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Abstract:Assuming that there exists a translating soliton u∞ with speed C in a domainΩ andwith prescribed
contact angle on ∂Ω, we prove that a graphical solution to the mean curvature �owwith the same prescribed
contact angle converges to u∞ +Ct as t →∞.We also generalize the recent existence result of Gao, Ma, Wang
and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.
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1 Introduction
We study a non-parametric mean curvature �ow in a Riemannian product N ×R represented by graphs

Mt :=
{(
x, u(x, t)

)
: x ∈ Ω

}
(1.1)

with prescribed contact angle with the cylinder ∂Ω ×R.
We assume that N is a Riemannian manifold and Ω b N is a relatively compact domain with smooth

boundary ∂Ω. We denote by γ the inward pointing unit normal vector �eld to ∂Ω. The boundary condition is
determined by a given smooth function ϕ ∈ C∞(∂Ω), with |ϕ| ≤ ϕ0 < 1, and the initial condition by a smooth
function u0 ∈ C∞(Ω̄).

The function u above in (1.1) is a solution to the following evolution equation

∂u
∂t = W div ∇uW in Ω × [0,∞),

∂γu
W := 〈∇u, γ〉W = ϕ on ∂Ω × [0,∞),

u(·, 0) = u0 in Ω̄,

(1.2)

where W =
√

1 + |∇u|2 and ∇u denotes the gradient of u with respect to the Riemannian metric on N at
x ∈ Ω̄. The boundary condition above can be written as

〈ν, γ〉 = ϕ, (1.3)
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where ν is the downward pointing unit normal to the graph of u, i.e.

ν(x) = ∇u(x, ·) − ∂t√
1 + |∇u(x, ·)|2

, x ∈ Ω̄.

The longtime existence of the solution ut := u(·, t) to (1.2) and convergence as t → ∞ have been studied
under various conditions on Ω and ϕ. Huisken [5] proved the existence of a smooth solution in a C2,α-smooth
bounded domain Ω ⊂ Rn for u0 ∈ C2,α(Ω̄) and ϕ ≡ 0. Moreover, he showed that ut converges to a constant
function as t →∞. In [1] Altschuler and Wu complemented Huisken’s results for prescribed contact angle in
case Ω is a smooth bounded strictly convex domain in R2. Guan [4] proved a priori gradient estimates and
established longtime existence of solutions in case Ω ⊂ Rn is a smooth bounded domain. Recently, Zhou [8]
studied mean curvature type �ows in a Riemannian product M ×R and proved the longtime existence of the
solution for relatively compact smooth domains Ω ⊂ M. Furthermore, he extended the convergence result of
Altschuler andWu to the caseM is a Riemannian surface with nonnegative curvature and Ω ⊂ M is a smooth
bounded strictly convex domain; see [8, Theorem 1.4].

The key ingredient, and at the same time themain obstacle, for proving the uniform convergence of ut has
been a di�culty to obtain a time-independent gradient estimate. We circumvent this obstacle by modifying
the method of Korevaar [6], Guan [4] and Zhou [8] and obtain a uniform gradient estimate in an arbitrary
relatively compact smooth domain Ω ⊂ N provided there exists a translating soliton with speed C and with
the prescribed contact angle condition (1.3).

Towards this end, let d be a smooth bounded function de�ned in some neighborhood of Ω̄ such that
d(x) = miny∈∂Ω dist(x, y), the distance to the boundary ∂Ω, for points x ∈ Ω su�ciently close to ∂Ω. Thus
γ = ∇d on ∂Ω. We assume that 0 ≤ d ≤ 1, |∇d| ≤ 1 and |Hess d| ≤ Cd in Ω̄. We also assume that the function
ϕ ∈ C∞(∂Ω) is extended as a smooth function to the whole Ω̄, satisfying the condition |ϕ| ≤ ϕ0 < 1.

Our main theorem is the following:

Theorem 1.1. Suppose that there exists a solution u∞ to the translating soliton equation
div ∇u∞√

1 + |∇u∞|2
= C∞√

1 + |∇u∞|2
in Ω,

∂γu∞√
1 + |∇u∞|2

= ϕ on ∂Ω,
(1.4)

where C∞ is given by

C∞ =
−
∫
∂Ω ϕ dσ∫

Ω
(

1 + |∇u∞|2
)−1/2 dx

. (1.5)

Then the equation (1.2) has a smooth solution u ∈ C∞(Ω̄, [0,∞)) with W ≤ C1, where C1 is a constant depending
on ϕ, u0, Cd, and the Ricci curvature of Ω. Moreover, u(x, t) converges uniformly to u∞(x) + C∞t as t →∞.

Notice that the existence of a solution u ∈ C∞
(
Ω̄ × [0,∞)

)
to (1.2) is given by [8, Corollary 4.2].

Remark 1.2. Very recently, Gao, Ma, Wang, and Weng [3] proved the existence of such u∞ and obtained
Theorem 1.1 for smooth, bounded, strictly convex domains Ω ⊂ Rn for su�ciently small |ϕ|; see [3, Theorem
1.1, Theorem 3.1]. It turns out that their proof can be generalized beyond the Euclidean setting under suitable
bounds on the convexity of Ω and the Ricci curvature in Ω.

More precisely, let Ω b N be a relatively compact, strictly convex domain with smooth boundary admit-
ting a smooth de�ning function h such that h < 0 in Ω, h = 0 on ∂Ω,(

hi;j
)
≥ k1

(
δij
)

(1.6)

for some constant k1 > 0 and supΩ |∇h| ≤ 1, hγ = −1 and |∇h| = 1 on ∂Ω. Furthermore, by strict convexity of
Ω, the second fundamental form of ∂Ω satis�es(

κij
)

1≤i,j≤n−1 ≥ κ0
(
δij
)

1≤i,j≤n−1, (1.7)
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where κ0 > 0 is the minimal principal curvature of ∂Ω. In the Euclidean case, N = Rn, such functions h are
constructed in [2]. We give some simple examples at the end of Section 3.

Theorem 1.3. Let Ω b N be a smooth, strictly convex, relatively compact domain associated with constants
k1 > 0 and κ0 > 0 as in (1.6) and (1.7). Let α < min{κ0, k1(n − 1)/2} and assume that the Ricci curvature in
Ω satis�es |Ric | < α(k1(n − 1) − α)/(n + 1). Then there exists ε0 > 0 such that if ϕ =: cos θ ∈ C3(Ω̄) satis�es
| cos θ| ≤ ε0 ≤ 1/4 and ||∇θ||C1(Ω̄) ≤ ε0 in Ω̄, there exist a unique constant C∞ and a solution u∞ to (1.4).
Furthermore, u∞ is unique up to an additive constant.

We will sketch the proof of Theorem 1.3 in Section 3.

2 Proof of Theorem 1.1
Let u be a solution to (1.2) in Ω̄ × R. Given a constant C∞ ∈ R we de�ne, following the ideas of Korevaar [6],
Guan [4] and Zhou [8], a function η : Ω̄ ×R→ (0,∞) by setting

η = eK(u−C∞ t)
(
Sd + 1 − ϕW 〈∇u,∇d〉

)
, (2.1)

where K and S are positive constants to be determined later. We start with a gradient estimate.

Proposition 2.1. Let u be a solution to (1.2) and de�ne η as in (2.1). Then, for a �xed T > 0, letting

(Wη)(x0, t0) = max
x∈Ω̄, t∈[0,T]

(Wη)(x, t),

there exists a constant C0 only depending on Cd, ϕ, C∞, and the lower bound for the Ricci curvature in Ω such
that W(x0, t0) ≤ C0.

Proof. Let g = gijdxidxj be the Riemannian metric of N. We denote by (gij) the inverse of (gij), uj = ∂u/∂xj,
and ui;j = uij − Γkijuk. We set

aij = gij − u
iuj
W2

andde�ne anoperator L by Lu = aijui;j−∂tu. Observe that (1.2) can be rewritten as Lu = 0. In all the following,
computations will be done at the maximum point (x0, t0) of ηW. We �rst consider the case where x0 ∈ ∂Ω.
We choose normal coordinates at x0 such that gij = gij = δij at x0, ∂n = γ,

u1 ≥ 0, ui = 0 for 2 ≤ i ≤ n − 1.

This implies that
di = 0 for 1 ≤ i ≤ n − 1, dn = 1, and di;n = 0 for 1 ≤ i ≤ n.

We have

0 ≥ (Wη)n = Wnη + Wηn

= eK(u−C∞ t)
(
SWnd + Wn −

ϕWn
W gijuidj + SWdn −

W
Wϕngijuidj

− WWϕgij(ui;ndj + uidj;n) + WWn
W2ϕg

ijuidj

+ KWun(Sd + 1 − ϕW gijuidj)
)

= eK(u−C∞ t)
(
Wn + SW − ϕnun − ϕun;n + KWun(1 − ϕ2)

)
. (2.2)
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Using our coordinate system, we get

0 ≥ Wn
W + S − ϕnunW − ϕun;n

W + Kun(1 − ϕ2)

= S − u
2
1d1;1
W2 + u1ϕ1

W

(
1 + 2ϕ2

1 − ϕ2

)
− ϕu1
W Ku1

− ϕnunW + Kun(1 − ϕ2)

≥ S − C − Kϕu
2
1

W + Kun(1 − ϕ2)

= S − C − KϕW ≥ S − C − K
W ,

for some constant C depending only on Cd and ϕ. So choosing S ≥ C + 1, we get that

W(x0, t0) ≤ K. (2.3)

Next we assume that x0 ∈ Ω and that S ≥ C+ 1, where C is as above. Let us recall from [8, Lemma 3.5] that

LW = 2
W aijWiWj + Ric(νN , νN)W + |A|2W ,

where νN = ∇u/W and |A|2 = aija`kui;kuj;`/W2 is the squared norm of the second fundamental form of the
graph Mt. Since 0 = Wiη + Wηi, for every i = 1, . . . , n, we deduce that

0 ≥ L(Wη) = WLη + η
(
LW − 2aij

WiWj
W

)
= WLη + ηW

(
|A|2 + Ric(νN , νN)

)
.

This yields to
1
η Lη + |A|2 + Ric(νN , νN) ≤ 0. (2.4)

To simplify the notation, we set

h = Sd + 1 − ϕukdk/W = Sd + 1 − ϕνkdk .

So we have
1
η Lη = K2aijuiuj + KL(u − C∞t) + 2K

h aijuihj + 1
h Lh. (2.5)

We can compute Lh as

Lh = aij
(
Sdi;j − (ϕdk)i;jνk − (ϕdk)iνkj − (ϕdk)jνki − ϕdkLνk

)
≥ −C − 2aij(ϕdk)iνkj − ϕdkLνk .

Since, by [8, Lemma 3.5],
Lνk = Ric(ak`∂`, νN) − |A|2νk

and, by Young’s inequality for matrices,

aij(ϕdk)iνkj = 1
W (ϕdk)iaija`ku`;j ≤

|A|2
6 + C,

we get the estimate
Lh ≥ −C − |A|2/3 + ϕdkνk|A|2 (2.6)

by using the assumption that Ric is bounded.
Next we turn our attention to the other terms in (2.5). We have

aijui = uj
W2 and aijuiuj = 1 − 1

W2 . (2.7)

Then we note that by the assumptions, we clearly have

KL(u − C∞t) = KC∞ ≥ −KC, (2.8)
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and we are left to consider

aijuihj =
ujhj
W2 =

uj
(
Sdj − (ϕdk)jνk − ϕdkνkj

)
W2

≥ −C −
ϕdkujνkj
W2

= −C + Kϕa`kdku`
W + ϕ

hW a`kdkh`

= −C + Kϕa`kdku`
W

+ Sϕa`kdkd`
hW − ϕa

`kdk(ϕds)`νs
hW − ϕ

2a`kdkdsasmum;`
hW2

≥ −C − CKW2 −
|A|2
3K . (2.9)

Plugging the estimates (2.6), (2.7), (2.8), and (2.9) into (2.5) and using (2.4) with the Ricci lower bound we
obtain

0 ≥ K2
(

1 − 1
W2

)
− CK − 2K

h

(
C + CK

W + CK
W2 + |A|

2

3K

)
− 1
h
(
C + |A|2/3 − ϕdkνk|A|2

)
+ |A|2 − C

= K2
(

1 − 1
W2 −

C
hW2

)
− KC

(
1 + 1

h

)
− |A|

2

h + ϕdkνk|A|2
h − Ch + |A|2 − C.

Then collecting the terms including |A|2 and noticing that

1 − 1
h + ϕdkνk

h = Sd
h ≥ 0

we have

0 ≥ K2
(

1 − 1
W2 −

C
hW2

)
− CK

(
1 + 1

h

)
− C.

Now choosing K large enough, we obtain W(x0, t0) ≤ C0, where C0 depends only on C∞, d, ϕ, the lower
bound of the Ricci curvature in Ω, and the dimension of N. We notice that the constant C0 is independent of
T.

Since
eK
(
u(·,t)−C∞ t

)
(1 − ϕ0) ≤ η ≤ eK

(
u(·,t)−C∞ t

)
(S + 2),

we have

W(x, t) ≤ (Wη)(x0, t0)
η(x, t)

≤ C0η(x0, t0)
η(x, t) (2.10)

≤ C0(S + 2)
1 − ϕ0

eK
(
u(x0 ,t0)−C∞ t0−u(x,t)+C∞ t

)
for every (x, t) ∈ Ω̄ × [0, T].

We observe that the function u∞(x) + Ct solves the equation (1.2) with the initial condition u0 = u∞ if u∞
is a solution to the elliptic equation (1.4) and C is given by (1.5). As in [1, Corollary 2.7], applying a parabolic
maximum principle ([7]) we obtain:

Lemma 2.2. Suppose that (1.4) admits a solution u∞ with the unique constant C given by (1.5). Let u be a
solution to (1.2). Then, we have

|u(x, t) − Ct| ≤ c2,

for some constant c2 only depending on u0, ϕ, and Ω.



36 | Jean-Baptiste Casteras, Esko Heinonen, Ilkka Holopainen, and Jorge H. De Lira

Proof. Let V(x, t) = u(x, t) − u∞(x), where u∞ is a solution to (1.4). We see that V satis�es
∂V
∂t = ãijVi;j + biVi + C in Ω × [0, T)

c̃ijViνj = 0 on ∂Ω × [0, T),

where ãij, c̃ij are positive de�nite matrices and bi ∈ R. Then the proof of the lemma follows by applying the
maximum principle.

In view of Lemma 2.2, taking C∞ = C, and observing that the constant C0 is independent of T, we get
from (2.10) a uniform gradient bound.

Lemma 2.3. Suppose that (1.4) admits a solution u∞ with the unique constant C given by (1.5). Let u be a
solution to (1.2). Then W(x, t) ≤ C1 for all (x, t) ∈ Ω̄ × [0,∞) with a constant C1 depending only on ϕ0, u0, and
Ω.

Having a uniform gradient bound in our disposal, applying oncemore the strongmaximum principle for
linear uniformly parabolic equations, we obtain:

Theorem 2.4. Suppose that (1.4) admits a solution u∞ with the unique constant C given by (1.5). Let u1 and u2
be two solutions of (1.2) with the same prescribed contact angle as u∞. Let u = u1 − u2. Then u converges to a
constant function as t → ∞. In particular, if C is given by (1.5), then u1(x, t) − u∞(x) − Ct converges uniformly
to a constant as t →∞.

Proof. The proof is given in [1, p. 109]. We reproduce it for the reader’s convenience. One can check that u
satis�es 

∂u
∂t = ãijui;j + biui in Ω × [0,∞)

c̃ijuiνj = 0 on ∂Ω × [0,∞),

where ãij, c̃ij are positive de�nite matrices and bi ∈ R. By the strong maximum principle, we get that the
function Fu(t) = max u(·, t) − min u(·, t) ≥ 0 is either strictly decreasing or u is constant. Assuming on the
contrary that limt→∞ u is not a constant function, setting un(·, t) = u(·, t − tn) for some sequence tn →∞, we
would get a non-constant solution, say v, de�ned on Ω × (−∞, +∞) for which Fv would be constant. We get a
contradiction with the maximum principle.

Theorem 1.1 now follows from Lemma 2.3 and Theorem 2.4.

3 Proof of Theorem 1.3
Theorem 1.3 is essentially proven in [3, Theorem 2.1, 3.1]. The only extra ingredient wemust take into account
in our non-�at case is the following Ricci identity for the Hessian φi;j of a smooth function φ

φk;ij = φi;kj = φi;jk + R`kjiφ`. (3.1)

For the convenience of the reader, wemostly use the same notations as in [3]. Thus let h be a smooth de�ning
function of Ω such that h < 0 in Ω, h = 0 on ∂Ω, (hi;j) ≥ k1(δij) for some constant k1 > 0 and supΩ |∇h| ≤ 1,
hγ = −1 and |∇h| = 1 on ∂Ω. Furthermore, by strict convexity of Ω, the second fundamental form of ∂Ω
satis�es

(κij)1≤i,j≤n−1 ≥ κ0(δij)1≤i,j≤n−1,

where κ0 > 0 is the minimal principal curvature of ∂Ω.
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We consider the equation 
aijui;j :=

(
gij − uiuj

1+|∇u|2

)
ui;j = εu in Ω

∂γu = ϕ
√

1 + |∇u|2 on ∂Ω
(3.2)

for small ε > 0. Writing ϕ = − cos θ, v =
√

1 + |∇u|2 and

Φ(x) = logw(x) + αh(x),

where w(x) = v − u`h` cos θ and α > 0 is a constant to be determined, we assume that the maximum of Φ is
attained in a point x0 ∈ Ω̄. If x0 ∈ ∂Ω, we can proceed as in [3, pp. 34-36]. Thus choosing 0 < α < κ0 and
0 < ε0 ≤ εα < 1 such that

κ0 − α >
εα(M1 + 3)

1 − ε2
α

, (3.3)

where M1 = supΩ̄ |∇
2h|, yields an upper bound

|∇′u(x0)|2 ≤
ε0(M1+3)

1−ε2
0

+ α

κ0 − α − ε0(M1+3)
1−ε2

0

< κ0

κ0 − α − εα(M1+3)
1−ε2

α

for the tangential component of∇u on ∂Ω. Combining this with the boundary condition uγ = −v cos θ gives
an upper bound for |∇u(x0)| and hence for Φ(x0).

The only di�erence to the Euclidean case occurs when x0 ∈ Ω, i.e. is an interior point of Ω. At this point
we have, using the same notations as in [3, p. 42],

0 = Φi(x0) = wi
w + αhi

and

0 ≥ aijΦi;j(x0) =
aijwi;j
w − α2aijhihj + αaijhi;j =: I + II + III.

We choose normal coordinates at x0 such that u1(x0) = |∇u(x0)| and
(ui;j(x0))2≤i,j≤n is diagonal. Then at x0, we have

II + III ≥ −α2(1 + 1/v2) + αk1(n − 1 + 1/v2).

We denote J = aijwi;j = J1 + J̃2 + J3 + J4, where J1, J3 and J4 are as in [3, (2.19)]. We have, by [3, (2.22)],

J3 + J4 ≥ −C(| cos θ| + |∇θ| + |∇2θ|)u1 − C(| cos θ| + |∇θ|)
n∑
i=2
|uii|,

where C depends only on n,M1 and supΩ̄ |∇
3h|. Writing S` = u`

v − h` cos θ and using the Ricci identity

aijuk;ij = aijui;jk + Ric(∂k ,∇u)

(see [8, (2.28)]) and (3.2), we get

J̃2 = aij
(
ukuk;ij
v − uk;ijhk cos θ

)
= Skaijui;jk + Sk Ric(∂k ,∇u)

= −Skaij;kui;j + Sk(εu)k + Sk Ric(∂k ,∇u)

= J2 + εu1S1 + Sk Ric(∂k , ∂1)|∇u|,

where J2 is as in [3, (2.19)]. Since |S1| ≤ 2 and |Sk| ≤ 1 for k ≥ 2, we obtain

J̃2 ≥ J2 − (n + 1)|RicΩ ||∇u|, (3.4)
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where |RicΩ | is the bound for the Ricci curvature in Ω, i.e. |Ric(x)| ≤ |RicΩ | for all unit vectors x ∈ TΩ. At
this point, we can proceed as in [3] to get that

J1 + J2 ≥
n∑
i=2

u2
ii

2v .

So combining the previous estimates, we �nd

I = J
w ≥ −C(| cos θ| + |∇θ| + |∇2θ|) − (n + 1)|RicΩ |.

Hence we obtain

0 ≥ I + II + III ≥ −C(| cos θ| + |∇θ| + |∇2θ|) − (n + 1)|RicΩ | − α2(1 + 1/v2) + αk1(n − 1 + 1/v2)
=: C1 + C2/v2,

where
C1 = −Cε0 − (n + 1)|RicΩ | + α

(
k1(n − 1) − α

)
and C2 = α(k1 − α). If C1 > 0 and C2 > 0, we get a contradiction, and therefore the maximum of Φ is attained
on ∂Ω. If C1 > 0 and C2 < 0, then v2 ≤ −C2/C1 and again we have an upper bound for Φ(x0). To have C1 > 0
we need

|RicΩ | <
(
α(k1(n − 1) − α

)
− Cε0)/(n + 1). (3.5)

Fixing α < min{κ0, k1(n − 1)/2} and assuming that

|RicΩ | <
(
α(k1(n − 1) − α

)
/(n + 1) (3.6)

and, �nally, choosing 0 < ε0 ≤ min{εα , 1/4} small enough so that (3.5) holds, we end up again with a contra-
diction, and therefore the maximum of Φ is attained on ∂Ω. All in all, we have obtained a uniform gradient
bound for a solution u to (3.2) that is independent of ε. Once the uniform gradient bound is established the
rest of the proof goes as in [1] (or [3]).

In some special cases we get sharper estimates than those above.

Example 3.1. As the �rst example let us consider the hyperbolic space Hn and a geodesic ball Ω = B(o, R).
Furthermore, we choose

h(x) = r(x)2

2R − R2
as a de�ning function for Ω. Here r(·) = d(·, o) is the distance to the center o. Then κ0 = coth R and we may
choose k1 = 1/R. Since Ric(∂k , ∂1) = −(n − 1)δk1, (3.4) can be replaced by

J̃2 ≥ J2 − 2(n − 1)|∇u|

and consequently (3.6) can be replaced by

2(n − 1) < α
(

(n − 1)/R − α
)
,

where α < min{coth R, n−1
2R }. Hence we obtain an upper bound for the radius R. For instance, if n = 2, then

α < 1
2R and we need R < 1

2
√

2
. For all dimensions, α = 1 and R < n−1

2n−1 will do.

Example 3.2. As a second example let N be a Cartan-Hadamardmanifoldwith sectional curvatures bounded
from below by −K2, with K > 0. Again we choose Ω = B(o, R) and

h(x) = r(x)2

2R − R2 .

Now 1/R ≤ κ0 ≤ K coth(KR) and again we may choose k1 = 1/R. This time Ric(∂1, ∂1) ≥ −(n − 1)K2 and
Ric(∂k , ∂1) ≥ − 1

2 (n − 1)K2 for k = 2, . . . , n, and therefore instead of (3.4) and (3.6) we have

J̃2 ≥ J2 − K2((n + 1)2/2 − 2
)
|∇u|
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and
K2((n + 1)2/2 − 2

)
< α
(

(n − 1)/R − α
)
,

where α < min{1/R, n−1
2R }. Again we obtain upper bounds for the radius R. If n ≥ 3 we need

R <
(

n − 2
K2
(

(n + 1)2/2 − 2
))1/2

whereas for n = 2 the bound
R < 1

2
√

2K
is enough since now Ric(∂2, ∂1) = 0.

Con�ict of interest: Authors state no con�ict of interest.
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