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ARTICLE

Human transcription factor protein interaction
networks
Helka Göös 1,4, Matias Kinnunen1, Kari Salokas 1,5, Zenglai Tan2,5, Xiaonan Liu 1, Leena Yadav1,

Qin Zhang2, Gong-Hong Wei2,3 & Markku Varjosalo 1✉

Transcription factors (TFs) interact with several other proteins in the process of transcrip-

tional regulation. Here, we identify 6703 and 1536 protein–protein interactions for 109 dif-

ferent human TFs through proximity-dependent biotinylation (BioID) and affinity purification

mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-

confidence interactions, highlighting the transient and dynamic nature of many of the TF

interactions. By performing clustering and correlation analyses, we identify subgroups of TFs

associated with specific biological functions, such as RNA splicing or chromatin remodeling.

We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1

(NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other

TF signaling pathways. Moreover, TF interactions with basal transcription machinery are

mainly observed through TFIID and SAGA complexes. This study provides a rich resource of

human TF interactions and also act as a starting point for future studies aimed at under-

standing TF-mediated transcription.
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‘The central dogma’ states that genetic sequence infor-
mation from DNA is transcribed to RNA and subse-
quently translated into proteins. These processes are

tightly regulated and employ a plethora of proteins. Transcrip-
tion, the first step, is regulated by transcription factors (TFs),
which represent one of the largest families of human genes. In
humans, 6–9% (~1400–1900) of proteins are predicted to regulate
gene expression through DNA binding (refs. 1–3, https://
www.proteinatlas.org), and the most recent manual curation
identified 1639 likely human TFs4.

Complex and multilayer regulation of transcription involves
not only direct binding of TFs to a target gene’s regulatory ele-
ment(s) but also a complicated interplay between TFs and TF
binding proteins. These include several cofactors, the Mediator
complex, basal transcription machinery, TF activity modulating
enzymes (such as phosphatases and kinases), dimerization part-
ners, subunits and inhibitory proteins5–8. Moreover, as chromo-
somal DNA is packed into chromatin to prevent uncontrolled
transcription, TFs also interact with several chromatin remodel-
ing proteins. The formed complexes are necessary to regulate the
accessibility of DNA to allow chromatin opening and thereby
gene transcription.

TFs play crucial roles in regulating numerous cellular
mechanisms and are key regulators of tissue growth and
embryonic development – processes that may cause cancer and
other disorders when aberrantly controlled. Therefore, under-
standing the TF network at the systems level would build an
important foundation for future studies as well as for therapeutic
approaches7. While the binding of TFs to DNA is relatively well
studied, for the most part, we still lack a global understanding of
TF protein–protein interactions (PPIs) and their roles in the
regulation of transcription. Therefore, we sought to fill this
knowledge gap by using recently developed state-of-the-art PPI
identification methods, which allow unprecedented sensitivity
and depth of analysis.

In this study, we systemically characterized the PPIs of a
selected set of 109 human TFs using affinity purification mass
spectrometry (AP-MS) and proximity-dependent biotinylation
(BioID) mass spectrometry. We identified 6703 PPIs in the BioID
analysis and 1536 PPIs in the AP-MS analysis. Most of the
detected interactions were contextually nuclear and linked to
transcription and transcriptional regulation. These interactions
paint a picture of how transcription factors are activated or
repressed and add experimental evidence for the potential rele-
vance of transient interactions in the advent of transcription-
related nuclear condensates and phase separation. This large
interactome network of TFs allowed us to recognize several
interactome subgroups of TFs, such as TFs linked to mRNA
splicing and TFs linked to chromatin remodeling. In addition, we
observed that most of the studied TFs interacted with nuclear
factor 1 (NFI) TFs, which are essential for several developmental
and oncogenic processes. Overall, this work represents a rich
resource to direct future studies aimed at understanding TF-
mediated transcription and how TF-formed interactions regulate
important cellular phenomena in both health and disease.

Results
Identification of TF protein–protein interactions. To system-
atically investigate the protein–protein interactions of human
TFs, we selected a representative set of 109 TF genes from dif-
ferent TF families (Supplementary Data 1a). Selection was based
on the availability of full-length TF constructs. Selected TFs were
analyzed in two biological replicates and, as the correlation
between the technical and biological replicates were excellent
(Supplementary Fig. 1a), either in one or two technical replicates.

TFs are often classified according to their DNA-binding
domains (DBDs), and the DBD distribution of studied TFs
compared to all human TFs is shown in Fig. 1a. The majority of
the studied TFs had C2H2 zing finger (ZF) or homeodomain
DBDs, which are the most common DBDs among the human
TFs4.

The selected TFs were subjected to two independent mass
spectrometry-based interactome analysis methods (Fig. 1b). First,
the stable TF complexes were purified using single-step Strep-tag
affinity purification (AP-MS). Second, a proximity-dependent
labeling approach (BioID) utilizing a minimal biotin ligase
(BirA*)-tag was used to detect transient and proximal interactions
of the TFs9,10. Activation of BirA allows it to biotinylate proteins
within close proximity (10 nm) of the studied TFs, including
transient interactions. However, no physical contact is needed for
biotinylation, and because of the confined nature of chromatin,
proteins other than interacting proteins might also be labeled in
low amounts. The expression of the studied TFs was adjusted on
the corresponding transgenic cell lines by the tetracycline
inducible and adjustable Tet-On expression system11 – resulting
in expression levels from close-to-physiological levels to mild or
moderate overexpression.

In total, we identified 6703 high-confidence PPIs using BioID
analysis and 1536 PPIs using the AP-MS method (Supplementary
Data 1b, c and Fig. 1c–e). Of these, 200 were detected with both
methods (Fig. 1c). For an initial quality check for the obtained TF
interactomes, we mapped the interactors to their known
subcellular localizations from the Cell Atlas12. This analysis
revealed that 80% of the TF interactors were nuclear localized
(yellow nodes; Fig. 1d and Supplementary Data 2), confirming the
expected nuclear compartmentalization of the studied TFs and
their interactors. Remarkably, the majority (>75%) of the
interactions within the TF interactome were previously unre-
ported (Fig. 1e and Supplementary Data 1b, c). On average, we
identified 66 PPIs/TF in the BioID data and 16 PPIs/TF in the
AP-MS (Fig. 1f). The higher number of identified interactions by
BioID compared to AP-MS agreed with many recently reported
medium- and large-scale interactomics studies13–16; however, our
results strongly suggest that TFs prefer to form more transient or
proximal interactions than stable protein complexes. This finding
is consistent with the phase separation model for TF interactions,
where interactions incorporated in TF condensates are
dynamic17–20.

It has been suggested that the BioID method is efficient for
studying transient interactions9, and this was supported by our
results, which strongly suggested that BioID is the method of
choice for studying TF interactions (Figs. 1e and 2a). Most of the
TFs showed more detected high-confidence interactions with the
BioID method, with only a few exceptions of Krüppel-like factor
(KLF) family of transcription factors (Fig. 1f). There were
prominent differences in the number of detected PPIs between
different TF families; for example, SPs, TLXs, HNFs, and PAXs
had over 100 PPIs on average, whereas NFACs, IRFs, STATs,
GLIs, ETVs, and TEADs had fewer than 50 PPIs on average
(Fig. 2b and Supplementary Data 3).

The most common TF interactor observed in our study was
lysine-specific demethylase 2B (KDM2B), which interacted with
62 TFs (Supplementary Data 1b). In addition, two lysine
methyltransferases were among the top five of the most frequent
TF preys (KMT2D: 58 PPIs and KDM6A: 53 PPIs), which
highlights the importance of histone modification homeostasis in
the regulation of transcription. The detected interactions of lysine
methyltransferases with TFs are highly specific and very rarely
detected in large-scale studies with other key cellular signaling
molecules16,21,22 and hardly ever detected as contaminants23.
Other common TF interactors were NFIA (54 PPIs), TLE1 (53
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PPIs), CIC (52 PPIs), and several zinc-finger proteins (50–52
PPIs). In addition, the well-established corepressors BCOR (48
PPIs) and NCOR2 (48 PPIs) were high on the list. Not
surprisingly, the most frequently observed TF interactors were
transcriptional activators and repressors.

To obtain a glimpse to the biological nature of TF interactions,
we performed Gene Ontology biological process (GO-BP)
enrichment analysis for all BioID interactions (Fig. 3a, Supple-
mentary Data 4). As expected, BP terms linked to transcription
and its regulation were significantly enriched. The most
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significantly enriched term was ‘transcription, DNA-templated’,
with a p value of 9.15 × 10−97. This was followed by biological
processes linked to positive and negative regulation of transcrip-
tion with p values of <2.17 × 10−31.

Comparison to other studies. As BioID can capture transient
and proximal interactions, most experimental validation meth-
ods, such as coimmunoprecipitation, might not be sensitive
enough for validation of the results. We, therefore, first compared
the identified PPIs with previously published interactions. In a
medium-scale analysis, Li et al. screened the PPIs of 59 TFs by
tagging them with an SFB-tag (S protein-tag, FLAG-tag, and
streptavidin binding peptide) and identified the interacting pro-
teins using double affinity purification followed by MS analysis6.
In this analysis, they identified 2156 PPIs. Fourteen of the TFs
analyzed in their study were included in our set (CREB1, ETS1,
FOS, FOXI1, FOXL1, FOXQ1, IRF3, MEF2A, MYC, NFKB1,
PPARG, STAT3, TEAD2, and TP53). The double affinity pur-
ification method is not as sensitive as our single-step AP-MS or
BioID approaches. Therefore, it is not surprising that the overlap
between our BioID PPIs and their PPIs was low; only 5% of our
PPIs were covered by their study (Supplementary Data 1b). A
comparison with our AP-MS results revealed more common
interactions; 25% of our AP-MS PPIs were detected by their
approach (Supplementary Data 1c). These differences detected
between Li et al.’s PPIs and those we identified are most likely due
to the transient nature of TF interactions and the use of different
tagging strategies.

Next, we compared our PPIs to public interaction databases
such as PINA224, STRING, IntAct, and BioGRID and several
medium- to large-scale interactome studies such as Lambert
et al.25, Malovannaya et al.26, and Huttlin et al.27 (Tables S1B, C).
Overall, 20% (1316/6703) of our BioID PPIs and 14% (220/1536)
of our AP-MS interactions were also found in public databases or
in the abovementioned interatomic studies. The PPIs of several
well-studied TFs, such as SOX2, MYC, TYY1, PAX6, HNF4a, and
GATA2, overlapped with more than 45 known interactions in the
databases, whereas the PPIs of other less studied TFs, such as
ZIC3, ELK4, ESR1, IRF3, and IRF9, did not overlap with any
known PPIs from the databases or studies (Supplementary
Data 1b). While the overlap of identified interactions between our
dataset and the previously mentioned large-scale interactomes
studies is low, so is the overlap among the previous studies as
well. Indeed, our results overlap more with the existing data, than
many of the other interactomes (Supplementary Fig. 1b). This
may suggest that all of the studies capture different facets of TF

interactomes, and together form a much more complete picture,
than any one study alone.

Clustering of transcription factor protein–protein interactions.
To study whether the identified PPIs of the various TFs correlated
with their DBD families, we performed hierarchical clustering of
baits by their prey intensities and compared that to bait DBDs.
Only a modest correlation was seen between the PPIs and DBDs:
TLX and LHX homeodomain TFs and KLFs and TYY1-C2H2 ZF
TFs clustered together, but no other correlations with DBDs were
observed (Fig. 3b).

Next, we determined whether PPI clustering correlated with TF
amino acid sequences. To accomplish this, we aligned the full
amino acid sequences and compared them to hierarchical PPI
clustering (Supplementary Fig. 1c). The sequence alignment
comparison to PPI clustering revealed multiple clusters with
similarities in PPIs and sequences (Supplementary Fig. 1c),
including the clusters of ELFs, NFIs, LHXs, and KLFs.

In addition, the DNA-binding motifs of the studied TFs were
aligned using the matrix-clustering tool RSAT (Supplementary
Fig. 1d)28.

TF interactions with basal transcription machinery and the
Mediator complex. Eukaryotic gene transcription is mostly exe-
cuted by RNA polymerase II (Pol-II), which binds to conserved
core promoters. In addition to Pol-II, the core promoters also
bind the SAGA complex and the basal transcription machinery
(also known as the preinitiation complex, PIC), which is com-
posed of Pol-II, Mediator complex, and general TFs (GTFs). The
GTFs are TATA-binding protein (TBP), TFIIA, TFIIB, TFIID,
TFIIE, TFIIF, and TFIIH (Supplementary Data 5; refs. 29,30). To
assess how the studied TFs interacted with PIC components,
we retrieved GTFs and Mediator complex members from the
CORUM protein complex database and compared them to the
identified PPIs (Supplementary Data 5). We observed multiple
interactions with both TFIID and SAGA complex components
but only a few interactions with the Mediator complex members
(Supplementary Data 5), and we did not detect interactions
between the studied TFs and TFIIA, TFIIB, TFIIF, TFIIH, or Pol-
II complex components. This indicated that under the given
conditions, the TF activity from enhancers to the core promoter
and PIC is mainly mediated by TFIID, SAGA, and Mediator
complexes.

TF interactions with nuclear factors. Interestingly, we found 202
TF-TF (bait-bait) interactions in our TF interactome (Fig. 4a).

Fig. 1 TF protein interactome identified using the BioID and AP-MS methods. a The distribution of the DNA-binding domains of the studied TFs. The
corresponding proportion of each DNA-binding domain from 1639 TFs in the study of Lambert et al. is shown as a percentage value below the graph.
b Schematic illustration of the analysis methods used to comprehensively map the physical and functional interactions formed by the TFs. The TFs were
tagged N-terminally with MAC, StrepIII-HA or BirA -tags (Supplementary Data 1a) and cotransfected with Flp-In recombinase to generate stable isogenic
and inducible cell lines. Cells were induced by tetracycline addition for the corresponding TF expression and for the BioID analysis supplemented with biotin
for 24 h. This was followed by cell harvesting, lysis, and affinity purification with Strep-beads. Purified proteins were further digested into peptides and
analyzed by LC–MS/MS. Proteins were later identified, quantified, and analyzed to distill the high-confidence interactors using different statistical and
bioinformatic methods. c A total of 6503 high-confidence protein–protein interactions were detected only with the BioID method, 1336 with the AP-MS
method, and 200 with both the BioID and AP-MS methods. d Localization of interacting prey-proteins from BioID data according to the annotated
localizations of Cell Atlas12. Yellow nodes (large circle) indicate nuclear localization, and red (small circle) indicates nonnuclear localization. Of the mapped
proteins, >80% had nuclear localization. e Protein–protein interactions were identified using the AP-MS (1536) and BioID (6703) methods. Interactions
were compared to interactions from the PINA2, IntAct, BioGRID, and String experimental protein interaction databases and to interactions from a study by
Li et al.6, by Lambert et al.25, Malovannaya et al.26, and Huttlin et al.27 resulting in 220 and 1316 previously reported interactions in the AP-MS and BioID
data, respectively. The proportions of known interactions are shown in red. f Number of high-confidence protein–protein interactions of different TF baits
detected by AP-MS (red) or BioID (blue) affinity purification combined with mass spectrometry. Source data of the figure are provided as a Source
Data file.
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The majority of these interactions (118) were TF interactions with
NFI family members (NFIA, NFIB, NFIC, and NFIX; Fig. 4b). A
total of 55 TFs interacted with one or more NFIs (Fig. 4b): 53 TFs
interacted with NFIA, 37 with NFIB, 14 with NFIC, and 5 with
NFIX (Fig. 4b). In addition, all four NFIs formed bidirectional
interactions (when used reciprocally as bait proteins) with each
other in both the AP-MS and BioID analyses (Fig. 4b). NFIs also
had multiple other shared interactions than the abovementioned
interactions with TFs (Supplementary Fig. 2a).

Of all eight studied SOX family members, only SOX4 had no
interactions with NFI proteins (Fig. 4a). This suggested a
previously uncharacterized crosstalk between SOX transcription
factors and NFI signaling. Moreover, we found that all five
studied PAXs interacted with NFIs (Figs. 4b and S2b). In fact,
PAX9 was the only TF in the set that interacted with all four
NFIs. To our knowledge, no link between PAX9 and NFIs has
been reported before. In addition to SOXs and PAXs, LHXs (four
out of six), KLFs (6/10) and all three studied TLXs interacted with
NFIs (Fig. 4b). These and the other detected TF-NFI interactions
(Fig. 4b) indicated that NFIs take part in multiple cellular
processes with other TFs, possibly regulating their activity and
functions. GO-BP enrichment analysis of NFI interactomes using
the total BioID interactome as a background showed that
transcription-related BP terms were significantly enriched,
indicating the importance of NFIs in transcription regulation in
general (Supplementary Data 4).

To validate the TF interactions with NFIs, we used coimmu-
noprecipitation (Co-IP) dot blot (DB) analysis. In this analysis, 37
identified TFs with interactions with NFIA, NFIB, and/or NFIC
(Supplementary Fig. 3a, b) were tagged with the V5 epitope and
coexpressed with NFIs. All 37 TFs were assayed with all three NFI
family members, including combinations that were not detected
in the mass spectrometry interactomics analyses. The Co-IP DB
assays validated 65 out of 70 (93%) tested MS-identified
interactions. The Co-IP assay also detected 33 new interactions
that were not detected by mass spectrometry. FOS, FOXl1, KLF8,
KLF16, LHX3, PRDM1, SOX9, and TYY1 interacted with NFIA,
NFIB, or NFIC in the mass spectrometry results but interacted
with all three in the Co-IP DB assays. BRAC, ELK3, ERG, ETV7,
GATA3, HME1, KLF3, LHX2, LHX4, PAX2, PAX6, PAX8,
SOX10, SOX15, SOX17, and TLX2 interacted with two of the
NFIA, NFIB, or NFIC in the mass spectrometry results and with
all three in the Co-IP DB assays. Of all tested interactions, only 5
interactions seen by MS, could be classified as negative. The
interactions of NFIA with ELF1, ELF2, FOXL1, and KL12 and
NFIB with KLF12 could not be detected by coimmunoprecipita-
tion, and the interaction between NFIA and HEN1 was barely
detectable, possibly suggesting that these interactions are not
direct but mediated with other proteins, or are extremely
transient in their nature.

Given that in our analyses NFIA interacted with 55 TFs, it is
possible that this interaction with NFIA could regulate the
transcriptional activity of other TFs. To test this hypothesis, we
generated luciferase-based reporter (DNA binding domains
extracted from JASPAR31) assays for selected TFs interacting
with NFIA. Of note is that each of these assays measure only the

possible binding activity change of each specific TF. TFs bind to
several different sites in the DNA32 and it is highly unlikely that
DNA mediated interactions would be detected in these
abundancies as detected by our interactome analyses.

Reporter assays that displayed clear activity change after the
introduction of the corresponding TF were chosen for NFIA
siRNA-mediated knockdown experiments. Knockdown efficiency
was first confirmed by western blotting using a specific antibody
against NFIA (Fig. 4c). Next, the effect of NFIA depletion on
selected reporter activity was tested in the presence and absence
of the corresponding TF (Fig. 4d). Interestingly, both KLF4
assays, which detected the repressive and activating response of
KLF4, showed altered luciferase activity after NFIA silencing:
both the repressive and activating responses after KLF4 induction
were reduced (Fig. 4d). In addition, SOX2 and PAX6 showed
reduced activity after NFIA silencing, while HME1 activity was
increased after the depletion of NFIA (Fig. 4d).

Prey-prey correlation analysis reveals several biological clus-
ters. The TF prey-prey correlation analysis using ProHits-Viz33

revealed 17 biological clusters (Fig. 5 and Supplementary Data 6).
This analysis revealed clusters of preys that were often seen
together between baits, suggesting that they might be part of the
same complex or molecular context or both. Baits driving the
same cluster had a similarity in interactomes, indicating possible
shared or similar biological roles. The preys belonging to different
clusters and the baits driving the clusters are shown in Supple-
mentary Data 6. Next, we describe some of the interesting clusters
found in this correlation analysis.

TF interactions with chromatin-modulating complexes in
Cluster K. Preys in Cluster K (Figs. 5 and 6a and Supplementary
Data 6) had clear biological roles in chromatin modulation,
especially in histone H4 and H3 modifications. Of these 100
preys, 67 were directly linked to histone and chromatin signaling
(Fig. 6a and Supplementary Data 6). These included 10 members
and one putative regulator of the INO80 chromatin remodeling
complex (Fig. 6a), 7 members of the nonspecific lethal (NSL)
complex, and 14 members of the MLL1-WDR5 histone-3-lysine-
4-(H3K4) methyltransferase complex.

Cluster K mainly consisted of TYY1 interactions; TYY1
interacted with 99 preys in the cluster (Fig. 6a and Supplementary
Data 6), while HNF4A interacted with 53, ELF4 with 48, ELF1
with 45, KLF8 with 40, and MYC with 39 preys. Other baits
driving the cluster are listed in Supplementary Data 6.

TYY1 is known to be part of the INO80 complex34. As
predicted, we found TYY1 to interact with 8 subunits of the
INO80 complex and with its putative regulator UCHL (Fig. 6a;
Supplementary Data 6). TYY1 interactions with INO80 complex
members appear to be very stable, as many of the interactions
were also detected in the AP-MS data (Supplementary Data 1c).
In addition to TYY1, we found that ELF4 interacted with six
INO80 complex members and UCHL (Fig. 6a and Supplementary
Data 1b).

Fig. 2 Comprehensive protein interactomes of the studied TF and TF families. a Studied TFs are organized and color-coded (node color) based on their
TF families in the inner circle, and interacting proteins are shown in the outer circle with white. Blue edges indicate interactions detected with the BioID
analysis, red with the AP-MS analysis and green from both. b The average number of PPIs of different TF families detected by BioID and AP-MS. Note that
the color coding of the TF families is the same as in a) and the TF families are organized into three bins based on the BioID data, first having families with
150-100 high-confidence interactions/bait TF, second 100-50, and third <50 interactions/TF. The stable interactions detected with AP-MS showed a
correlation with the interaction numbers; however, the KLF family behaved differently, with a more than 2-fold higher number of average interactions than
any other TF family. Source data of the figure are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28341-5

6 NATURE COMMUNICATIONS |          (2022) 13:766 | https://doi.org/10.1038/s41467-022-28341-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


b PREYS
TEAD3
GLI3
GLI2
SPZ1
NFKB1
STAT3
IRF5
ETV6
CPEB1
CREB1
STAT1
RREB1
MEF2A
TAL1
KLF10
SP1
NFAC3
IRF9
SOX4
NFAC4
STAT4
ETV5
ELF3
ELK4
SMAD5
ESR1
E2F1
MYC
KLF6
KLF9
ETV3
HEN1
KLF15
KLF8
KLF16
ELK3
KLF3
KLF12
TYY1
ELF4
ELF1
ELF2
NFYC
MYB
HME1
FOXL1
HNF1a
IRF8
ETV7
VSX1
ISX
FOXQ1
PRDM1
SOX5
SOX6
SOX15
TLX2
TLX3
SOX2
LHX2
LHX1
LHX4
LHX3
KLF5
ERG
PAX9
TBR1
PAX8
PAX2
GCM1
FOXI1
NFIB
NFIA
NFIC
GATA1
GATA3
TEAD1
TLX1
GATA2
BRAC
PAX7
HNF1B
SP7
FEV
PAX6
NFIX
HNF4a
MYOD1
FOS
ETS1
SOX9
KLF4
ETV4
SOX17
IRF4
SOX10
PPARG
ELF5
IRF1
LHX8
LHX6

TEAD2 TEA
TEA
C2H2 ZF
C2H2 ZF
Unknown
Rel
STAT
IRF
Ets
Unknown
bZIP
STAT
C2H2 ZF
MADS box
bHLH
C2H2 ZF
C2H2 ZF
Rel
IRF
HMG/Sox
Rel
STAT
Ets
Ets; AT hook
Ets
SMAD
Nuclear receptor
E2F
bHLH
C2H2 ZF
C2H2 ZF
Ets
bHLH
C2H2 ZF
C2H2 ZF
C2H2 ZF
Ets
C2H2 ZF
C2H2 ZF
C2H2 ZF
Ets
Ets
Ets
Unknown
Myb/SANT
Homeodomain
Forkhead
Homeodomain
IRF
Ets
Homeodomain
Homeodomain
Forkhead
C2H2 ZF
HMG/Sox
HMG/Sox
HMG/Sox
Homeodomain
Homeodomain
HMG/Sox
Homeodomain
Homeodomain
Homeodomain
Homeodomain
C2H2 ZF
Ets
Paired box
T-box
Paired box
Homeodomain; Paired box
GCM
Forkhead
SMAD
SMAD
SMAD
GATA
GATA
TEA
Homeodomain
GATA
T-box
Homeodomain; Paired box
Homeodomain
C2H2 ZF
Ets
Homeodomain; Paired box
SMAD
Nuclear receptor
bHLH
bZIP
Ets
HMG/Sox
C2H2 ZF
Ets
HMG/Sox
IRF
HMG/Sox
Nuclear receptor
Ets
IRF
Homeodomain
Homeodomain

DBD

ST
IA

B

0

330

AvgSpec

a

0 50 100 150 200 250 300 350

histone deacetylation

covalent chromatin modification

transcription from RNA polymerase II promoter

chromatin remodeling

positive regulation of transcription, DNA-templated

regulation of transcription from RNA polymerase II promoter

negative regulation of transcription, DNA-templated

regulation of transcription, DNA-templated

positive regulation of transcription from RNA polymerase II promoter

negative regulation of transcription from RNA polymerase II promoter

transcription, DNA-templated

3,8 x 10-48

1.0 x 10-43

p-value

4.4 x 10-42

2.8 x 10-33

1.7 x 10-31

2.2 x 10-31

2.2 x 10-28

1.5 x 10-27

3.9 x 10-27

2.6 x 10-15

9.2 x 10-97
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Cluster K also contained eight out of nine members of the
NSL histone acetyltransferase complex (Fig. 6a and Supple-
mentary Data 1b). In total, we found that TYY1 and MYC
interacted with all eight identified subunits of the NSL
complex, whereas HNF4A interacted with six subunits, and

ELF1, ELF2, and ELF4 interacted with five subunits (Fig. 6a
and Supplementary Data 6). Histone acetyltransferase KAT8
(main unit of the NSL complex, also known as MYST1) was
found to interact with TYY1, ELF1, ELF2, ELF4, HNF4a,
and MYC.
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TF interactions with histone acetyltransferase complexes in
Cluster L. Closer analysis of Cluster L (Fig. 5) revealed accessory
chromatin-modulating complexes, especially histone acetylation
complexes. GO-BP analysis revealed a significant enrichment of
terms linked to histone H2A, histone H4 and histone H3 acet-
ylation (p values of <6.8 × 10−26).

In total, Cluster L consisted of 53 preys, of which 40 were
directly linked to histone modifications (Fig. 6a and Supplemen-
tary Data 6). These included 18 of 19 members of the SAGA
complex and 14 members of the NuA4/Tip60 HAT complex A
(Fig. 6a). The cluster was mainly driven by MYC, which had
interactions with all 54 preys. KLF6 interacted with 30, HNF4A
with 24, KLF8 with 22, ELF4 with 19, TYY1 with 14 and ELF1
with 12 preys. Other baits are listed in Supplementary Data 6.

MYC interacted with all 18 subunits of the SAGA complex
identified in our data (Supplementary Data 6). Furthermore,
KLF6 was found to interact with 15, KLF8 with eight, and ELF4
and HNF4a with seven SAGA complex subunits (Supplementary
Data 6).

In addition, 14 of 15 NuA4/Tip60 HAT complex A subunits
were identified in Cluster L. MYC was found to interact with all
14 identified subunits, while HNF4a and KLF6 interacted with

nine subunits, and KLF8 and ELF4 interacted with eight subunits
of this complex (Fig. 6a and Supplementary Data 6).

Preys linked to RNA splicing and processing in Clusters P and
Q. Next, we found significant enrichment of proteins linked to
mRNA splicing and processing in Clusters P and Q (Fig. 5).
Cluster P consisted of 16 preys, and Cluster Q consisted of 49
preys, of which 14 and 22, respectively, were linked to RNA
splicing and processing (Fig. 6b and Supplementary Data 6). GO-
BP analysis showed a significant enrichment of proteins linked to
‘mRNA splicing, via spliceosome’ (p value 2.6 × 10−7 in Cluster P
and 1.2 × 10−11 in Cluster Q). Cluster P was driven mainly by
SP7 (all 16 interactions), GATA1 (15 interactions), and GATA3
(12 interactions) (Fig. 6b). Cluster Q consisted almost totally of
SP7 interactions; SP7 interacted with all 49 proteins (Fig. 6b and
Supplementary Data 6).

In our dataset, SP7 was the only protein to interact with core
spliceosomal components RU17 (SnRP70, U1-70K) and CD2B2
(U5-52K). These newly identified splicing-related interactions
indicated that GATA1, GATA3 and especially SP7 are related to
splicing and RNA processing. This was also evident in GO-BP
enrichment analysis of GATA1 and SP7 interactions using all the

Fig. 4 TF-TF (bait-bait) interactions of 109 TFs studied. a Of 109 studied TFs, 80 had 202 interactions with other studied TFs. Blue edges indicate
interactions from the BioID analysis, red from the AP-MS analysis and green from both. b Most of these TF-TF (118) interactions were TF interactions with
NFIs (left panel). The right panel shows the separate groups shared by one or multiple NFIs. Color code: Green nodes = NFIs, yellow nodes = interactions
to NFIs, orange nodes = interactions from NFIs, red nodes = interactions to and from NFIs and gray nodes = no interactions to or from NFIs. Color coding
of the nodes is shown on the right side of the figure. The edge weight displays the average spectral count value detected for the corresponding interaction.
c NFIA was silenced using siRNA transfection, and NFIA levels were detected 48 h after transfection by western blotting using a specific antibody against
NFIA. d TF activity was investigated after NFIA silencing using both repressive and activating reporter gene analysis. Both the repressing and activating
functions of KLF4 were reduced upon NFIA silencing. In addition, SOX2 and PAX6 activity was reduced, while HME1 activity was increased upon NFIA
silencing. The representative data from two repeated experiments are presented as mean values +SD as appropriate. Two-sided t-test was used. N= 3,
***p < 0.001, **p < 0.01, *p < 0.05. Source data of the figure are provided as a Source Data file.
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Fig. 6 The interactions in Clusters K, L, P, and Q of the prey-prey correlation analysis from BioID experiment. a The ten baits (TYY1, KLF6, HNF4A,
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detected for the corresponding interaction. Source data of the figure are provided as a Source Data file.
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TF interactions from our study as a background; the GO-BP term
“mRNA splicing, via spliceosome” was again significantly
enriched (p values 1.13 × 10−3 for GATA1 and 1.14 × 10−5 for
SP7; Supplementary Data 4). These new splicing-related interac-
tions for GATAs and SP7 and possible roles in the regulation of
splicing are highly intriguing and require further study. In
addition to these splicing-related interactions in Clusters P and Q,
we found that SP7 and GATA3 interacted with EP300 (p300)
along with other members of the p300-CBP-p270-SWI/SNF HAT
complex (Supplementary Fig. 4 and Supplementary Data 1b).

Discussion
Chromatin opening, transcription, RNA splicing, RNA proces-
sing, and their regulation are often studied as separate processes.
However, our understanding of the simultaneous and cotran-
scriptional nature of these processes has greatly expanded in
recent years35–39. In our analyses, TFs were found to interact with
proteins involved in chromatin remodeling, transcription, mRNA
splicing, and RNA processing, highlighting the cooperative nature
and close proximity of these processes. This also showed that TFs
are central in regulating these interconnected processes. The most
common interaction partners for the TFs studied were histone-
modifying enzymes, signifying that histone modification and
chromatin accessibility regulation are central to all these tran-
scriptional subprocesses.

The Mediator complex, SAGA complex, and most GTFs are
multimeric protein complexes that are needed for Pol-II pro-
moter recognition and transcription initiation40–42. In most stu-
died models, PIC assembly starts with the binding of TBP to
TATA- or TATA-like core promoters43. TBP belongs to two GTF
complexes: TFIID and SAGA. It has been indicated that both
TFIID and SAGA participate in the transcription of various genes
simultaneously44 but that the regulation of expression might be
dominated by either of them45,46. Different promoters are alleged
to prefer either TFIID or SAGA, and it has been indicated that the
activity of SAGA/TATA-like promoters might be more depen-
dent on the presence of transcriptional activators (regulated
genes) than the activity of TFIID/TATA promoters (house-
keeping genes)47. However, this is still controversial, as the
depletion of either SAGA or TFIID complex members decreased
the transcription of both regulated and housekeeping genes29,44.

We observed multiple interactions with both TFIID and SAGA
components, supporting the theory that both are needed for the
transcription of regulated genes. In phase separation condensates,
enhancer-bound TFs are physically separated from PIC with
multiple cofactor complexes17–20. Our data indicated that TFIID
and SAGA mainly serve as these cofactors (Supplementary
Data 5).

Interestingly, we detected only a few interactions with the
Mediator complex (Supplementary Data 5), even though the
Mediator is generally thought to mediate the regulatory signals
between TFs and Pol-II48,49. The mediator complex is reported to
interact with multiple TFs, and it is thought to form phase
separation condensates with many TFs20,49. However, it is not
comprehensively known how TFs directly interact with Mediator
complex members. Multiple TFs colocalize with Mediator com-
plex members in phase separation complexes in vitro20. However,
our data indicated that the interactions between TFs and Med-
iator complex members might be mediated through other pro-
teins, such as histone modifiers. We suggest that for these studied
TFs and under the given conditions, the signal is primarily
transferred to the Mediator complex and to PIC via other
cofactors, such as SAGA, TFIID, or other chromatin remodeling
complexes.

Interestingly, we detected a total of 202 bait-bait interactions
within the studied TFs (Fig. 4a), most of which (118) were
interactions with NFI family members. NFIs are CCAAT-box-
binding TFs that have similar DBDs and bind as hetero or
homodimers to the same common consensus sequence32,50,51.
There are four NFI family members (NFIA, NFIB, NFIC, and
NFIX) in humans and most vertebrates52,53. Originally, NFIs
were identified as essential for adenovirus replication54, but over
the years, they have been found to control a variety of genes in
cancer and in development55–60. For example, NFIs are found to
have multiple translocations leading to oncogenic gene fusion
proteins in several cancer types60, and knockout studies of NFIA,
NFIB, NFIC, and NFIX have revealed their necessity in lung,
central nervous system, brain, tooth, skeletal, and muscle
development55–57,59,61–63.

In our data, SOXs, PAXs, LHXs, KLFs, and TLXs had multiple
interactions with NFIs (Supplementary Data 1b). These interac-
tions indicated that NFIs take part in many cellular processes
with other TFs. NFI family members have been found to interact
with some individual TFs, such as with a few SOX family
proteins64,65. However, TF-NFI interactions on this scale have
not been reported before. Given the important role of NFIs in the
regulation of developmental processes and their impact on cancer
development, the high number of TF-NFI interactions might
indicate that the activity of NFIs is generally regulated by other
TFs, or vice versa. To test this hypothesis, we generated several
luciferase reporter assays specific for selected NFIA-interacting
TFs and discovered that RNAi silencing resulted in altered cor-
responding TF activity (Fig. 4d). This supports the theory that
NFIs’ interactions with other TFs have extensive and not well-
characterized roles in the regulation of other TF activities in gene
expression regulation.

Of note, we recently studied immunodeficiency patients with
Y200X variant of IKZF2 transcription factor. This variant dis-
played clear interaction reduction with NFIA, NFIB, and NFIC.
Furthermore, RNA-seq analysis of the patients and healthy
controls T-cells indicated immune dysregulation of several major
immune activation pathways in the patients66.

In our analysis, proteins involved in RNA splicing were enri-
ched in the interactomes of SP7, GATA1, and GATA3. In addi-
tion, we found that SP7 and GATA3 interacted with EP300
(p300) along with other members of the p300-CBP-p270-SWI/
SNF HAT complex (Supplementary Fig. 4 and Supplementary
Data 1b).

TFs are known to affect RNA splicing in three ways: they can
bind to RNA to recruit coregulators that also take part in splicing,
block the associations of splicing factors with mRNA, and/or
influence transcription elongation rates, which are known to
impact splicing by skipping weak 3’ splice sites at a high rate67.
One way to alter the elongation rate is through TF-mediated
recruitment of EP300, which induces the histone acetylation of
nearby promoters, increases the elongation rate and promotes
exon skipping68. Therefore, the interaction of SP7 and GATA3
with EP300 suggests that they may be connected to the p300
chromatin remodeling complex and, thus, to the regulation of the
elongation rate.

Some TFs, such as steroid hormone receptors, nuclear recep-
tors (NRs) and certain non-NR TFs, are known to regulate
mRNA splicing by recruiting splicing-linked coregulators67,69.
One of these coregulators is RBM14 (also known as CoAA),
which is an NCOA6 (also known as TRBP)-binding protein70.
We found that, along with other splicing-related proteins,
NCOA6 interacted with SP7 (Supplementary Data 1b). This
might indicate that SP7 recruits similar splicing regulation-related
coregulators.
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SP7 interactions with core spliceosomal components and all
other splicing-related components suggested that SP7 has a lar-
gely unstudied role in recruiting the splicing machinery to the
nascent pre-mRNA – a role that needs to be further studied.
Similar to some other C2H2 zinc finger TFs, such as CTCF,
VEZF1, MAZ, and WT1, which are known to regulate mRNA
splicing67, SP7 might participate in pre-mRNA splicing.

As expected, multiple TFs interacted with chromatin-
modulating proteins. We found several TFs to interact, e.g.,
with INO80, NSL, SAGA, and NuA4/Tip60 HAT complexes
(Fig. 6a and Supplementary Data 1b). TF interactions with these
complexes will be discussed in more detail.

The INO80 is an ATP-dependent chromatin remodeling
complex that activates transcription34, regulates genomic stability
through DNA repair71, contributes to DNA replication72, and by
shifting nucleosomes, remodels chromatin73,74. Predictably,
TYY1, which is known to be part of the INO80 complex, had
multiple interactions with INO80 complex members in our
analyses. More interestingly, we found that ELF4 also had mul-
tiple interactions with INO80 members. To our knowledge, ELFs
have not been previously linked to INO80 signaling or TYY1, and
this should be studied further.

Next, we found that various TFs, such as TYY1, ELF1, ELF2,
ELF4, HNF4a, and MYC, interacted with members of the NSL
histone acetyltransferase complex. Interactions between TYY1
and three NSL complex subunits (MCRS1, HCFC1, WDR5) have
been reported (PINA275), but the role of TYY1 in NSL regulation
is still unknown. Moreover, the roles of ELF1, ELF2, and ELF4 in
the NSL complex (as in the INO80 complex) and their interac-
tions with WDR5 are not well understood and require
further study.

As mentioned earlier, the SAGA complex is a multimodule
complex that has an important role in Pol-II recruitment for all
expressed genes76. In addition, SAGA participates in mRNA
synthesis and export, maintenance of DNA integrity, and histone
modifications, such as histone acetylation, succinylation, and
ubiquitylation76–82. In our data, multiple interactions were
detected between SAGA complex members and the studied TFs
(e.g., MYC, KLF6, KL8, HNF4a; Tables S1B and S5). MYC con-
nections to SAGA are known83, and KLF6 interactions with one
of the subunits, TAF9, have been reported in the PINA2 database.
In addition, KLF6 is known to interact with HDAC3 in pre-
adipocyte differentiation84. However, we found no other con-
nections between KLF6 and the SAGA complex or histone
modification. Our data indicated that KLF6 connections to SAGA
are bona fide and should be studied further.

Finally, we found MYC, HNF4a, KLF6, KLF8, and ELF4 to
interact with the NuA4/Tip60 HAT complex (Tables S1B and S7),
which plays essential roles in cell cycle control, transcription and
DNA repair and acts in the N-terminal acetylation of histones H4
and H2A85. The NuA4/Tip60 HAT complex, along with other
HAT complexes, is known to participate in MYC signaling86.
Accordingly, we found 14 interactions between MYC and the
NuA4/Tip60 HAT complex (Tables S1B and S7). Similar to MYC,
HNF4a’s association with the NuA4/Tip60 HAT complex was
reported in a previous study87. Interestingly, we also found a
strong connection (eight to nine interactions) between KLF6,
KLF8, or ELF4 and the NuA4/Tip60 HAT complex. However, as
mentioned earlier with regard to the SAGA complex, little is
known about the link between KLF6 and histone modification.
Therefore, the role of KLF6 in HAT complexes remains largely
unstudied and requires further investigation.

Taken together, TYY1, ELF4, ELF1, ELF2 (Cluster K) and
MYC, KLF6, KLF8, and HNF4a (Cluster L) had several interac-
tions with chromatin remodeling complexes. Some research has
been conducted on the contributions of TYY1, MYC, and HNF4a

to histone modification and chromatin remodeling, but the roles
of ELFs and KLFs in chromatin remodeling remain largely
unexplored.

Interestingly, even though chromatin remodeling and histone
modifications are known to be important for almost all TF sig-
naling and most of the studied TFs interact with proteins that
mediate these processes, only a fraction of TFs seemed to interact
with almost complete histone-modifying or chromatin remodel-
ing complexes. These interactions include TYY1 and ELF1
interactions with the INO80 complex; TYY1 and MYC interac-
tions with the NSL complex; MYC and KLF6 interactions with
the SAGA complex; and MYC, HNF4a, KLF6, KLF8, and ELF4
interactions with the NuA4/Tip60 HAT complex. This observa-
tion suggests that these TFs act in close relation to these com-
plexes and take part in these complexes at least under certain
conditions.

While TF binding to DNA is well-studied, there is still a lack of
comprehensive systems-level understanding of human TF protein
interactions. The protein interactions of other large human pro-
tein families, such as kinases and phosphatases, have been studied
at the systems level16,21,22,88, but TF protein interactions remain
globally unknown. This study provides the most comprehensive
systems-level analysis of human TFs, identifying the largest
reported cohort of TF PPIs and serves as a rich resource for
further research and development of pharmaceutical treatment
for TF-related diseases. This work also allows the profiling of TF
protein interactomes in the context of more than 100 TF inter-
actomes. Moreover, this is the first large-scale study to identify
the dynamic PPIs of TFs using transient and proximal interac-
tions catching BioID method. Finally, as abnormalities in TF
signaling often lead to severe pathological conditions89–91 and
TFs function as downstream players of multiple signaling
cascades3, the identification of TF PPIs makes a crucial con-
tribution to pharmacological targeting of TF-related diseases.
Although our study represents currently the most comprehensive
interactome analysis of the human transcription factors, we
acknowledge some limitations of this current study. These include
that the cellular context might be ectopic to some TFs, as well as
that some TFs require a certain cellular state (such as cell cycle
stage) for interactions and activity. From the established and used
cell lines, HEK293 express a wide range of different transcript,
totaling ∼13k genes. In interaction proteomics HEK293 cells
have been widely used as a “gold standard” for studying
protein–protein interactions (PPIs)27,92,93. The proteome func-
tional classification of HEK293 mimicks UniProt and most clo-
sely resembled the distribution observed for preys92. Previous
study has shown that even with the lentiviral infection of 293
cells, overexpression has little effect on identification of true
interacting partners after statistical filtering94.

Additionally, several of the TFs also can display cell cycle-
dependent transcriptional regulation and hence interactions.
These interactions should also be captured with our approach as
during the induction the cells display heterogenous cell cycle
stages and furthermore the labeling time used in the BioID
approach covers one full cell cycle.

In summary, our study provides a comprehensive and com-
plimentary overview of on the physical and functional interac-
tions of the transcription factors. Our findings pave the way for
further studies using different cell lines, organoids, or even
transgenic animals.

Methods
Cell lines used. HEK293 cells have been widely used for the study of
protein–protein interaction (PPI)27,92,93. The proteome functional classification of
HEK293 mimicked UniProt and most closely resembled the distribution observed
for preys92. Previous study has shown that even with the lentiviral infection of 293
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cells, overexpression has little effect on the identification of true interacting part-
ners after filtering94.

In this work, with Flp-In™ 293 T-Rex (Invitrogen, Cat# R78007), allowing to
generate isogenic and inducible stable cell clones with only a single copy of a
transgene in their genome, provides a convenient method to study PPIs95. siRNA
silencing, luciferase experiments, and CoIP-DB analysis were performed in the
HEK293 cell line (American Type Culture Collection, Manassas, VA, Cat# ATCC
CRL-1573). All cells were cultured in low glucose tetracycline-free DMEM (Sigma
Aldrich) supplemented with 10% FBS and 100 μg/ml penicillin/streptomycin (Life
Technologies) at 37 °C with 5% CO2.

Generation of TF expression constructs and stable, inducible cell lines. A total
of 109 TFs from different TF families were selected for this study. Using Gateway®
cloning, TF coding sequences without stop codons were obtained from ORF
libraries and commercially cloned into pDONR221 entry vectors (GenScript). To
generate tetracycline-inducible stable cell lines, constructs were cloned into
N-terminal pTO_HA_StrepIII_BirA-N_GW_FRT, pTO_HA_StrepIII-
N_GW_FRT, or MAC-tagged vectors and introduced into Flp-In™ T-REx™ 293
cells (Life Technologies, Carlsbad, CA) to generate stable, isogenic, and inducible
cell lines as described by Liu et al.15.

Affinity purification and mass spectrometry analysis. Approximately 1 × 108

Flp-In™ T-REx™ 293 cells stably expressing human TFs were induced with 2 μg/ml
tetracycline (AP-MS and BioID) and 50 μM biotin (BioID) for 24 h. The cells were
pelleted using centrifugation, snap frozen in liquid nitrogen, and stored at −80 °C.
The samples were then suspended in 3 ml of lysis buffer (50 mM HEPES pH 8.0,
5 mM EDTA, 150 mM NaCl, 50 mM NaF, 0.5% NP40, 1.5 mM Na3VO4, 1 mM
PMSF, 1x protease inhibitor cocktail, Sigma) on ice.

BioID lysis buffer was completed with 0.1% SDS and 80 U/ml benzonase
nuclease (Santa Cruz Biotechnology, Dallas, TX), and lysis was followed by
incubation on ice for 15 min and three cycles of sonication (3 min) and incubation
(5 min) on ice.

All samples were then purified by centrifugation, and the supernatants were
poured into microspin columns (Bio–Rad, USA) that were preloaded with 200 µl of
Strep-Tactin beads (IBA GmbH) and allowed to drain under gravity. The beads
were washed 3x with 1 ml lysis buffer and then 4x with 1 ml lysis buffer without
detergents and inhibitors (wash buffer). The purified proteins were eluted from the
beads with 600 µl of wash buffer containing 0.5 mM biotin. To reduce and alkylate
the cysteine bonds, the proteins were treated with a final concentration of 5 mM
TCEP (tris(2-carboxyethyl) phosphine) and 10 mM iodoacetamide, respectively.
Finally, the proteins were digested into tryptic peptides by incubation with 1 µg
sequencing grade trypsin (Promega) overnight at 37 °C. The digested peptides were
purified using C-18 microspin columns (The Nest Group Inc.) as instructed by the
manufacturer. For the mass spectrometry analysis, the vacuum-dried samples were
dissolved in buffer A (1% acetonitrile and 0.1% trifluoroacetic acid in MS grade
water).

The peptides were analyzed on an EASY-nLC II system connected to an Orbitrap
Elite ETD hybrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA) using
Thermo Scientific™ Xcalibur™ Software (version 2.7.0). The digested peptides were
first guided into a precolumn (C18-packing; EASY-Column™ 2 cm × 100 μm, 5 μm,
120 Å, Thermo Fisher Scientific) and then into an analytical column (C18-packing;
EASY-Column™ 10 cm × 75 μm, 3 μm, 120 Å, Thermo Fisher Scientific). The
separation was completed with a 60-min linear gradient from 5 to 35% buffer B (98%
acetonitrile, 0.1% formic acid, and 0.01% trifluoroacetic acid in MS grade water) at a
stable flow rate of 300 nl/min. Data-dependent acquisition analysis was performed as
follows: after one high-resolution (60,000) FTMS full scan (m/z 300–1700), the top
20 CID-MS2 scans in the ion trap were performed (energy 35). The highest fill time
was 200ms for FTMS (full AGC target 1,000,000) and 200ms for the ion trap (MSn
AGC target of 50,000). Only precursor ions with ion counts higher than 500 were
chosen for MSn. The preview mode was applied for the FTMS scan to achieve a high
resolution. Finally, dynamic exclusion was enabled, and the settings were set as
follows: repeat count: 1, repeat duration: 30.00, exclusion list size: 500, exclusion
duration 30.00, exclusion mass width relative to low (ppm): 5.000 and exclusion
mass width relative to high (ppm): 5.000.

Protein identification. The proteins were identified using the SEQUEST search
engine in Proteome Discoverer™ software (version 1.4, Thermo Scientific). The raw
data were analyzed against the reviewed human proteins from the UniProt data-
base (release 2018_01; 20,192 entries)96. The FASTA library was complemented
with BSA, tag sequences, trypsin, and GFP. Biotinylation (+226.078 Da) of lysine
residues and oxidation (+15.994491 Da) of methionine were used as dynamic
modifications. In addition, cysteine residue carbamidomethylation
(+57.021464 Da) was used as static modification. A maximum of two missed
cleavages and 15 ppm monoisotopic mass error were allowed. The peptide false
discovery rate (FDR) was set to <0.05. The precursor mass tolerance was set to
15 ppm, and the fragment mass tolerance was set to 0.05 Da.

The identified proteins were filtered using SAINT software tools (SAINTexpress
version 3.1.0)97 with a SAINT score cutoff of 0.74. All the TFs were analyzed in two
or four replicates. In addition, we added control data from the CRAPome database

(version 2.0)23 from 716 experiments to further filter possible contaminants from
the list. In the BioID data, only proteins with a lower frequency than 50% (358/716)
in the CRAPome were allowed. Additionally, prey with a CRAPome frequency of
25–50% (179–358/716) and with a higher CRAPome average spectral count
compared to our average spectral count were removed.

From AP-MS data, in addition to the SAINT cutoff, prey that was present with
a frequency higher than 50% in the CRAPome (358/716) were required to have a
threefold higher average spectral count than the average spectral count in the
CRAPome database.

TFs are known to have variable expression levels and patterns, and some of
them are present in cells at extremely low copy numbers98. To efficiently filter the
real interactions, we used 44 and 75 similarly tagged and analyzed GFP control
runs for the BioID analysis and AP-MS analysis, respectively. From these, 16 and
18, respectively, had a nuclear localization signal (NLS) to efficiently filter out
nonspecific nuclear interactions. All GFP controls were used as negative controls in
SAINT analysis, where the large nuclear dataset further facilitated the frequency-
based deletion of contaminating proteins. The Cytoscape software platform
(version 3.8.2) was used to visualize the high-confidence TF PPIs99.

Data analysis. The subcellular localizations of interacting proteins were obtained
from the Cell Atlas12. Enriched biological process Gene Ontology terms for all PPIs
were obtained from DAVID Bioinformatics Resources100. We also used DAVID to
study the enrichment of separate TF interactomes against all the PPIs identified in
our study. All the terms with the corresponding p values and FDR are reported in
Supplementary Data 4.

Correlation for biological and technical replicates was analyzed using spectral
count values of either biological or technical replicates. Pearson’s correlation
coefficient values were calculated for each pair of replicates with the pearsonr
method from the python scipy.stats package (SciPy, version 1.71). Plots for the
results were generated with lmplot method of the python seaborn package (version
0.11.2).

Identified PPIs were compared to PPIs from public interaction databases such
as PINA2 (version 2.0)24, STRING (version 11)101, IntAct102 and BioGRID
(version 4.4)103, and PPIs from several medium- to large-scale interactome studies
such as Lambert et al.25, Malovannaya et al.26, and Huttlin et al.27. CORUM
database104 was used for protein complex analysis.

Hierarchical clustering of baits (studied TFs) by their prey (interacting proteins)
was performed using ProHits-viz. with default settings33. Comparisons of two
cluster dendrograms were performed using the dendexted R package (version
1.14.0, https://www.datanovia.com/en/lessons/comparing-cluster-dendrograms-in-
r/). The full amino acid sequences of the studied TFs were downloaded from
UniProt96. The DNA-binding motifs of the studied TFs were mainly extracted
from the JASPAR database (7th release)31. Motifs not found in JASPAR were
extracted from the HT-SELEX and ENCODE databases105,106. All extracted DNA-
binding motifs were aligned using the matrix-clustering tool RSAT28. Finally, the
prey-prey correlation analysis of the BioID data was performed using ProHits-viz.’s
correlation tool (https://prohits-viz.lunenfeld.ca/Correlation/), where Pearson
correlation and hierarchical clustering with Euclidean distance metric was used33.
Filtered SAINT-interactions were used as the input. Apart from default settings, the
score column was set to SAINTScore, and cutoff values for filtering were removed
as filtered interaction data were used as input.

TF activity was assessed by luciferase assays in three replicates (Figs. 4D and
S4). Firefly luciferase signals were normalized with Renilla luciferase signals, and
Student’s t test was used to detect the significance of the changes. Asterisks in the
figs. (Figs. 4D and S4) indicate the following cutoffs: ***p < 0.001, **p < 0.01,
*p < 0.05.

Co-immunoprecipitation. HEK293 cells were seeded into six-well plates at a
density of 5 × 105 per well and incubated overnight. The cells were cotransfected
with Strep-HA-tagged (500 ng) NFIA, NFIB or NFIC and one V5-tagged (500 ng)
prey construct using Fugene 6 transfection reagent (Promega). Twenty-four hours
after transfection, cells were harvested, washed with ice-cold PBS and lysed with
1 ml HENN lysis buffer per well (50 mM HEPES pH 8.0, 5 mM EDTA, 150 mM
NaCl, 50 mM NaF, 0.5% IGEPAL, 1 mM DTT, 1 mM PMSF, 1.5 mM Na3VO4, 1×
protease inhibitor cocktail) on ice. The cell lysate was collected, and protein
extracts were collected following centrifugation at 16,000 × g for 20 min at 4 °C.
Meanwhile, 40 µl of Strep-Tactin® Sepharose® resin (50% suspension, IBA Life-
sciences GmbH) was washed in a microcentrifuge tube twice with 200 µl lysis
buffer (4000 × g, 1 min, 4 °C). The clear cell lysate was added to the prewashed
Strep-Tactin beads and incubated for 1 h on a rotation wheel at 4 °C. After incu-
bation, the beads were collected by centrifugation and washed three times with 1 ml
lysis buffer (4000 × g, 30 sec, 4 °C). After the last wash step, 50 µl of 2× Laemmli
sample buffer (Bio–Rad, 1610737) was added onto the beads, and the bound
complexes were eluted by boiling for 5 min at 95 °C, followed by dot blot analysis.

Dot blot. The Bio-Dot® Microfiltration System (Bio–Rad, 1703938) was assembled
according to the manufacturer’s instructions. The nitrocellulose membrane was
prewashed with TBS to hydrate the membrane. Ten microliters of sample was
spotted onto the nitrocellulose membrane in the center of the well and drained
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under vacuum pressure. The membrane was blocked with 5% skim milk in TBS-T
(Tris-buffered saline with 0.05% Tween 20) for 1 h at room temperature (RT) with
gentle shaking. Then, the membranes were incubated with the respective primary
antibodies (mouse anti-V5, ThermoFisher, Cat# R960-25, with a 1:5000 dilution in
blocking solution and mouse anti-HA, BioLegend, PRC-101C, with a 1:2000
dilution in blocking solution) overnight at 4 °C with gentle shaking. After three
10 min washes with TBS-T, the membranes were incubated with secondary anti-
bodies conjugated with HRP (Goat anti-mouse IgG H&L (HRP), Abcam, Cat#
97023, with a 1:2000 dilution in blocking solution and Goat anti-rabbit IgG H&L
(HRP), Abcam, Cat# ab205718, 1:2000 dilution in blocking solution) for 60 min at
RT with gentle shaking. The membrane was washed three times for 10 min with
TBS-T followed by one additional wash with TBS on a shaker. For visualization,
Amersham™ ECL™ Prime (Cytiva) solution was added to the membrane and
incubated for 5 min prior to imaging the blot using iBright Imaging Systems
(Thermo Fisher). The same membrane was then stripped by incubating with
Restore Plus Stripping buffer (Thermo Fisher) for 15 mins and was reblocked with
the blocking solution for 60 min at RT with gentle shaking. The membrane was
then incubated with the other primary antibody (mouse anti-HA with a 1:2000
dilution in blocking solution) overnight at 4 °C with gentle shaking, and the process
was carried out as before.

NFIA silencing and reporter gene assays. HEK293 cells were cultured in 96-well
plates (7000 cells/well) for 24 hours. This was followed by NFIA siRNA (Dhar-
macon J-008661-06) transfection at a final concentration of 100 nM using Dhar-
mafect transfection reagent (0.35 μl/well). After 24 h of siRNA silencing, the culture
medium was replaced with fresh medium, and cells were transfected with 50 ng of
the selected TF or empty vector (pTO-SH-GW-FRT) along with 47.5 ng of reporter
construct. The reporter constructs contained 6-8x TF binding sites (TFBSs31,
minimal promoter and firefly luciferase reporter. Only the constructs displaying
induction after introduction of the corresponding TF were chosen for further
analysis. These included reporters for KLF4 (both activating: [TFBS: 6x
GGGTGTGG] and repressive: [TFBS: 8x TAAAGGAAGG]), SOX2 (TFBS: 6x
CTTTGTT), PAX6 (TFBS: 6x TTCACGCTTGAGTT) and HME1 (TFBS: 8x
AAGTAGTGCCC).

In addition, cells were transfected with 2.5 ng of Renilla-luciferase construct.
After 24 hours, the cells were collected, and the firefly luciferase and Renilla
luciferase signals were detected using a Dual-GLO® luciferase assay system
(Promega). Firefly luciferase signals were normalized to Renilla luciferase signals,
and the analysis was performed in three replicates. NFIA silencing was confirmed
48 hours after siRNA transfection by western blotting using a specific antibody
against NFIA (Abcam, ab228897, 1:1000) and anti-Rabbit antibody (Dako, Cat#
P0448, 1:1500).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data of the figures are provided with this paper as a separate Excel sheet. The MS
peptide raw data from the MS runs have been deposited in the Massive database (http://
massive.ucsd.edu/ProteoSAFe/status.jsp?task=0bfbe238f2ab4bd1a12fec75e4f6c67e) under
accession number MSV000086891, and the protein interactions from this publication have
been submitted to the IMEx (http://www.imexconsortium.org) consortium through IntAct102

and assigned the identifier IM-28767. Filtered protein–protein interactions are also available in
Supplementary Data 1. Following databases were used in data analysis: Uniprot (release
2018_01; 20,192 entries, https://www.uniprot.org), CRAPome 2.0 (http://www.crapome.org/),
PINA Interaction network analysis tool (version 2.0, http://cbg.garvan.unsw.edu.au/pina/),
STRING: functional protein association network database, version 11, (https://string-db.org),
IntAct Molecular Interaction Database (https://www.ebi.ac.uk/intact/home, downloaded
30.4.2021), BrioGRID, Database of Protein, Genetic and Chemical Interactions (version 4.4,
https://thebiogrid.org), Mammalian protein complex resource: CORUM Institute of
Bioinformatics and Systems Biology (http://mips.helmholtz-muenchen.de/corum/), JASPAR
database (7th release, https://jaspar.genereg.net), HT-SELEX database (https://ccg.epfl.ch/
htpselex/), and ENCODE database, (https://maayanlab.cloud/Harmonizome/dataset/
ENCODE+Transcription+Factor+Targets). Source data are provided with this paper.
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