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We study the process of black brane evaporation through the emission of D-branes. Black branes in
asymptotically anti–de Sitter spacetimes, holographically dual to field theory states at finite temperature
and density, have previously been found to exhibit an instability due to brane nucleation. Working in the
setting of D3-branes on the conifold, we construct static Euclidean solutions describing this nucleation to
leading order—D3-branes bubbling off the horizon. Furthermore, we analyze the late-time dynamics of
such a D3-brane bubble as it expands and find a steady-state solution including the wall profile and its
speed.
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I. INTRODUCTION

Black holes evaporate due to Hawking radiation [1].
Though this fact is on firm theoretical footing, there are still
many open questions regarding the precise details of this
evaporation, some of which may require a complete theory
of quantum gravity to settle.
String theory provides such a theory. Besides strings, this

framework also introduces other extended objects known as
branes. These dynamical objects gravitate, and a large
number of them can be described in the supergravity limit
as a black brane. In analogy with Hawking radiation, one
can ask if such black branes can be unstable to the emission
of the individual branes from which they are formed. This
has indeed been found to occur [2–6], for example, by
computing the effective potential for a brane probe and
finding a global minimum outside the horizon. In these
cases the horizon and the true minimum are typically
separated by a potential barrier; thus, the emission can be
expected to proceed through bubble nucleation [7,8]. Such
“brane nucleation” can provide the main mechanism for
black branes to decay and are thus important for a complete
understanding of their quantum description. Moreover,
through holographic duality [9], the brane nucleation can
be interpreted as bubble nucleation in a dual field theory
at strong coupling, a topic of interest in early-Universe
cosmology [10].

In this Letter, we provide the first detailed study of a
brane nucleation event. We consider a black brane, built
from a stack of D3-branes at a conifold singularity, which
emits a single D3-brane. We focus on two different aspects:
the initial nucleation of the brane as a localized bubble
stretching outward from the horizon and the late-time
steady-state expansion of this brane into the bulk. We do
this by first deriving an effective action describing the
embedding of the D3-brane in the black brane geometry.
Then, we use this to find static configurations with Oð3Þ
symmetry, whose Euclidean action gives the leading semi-
classical contribution to the nucleation rate. Next, assuming
a steady-state solution, we solve for the late-time expansion
of the brane. In particular, this lets us obtain the terminal
velocity and profile of the brane. Throughout, we use the
probe approximation, neglecting the backreaction of the
nucleating D3-brane on the black brane background.
The black branes we study live in an asymptotically anti–

de Sitter (AdS) spacetime and are holographically dual to
states in the Klebanov-Witten (KW) gauge theory [11] at
nonzero temperature and density. The D3-brane emission is
then dual to the spontaneous breaking of the gauge group
through the condensation of a scalar field dual to the radial
position of the brane. Had the minimum of the brane’s
effective potential been at a finite radius (as is the case in
some similar setups [5,6]), the nucleation would have
resulted in a phase transition to a (metastable) Higgs phase,
analogous to color superconductivity in QCD [12]. For our
D3-branes, the minimum is instead located at the AdS
boundary; this seems to indicate a fatal instability of the
finite density KW theory, with the dual black brane slowly
disappearing as one D-brane after the other nucleates
and travels toward infinity (at least until the combined
backreaction of the emitted branes can no longer be
ignored).
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II. GRAVITY SOLUTIONS AND FIELD
THEORY DUAL

We study asymptotically AdS5 × T1;1 black brane sol-
utions of type IIB supergravity found by Herzog et al. [4].
Defining forms with legs on T1;1,

ω2 ≡ 1

2
ðsin θ1dθ1 ∧ dϕ1 − sin θ2dθ2 ∧ dϕ2Þ;

g5 ≡ dψ þ cos θ1dϕ1 þ cos θ2dϕ2; ð1Þ

the ansatz for the 10D metric is

ds210 ¼ L2e−
5
3
χds25 þ L2eχ

�
eη

6
ðdθ21 þ sin2θ1dϕ2

1Þ

þ eη

6
ðdθ22 þ sin2θ2dϕ2

2Þ þ
e−4η

9
g25

�
; ð2Þ

with ds25 as an asymptotically AdS5 line element and L
as the corresponding AdS radius. Meanwhile, the self-dual
5-form field strength takes the form F5 ¼ L4ðF þ �F Þ,
with

F ¼ −
2

27
ω2 ∧ ω2 ∧ g5 −

1

9
ffiffiffi
2

p dA ∧ g5 ∧ ω2: ð3Þ

Here A is a Uð1Þ gauge field.
This ansatz provides a consistent truncation of type IIB

supergravity to a 5D theory containing the metric, the
gauge field A and scalar fields χ and η. The resulting
equations of motion have asymptotically AdS5 charged
black brane solutions; their 5D metric can be written as

ds25 ¼ −gðrÞe−2wðrÞdt2 þ dr2

gðrÞ þ r2dx⃗23; ð4Þ

with gðrHÞ ¼ 0 at the horizon radius rH. These solutions
were constructed numerically and studied in [4,6], and we
refer the interested reader there for more details.
String theory on asymptotically AdS5 × T1;1 is holo-

graphically dual to the KW theory [11], and the super-
gravity limit we study describes it in the large-N, strong
coupling limit. KW theory is an N ¼ 1 superconformal
theory with gauge group SUðNÞ × SUðNÞ and matter fields
Aα and Bα̃ (α; α̃ ¼ 1; 2) in the ðN; N̄Þ and ðN̄; NÞ repre-
sentation, respectively. It provides the low-energy descrip-
tion of N D3-branes placed on the tip of the cone with base
T1;1 (the conifold). Among the global symmetries, a certain
Uð1Þ factor is often referred to as “baryonic” since the only
gauge invariant operators charged under it are heavy,
having conformal dimensions of order N. The correspond-
ing conserved current is dual to the Uð1Þ gauge field in
the gravity truncation above. Thus, the black branes we
study are dual to states of KW theory at finite temperature
and baryonic chemical potential, computed by standard

methods as T ¼ e−wðrHÞg0ðrHÞ=4π and μ ¼ Φðr → ∞Þ.
Since the theory is conformal, the physics depends only
on the dimensionless parameter T=μ.
The lightest baryonic operators in KW theory involve

determinants of the bifundamental matter fields, which are
dual to D3-branes wrapped on a 3-cycle on T1;1 [13]. As the
effective potential for these wrapped D3’s does not show an
instability [4], many of the usual ways a charged black
brane can become unstable near extremality are ruled out.
The only known instability is instead due to the emission of
D3-branes parallel to the original stack, which is what we
study in the following.

III. D3-BRANE EFFECTIVE ACTION

We imagine that one of the D3-branes that build up the
black brane localizes somewhere in the bulk. It then acts as
a domain wall, which in the dual KW theory effectively
changes the rank of the two SUðNÞ gauge groups by one
[13]. Thus, if the energy can be lowered by separating a
D3-brane from the black brane, the gauge symmetry in KW
theory is spontaneously broken.
The action of a D3-brane is the sum of a Dirac-Born-

Infeld (DBI) and a Wess-Zumino (WZ) term [14],

SD3 ¼ −T3

Z
d4ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detP½G�

p
þ T3

Z
P½C4�; ð5Þ

where P½…� denotes the pullback of spacetime fields to the
brane world volume. The constant dilaton has been
absorbed into the tension of the brane, given by [4]

T3 ¼
1

ð2πÞ3gsl4s
¼ 27

32π2
N
L4

: ð6Þ

Letting the brane extend in the directions parallel to the
horizon, we parametrize its world volume by the spacetime
coordinates ft; x⃗g. The brane will be located on a constant
and arbitrary point on T1;1, while the embedding in
the radial direction is taken to be a general function
R ¼ Rðt; x⃗Þ. In the following, we denote derivatives with
respect to t by a dot and with respect to xi by ∂i, i ¼ 1; 2; 3.
The components of the 10D metric will be denoted by Gμν.
For such an embedding, the induced metric on the brane

can be written as

ds24 ¼ γttdt2 þ 2γtidtdxi þ γijdxidxj; ð7Þ

where the components of the induced metric are given by

γtt ¼ Gtt þ Grr
_R2;

γti ¼ Grr
_Rð∂iRÞ;

γij ¼ Gij þGrrð∂iRÞð∂jRÞ: ð8Þ

The determinant in the DBI term is then
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detP½G� ¼ GttG3
xx

�
1þ Grr

Gtt

_R2 þ Grr

Gxx
ð∂iRÞ2

�
: ð9Þ

For the WZ term, we need the pullback of the 4-form
potential defined by F5 ¼ dC4, the relevant component of
which is L4a4ðrÞdt ∧ dx1 ∧ dx2 ∧ dx3, where a4ðrÞ is
found by integrating a04ðrÞ ¼ 4r3e−w−

20
3
χ with the condition

that it goes to zero on the horizon. Plugging in the metric
components and using (6), the full action becomes

SD3 ¼ −
27N
32π2

Z
d4x

�
R3e−wðRÞ−

10
3
χðRÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðRÞ − e2wðRÞ

gðRÞ
_R2 þ ð∂iRÞ2

R2

s
− a4ðRÞ

�
: ð10Þ

In the dual KW theory, the radial position of the
brane maps to a combination of eigenvalues of the matrices
Aα and Bα̃. If the energy can be lowered by a brane
separating from the stack, the dual field will condense,
causing the gauge symmetry breaking SUðNÞ × SUðNÞ →
SUðN − 1Þ × SUðN − 1Þ ×Uð1Þ. We can then interpret
(10) as a quantum effective action describing the dynamics
of the scalar field in the resulting Uð1Þ sector.
The effective potential is obtained by setting all deriv-

atives of R in (10) to zero. Evaluating it on the backgrounds
discussed above, one finds an instability—a global mini-
mum at r ¼ ∞—for T=μ≲ 0.2 [4,6]. We now proceed to
study the dynamics of this instability.

IV. BUBBLE NUCLEATION

To compute the nucleation rate of the transition, we
analytically continue to Euclidean time and take the time
direction to have periodicity 1=T. We search for static
solutions with a spherical Oð3Þ symmetry—such solutions
give an accurate estimate for the nucleation rate at
sufficiently high temperatures and provide an upper bound
at low temperatures. The t integral can be done right away,
giving a factor 1=T. Because of the anticipated Oð3Þ
symmetry we switch to spherical coordinates fρ;α; βg
on the world volume, take R ¼ RðρÞ, and integrate over
α and β as well. This gives us the Euclidean action

SD3 ¼
27N
8πT

Z
dρρ2

�
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gR2 þ ðR0Þ2

p
ewþ10

3
χ

− a4

�
; ð11Þ

where a prime denotes a ρ derivative. Here and below we
suppress the radial dependence of g, w, χ, and a4. Given a
solution to the equation of motion (EOM) resulting from
this action, the nucleation rate per volume is estimated as
Γ=V ∼ e−SD3 [7,8].
The EOM is a second-order ordinary differential equa-

tion. Solutions should satisfy R0ð0Þ ¼ 0 to be smooth at the
origin. We can find a series solution near ρ ¼ 0 with Rð0Þ

as a free parameter. We furthermore expect our solutions to
hit the horizon located at R ¼ rH at some finite ρ ¼ ρ�. We
can then also find a series solution near this point of the
form

RðρÞ ¼ rH þ R1ðρ� − ρÞ þ R2ðρ� − ρÞ2 þ � � � ; ð12Þ

where everything except the value of ρ� is fixed by the
EOM. Using these two series expansions, we construct the
full solutions by a two-sided numerical shooting method,
fixing the parameters Rð0Þ and ρ� by matching the
solutions and their first derivative at some intermediate
radius. The resulting bubble cross sections at three different
T=μ are shown on the left in Fig. 1.
We then evaluate the action (11) on these bubble

solutions. Note that it diverges in the large-N limit,
suppressing the nucleation rate. This is to be expected as
the large-N limit is a classical limit on the gravity side. On
the right in Fig. 1, we show the action divided by N
evaluated on our bubble solutions as a function of T=μ.
Approaching the critical value T=μ ≈ 0.2, it diverges (even
for finite N), as expected on general grounds. At low
temperatures, it approaches an Oð1Þ number, implying that
nucleation is still greatly suppressed for N large. Recall,
however, that at low temperatures our static solutions, in
general, only provide an upper bound on the action, and
one should also consider solutions with dependence on
Euclidean time. We leave this for future work.
Note that the static bubble solutions discussed so far can

be “completed” in two distinct ways, due to the fact that a
brane laying flat on the horizon is static in the relevant time
coordinate (because of the infinite time dilation). One way
is to add such a horizon brane stretching from the edge
of the bubble out to infinity in the x⃗ directions. The other
way is to add a horizon “antibrane” inside the bubble.
We interpret the former completion as the emission of a
D-brane from the horizon, and the latter as brane-antibrane
pair creation, with the antibrane falling into the horizon and

FIG. 1. Left: bubble cross sections at T=μ ¼ 0.01 (solid blue),
T=μ ¼ 0.09 (dashed orange), and T=μ ¼ 0.18 (dotted green),
using the radial coordinate z ¼ rH=r and with the field theory
direction x rescaled in each case such that the bubble radius is 1.
Right: the action evaluated on the bubble solutions as a function
of T=μ.
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the brane escaping to infinity. Since an (anti)brane on the
horizon has zero action, neither of these completions affect
the nucleation rate and both are equally likely to occur.

V. LATE-TIME EXPANSION

As a bubble nucleates, a small perturbation might cause
it to start expanding. At late times, the resulting bubble wall
can be approximated as planar, moving in (say) the x1
direction. Then it is useful to parametrize the world volume
by its r coordinate instead of its x1 coordinate and work
with the embedding function X1 ≡ Xðt; rÞ. This switch
results in the action

SD3 ¼ −
27N
32π2

Z
dtdrdx2dx3

�
r2e−w−

10
3
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e2wr2

g
_X2 þ r2gX02

s
þ X0a4

�
; ð13Þ

where a prime now denotes an r derivative. Since only
derivatives of X appear in the action, there is an associated
conserved current describing the brane’s momentum den-
sity, and the EOM is just the conservation of this current.
At late times, we expect the bubble wall to reach a

terminal velocity, with outward pressure being balanced by
friction. Thus, we search for steady-state solutions of the
form

Xðt; rÞ ¼ vtþ ξðrÞ: ð14Þ

The calculation now proceeds much like the classical drag
force calculations [15,16]; see also [17]. The ansatz leads to
the simplified EOM ∂rPr ¼ 0, with the radial component
of the momentum current being

Pr ¼ −
r4ge−w−

10
3
χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2w
g r2v2 þ r2gξ0ðrÞ2

q ξ0ðrÞ − a4: ð15Þ

Solving for ξ0ðrÞ gives

ξ0ðrÞ ¼ �Pr þ a4
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2wv2 − g=r2

½Pr þ a4�2 − r6e−2w−
20
3
χg

s
: ð16Þ

Before attempting to integrate this equation, let us discuss
what we expect our solution to look like. As a brane
nucleates and then starts to expand, it gains energy and
momentum from the region near its center, which is at a
larger radius where the potential energy is lower. This
accelerates the brane, while some energy is dissipated into
the near-horizon region—this is the gravity dual of the
friction between the bubble and the plasma on the field
theory side. The end result at late times should be a solution
extending from the horizon toward the true minimum at

infinity. Thus, we must impose that ξ0ðrÞ diverges as
r → ∞. This can only happen if the denominator in the
square root of (16) goes to zero there, fixing Pr to be

Pr ¼ lim
r→þ∞

− a4 � r3e−w−
10
3
χ ffiffiffi

g
p

; ð17Þ

where we must pick the plus sign to get a finite result.
This setsPr equal to the minimum of the effective potential.
Having fixed Pr thus, we notice that the denominator

inside the square root of (16), in addition to going to zero at
infinity, also crosses zero at some finite r. This forces us to
fix v such that the numerator crosses zero at the same point,
ensuring that ξ0ðrÞ is everywhere real. Thus, we arrive at a
numerical value for the wall speed of the expanding bubble
at asymptotic times, shown as a function of T=μ on the left
in Fig. 2. As expected, the speed goes to zero at the critical
temperature. For a relativistic theory at zero density, the
speed would approach the speed of light at small tempera-
tures; here, however, it approaches a smaller value of about
0.38. Note that the wall speed remains well below the speed
of sound of the background plasma, which is fixed to the
conformal value of 1=

ffiffiffi
3

p
. In the usual parlance of first-

order phase transitions, this would thus be classified as a
deflagration (as opposed to a detonation), although in the
probe approximation this is a somewhat artificial distinc-
tion since the bubble does not backreact on the plasma.
With the parameters fixed, (16) can be numerically

integrated to find the profile ξðrÞ of the moving wall.
Assuming v > 0, ξðrÞ must diverge to negative infinity at
the AdS boundary. This fixes the sign ambiguity in (16),
but only partially, since the derivative ξ0ðrÞ always goes to
zero at some point in the bulk. [This can be seen from (16),
recalling that Pr is negative and a4ðrÞ increases monoton-
ically from zero at the horizon.] At this point, we are free to
change the sign used in (16) without creating a disconti-
nuity in the derivative. Thus, there are two possible late-
time wall profiles; we fix this final ambiguity by requiring

FIG. 2. Left: the terminal wall speed as a function of T=μ.
Right: the wall profile as a function of the radial coordinate z ¼
rH=r at T=μ ¼ 0.01 (solid blue), T=μ ¼ 0.09 (dashed orange),
and T=μ ¼ 0.18 (dotted green). Note that in all cases the curves
diverge to infinity at the horizon, though this is not visible for the
green curve.
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that the part of the brane near the horizon trails behind the
front of the wall, much like in [15,16]. The resulting wall
profile is shown on the right of Fig. 2. Note that ξðrÞ
diverges to negative infinity also at the horizon, as can be
seen by expanding (16) there.

VI. DISCUSSION

For the charged black branes studied in this Letter, brane
nucleation appears to be the leading channel of decay. One
might thus expect the resulting evaporation process to lead
to an information paradox in much the same way as with
the more familiar Hawking radiation [18]. In fact, brane
nucleation offers a way of studying the disappearance of a
large black brane (or a black hole [5]) in AdS without
modifications at the boundary [19]. This can lead to new
ideas for solving the information paradox and new ways of
testing such ideas.
From the point of view of the dual field theory, we have

studied barrier penetration through bubble nucleation at
strong coupling. While in this case the nucleation does not
appear to result a new (meta)stable phase in the field theory,
our methods extend straightforwardly to other setups where
this would be the case (since the minimum of the effective
potential is at a finite radius) [5,6]. There, brane nucleation
mediates a genuine first-order phase transition. Much
recent work has leveraged holographic duality to study
bubble nucleation [17,20–24], motivated by early-Universe
phase transitions and the gravitational waves they could
produce [10]. This Letter is to our knowledge the first
where both nucleation rates and the bubble wall speed
have been computed from first principles, using simple

numerical tools and without any additional approximations
beyond treating the nucleating brane as a probe.
When a metastable end state exists, another interesting

quantity that can readily be computed is the surface tension
between two coexisting phases. Furthermore, one could
use the effective action (10) to study soliton solutions and
Wilson line configurations along the lines of [25–27].
We also hope to study brane solutions with general time
dependence, which would give a more complete picture of
the expansion of the bubble and, in the case of Euclidean
time, a better estimate of the nucleation rate at low
temperatures. Going away from the high-temperature limit
might also lead to a clearer separation between the two
possible completions of the static bubble solutions, which
we have interpreted as brane emission and brane-antibrane
pair creation, respectively.
Finally, it would be very interesting to include back-

reaction from the bulk D-branes on the geometry, at least in
some approximate way, as this is the only way to search for
the true end state of a brane nucleation instability.
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