of model checking. Its5

basic fragment ATL—which can be regarded as the multi-agent extension of
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CTL—has, on the other hand, tractable model checking, but its expressiveness is

rather limited. In particular, ATL only allows expressing strategic objectives of

the type 〈〈A〉〉Φ where Φ is a simple temporal goal involving a single temporal

operator.10

The intermediate fragment ATL+ naturally emerges as a good alternative,

essentially extending ATL to allow expressing strategic objectives that are Boolean

combinations of simple temporal goals. The price for this is the reasonably higher

computational complexity of model checking, namely, PSPACE-completeness

[2]. Still, the PSPACE-completeness result alone gives a rather crude estimate15

of the amount of computational resources, such as memory, needed for model

checking ATL+.

Main ideas and contributions. In this paper we take an alternative

approach to the semantic analysis and model checking of fragments of ATL∗,

concentrating in particular on fragments of ATL+. Our analysis is not based on20

the standard compositional semantics, but instead, we present and study a new,

game-theoretic semantics (GTS). The main aims and contributions of the paper

are three-fold:

1. We introduce a game-theoretic semantics for ATL+ and prove it equivalent

to the standard (perfect-recall) compositional semantics.25

2. We propose new model checking algorithms for ATL+ and some of its

fragments. To this end, we use the new GTS developed here rather than

the standard semantics. Based on this novel perspective on model checking,

we identify a hierarchy of new fragments of ATL+ with tractable model

checking.30

3. We analyse, with the help of GTS, the use of memory resources in ATL+.

The main part of the paper consists of a detailed presentation and analysis

of the new GTS for ATL+. In particular, we obtain results similar to those in

our earlier work [3, 4], where we defined a GTS for ATL. We establish, inter alia,

the surprising result that it is always sufficient to consider finite paths only when35
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formulae are evaluated via GTS, even when investigating infinite models. Since

we are dealing with ATL+ as opposed to ATL, a range of new technical ideas

and mechanisms are needed due to shifting focus from single temporal goals to

multiple, simultaneous goals.

Furthermore, the approach via GTS enables us, among other things, to40

perform a more detailed analysis of the resources needed for evaluating ATL+-

formulae than the algorithm from [2]. The algorithm presented in [2] employs a

combination of a path construction procedure for checking strategic formulae

〈〈A〉〉Φ on one hand, and the standard labelling algorithm on the other hand.

Our model checking algorithm for ATL+ follows uniformly a procedure directly45

based on GTS only. The GTS-based produre enables us to identify and correct

a flaw in the model checking procedure of [2]. Yet, the PSPACE upper bound

result of [2] is easily confirmed by our algorithm, and we provide a new, simple

proof of that result. In addition to new methods, we employ some nice ideas

from [2].50

As a new complexity result obtained via GTS, we identify a natural hierarchy

of fragments of ATL+ that extend ATL and have tractable (PTIME-complete)

model checking. The hierarchy is based on bounding the Boolean strategic width

of formulae. We denote the new fragments in the hierarchy by ATLk for different

positive integers k. The fragment ATLk contains those formulae of ATL+ where55

subformulae 〈〈A〉〉Φ are restricted such that Φ is a Boolean combination of at

most k formulae. Note that thus ATL1 corresponds to plain ATL.

The current paper is the journal version of [5], and here we extend [5] by,

inter alia, including a range of new results on systems of bounded semantics

based on finite transducers. We analyse the amount of memory resources needed60

for winning strategies and establish tight lower and upper bounds for it. We

notice that in transducer based semantics, an exponential amount of memory

with respect to formula size is required. However, only a linear amount of this

is actually used in any concrete single evaluation process of a formula. Based

on this we argue that the transducer-based approach does not give a complete65

analysis of the requirement of memory resources. Indeed, a full look-up table
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of potentially needed memory resources has to be encoded in a transducer. An

alternative approach would be to replace the look-up table by an equivalent

computing device and then relate the needed memory resources to the memory

used by the device.70

The current paper directly extends the results in [3, 4], where a GTS for ATL

was considered, and relates quite closely also to the GTS-based work presented

in [6, 7, 8]. In particular, the current article extends the work in [3, 4] in the way

described next. Firstly, several new ideas and technical notions, such as the role

of a seeker and the use of a truth function, are introduced in this article in order75

to enable the transition from ATL to ATL+ in a GTS setting. Secondly, a useful

and generally elucidating link between our GTS and Büchi games is identified.

Thirdly, we show how to use the new upgraded semantics in a model checking

procedure for ATL+ and the fragments ATLk. This would not have been possible

with the semantics of [3, 4].80

There are several related works concerning the extensions of ATL as well as

game-theoretic semantics; we mention here some of such papers. Game-theoretic

semantics for first order logic has been proposed by Hintikka [9] and Lorenzen

[10]. GTS-like approaches have been used to solve decision problems of, e.g.,

fragments of Strategy Logic (especially with respect to the so-called “behavioral85

semantics”) in [11, 12]. The idea about imposing time bounds for temporal

operators has been studied in e.g. [13, 14, 15, 16].

Structure of the paper. After the preliminaries in Section 2, we define a

bounded, finitely bounded, and unbounded game-theoretic semantics for ATL+

in Section 3. In Section 4 we analyse the novel systems of GTS. In Section 5 we90

prove equivalence of the bounded and unbounded versions with the standard

compositional semantics of ATL+ with perfect-recall strategies. In Section 6 we

apply the GTS to the model checking problem for ATL+ and identify a hierarchy

of tractable fragments of the logic. In Section 7 we study the transducer-based

bounded memory semantics for these fragments. Section 8 concludes the paper.95
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2. Preliminaries

In this section we define concurrent game models and the syntax and the

(perfect-recall) semantics for ATL+. We also introduce some new terminology

and notations that will be used later in this paper.

Definition 2.1. A concurrent game model (CGM) is a tuple

M := (Agt,St,Π,Act, d, o, v)

which consists of:100

– The following non-empty sets: agents Agt = {a1, . . . , ak}, states St, propo-

sition symbols Π, and actions Act;

– The following functions: an action function d : Agt×St → P(Act) \ {∅}

which assigns a non-empty set of actions available to each agent at each state; a

transition function o which assigns an outcome state o(q, ~α) to each state105

q ∈ St and admissible action profile ~α (a tuple of actions ~α = (α1, . . . , αk)

such that αi ∈ d(ai, q) for each ai ∈ Agt); and finally, a valuation function

v : Π→ P(St).

We use symbols p, p0, p1, . . . to denote proposition symbols and q, q0, q1, . . . to

denote states. Sets of agents are called coalitions. The complement A = Agt \A

of a coalition A is the opposing coalition of A. The set action(A, q) of action

tuples available to coalition A at state q ∈ St is defined as

action(A, q) := {(αi)ai∈A | αi ∈ d(ai, q) for each ai ∈ A}.

Example 2.2. Let M∗ = (Agt,St,Π,Act, d, o, v), where:

Agt = {a1, a2}, St = {q0, q1, q2, q3, q4};

Π = {p1, p2, p3}, Act = {α, β};

d(a2, q0) = d(a1, q1) = {α, β} and else d(ai, qi) = {α};

o(q0, αα) = q1, o(q0, αβ) = q2, o(q1, αα) = q3, o(q1, βα) = q4,

o(q2, αα) = q3, o(q3, αα) = q1 and o(q4, αα) = q4;

v(p1) = {q2, q4}, v(p2) = {q3} and v(p3) = {q1}.
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Definition 2.3. Let M = (Agt,St,Π,Act, d, o, v) be a CGM. A path in M is110

a sequence Λ : N → St of states such that for each n ∈ N, we have Λ[n+1] =

o(Λ[n], ~α) for some admissible action profile ~α in Λ[n]. A finite path (aka

history) is a finite prefix sequence of a path in M. We let paths(M) denote

the set of all paths in M and pathsfin(M) the set of all finite paths in M.1

A positional strategy of an agent a ∈ Agt is a function sa : St→ Act such115

that sa(q) ∈ d(a, q) for each q ∈ St. A perfect-recall strategy, or hereafter

just strategy, of an agent a ∈ Agt is a function sa : pathsfin(M) → Act such

that sa(λ) ∈ d(a, λ[k]) for each λ ∈ pathsfin(M), where λ[k] is the last state in

λ. A collective strategy SA for a coalition A ⊆ Agt is a tuple of individual

strategies, one for each agent in A. With paths(q, SA) we denote the set of120

all paths emerging in plays beginning from q where the agents in A follow the

strategy SA.

The formulae of ATL+ are defined with the help of the following grammar:

State formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Φ (p ∈ Π)

Path formulae: Φ ::= ϕ | ¬Φ | Φ ∨ Φ | Xϕ | ϕUϕ125

Only state formulae are considered to be actual ATL+ formulae. Path formulae

are only auxiliary for defining the semantics.

Other Boolean connectives are defined as usual, and furthermore, Fϕ, Gϕ

and ϕRψ are abbreviations for >Uϕ, ¬(>U¬ϕ), and ¬(¬ϕU¬ψ) respectively.

With Φ and Ψ we refer to path formulae only; ϕ, ψ, and χ refer to any formulae.130

1Note that, accordingly this terminology, a “path” always refers to an infinite path. We

use this terminology since we mostly consider infinite paths.
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Definition 2.4. Let M be a CGM. Truth of state and path formulae of ATL+

is defined, respectively, with respect to states q ∈ St and paths Λ ∈ paths(M),

inductively as follows, where ϕ,ψ are state formulae:

• M, q |= p iff q ∈ v(p) (for p ∈ Π ).

• M, q |= ¬ϕ iff M, q 6|= ϕ.135

• M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ.

• M, q |= 〈〈A〉〉Φ iff there exists a collective strategy SA for the coalition A

such that M,Λ |= Φ for each Λ ∈ paths(q, SA).

• M,Λ |= ϕ iff M,Λ[0] |= ϕ.

• M,Λ |= ¬Φ iff M,Λ 6|= Φ.140

• M,Λ |= Φ ∨Ψ iff M,Λ |= Φ or M,Λ |= Ψ.

• M,Λ |= Xϕ iff M,Λ[1] |= ϕ.

• M,Λ |= ϕUψ iff there exists i ∈ N such thatM,Λ[i] |= ψ andM,Λ[j] |= ϕ

for all j < i.

The set of subformulae, SUB(ϕ), of a formula ϕ is defined as usual.145

Subformulae with a temporal operator as the main connective will be called

temporal subformulae, while subformulae with 〈〈〉〉 as the main connective

are strategic subformulae. The subformula Φ of a formula ϕ = 〈〈A〉〉Φ is

called the temporal objective of ϕ. We also define the set At(Φ) of relative

atoms of Φ as follows:150

• At(χ ∨ χ′) = At(χ) ∪At(χ′) and At(¬χ) = At(χ).

• At(〈〈A〉〉χ) = {〈〈A〉〉χ} and At(p) = {p} for p ∈ Π.

• At(χUχ′) = {χUχ′} and At(Xχ) = {Xχ}.
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We say that χ ∈ At(Φ) occurs positively (resp. negatively) in Φ if χ has

an occurrence in the scope of an even (resp. odd) number of negations in Φ. We155

denote by SUBAt (Φ) the subset of SUB(Φ) containing all relative atoms of Φ and

also all Boolean combinations χ of these relative atoms such that χ ∈ SUB(Φ).

Example 2.5. Let ϕ∗ := 〈〈a1〉〉Ψ, where

Ψ := (¬X p3 ∧ 〈〈a2〉〉X p1) ∨ (F p1 ∧ (¬p1)U p2).

Written without using abbreviations, Ψ becomes

¬(¬¬X p3 ∨ ¬〈〈a2〉〉X p1) ∨ ¬(¬(>U p1) ∨ ¬((¬p1)U p2)).

Here At(Ψ) = {X p3, 〈〈a2〉〉X p1,>U p1, (¬p1)U p2}, where 〈〈a2〉〉X p1 is a state

formula and the rest are path formulae. The formula X p3 occurs negatively in

Ψ and the rest of the formulae in At(Ψ) occur positively in Ψ.160

3. Game-theoretic semantics

In this section we define bounded, finitely bounded and unbounded evaluation

games for ATL+. These games give rise to three different systems of semantics,

namely, the bounded, finitely bounded and unbounded GTS for ATL+.

These systems of semantics were defined for plain ATL already in [4]. The165

principal difference between the bounded and unbounded GTS is that the bounded

variant forces games to end after a finite number of steps. This is a significant

difference achieved, as we shall see, via requiring the players to choose ordinal

numbers that can intuitively be considered to determine upper bounds for game

durations (see Example 4.8). In the unbounded semantics, no such ordinals are170

used, and the games can continue for infinitely many rounds.

As discussed in [4], the difference between bounded and unbounded seman-

tics is directly analogous to the difference between for-loops and while-loops.

Indeed, for-loops require an extra parameter that determines the number of loop

iterations, and while-loops can possibly loop infinitely long.175
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Having both the bounded and unbounded semantics at our disposal will prove

beneficial in Section 6 where we discuss model checking. Indeed, we shall need

the unbounded semantics for connecting fragments of ATL+ to Büchi games and

thereby obtaining novel tractability results. On the other hand, we shall need

the bounded semantics for our proof strategy of Theorem 6.1 which confirms180

the PSPACE-completeness of ATL+ model checking.

The unbounded and bounded semantics will be proved equivalent below.

(The equivalence holds on the condition that the players are allowed to use

sufficiently large ordinals in bounded games.) The finitely bounded semantics is

not equivalent to these two systems of semantics. The difference between the185

finitely bounded and bounded semantics is that the parameters with which the

players force the games to be finite are possibly infinite ordinals in bounded

semantics and finite ordinals in finitely bounded semantics. The finitely bounded

and bounded semantics are equivalent over finite models but not over infinite

ones. The reason for introducing finitely bounded semantics is that it provides a190

novel, interesting perspective on ATL and ATL+ while still being equivalent over

finite (but not infinite) models with the standard semantics.

Below we shall use some terminology and notational conventions introduced

in [4].

3.1. Evaluation games: informal description195

Given a CGMM, a state qin and a state formula ϕ, the evaluation game

G(M, qin, ϕ) is, intuitively, a formal debate between two opponents, Eloise (E)

and Abelard (A), about whether the formula ϕ is true at the state qin in the

model M. Eloise claims that ϕ is true, so she (initially) adopts the role of

a verifier in the game, and Abelard tries to prove the formula false, so he is200

(initially) the falsifier. These roles (verifier, falsifier) can swap in the course of

the game when negations are encountered in the formula. If P ∈ {E,A}, then

P denotes the opponent of P, i.e., P ∈ {E,A} \ {P}.

We now provide an intuitive account of the bounded evaluation game and

the bounded GTS for ATL+. The intuitions underlying the finitely bounded205
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and unbounded GTS are similar. A reader unfamiliar with the concept of GTS

may find it useful to consult, for example, [17] for GTS in general and [3] or

[4] for ATL-specific GTS. The GTS for ATL+ presented here follows the general

principles of GTS, with the main original feature being the treatment of strategic

formulae 〈〈A〉〉Φ. We first give an informal account of the way such formulae are210

treated in our evaluation games. Formal definitions and some concrete examples

will be given further, beginning from Section 3.2.

The evaluation of ATL+ formulae of the type 〈〈A〉〉Φ in a given model is based

on constructing finite paths in that model. The following two ideas are central.

Firstly, the path formula Φ in 〈〈A〉〉Φ can be divided into goals for the verifier215

(V), these being the relative atoms ψ ∈ At(Φ) that occur positively in Φ, and

goals for the falsifier (V), these being the relative atoms ψ ∈ At(Φ) that occur

negatively in Φ. (Some relative atoms may occur both positively and negatively

and thus be goals for both players.) For simplicity, let us assume for now that Φ

is in negation normal form and all the atoms in At(Φ) are temporal formulae of220

the type F p. Then the verifier’s goals are eventuality statements F p, while the

falsifier’s goals are statements F p′ that occur negated; note that the negation

of F p′ is equivalent to the safety statement G¬p′. The verifier wishes to verify

her/his goals. The falsifier, likewise, wants to verify her/his goals, i.e., the

falsifier wishes to falsify the related safety statements.225

Secondly, on any given path, every temporal goal associated with 〈〈A〉〉Φ has

a unique “finite determination point” where that goal can be verified by the

player to whom the goal belongs. This means the following: If a goal F p of the

verifier is true on an infinite path Λ, then there necessarily exists an earliest point

q on that path where the fact that “F p holds on Λ” becomes verified simply230

because p is true at q. Indeed, the first point of Λ where p is true is the finite

determination point q of F p. Once F p has been verified, it will remain true on

Λ, no matter what happens on the path after q. Similarly, concerning falsifier’s

goals, if G¬p′ is false (and thus F p′ true) on an infinite path Λ′, there is a unique

point where G¬p′ first becomes falsified, that point being the first state q′ of235

Λ′ where p′ is true. That point q′ is the finite determination point of the goal

10



F p′ of the falsifier. Furthermore, G¬p′ will remain false on the path no matter

what happens further. (Note that there is no analogous finite determination

point for ATL∗-formulae such as 〈〈A〉〉GFp on a given infinite path. Note also

that we discussed only the simple temporal goals F p and F p′ for simplicity, but240

every temporal goal—as long as it can be verified by the player to whom the

goal belongs—does indeed have a finite determination point. This will become

clear below.)

Now, the game-theoretic evaluation procedure of an ATL+-formula 〈〈A〉〉Φ

proceeds roughly as follows. The verifier is controlling the agents in the coalition245

A and the falsifier controls the agents in the opposing coalition A = Agt \A.

The players start constructing a path. (Each transition from one state to another

is carried out according to the process “Step phase” defined formally in Section

3.2.2.) The verifier is first given a chance to verify some of her/his goals in Φ.

The falsifier tries to prevent this and to possibly verify some of her/his own goals250

instead. During this path construction/verification process, the verifier is said

to have the role of the seeker. A player is allowed to stay as the seeker for only

a finite number of rounds. This is ensured by requiring the seeker to announce

an ordinal2, called timer3, before the path construction process begins, and

then lower the ordinal each time a new state is reached. The process ends when255

the ordinal becomes zero or when the seeker is satisfied, having verified some of

her/his goals. Since ordinals are well-founded, the process must terminate.

After the verifier has ended her/his seeker turn, the falsifier may either end

the game or take the role of the seeker. If (s)he decides to become the seeker,

then (s)he sets a new timer and the path construction process continues for some260

finite number of rounds. When the falsifier is satisfied, having verified some of

her/his goals, the verifier may again take the seeker’s role, and so on. Thus, the

verifier and falsifier take turns being the seeker, trying to reach (verify) their

2To see why finite ordinals do not suffice in general relates to infinite branching, see

Example 4.8.
3Note that the term “timer” is used here differently from [3, 4].
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goals. The number of these alternations is bounded by a seeker turn counter

which is a finite number that equals the total number of goals in Φ. (The formal265

description of seeker turn alternation is given in the clause “Deciding whether to

continue and adjusting the timer” in Section 3.2.2.)

Each time a goal in Φ becomes verified, this is recorded in a truth func-

tion T . (The recording of verified goals is described formally in the process

“Adjusting the truth function” defined in Section 3.2.2.) The truth function carries270

the following information at any stage of the game:

• The verifier’s goals that have been verified.

• The falsifier’s goals that have been verified.

• All other goals remain open.

When neither of the players wants to become the seeker, or when the seeker turn275

counter becomes zero, the path construction process ends and the players play a

standard Boolean evaluation game4 on Φ by using the truth values given by T ;

the open goals are given truth values as follows:

• The verifier’s open goals are (so far) not verified and thus considered false.

• Likewise, the falsifier’s open goals are (so far) not verified and thus con-280

sidered false. Recall here that the falsifier’s goals occur in the scope of a

negation.

Next we consider the conditions when a player is “satisfied” with the current

status of the truth function T—and thus wants to end the game—and when (s)he

is “unsatisfied” and wants to continue the game as the seeker. Note that when285

4The Boolean game determines the truth value of any given formula of propositional logic

for any given set of truth values for its atoms. Obviously the verifier wins the game if and

only if the formula is true (with the given truth values), and otherwise the falsifier wins. The

game is described in any elementary reference on game-theoretic semantics, e.g., in [17]. Note

here that while Φ is not strictly speaking a formula of propositional logic, the function T gives

interpretations to a set of subformulae of Φ so that it can be treated as propositional.
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the path construction ends, then every goal is given a Boolean truth value based

on the truth function T , as described above. With these values, the formula

Φ is either true or false. If Φ is true with the current values based on T , then

the verifier can win the Boolean game for Φ; dually, if Φ is not true with the

values based on T , then the falsifier can win the Boolean game for Φ. Hence the290

players want to take the role of the seeker in order to modify the truth function

T in such a way that the truth of Φ with respect to T changes from false to true

(making V satisfied) or from true to false (making V satisfied).

The truth value of Φ with respect to T can keep changing when T is modified,

but only a finite number of changes is possible. Indeed, the maximum number295

of such truth alternations is the total number of goals in Φ.

In the general case, formulae of the type ϕUψ, Xϕ and (state formulae) ϕ

may also occur in At(Φ) as goals, and Φ does not have to be in negation normal

form. Formulae of the type ϕUψ can be either verified, by showing that ψ is

true, or falsified, by showing that ϕ is not true. State formulae ϕ can only be300

verified at the initial state and the next-state-formulae Xϕ can only be verified

at the second state on the path traveled.

3.2. Evaluation games: formal description

Now we will present the bounded evaluation game which uses the bounded

transition game as a subgame for evaluating strategic subformulae. Interleaved305

with the definition we will provide, in italics, a running example that uses M∗

and ϕ∗ from Examples 2.2 and 2.5 respectively.

3.2.1. Rules of the bounded evaluation game

Let M = (Agt,St,Π,Act, d, o, v) be a CGM, qin ∈ St a state, ϕ a state

formula and Γ > 0 an ordinal called a timer bound. The Γ-bounded evalua-310

tion game G(M, qin, ϕ,Γ) between the players A and E is defined as follows.

A location of the game is a tuple (P, q, ψ, T ) where P ∈ {A,E}, q ∈ St is a

state, ψ is a subformula of ϕ and T is a truth function, mapping some subset
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of SUB(ϕ) into {>,⊥, open}.5

The initial location of the game is (E, qin, ϕ, Tin), where Tin is the empty315

function. In every location (P, q, ψ, T ), the player P is called the verifier and

P the falsifier for that location. Intuitively, q is the current state of the game

and T encodes truth values of formulae on a path that has been constructed

earlier in the game.

Each location is associated with exactly one of the rules 1–6 given below.320

First we provide the rules for locations (P, q, ψ, T ) where ψ is either a proposition

symbol or has a Boolean connective as its main operator:

1. A location (P, q, p, T ), where p ∈ Π, is an ending location of the evalua-

tion game. If T 6= ∅, then P wins the game if T (p) = > and else P wins.

Respectively, if T = ∅, then P wins if q ∈ v(p) and else P wins.325

2. From a location (P, q,¬ψ, T ) the game moves to the location (P, q, ψ, T ).

3. In a location (P, q, ψ ∨ θ, T ) the player P chooses one of the locations

(P, q, ψ, T ) and (P, q, θ, T ), which becomes the next location of the game.

We then define the rules of the evaluation game for locations with strategic

formulae as follows.330

4. Suppose a location (P, q, 〈〈A〉〉Φ, T ) is reached.

• If T 6= ∅, then this location is an ending location where P wins if

T (〈〈A〉〉Φ) = > and else P wins.

• If T = ∅, then the evaluation game enters a transition game g(P, q, 〈〈A〉〉Φ,Γ).

The transition game is a subgame to be defined later on. The transition335

game eventually reaches an exit location (P′, q′, ψ, T ′), and the eval-

uation game continues from that location. Note that an exit location

5We note here that the values of T are only modified during transition games and that T is

always a function mapping the subformulae of ϕ (into {>,⊥, open}) that are relevant for the

transition game that is played. We also note that T 6= ∅ will hold precisely during transition

games and when playing a Boolean game resulting from a transition game.
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only ends the transition game, so exit locations of transition games and

ending locations of the evaluation game are different concepts.

The rules corresponding to the temporal connectives are defined using the340

truth function T (updated in an earlier transition game) as follows.

5. A location (P, q, ϕUψ, T ) is an ending location of the evaluation game.

P wins if T (ϕUψ) = > and else P wins.

6. Likewise, a location (P, q,Xϕ, T ) is an ending location.

P wins if T (Xϕ) = > and otherwise P wins.345

These are the rules of the evaluation game. We note that the timer bound Γ

will be used only in transition games. If Γ = ω, we say that the evaluation game

is finitely bounded.

The initial location of the finitely bounded evaluation game G(M∗, q0, ϕ
∗, ω)

(see Examples 2.2 and 2.5) is (E, q0, 〈〈a1〉〉Ψ, ∅), from where the transition game350

g(E, q0, 〈〈a1〉〉Ψ, ω) begins.

3.2.2. Rules of the bounded transition game

Recall that transition games are subgames of evaluation games. Their purpose

is to evaluate the truth of strategic subformulae, in a game-like fashion.

Now we give a detailed description of transition games.6 A transition game355

g(V, q0, 〈〈A〉〉Φ,Γ), where V ∈ {A,E}, q0 ∈ St, 〈〈A〉〉Φ ∈ ATL+ and Γ > 0 is

an ordinal, is defined as follows. V is called the verifier in the transition

game. The game g(V, q0, 〈〈A〉〉Φ,Γ) is based on configurations, i.e., tuples

(S, q, T, n, γ, x), where the player S ∈ {E,A} is called the seeker; q is the cur-

rent state; T : At(Φ)→ {>,⊥, open} is a truth function; n ∈ N is a seeker360

turn counter (n ≤ |At(Φ)|); γ is an ordinal called timer; and x ∈ { i, ii, iii }

6A transition game for ATL+ is similar to the embedded game introduced in [4] for

the GTS of ATL. The role of the seeker S here is similar to the role of the controller in

the embedded game.
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is an index showing the current phase of the transition game. The game

g(V, q0,〈〈A〉〉Φ,Γ) begins at the initial configuration (V, q0, T0, |At(Φ)|,Γ, i),

with T0(χ) = open for all χ ∈ At(Φ).

The transition game g(E, q0, 〈〈a1〉〉Ψ, ω) begins from the initial configuration365

(E, q0, T0, 4, ω, i), since |At(Ψ)| = 4. (Note that the timer is initially ω in transition

games occurring within finitely bounded evaluation games, but the timer will always

have a finite value thereafter.)

The transition game then proceeds by iterating the phases i, ii and iii, which

we first describe informally; detailed formal definitions are given afterwards.370

i. Adjusting the truth function: In this phase the players make claims on the

truth of state formulae at the current state q. If P makes some claim, then

the opponent P may either: (1) accept the claim, whence truth function

is updated accordingly, or (2) challenge the claim. In the latter case the

transition game ends and truth of the claim is verified/falsified in a continued375

evaluation game.

ii. Deciding whether to continue and adjusting the timer: Here the current seeker

S may either continue her/his seeker turn and lower the value of the timer,

or end her/his seeker turn. If S chooses the latter option, then the opponent

S of the seeker may either (1) take the role of the seeker and announce a380

new initial value for the timer or (2) end the transition game, whence the

formula Φ is evaluated based on current values of the truth function.

iii. Step phase: Here the verifier V chooses actions for the agents in the coalition

in A at the current state q. Then V chooses actions for the agents in the

opposing coalition A. After the resulting transition to a new state q′ has385

been made, the game continues again with phase i.

We now describe the phases i, ii and iii in technical detail:

i. Adjusting the truth function.

Suppose the current configuration is (S, q, T, n, γ, i). Then the truth function

T is updated by considering, one by one, each formula χ ∈ At(Φ) in some fixed390
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order7. If T (χ) 6= open, then the value χ cannot be updated. Else the value of χ

may be modified according to the rules A – C below.

A. Updating T on temporal formulae with U : Suppose that ϕUψ ∈ At(Φ).

Now first the verifier V may claim that ψ is true at the current state q. If V

makes that claim, then V chooses either of the following:395

• V accepts the claim of V, whence the truth function is updated so that

ϕUψ is assigned value > (ϕUψ becomes verified), hereafter indicated by

ϕUψ 7→ >.

• V challenges the claim of V, whence the transition game ends at the exit

location (V, q, ψ, ∅). (We note that, here and further, when a transition400

game ends, the evaluation game continues from the related exit location

and the evaluation game will never return to the same exited transition

game again.)

If V does not claim that ψ is true at q, then V may make that same claim (that

ψ is true at q). If V makes that claim, then the same two steps above concerning405

accepting and challenging are followed, but with V and V swapped everywhere.

Suppose then that neither of the players claims that ψ is true at q. Then

first V can claim that ϕ is false at q. If V makes that claim, then V chooses

either of the following:

• V accepts the claim, whence the truth function is updated so that ϕUψ 7→410

⊥ (ϕUψ becomes falsified).

• V challenges the claim, whence the transition game ends at the exit location

(V, q, ϕ, ∅).

7We will see that the order here is irrelevant for the existence of winning strategies in the

evaluation game. This is simply because the player with a winning strategy can make all the

claims that are true and challenge all the other claims—regardless of the order in which the

formulae are considered.
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If V does not claim that ϕ is false at q, then V may make that claim. If

(s)he does, then the same steps as those above are followed, but with V and V415

swapped.

B. Updating T on proposition symbols and strategic formulae: The truth

function can be updated on proposition symbols p ∈ At(Φ) and formulae

〈〈A′〉〉Ψ ∈ At(Φ) only when the phase i is executed for the first time (so, q = q0).

In this case, given such a formula χ, first V can claim that χ is true at q.420

Now, if V accepts this claim, then the truth function is updated s.t. χ 7→ >.

If V challenges the claim, then the transition game ends at the exit location

(V, q, χ, ∅). If V does not claim that χ is true at q, then V may make that claim.

If (s)he does, then the same steps are followed, but with V and V swapped.

C. Updating T on formulae with X : The truth function can be updated425

on formulae of type Xψ ∈ At(Φ) only when phase i is executed for the second

time in the transition game (so, q is some successor of q0). First V can claim

that ψ is true at q. If V accepts that claim, then the truth function is updated

s.t. Xψ 7→ >. If V challenges the claim, then the transition game ends at the

exit location (V, q, ψ, ∅). If V does not claim that ψ is true at q, then V can430

make that claim. If (s)he does, the same steps are followed, but with V and V

swapped.

Note that in points B and C, the formulae cannot be mapped to ⊥ by the

truth function T . But if these formulae are left with the value open, then they

will be considered false by default if the transition game ends in stage ii (and435

the Boolean game is played). Intuitively this is because if no player has claimed

these formulae to be true, then the players have agreed that they are indeed

false.

If neither player makes any claim which would update the value of a formula

χ ∈ At(Φ), then the value of χ is indeed left open. Once the values of the truth440

function T have been updated (or left as they are) for all formulae in At(Φ), a

new truth function T ′ is obtained. The transition game then moves to the new

configuration (S, q, T ′, n, γ, ii).
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In the configuration (E, q0, T0, 4, ω, i) the players begin adjusting T0 for which

initially T0(χ) = open for every χ ∈ At(Ψ). Since it is the first round of the transition445

game, the value of X p3 cannot be modified, but the value of 〈〈a2〉〉X p1 can be modified.

Suppose that Eloise claims that 〈〈a2〉〉X p1 is true at q0. Now Abelard could challenge

the claim, whence the transition game would end and the evaluation game would

continue from location (E, q0, 〈〈a2〉〉X p1, ∅) (which leads to a new transition game

g(E, q0, 〈〈a2〉〉X p1, ω)). Suppose Abelard does not challenge the claim. Then 〈〈a2〉〉X p1450

is mapped to >.

Since F p1 and (¬p1)U p2 occur positively in Φ, Eloise has interest only to verify

them and Abelard has interest only to falsify them. Eloise could verify F p1 by claiming

that p1 is true, or verify (¬p1)U p2 by claiming that p2 is true. But, if Eloise makes

either of these claims, then Abelard wins the whole evaluation game by challenging,455

since q0 /∈ v(p1) ∪ v(p2). Suppose that Eloise does not make any claims. Now, Abelard

could claim that ¬p1 is not true, in order to falsify (¬p1)U p2. But if he does that, he

loses the evaluation game if Eloise challenges, since q0 /∈ v(p1). Suppose that Abelard

does not make any claims either. Then the transition game proceeds to configuration

(E, q0, T, 4, ω, ii), where T (〈〈a2〉〉X p1) = > and T (χ) = open for the other χ ∈ At(Ψ).460

ii. Deciding whether to continue and adjusting the timer.

Suppose that a configuration (S, q, T, n, γ, ii) has been reached. Assume first

that γ 6= 0. Then the seeker S can choose whether to continue the transition

game as the seeker. If yes, then S chooses some ordinal γ′ < γ and the transition

game continues from (S, q, T, n, γ′, iii). If S does not want to continue, or if465

γ = 0, then one of the following applies.

(a) Suppose that n 6= 0. Then the player S chooses whether she wishes to

continue the transition game. If yes, then S chooses some ordinal γ′ < Γ

(so, S in fact resets the timer value) and the transition game continues

from (S, q, T, n− 1, γ′, iii). Otherwise the transition game ends at the exit470

location (V, q,Φ, T ).

(b) Suppose that n = 0. Then the transition game ends at the exit location
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(V, q,Φ, T ).

In (E, q0, T, 4, ω, ii) Eloise may decide whether to continue the transition game

as the seeker. Suppose that Eloise does not continue, whence Abelard may now either475

become the seeker and continue the transition game, or end it. If Abelard ends the

transition game, then the evaluation game is continued from (E, q0,Ψ, T ). But because

T (X p3) = open and T (〈〈a2〉〉X p1) = >, Eloise can then win the evaluation game by

choosing the left disjunct of Ψ (note that with these values of T Eloise is then guaranteed

to win the evaluation game). Suppose thus that Abelard decides to become the seeker,480

whence he chooses some m < ω and the next configuration is (A, q0, T, 3,m, iii).

iii. Step phase8

Suppose that the configuration is (S, q, T, n, γ, iii).

(a) First, V chooses an action αi ∈ d(ai, q) for each ai ∈ A.

(b) Then, V chooses an action αi ∈ d(ai, q) for each ai ∈ A.485

The resulting action profile produces a successor state q′ := o(q, α1, . . . , αk).

The transition game then moves to the configuration (S, q′, T, n, γ, i).

In the configuration (A, q0, T, 3,m, iii) Eloise (who is the verifier V) first chooses

action for agent a1, then Abelard chooses action for agent a2, which produces either

successor state q1 or q2. Then the transition game continues from the configuration490

(A, qj , T, 3,m, i), where j ∈ {1, 2}.

This concludes the definition of the rules for the phases i, ii and iii in the

transition game g(V, q0, 〈〈A〉〉Φ,Γ).

Suppose that the transition game continues from the configuration (A, q2, T
′, 3,m, i).

Since it is the second round of the transition game, Abelard could now try to verify X p3495

by claiming that p3 is true at q2. However, then Eloise could win the evaluation game

by challenging this claim. But if Abelard does not try to verify X p3 at that configuration,

8The procedure in this phase is analogous to the step game, step(V, A, q), which

was introduced for the GTS for ATL ([3, 4]).
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then the value of X p3 will stay open. Hence, when Abelard decides to end his turn as

the seeker or when the timer m is lowered to 0, then Eloise can end the transition game

and win the evaluation game from a location of the form (E,Ψ, q′, T ′′).500

Suppose now that the transition game continues from the configuration (A, q1, T
′, 3,m, i).

Suppose that Abelard verifies X p3 by claiming that p3 is true at q1 and that Eloise does

not challenge that claim. If the transition game now ended at location (E, q1,Ψ, T
′′),

where T ′′(X p3) = >, Abelard could win the resumed evaluation game. Thus, if Abelard

decides to quit the transition game, then Eloise wants to continue as the seeker from505

configuration (E, q1, T
′′, 2,m′, iii) for some m′ < ω. Then Eloise can choose action α

for agent a1 and lower the timer to 2, whence the next configuration is (E, q3, T
′′, 2, 2, i).

Eloise can then verify (¬p1)U p2 at it by claiming that p2 is true at q3. Furthermore,

Eloise can move via q1 to q4 and verify F p1 there, before the timer reaches 0. Then

Eloise will win when the evaluation game is continued from a location of the form510

(E, q4,Ψ, T
′′′).

3.2.3. The unbounded evaluation game

Let G(M, q, ϕ,Γ) be a Γ-bounded evaluation game. We can define a corre-

sponding unbounded evaluation game, G(M, q, ϕ), by replacing transition

games g(V, q, 〈〈A〉〉Φ,Γ) with unbounded transition games, g(V, q, 〈〈A〉〉Φ);515

these are played with the same rules as g(P, q0, 〈〈A〉〉Φ,Γ) except that timers γ

are not used in them. Instead, the players can keep the role of the seeker for

arbitrarily long and thus the game may last for an infinite number of rounds.

In the case of an infinite play, the player who took the last seeker turn loses the

entire evaluation game. (Recall that the number of seeker turn alternations is520

bounded by the number |At(Φ)|.)

3.3. Defining the game-theoretic semantics

In this section we define game-theoretic semantics for ATL+ by equating

truth of formulae with the existence of a winning strategy for Eloise in the

corresponding evaluation game. We begin with the following remark which will525

be relevant for the notion of positional strategies in evaluation games.
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Remark 3.1. The description of transition games above is based on a simplified

notion of configurations. The phases i–iii consist of several “subphases” and

more information should be encoded into configurations. The full notion of

configuration should also include:530

– In phase i, a counter indicating the relative atom currently under consider-

ation by the players; flags for each player indicating whether and what claim

(s)he has made on the truth of the current relative atom; a 3-bit flag indicating

if it is the first, second, or some later round in the transition game.

– For phase ii, a flag whether the current seeker wants to continue, and for535

phase iii, a record of the current choice of actions for the agents in A by V.

For technical simplicity, we omit these formal details. Note that these

additional details are similar for bounded and unbounded games.

Hereafter a position in an evaluation game will mean either a location of

the form (P, q, ϕ, T ) or a configuration in the fully extended form described540

in the remark above. By this definition, at every position, only one of the

players (Abelard or Eloise) has a move to choose. Thus, the entire evaluation

game—including transition games as subgames—is a turn-based game of perfect

information.

By a game tree TG of an evaluation game G, we mean the tree whose nodes545

correspond to all positions arising in G, and every branch of which corresponds

to a possible play of G (including transition games as subgames). Note that, in

the case of unbounded evaluation games, some of these plays may be infinite,

but only because an embedded transition game does not terminate, in which

case a winner in the entire evaluation game is uniquely assigned according to550

the rules in Section 3.2.3. However, in the case of bounded evaluation games, all

the paths in TG are guaranteed to be finite since ordinals (used as timers) are

well-founded.

The formal definitions of players’ memory-based strategies in the evaluation

games games are defined as expected, based on histories of positions. As usual,555

a strategy for a player P is called winning if, following that strategy, P is
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guaranteed to win regardless of how P plays. A strategy is positional if it

depends only on the current position. We can also define strategies for transition

games that arise within evaluation games; note that these are substrategies for

the strategies in evaluation games. A strategy τ for a transition game is called560

winning for P if

• every exit location that can be reached with τ is a winning location for P

in the evaluation game that continues from the exit location,

and additionally

• in the alternative scenario where the transition game continues infinitely565

long while τ is followed (which is possible only in unbounded games), the

player P is not the player who holds the (necessarily last) seeker’s turn

that lasts infinitely long.

Definition 3.2. Let M be a CGM, q ∈ St, ϕ ∈ ATL+ and Γ an ordinal. Truth

of ϕ in the Γ-bounded (Γ), resp. unbounded () GTS is defined as follows:

M, q Γ ϕ (resp. M, q  ϕ) iff Eloise has a positional

winning strategy in G(M, q, ϕ,Γ) (resp. G(M, q, ϕ)).

We will show later, in Section 4.1, that evaluation games are determined

with positional strategies. Therefore, even if we allowed perfect-recall strategies570

in the truth definition above, we would obtain equivalent semantics.

Example 3.3. Consider the CGMM = (Agt,St,Π,Act, d, o, v), where:

Agt = {1, 2}, St = {q0, q1, q2}, Π = {p1, p2}, Act = {α, β}

d(1, q0) = d(2, q1) = {α, β}; d(a, qi) = {α} in all other cases;

o(q0, βα) = q0, o(q0, αα) = o(q1, αβ) = q1, o(q1, αα) = o(q2, αα) = q2

v(p1) = {q0} and v(p2) = {q2}.

p1 p2M :

q0 q1 q2

αβ

βα
αα αα

αα
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Let ϕ := 〈〈a2〉〉 (G p1 ∨ F p2) (here G p1 = ¬F¬p1). We describe a winning

strategy for Eloise in the unbounded evaluation game G(M, q0, ϕ). Eloise im-

mediately ends her turn as the seeker and does not make claims while being at575

q0. If Abelard makes any claims at q0, she challenges those claims. If Abelard

ends the transition game at q0, Eloise wins the evaluation game by choosing the

disjunct ¬F¬p1, as now the value of F¬p1 is open. Suppose that Abelard forces

a transition to q1 by choosing α for the agent a1. If he claims ¬p1 is true at q1,

Eloise does not challenge. If Abelard ends his seeker turn at q1, Eloise becomes580

the seeker. At q1 she forces a transition to q2, by choosing α for a2. Then she

verifies F p2 by claiming that p2 is true at q2 and ends her turn as the seeker

after that. If the transition game ends at q2, she wins by choosing F p2, whose

value is >. Note that by following this strategy, Eloise cannot stay as the seeker

for infinitely long.585

We will see later that there is never a need for a larger number than |At(Φ)| of

seeker turn alternations in a transition game for a formula 〈〈A〉〉Φ. In Example 3.3

we saw that there are cases where exactly |At(Φ)| seeker alternations are needed

in the corresponding transition game. The following example generalizes the

setting of Example 3.3 by showing that no fixed upper bound for the number of590

seeker alternations suffices for all transitions games.

Example 3.4. Let ϕk = 〈〈a2〉〉Ψk, where Ψk := G r0 ∨
∨

1≤i≤k(F pi ∧ G ri).

Consider the following CGMM (c.f. the model in Example 3.3).

r0, . . . , rn r1, . . . , rn p1, r1, . . . , rn r2, . . . , rn p2, r2, . . . , rn

pn−1, rn−1, rnrnpn, rn

q0 q1 q′1 q2 q′2

q′n−1qnq′nqfin

βα

αα

αβ

αα

βα

αα

αβ

αα

βα

βα

αα

αβ

αα

βα

αα
αα

At q0 Eloise wants to end her seeker turn immediately as G r0 is “still” true.595

When Abelard becomes the seeker, he wants to make a transition to q1 and
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falsify G r0 there. Since Abelard has then no reason to continue as the seeker, he

gives the seeker turn to Eloise. Now Eloise wants to make a transition to q′1 in

order to verify F p1; since G r1 is still true, Eloise has then no reason to continue

as the seeker. We may suppose that the transition game continues like this, so600

that the seeker role is swapped after every transition and F pi are verified and

G ri are falsified. When Abelard finally becomes the seeker at q′n, the maximum

number of |At(Ψk)| = 2k + 1 seeker turn alternations have been used. Then

Abelard makes a transition to q′n, falsifies G rn and wins the Boolean game for

Ψk with the values of the (fully updated) truth function.605

4. Analysing evaluation games

In this section we will analyse the properties of the evaluation games of ATL+.

We first prove positional determinacy of both bounded and unbounded evaluation

games. Then we find so-called stable timer bounds for bounded evaluation games

and show that with them, the bounded GTS becomes equivalent to the unbounded610

GTS. Finally we present the notion of a regular strategy which will be needed

for proving the equivalence of GTS and the standard compositional semantics of

ATL+ in the next section.

4.1. Positional determinacy

Here we prove positional determinacy of both bounded and unbounded615

evaluation games. Recall here that positions are either locations in evaluation

games or configurations in transition games—in the extended sense which was

discussed in Remark 3.1. The positional determinacy of bounded games is easy

to prove since their game tree is well-founded.

Proposition 4.1. Bounded evaluation games are determined and the winner620

has a positional winning strategy.

Proof. (Sketch) Since ordinals are well-founded and they must decrease during

transition games, it is easy to see that the game tree is well-founded. Thus

positional determinacy follows easily, essentially by backward induction.
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We will prove positional determinacy of unbounded evaluation games by625

showing that they can be translated into corresponding Büchi-games (which are

known to be positionally determined). This correspondence between unbounded

evaluation games and Büchi-games is also interesting in its own right and we will

be use it later in Section 6.2 for proving tractability of certain natural fragments

of ATL+.630

Proposition 4.2. Unbounded evaluation games are determined and the winner

has a positional winning strategy.

Proof. We will show that unbounded evaluation games are essentially Büchi-

games (see, e.g., [18]). We first discuss the case where the underlying CGMM

is finite. We follow the technicalities for Büchi-games from [19], which gives an635

excellently detailed and to-the-point presentation of the related basic notions.

Take a triple (M, q, ϕ), where M is a finite CGM, q a state of M, and ϕ

a formula of ATL+. We will convert this triple into a Büchi-game BG such

that M, q  ϕ iff player 2 has a winning strategy in BG from a position of BG

determined by the initial location of G(M, q, ϕ). The required Büchi-game BG640

corresponds almost exactly to the unbounded evaluation game G(M, q, ϕ). The

set of states of BG is the finite set of positions in G(M, q, ϕ). The states of BG

assigned to player 1 (resp., player 2) of BG are the positions where Abelard

(resp., Eloise) is to move. The edges of the binary transition relation E of BG

correspond to the changes of positions in G(M, q, ϕ). Also, E is defined such645

that ending locations in the evaluation game connect (only) to themselves via E.

This ensures that every state of BG has a successor state.

We set a co-Büchi-objective such that an infinite play of BG is winning for

player 2 iff the set of states visited infinitely often is a subset of the union of the

following sets of states of BG:650

1. States of BG corresponding to configurations of the transition games where

Abelard is the seeker.

2. States of BG corresponding to such ending locations in the game G(M, q, ϕ)

where Eloise has already won.
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Clearly, Eloise (resp., Abelard) has a positional winning strategy in the evaluation655

game G(M, q, ϕ) iff player 2 (resp., player 1) in BG has a positional winning

strategy from the state of BG corresponding to initial location of G(M, q, ϕ).

Finite Büchi games enjoy positional determinacy (see e.g. [19]), which completes

the case of finite CGMs. For infinite CGMs, the argument is the same but requires

positional determinacy of Büchi games on infinite game graphs. That fact is660

well-known and follows easily from Theorem 4.3 of [20].

By the positional determinacy, we have the following consequence: if Eloise

(Abelard) has a perfect-recall strategy in a bounded or unbounded evaluation

game (or transition game), then she (he) has a positional winning strategy in

that game.665

4.2. Finding stable timer bounds

In this section study which timer bounds are “stable” for a given model.

Intuitively this means that a timer bound Γ is stable for a modelM if neither of

the players can benefit from announcing timers that are higher than (or equal to)

Γ. We will see that, by finding stable timer bounds, we can make the bounded670

GTS equivalent to the unbounded GTS. Moreover, the identification of stable

timer bounds for finite models will be necessary for our model checking proofs

in Section 6.

Every unbounded transition game (and even evaluation game) gives rise to

a semi-bounded variant of that game, defined so that Eloise is forced to use675

ordinals when being the seeker. The ordinals are lowered in the way identical to

bounded games. Abelard is not forced to use ordinals, but he naturally loses

the game if he stays as the seeker for infinitely long. Obviously, an analogous

semi-bounded game, where only Abelard has to use ordinals, can easily be

defined. It will be clear from the context which variant of the semi-bounded680

game is meant.

A timer bound Γ is stable for an unbounded transition game g(V, q0, 〈〈A〉〉Φ)

if the player with a winning strategy in g(V, q0, 〈〈A〉〉Φ) can, in fact, win the

corresponding semi-bounded game using timers below Γ.

27



We first identify stable timer bounds for finite models.685

Proposition 4.3. LetM be a finite CGM, q0 ∈ St a state and Φ ∈ ATL+ a path

formula. Then k := |St | · |At(Φ)| is a stable timer bound for g(V, q0, 〈〈A〉〉Φ).

Proof. We give a detailed sketch of proof. Let c = (E, q, T, n, x) be a config-

uration for an unbounded game (so no timer is listed). Suppose that the exit

location (V, q,Φ, T ) is not a winning location for Eloise. Then she wants to stay690

as the seeker until the truth function is modified to a new truth function T ′ that

makes Φ true. Since T is updated state-wise, it is not beneficial for Eloise to

go in loops such that T is not updated. Hence, if Eloise has a winning strategy

from c, then she has a winning strategy in which T is updated at least once

every |St | rounds. Since T can be updated at most |At(Φ)| times, we see that a695

timer greater than k = |St | · |At(Φ)| is not needed. Symmetrically, if Abelard

has a winning strategy from c, he can win by using timers below Γ.

Corollary 4.4. If M is a finite CGM, the unbounded GTS is equivalent on M

to the Γ-bounded GTS when Γ ≥ |St | · |ϕ|.

Proof. Let Γ ≥ |St | · |ϕ|. Suppose first thatM, q  ϕ. By Proposition 4.3 Eloise700

can win the evaluation game using timers smaller than Γ when being the seeker

in the transition games within G(M, q, ϕ). Hence clearly M, q Γ ϕ.

Suppose then that M, q 6 ϕ. By Proposition 4.2, Abelard has a winning

strategy in G(M, q, ϕ). Thus, by Proposition 4.3, Abelard can win G(M, q, ϕ)

using timers smaller than Γ when being the seeker in transition games. Hence,705

Abelard clearly has a winning strategy in G(M, q, ϕ,Γ) and thusM, q 6Γ ϕ.

In order to find stable timer bounds for infinite models, we give the following

definition (cf. Definition 4.12 in [3]).

Definition 4.5. Let M be a CGM and let q ∈ St. The branching degree of

q, BD(q), is the cardinality of the set of outcome states from q:

BD(q) := card({o(q, ~α) | ~α ∈ action(Agt, q)}).
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The regular branching bound of M, or RBB(M), is the smallest infinite

regular cardinal κ such that κ > BD(q) for every q ∈ St. Note that RBB(M) = ω710

if and only if M is image-finite.

If c = (S, q, T, n, x) is a configuration in an unbounded transition game and

γ is an ordinal, we use the notation c[γ] := (S, q, T, n, γ, x).

Proposition 4.6. Let M be a CGM, q0 ∈ St and Φ ∈ ATL+ a path formula.

Then RBB(M) is a stable timer bound for g(V, q0, 〈〈A〉〉Φ).715

Proof. Suppose that Eloise has a winning strategy τ in the unbounded transition

game g(M, q0, 〈〈A〉〉Φ) (the reasoning is symmetrical if Abelard has a winning

strategy). We need to supplement τ with announcements of ordinals below

RBB(M), when Eloise takes the role of the seeker, and with instructions on

lowering the ordinal after every transition while she is the seeker.720

Let c be any configuration that can be reached with τ and where Eloise has

just begun a turn as the seeker. Let Tg,c be the tree that is formed by all of

those paths of configurations, starting from c in which Eloise stays as the seeker

and plays according to τ (note that in the leafs, Eloise ends her seeker turn

or the transition game ends). Since τ is a winning strategy, every path in Tg,c

must be finite, and thus Tg,c is well-founded. We prove the following claim by

well-founded induction on Tg,c:

For every c′ ∈ Tg,c, there is an ordinal γ < RBB(M)

s.t. c′[γ] is a winning configuration for Eloise.

Furthermore, Eloise can use these ordinals in the so obtained winning strategy

(extending τ) from c.

We choose γ = 0 for every leaf on Tg,c. Suppose then that c′ is not a leaf.

By the inductive hypothesis, the claim holds for every configuration that can be

reached with τ by a transition from c′. We now define γ to be the successor of the725

supremum of these ordinals. Since RBB(M) is regular, we have γ < RBB(M).

Thus c′[γ] is a winning configuration for Eloise.
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In [4] we show for ATL that RBB(M) is (in a sense) the least ordinal which

is guaranteed to be stable for all transition games in the model M. The same

result holds (with the same proof) also for the transition games of ATL+.730

From Proposition 4.6, it follows that when the regular branching bound of

the given model is used as a timer bound Γ, then the Γ-bounded GTS becomes

equivalent to the unbounded GTS. The proof for this claim is analogous to the

proof of Corollary 4.4.

Corollary 4.7. The unbounded GTS is equivalent on M to the Γ-bounded GTS735

when Γ ≥ RBB(M).

Consequently, finite timers suffice in image-finite models. However, the

finitely bounded GTS (with Γ = ω) is not generally equivalent to the unbounded

GTS. See the following example.

Example 4.8 (Cf. Example 3.7 in [3]). Consider the image infinite concurrent740

game modelM which is displayed in the figure below. (The labels α1, α2 on the

edges correspond to the actions of the agents a1 and a2, respectively, resulting

in the corresponding transition.)

¬p
s0

p

q0

¬p
q1

¬p
q2

¬p
q3

¬p
q4

· · ·0, 0 0, 1 0, 2 0, 3 0, 4

0, 0 0, 0 0, 0 0, 0 0, 0
0, 0

Here we clearly haveM, s0  〈〈a1〉〉F p since every path from s0 will eventually745

reach the state q0 where p is true. However, M, s0 6ω 〈〈a1〉〉F p since for any

value n < ω for the timer, chosen by Eloise, Abelard can choose n for the first

action of agent a2 and then it will take n+ 1 rounds to reach q0.

Because RBB(M) = ℵ1 (equal to 2ℵ0 if we assume the continuum hypothesis),

by Corollary 4.7 we have M, s0 ℵ1 〈〈a1〉〉F p. However, in this particular model,750

we also haveM, s0 ω+1 〈〈a1〉〉F p since Eloise can win the game by first choosing
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ω for the value of the timer and then lowering its value to n < ω which corresponds

the the action which Abelard first chooses for the agent a2.

4.3. Regular strategies

Here we define a notion of a regular strategy which will be important for755

the proofs in the next sections. We only define this concept for Eloise for the

transition games in which Eloise is the verifier. This suffices for our needs, but

the definition—and the related Lemma 4.10—could easily be generalized for

both players and all kinds of transition games.

Definition 4.9. A strategy τ for Eloise in a transition game g(E, q, 〈〈A〉〉Φ) is760

regular, if the following properties hold:

(i) τ instructs Eloise to make all the claims which are valid (by the respective

GTS). Moreover, τ instructs Eloise to challenge all the claims which Abelard

makes. (Note that this latter condition is safe for Eloise since she is given

the chance to make every claim first and thus, by the first condition, Abelard765

can only make claims which are false.)

(ii) τ instructs Eloise to try to end the transition game (by ending her seeker

turn or by not taking a new seeker turn) always when the truth function T

has winning values for Eloise.

(iii) Actions chosen by τ for the agents in A are independent of the current770

seeker S and seeker turn counter n ∈ N in configurations. That is, τ assigns

the same choice for configurations (P, q, T, n, iii) and (P′, q, T, n′, iii).

Note that the conditions (i)-(iii) together imply that all the actions chosen

by a regular strategy are independent of the current seeker S and seeker turn

counter n ∈ N in configurations. Thus these additional parameters cannot be775

used for “signalling” any information.

Lemma 4.10. If Eloise has a winning strategy in a transition game g(E, q, 〈〈A〉〉Φ),

then she has a regular winning strategy in that game.
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Proof. Suppose that Eloise has a winning strategy τ in g(E, q, 〈〈A〉〉Φ). We first

modify τ so that it is a winning strategy from every configuration which is a780

winning configuration for Eloise in the transition game (note that τ could make

“bad choices” for configurations which are not reachable by τ). We then make τ a

regular winning strategy by doing the following modifications in the given order.

(1) If τ does not satisfy the regularity property (i), then we simply first modify

it so that Eloise makes all the claims which are true by GTS; it is clear that785

we end up in Eloise’s winning exit location if Abelard challenges these new

claims. Moreover, we then redefine τ to challenge all the claims made by

Abelard; since all of these claims must now be false by GTS, it follows from

the determinacy of evaluation games that every challenge by Eloise leads

into an exit location which is winning for her. After these modifications, τ790

is still a winning strategy and it now satisfies the regularity property (i).

(2) Let c = (P, q, T, n, ii) be a configuration such that (E, q,Φ, T ) is a winning

location for Eloise, but τ does not instruct Eloise to try to end the transition

game at c (by ending her seeker turn or by not taking a new seeker turn).

We then redefine τ to instruct Eloise to try to end the game at c. If Abelard795

also wants to end the game, then we reach a winning exit location for

Eloise. If Abelard does not want to end the game, then the game continues

from a configuration c′ that must be winning for Eloise. After doing this

change for all configurations conflicting the regularity property (ii), τ now

satisfies the properties (i) and (ii).800

(3) In order to satisfy the regularity condition (iii), will first modify τ in various

ways and then show that the modified strategy satisfies the condition (iii).

We first redefine τ at configurations of the form (E, q, T, n, iii) so that

it selects the same actions as at the configuration (E, q, T, |At(Φ)|, iii).

Similarly we define τ at (A, q, T, n, iii) to select the same actions as at805

(A, q, T, |At(Φ)| − 1, iii). By doing this procedure for all configurations, τ

becomes independent of the seeker turn counter n. Note that the truth
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function can be updated at most |At(Φ)| many times and, by condition

(ii), T gets updated after every seeker turn alternation. Therefore it is

impossible that Eloise would now lose the game due to the seeker turn810

counter becoming zero. Hence τ is still a winning strategy after these

modifications.

Let then c = (A, q, T, n, iii) be a configuration such that T is not winning

for Eloise (in the corresponding Boolean game). Now also the configuration

c′ = (E, q, T, n− 1, iii) is a winning configuration for Eloise since Abelard815

could end his seeker turn at (A, q, T, n, ii). We then modify τ so that

it makes the same choice at c as at c′. We do this modification for all

configurations c of this type.

As arbitrary choices may be assigned to the configurations that are not

reachable by τ , it suffices that we check the regularity condition (iii) only820

for the configurations reachable by τ . Suppose for the sake of contradiction

that τ assigns different actions for A in configurations c = (P, q, T, n, iii)

and c′ = (P′, q, T, n′, iii)—reachable by τ—such that c 6= c′. Since τ is

independent of the seeker turn counter (by the modifications above), we

must have P 6= P′. By symmetry we may assume that P = E and P′ = A.825

Suppose first that T is winning for Eloise. Now, by the condition (ii), τ

instructs Eloise to end her seeker turn at (E, q, T, n, ii), and hence the

configuration c cannot be reached with τ . Suppose then that T is not

winning for Eloise. Recall that we have defined τ to make the same choice

at c′ as at the configuration c′′ = (E, q, T, n′−1, iii). But this is impossible830

since τ is independent of the seeker turn counter and that is the only

parameter that separates the configurations c and c′′.

Hence we have shown that, by doing all the modifications above, τ becomes

a regular winning strategy for Eloise in the transition game g(E, q, 〈〈A〉〉Φ).

Remark 4.11. As discussed in Remark 3.1, the “full notion” of configuration835

also includes 3-bit flag indicating if it is the first, second or some later round of
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the game (this parameter is used for showing when state formulae and formulae

with X can be verified). When choosing actions for agents in step iii, the

strategies can also potentially depend on this additional parameter. However,

winning strategies can easily be made independent of this parameter: Suppose840

that τ is a strategy which makes a different choice at a configuration c based on

the number of rounds (0, 1 or ≥ 2) which it took for reaching c. We can now

simply modify τ so that it always makes the choice at c according to the choice

at the latest round number—in which c can be reached with τ . (It is important

to remember here that the both the truth function and the state are the same845

in c regardless when c is reached.)

By Lemma 4.10 and by the remark above, it follows that the choices for

coalitions A by a regular strategy depend only on the pairs (q, T ), where q is the

current state and T is the current truth function. Also note that since, by (i),

Eloise makes all the valid verifications and falsifications, the truth function T is850

always determined by the path that has been formed by the transition game.

Regular strategies will play an important role in the next section where we

prove the equivalence of GTS and the standard compositional semantics for

ATL+. This is because a regular strategy of Eloise in a transition game for

〈〈A〉〉Φ can be used in a straightforward way for formulating a collective strategy855

SA for the coalition A (and vice versa).

5. GTS vs compositional semantics for ATL+

In this section we show that our game-theoretic semantics is equivalent to

the standard (perfect-recall) compositional semantics of ATL+. From the results

of the previous section it follows that this equivalence holds for both unbounded860

GTS and bounded GTS with a stable timer bound.

We begin with some preliminary definitions. We first define a so-called finite

path semantics, to be used later. (See [2] for a similar definition.) We define

the length lgt(λ) of a finite path λ as the number of transitions in λ (whence

the last state of λ is λ[lgt(λ)]). If λ is a prefix sequence of λ′, we write λ � λ′.865
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Definition 5.1. Let M be a CGM and λ ∈ pathsfin(M). Truth of a path

formula Φ of ATL+ on λ is defined recursively as follows:

• M, λ |= ϕ iff M, λ[0] |= ϕ (where ϕ is a state formula).

• M, λ |= ¬Φ iff M, λ 6|= Φ.

• M, λ |= Φ ∨Ψ iff M, λ |= Φ or M, λ |= Ψ.870

• M, λ |= Xϕ iff lgt(λ) ≥ 1 and M, λ[1] |= ϕ.

• M, λ |= ϕUψ iff there exists some i ≤ lgt(λ) such that M, λ[i] |= ψ and

M, λ[j] |= ϕ for all j < i.

In the following definition, when Λ ∈ paths(M), we use the notation Λ[0, i]

for denoting the finite path (Λ[0], . . . ,Λ[i]).875

Definition 5.2. Let M be a CGM, Λ ∈ paths(M) and Φ a path formula of

ATL+. An index i ≥ 1 is a truth-swap point of Φ on Λ if either of the following

holds:

1. M,Λ[0, i−1] 6|= Φ and M,Λ[0, i] |= Φ.

2. M,Λ[0, i−1] |= Φ and M,Λ[0, i] 6|= Φ.880

Moreover, we define the truth-swap number of Φ on Λ to be

TSN (Φ,Λ) := |{i | i is a truth-swap point of Φ on Λ}|.

The claims of the following lemma are easy to prove. Similar observations have

been made in [2].

Lemma 5.3. Let M be a CGM, Λ ∈ paths(M) and Φ a path formula of ATL+.

Now, the following claims hold:

1. TSN (Φ,Λ) ≤ |{Ψ ∈ At(Φ) |Ψ is a temporal subformula}| ≤ |At(Φ)|.885

2. M,Λ |= Φ iff there is some k ∈ N s.t. M, λ |= Φ for every finite λ � Λ

for which lgt(λ) ≥ k.
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We are now ready prove the equivalence between the unbounded GTS and

the standard perfect-recall semantics of ATL+.

Theorem 5.4. The unbounded GTS is equivalent to the standard (perfect-recall)890

compositional semantics of ATL+.

Proof. We prove by induction on ATL+ state formulae ϕ that for any CGM M

and a state q in M:

M, q |= ϕ iff Eloise has a winning strategy in G(M, q, ϕ).

If ϕ is a proposition symbol, then the claim holds trivially.

Let ϕ = ¬ψ and suppose first that M, q |= ¬ψ, i.e. M, q 6|= ψ. By the

inductive hypothesis Eloise does not have a winning strategy in G(M, q, ψ).

Since evaluation games are determined, Abelard has a winning strategy in895

G(M, q, ψ). Thus Eloise has a winning strategy in G(M, q,¬ψ). Suppose then

that Eloise has a winning strategy in the evaluation game G(M, q,¬ψ). Then

Abelard has a winning strategy in G(M, q, ψ) and thus Eloise cannot have a

winning strategy in G(M, q, ψ). Hence, by the inductive hypothesis, M, q 6|= ψ,

i.e. M, q |= ¬ψ.900

Let ϕ = ψ ∨ θ and suppose that M, q |= ψ ∨ θ, i.e. M, q |= ψ or M, q |= θ.

Suppose first that M, q |= ψ, whence by the inductive hypothesis Eloise has a

winning strategy in G(M, q, ψ). Now Eloise can win G(M, q, ψ ∨ θ) by choosing

ψ on the first move. The case when M, q |= θ is analogous. Suppose then

that Eloise has a winning strategy in the evaluation game G(M, q, ψ ∨ θ). Let905

χ ∈ {ψ, θ} be the disjunct that Eloise chooses when following her winning

strategy. Now Eloise must have a winning strategy in G(M, q, χ) and thus by

the inductive hypothesis M, q |= χ. Therefore M, q |= ψ ∨ θ.

Finally, let ϕ = 〈〈A〉〉Φ. By the inductive hypothesis, it suffices to show that

Eloise has winning strategy in the (unbounded) transition game g(E, q, 〈〈A〉〉Φ) if910

and only if the coalition A has a (perfect-recall) strategy SA such thatM,Λ |= Φ

for every Λ ∈ paths(q, SA). The cases (a) and (b) which follow correspond to

the two directions for proving this equivalence.
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(a) Suppose first that E has a winning strategy τ in the transition game

g(E, q, 〈〈A〉〉Φ). By Lemma 4.10 we may assume that τ is regular. Let Tg be the915

game tree that is formed by all of those configurations that can be encountered

with τ . We define SA by using the actions given by τ for the coalition A for

every finite path of states that occurs in consecutive configurations in Tg. The

actions for all other finite paths are irrelevant.

In order to show that SA is well-defined this way, let λ, λ′ be finite branches920

of configurations in Tg such that the states occurring in the configurations of λ

and λ′ are in the same order. Let c = (P, q, T, n, iii) and c′ = (P′, q, T ′, n′, iii)

be the last configurations in λ and λ′, respectively. It suffices to show that τ

assigns the same actions for A in both c and c′. Since λ and λ′ have visited the

same states, by regularity condition (i), we must have T = T ′. Therefore, by925

regularity condition (iii), τ assigns the same actions for c and c′.

Let Λ ∈ paths(q, SA), whence the states in Λ occur in some infinite tuple of

configurations in Tg. In the (infinite) play of g(E, q, 〈〈A〉〉Φ), that corresponds

to Λ, Eloise does only finitely many verifications and cannot stay as the seeker

for infinitely many rounds (since τ is a winning strategy). Let k ∈ N be such930

that Eloise neither does any further verifications/falsifications nor becomes the

seeker after the state Λ[k]. We will use Lemma 5.3, for showing that M,Λ |= Φ.

Let λ0 � Λ be a finite path such that |λ0| ≥ k.

We show by induction on the formulae in SUBAt(Φ) that if an exit location

of the form (P, λ0[l],Ψ, T ), where Ψ ∈ SUBAt(Φ), can be reached by using τ ,

then the following equivalence holds:

M, λ0 |= Ψ iff P = E.

• The cases Ψ = ϕ and Ψ = Xϕ are easy to prove.

• Let Ψ = ψU θ and suppose first that P = E. Since τ is a regular winning935

strategy, there must be i ≤ k such that Eloise verifies ψU θ by claiming

that θ is true at λ0[i]. If Abelard challenges Eloise’s claim, the evaluation

game continues from the position (E, λ0[i], θ, T ). Hence by the (outer)
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inductive hypothesis we have M, λ0[i] |= θ. Let then j < i. Now Abelard

can attempt to falsify ψU θ by claiming that ψ is true at λ0[j], whence940

Eloise must challenge Abelard’s claim since τ is a regular winning strategy.

Then the evaluation game continues from the position (E, λ0[j], ψ, T ) and

thus by the (outer) inductive hypothesis M, λ0[j] |= ψ. Thus we have

shown that M, λ0 |= ψU θ.

Suppose then that P = A. We also suppose, for the sake of contradiction,945

that M, λ0 |= ψU θ. Now there is i ≤ k such that M, λ0 |= θ. If Abelard

verifies ψ U θ at λ0[i], then Eloise loses by the (outer) inductive hypothesis.

Hence Eloise should falsify ψ U θ at some state λ0[j], where j < i. But then

by the (outer) inductive hypothesis we must have M, λ0[j] 6|= ψ, which is

a contradiction.950

• Suppose that Ψ = ¬Θ. The next position of the evaluation game is

(P, λ[l],Θ, T ) and thus, by the (inner) inductive hypothesis, we have

M, λ0 6|= Θ iff P = A. Hence we have M, λ0 |= ¬Θ iff P = E.

• The case Ψ = Θ1 ∨Θ2 is proven similarly to the previous case.

Note that Abelard is the seeker at the last state λ0[m] of λ0 and he may955

attempt to end the transition game at λ0[m] by ending his seeker turn. By our

assumption Eloise does not become the seeker and thus the evaluation game is

continued from (E, λ0[m],Φ, T ) for some T . By the induction proof above, we

must have M, λ0 |= Φ. Hence, by Lemma 5.3, we have M,Λ |= Φ.

(b) Suppose then that there is a collective (perfect-recall) strategy SA for960

the coalition A such that M,Λ |= Φ for every Λ ∈ paths(q, SA). First, we define

a perfect-recall strategy τ for Eloise as follows.

Suppose that the transition game is at some configuration c that has been

reached with a finite path λ0 � Λ (of states) such that q0 is the last state of λ0.

• If M, q0 |= θ for some ψU θ ∈ At(Φ), then Eloise claims that θ is true.965

• If M, q0 6|= ψ for some ψU θ ∈ At(Φ), then Eloise claims that ψ is false.
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• Suppose that q0 = Λ[0] and ψ ∈ At(Φ) is a state formula. If M, q0 |= ψ,

then Eloise claims that ψ is true.

• Suppose that q0 = Λ[1] and Xψ ∈ At(Φ). IfM, q0 |= ψ, then Eloise claims

that Xψ is true.970

• If Abelard makes any claim on the truth of formulae, Eloise always chal-

lenges those claims. (Note here that Abelard’s claim must be false, ac-

cording to the compositional truth condition, as otherwise Eloise would

already have made the same claim.)

• If Eloise is the seeker in c and M, λ0 |= Φ, then Eloise decides to end her975

seeker turn.

• If Abelard ends his seeker turn at c and M, λ0 6|= Φ, then Eloise decides

to become the seeker. Otherwise, Eloise ends the transition game at c.

• If Eloise needs to choose actions for agents in coalition A at c, she chooses

them according to SA(λ0).980

We next show that none of the configurations c, which are reachable by τ ,

cannot lead to losing exit locations for Eloise.

• Let c = (S, q′, T, n, i). Since all the claims and challenges by τ are made

according to the compositional semantics, Eloise has a winning strategy

from any possible exit location by the inductive hypothesis.985

• Let c = (S, q′, T, n, ii). By the definition of τ , the transition game can end

from this type of configuration only when M, λ0 |= Φ. If the transition

game ends, then the corresponding Boolean game is played from the

exit location (E, q′,Φ, T ). By simply following the compositional truth

condition of Φ on λ0, Eloise can play in such a way that the following

condition holds for any location (P, q′,Ψ, T ), that is reached:

M, λ0 |= Ψ iff P = E,
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where Ψ ∈ SUBAt (Φ). Eventually, an ending location of the form (P, q′, χ, T ),

where χ ∈ At(Φ), is reached. Since the verifications/falsifications by τ are

made according to the compositional truth of the relational atoms of Φ,

it now follows from the inductive hypothesis that (P, q′, χ, T ) must be a

winning location for Eloise.990

• The configurations of the form c = (S, q′, T, n, iii) do not lead to any exit

locations.

We still need to show that Eloise cannot stay as the Seeker forever when

playing with τ . Because Eloise chooses actions for agents in A according to SA,

every path of states that is formed with τ is a prefix sequence of some path995

Λ ∈ paths(q, SA). Since M,Λ |= Φ for every Λ ∈ paths(q, SA), by Lemma 5.3,

and the definition of τ , Eloise cannot stay as the seeker forever. If Abelard

stays as the seeker forever, then Eloise wins. Hence τ is a perfect-recall winning

strategy for Eloise.

Since unbounded transition games are positionally determined, there is also1000

a positional winning strategy τ ′ for Eloise in the transition game g(E, q, 〈〈A〉〉Φ).

This concludes the proof for the equivalence of the two semantics.

By combining Theorem 5.4 with Corollary 4.7, we immediately obtain the

following corollary:

Corollary 5.5. If Γ ≥ RBB(M), then the Γ-bounded GTS is equivalent on M1005

with the standard (perfect-recall) compositional semantics of ATL+.

6. Model checking ATL+ using GTS

Here we apply the GTS to model checking problems for ATL+ and its frag-

ments.

6.1. Revisiting the PSPACE upper bound proof1010

As mentioned earlier, the PSPACE upper bound proof for the model checking

of ATL+ in [2] contains a flaw. Indeed, the claim of Theorem 4 in [2] is incorrect
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and a counterexample to it can be extracted from our Example 3.3, where

M, q0 |= ϕ for ϕ = 〈〈a2〉〉 (G p1 ∨ F p2). In the notation of [2], since |StM| = 3

and APF(ϕ) = 2, by the claim there must be a 6-witness strategy for the agent1015

2 for (M, q0,G p1 ∨ F p2). However, this is not the case, since the player 1 can

choose to play at q0 four times β, and then α. Then M,Λ 6|=6 (G p1 ∨ F p2) on

any resulting path Λ.

The reason for the problem indicated above is that compositional semantics

easily ignores the role and power of the falsifier (Abelard) in the formula evalua-1020

tion process. Still, using the GTS introduced above, we will demonstrate in a

simple way that the upper bound result is indeed correct.

The input to the model checking problem of ATL+ is an ATL+ formula ϕ,

a finite CGM M and a state q in M. We assume that M is encoded in the

standard way (cf. [1, 2]) that provides a full explicit description of the transition1025

function o. Unlike [1, 2], we do not assume any bounds on the number of

proposition symbols or agents in the input. We only consider here the semantics

of ATL+ based on perfect information and perfect-recall strategies.

Theorem 6.1 ([2]). The ATL+ model checking problem is PSPACE-complete.

Proof. We get the lower bound directly from [2], so we only prove the upper1030

bound here. By Theorem 5.4 and Proposition 4.3, if M is a finite CGM, we

haveM, q |= ϕ iff Eloise has a positional winning strategy in G(M, q, ϕ,N) with

N = |St | · |ϕ|. It is routine to construct an alternating Turing machine TM

that simulates G(M, q, ϕ,N) such that the positions for Eloise correspond to

existential states of TM and Abelard’s positions to universal states. Due to1035

the timer bound N , the machine runs in polynomial time. It is clear that if

Eloise has a (positional or not) winning strategy in the evaluation game, then

TM accepts. Conversely, if TM accepts, we can read a non-positional winning

strategy for Eloise from the the computation tree (with only one successful move

for existential states recorded everywhere) which demonstrates that TM accepts.1040

By Proposition 4.1, Eloise thus also has a positional winning strategy in the

evaluation game. Since APTIME = PSPACE, the claim follows.
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6.2. A hierarchy of tractable fragments of ATL+

We now identify a natural hierarchy of tractable fragments of ATL+. Let k be

a positive integer. Define ATLk to be the fragment of ATL+ where all formulae1045

〈〈A〉〉Φ have the property that |At(Φ)| ≤ k. Note that ATL1 is essentially the

same as ATL (with Release). Note also that the number of non-equivalent

formulae of ATLk is not bounded for any k, even in the special case where the

number of propositions and actions is constant, because nesting of strategic

operators 〈〈A〉〉 is not limited. Still, we will show that the model checking1050

problem for ATLk is PTIME-complete for any fixed k. Again CGMs are encoded

explicitly and no restrictions on the number of propositions or actions is assumed.

(In fact, a certain implicit encoding of CGMs leads to ∆P
3 -completeness [21].)

With the fully developed GTS in place, the following theorem is now actually

straightforward to prove. This demonstrates the potential advantages of GTS.1055

Theorem 6.2. For any fixed k ∈ N, the model checking problem for ATLk is

PTIME-complete.

Proof. The claim is well-known for ATL (see [1]), so we have the lower bound for

free, for any k. One possible proof strategy for the upper bound would involve

using alternating LOGSPACE-machines, but here we argue via Büchi-games1060

instead.

Consider a triple (M, q, ϕ), where ϕ ∈ ATLk. By the proof of Proposition 4.2,

there exists a Büchi game BG such that Eloise wins the unbounded evaluation

game G(M, q, ϕ) iff she wins BG from the state of BG that corresponds to

the beginning position of the evaluation game. We then observe that since we1065

are considering ATLk for a fixed k, the domain size of each truth function T

used in the evaluation game is at most k, and thus the number of positions in

G(M, q, ϕ) is polynomial in the size of the input (M, q, ϕ). (To thoroughly check

that the number of positions is indeed polynomial, recall to consider also the

extra information—given in remark 3.1—that should be encoded in positions of1070

evaluation games.) Thereby we conclude that also the size of BG is polynomial

in the input size.
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We note that, in order to avoid blow-ups, it is essential that the maximum

domain size k of truth functions T is fixed. We also note—as mentioned already

in [1]—that the number of transitions in M is not bounded by the square of the1075

number of states ofM. In fact, because we impose no limit (other than finiteness)

on the number of actions in M, the number of transitions in relation to states is

arbitrary. However, this is no problem to us since an explicit encoding of M—

which lists all transitions explicitly—is part of the input to the model checking

problem. Since Büchi games can be solved in PTIME, the claim follows.1080

7. Analysis of memory resources in ATL+

Strategies with bounded memory in concurrent game models can be naturally

defined using deterministic finite state transducers (or, Mealy machines). For

a transducer-based definition of bounded memory strategies, see e.g. [22], and

see [23] for more on this topic. Using such strategies, an agent’s moves are1085

determined both by the current state in the model and by the current state

(“memory cell”) of the agent’s transducer. Then, transitions take place both in

the model and in the state space of the transducer, thus updating the agent’s

memory. So, such strategies are positional with respect to the product of the two

state spaces. In the compositional m-bounded memory semantics (|=m) for1090

ATL+, agents are allowed to use at most m memory cells, i.e., strategies defined

by transducers with at most m states.

7.1. An upper bound for the number of memory cells

Recall the (tractable) fragments ATLk of ATL+ from Section 6.2. Since the

use of the truth function T in our GTS is analogous to the use of memory cells1095

in m-bounded memory semantics, we obtain the following result.

Theorem 7.1. For ATLk, the unbounded GTS is equivalent to the m-bounded

memory semantics for m = 3k − 2k.

Proof. Let m := 3k − 2k and ϕ ∈ ATLk. We show that

M, q  ϕ iff M, q |=m ϕ.
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The implication from right to left is immediate by Theorem 5.4. We prove the

other direction by induction on ϕ. The only non-trivial case is when ϕ = 〈〈A〉〉Φ.1100

Suppose that Eloise has a winning strategy in g(E, q, 〈〈A〉〉Φ). By Lemma 4.10

and Remark 4.11 we may assume that choices for agents in A, given by τ , depend

only on the current state and the current truth function.

We define a memory transducer T which Eloise can use to define strategies

for all agents in A. We fix the set of states C of T to be the set of all truth1105

functions T for At(Φ) such that T (χ) = open for at least one χ ∈ At(Φ). Since

T (χ) ∈ {open,>,⊥}, we have |C| ≤ 3k − 2k = m. The initial state of T is

T0 where T0(χ) = open for every χ ∈ At(Φ). The transitions in T are defined

according to how Eloise updates the truth function T during the transition game.

However, when T becomes fully updated (i.e. T (χ) 6= open for every χ ∈ At(Φ)),1110

then no further transitions are made, because in this case all relative atoms have

been verified/falsified and the truth of Φ on the path is fixed.

Now, the strategy for each agent a ∈ A is defined positionally on C × St

as follows: At a state T of T and state q ∈ M, the agent a follows the action

prescribed by Eloise’s winning strategy for the corresponding step phase in the1115

transition game. It is now easy to show that M,Λ |=m Φ for any path Λ that is

consistent with the resulting collective strategy for the coalition A.

By Theorem 5.4 and Theorem 7.1, we immediately obtain the following

corollary.

Corollary 7.2. For ATLk, the compositional perfect-recall semantics is equiva-1120

lent to the (3k − 2k)-bounded memory semantics.

This extends the known fact that positional strategies (using 1 memory

cell) suffice for the semantics of ATL (which is essentially the same as ATL1).

Moreover, given a formula, there is no need for the full perfect-recall semantics,

as we may equivalently apply the bounded memory semantics with a bound that1125

is based on the structure of the given formula (“the maximum temporal width”).

Note also that this upper bound for the amount memory is independent of the

structure of the model.
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By ATLkF we denote the fragment of ATLk where all the relative atoms are of

the form Fϕ, that is, the temporal objectives Φ are simply Boolean combinations1130

of reachability objectives. For ATLkF we can strengthen the result of Theorem 7.1.

Theorem 7.3. For ATLkF , the unbounded GTS is equivalent to the m-bounded

memory semantics for m = 2k − 1.

Proof. In ATLkF we may modify the rules of the transition games in such a way

that relative atoms cannot be falsified by the players (but naturally they can1135

be verified). This is because Fψ is interpreted as >Uψ and > is never false:

if a player tried to falsify >Uψ, that player would immediately lose once the

other player challenges the claim. With this modification of the rules, there are

at most 2k different truth functions that may appear in the transition games

for ATLkF . Moreover, there is only a single truth function that is fully updated.1140

Hence we may define a memory transducer T with 2k − 1 states as in the proof

of Theorem 7.1 and prove the rest of the claim analogously.

In the next subsection we will show that the result of Theorem 7.3 is optimal

in the sense that no smaller number of memory cells guarantees an equivalent

semantics. Hence, even for ATLkF , the agents may need exponentially many1145

memory cells with respect to the number of relative atoms.

7.2. A lower bound for the number of memory cells

In this section we will investigate the following simple ATLkF -formula:

ξk := 〈〈a1〉〉Φk, where Φk := F p1 ∧ · · · ∧ F pk.

Note that Φk is just a conjunction of reachability goals that agent a1 needs to

fulfill (in any order). Since positional strategies suffice for single reachability

objectives, it would be intuitive to think that a1 needs at most k − 1 memory1150

cells in order to achieve Φk. This is because a1 needs to change its positional

strategy only when completing some of the reachability objectives.9 However,

9This can be seen by analyzing our GTS for ATL+: note that (1) the strategies in transition

games may be assumed to be positional with respect to the states and the truth function; and
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we will see that the bounded memory strategy of a1 must potentially use a

transducer that has exponentially many states with respect to k. The model

that we will use for proving this claim is constructed in the following example.1155

Example 7.4. Let [k] := {1, . . . , k} and Mk := (Agt,St,Π,Act, d, o, v) be a

CGM, where

• Agt = {a1, a2}, Π = {p1, . . . , pk};

• Act = [k] ∪ {B | B ⊆ P([k]) \ {∅}} ∪ {void};

• St = {q0} ∪ {qi | i ∈ [k]} ∪
{
qB | B ∈ P([k]) \ {∅, [k]}

}
;1160

• v(pi) = {qi} ∪ {qB ∈ St | i ∈ B} for all pi ∈ Π;

• d(q0, a1) = {B | B ∈ P([k]) \ {∅}}, d(q0, a2) = [k]

and d(q, ai) = {void} when q ∈ St \{q0} and i ∈ {1, 2};

• o(q0, (B, i)) =

qi if i ∈ B,

qB else;

o(qi, (void, void)) = q0 when i ∈ [k]1165

and o(qB , (void, void)) = qB when B ∈ P([k]) \ {∅, [k]}.

See the picture of model Mk, in the special case when k = 3, In Figure 1.

The model Mk can be described as follows: At q0 the agent a1 gets to

“announce” any nonempty set B of (indices of) proposition symbols in Π. Then,

depending on the action chosen by the agent a2, one of the following happens:1170

1. Some proposition symbol pi, for which i ∈ B, is reached and then the game

returns to q0. This happens when a2 chooses i ∈ B, whence a transition is

made to qi and then back to q0.

2. All proposition symbols pi with i ∈ B are reached, but thereafter no new

proposition symbols can be reached. This happens when a2 chooses some1175

i /∈ B, whence a transition is made to qB , where the game will loop forever.

that (2) the truth function for Φk can be updated at most most k times during the transition

game for Φk.
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Figure 1: The model M3 from Example 7.4.

We will show that agent a1 has a (2k − 1)-bounded memory strategy σa1

which guarantees the truth of Φk on every path in paths(q0, σa1
). We first define

a finite state transducer Tk as follows:

• The set of states C of Tk is {cB | B ∈ P([k]) \ {∅}}. Now |C| = 2k − 1.1180

• The initial state of Tk is c[k].

• The transitions of Tk are define as follows: Suppose that the current state

of Tk is cB for some B ∈ P([k]) \ {∅} and a state qj is reached for some

j ∈ [k]. Now if j ∈ B and B 6= {j}, then Tk changes its state to cB\{i}.

Else, no transition is made.1185

See Figure 2 picture for the transducer Tk in the special case when k = 3.

Intuitively, the set B, when it is the index of cB, denotes the set of indices

of those proposition symbols pi that have not yet been reached. We then define

the strategy σa1 simply to select the action B at q0 when the current state of
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T3 :
c{1,2,3}

c{1,2} c{1,3} c{2,3}

c{1} c{2} c{3}

q3 q2 q1

q2
q1 q3 q1

q2
q3

Figure 2: The transducer T3 from Example 7.4.

Tk is cB. (The action void is selected elsewhere.) It is easy to see that σa1
is a1190

strategy that satisfies Φk on every path.

Note that by using Tk, the agent a1 essentially remembers which subset of

{p1, . . . , pk} of proposition symbols have already been reached. But a1 does not

have to remember in which order these states have been visited; if the order was

remembered as well, then the number of states in Tk would be the number of1195

k-permutations plus the initial state, resulting in k! + 1 states.

We prove the following lemma for the modelMk constructed in Example 7.4.

Lemma 7.5. Mk 6|=m ξk when m < 2k − 1.

Proof. Let σa1
be a strategy for a1 using a transducer T with less than 2k − 1

states. We will show that there is a path in paths(q0, σa1) on which pi is not1200

reached for some i ∈ [k].

We first make the following two observations (i) and (ii):

(i) Suppose a1 chooses some B ∈ P([k]) \ {∅} at q0 for which i /∈ B for some

pi that has not yet been reached. Now the next state may be qB where it will

loop forever. Since qB /∈ v(pi), the proposition pi will never be reached.1205

(ii) Suppose now that a1 chooses some B at q0 for which i ∈ B for some pi

that has already been reached. Now the next state may be qi and thereafter the

game returns to q0. Since pi is the only proposition symbol that is true at qi,

these transitions did not reach any new proposition symbols.
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By the points above, we see that in order to reach all pi, the agent a1 has1210

to choose such a set B at q0 which has the indexes of exactly those proposition

symbols which have not yet been reached. We denote this behavior of a1 by (?).

Since T has less than 2k− 1 states, and |P([k]) \ {∅}| = 2k− 1, there must be

B′ ∈ P([k]) \ {∅} which a1 never chooses at q0 when following σa1 . Supposing

that a1 plays according to (?), it may happen that exactly those pi for which1215

i ∈ [k] \B are reached (by visiting the corresponding states qi (i ∈ [k] \B) and

returning to q0 after every visit). But, in this situation it is no longer possible

for a1 to follow (?) and thus impossible to reach all pi for which i ∈ B.

By Example 7.4 and Lemma 7.5 we immediately obtain the following corollary.

Corollary 7.6. The perfect-recall semantics for ATLkF is not equivalent to m-1220

bounded memory semantics for any m < 2k − 1.

By this result, agents may need an exponential number of memory cells with

respect to the number of relative atoms (in the Boolean combination). Again, this

result holds even in the simple case where Φ is just a conjunction of reachability

objectives F p. Corollary 7.6 also implies that the result of Theorem 7.3 is1225

optimal. We leave it open whether the result of Theorem 7.1 could be improved.

7.3. Some remarks on the amount of memory needed for strategies

There are several ways in which memory resources play a role in strategies.

Besides the read-only memory needed to encode a strategy, for the execution

of that strategy, one can distinguish different types of measures for the need of1230

memory. These include e.g. the resources needed for

(i) storing any possible input of the strategy,

(ii) computing the value of the strategy function on any given input,

(iii) executing the strategy in any single play (by partially/fully remembering

the history of the particular play).1235
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Generally, these can be very different. Usually, the first one is taken as the

measure of the memory consumption of a strategy in terms of the required input

size (i.e., positional, bounded memory, perfect-recall). The second is usually

disregarded and strategies are assumed to be computed by—or even hardwired

in—some external devices (“black boxes”). As for the third measure, which1240

involves both the previous two, we are not aware of any explicit consideration of

it in the literature. Related to this, we will make some brief comparing remarks

on the case of bounded memory strategies considered in this paper.

From Corollary 7.6 we see that agents may need a strategy transducer with

2k − 1 memory cells when there are k reachability objectives. This is because1245

a strategy is a global plan of action—or a look-up table—that must take into

account all possible plays. However, by observing the use of truth functions

in transition games, we see that in every single play of the game, only k − 1

memory cells need to be used. That is, the finite state transducer needs to

visit only k − 1 states on every path (cf. Example 7.4 and the transducer Tk).1250

Thus, the state space of the transducer has to be exponential with respect to

the number of reachability objectives, but only a linearly large section of the

transducer is actually used in every single play. (In fact, the latter is to be

expected, in the light of the PTIME complexity of model checking of ATLk, by

Theorem 6.2.) This suggests that the dynamic memory of a computing device1255

could be a better measure of the needed memory resources than the number of

states in the transducer encoding the agent’s strategy.

Based on the results above, one could argue that agents actually only need to

use linear amount of memory in ATLk, supposing they can manage their memory

in a more dynamical (“on-the-fly”) way. From an everyday human perspective, it1260

is clear that people can manage to do, say, 10 small tasks by simply remembering

what has already been done—that is, by remembering at most 9 pieces of

information. In contrast, an exponential amount of memory (1023 memory cells)

would be needed by Theorem 7.6 according to the transducer-based approach.
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8. Conclusion1265

In conclusion, we note that the game-theoretic semantics for ATL+ developed

here has both conceptual and technical importance, as it explains better how the

memory-based strategies in the compositional semantics can be generated and

thus also provides better insight on the algorithmic aspect of that semantics.

We note that a GTS for ATL+, alternative to the one introduced here, could1270

be obtained via GTS for coalgebraic fixed point logic [24, 25]. However, such a

semantics (being designed for more powerful logics) would not directly lead to

our GTS that is custom-made for ATL+ and would thus not directly enable the

complexity analysis that we require. Also, that alternative approach would not

give a semantics where the construction of finite paths only suffices.1275

A natural extension of the present work would be to develop GTS for the full

ATL∗. Moreover, the correspondence with Büchi games here could be exploited

in full.
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[3] V. Goranko, A. Kuusisto, R. Rönnholm, Game-theoretic semantics for1290

alternating-time temporal logic, in: Proc. of AAMAS 2016, IFAAMAS

Publ., 2016, pp. 671–679.

51
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