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Abstract

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly
scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics
are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design.
Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize
candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in
human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly
inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for
de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that
may help to design new effective drugs.

Keywords: COVID-19, SARS-CoV-2, drug repositioning, drug design, virtual screening, 7-hydroxystaurosporine, bafetinib, syncytia,
kinase inhibitors, delta variant

Introduction
The rapid diffusion of the COVID-19 pandemic has called
for a prompt reaction from the biomedical research com-
munity. Although new vaccines have been developed
as preventive options against the infection spreading
[1, 2], the ongoing vaccination campaign is still rolling
significantly slowly in many areas of the planet. Fur-
thermore, even if monoclonal antibody-based therapies
represent an appealing option to treat the most severe
cases of COVID-19, they are expensive and not easy to
mass produce [3]. Thus, more effective and affordable
treatments for COVID-19 are still required to support
medical intervention for the disease worldwide.

The SARS-CoV-2 entry in the cells is mediated by the
virus spike protein that binds the angiotensin I convert-
ing enzyme 2 (ACE2) receptor of the host [4]. The spike
protein initiates the viral–cell membrane fusion, thus
delivering the viral RNA in the host cell cytoplasm. The
spike protein reaction is dependent on proteolytic cleav-
age, as well as activation of viral envelope glycoproteins,
by host cell proteases, such as transmembrane protease,
serine 2 (TMPRSS2), cathepsin L (CTSL) and cathepsin
B (CTSB) [5]. SARS-CoV-2 can use both the endosomal
cysteine (CTSB/CTSL) and serine (TMPRSS2) proteases to
prime the host cells, since the full inhibition of viral entry
can only be attained by the presence of both protease
inhibitors [6]. Currently available therapeutic options
target stages of the viral life cycle (e.g. nucleotide analogs
or broad-spectrum antiviral drugs), the host immunolog-
ical response (anti-inflammatory drugs or monoclonal
antibodies) or vascular acute damage (antihypertensive

and anticoagulant drugs) [7–12]. ACE2 receptor and
TMPRSS2 may serve as therapeutic targets due to their
crucial role in the initial phases of the viral infection
[6, 13].

Antivirals, especially antiretrovirals, represent the
class of therapeutic agents that has been investigated
to a larger extent [14, 15]. Various other drug classes
were also proposed, such as anticancer drugs (e.g. kinase
inhibitors) and antimicrobials [16, 17]. The majority of
clinical trials focuses on hydroxychloroquine alone or in
combination with other compounds (38.65%), followed
by immunotherapeutic (33.13%) and antiviral agents
(9.20%) [18].

Given the cost and time required for de novo drug
development, drug repositioning is emerging as a
viable solution [19–22]. Several efforts have been made
to experimentally screen large libraries of candidate
compounds [23–26]. Traditional screening e.g. high-
throughput screening (HTS), represents the first step in
modern drug development, testing thousands to millions
of small molecules in parallel. HTS ‘hits’ allow the iden-
tification of therapeutic targets and to validate biological
effects even when little is known about the compound.
However, HTS has a substantial cost in terms of time
and resources, requiring the experimental testing of
libraries of hundreds of thousands of small molecules to
obtain a few active compounds for further investigation.
This translates into typical hit rates between 0.01% and
0.14% [27]. In contrast, virtual screening can improve
the success rate and reduce costs in the early phases of
drug development. Virtual libraries are not constrained
to logistic aspects (e.g. availability, cost, storage), allowing
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to computationally assay heterogeneous libraries of
small molecules against the desired targets, resulting
in a reduced set of candidate molecules (few tens).
In addition, drug-likeness or absorption, distribution,
metabolism, excretion and toxicity (ADMET) criteria
can be embedded into the process to further increase
the quality of the selected candidates [28]. Although
virtual screening results still need to be experimentally
validated, the number of experiments can be limited to
a handful of molecules.

Several computational strategies to drug repositioning
for COVID-19 have been proposed. For example, Le et al.
and Mousavi et al. identified candidate therapies based
on the analysis of omics data to characterize both the
mechanism of action (MOA) of drugs as well as the
molecular alterations of the COVID-19 disease [29, 30].
Complementary bioinformatic approaches based on
network analysis have also recently been employed
to identify potential drugs for COVID-19 treatment
[12, 31, 32].

Gordon et al. [26] used a computational approach to
identify human proteins with high affinity for structural
SARS-CoV-2 components. Subsequently, they selected
drugs known to target these proteins and performed in
vitro screening.

Cheminformatics strategies, based on quantitative
structure–activity relationship (QSAR) modeling and
molecular docking, have also been developed. For
example, Alves et al. developed QSAR models to predict
the compound inhibitory activity of the main protease
(Mpro) of the SARS-CoV-2 and employed these models
to perform a virtual screening of the DrugBank database
[33]. On the other hand, Amin et al. exploited previous
knowledge about the SARS-CoV virus and performed a
QSAR screening to identify an active set of SARS-CoV
papain-like protease (PLpro) inhibitors, which were then
used to virtually screen an in-house chemical library and
was further validated by a molecular docking analysis on
a homolog model of the SARS-CoV-2 PLpro [33].

Both bioinformatic and chemoinformatic approaches
have their strengths and limitations. Although chemin-
formatic strategies for drug repositioning usually include
a step of virtual screening, bioinformatic approaches
are limited to the study of existing drugs and offer
little or no viable information to be used in the context
of de novo drug development. On the other hand,
cheminformatic approaches often neglect the biological
MOA as well as the downstream biological effects of the
drugs. Comprehensive integrated approaches, bridging
bioinformatics and cheminformatics, are still missing.
Hence, we propose a novel integrated computational
approach to prioritize candidate drugs for treating
COVID-19. We prioritized compounds from the whole
DrugBank library by virtual screening and selected 23
candidates for in vitro infection assays to reveal drugs
with potential antiviral activity against SARS-CoV-2. 7-
Hydroxystaurosporine and bafetinib showed significant

antiviral effect in human epithelial cells. Interestingly,
the two drugs also revealed a synergistic effect in
blocking virus-induced syncytia formation. The strength
of our strategy is the integration of cheminformatic and
bioinformatic methodologies. Our analytical framework
allows the prioritization of a few drugs based on the
estimated associations between chemical substructures
and desired molecular effects, as potential therapies
for COVID-19. Moreover, the set of relevant chemical
substructures could also serve as a molecular fragment
library for de novo drug design or lead optimization.

All the scripts, data and images used in this work are
available at https://doi.org/10.5281/zenodo.5643558.

Results and discussion
An integrated computational methodology
for drugs prioritization
We integrated multiple bioinformatics and cheminfor-
matics methods to prioritize drugs for the treatment of
COVID-19 (Figure 1). Our framework is designed to work
with four complementary bioinformatics approaches
(Figure 1A–D). We compared the molecular MOA, defined
as the set of all the differentially expressed genes
(DEGs), of the COVID-19 and of the drugs under
study (Figure 1A). Since intricate regulatory patterns of
molecular regulation are activated to achieve adaptation
to a drug exposure, particular emphasis is given to
the molecular alterations that follow a dynamic dose-
dependent pattern. Thus, we further investigated the
MOA of the drugs to identify its portion with a clear point-
of-departure (POD), which is denoted as the specific dose-
time point at which a given molecule is altered from
the steady state in a monotonic manner (Figure 1B).
Under the hypothesis that an effective drug should
be able to counterbalance the perturbation caused by
a disease, we used a connectivity mapping [34] based
method to identify effective drugs capable of reverting
the alteration induced by the disease (Figure 1C).
Recently, several drug repositioning approaches have
been developed, based on the analysis of gene co-
expression networks and drug–targets relationships [35,
36]. The main assumption behind these approaches is
that genes that are topologically central in the network
have a pivotal role in the adaptation to exposure. Conse-
quently, we prioritized the drugs according to the impor-
tance of their gene targets in the network (Figure 1D).
By merging these approaches, we identified a robust rank
of the drug by means of the Borda method (Figure 1G)
and we extracted from there a list of relevant chemical
substructures (Figure 1H1).

Moreover, by applying QSAR-based cheminformatics
methods, we identified chemical substructures of drugs
predictive of the deregulation level of the ACE2 recep-
tor, the transmembrane protease TMPRSS2 and the cell
surface proteolytic enzymes CTSB and procathepsin L
(CTSL) (Figure 1E and H2). Finally, we retrieved chemical
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Figure 1. Proposed methodology. We integrated multiple bioinformatics and cheminformatics methods to prioritize drugs for the treatment of COVID-
19 (A–E). Our framework consists of four complementary bioinformatics approaches, including differential expression analysis (A), dynamic dose-
dependent MOA (B), connectivity mapping (C) and network-based drug targeting (D) as well as a QSAR-based cheminformatics method (E). We further
complemented our set of candidate chemical substructures with those extracted from active drugs as experimentally tested in multiple studies (F). The
four bioinformatics approaches are merged to find a robust rank of the drugs (G). From the rank produced by the bioinformatic approaches, the QSAR
method and from the list of screened drugs, three lists of chemical substructures are identified (H1–H3) with the aim of increasing the robustness of the
predictions as well as to generate knowledge readily usable in the context of de novo drug development. Eventually, we exploited the set of candidate
chemical substructures by performing a virtual screening analysis of the DrugBank database (I).

substructures of the drugs that were identified as active
in previous screenings for COVID-19 (Figure 1F and H3)
(the list of assays and thresholds used to define drugs as
active is available in Supplementary Table S1).

We merged the three sets of chemical substructures
with the aim of increasing the robustness of the predic-
tions as well as to generate knowledge readily usable
in the context of de novo drug development (Figure 2A,
Supplementary Table S2). Based on the presence of
these chemical substructures, we identified candidate
drugs effective against COVID-19, by computationally
prioritized drugs from the DrugBank database [37,
38] with PubChem-available fingerprints (Figure 2B)
(Supplementary Table S3) expected to interfere with
disease-associated biological processes. Furthermore, we
evaluated how different the drug prioritization would
be without the effect of the substructures derived from
active drugs against SARS-CoV-2. The overall ranking of
DrugBank in the two scenarios achieves a Kendall Tau
rank correlation of 0.77. Thus, our integrative strategy
would still result in a useful prioritization even if prior
knowledge on effective drugs was not available (e.g. at
the beginning of the pandemic), helping to avoid the
expensive screening on large drug libraries.

Computationally aided drug prioritization
identifies a subset of candidate drugs for
COVID-19
From the 8000 drugs examined from DrugBank, we
focused on the top 700 to select a set of relevant
candidates for further experimental validation. Our
inclusion criteria was a trade-off between the selection
of a set of drugs that best represents the top of the
prioritized list, based on their chemical substructures
(Figure 2C), and a number of practical considerations
such as price, availability, shipping time and ease of
storage. Taking into account the aforementioned criteria,
we validated our method by performing an in vitro
biological evaluation of 23 selected drugs (the drug list is
available in Supplementary Table S3).

The majority of drugs currently in clinical trials
for COVID-19 treatment present either antiviral or
immunomodulating properties, with the aim of targeting
the viral life cycle and alleviating the lung-damaging
symptoms [18, 39]. Kinases play an important role
in many of these biological processes, and therefore,
different kinase inhibitors have been proposed for
COVID-19 treatment [40, 41]. These compounds show
pharmacodynamic properties allowing the dual goal
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Figure 2. (A) Consensus strategy to identify relevant chemical substructure, using bioinformatics and cheminformatics methods as well as experimental
results from published literature. (B) The suggested approach allows reducing the number of experimental tests: the whole DrugBank database was
filtered to less than 800 relevant drugs and in vitro testing was performed on 23 candidates. (C) Graphical representation of the prioritized drugs. The
shade blue represents the number of chemical substructures identified in (A), present in the drugs. The 23 selected compounds are shown in red. They
were selected among the drugs sharing the most relevant substructure as well as satisfying practical logistic criteria. Of the 23 drugs, the two highlighted
in green have been experimentally identified as active. (D) Pharmacological characterization and description of known association with COVID-19 of
the 23 tested drugs. In silico refers to drugs derived from in silico studies, whereas proposed refers to drugs suggested for their potential therapeutic role
in literature.

of mitigating both host immunological response and
antiviral activity [40]. Twelve out of the 23 identified
drugs relate to oncological treatments, and eight of them
act as kinase inhibitors (Figure 2D). Similarly to antiviral
drugs, anticancer drugs may, indeed, target biological

processes, which have a crucial role in modulating the
organism immune response, cell division and death, cell
signaling and microenvironment generation [42]. Several
studies on the repurposing of anticancer drugs to treat
COVID-19 already exist [42–44]. For instance, Roshewski
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et al. showed that acalabrutinib, a selective Bruton
tyrosine kinase inhibitor, can mitigate the hyperinflam-
matory immune response characterizing the most severe
cases of COVID-19 [45]. The histone methyltransferase
inhibitor pinometostat, instead, seems to decrease the
level of NF-kB, one of the main players of the immuno-
logical response [46], and to alleviate the host-response
against infections [47]. Inhibitors of intracellular calcium
homeostasis seem to block virus-induced cell–cell fusion
(known as syncytia formation), one of the hallmarks of
severe SARS-CoV-2 infection [44, 48].

Our analysis successfully highlighted several drugs
that are either under investigation or acted effectively
against SARS-CoV-2 infection. The selected 23 candidates
for further investigation comprise anticancer, antimicro-
bial and antiviral drugs (Figure 2D). Drugs from all three
classes showed to lower the virus titer and to tune down
the cytokine storm syndrome in the most severe cases
of the disease [49]. As expected, our approach identified
antiviral drugs (against hepatitis C), which were already
predicted as a COVID-19 treatment, or are currently in
clinical trials against SARS-CoV-2 infection (https://cli
nicaltrials.gov/ct2/show/NCT04498936) [50, 51]. Among
the three identified antibiotics, delafloxacin, a fluoro-
quinolone antimicrobial agent, was also studied for its
antiviral activity at the early stages of the COVID-19
pandemic [52].

Altogether, approximately half of the tested candi-
date drugs were proposed as a potential COVID-19 treat-
ment (Figure 2D). This demonstrates the capability of our
methodology to identify potential drug candidates and
to highlight a new set of existing compounds without
previous association to COVID-19 or SARS-CoV-2.

Validation in human cells confirmed
7-hydroxystaurosporine and bafetinib
as potential COVID-19 treatment
To experimentally validate our computational predic-
tions, we tested the set of candidate drugs at different
concentrations (0.09, 0.9 and 9 μM) on HEK-293 T cells
stably expressing human ACE2 and TMPRSS2 (HEK-293 T-
AT) [53]. Cells were infected with the SARS-CoV-2 strain
initially isolated from Wuhan (here referred as wild type,
WT), at a multiplicity of infection (MOI) of 0.5 infectious
units (i.u.) per cell for 16–18 h. The percentage of infected
cells was determined by immunofluorescence detection
of viral proteins followed by automated imaging and
image analysis (Supplementary Figure S1A). Out of the
23 drugs, 7-hydroxystaurosporine and bafetinib showed
a statistically significant inhibition of the number of
virus-infected cells when tested at 9 μM, showing relative
infection values of 0.51 and 0.69, respectively (Figure 3A,
red asterisks). Ponatinib, instead, significantly inhibited
the infection but also displayed a strong cytotoxic effect
(Figure 3A, blue asterisk, Supplementary Figure S2) and
was therefore excluded from further analysis.

7-Hydroxystaurosporine is an antineoplastic agent
with potent in vitro and in vivo activities, and its capability

of sensitizing a variety of cell lines in vitro was previously
described [54, 55]. 7-Hydroxystaurosporine is often used
in combination with other drugs for its synergistic effect
of enhancing cytotoxic effect in human cancer cells, e.g.
in treating leukemia (https://www.clinicaltrials.gov/ct2/
results?cond=&term=UCN-01&cntry=&state=&city=&di
st=) [54, 56, 57]. To our knowledge, no connection between
7-hydroxystaurosporine and SARS-CoV-2 emerged in
terms of possible COVID-19 treatment. Bafetinib is a
second generation tyrosine kinase inhibitor prescribed
against Philadelphia chromosome-positive chronic
myelogenous leukemia [58]. In addition, bafetinib was
recently identified as a SARS-CoV-2 inhibitor in other
drug repurposing studies [59, 60]. Bouhadduo et al.
proposed and tested bafetinib as a possible COVID-19
drug, modifying the phosphoproteome of SARS-CoV-2
infected cells in vitro [60].

Combination of 7-hydroxystaurosporine
and bafetinib inhibits SARS-CoV-2 infection
Next, we tested whether a combination of the two
identified compounds would result in stronger antivi-
ral activity without compromising cell viability. For
this, we performed two additional infection assays
in which we exposed the HEK-293 T-AT cells to 7-
hydroxystaurosporine and bafetinib alone, or in com-
bination. In the first assay, the concentration of bafetinib
was fixed at 3 μM, whereas the concentration of 7-
hydroxystaurosporine varied as 0.9 μM, 3 μM and 9 μM
(Figure 3B, Supplementary Figure S1B). In the second
assay, the concentration of 7-hydroxystaurosporine was
fixed at 3 μM, whereas the concentration of bafetinib
varied as in the first assay (Figure 3C). The cells were
exposed to the drugs 2 h before infection (hbi).

These results indicate that 7-hydroxystaurosporine
had a significant inhibitory effect on viral infection
already at 3 μM (Figure 3B). The combination with bafe-
tinib resulted in an increased antiviral activity, reducing
the number of infected cells by >80% (Figure 3B). The
same applies for bafetinib, which showed a significant
but moderate antiviral activity at 3 μM. The inhibitory
effect of bafetinib activity was even stronger when
combined with 7-hydroxystaurosporine (Figure 3C,
Supplementary Figure S3B).

To test if the drugs blocked SARS-CoV-2 cell entry,
which occurs during the first hour of infection [61], or
a post entry step of the virus life cycle, we added the
drugs 2 h postinfection (hpi) and quantified the fraction
of infected cells 16 hpi (Supplementary Figure S4). We
observed a similar antiviral effect in cells treated after
infection, indicating that the drugs mainly inhibit a post-
entry step of infection (Supplementary Figure S4).

The effect of the two drugs was tested in a differ-
ent cell line, Caco-2 cells stably overexpressing ACE2
(Caco2-ACE2) and endogenously expressing TMPRSS2
(Figure 4A). The antiviral effect of 7-hydroxystaurosporine,
bafetinib, and of the two drugs combined, was confirmed.
At a concentration of 3 μM, the infection inhibition was
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Figure 3. (A) Percentage of infected cells after drug treatments normalized by the median of the DMSO control. Each drug was added 45 min before
infection and infected cells fixed 16 h later; red asterisks show significant P-values (<0.05) for the one-tailed t-test between each treatment and the
DMSO. (B) Combined effect of 7-hydroxystaurosporine and bafetinib added 2 hbi at indicated concentrations. Cells fixed 16 hpi. (C) Combined effect of
bafetinib and 7-hydroxystaurosporine added 2 hbi at indicated concentrations. Cells fixed 16 hpi.

>60%, 80% and 90%, respectively (Figure 4A and B). As
a comparison, we show that camostat, a well-known
inhibitor of TMPRSS2 [62], reduces viral infection at
a similar range of concentrations in Caco2-ACE2 cells
(Figure 4C and D).

Both bafetinib and 7-hydroxystaurosporine exhibited
a concentration-dependent inhibition of viral infection
(Figure 5) and predicted benchmark dose (BMD) values of
1.22 and 5.09 μM, respectively (Figure 5A and B), whereas
the predicted BMD values for the two combination were
0.63 and 0.65 μM (Figure 5C and D).

HEK-293 T-AT cells, used here to validate the drug
identification strategy, do not adhere strongly to imaging
plates (Supplementary Figure S3A). Thus, cell numbers
varied considerably making the estimation of drug tox-
icity difficult. For this reason, we next performed two
separate toxicity tests, using both cell lines HEK-293 T-
AT and Caco2-ACE2.

Cytotoxicity of 7-hydroxystaurosporine and its
combination with bafetinib
We determined the cytotoxicity of 7-hydroxystaurospor-
ine alone and in combination with bafetinib using the
Cello Green assay (Promega). HEK-293 T-AT and Caco2-
ACE2 cells were exposed to 7-hydroxystaurosporine
alone in 0.3, 1, 1.5, 3 and 9 μM, as well as in combination
with bafetinib fixed to 3 μM for 20 h. No toxicity was
observed in HEK-293 T-AT cells up to 3 μM and up to
9 μM in Caco2-ACE2 cells as determined by relative cell
viability to dimethyl sulfoxide (DMSO) control (Figure 6).

7-Hydroxystaurosporine and bafetinib
synergistically block SARS-CoV-2-induced
cell–cell fusion
The ability of some pathogenic human viruses, including
SARS-CoV-2, to induce cell–cell fusion, a phenomenon
known as syncytia formation [63], was linked to viral
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Figure 4. (A) Representative fluorescence images of Caco2-ACE2 cells treated with bafetinib, 7-hydroxystaurosporine and their combinations 2 hbi. Cells
fixed 16 hpi; cyan = nuclei, magenta = infected cells. (B) Relative infection quantification of experiment in (A); values normalized to the median of DMSO
controls. All values represent the averages of three experiments. Error bars indicate the SD. (C) Representative fluorescence images of Caco2-ACE2 cells
treated with camostat. (D) Relative infection quantification of experiment in (C).

spreading, pathogenicity and tissue damage in vivo
[48]. When infected by SARS-CoV-2, HEK-293 T-AT
cells efficiently fuse, forming large multinucleated
cells (Figure 7A). In addition to a reduction in the
number of infected cells, a machine learning-assisted
image analysis revealed that 7-hydroxystaurosporine, at
4.5 μM, strongly inhibited virus-induced cell–cell fusion,
reducing the average nuclear content per cell by >80%
(Figure 7A and B, Supplementary Figure S1C and D). The
combination with bafetinib increased this inhibitory
effect, reducing the formation of large multinucleated
cells by more than 90% and 60%, at 4.5 and 2.25 μM,
respectively (Figure 7B). At the lowest concentration, 7-
hydroxystaurosporine had a moderate inhibitory effect
on syncytia formation, whereas the combination with
bafetinib significantly blocked cell–cell fusion even at
1.125 μM (Figure 7B).

However, by targeting ABCB1 and ABCG2 transporters,
bafetinib is known to increase the intracellular accumu-
lation of anticancer drugs by blocking the drug efflux
[64]. This could be a plausible mechanism for how this
inhibitor enhances the effect of 7-hydroxystaurosporine.
Interestingly, in addition to allowing drug efflux, this
group of ABC transporters was recognized for their
role in syncytialization [65]. Buchrieser et al. and Ou
et al. highlighted connections between multinucleated

syncytial cells and, similarly to other viruses such as
measles, respiratory syncytial virus (RSV) and MERS,
SARS-CoV-2 induces cell–cell fusion, a phenomenon
particularly evident in severe COVID-19 [66, 67]. Sisk
et al. demonstrated that the membrane fusion is blocked
in the presence of Abl kinase inhibitors (imatinib, GNF2
and GNF5) and thus prevented syncytia formation in
coronavirus (infectious bronchitis virus) spike protein-
induced Vero cells [68]. More recently, another study
demonstrated that the fusogenic activity of the viral
spike can be inhibited by targeting cellular factors [44].

7-Hydroxystaurosporine and bafetinib inhibit
infection of SARS-CoV-2 delta variant
We tested whether the combination of 7-hydroxystauros
porine and bafetinib would also inhibit the recently
emerged delta variant of SARS-CoV-2, which is known
to be more infectious and more fusogenic (i.e. higher
capacity to induce syncytia) than the WT strain [69].
Caco2-ACE2 cells were treated with 1 or 3 μM con-
centrations of 7-hydroxystaurosporine in combination
with 3 μM bafetinib for 30 min before infection.
The treatment also inhibited the delta variant in a
concentration-dependent manner. Interestingly, and
consistent with the higher infectivity and fusogenic
capacity attributed to this variant, higher concentrations
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Figure 5. Concentration–response curve analysis. The BMD values, their lower (BMDL) and upper (BMDU) bounds and the IC50 values were computed for
bafetinib (A), 7-hydroxystaurosporine (B) and their combinations (C–D). The y-axes show the infection rate normalized by the one measured in DMSO.
Bafetinib and 7-hydroxystaurosporine were tested at 0.09, 0.9, 3 and 9 μM, whereas in combination they were tested at 0.9, 3 and 9 μM. The BMD, BMDL,
BMDU and IC50 in (C) refer to the experiments performed where 7-hydroxystaurosporine was combined with a fixed concentration (3 μM), whereas
bafetinib concentration varied.

Figure 6. Relative cell viability in HEK-293 T-AT (A) and Caco2-ACE2 (B) cells normalized by the median of the DMSO. Cells were treated with different
concentrations of 7-hydroxystaurosporine and its combination with bafetinib. Lysis buffer was also included as positive controls. All values represent
the averages of four replicates. Error bars indicate the SD. Lower values of relative cell viability indicate cytotoxicity.
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Figure 7. 7-Hydroxystaurosporine and bafetinib inhibit virus-induced syncytia. (A) Representative fluorescence images of HEK-293 T-AT cells treated
with indicated drugs 1 h before infection. Cells fixed 16 hpi; cyan = nuclei, magenta = infected cells. Zoomed areas from each image are indicated by
white boxes. (B) Quantification of cell size and nuclear content from the experiment in (A); values normalized to the median of DMSO controls. All
values represent the averages of three experiments. Error bars indicate the SD. Red asterisks show significant P-values (<0.05) for the one-tailed t-test
between each treatment and the DMSO.

Figure 8. 7-Hydroxystaurosporine and bafetinib inhibit delta variant infection. (A) Representative fluorescence images of Caco2-ACE2 cells treated with
the combination of bafetinib and 7-hydroxystaurosporine 30 min before infection with WT and the delta variant. Bafetinib concentration was fixed to
3 μM, whereas 7-hydroxystaurosporine varied as 1 μM and 3 μM; cyan = nuclei, magenta = infected cells. Zoomed areas from each image are indicated by
white boxes. (B) Quantification of relative infection from the experiment in (A); values normalized to the median of DMSO controls. All values represent
the averages of three replicates. Error bars indicate the SD.

of drugs were required to achieve the same inhibition
efficiency obtained for the WT. Even if at 3 μM the
combination of the two drugs significantly decreased
infection by >70%, the remaining infected cells appeared
fused together (i.e. syncytia, Figure 8, zoomed images).
Cell–cell fusion induced by the WT virus was almost

completely inhibited at this drug concentration. These
results indicate that although the combination of drugs
identified in this study are also effective against SARS-
CoV-2 delta variant, the dose of the drugs must be
increased to achieve sufficient inhibition of infec-
tion.
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Figure 9. Structural comparison between 7-hydroxystaurosporine and bafetinib. (A) 2D structures of 7-hydroxystaurosporine (left) and bafetinib (right);
the conjugated π-bond system is highlighted in red. (B) 3D structures of 7-hydroxystaurosporine (left) and bafetinib (right). (C) Front view and (D) side
view of 7-hydroxystaurosporine and bafetinib 3D structural overlay with (right) and without (left) solvent accessible surface. Color code for (B), (C) and
(D): carbon atoms and solvent-accessible surfaces are shown in lilac and orange for 7-hydroxystaurosporine and bafetinib, respectively; oxygen atoms
in red; nitrogen atoms in blue; fluorine atoms in cyan and hydrogen atoms in white.

Structural comparison between
7-hydroxystaurosporine and bafetinib
As 7-hydroxystaurosporine and bafetinib exhibited the
highest inhibitory activity against SARS-CoV-2 infection
at low micromolar concentrations, we investigated
further their 2D structures and 3D geometries. In
terms of molecular fingerprints, most of the com-
mon substructures highlighted aromaticity-related
similarities. In fact, based on their 2D structures
(Figure 9A), both candidates possess a highly conjugated
π-bond system with 22 and 27 sp2-hybridized atoms
for 7-hydroxystaurosporine and bafetinib, respectively.
Fused aromatic rings and a high degree of conjugation
suggest a planar geometry, which was confirmed
when we generated and compared their 3D models
(Figure 9B–D). Despite the different nature of their
2D structural scaffolds, the generated 3D geome-
tries overlayed and displayed a 67% shape-similarity
(Supplementary Table S4), which may partially explain
their antiviral activity in the biological assays. Although
we cannot suggest a common target, both compounds
are known to bind several proteins and induce multiple
downstream effects (Supplementary Table S5). The 3D
conformation generated for bafetinib is in line with
the model presented by Zhang et al. [64], with the

ligand docked into the binding pocket of the ABCG2
transporter efflux. Inhibition of ABCG2 also supports
the possible explanation for the synergistic effect when
the compounds were used in combination. However,
as 7-hydroxystaurosporine and bafetinib lowered the
infection rate also when tested alone, a clear explanation
for their intrinsic antiviral activity remains unknown.
Of note, the drug candidate K-252a shares the same
aromatic and planar core of 7-hydroxystaurosporine
(Supplementary Figure S5); however, it did not show
inhibitory activity in the biological assays. The lack of
its intrinsic activity may be due to the missing hydroxy
group in the isoindolinone moiety and/or to the different
substituents (e.g. the lack of a basic functional group)
and the number of the sp3-hybridized carbon atoms
in the conformationally distinct aliphatic heterocyclic
moieties i.e. tetrahydro-2H-pyran and tetrahydrofuran
in 7-hydroxystaurosporine and K-252a, respectively.
In addition, we used the webtool (https://bqflab.githu
b.io) WADDAICA [70] to assess whether bafetinib and
7-hydroxystaurosporine would contain any structures
associated with pan-assay interference compounds
(PAINS) [71], thus reducing the impact of our results. No
associations to PAINS were detected for either bafetinib
or 7-hydroxystaurosporine.
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Conclusive remarks
One of the lessons learned during the current pandemic
is that innovative approaches are required to speed up
drug development while increasing its success rate. Large
experimental screenings are currently used to identify
potential leading compounds, but they require signifi-
cant time and resources.

We computationally prioritized the DrugBank database
for potential SARS-CoV-2 inhibitors by using an inte-
grated procedure comprising multiple bioinformatics
and cheminformatics methods. Our strategy allowed
us to make an informed decision about which drugs
to test, out of almost 8000 drugs from DrugBank, thus
significantly reducing the potential costs of drug repo-
sitioning, while simultaneously increasing the success
rate. We experimentally assayed 23 representatives of
the prioritized library and found that two drugs, 7-
hydroxystaurosporine and bafetinib, showed significant
inhibition of viral infection. In addition, an image
analysis of the infected versus treated cells showed that
the formation of multinucleated syncytial cells was also
significantly reduced. Unexpectedly, when combined, the
two drugs exerted an even stronger, synergistic inhibition
of viral infection as well as cell–cell fusion inhibition at
lower concentrations. Further in vitro experimentation
showed that the drugs in combination were still effective
1 h after the infection of the cells, suggesting that
they may hinder a post entry mechanism of the virus.
Moreover, our results also confirmed the effectiveness of
the combination of the drugs against the more infective
SARS-CoV-2 delta variant.

Even though the focus of this work is on the integrated
computational methodology, we speculated that a pos-
sible synergistic mechanism is based on the inhibitory
effect of the ABCG2 transporter efflux of bafetinib, which
could potentially increase the intracellular concentra-
tion of 7-hydroxystaurosporine and therefore potentiate
its effect. However, further experimental work for char-
acterizing the MOA of the drugs could be performed in
follow-up studies.

Our integrated approach can be generalized by includ-
ing other types of prior knowledge to guide drug pri-
oritization and it could significantly help the repurpos-
ing of drugs for other diseases. In addition, our results
are not limited to candidate repositionable drugs but
include a characterization in terms of chemical substruc-
tures relevant to the viral system considered. Indeed, we
conjecture that this set of chemical substructures can be
further exploited in the context of scaffold-based de novo
drug design.

Methods
RNA-Seq data preprocessing
Human transcriptomics datasets analyzed in this study
were retrieved from the Gene Expression Omnibus (GEO)
repository, annotated with the GEO ID GSE147507 [72, 73].
The datasets are composed as following: human lung

biopsies of SARS-CoV-2-infected patients and uninfected
control; A549 cell line infected with SARS-CoV-2, A549
cell line infected with SARS-CoV-2 overexpressing ACE2,
Calu-3 cells infected with SARS-CoV-2; NHBE cell line
infected with SARS-CoV-2. For each of the cell lines, the
mock treated lines were collected to be used as con-
trols for the expression analysis. The preprocessing of
human transcriptomics datasets was carried out starting
from the raw counts provided within the GEO record.
To remove the less biologically relevant features, low
read counts were filtered by applying the proportion test
method implemented within the NOISeq Bioconductor
package [74]. The proportion test is a procedure that
allows to identify genes expressed at levels higher than
a given cut-off (see NOISeq documentation for more
details), by assigning a P-value to each feature. Features
with P-value > 0.05 in all the biological conditions are
discarded. Filtered counts were then normalized through
the median of ratios method implemented in the DESeq2
package [75] to make the samples comparable for dif-
ferential analysis [76]. Median of ratios normalization
takes into account the sequencing depth and the RNA
composition of the samples to be compared, so it is con-
sidered a standard method for between-samples compar-
isons. Differential expression analysis was carried out by
using the DESeq2 Bioconductor package and the P-values
were adjusted using the Benjamini–Hochberg method
[77].

Co-expression network inference and analysis
Five co-expression networks were inferred for both the
human biopsies and all the infected cell lines by using
the clr algorithm [78] implemented in the minet pack-
age [79] with Pearson correlation as the estimator. The
expression values of the DEGs were used to infer the
networks. The subsequent operations on the inferred
networks were carried out through the use of the INfORM
tool [80]. INfORM is a software designed to carry out
the most common operations on (biological) networks,
such as network inference, network-based gene prioriti-
zation, module detection, functional annotation. In this
work, we exploited INfORM functionalities to get a robust
network-based gene rank for each of the networks. The
robustness of the gene ranks is ensured by a multi-rank
aggregation function, implemented in INfORM, that is
based on several centrality measures, including degree,
closeness, clustering coefficient, betweenness and eigen-
vector and a biological significance score calculated as
abs(log2FC × −log2(P-value)), where FC is the fold change
of the genes and P-value is the significance of the differ-
ential expression analysis. In detail, INfORM builds gene
ranks for each of the aforementioned metrics and then it
aggregates them through the use of the Borda function,
implemented in the TopKLists package [81].

Open TG-GATEs data preprocessing
Raw microarray data for 129 drugs were downloaded
from the Open Toxicogenomics Project-Genomics Assisted

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab507/6484515 by N

ational Library of H
ealth Sciences user on 23 M

arch 2022



Computationally prioritized drugs | 13

Toxicity Evaluation System (TG-GATEs) repository (https://
dbarchive.biosciencedbc.jp/en/open-tggates/download.
html) [82]. The dataset comprises in vivo samples from
the liver and kidney of rats exposed to three dose levels
of the drugs at four time points as well as a respective
set of in vitro samples from rat primary hepatocytes.
The samples were imported in R by using the justRMA
function [83] from the R library Affy [84]. Outliers
were identified with the RLE and NUSE functions from
the affyPLM package [85] and the slope of the RNA
degradation curve implemented in the affy package [84].
A sample was removed from the analysis when marked
as outlier by at least two out of the three methods. The
probes were annotated to Ensembl genes [by using the
rat2302rnensgcdf (v. 22.0.0) annotation file] from the
brainarray website (http://brainarray.mbni.med.umich.e
du/), and the resulting expression matrix was quantile
normalized by using the normalizeQuantile function
from the limma package. In the end, only the subset
of in vivo samples from rat liver with a single exposure
experimental setup were considered for further analysis,
and the ensembl genes were mapped to gene symbols by
using the AnnotationDBi package [86].

Dynamic dose-responsive PODs
For each drug of the Open TG-GATEs, the dynamic dose-
dependent MOA and the corresponding POD were iden-
tified through the use of the TinderMIX software [87].
Starting from the pairwise log2 fold change (log2FC) of
each gene (computed as the difference between the log2

expression values of each pair of treated and control
samples), 1st-, 2nd- and 3rd-order polynomial models
were fitted. For the best-fitting model, its contour plot
was computed as an effect map. Next, the contour plot
of each gene was evaluated to identify an area showing a
dynamic dose–response i.e. an area where the expression
changes monotonically in respect to the dose once an
activity threshold has been reached. As for the classical
BMD analysis, an activity threshold of 10% was selected
[88–90]. If such an area was identified, the gene was
considered to be altered in a dynamic dose-dependent
manner.

The genes were then labeled with an activation label
that specifies its POD based on the lowest dose and the
earliest time of activation. The time-dose effect map was
divided into a 3 by 3 grid and the sections of the dose
axis were named ‘S’ (sensitive), ‘I’ (intermediate) and ‘R’
(resilient), whereas for the time axis, the labels ‘E’ (early),
‘M’ (middle) and ‘L’ (late) were assigned. The final label
was then obtained by identifying the earliest and most
sensitive point of activation and concatenating the dose
and time of the single labels.

Drug prioritization strategies
Dose-dependent SARS-CoV-2 physical interactors

The list of physical interactors with the SARS-CoV-2 was
retrieved from Gordon et al. [26]. This list of proteins was
translated into human gene symbols using the R biomaRt

package [91]. In this article, they are further referred to as
the Gordon’s genes. The Gordon’s genes were mapped to
the Rattus norvegicus ortholog genes using the R biomaRt
package [91, 92]. Then, for each drug in the Open TG-
GATEs, a score was computed by summing the number
of Gordon’s genes that were considered dynamic dose
responsive by the TinderMIX analysis and the strength
of deregulation as the sum of their log2FC. The log2FC of
a dynamic dose-responsive gene was computed as the
mean log2FC of its dynamic dose-responsive area [87].
The drugs were ranked according to this score from the
highest to the lowest.

DEGs in SARS-CoV-2 samples

Similarly, the DEGs identified for the human lung biopsy
of SARS-CoV-2 patient, the A549, Calu-3 and NHBE cell
lines infected with (SARS-CoV-2) and the A549 cell line
infected with SARS-CoV-2 overexpressing ACE2 were
mapped to their corresponding rat orthologs. Then, for
each drug in the Open TG-GATEs, a score was computed
by summing the number of DEG identified as dynamic
dose responsive by the TinderMIX analysis in each SARS-
CoV-2 condition and their strength of deregulation. This
resulted in five different ranks of the Open TG-GATEs
drugs, where the drugs that strongly deregulate the same
DEG of each SARS-CoV-2 condition are at the top of
the list.

Connectivity mapping

For each one of the SARS-CoV-2 conditions, the genes
were ranked from the most upregulated to the most
downregulated. For each drug of the Open TG-GATEs, the
dynamic dose-responsive genes identified by the Tinder-
MIX analysis were divided into two groups depending on
whether their log FCs were monotonically increasing or
decreasing in respect to the dose.

The gene set enrichment analysis (GSEA), based on
the Kolmogorov–Smirnov test [93], was used to com-
pute the pairwise similarity between the Open TG-GATEs
drugs and the SARS-CoV-2 conditions. The Kolmogorov–
Smirnov test can be used to compare a sample with
a reference probability distribution. The Kolmogorov–
Smirnov statistic was used without the absolute value
to preserve the sign [94]. This helps to understand if
the increasing and decreasing dynamic dose-responsive
genes derived from the Open TG-GATEs drugs are up- or
downregulated in the SARS-CoV-2 conditions. Thus, for
each of the five SARS-CoV-2 conditions, the Open TG-
GATEs drugs were ranked based on their capability to
reverse the transcriptomic alterations due to the SARS-
CoV-2 infection weighted by the GSEA statistics.

Drug targets and co-expression analysis

All data annotated in the OpenTargets database [95] were
retrieved as a compressed JSON file. These data contain
the drug–targets associations used in this study. The
targets were mapped on the five co-expression networks,
and their aggregated ranks from the INfORM [80] strategy
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were retrieved. The drugs were ranked according to the
median rank of their corresponding targets. In this way,
drugs whose targets are more central to the network are
ranked at the top of the list.

Drug ranking with Borda

To summarize, one ranking was produced by the dose-
dependent analysis of the physical interactor alterations,
whereas the analyses of the DEGs, the connectivity map-
ping and the drug targets produced five rankings each,
one for each SARS-CoV-2 condition. The 16 lists of ranked
drugs were merged together by using the Borda method
[81] implemented in the R package TopKLists. In this way,
a final consensus on the drug ranks was identified.

Relevant chemical substructures
A GSEA analysis was performed to identify the presence
of statistically enriched chemical substructures in the
drugs ranked at the top of the list. A binary matrix with
881 chemical substructures for the drugs was created. A
drug was assigned to the list of a specific substructure
if that drug contains the substructure. A substructure
was considered statistically enriched if the P-value of the
GSEA was lower than 0.05.

QSAR
Data preprocessing

A QSAR analysis [96] was performed on the Open TG-
GATEs drugs using the pairwise levels of differential
expression of a chosen set of genes as the response
variable. Namely, ACE2, TMPRSS2, CTSB and CTSL were
used. For each gene, the expression levels at all dose
levels and time points were considered simultaneously.
The initial dataset for each gene comprised the pairwise
differential expression levels at all the doses and all
the time points together with a set of dummy variables
to represent the dose levels and the time points. Sub-
structure fingerprints for the Open TG-GATEs drugs were
retrieved from PubChem [97] by querying it by Compound
ID (CID) identifiers. Each differential expression level was
represented by the set of binary fingerprints retrieved by
PubChem plus seven indicator variables: three to repre-
sent the dose levels and four to represent the sacrifice
periods. Each of the 881 bits forming the fingerprint
indicate the presence or absence of particular chemical
substructures, ranging from counts of single atoms, to
the presence and the type of bonds between atoms, to
more complex substructures like aromatic rings [98].

Since the fingerprint data matrix was sparse, it was
preprocessed by removing all the fingerprints absent in
any drug of the dataset manipulating the data matrix
with the python module pandas [99]. After this step, the
number of variables to use in the modeling phase was
further reduced by evaluating the correlation coefficient
between each pair, and, to obtain a valid distance metric
among the features, the correlation matrix C was trans-
formed according to

√
1 − C2 [100]. DBSCAN [101] clus-

tering implemented in the python module scikit-learn

[102] was then applied with parameters epsilon = 0.1 and
the minimum number of samples as 2. In this way, an
automatic grouping of the most correlated variables was
obtained. Finally, each cluster of correlated variables
is compressed into one. The resulting data matrix was
reduced to about 400 variables.

Modeling

After preprocessing, the data were modeled using a gradi-
ent boosting machine [103] from the scikit-learn module
[102].

Gradient boosting fits a model F(x) built as the additive
combination of an ensemble of functions fi(x) for i =
1, . . . , m belonging to a chosen functional class, known
as base or weak learners. Commonly used weak learners
are the classification and regression trees [103]. Weak
learners are added sequentially in a stagewise manner:

F0(x) = w0· f0(x)

F1(x) = F0(x) + w1· f1(x)

F2(x) = F1(x) + w2· f2(x)

· · ·

Fm(x) = Fm−1(x) + wm· fm(x)

Each stage improves or ‘boosts’ the loss L(y, Fm(x))by
adding a weak learner fm+1(x) fitted to the functional
gradient of the loss function of the model up to the
m-th step, whereas each weight wi is fitted by a line
search algorithm [103]. Common loss functions used for
regression are the squared loss

LS
(
y, Fm(x)

) =
∑

i

(
yi − Fm (xi)

)2

and the absolute loss

LA
(
y, Fm(x)

) =
∑

i

| yi − Fm (xi) |

where (xi, yi)i=1,...,n is the training set.
Both losses present advantages and disadvantages

that make the choice of the loss dependent on the
dataset at hand. For example, the squared loss LS has
a well-defined gradient function (namely the residual
errors of predictions) that makes the fitted models stable
across repetitions; however, squaring the errors puts a
lot of emphasis on large errors. This implies that models
fitted using LS may be more susceptible to noise. On the
other hand, the absolute loss LA puts less emphasis on
large errors, thus making models more robust to noise;
however, the discontinuity of the loss is detrimental to
the stability of the models.
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Indeed, in preliminary experiments (data not shown)
we observed that when fitting models with LA led to more
variance in the estimation of the variable importance,
also, the predictions of extreme deregulation values were
less precise, due to the lower emphasis on large errors.
Thus, we decided to keep the LS loss and only optimize
the rest of the hyperparameters with a grid search.

The number of estimators was fixed to 500 for com-
putational constraints and instead we explored differ-
ent regularization parameters configurations. A grid of
possible parameter settings was explored using a 5-fold
cross-validation repeated 25 times for each combination
of parameters. The grid of parameters was defined as
follows:

- subsample, the proportion of samples used to train
each individual tree ranged in [0.2, 0.8],

- max_features, the number of features to evaluate at
each node ranged in [1, 50],

- learning_rate, the magnitude of the learning rate
varied between [0.001, 0.1],

- max_depth, the maximum height of each decision
tree ranged in [1, 5],

- criterion, the function used to evaluate each split was
one of {‘mse’, ‘mae’, ‘friedman_mse’}.

Performances of each fitted model were evaluated on
the corresponding held-out fold. Due to the lack of an
external validation dataset, only internal validation of
the fitting was performed. For this reason, the param-
eters corresponding to the most regularized (i.e. parsi-
monious) models within 1 SD from the minimum error
achieved were chosen [104].

The best model parameters were identified as sub-
sample = 0.5, learning_rate = 0.1, max_features = 8, crite-
rion = ‘mse’, max_depth = 3, which resulted in a trade-off
between validation accuracy, regularization and comput-
ing time. The best performing models had a validation
root-mean-square error loss of 1.5 ± 0.6.

When the most appropriate parameters were selected
for each gene, the best models were fit again using the
whole dataset to obtain the final predictors. Since each
drug fingerprint representation appears more than once
in the dataset due to the different sacrifice periods and
dose levels, care must be taken when considering splits
of the dataset into train and validation sets. To this end,
every model trained in these experiments was fit and
evaluated on datasets split at the drug level, meaning
that all instances of a drug are in either the training or
validation sets. This is to avoid any information leakage
that could happen when some of the dose levels or time
points of the same drug are split across the training and
validation sets.

Chemical substructure relevance

After fitting, each model was exploited to identify the
most relevant fingerprints, which, on average, are mostly
associated with the over- or underexpression of the ana-
lyzed genes. To this end, the partial dependence [103]

of the predicted outcome on each fingerprint was com-
puted. Since the optimal selected models fitted decision
trees with a maximum depth higher than 1, feature
interactions made the ranking slightly unstable, so the fit
was repeated for each model 250 times and the relevance
of each molecular substructure across the runs was aver-
aged. Finally, each feature was ranked based on its con-
tribution to the average predicted level of differential
expression. Each molecular substructure was considered
as relevant for under (resp. over) expression if the 75th
(resp. 25th) percentile of the partial dependence of the
response variable is lower (resp. higher) than 0.

Chemical substructures in screened drugs
A dataset of 6975 chemical compounds screened for
activity against several cytotoxicity endpoints from the
literature was collected [23–26]. The included articles are
reported in Supplementary Table S1. For each considered
pair of drug and endpoint, an activity threshold was
defined in the same way as in the original articles. These
activity thresholds were used to define an activity binary
variable for each screened drug. The same kind of finger-
prints of chemical substructures were also collected for
this dataset and a χ2 statistical test was performed on
each chemical substructure feature against the activity
variable to identify the chemical substructures statisti-
cally relevant (P-value < 0.05) to the activity threshold.

Drug prioritization
The DrugBank database v. 5.0 was retrieved for this study.
DrugBank [37, 38] contains 13 579 drug entries, including
2635 approved small molecule drugs, and over 6375
experimental drugs. The DrugBank IDs were matched
with the PubChem [97] CID using the PubChem Identifier
Exchange Service (https://pubchem.ncbi.nlm.nih.go
v/idexchange/idexchange.cgi). For the 8775 matched
compounds, substructure fingerprints were retrieved
from PubChem by querying it by CID identifiers.

To determine the overall ranking of the DrugBank
dataset, we defined the final set of relevant substruc-
tures as the union of the fingerprints derived from each
single bioinformatics and cheminformatics approach.
We further constrained the overall set of relevant
substructures by considering its intersection with the
set of relevant substructures derived from the screened
drugs found in the literature. This resulted in a set of
53 relevant molecular substructures. The drugs were
ranked according to the Tanimoto similarity [105] with
respect to the molecular substructures relevant to the
models and considered as possible candidates for further
investigation.

Structural comparison of
7-hydroxystaurosporine and bafetinib
The structures of 7-hydroxystaurosporine and bafetinib
(Figure 9) were generated in three dimensions and
minimized by applying the MM2 energy-minimization
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method in ChemBio3D (ChemDraw
®

Professional v20,
PerkinElmer Informatics, Inc.). The minimized struc-
tures were overlaid by steric fields and the similarity
(Supplementary Table S4) was calculated in Discovery
Studio Visualizer v21.1 (Dassault Systèmes Biovia Corp).

Image analysis for syncytia quantification
The fluorescent images (2048 × 2048 pixels) of cells
stained with the nuclear dye were used to train a deep
convolutional neural network to segment first the nuclei
and then the entire cell using the fluorescent signal of
the N immunostaining. For the training, we first used
18 images that, according to visual inspection, faithfully
represented the variation (cell size, morphology, average
intensity) of the whole dataset. We then randomly
extracted a smaller area of 1024 × 1024 sized from
each image, and normalized the intensities by dividing
them with the global upper bound of the intensities
found in the original dataset and converted them
to 8-bit format. These selected images were used to
manually segment the contour of each N-labeled cell.
After this fast initial manual annotation, we utilized
image augmentation techniques to prevent the model
from overfitting. We created an augmentation pipeline
containing seven main transformations where each
transformation instance is applied with a probability
of 0.5 implemented using the Numpy scientific pro-
gramming library and the Pillow package (https://pi
llow.readthedocs.io/en/3.0.x/reference/ImageEnhance.
html) for Python [106]. Some of the transformations
have input parameters; in this case, the parameter is
sampled from an interval divided by step size of 0.01. The
transformations used in our augmentation pipeline are
summarized in Supplementary Table S6. We constructed
100 augmented instances of each image, and therefore,
we have (100 + 1) × 18 = 1818 images in the extended
training set. We then trained a popular TensorFlow [107]
implementation (https://github.com/matterport/Mask_
RCNN) of the Mask Region Based Convolutional Neural
Network (R-CNN) instance segmentation algorithm [108],
to detect the cell instances with transfer learning by fine
tuning a previous cytoplasm segmentation model to this
task. We trained the model until convergence through 13
epochs (full model 10 epoch and 1 epoch for the layers
4+, 3+ and heads), where each epoch contains 2000 steps
with batch size of 1. In the Mask R-CNN training we
defined the non-max suppression probability to 0.55 (for
the RPN training) and the detection minimum confidence
threshold to 0.5, whereas the non-max suppression
threshold (during the detection) was 0.35. We used a
stochastic gradient descent optimizer with learning rate
0.001 and momentum 0.9.

Cell culture
HEK-293 T stably expressing human ACE2 and TMPRSS2
(HEK-293 T-AT) have been previously described [53].
Caco-2 cells stably expressing human ACE2 (Caco2-ACE2)
were generated by transduction with third generation

lentivirus pLenti7.3 ACE2-EGFP, where the expression
of EGFP is guided by a separate promoter downstream
of the ACE2 coding sequence [53]. EGFP positive cells
were isolated by FACS sorting. All cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM) media
supplemented with 10% fetal calf serum (FCS), pen/strep,
L-glutamine and passaged 1:10 (HEK-293 T-AT) or 1:6
(Caco2-ACE2), every 3 days.

SARS-CoV-2 infection
All experiments with WT (strain B.1) and delta variant
(strain B.1.617.2) SARS-CoV-2 were performed in BSL3
facilities at the University of Helsinki with appropriate
institutional permits. Virus samples were obtained under
the Helsinki University Hospital laboratory research per-
mit 30 HUS/32/2018 § 16. The virus was propagated once
in Calu-1 cells and once in VeroE6-TMPRSS2 cells (WT)
or once in VeroE6-TMPRSS2 cells (delta) before sequenc-
ing and storage at −80◦C. Virus stocks were stored in
DMEM, 2% FCS, 2 mM L-glutamine, 1× pen/strep as pre-
viously described. [53] Virus titers were determined by
plaque assay in VeroE6 TMPRSS2 cells. For testing small
molecule inhibitors, cells in DMEM, supplemented with
10% FBS, 1× GlutaMax, 1× pen/strep20, mM HEPES pH 7.2
were seeded in 96-well imaging plates (PerkinElmer Cat.
No. 6005182) 48 h before treatment at a density of 15 000
cells per well. Drugs or DMSO control, were either added
60 min before infection, or added 90 min postinfection.
Cells were infected at a MOI 0.5 plaque forming units per
cell (titer determined in VeroE6-TMPRSS2 cells). Infec-
tions were carried out for 20 h in a 37◦C and 5% CO2 incu-
bator. Cells were then fixed with 4% paraformaldehyde
in phosphate-buffered saline (PBS) for 30 min at room
temperature before being processed for immunodetec-
tion of viral N protein, automated fluorescence imaging
and image analysis.

Immunofluorescence, imaging and image
analysis
Fixed cells were washed once with Dulbecco PBS con-
taining 0.2% BSA (D-BSA), and permeabilized for 10 min
at room temperature in the same buffer containing
0.1% Triton X-100 (W/V, Sigma) and 1 μg/ml Hoechst
DNA staining (Thermo Fisher, Cat. No. H3570). After one
wash in D-BSA, cells were incubated for 1 h at room
temperature with a 1:2000 dilution of a polyclonal rabbit
antibody raised against the viral N protein of SARS-CoV
that cross-reacts with the N protein of SARS-CoV (a kind
gift of Prof. Ilkka Julkunen, University of Turku, Finland.
[109]). This antibody cross-reacts with SARS-CoV-2 N
protein. Following two washes in D-BSA, cells were
incubated with a fluorescently labeled goat anti-rabbit
antibody (Molecular Probes) at a dilution of 1:1000 for 1 h
at room temperature. After two washes in PBS, cells were
either stored in the same buffer at 4◦C or imaged directly
with a Molecular Device Nano high-content microscope
using a 10× objective. To determine the percentage of
infected cells, the CellProfiler 3 open source software
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was used (www.cellprofiler.org). Nuclei stained with
Hoechst were detected using the Otsu algorithm of
the CellProfiler3, and infected cells identified based
on fluorescence intensity of immunostained N in the
perinuclear area of each cell, using a threshold of
fluorescence empirically determined such that <0.01%
of non-infected cells were detected as positive. The
relative number of infected cells was calculated by
dividing in each well the number of N-positive nuclei
by the total number of Hoechst-positive nuclei.

Quantification of inhibition
Image handling, quantification and analysis of fluores-
cence images were performed as aforementioned using
Cell profiler 3 or a custom made machine learning algo-
rithm. For each experiment, nine images were acquired
and >2000 cells analyzed. Each experiment was repeated
three to four times and values indicated in each figure
represent the average and SD of all repetitions. Analysis
of significance was performed using a one-tailed t-test
to identify drugs with an infection rate lower than the
DMSO. One asterisk = P < 0.05; two asterisks = P < 1e-5
after Bonferroni correction.

Toxicity assays
HEK-293 T-AT and Caco2-ACE2 cells were seeded in 96-
well imaging plates (PerkinElmer) 48 h before treatment
at a density of 15 000 cells per well. Cells were treated
with different concentrations of 7-hydroxystaurosporine
and bafetinib for 20 h. DMSO was used as a negative and
lysis buffer (CellTox Green) as a positive control. Cytotox-
icity was measured using CellTox Green and CellTiter-
Glo2.0 assays (Promega) and Hidex Sense Microplate
Reader (Hidex) according to the instructions of the
manufacturer.

Drug concentration-dependent virus inhibition
analysis
A dose-dependent analysis was performed with the
strategy implemented in the BMDx tool [90], to test if
bafetinib, 7-hydroxystaurosporine and their combination
reduce the viral infection rate in a dose-dependent
manner. For the analysis, the benchmark response was
set to 10% difference with respect to the controls. The
linear, power, exponential and hill functions were fitted
to the data. The optimal fitting model was selected as the
one with the lowest Akaike information criteria and used
to estimate the BMD, the corresponding lower and upper
bound (BMDL and BMDU) values and the half maximal
inhibitory concentration (IC50) value. The number of
replicates used in the concentration-dependent analyses
varied from 3 to 15 depending on the concentration level.

Supporting Information

Supporting Information is available from the Wiley
Online Library or from the author.

Key Points

• Integrated cheminformatics and bioinformatics
approaches can help to identify a subset of rel-
evant chemical substructures for drugs active
against COVID-19.

• Prioritization of the DrugBank database identi-
fies a subset of candidate drugs for COVID-19.

• In vitro validation confirmed 7-hydroxystauro-
sporine and bafetinib as potential COVID-19
treatment.

• Combination treatment with 7-hydroxystauro-
sporine and bafetinib reduces SARS-CoV-2-
induced syncytia.

• Combination treatment with 7-hydroxystauro-
sporine and bafetinib also reduces delta variant
infection.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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