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Simple Summary: Our understanding about inflammation of the endometrium after mating and
susceptibility of mares to endometritis has changed in the last 100 years since it was recognized
for the first time. Initially, it was believed that bacteria introduced into the uterus during mating
could infect the uterus until it was shown that sperm induce neutrophilia. It was realized that post
breeding endometritis (PBE) is a physiological defense mechanism used to clean the uterus from
excess semen and inflammatory by-products. In mares susceptible to endometritis, PBE can be
prolonged beyond the normal duration of 24 h. Delayed uterine clearance due to conformational
defects, deficient myometrial contractions, and failure of the cervix to relax is detected by intrauterine
fluid accumulation and is an important reason for susceptibility to endometritis. Untreated prolonged
PBE can lead to bacterial or fungal endometritis called persistent or chronic endometritis. Multiparous
aged mares are more likely to be susceptible. When sperm arrive in the uterus, pro-inflammatory
cytokines are released. They attract neutrophils and induce modulatory cytokines which control
inflammation. However, persistence of neutrophils and pro-fibrotic cytokines can have deleterious
effects in inducing endometrosis. In this paper, the pathogenesis of fibrosis is reviewed. Endometritis
and endometrosis are interconnected influencing each other.

Abstract: In this paper, the evolution of our understanding about post breeding endometritis (PBE),
the susceptibility of mares, and events leading to endometrosis are reviewed. When sperm arrive in
the uterus, pro-inflammatory cytokines and chemokines are released. They attract neutrophils and
induce modulatory cytokines which control inflammation. In susceptible mares, this physiological
defense can be prolonged since the pattern of cytokine release differs from that of resistant mares
being delayed and weaker for anti-inflammatory cytokines. Delayed uterine clearance due to con-
formational defects, deficient myometrial contractions, and failure of the cervix to relax is detected
by intrauterine fluid accumulation and is an important reason for susceptibility to endometritis.
Multiparous aged mares are more likely to be susceptible. Untreated prolonged PBE can lead to
bacterial or fungal endometritis called persistent or chronic endometritis. Exuberant or prolonged
neutrophilia and cytokine release can have deleterious and permanent effects in inducing endomet-
rosis. Interactions of neutrophils, cytokines, and prostaglandins in the formation of collagen and
extracellular matrix in the pathogenesis of fibrosis are discussed. Endometritis and endometrosis are
interconnected, influencing each other. It is suggested that they represent epigenetic changes induced
by age and hostile uterine environment.

Keywords: mare; breeding; endometritis; endometrosis; inflammation; fibrosis; neutrophils; cytokines

1. Introduction

Our understanding about endometrosis, endometritis, and susceptibility to both has
constantly evolved during the 100 years of endometritis research in mares. This review
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deals with the history of equine endometritis research and our current conception of post
breeding endometritis. The pathophysiology of endometrosis and its connection with
endometritis is discussed.

2. Susceptibility and Resistance to Endometritis

The conceptions of susceptibility and resistance to endometritis date to the year 1969,
when Hughes and Loy discovered that young maiden mares cleared intrauterine bacterial
inoculation rapidly (resistant) whereas aged multiparous mares remained chronically in-
fected (susceptible) [1]. However, already in 1924, Dimock and Snyder had written that
“infection of mares at the time of service is probably dependent upon some predisposi-
tion” [2].

In early endometritis studies, it was common to divide mares into resistant and
susceptible categories based on their age, reproductive history, and Kenney biopsy category
or histolopathological findings in biopsies [3–7]. Although these are important predisposing
factors to endometritis, they do not always reflect susceptibility. Woodward et al. compared
age, biopsy score, and fluid retention 48 h and 96 h after insemination with freeze-killed
semen and reported that 36% of mares changed susceptibility status during subsequent
seasons [8]. Only severe histopathological lesions in the endometrium were associated with
susceptibility in the study of Troedsson et al. [9].

The next approach was the definition of the time required for uterine clearance after
infusion of bacteria or different kinds of particles. Intrauterine bacterial inoculation of
microspheres was cleared by the majority of resistant mares within 24 h, whereas susceptible
mares failed to do so by 96 h [10]. Fumuso et al. used 72 h as the time point when resistant
mares should be negative for intrauterine fluid (IUF), bacteriology and cytology after
intrauterine inoculation of streptococci [11]. LeBlanc et al. infused charcoal into the estrous
uterus, and if no charcoal was detected in uterine lavage fluid after 48 h, the mare was
considered resistant [12].

The introduction of ultrasound examination enabled the detection of IUF accumula-
tion [13], which is typical for susceptible mares after bacterial inoculation or mating [6,14,15].
Today, ultrasound examination of mares and appropriate treatment of susceptible mares
after breeding is a routine procedure. Examination for the presence of IUF is the preferred
method for practice and clinical field studies in diagnosing persistent post breeding en-
dometritis. However, some mares without fluid can show polymorphonuclear leukocytes
(PMN), and some others may show fluid without PMNs [16]. The detection of IUF >24 h
after breeding suggests inadequate or delayed uterine clearance but not necessarily inflam-
mation. Despite this, IUF is the most used and the most practical marker for susceptibility.
Small amounts of fluid are normal during estrus but detection of ≥2 cm of IUF suggests
susceptibility [15]. Approximately 14% of normal Thoroughbred mares in the USA have
been reported to display moderate or large amounts of IUF after breeding [17]. In a similar
study in UK this figure was 30% [14].

3. Post Breeding Endometritis

Dimock and Edwards (1928) cultured stallion semen and mare uteri after mating
and concluded that mares were infected during breeding, streptococci being the most
common bacteria [18]. After that, endometritis caused by mating, foaling, or conformational
abnormalities was considered as the main cause of infertility of mares. In the 1980s, the
main approach for research were intrauterine bacterial inoculations, the consequences of
which were followed, and different parameters measured in mares which were divided
into resistant and susceptible groups [5,6,9,12]. The bacterial challenge studies created a lot
of useful basic knowledge about immunology and inflammation in bacterial endometritis.

In 1994, Kotilainen et al. infused different kinds of inseminates and semen extenders
into the mare uterus instead of bacteria and reported that inflammation after breeding is
induced by sperm [19]. Semen contains bacteria, but they are rapidly eliminated from the
uterus by the intense but short-lived neutrophil influx [19,20]. Troedsson (1999) called this
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physiological phenomenon as post mating or post breeding endometritis (PME or PBE).
Troedsson also used the term persistent post breeding endometritis (PPBE) to describe
abnormally prolonged inflammation [21]. Normally PBE is over <24 h [20]; inflammation
lasting >24–48 h is defined as PPBE. Thus, PBE is a physiological and short-lived defense
mechanism, whereas PPBE is a prolonged reaction to mating. As the name implies, PBE
and PPBE are inflammations, not infections [22,23], but PPBE can turn into bacterial or
fungal endometritis [24] if not treated appropriately (lavage, oxytocin) [25,26]. However,
the term persistent refers to chronic infectious endometritis, and therefore we suggest that
PPBE should be called prolonged post breeding endometritis instead of persistent (Table 1).

Table 1. Classification and treatment of endometrial conditions.

Condition Duration Treatment Justification for Treatment

post-breeding endometritis (PBE) ≤24 h none physiological defense mechanism

prolonged post-breeding
endometritis (PPBE) >24 h ecbolics, lavage, immune

modulators
presence of intrauterine fluid and

neutrophils

acute infectious endometritis days antimicrobials, ecbolics, lavage,
mucolytics bacteria or fungi cultured

chronic infectious endometritis from one to several
weeks

antimicrobials, ecbolics, lavage,
mucolytics bacteria or fungi cultured

endometrosis years none degenerative changes

4. Delayed Uterine Clearance

Endometritis is a multifactorial disease. Uterine clearance equals to the mechanical
pathway in the resolution of inflammation in addition to the innate immune response.

Delayed uterine clearance (DUC) of bacteria and inert, non-antigenic material was
first reported in association with progesterone treatment and increasing age by Evans et al.
in 1986 [27]. The authors suggested that physical clearance through the cervix plays an
important role in the resistance of mares to uterine infection [28]. The existence of delayed
uterine clearance in susceptible mares was confirmed by Troedsson and Liu (1991), who
infused streptococci and non-antigenic microspheres into the uterus of susceptible and
resistant mares [10]. Similarly, scintigraphy clearance studies by Le Blanc and her group
demonstrated that susceptible mares had delayed expulsion of intrauterine radiocolloid as
compared to resistant mares [12]. A tight cervix and inefficient uterine contractions are the
major reasons for DUC.

4.1. Risk Factors

Conformational abnormalities are important risk factors to endometritis. Already in
1937, Caslick published his clinical findings on pneumovagina caused by the incompetence
of the vulvar lips and vagino-vestibular sphincter associated with poor perineal conforma-
tion and underweight [29]. In 1990’s, LeBlanc and her group did many scintigraphy studies
to prove the connection between conformational abnormalities and DUC in susceptibil-
ity [12]. In old multiparous mares, loss of the structural support of the caudal reproductive
tract and stretching of the broad ligaments from repeated pregnancies may result in a
uterus dropping and tilting ventrally in relation to the pelvic brim [30]. This may lead to
urine pooling (accumulation of urine on the floor of the vagina) or pneumouterus [31]. Due
to gravity, a pendulous uterus collects fluid that is difficult to evacuate [12,32]. Persistent
IUF accumulations provide an appropriate environment for the growth of bacteria and
can also be harmful to sperm [33]. Vascular elastosis may contribute to IUF accumulation
through a reduction in endometrial perfusion and uterine drainage due to reduced venous
return in capillary beds [26]. In addition, aged susceptible mares may suffer from inade-
quate lymphatic drainage that contributes to IUF. It has been suggested that lymph vessel
dysfunction may be associated with endometrial fibrosis [34]. Endometrial fibrosis and
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biopsy scores IIB and III have been related to IUF [8,33,35] and susceptibility to bacterial en-
dometritis [9]. Aging of the mare is an important risk factor for fibrosis, IUF, susceptibility,
and fertility [3,4,36–38].

Manipulation of the cervix during insemination, presence of semen/fluid in the uterus,
and prostaglandin F2α (PGF2α) released from the endometrium and from cell membranes of
activated PMNs induce uterine contractions after breeding [39–41]. It has been shown that
susceptible mares differ from resistant mares in the electrical activity of the myometrium
after bacterial challenge. The increase in activity occurred two hours later in susceptible
mares compared to resistant mares and exhibited a sharp decline in activity at 12 h [41]. This
is probably due to increased inducible nitric oxide synthase (iNOS), as nitric oxide relaxes
smooth muscle. Susceptible mares have higher levels of intrauterine NO and increase in
endometrial expression of iNOS mRNA [42,43].

After mating, uterine contents including excess semen and inflammatory by-products
need to be evacuated rapidly [44]. Lymphatic drainage and myometrial contractions driven
by PGF2α play important roles. Myometrial contractions expel uterine contents through
the cervix, and therefore, both an open cervix and strong myometrial contractions are
important in uterine clearance [44,45]. Failure of the cervix to relax is encountered in both
young and aged maiden mares and in some old multiparous mares [45,46]. Repeated
foalings and manipulations of the cervix can result in cervical fibrosis and loss of elasticity
with subsequent failure to dilate during estrus [45].

4.2. Intrauterine Fluid

All conditions listed above may occur in susceptible mares resulting in DUC. We see
this as increased IUF after mating [14] or after bacterial challenge [6]. If the neutrophils and
inflammatory by-products are not removed from the uterus, they will prolong the otherwise
transient inflammation manifested as prolonged leukocytosis. Thus, DUC contributes to
PPBE, but IUF is detected in estrus also before mating [33]. Estrogen increases endometrial
secretion and edema during estrus. It has been shown that mares accumulating fluid
during estrus have more glands with a larger diameter and wider lumens than mares
without IUF [25]. This suggests that hypersecretion of glands could contribute to IUF
accumulation. Tunòn et al. (2000) concluded that serum transudation is a major contributor
for the formation of IUF diluting secretions of uterine glands [47]. Intrauterine fluid that
we use as a diagnostic marker for PPBE originates from secretions of endometrial glands,
from transudation and from failure of the mechanical uterine clearance, the latter being
the most important one. In the studies of Pycock and Newcombe and Reilas et al., fluid
collected from most mares had negative bacteriological and cytological results, and it was
concluded that the fluid was not of inflammatory or infectious origin [14,33].

5. Physiology of Post Breeding Endometritis

When sperm arrive in the uterus, the local innate immune response is activated after
antigen recognition. The antigens are presented to pattern recognition receptors (PRR)
in the endometrial epithelial cells. Pathogen-associated molecular patterns (PAMP) are
recognized by the Toll-like receptors (TLR) to initiate the inflammatory reaction [48]. Elweza
et al. showed in cattle that spermatozoa bind to TLRs [48]. Presumably this also occurs in
horses. In this in vitro study, sperm up-regulated dose-dependently interleukin 8 (IL 8),
tumor necrosis factor α (TNFα), IL1β, nuclear factor kappa B2 (NFκB2), and complement
factor 3 (C3) [49].

The innate immune response in endometritis has been described in detail in the ex-
cellent review of Canisso et al. [48]. Activation of TLRs initiates the inflammatory cascade
which stimulates NFκB. The NFκB pathway activates genes coding for pro-inflammatory
cytokines, chemokines, and cyclooxygenase-2 (COX-2). Pro-molecules of cytokines are acti-
vated by different molecules, but particularly by caspases [48]. In the equine endometrium,
COX-2 is expressed after infusion of seminal plasma or semen extender [50]; furthermore,
COX-2 induces a local endometrial increase in PGF2α, 16 h after breeding [51]. The major
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functions of the innate immune system are to recruit immune cells through activation of
cytokines including chemokines and to activate the complement cascade to enhance the
phagocytosis of damaged cells and microbes. Equine spermatozoa induce the complement
cascade leading to an increase of C3b and C5a, leukotrienes, and prostaglandins (PG)
resulting in the chemotaxis of PMNs into the uterus [48].

Pro-inflammatory cytokines activate vascular endothelial cells (arteriole constriction
and venule dilation) increasing vascular permeability [48]. Transudate leaks to the inter-
stitium causing edema and fluid accumulations. Alterations in the permeability lead to
cellular responses. Chemotaxis of neutrophils is induced via P- and L-selectin. Neutrophils
produce integrins, which bind to adhesion molecules on endothelial cells, and adhere to
the blood vessel walls [48]. Neutrophils are detected in the uterine lumen within 30 min
following artificial insemination (AI) and peak between 6 and 12 h [20,24]. The most
important task of neutrophils is phagocytosis of sperm and bacteria, but they also secrete
additional cytokines and chemotactic mediators, further contributing to inflammation, and
release PGs important for myometrial contractility [48].

Neutrophils, as the first line of immune defense mechanism, are able to form neutrophil
extracellular traps (NETs); this is a phagocytosis-independent mechanism. NETs are DNA
strands surrounded by various cytoplasmic and nuclear proteins that trap and/or kill
bacteria, spermatozoa, and parasites [52,53]. The activity of NETs, called NETosis, is due to
the rupture of neutrophils and release of granules, allowing their chromatin to meet antigens
and other immune cells. Proteins and enzymes found in NETS [52] serve as an additional
antimicrobial mechanism, but they can also stimulate fibrosis establishment [51,54].

Innate immune response is nonspecific and acts as the first line of defense against
pathogens, foreign stimuli that include constituents of seminal fluid, and local infections
(endometritis). It has been recently established that in restraining bacteria, NETs formation
is also involved in the pathogenesis of mare endometrial fibrosis (endometrosis). Moreover,
persistent resident macrophages and mast cell activation could also have pro-fibrotic roles
by secreting great amounts of pro-fibrotic factors and lead to fibrosis [55].

Cytokines

Inflammatory mechanisms of endometritis have been reviewed by Woodward and
Troedsson [56]. Potent pro-inflammatory cytokines IL1α and IL1β are released at the onset
of inflammation and upregulate other pro-inflammatory cytokines. Interferon gamma
(IFNγ) aids inflammatory cells to migrate through vessel walls and upregulates iNOS [56].
Normal mares showed high mRNA expression for IL1β, IFNγ, and chemokine IL8 at 2
and 6 h after AI [56,57]. Expression of TNFα was the highest at 2 h and that of IL6 at
6 h. Although IL6 is initially proinflammatory, it has also protective roles through the
modulation of other pro-inflammatory cytokines and induction of modulating cytokines,
such as interleukin-1 receptor antagonist (IL1RN). Pro-inflammatory cytokines can lead
to exacerbated inflammation and tissue damage; therefore, they must be controlled by
anti-inflammatory cytokines. In resistant mares, IL10 and IL1RN peaked at 6 h [56,57].
Susceptible mares presented lower expression of modulatory cytokines IL6, IL10 and
IL1RN at 6 h than resistant mares. They had also higher neutrophil counts at all time points
compared to resistant mares, but at 2 and 6 h the differences were significant. The data
suggest that around 6 h after AI may be a critical time in developing susceptibility. A failure
to resolve PBE in a timely fashion may be due in part to a failure to mobilize cytokines
during the early Inflammatory period, which could contribute to a delayed resolution of
inflammation in susceptible mares [56,57]. In the study of Fumuso et al. (2007), susceptible
mares had significantly higher mRNA transcription of IL8 and significantly lower of IL10
at 24 h after AI as compared to resistant mares [11]. The inflammatory condition persisted
in susceptible mares after AI until day seven post-ovulation [11]. Both studies show a
delayed pattern of cytokine expression for susceptible mares, particularly for modulatory
cytokines [11,57].



Animals 2022, 12, 779 6 of 17

6. Treatments

The thorough review of Morris et al. presents the treatments of endometritis [24].
Ecbolic agents and uterine lavage target the mechanical pathway by aiding physical clear-
ance. These valuable tools became common practice in the treatment of endometritis first
in the 90’s. Allen introduced the use of oxytocin in the evacuation of uterine contents [58].
Uterine lavage got increasingly common with the embryo flushing techniques and turned
out to be effective in reducing growth of bacteria and number of neutrophils [59]. Accord-
ing to Morris et al., “lavage in susceptible mares is indicated when there is hyperechoic
intrauterine fluid accumulation or if free intrauterine fluid exceeds two cm in diameter” [24].
However, routine uterine lavages of all mares after mating are sometimes practiced. One
should bear in mind that post breeding inflammation is a defense mechanism itself, normal
mares have healthy mucus and mucociliary currents between endometrial folds to drain
fluid, and mating is a natural event with which mares have been able to cope for thou-
sands of years [60]. Unnecessary routine treatments should be abandoned, and treatments
focused on mares that need it.

Immune modulators are our newest drugs: corticosteroids, platelet rich plasma,
stem cells, Mycobacterium wall extracts [24]. Treatments of susceptible mares with pred-
nisolone [61] or dexamethasone [62] after mating resulted in the decrease of IUF and
increase in pregnancy rates. After intrauterine infusion of Escherichia coli, expression of
pro-inflammatory cytokines (IL1β, IL6, IL8) was significantly lower in the mares treated
with dexamethasone than in the non-treated group [63]. In addition, susceptible mares
inseminated with killed sperm and treated with dexamethasone had significantly lower
expression of IL1β at 6 h after AI, as compared to the non-treated cycle, but IL6, IFNγ,
IL6, IL10, and IL1RA were not affected [64]. These studies indicate that deviations in
cytokine expression after mating determine susceptibility. Furthermore, the effects of corti-
costeroid treatments on cytokine expression—decrease in pro-inflammatory and increase
in anti-inflammatory cytokines—improve the cytokine imbalance in susceptible mares.

In Thoroughbred stud farms, a routine use of antibiotics to every mare after mating was
practiced for a long time since it was believed that bacteria cause post breeding endometri-
tis [14]. However, PBE is not associated with bacteria either in normal mares [19,20,65] or
in mares with pathological endometrial changes [66]. Even the uterus of mares with DUC
caused by the blocked cervix contains no bacteria [23]. Although there are bacteria in the
semen, the quick and intensive PMN influx takes care of them within 4 to 12 h [20]. These
studies confirm that administration of antibiotics is not indicated in the treatment of PPBE,
at least not in the early stage. Exceptions are mares with a history of infectious endometritis
or clear signs of it after AI. On the other hand, our sampling methods are not very sensitive,
particularly the swabs [22]. Thus, we may fail to diagnose some asymptomatic mares
with chronic endometritis or dormant streptococci [26,45]. However, the number of these
mares is low, and does not justify routine antibiotic treatments. Each case must be clinically
evaluated for the need of antibiotic administration considering the previous history of
the mare.

7. Etiology of Prolonged Post Breeding Endometritis

When a mare faces a trauma during parturition, the vulvar lips, vulvovaginal sphincter,
vagina, cervix, or uterus may suffer tears which can result in permanent conformational
defects [31]. Multiple pregnancies stretch ligaments and the uterus, which may lead to a
pendulous uterus tilting ventrally and further to fluid accumulations and delayed uterine
clearance [30,32]. Due to repeated parturitions and manipulations, the cervix may become
fibrotic and fail to dilate adequately during estrus [45]. This has been reported also in
embryo donor mares which are exposed to frequent uterine flushes through a relatively
large catheter that stretches the cervix [31,45].
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Occlusion of the Cervix

An experiment by Reilas et al. (2016) showed how mares can become susceptible after
an insult to the uterus [23]. The experiment included three mare groups: (1) controls that
were only inseminated, (2) mares whose cervix was occluded with a clamped catheter for
25 h after AI, and (3) mares having the catheter occluding the cervix opened and drained
6 h after AI and then closed again until 25 h. The mares underwent five cycles: in the 1st,
3rd, and 5th PG-induced cycle, swabs were taken to ascertain that the mares were free of
bacteria and PMNs. In addition, endometrial biopsies were obtained during the first and
last cycle. In the 2nd and 4th cycle, the mares were inseminated. The mares that had been
treated during the 2nd cycle served as controls during the 4th cycle and vice versa. Two
kinds of fluids were collected and analyzed: native undiluted fluids (catheter fluids (6 and
25 h) and tampon fluid (25 h) from the controls) and lavage fluids at 25 h [23].

As expected, the treatment groups accumulated significantly more fluid and PMNs
than the controls in the first treatment cycle. Unexpectedly, during the 2nd treatment
cycle, the controls did not differ from the treated groups since they had as much fluid,
PMNs/mL and total PMNs (fluid volume × PMNs/mL) as the mares with the occluded
cervix. Despite the presence of large amounts of IUF, none of the mares had bacterial
growth. The 25-h fluids contained a lot of cytokines (IL1β, IL6, IL10, TNFα), but there
were differences neither between the cycles nor between the groups. Periglandular fibrosis
increased significantly during the experiment. The pregnancy rate was 2.5 times lower in
the 4th estrus than in the 2nd estrus (17% vs. 42%) [23].

The occlusion of the cervix for 25 h after AI prevented all normal drainage of excess
sperm, PMNs and inflammatory by-products. Their continued presence provoked more
PMNs and cytokines denoting that the endometrium was exposed to inflammatory media
for 25 h. The large volume lavage was the only treatment, but the mares were negative for
PMNs and bacteria in cytology in the next estrus induced by PG on Day 15 [23].

The catheter fluids represent accumulation of cytokines during different time frames,
and therefore, it is impossible to determine, if there was a delay or deficiency or abundance
of certain cytokines. Cytokine expression of susceptible mares differs from that of resistant
mares, being somewhat delayed, particularly for anti-inflammatory cytokines, which
suggests that the inflammation in susceptible mares can be more intense and/or prolonged;
this is also shown by PMN numbers [57]. It is probable that the cytokine release in the
cervix occlusion study changed its pattern from the first treatment cycle to the second
treatment cycle. It is speculated that changes in gene expression could be epigenetic
changes induced by the hostile/highly inflammatory uterine environment. It is not known
if this change persists.

The previous literature implicates that the inflammation must be over by the time the
embryo arrives in the uterus, five to six days post ovulation, to achieve normal pregnancy
rates [45]. However, it seems that already inflammation extending over 24 h is harmful
for the endometrium resulting in long acting or even permanent changes, such as fibrosis,
and low pregnancy rates. This emphasizes the need for timed examinations (6 to 12 h after
breeding) and a quick treatment to aid uterine clearance in problem mares [44].

8. Endometrosis

In his pioneering publication in 1978, Kenney divided chronic histological changes in
equine endometrial biopsies into inflammatory and degenerative [3]. Later those chronic
degenerative changes in the endometrium, which are responsible for infertility mainly in
older mares, were started to be called endometrosis [67,68].

Even though mare endometrial biopsy is considered as safe and practical [3] and
used as a routine standard procedure in the breeding examination of problem mares and
in research experiments, there are some pitfalls. The histopathological grading system
of Kenney and Doig, based on several criteria, such as inflammation, gland density, di-
lation, and nesting, and fibrosis, among others, is in general use [4]. The endometrial
biopsy classification may be biased, since there is a high degree of subjectivity in the in-
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terpretation of histopathological lesions and variability between the grading experience
of pathologists/theriogenologists, and heterogenous endometrial sampling site and tis-
sue characteristics. Thus, caution should be taken when interpreting research data based
on endometrial biopsy classification. Currently histopathological examination of mare
endometrium biopsy is the only available standardized scientific approach, although not
perfect. As an alternative, and/or as a complementary diagnostic approach, the devel-
opment of less invasive and more reliable techniques, such as blood biomarkers would
be desirable.

8.1. Endometritis and Endometrosis Are Interconnected

Chronic degenerative changes of the endometrium affect fertility in many ways.
Lymphatic lacunae and fibrosis can be related to impaired lymph circulation and removal
of fluid from the uterus [3,33,34]. Angiopathies decrease blood flow and perfusion of the
uterus which in turn can affect endometrial edema, uterine clearance, glandular function,
development of the conceptus, and thus overall fertility [3,69,70]. Vascular degeneration is
not limited to endometritis but is found also in myometrial vessels and in large arteries
and veins between the circular and longitudinal myometrial layers [71]. The degeneration
is associated with the number of foals and with the endometrial grade, but not with
age. Elastosis of large vessels may indicate compromised myometrial blood flow and
subsequently impaired uterine contractility [71]. This can be one explanation for the finding
that susceptible mares have deficient contractility after insemination [41]. The presence and
severity of endometrosis and angiosis are correlated indicating that they influence each
other. Perfusion disorders probably facilitate the progression of endometrosis [68].

Periglandular fibrosis can affect a single gland or multiple glands (nesting) and can
be destructive (degeneration and necrosis of glandular epithelial cells) or non-destructive
(epithelial cells intact) [68]. In addition, endometrosis can be classified as metabolically
active, when stromal cells around the endometrial glands are oval in shape, the cytoplasm
is pale and depict ovoid hypochromatic nuclei. In contrast, when the endometrosis is
inactive, the periglandular stromal cells are spindle-shaped with elongated hyperchromatic
nuclei [68]. Periglandular fibrosis and cystically dilated glands have been associated with
fluid collections and ageing of mares [3,8,33,35]. Prolonged post breeding endometritis led
to increase in fibrosis [23] showing that inflammation and fibrosis are somehow connected.

8.2. Pathogenesis of Endometrosis

Pathogenesis of endometrosis and its association with PBE is depicted in Figure 1. The
complex endometrial regeneration during the estrous cycle and pregnancy is similar to the
repair processes occurring after tissue damage in other organs or in several pathological
conditions [72]. There is a concerted cross-talk among the players throughout the estrous
cycle in the mare endometrium, but it is still controversial what drives some mares’ en-
dometrium to develop a pathological condition named endometrosis. The microscopic
hallmark of endometrosis is pathological accumulation of collagen (COL) in the lamina
propria of the endometrium, mostly as a concentric disposition of stromal cells and/or
collagen around the affected endometrial glands, as well as under the basement membrane
of the surface epithelium [3,68]. Most recently, the proteomic analysis of uterine lavage fluid
of mares with endometrosis has shown that endometrial glandular function is also affected,
resulting in the impairment of the secretion of essential proteins [73]. This endometrial
dysfunction might hinder early conceptus development, thus contributing to pregnancy
loss and infertility [3,74,75].

Even though the relationship between endometrial fibrosis, aging, and infertility has
been well established, the etiology of endometrosis being solely ascribed to “wear and tear”
and chronic inflammation of the endometrium remains controversial [3,76–78]. In fact, it
has been reported that aged maiden mares whose endometria had not been challenged with
semen, post-breeding endometritis, pregnancy, foaling or post-partum uterine involution
developed advanced endometrosis [36].
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Mare aging, but not so much parity, is associated with the severity of endometrosis [36,76,79].
It appears that as mares age, dysfunction of modulators of the immune system or of tissue
remodeling, such as defensin β, clusterin, uterine serpin, complement C3, neutrophil
gelatinase-associated lipocalin (NGAL), or connective tissue growth factor (CTGF), among
others, indirectly impair the extracellular matrix (ECM) homeostasis [73,80], which might
predispose to fibrogenesis. In addition, mare’s aging has been associated to increased COL
deposition in the equine endometrium and in the oviduct [81], and to deficient development
of placental microcotyledons [82]. Since equine conceptus development relies initially on
the nutrients that derive from exocrine secretions of endometrial glands (histotroph), and
later on the placenta, endometrium and placenta’s health are intertwined [83]. A study was
carried out in the laboratory of Ferreira-Dias and her group to evaluate COL in placenta
from young and older mares [84]. Although COL increased in the pregnant horn of the
placenta of mares between 10 and 15 years of age, it did not appear to impair fertility [84].
However, in this study the maximum age of the mares was 15 years, the age after which
mares are more likely to develop endometrosis, placental malfunction, and placenta with
histopathological lesions related to infertility [36,85]. Aged mares are more prone to develop
fibrosis not only in the endometrium but also in the oviduct, which may impair oviductal
function, endometrial glandular function, fertilization, early conceptus development, and
implantation [3,74,75,86].

8.2.1. Cytokines and Other Fibrosis Mediators

As discussed before, the influx of systemic inflammatory cells, such as neutrophils,
into the uterine lumen, and the release of their inflammatory by-products is a major part
of the innate immune defense. However, if the PBE turns to PPBE, it may result in the
establishment of endometrosis [23]. The inflammatory cells and injured cells in the en-
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dometrium produce pro-fibrotic cytokines, chemokines, interleukins, growth factors, and
other proteins, which in a paracrine fashion activate resident fibroblasts to differentiate into
myofibroblasts leading to fibrogenesis. Besides acting on collagen and other ECM compo-
nents, endometrial immune cells, such as neutrophils, eosinophils, lymphocytes, resident
macrophages, and mast cells synthesize pro-fibrotic cytokines that seem to affect metal-
loproteinases (MMPs) and their tissue inhibitors (TIMP) in mare endometrium [55,87,88].
These cell signaling paths have been shown to connect inflammation to fibrosis in human
kidney [89]. The severity of endometrosis may depend on the effect of transforming growth
factor β1 (TGF)-β1, since myofibroblast differentiation is stimulated in vitro by this protein,
which is secreted mainly by endometrial immune cells [87,88]. In vitro treatment of equine
endometrial fibroblasts with TGF-β1 up-regulated the expression of ECM components and
alpha smooth muscle actin (αSMA) transcripts via its effect on MMPs and TIMPs [87,89].
Furthermore, the expression of IL6, IL1α„ IL1β, and IL10 has been linked to inflammatory
cells (lymphocytes, neutrophils, eosinophils), and to histopathological lesions of the en-
dometrium, being up-regulated in the presence of endometrosis [87,90,91]. In addition, in
the mare, TGF-β1 might be an important regulator of the remodeling of the endometrial
ECM mediated by MMPs and TIMPs [89].

A small phospholipid molecule, named lysophosphatidic acid (LPA), modulates cel-
lular interactions, which are crucial for many physiological processes and cytoskeleton
structure maintenance [92]. Also in the mare, LPA was found in the endometrium in
all phases of the estrous cycle, but in higher levels in the mid-luteal phase. In the fol-
licular phase, LPA content was lower in the presence of endometrosis, when compared
to healthy endometrium [93]. In addition, when mid-luteal phase endometrial explants
were treated with LPA, there was an increase in the in vitro production of CTGF from
Kenney and Doig’s category IIB and III explants [4,93]. As shown in a mouse peritoneal
fibrosis model, LPA contributes to fibrosis by stimulating CTGF and driving fibroblast
proliferation in a paracrine manner [94]. Therefore, LPA and CTGF could affect physio-
logical events of the endometrium throughout the estrous cycle and early pregnancy [93].
Another hormone-dependent activation of the NF-κB-dependent fibrosis pathway has been
reported to occur in the follicular phase, under estrogen dominance [95]. The canonical
NF-κB signaling pathway was activated in the follicular phase when an active destruc-
tive endometrosis was present [96]. Nevertheless, when destructive endometrosis was
inactive, activation of this fibrotic pathway only occurred in the mid-luteal phase [96]. In
addition, pro-inflammatory monocyte chemoattractant protein-1 (MCP-1) gene transcripts
were up-regulated in destructive endometrosis [96]. Thus, several cytokines and growth
factors could affect the remodeling of the ECM, and immunomodulate fibrogenesis in the
establishment of endometrosis in the mare [55].

8.2.2. Neutrophils and NETs

Neutrophils, as the first line of the non-specific innate immune defense mechanism
against pathogens, move from the bloodstream, strongly attach to the endothelium cell
barrier to cross it and to get to the infection site in the tissue. There neutrophils are ac-
tivated by chemokines produced by mast cells and resident tissue macrophages to kill
infectious agents in many diverse ways [97,98]. In addition to their classical functions
of phagocytosis and degranulation by the extracellular release of lytic enzymes and the
capacity to form reactive oxygen species (ROS) by NADPH oxidase, these inflammatory
cells have developed a phagocytosis-independent system of pathogen destruction by form-
ing neutrophil extracellular traps—NETs [52,99,100]. The NETs consist of the extracellular
release of DNA strands surrounded by proteins from neutrophil cytoplasm and nucleus,
which entangle bacteria and parasites to destroy them [52,97]. Also, the mare endometrium,
when challenged by bacteria, such as strains of Escherichia coli, Streptococcus equi subspecies
zooepidemicus or Staphylococcus capitis isolated from mares with endometritis, has the ability
to form NETs, both in vitro and in vivo, as shown by their presence in endometrial mucus
ex vivo [101]. The proteins found in NETS, such as histones, myeloperoxidase, cathepsin
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G, and elastase [52], appear to be an additional antimicrobial mechanism developed in
mares to resist endometritis [53,101,102]. Nevertheless, despite the role of neutrophils by
restraining the infectious agents in situ through NETs action, their persistence might result
in tissue damage and COL deposition and fibrosis establishment [53,102]. Likewise, in mare
endometrium, explants subjected in vitro to different doses of elastase, myeloperoxidase,
or cathepsin G increased COL1 production [103]. All enzymes present in NETs raised
in vitro COL1 production by endometrial explants in the follicular phase, and in all Ken-
ney’s endometrium categories, but in mid-luteal phase, only endometria with moderate or
severe lesions responded to elastase and cathepsin G with increased COL1 production [103].
Equine neutrophils have also the capacity to produce NETs when in contact with equine
spermatozoa, which can be degraded by DNA present in the seminal plasma [104,105].
In contrast, in the donkey, seminal plasma but not sperm cells themselves, induces NETs
production [106]. Thus, NETs action could represent a beneficial reproductive strategy for
the female reproductive tract to select sperm [106] or fight endometritis [102]. Nevertheless,
the persistence of activated neutrophils in mare’s endometrium might have a deleterious
effect mediated by NETs enzymes that stimulate fibrosis establishment during estrous cycle
and depend on histopathological condition [103].

8.2.3. Prostaglandins

Prostaglandins participate in a variety of physiological functions in female reproduc-
tion and are profusely produced in the ovary and endometrium [107]. The role of PGs,
their pathway enzymes and tissue receptors in fibrogenesis in human tissues have been
reviewed. While PGE2 is considered an anti-fibrotic mediator that acts through its receptors
2 (EP2) and 4 (EP4) [108,109], PGF2α mediates COL deposition [110]. It appears that in
mare endometrium, PGE2 protects against fibrosis induced by NETs enzymes, through its
receptor EP2, but not EP4 [111]. Most likely, when anti-fibrotic effect of PGE2 is suppressed
in the endometrium, due to impaired EP2 expression or PGE2 production, fibrogenesis
may override. Then, the pathological deposition of COL increases in moderate to severe
endometrosis, in the follicular phase, as well as in healthy endometrium or with slight
inflammation in mid luteal phase [111]. Also, profibrotic cytokines may be involved in
alternative pathways of fibrogenesis, rather than PGs [111].

In contrast, PGF2α acting on its receptor PTGFR has been considered a fibrogenesis
mediator in human lung [112] and rat heart fibroblasts [113]. In the mare, endometrial
explants treated with enzymes found in NETs, the production of PGF2α and PTGFR tran-
scription differed with estrous cycle phase and endometrial category [114]. Thus, NETs
enzymes up-regulated PGF2α production and/or PTGFR transcription in the follicular
phase endometrium, while in the mid luteal phase tissues with no pathological changes, or
very mild ones, PTGFR transcripts decreased [114]. However, when endometrium retrieved
in the mid-luteal phase presented endometrosis, enzymes found in NETs induced PTGFR
transcripts [114]. As in other tissues, where PGF2α pathway activation facilitates fibrogene-
sis, PGF2α may also be involved in endometrosis pathogenesis. In the mare, endogenous
endocrine priming, such as estrogens in the follicular phase and/or progesterone in the
luteal phase, might regulate the PGF2α pathway and stimulate fibrosis establishment in
healthy or pathological endometrium challenged by enzymes present in NETs [114]. Thus,
an association between the PGF2α-pathway and collagen deposition in mare endometrium
is suggested [103,114]. In addition, previous in vitro studies in mare endometrium have
already evidenced an association between COL1 and PGF2α [115], namely after stimulation
of endometrial explants with elastase [116]. Moreover, the increase in COL1 secretion
from fibroblasts challenged with PGF2α shows the pro-fibrotic role of this eicosanoid in
endometrosis [93]. In the process of endometrosis formation, disruption in the transcript
levels of PG synthases and PG production in the endometrium might contribute to estrous
cycle dysregulation and to early embryonic loss [117]. In another study, treatment of
endometrial fibroblasts with PGE2 up-regulated the transcription of MMP-2 and MMP-9
and down-regulated MMP-13 [93]. Since equine spermatozoa induce PGF2α release from
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the endometrium, which induces neutrophil chemotaxis into the uterus [48], the mecha-
nism of NETs formation might further stimulate PGF2α release. Therefore, PPBE might be
responsible for the establishment of endometrosis, mediated by PGF2α.

9. Epigenetics

Transcript levels of DNA methylases (DNMTs) and their correlation with COL tran-
scripts in the endometrium of mares with different degrees of fibrosis have been evalu-
ated [118]. In the last stage of endometrosis (category III), DNMT3B and COL3A1 tran-
scripts were positively correlated, suggesting that there is a disturbance in collagen and
DNMTs in endometrium during the fibrosis process [118]. As previously reviewed for
epigenetics influence on idiopathic pulmonary fibrosis in humans [79], the increase in
DNMTs might be related to a downregulation of anti-fibrotic genes, thus stimulating fi-
brogenesis in mare endometrium. The aging process influences DNA methylation, which
might have pathologic consequences, such as fibrosis, when DNA in collagen genes is
hypermethylated [119,120]. As mares aged, severity of endometrosis, as well as DNMT1
and DNMT3B transcripts increased, accompanied by alterations in the correlation between
collagen types and DNMTs [118]. However, since DNA methylation only reflects global
methylation, identification of specific methylation sites in mare endometrium is imperative
to unravel if that occurred in a particular site of a gene (CpG Islands), such as COL.

10. Conclusions

A plethora of evidence has shown that endometritis and endometrosis are linked
processes that create a vicious cycle. The more prone the mare is to develop endometri-
tis, the more susceptible she is also for endometrosis establishment. Endometrial tissue
insult by sperm or pathogens, activation of either resident inflammatory cells, or invading
neutrophils from the bloodstream, stimulate the release of pro-inflammatory cytokines
and NETs and activation of some pro-fibrotic pathways, either through PG, cytokines,
growth factors or epigenetics, affecting ECM architecture and endometrial function. When
endometritis prevails, the uterine milieu changes from an inflammatory environment to a
fibrotic endometrium, which, in turn, is more susceptible to develop persistent endometritis
and to become hostile to sperm and early embryos, resulting in infertility.
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