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Tiivistelmä – Referat – Abstract 

 

Alati enemmän aineistoa tuotetaan ja jaetaan internetin kautta. Aineistot ovat vaihtelevia muodoiltaan, kuten 

verkkoartikkelien ja sosiaalisen media julkaisujen kaltaiset digitaaliset tekstit, ja niillä on usein spatiaalinen ulottuvuus. 

Teksteissä geospatiaalisuutta ilmaistaan paikannimien kautta, mutta tavanomaisilla paikkatietomenetelmillä ei kyetä 

käsittelemään tietoa epätäsmällisessä kielellisessä asussaan. Tämä on luonut tarpeen muuntaa tekstimuotoisen 

sijaintitiedon näkyvään muotoon, koordinaateiksi. Ongelmaa ratkaisemaan on kehitetty geojäsentimiä, jotka tunnistavat ja 

paikantavat paikannimet vapaista teksteistä, ja jotka oikein toimiessaan voisivat toimia paikkatiedon lähteenä 

maantieteellisessä tutkimuksessa. Geojäsentämistä onkin sovellettu katastrofihallinnasta kirjallisuudentutkimukseen. 

Merkittävässä osassa geojäsentämisen tutkimusta tutkimusaineiston kielenä on ollut englanti ja geojäsentimetkin ovat 

kielikohtaisia – tämä jättää pimentoon paitsi geojäsentimien kehitykseen vaikuttavat havainnot pienemmistä kielistä myös 

kyseisten kielten puhujien näkemykset. 

 

Maisterintutkielmassani pyrin vastaamaan kolmeen tutkimuskysymykseen: Mitkä ovat edistyneimmät 

geojäsentämismenetelmät? Mitkä kielelliset ja maantieteelliset monitulkintaisuudet vaikeuttavat tämän monitahoisen 

ongelman ratkaisua? Ja miten arvioida geojäsentimien luotettavuutta ja käytettävyyttä? Tutkielman soveltavassa 

osuudessa esittelen Fingerin, geojäsentimen suomen kielelle, ja kuvaan sen kehitystä sekä suorituskyvyn arviointia. 

Arviointia varten loin kaksi testiaineistoa, joista toinen koostuu Twitter-julkaisuista ja toinen uutisartikkeleista. Finger-

geojäsennin, testiaineistot ja relevantit ohjelmakoodit jaetaan avoimesti. 

 

Geojäsentäminen voidaan jakaa kahteen alitehtävään: paikannimien tunnistamiseen tekstivirrasta ja paikannimien 

ratkaisemiseen oikeaan koordinaattipisteeseen mahdollisesti useasta kandidaatista. Molemmissa vaiheissa uusimmat 

metodit nojaavat syväoppimismalleihin ja -menetelmiin, joiden syötteinä ovat sanaupotusten kaltaiset vektorit. 

Geojäsentimien suoriutumista testataan aineistoilla, joissa paikannimet ja niiden koordinaatit tiedetään. Mittatikkuna 

tunnistamisessa on vastaavuus ja ratkaisemisessa etäisyys oikeasta sijainnista. 

 

Finger käyttää paikannimitunnistinta, joka hyödyntää suomenkielistä BERT-kielimallia, ja suoraviivaista tietokantahakua 

paikannimien ratkaisemiseen. Ohjelmisto tuottaa taulukkomuotoiseksi jäsenneltyä paikkatietoa, joka sisältää syötetekstit ja 

niistä mahdollisesti tunnistetut paikannimet koordinaattisijainteineen. Testiaineistot eroavat aihepiireiltään, mutta Finger 

suoriutuu niillä likipitäen samoin, ja suoriutuu englanninkielisillä aineistoilla tehtyihin arviointeihin suhteutettuna kelvollisesti. 

Virheanalyysi paljastaa useita virhelähteitä, jotka johtuvat kielten tai maantieteellisen todellisuuden luontaisesta 

epäselvyydestä tai ovat prosessoinnin aiheuttamia, kuten perusmuotoistamisvirheet. 

 

Kaikkia osia Fingerissä voidaan parantaa, muun muassa kehittämällä kielellistä käsittelyä pidemmälle ja luomalla 

kattavampia testiaineistoja. Samoin tulevaisuuden geojäsentimien tulee kyetä käsittelemään monimutkaisempia kielellisiä 

ja maantieteellisiä kuvaustapoja kuin pelkät paikannimet ja koordinaattipisteet. Finger ei nykymuodossaan tuota valmista 

paikkatietoa, jota kannattaisi kritiikittä käyttää. Se on kuitenkin lupaava ensiaskel suomen kielen geojäsentimille ja 

astinlauta vastaisuuden soveltavalle tutkimukselle. 
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1. Introduction 

Studying human activity and physical phenomena in space through the lens of geography is being 

expanded and changed by new data sources: we live in the age of big data. While the volume of data 

is nothing new for geographical research and especially geoinformatics, which has a long history of 

dealing with e.g., massive satellite imagery datasets, big data is ever more varied. Variety refers to 

the messy, often unstructured nature of this data – for example, description of a holiday resort 

expressed in rambling travel blogs instead of gathered in structured visitor surveys (Kitchin, 2013; 

Miller & Goodchild, 2015; Yan et al., 2021).  

These unstructured masses of data are created every day as people interact with their 

surroundings, which presents possibilities for geographic knowledge discovery (Miller & Goodchild, 

2015). Indeed, much of all information is georeferenced directly or indirectly (Hahmann & Burghardt, 

2013), waiting for geographers to exploit it. In this thesis, I focus on big collections of texts created 

and shared on the internet, such as social media content, news articles and Wikipedia entries, 

collectively named geo-text data by Hu (2018b). 

Texts are linked to real-world locations by various means, such as coordinate geotags attached to 

social media posts and toponyms, also known as place names, in the texts themselves (Hu, 2018b). 

The latter method is more implicit because the geographic reference is expressed through language, 

and not in the unambiguous coordinates GI-systems operate in. This creates the need to transform the 

often ambiguous linguistic geoinformation in texts to an explicit form (Frank & Mark, 1991; Hu & 

Adams, 2021). The process of identifying toponyms and producing geographical footprints for them 

is called geoparsing. Geoparsing is further divided to two large subtasks, toponym recognition for 

identifying location mentions and toponym resolution for producing the correct real-world 

representation (Gritta, 2019; Hu & Adams, 2021).  

Associating toponyms to locations is not an easy task, and has garnered research attention from 

fields such as geographic information retrieval (Purves et al., 2018), language technology (Gritta, 

2019), and library and information science (Hill, 2006). To facilitate geoparsing, several geoparsers 

have been developed (see e.g. DeLozier et al., 2015; Karimzadeh et al., 2019; Tobin et al., 2010) and 

they perform well at least on some text genres (J. Wang & Hu, 2019a). Many geoparsers are language-

specific and cover a limited range of languages, most prominently English and other Indo-European 

languages.  
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As Bender (2019) argues, English does not epitomize all natural languages. Even in online spaces, 

where English is dominant, there is significant diversity and prominence of local languages to be 

found (Hiippala et al., 2020). Ignoring tool development for smaller languages would mean to ignore 

the insights and experiences the speakers of those languages provide. In addition, the unique problems 

and possibilities of other languages, such as the rich morphological inflection present in Finnish but 

not in English, may get overlooked when the pool of researched languages is small. While recent 

Master’s theses worked on associating Finnish war time documents (Heino, 2017) and Finnish tweets 

related to sports facilities (Koivisto, 2021) to locations, these solutions were purpose-built. To my 

knowledge, no general-purpose geoparser for Finnish texts exist.  

Against this background, I first aim to explore how this multifaceted problem has been 

approached from the point of view of geography and language technology. Knowledge from the 

literature review is used in developing Finger, the first open-source, general-purpose geoparser for 

Finnish. Lastly, I test the validity of the system, discuss its strengths and weaknesses, and point out 

possible research directions. I seek to answer the following research questions: 

RQ 1. What are the current state-of-the-art methods for recognizing and resolving toponyms? 

RQ 2. What problems emerge linguistically and geographically when tackling geoparsing? 

RQ 3. How reliable and usable is Finger and its output? 

I answer RQ1 in Chapter 2 of the thesis by the way of a presenting recent literature on mostly 

English language geoparsing research. Chapter 2 progresses from the definition of geoparsing to 

prominent applications. These sections lay the groundwork for the exploration of toponym 

recognition (Section 2.4) and resolution (Section 2.5) methods. RQ 2 is addressed in Section 2.3, 

where the ambiguity of linguistic and coordinate-based representations of the world is explored. 

Finally, RQ 3 addresses evaluation of Finger, the geoparser developed in this work. The methodical 

background of geoparser evaluation is explored in Section 2.6, which is then applied to evaluating 

Finger in Chapter 4 and contrasting the results to previous research and discussing the geoparser’s 

reliability in Section 5.1. 

 



 

 
3 

 

2. Background 

2.1. Defining geoparsing 

The central concept of this thesis, geoparsing, has at least two definitions that I am aware of. First, 

among others, Gritta et al. (2017) and Hu & Adams (2021) use geoparsing to refer to the two-step 

process of recognizing toponyms (toponym recognition also known as geotagging) in unstructured 

texts and resolving them unambiguously to a geographical location (toponym resolution, also known 

as geocoding). Second, for example Purves et al. (2018) and Monteiro et al. (2016) use geoparsing 

to refer only to the first part of the process, toponym recognition. In this thesis, I adopt the first 

definition: geoparsing is finding toponyms in texts and representing them geographically. See Figure 

1 for a summarization of the major tasks in geoparsing and an example sentence run through an 

imaginary geoparser. 

 

 

Figure 1. Top-level view of geoparsing and an example. 
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To clarify on some of the terminology and choices: toponym recognition is a cumbersome term, 

but I use it over geotagging to avoid confusion with the act of tagging online posts with locations, 

also called geotagging. The more general process of linking documents or individual place references 

to locations georeferencing (Purves et al., 2018, p. 206); geoparsing is one method to achieve this. 

Geoparser is a system that runs such a process on unstructured texts (Karimzadeh et al., 2019).  

Document, in this context, refers to any span of text forming an identifiable whole, such as a news 

article or a tweet. Unstructured, or free, text is distinguished from structured text by the fact that its 

linguistic content and form are unknown beforehand. For example, a list of addresses is structured 

whereas a stream of online comments is unstructured text. 

In an ideal scenario, the geoparser in Figure 1 will tag Sibeliuksenpuisto and resolve it e.g. to a 

WGS84 coordinate pair (60.18052, 24.91596) within the park. This highlights a one more critical 

distinction in the objective of geoparsing. The goal might either be to locate each place name or to 

locate a geographical footprint, or the theme, of a whole document (DeLozier et al., 2016; Melo & 

Martins, 2017). To phrase it another way, sometimes the task is to geolocate each toponym in a 

document and leave further analysis to the user; sometimes to synthesize the toponym mentions and 

find a general target area the document discusses. These adjacent tasks can be named document and 

toponym geoparsing (Gritta et al., 2018). In this thesis, my emphasis is on geoparsing of toponyms. 

More information on document geoparsing can be found in recent reviews (Melo & Martins, 2017; 

Purves et al., 2018). 

   

2.2. Applications of geoparsing: why geoparse texts? 

Geoparsing has several use cases for texts on the internet (see e.g. Middleton et al., 2018). Because 

social media platforms, especially Twitter, provide a constant feed of content, there have been efforts 

to monitor events first emerging online, especially to extract information for disaster response: which 

areas are most severely affected, where to direct aid? (J. Wang et al., 2020). Gelernter and Mushegian 

(2011) did an early exploration of using Twitter for disaster relief by geoparsing tweets related to an 

earthquake in New Zealand. Work in this direction is expanded by Avvenuti et al. (2018), who present 

a geoparser as part of their CrisMap system. The system geoparses tweets, which are then content 

analyzed and mapped. Eilander et al. (2016) combined tweets located by matching neighborhood 

names with geodata on e.g. elevation to map flood observations. Recently, Koivisto (2021) explored 
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the use of sports facilities as revealed by geotags and geoparsed Twitter posts. Beyond social media, 

online news articles have been geoparsed to monitor disease spread (Gritta, 2019, p. 95). 

Geoparsers can benefit many fields dealing with textual documents and the geospatial – what 

Gregory et al. (2015) call spatial humanities – by grounding the locations expressed in narratives. 

This allows possibilities from simple exploration to finding links between locations or any succeeding 

analysis. For example, Moncla et al. (2019) geoparsed and visualized Parisian urban roads mentioned 

in French novels to contextualize them spatially. A similar work was carried out for historical and 

contemporary literature set in the City of Edinburgh. The results are viewable online 1 (Alex et al., 

2019). For a historical application, see the three examples presented in Alex et al. (2015): 

understanding the effects of 19th century commodity trade, and geoparsing ancient and historical 

texts. Another perspective is by Tateosian et al  (2017), who tracked and mapped the spread of potato 

famine in the mid-19th century based on mentions in documents and literature of the time. In Finnish, 

Heino (2017) linked Finnish war-time documents to locations.  

The field of geographic information retrieval has approached geoparsing from a document 

indexing and retrieval point-of-view. If a user for example queries a search engine for hiking paths 

near Muonio, a good system would be able return relevant results even if they are in neighboring 

regions because this info has been georeferenced and spatially indexed. A comprehensive review into 

this direction is given by Purves et al. (2018). As a specific example, scientific articles could benefit 

from being indexed not just thematically but spatially (Karl, 2019). 

The above listing is not exhausting but it suffices to highlight a few points. First, there is a need 

for geoparsers in multiple fields of study and the need is only heightened by the explosion of internet 

texts and digital libraries. Second, geoparsing is not the goal, but rather a means to an end; a step in 

pipelines consisting of data retrieval, geoparsing, geospatial analysis and visualization (Hu, 2018b, 

p. 11). This does not lessen the importance of geoparsers: following from the principle of garbage in, 

garbage out, the geoparser output must be reliable for the subsequent steps to be reliable.  

However, as argued by Hu and Adams (2021), it is important to ask: why do we need specifically 

geoparsed information? Certainly it is true that for example the social media datasets are plagued by 

problems like being unrepresentative of the general population, as they might be self-selecting instead 

(Miller & Goodchild, 2015). Nonetheless, Hu and Adams (2021) list several benefits of geoparsed 

data: because the input is freeform texts, such as travel blog entries, they open a window into people’s 

 
1 www.litlong.org 

http://www.litlong.org/
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experiences of places. These datasets also might not be spatially usable in any other way, and the data 

on social media is produced at a velocity that far outpaces other sources, which allows almost real-

time monitoring of events (Hu & Adams, 2021, p. 2). 

Finally, what can correctly located toponyms be used for; what sort of information do they tell 

and what not? When the information is user-provided, meaning that it has an author, it can be 

distinguished whether the data is from somewhere or about somewhere (Hu, 2018b; MacEachren et 

al., 2011; Zheng et al., 2018). The first implies that the user is or was physically present somewhere 

and the second that it is merely the topic of discussion, e.g. “What a sunny day here in Turku [from], 

I bet it’s not as nice in Tampere! [about]”. The distinction is relevant when, for example, studying the 

presence of people: unlike a geotag often does, a toponym mention does not in itself indicate a user 

did an action like a national park visit (Heikinheimo et al., 2017). 

 

2.3. Toponyms and locations 

Among the central concepts of this thesis are location and toponym: they are elaborated on in this 

chapter. In this thesis, I draw from the definitions given by Gritta  et al. (2020, p. 690). A location is 

one of innumerable spots on Earth defined unambiguously by spatial reference systems, often 

represented by vector-based primitives such as points or polygons. Toponyms are named entities that 

label a particular location. This definition is close to the classic concepts of space and place (Tuan, 

1979): thus, locations exist in clearly defined coordinate spaces, while toponyms inhibit a platial 

world, only existing because of humans who give them meaning (Blaschke et al., 2018). While the 

described definition is adopted in this thesis, see Purves and Derungs (2015) for a more nuanced 

discussion, where the authors aim to go beyond the “reduction of place to a name and a set of 

coordinates” (p. 77). 

  

2.3.1. Toponyms and linguistic ambiguity 

Ambiguity, or multiple interpretations of words and phrases, is an inseparable feature of natural 

languages (Pilehvar & Camacho-Collados, 2020, pp. 1–2). To be clear, natural languages are simply 

human languages – as separate from artificial languages, such as the programming language Python. 

Ambiguity can express itself in many ways, such as words that have multiple meanings depending 

on the context, like bat in English (lexical ambiguity) or how a concept is replaced with a similar one, 
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like using Arkadianmäki to represent the Finnish state powers due to the location of the parliament 

building (metonymic ambiguity) (Pilehvar & Camacho-Collados, 2020, pp. 1–2).  

Amitay et al. (2004) defined the ambiguities plaguing geoparsing by naming geo/geo and 

geo/non-geo ambiguities. Geo/geo occurs when multiple locations share a name, such as Helsinki, 

the Capital of Finland and Helsinki, a village in Southwest Finland. Geo/non-geo is when a non-

geographic entity shares the same surface-form as the location: for example, Lahti is a surname, a 

geographic formation (bay) and a city in southern Finland. It is the task of a geoparser to discern the 

ambiguities: methods to disambiguate them are explored in Sections 2.4–2.5. However, Gritta et al. 

(2020) go beyond by problematizing how toponyms have been used in previous research, and argue 

the current definition is under-specified. A broader toponym definition has consequences for the 

downstream tasks, such as corpora building and toponym recognition. 

Gritta et al. classify toponyms (2020, pp. 691–692) in two major groups: literal and associative. 

The former refer to “where something is happening or is literally located” (ibid., pp. 691); this is the 

common definition of a toponym in the previous literature. Associative toponym is used “to modify 

non-locational concepts – – which are associated with locations rather than directly referring to their 

physical presence” (ibid., pp. 693). For example: 

(1) We ate some Swedish [associative] meatballs in a pub in Paris [literal]. 

(1f) Söimme ruotsalaisia lihapullia pubissa Pariisissa. 

The distinction here is that the literal toponym refers to a geographical location, while the 

associative one is linked to Sweden through the nationality, but the link to the physical location is 

slim. This distinction is evident through the context of the toponym: the study of how the 

interpretation of words and phrases changes in a context is called pragmatism, which is why Gritta et 

al. (2020) name their classification the pragmatic taxonomy of toponyms (ibid., pp. 685–686). They 

go beyond the top-level distinction and describe the various ways toponyms can be used as modifiers 

in phrases, for example: 

(2) Our Tallinn hotel was really comfy. 

(2f) Tallinnan hotellimme oli hyvin mukava. 

Here, the toponym “Tallinn” modifies the noun head, which is “hotel”. These types of phrases are 

often negligently overlooked according to Gritta el al. (2020, pp. 691–693), even though they carry 

geographical information as well. The taxonomy also includes demonyms (such as French) and 
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languages (Russian). Though these lack a location, they create ambiguity in at least English texts. 

The taxonomy cannot be described here in whole, but I recommend interest reader the relevant 

sections of the original paper (Gritta et al., 2020, pp. 690–694). However, for this thesis, Figure 2 

shows the most salient results: it illustrates how a mere third (31.3 %) of toponyms in the 

GeoWebNews corpus were simple literal toponyms, the ones usually thought of as locations in 

geoparsing corpora. The main point of Gritta et al. (2020) is that geoparsers cannot be robustly used 

or evaluated if the central concept at the task’s core, toponym, is not robustly defined.  
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Figure 2. A taxonomy of toponyms recreated from Gritta et al. (2020, p. 690). The percentages 

show the share of toponyms falling into that class in the GeoWebNews corpus. 

 

In general, there is scarcely agreement in previous research on which locations should be considered 

toponyms. This is evident when examining how toponyms are marked in corpora (plural of corpus). 
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Corpora are large collections of texts that have been annotated for some purpose: e.g., toponyms are 

annotated and linked with coordinates in geoparsing corpora to evaluate geoparsers (see Section 2.6 

for more on geoparsing corpora). The only common feature type in most previous corpora are 

administrative units, like nations and cities. Natural features, roads and buildings are often not 

included, not to speak of loose toponym uses, such as metonymic use or demonyms (J. Wang & Hu, 

2019b, pp. 10–11). There are bountiful edge-cases of toponyms that are hard to disambiguate, as 

Wallgrün et al. (2018) noticed when partly crowdsourcing the generation of their Twitter geoparsing 

corpus, GeoCorpora. These edge-cases (such as United Nations in a context where it could either be 

an organization or the UN headquarters) were hard for laypeople and experts in geography alike. 

Because it is tough to pin down one definition for toponyms in the literature, they are rather formed 

through the corpus-building process to best suite each use case (J. Wang & Hu, 2019b, pp. 10–11). 

Individual articles might similarly employ their own definitions based on their objective (see e.g. a 

Twitter use case by Gelernter & Mushegian, 2011, pp. 756–757). 

 

2.3.2. Locations in time and space 

The second part of geoparsing deals with linking toponyms with locations: finding a correct and 

suitable spatial representation for a platial concept. Neither toponyms nor locations are always static, 

clearly defined or even known. Places meaningful to people are bound to be named, but the names 

change due to political fluctuations, generational changes, memorable events occurring in that place, 

and numerous other reasons (Ainiala, 2018; Leidner, 2007, p. 71). The same place might hold 

different names over time, which Leidner (2007, p. 71) illustrates with the example of Karl-Marx-

Stadt, better known historically and again today as Chemnitz. Historical, alternative forms and 

spellings (e.g. Helsinki/Hesa), and versions for different languages (Helsinki/Helsingfors) coexist for 

the same location (Purves et al., 2018, p. 214). There are also fictional places (such as Hogwarts), 

which cannot be located at all. 

The locations change over time, which could be a consequence of cultural shifts or the physical 

world itself changing. For example, a municipality might gain ground in a merger or due to post-

glacial rebound. The same toponym refers to locations in different time periods. Thus, an author 

writing about Lohja in the 1980s referred to vastly different area than in year 2021, since the 

municipality has gone through multiple mergers over time; features other than the area, such as 

population, were different as well. Or, as Goodchild and Hill (2008) put it, “places themselves come 

and go with the passage of time as well as the elements of place description” (pp. 1041). The 
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temporality of toponyms is a factor in geoparsing that should not be overlooked – for example, 

Tambuscio and Andrews (2021) found that toponym recognition proved difficult on historical texts 

from Armenia. Similar concerns made Bol (2013) call for a database where, e.g., the fluctuating 

administrative regions and their time periods would be stored: a “world-historical gazetteer” (ibid., 

p. 1089). There are in fact gazetteers exclusively for historical toponyms, such as the Pleiades (Barker 

et al., 2016). 

Toponyms mark locations that are of wildly different scale, or granularity (Purves et al., 2018, p. 

176). Think of a school building in the village of Koski in Hattula, Finland. The preceding sentence 

already marks four different locations, one a facility and the other three administrative areas of 

different levels. These form hierarchies: an explicit administrative hierarchy of municipality > 

province > country (Hattula > Kanta-Häme > Finland). Such relationships are often saved in 

gazetteers (Amitay et al., 2004) (see Section 2.5.1 for more on gazetteers). Spatial overlap, or 

containment, of the locations can also be used to express hierarchical relations: see Figure 3, where 

Koski is within Hattula, both are within Kanta-Häme and so forth. Also notice the varying sizes the 

locations are represented as. At the scale in Figure 3, the school building is not represented at all, 

Koski as point and the rest as polygons. As noted by Leidner and Lieberman (2011, p. 9), the varying 

granularity of the input poses a challenge for geoparsing. 
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Figure 3. Visualizing containment and granularity differences in locations. 

 

Not all toponyms define well-defined locations to begin with. Vernacular toponyms, such as 

Piritori in reference to the Vaasanpuistikko square in Helsinki, are used in everyday language but 

rarely codified in gazetteers, which mainly rely on official sources (Hu, 2018a, p. 82; Purves & 

Derungs, 2015). Recently, Hu et al. (2019) explored vernacular toponyms in a data-driven manner by 

finding and delineating local toponyms found in georeferenced online housing advertisements. Their 

linguistic-spatial method found a number of neighborhoods and points-of-interest not saved in 

traditional sources. A similar research topic are vague cognitive regions, areas that are used to 

mentally structure the environment. They are again rarely included in authoritative sources, and have 

vague extents and boundaries (Gao et al., 2017; Montello et al., 2014). An often studied example is 

Northern and Southern California in the United States, where their borders do not follow strict latitude 

lines and are more so influenced by the inhabitant’s cultural expectations and perceptions (Montello 

et al., 2014).  
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Finally, there are cases where the location referred to linguistically is not actually the toponym 

(Leidner & Lieberman, 2011). For example, in “120 km North-East from Oslo”, the toponym Oslo is 

simply used as a grounding landmark and the actual location is defined in the surrounding sentence. 

Efforts to automatically understand and formalize these types of complex geographical descriptions 

have been taken (see e.g. Du et al., 2017; Stock & Yousaf, 2018). Additionally, there have been calls 

to integrate geoparsers with the ability process these spatial descriptions (Gritta et al., 2017, pp. 621–

622; Laparra & Bethard, 2020), but this line of research is still only budding. 

 

2.4. Toponym recognition: Named Entity Recognition for geoparsing 

2.4.1. Named Entity Recognition 

The first step in geoparsing is the recognition of place names, or toponyms, in input texts. This task 

can be equated to a special case of Named Entity Recognition (NER) (Hu & Adams, 2021; Leidner 

& Lieberman, 2011), a widely-studied information retrieval task in the field of Natural Language 

Processing (NLP) (Ringland, 2016, p. 2). Named entities are anything that can be referred to by 

proper names and are deemed relevant classes for the task at hand. Traditionally, these classes include 

persons (Aragorn), locations (Mirkwood), organizations (The Prancing Pony) and geo-political 

entities (Rohan) (Jurafsky & Martin, 2022, pp. 164–165). In NER, the task is thus “to find spans of 

text that constitute proper names and tag the type of entity” (Jurafsky & Martin, 2022, p. 164). See 

Figure 4 for an example. Details like the number of entity classes vary by corpus – for example Luoma 

et al. (2020) include dates, products and events in their Finnish NER corpus, but have no separate 

class for geo-political entities – nations are grouped under locations instead. One span of text can 

usually only belong to a single class (University of Barcelona is tagged as an organization): unless a 

schema like nested named entities is used (Barcelona is a location within University of Barcelona) 

(Ringland, 2016). The task remains the same in toponym recognition, except that only locations are 

of interest.  
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Figure 4. Example of a sentence with the named entities tagged (PER=person, LOC=location). The 

B and I markings follow the IOB2 tag format: B marks the beginning of an entity and I all the 

succeeding words belonging to the same entity. 

 

2.4.2. Traditional approaches to toponym recognition 

Toponym recognition is not a new problem. Leidner and Lieberman (2011) list three earlier 

approaches to the problem: 

1. Lookup 

2. Rule-based 

3. Machine learning based 

A simple approach would be to compare, or lookup, each word or character in text to a list of 

toponyms. This approach can be successfully applied if the study area and the target toponyms within 

are few and have little ambiguity (see Koivisto, 2021). However, for larger study areas ranging to 

global, ambiguities discussed previously (see Section 2.3) will quickly present problems: the same 

surface forms often have non-geographic meanings. For example, Dresden might refer to the German 

city (or one of many towns in the US), or it might refer to a film by the same name, or a jazz album 

by Jan Garbarek. The lookup could also fail if the surface form did not match the wordform in the 

lexicon (e.g. Helsinki in the conjugated form Helsingissä), though the surface form can be returned 

to a base form through computational means (lemmatizing), which alleviates this problem (Koivisto, 

2021). In addition, the toponym list would inevitably be limited and need updating over time (Purves 

et al., 2018, p. 211). 

The rule-based approach rests on the intuition that there are common linguistic features in the 

toponyms or their contexts which identify them. Therefore, a set of rules can be written in e.g. Regular 

Expression pattern matching language to exploit these. For example, to tag roads like Maple Street, 

a rule to match capitalized words followed by Road, Street or Boulevard can be constructed (Leidner 
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& Lieberman, 2011; Purves et al., 2018, p. 212). Rule-based geotaggers are quite common in 

geoparsing: for example the NER component of the Edinburgh geoparser applies manually crafted 

rules combined with lexicon lookup (Tobin et al., 2010) which performs quite well even in a recent 

evaluation (J. Wang & Hu, 2019a). As a downside, crafting the rules is time-consuming, language-

dependent, requires expertise and it is still hard to account for cases such as colloquial language that 

does not follow the same patterns. 

Toponym recognition can also be approached as a prediction task. A machine learning classifier 

is trained with examples (that is, in a supervised manner) to answer a question like: is this word a 

toponym given the input features? (Leidner & Lieberman, 2011; Purves et al., 2018, pp. 212–213). 

The input features have to be selected manually and can, for example, be preceding and succeeding 

part-of-speech tags (noun, verb etc.) or word affixes in the case of morphologically rich languages. 

A corpus of manually annotated gold-standard data, where the toponyms are known, is needed to 

train the classifier: the classification methods can be based on a number of options including Hidden 

Markov models or Conditional Random Fields (Purves et al., 2018, p. 213). Describing these models 

goes beyond the scope of this thesis, but an interested reader can find details and examples of their 

application to NLP tasks in Jurafsky and Martin (2022, Chapter 8).  

The statistical machine learning approach has found success in toponym recognition, for example 

five of the six NER algorithms offered by the GeoTxt geoparser are machine learning based 

(Karimzadeh et al., 2019, p. 7). The downside of this approach is that it is data hungry, with the 

requirement of manually annotated training data. The classifiers might not generalize well to unseen 

datasets (Purves et al., 2018, p. 213), especially if the training data is from a different text domain. 

For example, a classifier trained on medical texts might do poorly on news articles. 

 

2.4.3. Neural NER for toponym recognition 

Recent advancements in toponym recognition are linked to the widespread introduction of deep 

learning methods in natural language processing, since these approaches often trump hand-crafted 

rules and the feature-based machine learning techniques in performance (Pilehvar & Camacho-

Collados, 2020, p. 11). Especially effective are contextualized word embeddings and the Transformer-

based language models that produce them (Pilehvar & Camacho-Collados, 2020, pp. 69–77). This 

topic is extensive and can be somewhat hard to grasp, but I will keep the explanations brief and mostly 

in the context of toponym recognition. To be clear on the terminology, an (artificial) neural network 

is a specific type of machine learning model that consists of layers of computing units (input, hidden 
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and output) that take in a value and output one to the next layer. Stacking multiple of these layers 

together creates a deep network, hence the term deep learning (Jurafsky & Martin, 2022, p. 133). In 

this thesis, I use the terms neural (network) and deep learning (based) interchangeably.  

Word embeddings are a technique for approximating the meaning of words and are commonly 

used as input for neural NER models. Word embeddings are multi-dimensional vectors, basically lists 

of numbers, derived from word co-occurrence. The embeddings form a semantic space, where similar 

words are close to each other: for example, because excellent and amazing occur in similar contexts, 

they are close in the semantic space. (Jurafsky & Martin, 2022, pp. 106–107; Pilehvar & Camacho-

Collados, 2020, p. 25). The embeddings can be static – star is represented by one vector whether its 

meaning in the sentence is a celestial object or a celebrity – or contextual, so that the embedding of 

the word is dynamic and dependent on the surrounding words (Pilehvar & Camacho-Collados, 2020, 

p. 77). BERT is a language model that can learn such contextual embeddings, trained on massive 

textual datasets (Devlin et al., 2018). Language models may be trained on texts from single 

(monolingual) or multiple languages (multilingual). The models form a base in which to ground 

different downstream tasks, such as NER. This process is called transfer learning: as a metaphor, 

think of first acquiring, through much hardship, general knowledge of Python, and then partaking a 

two-day class of Python-in-QGIS. The previously learned generalist skills carry over to the special 

task and make succeeding in it much easier. Similarly, a BERT model may be fine-tuned for tasks by 

training it with a small amount of labeled data (Devlin et al., 2018, p. 3; Jurafsky & Martin, 2022, 

Chapter 11).  

These methods are relevant for this work because they have achieved state-of-the-art results in 

general NER. The high level of performance holds true for Finnish: Virtanen et al. (2019), show that 

their Finnish implementation of BERT with a NER layer achieves state-of-the-art results, beating a 

multilingual BERT model and a previous rule-based tagger (Virtanen et al., 2019, pp. 5–6). Does the 

same level of high performance carry to toponym recognition? J. Wang and Hu (2019a) report on a 

recent geoparsing competition and state that all the winning teams used neural network based models 

in their geoparsers. They further compared the competition geoparsers to older systems and run them 

against test corpora. The results show that these geoparsers, such as the winning DM_NLP (X. Wang 

et al., 2019), perform top of the line on most, but not all, of the eight datasets. Recently, a neural 

network toponym recognizer built for social media texts was introduced, and once again achieved 

commendable results (J. Wang et al., 2020). 
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The results from multiple fronts give confidence that the methods based on deep learning 

architectures are good option and perhaps the direction to go for toponym recognition. A question 

remains: why do these models perform so well? Central to this thesis is the deep language model 

BERT. Though BERT is still fresh and somewhat opaque technology, Rogers et al. (2020) note in 

their review several features of it that could explain its performance. BERT embeddings have 

syntactic, semantic and, to a limited extent, general world knowledge encoded in them. I presume 

these features help alleviate geo/non-geo ambiguity. It is also not stumped by out-of-vocabulary 

words (words the model did not encounter when training) in the input as easily as traditional machine 

learning models – this is because the embeddings are actually sub-word tokens (Jurafsky & Martin, 

2022, pp. 246–247). This means that if that if a whole word is not found in the vocabulary, the 

program splits it to smaller parts, each with their own embeddings: for example koulussako → [koulu, 

##ssa, ##ko]. 

 

2.5. Toponym resolution 

Toponym resolution (also known as geocoding) is the second task of a geoparsing process. In short, 

once toponyms in the input have been recognized, they must be unambiguously tied to some location 

on Earth. To do so requires both knowledge of where the toponyms should be located and which is 

the correct interpretation in case of geo/geo-ambiguity. 

 

2.5.1. Gazetteers 

Gazetteers are databases of toponyms, the toponyms’ spatial footprints and various attribute 

information tied to the toponyms (Hill, 2006, pp. 91–92). For example, the city of Espoo has an entry 

in the GeoNames gazetteer with the spatial footprint in the form a coordinate pair (60.25, 24.667), a 

unique GeoNames ID (660158) and population as additional information. In geoparsers, gazetteers 

are used to get coordinates for the identified toponyms and often to disambiguate between candidate 

toponyms (Purves et al., 2018, pp. 215–217). While some geoparsing approaches function 

independently of gazetteers (e.g. DeLozier et al., 2015; Hulden et al., 2015), most are database-

dependent in training or while running them (see e.g. systems explored by Gritta et al., 2017; J. Wang 

& Hu, 2019b), which merits the closer examination of gazetteers. 

Table 1 lists several prominent open-access gazetteers, particularly ones that are used by 

geoparsers. To represent Finnish placename databases, a dataset by the National Land Survey of 
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Finland (Maanmittauslaitos) is included; the other gazetteers have global coverage. The gazetteers 

vary by the sources of information, with some derived from authoritative sources, OpenStreetMap 

being crowdsourced and GeoNames augmenting authoritative data with user input (Acheson et al., 

2017). OpenStreetMap, which primary purpose is to be an online map and not a gazetteer, contains 

points, lines and polygons as spatial features, while the rest only contain coordinate points. Easily the 

most often used database for geoparsing is the aforementioned GeoNames2 used as the only or 

additional data source by for example the Edinburgh geoparser (Tobin et al., 2010), DM_NLP (X. 

Wang et al., 2019) and GeoTxt (Karimzadeh et al., 2019). 

 

Table 1. Examples of publicly available gazetteers 

Gazetteer Coverage Footprint Data source 

GeoNames (GN) Global Points Authoritative / 

volunteered 

Getty Thesaurus of 

Geographic Names 

(TGN) 

Global Points Authoritative 

NLS Geographic names Finland Points Authoritative 

OpenStreetMap Global Points, lines, 

polygons 

Volunteered 

 

Gazetteers vary both in their stated purpose and in quality on different metrics – how current their 

data is, how accurate it is, what spatial scale it covers and how uniformly the features are spread 

spatially and across feature types (Hill, 2006, p. 107). Acheson et al. (2017) explored these properties 

quantitatively in GeoNames and TGN, and found that the gazetteers do not cover the globe equally. 

For example, there are strict discontinuities in feature densities in national borders, such as hills in 

Norway being exceptionally well mapped in comparison to Finland. The authors note that especially 

less developed countries may be poorly covered by these global gazetteers, which skews results when 

using them for tasks such as toponym resolution (Acheson et al., 2017).  

 
2 https://www.geonames.org/ 

https://www.geonames.org/
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The production and collection process of place names has also been critically examined: whose 

description of space is recorded? (Rose-Redwood et al., 2010) For example, the collection practices 

in Finland used to promote collecting place names from elderly males (Ainiala, 2018). These 

imbalances are bound to flow downstream to the gazetteers, which often draw from authoritative 

sources (Table 1). In the same way maps do not merely convey information about the world 

objectively and neutrally (Harley, 1989), gazetteers are not arbiters of absolute truths about our world. 

They cannot describe the world fully, the spatial experience of everyone, or solve disputed localities: 

Cope and Kelso (2015) see gazetteers as “the space where debate about place is managed but not 

decided”. While keeping these ponderings in mind, gazetteers are nonetheless a necessary tool in 

geoparsing. 

 

2.5.2. Toponym resolution methods 

Correct and suitable geographical representations must be produced for the toponyms after they have 

been recognized. To this end, gazetteers may be queried: the candidates that match the input string 

are returned. When there are multiple candidates for a single toponym, they must be disambiguated 

using some type of method. Similarly to toponym recognition and NER, this task is not unlike the 

general Named Entity Disambiguation task (Santos et al., 2015). However, I will focus on specifically 

methods proposed for grounding place names.  

Buscaldi and Rosso (2008) group these methods into three major categories: 

1. Map-based, which use the spatial analysis methods. 

2. Knowledge-based, which draw from external resources, like gazetteers to rank the candidates. 

3. Data-driven or machine learning based, where a classifier is trained often based on the 

surrounding context of the toponym. 

Please note that, although I present these approaches individually, toponym resolution systems often 

leverage multiple methods, all of which do not fit neatly to Buscaldi’s and Rosso’s (2008) scheme.  

The most prominent spatial disambiguation method is spatial minimality, as introduced by 

Leidner (2007). It relies on the assumption that places mentioned in a single document tend to be 

close to each other, and thus finding a solution that minimizes the distance between the resolved 

toponyms would be the correct one. For example, let us examine this sentence: 

(3) New school is being built in Koski, Hattula 

(3f) Hattulan Koskeen rakennetaan uutta koulua 



 

 
20 

 

Let us say Hattula is unambiguously resolved to the municipality in Kanta-Häme. Following the 

principle of spatial minimality, the village of Koski that is near Hattula will be selected because it 

leads to the smallest minimum bounding box (Leidner, 2007, pp. 148–153). The assumption that 

toponyms in the same document are most likely spatially near might not hold for all text types: for 

example, spatial minimality provided no performance improvements when run on the GeoCorpora 

corpus of tweets (Karimzadeh et al., 2019). 

What Buscaldi and Rosso (2008) call knowledge-based methods exploit external sources to get 

ranking information. Often this ranking aims at selecting the most prominent location, be it through 

population count, type categories, the number of alternate names or some combination of the 

aforementioned. Selecting the candidate with the highest population is a common heuristic, and one 

that provides robust results; for example functioning as a baseline method (J. Wang & Hu, 2019a) 

and providing a performance boost of 50 percentage points over simple string matching in GeoTxt 

(Karimzadeh et al., 2019). Population heuristic is also easy to implement, since such information is 

readily stored in gazetteers; however, it of course only works for populated places.  

Disambiguating may also be done with place types, such as preferring cities over water features, 

or using the number of alternate names as a proxy of a feature’s prominence (Karimzadeh et al., 

2019). Hierarchical containment relationships may also be exploited (Purves et al., 2018, p. 217, also 

see Figure 3): for example in (3), Koski is a subsection of Hattula and both of them are subsections 

of Kanta-Häme in the administrative hierarchy. Finally, specific rules might be crafted if they suit the 

use case: for example, Alex et al. (2015) report exploiting the nearness to 19th century ports as a 

feature that aided in resolving toponyms in historical trading documents. 

Data-driven models use the surrounding context of the toponyms as features to predict which 

location is the correct one. Businesses, landmarks, celebrities, dialectal terms and so forth have a 

location on Earth after all, and the intuition here is that these contextual tidbits can be used to 

determine the location referred (Ju et al., 2016; Santos et al., 2015). Data-driven models can function 

independently of gazetteers by modelling the inherent geoindicativeness of words (DeLozier et al., 

2015; Hulden et al., 2015; Ju et al., 2016). As an example system, Hulden et al. (2015) divide the 

globe into a grid and associate individual words in georeferenced tweets with the grid cell they fall 

in. Thus, e.g. regional Spanish dialectal words get associated with cells in Mexico, Argentina etc. 

(Hulden et al., 2015, p. 146). Predicting the location of new documents is tasked to probabilistic 

classifiers, which use the distribution of words and documents as training features. In another 

approach, Ju et al. (2016) combine knowledge-driven approach of finding entity co-occurrences in 
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Wikipedia texts and DBpedia database queries with topic modelling geo-referenced Wikipedia 

articles. Similarity between the topic-models and new toponyms and their contexts are measured to 

disambiguate the toponyms. 

The latest data-driven toponym resolution models benefit from the recent advances in deep 

learning (Cardoso et al., 2019; Gritta et al., 2018; Kulkarni et al., 2020), mirroring the strides made 

in toponym recognition. Similarly to the named entity recognizers that use word embeddings to better 

represent language and identify the desired named entities, these new systems encode linguistic and 

sometimes geographic knowledge in feature vectors. For example, CamCoder (Gritta et al., 2018) 

creates feature vectors of the toponym itself, all the surrounding toponyms and context of up to 200 

words on either side of the toponyms. Feature vectors from the textual context are created elsewhere 

with  ELMo (Cardoso et al., 2019) and GloVe (Kulkarni et al., 2020). Gritta et al. (2018) also create 

a geographical feature vector, named MapVec. MapVec is built by embedding the coordinate point 

location of each candidate for a toponym, biasing with population, which creates a probability surface 

on a global grid. The grid is then collapsed into a 1-dimensional vector. These features are analyzed 

by multiple layers in the network, until the four vectors are concatenated and the combined 

information is used to predict the correct location.  

The latest deep learning toponym resolvers perform the best in the tests presented in the papers 

(Gritta et al., 2018; Kulkarni et al., 2020), though this difference is not clear-cut. Even simple 

population heuristic is a commendable baseline to beat: it is relatively simple to resolve something 

like Paris to the most probable referent. The task’s complexity increases significantly when trying to 

correctly resolve the few cases of Paris that are referring to the city in Texas. For those cases, the 

deep learning resolvers could prove to be essential. 

 

2.6. Geoparsing evaluation 

How do we know whether geoparsers work as intended? Their performance must be evaluated in 

some manner. To achieve this, researchers have produced corpora (singular: corpus), which are 

collections of texts that have been annotated with labels. In geoparsing corpora, the toponym spans 

(New York) are marked and each toponym gets attached with location information, which is almost 

always a coordinate pair or an identifier in a gazetteer. The corpora cover a range of text genres, or 

domains, such as Local-Global Lexicon (Lieberman et al., 2010) and GeoVirus (Gritta et al., 2018) 

for news articles, GeoCorpora (Wallgrün et al., 2018) and Matsuda et al. (2015) for tweets and WOTR 

(DeLozier et al., 2016) for historical documents. The annotations in the corpora are taken as ground 
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truth and compared to what the geoparsers output: the closer geoparsed result is to the ground truth, 

the better. As with geoparsing in general, the evaluation should also be two-pronged: toponym 

recognition and resolution should be evaluated with different metrics (Karimzadeh, 2016). While 

there has been significant variation in the measurements used, recent research has proposed and 

standardized evaluation metrics (Gritta et al., 2020; J. Wang & Hu, 2019b), which I present below.  

 

2.6.1. Toponym recognition evaluation 

As mentioned in Section 2.4.1, toponym recognition can be thought of as a subtask of named-entity 

recognition. The performance metrics for NER are well-established: precision, recall and F1 score 

(Jurafsky & Martin, 2022, p. 178; Ringland, 2016, p. 190), sometimes appended with accuracy. The 

same metrics are adopted in toponym recognition (see e.g. DeLozier et al., 2016; Gritta et al., 2020), 

most prominently in the recently introduced geoparser evaluation platform EUPEG (J. Wang & Hu, 

2019b). For all these metrics, the geoparser is run on the texts. The output is then compared to the 

gold-standard annotations: to see if the system marks the same words or spans of text as the human 

annotators have. Let us briefly explore the measures (presented in e.g. Jurafsky & Martin, 2022, pp. 

67–69; J. Wang & Hu, 2019b): 

 

- Precision is the ratio of correctly recognized toponyms (called true positives) against all 

toponyms labeled by the system, including falsely labeled ones (called false positives). A high 

number of falsely labeled entities will worsen the score: scores closer to 1 are better. If true 

positive is TP and false positive is FP, then precision is: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

- Recall is the ratio of true positives against all toponyms in the corpus. A high number of 

missed toponyms (called false negatives) will worsen the score. If true positive is TP and false 

negative is FN, then recall is: 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

- F1 score or measure is the harmonic mean of precision and recall. The score is negatively 

affected if either of the measures are low (J. Wang & Hu, 2019b, p. 14).  
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F1 score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Let us further elaborate on the metrics through an example. Let the input sentence be: 

(4) “Lohja Inc. has offices in Uusikaupunki, Espoo and Helsinki”, said Aino Lahti, the CEO 

(4f) “Lohja Oyj:n toimistot sijaitsevat Uudessakaupungissa, Espoossa ja Helsingissä”, sanoi tj 

Aino Lahti 

Figure 5 shows an imaginary toponym recognition system applied on sentence (4). The system 

correctly labels Espoo and Helsinki as locations, but then incorrectly marks a corporation (Lohja Inc.) 

and a person (Lahti) as locations, which are false positives and misses Uusikaupunki, which is a false 

negative. Placing these results in the formulas above, we acquire precision of  
1

2
, recall of  

2

3
 and F1 

score of roughly 0.57. 

 

Figure 5. Example of toponym recognition evaluation. The sentence above has been analyzed by an 

imaginary NER system; the annotations it has given are below the sentence. The results are placed 

in a confusion matrix and the evaluation metrics reported beside it. 

 



 

 
24 

 

2.6.2. Toponym resolution evaluation 

The second evaluation section aims at determining whether the toponym was correctly located. In the 

case that the system returns a feature ID, such as GeoNames ID 658225 for Helsinki, and the same 

ID is included in the corpus, evaluation can be done with a simple accuracy score (Karimzadeh, 2016). 

This approach fails if no ID is saved in the ground-truth data, and moreover, it is dependent on the 

gazetteer used. If the geoparser uses OSM as a source gazetteer, but the corpus has GeoNames IDs, 

the evaluation cannot be done. 

That is why more common approaches evaluate the Euclidian distance from the predicted 

coordinate point to the ground-truth one: this is called Error Distance (ED). If the ED is 0, that is to 

say, if the predicted coordinate and the ground-truth one are identical, the toponym is completely 

correctly resolved. If the error distance is > 0, the magnitude of the ED hints at the significance of the 

error (for example, ED of 1000 km is probably more significant than ED of 10 km).  

There is yet no agreement on what is the best approach at evaluating toponym resolution (Gritta 

et al., 2017, p. 612), rather, each metric highlights some attribute of the geoparser’s performance. I 

will introduce the four approaches adopted in the EUPEG platform (J. Wang & Hu, 2019b). Please 

note that, for the sake of space and the emphasis of this thesis, I will attempt to explain only the 

intuition behind the metrics. For the exact formulas, the reader is referred to e.g. J. Wang & Hu 

(2019b, pp. 15–17). 

- Mean Error Distance (MED) is the mean distance between the ground-truth coordinates and 

the predicted ones in kilometers. A simple metric to distill the average error, however, it is 

sensitive to extreme outliers since the errors are not usually normally distributed. In 

geoparsing, most errors are relatively small, but the error distances for the fifth quintile are 

very large (see Gritta et al., 2017, p. 613). 

- Median Error Distance (MdnED) is the same as MED but with the statistical value of 

median. Not as prone to outliers, but perhaps no better at representing the error distribution. 

- Accuracy@k is the percentage of predictions located within k distance of their respective 

ground-truth coordinates. As a convention, k has been set to 161 kilometers (equaling a 100 

miles), which is why the metric is often referred to accuracy@161. The intuition behind this 

metric is that it can handle cases where the toponym has been correctly disambiguated, but 

the location is different for the geoparsed one and the ground-truth one (due to for example 

relying on different gazetteers) (J. Wang & Hu, 2019b, p. 14). A weakness of accuracy@k is 

that it is not sensitive to the magnitude of error as long as the location falls within k: for 
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example, a distance of 100 km from the ground-truth is treated the same as a distance of 10 

km, when k=161 (Gritta et al., 2017, p. 612). 

- Area Under the Curve (AUC), introduced for this purpose by Jurgens et al. (2015), is an 

attempt to address the shortcomings of the previous metrics. Once again using the error 

distances but this time sorting them in a rising order and transforming them by taking the 

natural logarithm of the error distances. The upper bound of the error is the maximum distance 

between two points on Earth, approximately 20,038 km. The area under the curve is the 

proportion of the total area of the plot that these errors cover: the returned value falls between 

[0,1] and smaller is better. AUC follows the intuition that a small difference in a small error 

(e.g. 10 km vs 30 km) is more significant than a small difference in a large error (e.g. 510 km 

vs 530 km). That is to say, under AUC, the errors do not scale linearly, and the metric punishes 

geoparsers for small errors more harshly than large ones. Figure 6 shows this visually and an 

applied example is presented in Figure 12. 

 

 

Figure 6. AUC visualized with ten error distances plotted, after Gritta et al. (2020, p. 696). (A) 

showcases error distances plotted as they are and (B) after ln transformation. The error distance 

data points are listed at the top of the figure. The area covered by the blue line is the “area under 

the curve”, and the value AUC is calculated by measuring its share of the total area (the maximum 

possible errors). The upper bound of the Y axes are max error distance, or half the Earth’s 

circumference. If all the points were correctly located, AUC would be 0 and if they would be 

furthest possible, AUC would be 1. In (B), the AUC value is 0.342. 
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Let us again elaborate through an example: let us apply an imaginary toponym resolver on the 

three toponyms in sentence (4). Espoo is resolved correctly, but it seems Uusikaupunki and Helsinki 

are off by 35 and 200 km respectively. These are the error distances, which are used to calculate the 

performance metrics. The error distances and the metrics are presented visually in Figure 7. 

 

 

Figure 7. Example of toponym resolution errors and error metrics. Background map © 

OpenStreetMap contributors. 

 

2.6.3. Factors affecting geoparser performance 

What explains performance variation of geoparsers? Naturally, the toponym recognition and 

resolution methods affect performance greatly; these are covered in Sections 2.4–2.5. Another 

important factor are the corpora and the choices made when building them i.e. what text domains are 

included and which entities are annotated within. The effect of these choices are reflected in the vastly 

varying performance of geoparsers, as seen in recent evaluations (Gritta et al., 2017; J. Wang & Hu, 

2019a). 

Texts differ in how formal they are: for example, news articles are expected to have consistent 

spelling and capitalization, and use standard vocabulary. Social media posts, such as tweets, may in 

turn be highly informal, containing emojis, novel spellings and words. Not to mention tweets are 
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short, which limits their context (Carter et al., 2013). Indeed, it seems geoparsers perform better on 

GeoVirus (Gritta et al., 2018), a corpus of disease news articles, than on GeoCorpora (Wallgrün et 

al., 2018), which contains tweets (J. Wang & Hu, 2019a). 

Another axis relates to how ambiguous and fine-grained toponyms are contained in the corpora. 

Many of them purposefully contain ambiguous toponyms to test geoparser performance under 

challenging circumstances. The Local-Global Lexicon contains articles from local newspapers. The 

articles frequently refer to local toponyms that share names with global cities (London, Ohio vs. 

London, UK) (Lieberman et al., 2010). Similarly, Ju et al. (2016) built a corpus from web queries and 

purposefully selected ambiguous sentences from the returned websites. Both corpora may be 

challenging especially for simple population heuristics (Section 2.5.2) and indeed, many geoparsers 

struggle with them (J. Wang & Hu, 2019a).  

The toponym definition matter as well: many corpora only include nations and cities, while others 

have landmarks and streets annotated too (J. Wang & Hu, 2019b, p. 11). Fine-grained toponyms are 

of course harder to geoparse, but this variation has other effects as well. If a geoparser is trained to 

find buildings but buildings are not annotated in a corpus, the geoparser’s precision gets worse when 

it annotates them. 

 

3. Data and Methods 

In this chapter, I describe the development of Finger (FINnish GEoparseR) and creation of the 

corpora used to evaluate its performance. In other words, the workload of this thesis can be divided 

into three tasks: 

(1) Creating the geoparser 

(2) Creating evaluation data 

(3) Evaluating the geoparser 

The workflow of each task and how they connect to each other are presented in Figure 8. The 

workflow of the thesis. See Table 2 for a description of the input datasets. The creation processes are 

elaborated on in the following sections (3.1–3.3). All input datasets are collectively introduced in 

Table 2 and will similarly be expanded upon in the following sections. 
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Figure 8. The workflow of the thesis. See Table 2 for a description of the input datasets. 
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Table 2. Input datasets and their purpose in this study 

 

 

 
3 https://www.puimula.org/htp/testing/voikko-snapshot-v5/ 

Dataset Description Purpose Source 

FinBERT model A large pre-trained language 

model that offers state-of-the-

art performance for Finnish 

NLP tasks.  

The model is fine-tuned for 

the tasks of NLP processing 

and NER tagging using the 

respective corpora. 

(Virtanen et al., 

2019) 

Finnish tweet 

set 

Finnish language tweets 

containing the word ja queried 

from Twitter’s API and 

randomly sampled to 1000. 

To annotate and create 

evaluation material: Finger-

tweets. 

Gathered by the 

author 

Turku 

Dependency 

Treebank (TDT) 

A large corpus tagged with 

dependency graphs, part-of-

speech tags, lemmas and other 

linguistic tags according to the 

Universal Dependencies 

project. 

Future-proof the geoparser 

by training the NLP pipeline 

for general NLP tasks. 

(Haverinen et al., 

2014) 

Turku NER 

corpus 

Named Entity Recognition 

corpus consisting of texts from 

TDT that have been marked 

with a set of entity tags. 

Importantly, including 

location. 

Train the general NER 

tagger, which is then used for 

toponym recognition in 

Finger. 

(Luoma et al., 

2020) 

Voikko 

dictionary 

(Joukahainen) 

Dictionary covering roughly 

40,000 Finnish words and 

conjugation information. 

Enables lemmatizing: the 

lemmatized wordform is 

looked up in this dictionary. 

3 

Wikiuutiset 

articles 

All articles for the year 2011 

from the Finnish Wikinews. 

To annotate and create 

evaluation material: Finger-

news. 

Gathered by the 

author 
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3.1. Creating Finger 

The aim of this thesis is to create a general-purpose open-source Finnish geoparser. By general 

purpose, I mean that the geoparser is not custom-built for any particular text type: the (perhaps lofty) 

aim is that it can effectively process anything from informal blog posts to legal documents. Bearing 

in mind the limitations of a master’s thesis project, Finger should be informed by the latest 

developments in English geoparsing research and should be easily applicable for research that 

benefits from georeferenced data. Another guiding principle was to use existing resources (tools, 

datasets) whenever possible. Finger’s source code and installation instructions are shared in a GitHub 

repository4 under MIT license. 

As described in Chapter 2, geoparsing consists of toponym recognition and resolution. I similarly 

decided abstract these tasks to two pipelines: Natural Language Processing (NLP) pipeline and 

geoinformatics (GIS) pipeline. A pipeline consists of individual pipes, or parts that run a certain 

section of the analysis and feeds its output forward. Therefore, the NLP pipeline recognizes toponyms 

and handles similar linguistic tasks; the GIS pipeline resolves the toponyms to locations; finally, a 

structured output is returned to the user in a format of their choosing. Finger, written in Python, wraps 

these pipelines and runs the geoparsing process. Finger is a toponym geoparser, that is, it does not try 

to locate whole documents. Instead, it simply attempts to geoparse each toponym it recognizes and 

leaves any further analyses to the user. Finger is suitable for batch processing which means that it 

accepts, and is built for, multiple inputs. An example of Finger in operation is given in Figure 9. Four 

example sentences and how the system handles them are shown. The example cases are: 

(1) The input contains a toponym and it is correctly resolved. 

(2) No toponyms. 

(3) A toponym is recognized and lemmatized, but resolving it fails. 

(4) Two toponyms: the first is incorrectly lemmatized and not resolved. The second is correctly 

geoparsed. A tuple with these results is returned. 

 

 
4 https://github.com/Tadusko/fi-geoparser 

https://github.com/Tadusko/fi-geoparser
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Figure 9. How Finger operates, with the most crucial components highlighted. The example 

dataframe differs from the one actually output by Finger: it has been truncated and some columns 

have been renamed for clarity. 

 

3.1.1. NLP Pipeline 

NLP pipeline is the more extensive of the two pipelines. It consists of three pipes: 

(1) General NLP pipe 

(2) NER tagger  

(3) Lemmatizer 

All of the pipes were trained and joined to a pipeline using the spaCy natural language processing 

library for Python (Honnibal et al., 2020). The NLP pipeline, about 1 GB in size, is simply installed 

to a Python environment with spaCy, after which it is usable in Finger. The pipeline can be easily 

updated and reinstalled in the future. A pre-trained Finnish BERT was recently published by Virtanen 

et al. (2019). I use it in pipes (1) and (2) as the base model that is fine-tuned for Universal 

Dependencies and NER tagging respectively. The training data for the Finnish BERT was gathered 

from three sources: news articles, online discussion (from Suomi24 forum) and an Internet crawl. 

After data cleanup, these sources amount to ≈21 Million documents and ≈3.3 Billion tokens (words 

separated by whitespace). 

The first pipe, the general NLP pipe structures the raw input text according to the Universal 

Dependencies (UD) annotation schema. Universal Dependencies provides a framework for the 

computational analysis of various linguistic features (de Marneffe et al., 2021; Nivre et al., 2016). 

Relevant for this work are linguistic tags, such as parts-of-speech (for example: noun, verb and 

adjective) and morphological features (for example: is the word in singular or plural form). A tagger 

to structure text with these features can be trained with a Finnish UD corpus: the corpus used in this 

work was created by Haverinen et al. (2014). The general NLP pipe outputs are not currently used in 
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the latter pipes: it is included as a way of futureproofing should a more comprehensive linguistic 

understanding help in toponym recognition or resolution. 

Fine-tuning the BERT model for named entity classification requires a NER corpus. At the time 

the work was done, there were two Finnish NER corpora, one based on technology news 

(Ruokolainen et al., 2020) and another covering a wider range of text domains from speeches and 

blogs to Wikipedia and finance articles (Luoma et al., 2020). Because I expect the geoparser to handle 

all types of input texts, I chose to use the broad-scope corpus by Luoma et al. (2020) in this work. Six 

entity classes are annotated in the corpus: of those, locations are crucial for this work. Annotation 

schema of the corpus (for example, the definition of a location in the corpus) affects all downstream 

tasks. That is why some annotation decisions are worth highlighting. Unlike some NER corpora, this 

corpus does not include a separate tag for political and administrative entities (nations, provinces 

etc.), which are all grouped under locations. The definition of location5 thus includes administrative 

entities as well as natural features (rivers, mountains), buildings, roads and even astronomical features 

(planets and stars). As a further motivation for selecting a deep learning based method in this work, 

a NER implementation based on Finnish BERT performed the best out of four tested methods on the 

corpora’s internal test set (Luoma et al., 2020, pp. 4620–4621),  

Corpora used in training machine learning classifiers are often divided to distinct sets, namely 

development, training, and testing (dev, train, test). Training set contains the examples provided to 

the model during training. Dev set is used to measure progress during training. Test set is used for 

evaluation: those examples are used to measure how well the model generalizes, that is, performs on 

examples it has not encountered before. I fine-tuned the model using spaCy and the default 

hyperparameters (see the training files here6). Describing the fine-tuning process in detail goes 

beyond the scope of this thesis, but details can be found in Jurafsky and Martin (2022, Chapter 11). 

Basically, the language model (Finnish BERT, in this case) is tasked with predicting the correct 

named entity class by feeding it training examples from the NER corpus. 

Results from the test section run are reported in Table 3.  The performance is a few points lower 

than the results reported by Luoma et al. (2020, pp. 4620–4621), especially for the location tag, where 

precision is almost 10 points worse. The difference is probably, at least partly, explained by the 

selection of hyperparameters, which are the settings governing the training process. A good choice 

 
5 https://github.com/TurkuNLP/turku-ner-corpus/blob/master/docs/Turku-NER-guidelines-v1.pdf, pp. 7-9 
6 https://github.com/Tadusko/finger-NLP-resources 

https://github.com/TurkuNLP/turku-ner-corpus/blob/master/docs/Turku-NER-guidelines-v1.pdf
https://github.com/Tadusko/finger-NLP-resources
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of hyperparameters, so called hyperparameter tuning, could improve the performance, but was not 

done in this work. 

 

Table 3. Performance of the NER classifier trained in this work on the internal test set. Overall 

covers the performance across all entity tags and Location only to entities tagged as location. 

Entity type Precision Recall F-score 

Overall 0.8783 0.8890 0.8836 

Location 0.8418 0.9236 0.8808 

 

This NER classifier is used as-is in Finger. The words classified to the location class are collected by 

Finger and passed on to the lemmatizer. After NER, Finger has a functionality to filter the recognized 

toponyms according to handcrafted rules: currently, the only filter is that the toponyms must be longer 

than one character long. This filters out most emojis, which were a common source of error (see 

Section 4.2) 

The lemmatizer is the final component of the NLP pipe.  In lemmatization, the varying surface 

forms toponyms can take in Finnish (Oulussa, Ouluun, Oulunhan etc.) are attempted to return to a 

base form, also known as lemma (Oulu). Finger uses a simple lemmatizer provided by the NLP 

toolbox Voikko7. Voikko looks up words like Oulussa in an open-source dictionary called 

Joukahainen8. Joukahainen morpho, the dictionary used in this work, includes about 40,000 entries 

and the conjugation paradigms related to them. Using the conjugation paradigms saved alongside the 

dictionary entries, Voikko attempts to lemmatize the input word. 

 

3.1.2. GIS pipeline 

This early version of Finger simply queries GeoNames’ public API with the lemmatized wordform, 

and if the query is successful, inserts the best answer’s coordinate pair to the output dataframe.  No 

further disambiguation is done on Finger’s side. If the query is unsuccessful, a Python None object is 

inserted instead. A Python module named GeoCoder9 is used to query GeoNames and handle the 

returned object. The advantage of this method is that the user does not have to download any gazetteer 

 
7 https://voikko.puimula.org/ 
8 https://joukahainen.puimula.org/ 
9 https://geocoder.readthedocs.io/ 
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data and the database is always up to date. The web service also does some sort of ranking, meaning 

that it returns Helsinki, the capital, before Helsinki, the village. This is evidenced by the API’s 

relatively strong performance in Karimzadeh et al.’s (2019, pp. 12–13) results. The exact parameters 

of this ranking process are not, to my knowledge, published. GeoNames’ online API requires each 

user to create a free account, which is used as an API key, and it is rate-limited to about 1000 queries 

per hour10. 

Nonetheless, I chose GeoNames and the API approach over others for a few reasons. First, the 

online API makes setting up the geoparser easier, since the user does not need to download database 

files locally. Second, GeoNames has global spatial coverage, unlike NLS’ Finnish place names, and 

primarily includes Finnish place name variants (like Lontoo when referring London, UK), unlike 

TGN. Because I presumed toponym mentions in Finnish text would be weighed towards Finland, I 

briefly explored the spatial coverage completeness of GeoNames against NLS place names in Figure 

10. Coverage comparison of GeoNames features (database dump from May 2021) and National Land 

Survey placenames (1:20 000 scale, year 2020) for Finland and Åland. as inspired by a global 

comparison in Acheson et al. (2017). While the national dataset is of course more complete in terms 

of spatial and thematic coverage, I find GeoNames sufficient for this purpose. The toponyms are 

naturally not completely uniformly spread spatially: notice, however, the curious cluster in Southern 

Finland near Kouvola on GeoNames’ side. On that particular area, a much greater portion of 

toponyms, including those of local geographical features are included – the reason is unknown to me, 

but since GeoNames allows for user input, it might be the work of a dedicated local. This highlights 

one of the weaknesses of a (partly) crowdsourced gazetteer. 

 
10 https://www.geonames.org/export/ 
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Figure 10. Coverage comparison of GeoNames features (database dump from May 2021) and 

National Land Survey placenames (1:20 000 scale, year 2020) for Finland and Åland.  

 

3.1.3. Finger output 

After running the two pipelines, Finger outputs the final, formatted collection of possible toponyms 

and point coordinates. The user is given two options: a JSON array or a Pandas (Reback et al., 2021) 

DataFrame. Pandas is a widely used Python library for data processing that Finger also uses internally. 

DataFrame is the standard selection that allows the most flexibility in terms of output length and 

options: it is represented in Figure 9. The exact features it output in the dataframe are described in 

Finger’s repository11. In addition, Finger allows for outputting JSON arrays as defined in J. Wang 

and Hu (2019b) and implemented in the EUPEG platform (for an example, see J. Wang & Hu, 2019b, 

p. 20). This option is included for compatibility with the evaluation platform and previous geoparsers. 

 
11 https://github.com/Tadusko/fi-geoparser 
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3.2. Creating evaluation data 

Finger had to be compared against human-verified data to evaluate its performance. To my 

knowledge, no publicly available Finnish geoparsing corpora exist. Therefore, suitable texts had to 

be obtained and the toponyms annotated with tags and coordinates. Two new test datasets were 

created: Finger-news and Finger-tweets. The former consists of Finnish Wikinews (Wikiuutiset)12 

articles and the latter of tweets where the primary language is Finnish. I selected these sources because 

they represent different text genres and because they were used in similar English corpora: GeoVirus 

(Gritta et al., 2018) and GeoCorpora (Wallgrün et al., 2018), respectively. All the code used in the 

following tasks and the final corpora are shared in a GitHub repository.13 

First, I acquired the texts from online sources. I collected a list of all Wikiuutiset article URLs 

from the year 2011 (n=42) and scraped the article texts and titles with a Python script. The input texts 

consist of the titles followed by the article texts. For Finger-tweets, I queried Twitter API in late 

August 2021 for Finnish tweets using twarc Python package (Summers et al., 2021). Because the 

query could not be empty, I used a neutral conjunction ja (and) as the search string. One thousand 

tweets were randomly sampled from the tens of thousands returned by the query: temporally, all the 

tweets are posted within a few days in August 2021. 

Next, the input texts were annotated by me and two other students. A geoannotation tool where 

the annotator could mark the correct locations on a map window within the program would prove 

useful in this step. Although such a tool was developed by e.g. Karimzadeh and MacEachren (2019), 

installing and running their tool turned out to be challenging. Instead, I used a Python-based general 

annotation tool Label Studio (Tkachenko et al., 2020). Each toponym in each document was labelled 

with a LOC tag, similarly to the example in Figure 4. A document may have zero toponyms, it is 

nonetheless still included in the corpus. For location information, the annotators primarily queried 

GeoNames’ web portal14 and copied the latitude-longitude coordinate pair to each toponym’s 

metadata. If the toponym was missing in GeoNames, the annotators queried alternative gazetteers: 

NLS Geographic Names through Nimisampo interface15, OpenStreetMap16 or Google Maps17 in this 

 
12 https://fi.wikinews.org/ 
13 https://github.com/Tadusko/finger-corpora 
14 https://www.geonames.org/ 
15 https://nimisampo.fi/en/ 
16 https://www.openstreetmap.org/ 
17 https://www.google.com/maps/ 
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order. In case the coordinates were nonetheless unavailable, e.g. because the toponym refers to an 

inexact or outdated location, a NaN tag was used. There are 4 such cases in Finger-news and 14 in 

Finger-tweets. 

Different toponym definitions were used when annotating the two corpora, mimicking the 

definitions used in GeoVirus and GeoCorpora. As listed by J. Wang and Hu (2019b, p. 11), only 

administrative units (such as countries and cities) are marked in GeoVirus – this schema is used in 

Finger-news. Additional features such as buildings and natural features are annotated in GeoCorpora 

and Finger-tweets. For example, Kuopio is annotated in both, but the lake Saimaa only in Finger-

tweets. Different annotation schemas were selected to acknowledge the plurality of toponym 

definitions in the preceding research and to explore how they affect the geoparser’s performance.  

There were multiple other considerations on what to annotate, such as the difficulty in embedded 

toponyms: e.g., should France be annotated in the French Revolution. More details on the annotation 

decisions made in this work are listed in Appendix A. While annotating the tweets, 20 tweets were 

found to not be in Finnish – they were dismissed from Finger-tweets, leaving the final document 

count to 980. See this and other numeric descriptions in Table 4. Note, for example, that a single news 

article predictably has, on average, a lot more toponyms than a single tweet. In fact, only 285 tweets 

of the total 980 have any toponyms. 

 

Table 4. The Finger corpora in numbers. Total tokens tells how many words are in the dataset: a 

token is a span of text separated by whitespace (for example, New Delhi is two tokens although it is 

a single toponym) 

Dataset Documents Total tokens Total toponyms Mean toponyms 

per document 

Finger-news 42 6352 189 4.5 

Finger-tweets 980 22,513 498 0.51 

 

Only coordinates were marked in the corpora instead of persistent identifiers, such as feature ID 

codes: this was done to lessen workload and because the coordinates came from many different 

gazetteers. That is why no comprehensive listing by location type (nation, city, natural feature etc.) 

is easily available. Examining the toponyms manually shows they skew heavily towards political, 

such as administrative areas, even in Finger-tweets where more entity types were annotated. The 

spatial spread of the toponyms is examined in Figure 11, which lists the most frequent countries the 
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toponyms fall in. Finland is the most frequent one in both. However, there are differences: in Finger-

tweets the skew towards Finland is much more pronounced. The tweet texts also contain a high 

number of references to Afghanistan, which explained by the Taliban takeover in August 2021 

occurring simultaneously to the tweet collection. 

 

 

Figure 11. Spatial distribution of the known locations in Finger-tweets and Finger-news globally and 

in Finland: locations of toponyms and top 5 countries by count in the table. 

 

The corpora and the related code used to acquire and format the corpora are shared in a GitHub 

repository18. The licensing rules of Wikinews and Twitter add some restrictions on the level of 

openness the resources can be shared in. Finger-news is shared as-is, but the public version of Finger-

tweets is stripped of the tweet texts, which are replaced with the tweet identifiers. The IDs may be 

used to query the original tweets, provided the tweets have not been deleted – deletion is a problem 

with such social media corpora, as noted by Gritta et al. (2020, p. 699). Some other caveats should 

be considered when using the corpora. First, the corpora are not divided into dev-train-test sets due 

to their small size: they are primarily meant for testing, not training Finnish geoparsers. Second, no 

inter-annotator agreement was measured. Usually when building a corpus, a bit of the input is 

annotated by multiple annotators. The amount of overlap in the annotations, or agreement, between 

annotators is calculated – low agreement can indicate that the task is poorly defined, or the annotation 

 
18 https://github.com/Tadusko/finger-corpora 
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schema flawed. However, overlapping annotation was not done in this work due to the scope and 

focus of this thesis.  

The corpora are formatted in a XML file according to the standards set in the EUPEG platform 

(J. Wang & Hu, 2019b). XML allows for a nested structure of multiple entries, or documents, 

followed by zero or more toponyms. Each toponym, in turn, has several attributes, such as the 

toponym start and end indices in the input text, and WGS84 coordinates in longitude-latitude order. 

This is the minimal information required for a geoparsing corpus and the one used in these corpora, 

but the format allows expanding the entries with any necessary information, such as alternative names 

or identifiers. See J. Wang and Hu (2019b, pp. 18–19) for full explanation and Listing 1 for an 

example from this work. 
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Listing 1. The XML format Finger-news and Finger-tweets are shared in. 

 

3.3. Additional evaluation metrics: lemmatization and query errors 

In addition to the evaluation metrics discussed in Section 2.6, I believe two more measures are 

necessary to gauge Finger’s performance accurately: lemmatization and query errors. Both of these 

are linked to lemmatization, which is a more prominent issue in Finnish than in English due to the 

former’s more complex morphology, where the toponyms can be conjugated in many ways. Almost 

every toponym Finger encounters must therefore be lemmatized. Lemmatizers can provide erroneous 

<?xml version='1.0' encoding='utf-8'?> 

<entries> 

    <entry> 

        <text>Savonlinna ja Mikkeli on tosi kivoja!</text> 

        <toponyms> 

            <toponym> 

                <start>0</start> 

                <end>10</end> 

                <phrase>Savonlinna</phrase> 

                <place> 

                    <footprint>29.10818 61.8624</footprint> 

                </place> 

            </toponym> 

            <toponym> 

                <start>14</start> 

                <end>21</end> 

                <phrase>Mikkeli</phrase> 

                <place> 

                    <footprint>27.33025 61.64117</footprint> 

                </place> 

            </toponym> 

       </toponyms> 

    </entry> 

    . . . . . 

</entries> 
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lemmas, such as Alankomaissa → Alankomaa instead of Alankomaat. A lemma error flows 

downstream since a gazetteer query with an incorrect lemma will likely either fail or resolve 

incorrectly.  

The first metric, which I call lemmatization error, is simply the ratio between erroneous lemmas 

and the true positives. If the count of erroneous lemmas is EL and count of toponyms correctly 

recognized by the system (true positives) is TP, then: 

Lemmatization error =  
𝐸𝐿

𝑇𝑃
 

A lower value indicates better performance, that is, fewer erroneous lemmas. I count the erroneous 

lemmas by hand, since there are no gold-standard lemmas that would enable automatic checking. I 

do not count cases where the toponym has a typo (like Afganisthan instead of Afghanistan or 

Afganistan) as lemmatizer errors, only cases where the lemmatizer could be expected to function 

correctly. 

Not all correctly recognized toponyms get resolved to locations. In the previous research, this is 

mainly caused by toponyms missing from primary gazetteers, causing the query to return zero 

candidates. This can be dealt with in different ways: for example, Gritta et al. (2020) did not evaluate 

the toponyms which were missing from GeoNames and had to be annotated with Google Maps. They 

do, however, report the number of toponyms resolved (Gritta et al., 2020, p. 703). Similarly, I report 

the share of successful toponym queries, which also reveals how many failed. I do this because 

lemmatization and missing entries in GeoNames could lead to significant omissions in the final results 

no matter how well the toponyms were recognized. 

If Resolved is the count of toponym queries that were successful (that is, not null) and TP is the 

count of true positives, then: 

% 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 =  
𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑

𝑇𝑃
 

 

4. Results 

4.1. Recognition and resolution evaluation on the Finger corpora  

Finger’s toponym recognition and lemma error results are reported in Table 5. As the F-score shows, 

the geoparser performs similarly on both datasets, though slightly better on the tweet dataset. The 
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geoparser recalls roughly 4/5 of all toponyms, but its precision is worse on both corpora. There is a 

marked difference in lemmatizer performance between the corpora: about 1/5 of the correctly 

identified toponyms (true positives) in Finger-news were incorrectly lemmatized, while both 

absolutely and relatively this number is much smaller for Finger-tweets. 

 

Table 5. Toponym recognition evaluation results. Evaluation measures for an exact match: partial 

matches are counted as errors. The arrows indicate whether lower ↓ or higher ↑ value is better. 

Dataset Precision ↑ Recall ↑ F-score ↑ Lemmatization 

errors ↓ 

Finger-news 0.701 0.794 0.745 32
150⁄  (21.3 %) 

Finger-tweets 0.717 0.819 0.765 28
408⁄  (6.9%) 

 

 

Toponym resolution evaluation is presented in Table 6. Over half of the input toponyms were 

correctly located on both cases, as indicated by the median error. A vast majority of the toponyms 

were resolved within 161 kilometers on both corpora. Metrics that highlight significantly large errors 

– mean error and Accuracy@161 km – are both worse on Finger-news. Conversely, area under the 

curve is about equal for the two. Because the error distances were transformed by taking the natural 

logarithm of them, smaller error distances get emphasized in AUC, which indicates Finger-tweets 

had a larger share of small errors. Altogether, the results indicate that Finger generated larger 

resolution errors on the news corpus and perhaps more, but smaller on the tweet corpus. This 

interpretation is supported by Figure 12, where the error curves are plotted. Notice that the curve for 

Finger-news is steeper than the more gradual rise present for Finger-tweets. Finally, a significant 

portion of the input toponyms did not get resolved at all, most likely due to a lemmatization error: 

this share is larger for Finger-news, as expected due to the lemmatization errors (Table 5).  
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Table 6. Toponym resolution evaluation. These results are for the correctly recognized toponyms 

(true positives) that contain coordinates and which were successfully resolved (i.e. the query did 

not return an empty result). The arrows indicate whether lower ↓ or higher ↑ value is better. 

Dataset Mean error 

(km) ↓ 

Median 

error (km) ↓ 

ACC@

161 ↑ 

AUC ↓ % Resolved ↑ 

Finger-news 286.1 0 0.917 0.083 123
150⁄  (82.0 %) 

Finger-tweets 127.2 0 0.958 0.093 369
408⁄  (90.44 %) 

 

 

 

Figure 12. AUC error curves. Finger-news left, Finger-tweets right. Note that the Y axis is on a 

logarithmic scale.  

 

4.2. Error analysis 

In this section, I show examples of the kinds of errors Finger makes. These can be divided to the 

toponym recognition errors (false negatives and false positives), lemmatizer errors and toponym 

resolution errors. For the recognition errors, it is somewhat hard to know exactly what features the 

classifier uses to classify as a location; the deep neural models are oblique in that way. However, 

some patterns can be deduced from the output.   

Some of the false positives are explained by the classifier falling for geo/non-geo ambiguity: it 

marked proper nouns like Yhtenäinen Venäjä (United Russia, a political party) and Taliban, and 

common words such as UTC-aikaa (UTC time) and kanssa (with). Hashtags in the tweets proved 
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tough for the classifier: they are frequently inserted at the end of tweets to indicate the spatial area of 

the tweets and often with non-standard spelling. The classifier seemingly uses capitalization as a 

feature to recognize toponyms, but it is not an absolute requirement – some toponyms written all 

lower case and even ones containing typos are recognized. Adding to false positives, the classifier is 

also sensitive to emojis       and styled Unicode text 𝓵𝓲𝓴𝓮 𝓽𝓱𝓲𝓼. While emojis get filtered by Finger 

because of their short length, the examples indicate that the classifier might be overly greedy on 

random noise – perhaps because these characters are rarely present in the NER layer training corpora 

or the BERT pre-training material. Boundary errors are frequent: for example, Irakin Kurdistan (Iraqi 

Kurdistan) and Härmän käräjätalo (Härmä courthouse) are annotated as one toponym, but the NER 

classifier marks the toponyms separately in the first example and marks Härmä in the second. These 

results would not be useless in a real use case, but they are more imprecise than the correct 

interpretation. Boundary errors are also partly a matter of interpretation 

Because it does a simple dictionary lookup, the lemmatizer is easy to predict: if it makes an error 

once, it will make the same error every time. This leads to some systemic errors, such as incorrect 

lemma for Yhdysvaltain → Yhdysvalta (*the United State). The reason may even be looked up at the 

online version of Joukahainen dictionary19: in this case, Yhdysvallat has no conjugation paradigms 

set, which is why the lemmatizer falls back on the assumption that the plural form should be returned 

to singular. These systemic errors linked especially to a few country names probably explain why the 

share of lemma errors is so significant in Finger-news (Table 5). Some toponym phrases are 

lemmatized incorrectly because the words are treated individually instead of as a phrase: for example, 

Englannin kanaalissa → Englanti kanaali (*the England Channel). Finally, the lemmatizer was unable 

to deal with cases with non-standard spelling: e.g., hashtags where a postfix is added after a hyphen, 

such as #Kouvola’ssa. 

Lastly, there are toponym resolution errors. A toponym might either be incorrectly located or 

completely unresolved (the gazetteer query fails to return a single candidate). Not all toponyms 

located differently from the gold locations are actual errors, they might be differently interpreted. For 

example, GeoNames frequently includes Finnish municipalities twice under the same name: once as 

a point representing the whole municipality and once as the “seat of the administrative division” 

(alueen keskus or taajama). See for example the query for Pälkäne20: two points some kilometers 

away, but both would be usable in an actual use case. Then there are actual errors, such as falsely 

 
19 https://joukahainen.puimula.org/word/edit?wid=522364 
20 https://www.geonames.org/search.html?q=p%C3%A4lk%C3%A4ne&country= 
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resolved geo/geo ambiguity when Vuores is grounded to Sweden instead of the town in Finland. The 

query might fail completely: the reason is either an erroneous lemma or the toponym missing from 

GeoNames. Omissions include Finnish facilities (Musiikkitalo, Hahkialan kartano) and addresses 

(Myllymatkantie), which seem to be out of the gazetteer’s scope. 

Drawing the errors together, the linguistic and geographic ambiguities discussed in Section 2.3 

certainly present when geoparsing Finger-tweets and Finger-news. In addition, there are errors caused 

by the poor performance of the lemmatizer and by the classifier’s inability to deal with unexpected 

input types, like emojis. Some of the differences, like boundary errors and variants of nearly the same 

locations, might not be major errors in actual use cases. 

 

5. Discussion 

At the beginning of this thesis, I wondered how reliable and usable is Finger? By reliability, I refer 

to the confidence that can be placed on the geoparser fulfill its purpose: to find place names among 

texts and correctly locate them. This is what most of the thesis has aimed to test. Usability is a tougher 

topic and one that I can only discuss in this thesis: even if geoparsing is successful, what can the 

results be used for – can they provide answers to relevant questions? What is the level of development 

of the current system and what I believe should be the next improvements for Finger and geoparsing 

at large: these are the topics addressed in this chapter. 

 

5.1. Contextualizing the results 

The results show that Finger performs about equally well on both corpora, even slightly better on 

Finger-tweets (Table 5 and Table 6).  This is puzzling, because my initial hypothesis was that news 

and tweets were from sufficiently different domains to result in differences in performance – the short 

tweets, which include colloquialisms, being the harder dataset (see Section 2.6.3). I also presumed 

tweets might include more references to local events and thus more fine-grained, local toponyms. As 

well, the NER corpus used in training lacks tweets and similar short-form social media content 

(Luoma et al., 2020). Moreover, I used a different annotation schema: I presumed annotating more 

and rarer toponyms (referring to roads, buildings etc.) would affect recall on Finger-tweets. This 

would have mirrored the performance differences on English news and tweet geoparsing corpora (J. 

Wang & Hu, 2019a).  
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Several reasons for this difference can be proposed. First, language use in Twitter is not as 

different from news as I presumed: during annotation, we noticed that a clear minority of the 

toponyms contained colloquialisms or varying capitalization. Shared news excerpts, posts by 

organizational accounts and such bring tweets’ language form closer to that of news articles. Second, 

it could be that the narrower annotation schema worked against Finger in this case. As mentioned in 

Section 3.1.1, the Annotation guidelines for the Turku NER corpus21 show that buildings, landmarks, 

and natural features are included under location, making the schema more encompassing than the one 

in Finger-news. The mismatching schema led to toponyms such as Pohjoinen jäämeri (the Arctic 

Ocean) being marked as false positives, which somewhat misleadingly lowers precision. This 

showcases the importance of clear toponym definitions: you find what you annotate. Finally, the test 

sets are small, consisting only of 42 news articles and less than thousand tweets, of which only some 

contained toponyms (Table 4). Smallness makes them more susceptible to random variation: that is, 

a phenomenon that would have surfaced in a larger study did not in this case.  

While the reasons listed above could explain the roughly equal performance on the two corpora, 

the outcome is of course not a bad one. An alternative interpretation is that Finger can process these 

two text types at a sufficient level. But are the results robust overall? The results reported in Chapter 

4 do not, in isolation, directly answer the question of whether they are good or not: it is not completely 

clear what even is good performance. Because no equivalent research on Finnish datasets has, to my 

knowledge, been done previously, the results are tough to contextualize. To do so, I will draw from 

two English geoparser performance reviews (Gritta et al., 2017; J. Wang & Hu, 2019a). 

J. Wang and Hu (2019a) evaluate eleven geoparsers on numerous geoparsing corpora for English 

on the same metrics as used in this thesis. The geoparser implementations range from rule-based, like 

the Edinburgh geoparser (Tobin et al., 2010), to the latest neural geoparsers (X. Wang et al., 2019). 

Among the corpora evaluated are GeoVirus and GeoCorpora, which are the model corpora for Finger-

news and Finger-tweets respectively, though naturally not strictly equivalent. For example, GeoVirus 

focuses on disease news (Gritta et al., 2018) while Finger-news has no thematic branding; 

GeoCorpora used various keyword filters and spread out the tweets temporally (Wallgrün et al., 

2018), while Finger-tweets were not thematically filtered and are all within a few days timeframe.  

Included in the geoparsers is one based on an older version of spaCy’s NER engine for English 

and population heuristic for toponym resolution. It does not use a neural NER classifier, and the 

population baseline is not exactly the same as the GeoNames web service query used here. Despite 

 
21 https://github.com/TurkuNLP/turku-ner-corpus/blob/master/docs/Turku-NER-guidelines-v1.pdf 
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the clear differences, I believe it to be the closest simile to Finger, which is why it is the starting point 

for contextualizing the results. Some key figures to support the following discussion are presented in 

Table 7. spaCy + population performed among the worst in toponym recognition in both GeoVirus 

and GeoCorpora (J. Wang & Hu, 2019a, pp. 4–5); the difference is more pronounced in the generally 

easier news corpus GeoVirus. If we assume the English corpora can be compared to their Finnish 

counterparts, Finger’s recognition performance would be placed somewhere in the lower middle for 

GeoVirus and at the top for GeoCorpora. Overall, the tweet corpus was a bigger challenge than the 

news corpus for the geoparsers; a result that did not occur in this thesis.  

 

Table 7. Geoparser performance excerpts from J. Wang and Hu (2019) on the left and this work 

repeated on the right. F-score and Area Under the Curve (AUC) represent toponym recognition 

and resolution results, respectively. The arrows indicate whether lower ↓ or higher ↑ value is 

better. 

 

Toponym resolution results are significantly better for Finger than almost any of the results 

reported by J. Wang and Hu (2019a): see for example the difference in AUC scores in Table 7. It is, 

however, crucial to remember that resolution is usually measured only for the toponyms recognized 

in the previous step. This means that potentially challenging toponyms, and their large error distances, 

get filtered out by before evaluating them, especially when recall is low. This lowers the averaged 

error distances: this effect was, for example, demonstrated by Karimzadeh et al. (2019, p. 12), who 

evaluated toponym resolution with and without the preceding step. I also hypothesize that there is 

more potential for large error distances in the global English corpora – this is due to the size of the 

English-speaking world. Similarly to how a majority of the toponyms in the Finger corpora fall within 

Finland (Figure 11), the significant portion of toponyms in e.g. GeoCorpora fall within United States 

and the rest of the Anglosphere (Wallgrün et al., 2018). Since the metrics are sensitive to distance, I 

believe the task might be easier on the Finnish corpora, owing to the sheer difference in geographical 

 Results for spaCy and best 

performing geoparser (in 

parentheses)  

  Results for Finger 

Corpus F-score ↑ AUC ↓  Corpus F-score ↑ AUC ↓ 

GeoVirus 0.499 (0.917) 0.367 (0.319)  Finger-news 0.745 0.083 

GeoCorpora 0.562 (0.763) 0.224 (0.084)  Finger-tweets 0.765 0.093 
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area, which also increases the number of toponyms and potential geo/geo ambiguity. This is, however, 

only speculation on my part. 

In total, then, Finger performs robustly side-by-side with the English geoparsers; though I must 

emphasize that the comparison cannot be a direct one, since the results are acquired from different 

geoparsers run on different corpora. Beyond the numbers, there remains a question of whether the 

current geoparsers are valid as sources of location information. Both Gritta et al. (2017) and Wang 

and Hu (2019a) have addressed this question. Gritta et al. (2017) concluded that the current English-

language geoparsers they reviewed are ill-suited for sources of data, due to their limitations and the 

complexity of the task. They argue that geoparsing could be used as an auxiliary data-source, whose 

outputs cannot be used without a critical eye on their limitations. J. Wang and Hu’s (2019a) more 

recent assessment concludes that it depends on what the exact task is: on use cases such as 

international news geoparsing, the task may very well be considered solved due to the to the overall 

high performance of the best systems. However, using geoparsers on the more challenging datasets 

(see Section 2.6.3 for discussion), many of the simpler geoparsers stop working. Thus, there is still 

need for user oversight on designing the task and supervising the geoparser’s output.  

The same cautions apply to Finger as well. Consider that Finger recalled roughly 80 % percent 

of toponyms in the corpora and of those, 82–90 % got resolved at all (Table 5 and Table 6). In concrete 

numbers, that means Finger returned 
123

189
  locations for Finger-news and for  

369

498
  the tweets. That is 

the amount of data Finger misses. The system also adds noise in the data, as falsely identified 

toponyms are added in the output (64 for Finger-news and 161 for Finger-tweets). Both of these 

should be considered when using the system. Toponym resolution is another possible source of error. 

Finger is still a long way from a level of performance that a human would perform in. The results are 

further influenced by lemmatization, which introduces a source of error not present in the evaluations 

of English geoparsers. At its current state, I believe Finger can be used as a first step in the 

geographical analysis of texts, but its outputs should be critically examined by the user before 

applying them to any downstream tasks. However, like the previous assessments (Gritta et al., 2017; 

J. Wang & Hu, 2019a), I am hopeful that geoparsers can be further improved.  

 

5.2. Developing Finger: more, and better 

Finger is a developing program and its current status only a starting point. Finger and Finnish 

geoparser research can be advanced on multiple fronts: the lemmatizer errors can be mitigated with a 
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different lemmatization method, the toponym recognition and resolution solutions can be developed 

and new corpora created to allow for training and evaluation, as I elaborate below. 

As discussed in the error analysis (Section 4.2), lemmatization errors are quite frequent, which 

affects the succeeding task of resolving the toponym. The quality of lemmatization is therefore crucial 

for Finnish and similar morphologically rich languages, insofar they rely on gazetteers which contain 

toponyms in their base forms. While no solution is perfect, many of Finger’s lemmatization errors 

can be traced to the current look-up based lemmatizer, which I presume might be ill-suited for 

lemmatizing toponyms, which take varying surface forms. Having a fixed dictionary is limiting 

especially when the input is free-form internet texts. In addition, it would be beneficial to have a 

context-aware lemmatizer instead of lemmatizing every token individually like currently: such as 

system could better deal with e.g. phrases like Englannin kanaali (Kanerva et al., 2021, pp. 545–546). 

Kanerva et al. (2021) implemented a  neural lemmatizer trained on Universal Dependencies that 

performed better than baseline systems. A similar implementation could be explored in Finger and 

implemented in the spaCy NLP pipeline. An additional benefit would be an easier installation, since 

currently the lemmatizer requires users to install an additional Python library and download the 

related dictionary. 

I propose that the general-purpose neural NER tagger using contextual word embeddings is a 

robust solution, and one that can be incremented on instead of replaced. Firstly, the tagger could be 

re-trained with a more recent NER corpus that combines the two corpora discussed previously 

(Luoma et al., 2021). This combined corpus is also mapped to a different annotation schema, 

OntoNotes: this schema contains facilities (e.g. buildings), geopolitical entities and natural places 

annotated with separate tags. This information is useful in geoparsing: the user could, for example, 

decide they are only interested in natural locations, such as mountains, and the rest could be excluded. 

Secondly, multilingual language models could be explored. Neural language models, like BERT, can 

be trained materials from one language, such as the monolingual Finnish BERT used in this thesis, 

or multiple languages. One such multilingual model is the Finnish-English BERT model, which 

almost reached the performance levels of monolingual models when evaluated (Chang, 2021). I see 

potential in such models because they could allow for more language independency in the inputs – 

for example, just a bilingual model for Finnish and English could handle the vast majority of tweets 

posted in Finland (Hiippala et al., 2020). Third, recent geoparsing research has proposed architectures 

suited specifically for toponym recognition; I believe Finger could benefit from these. For example 

NeuroTPR, which embeds not only words but also characters in an attempt to better recognize 

toponyms in social media posts (J. Wang et al., 2020).  
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A simple gazetteer query is a decent baseline system for toponym resolution: it is easy to 

implement and use, and mostly works for the obvious toponyms. Such a system will, however, never 

reach human-like performance. A single query will always resolve to one location – always the capital 

and never the town – even when the context would provide ample evidence otherwise. I therefore 

believe it is imperative to implement a more sophisticated resolving pipeline in Finger. Mirroring the 

developments in toponym recognition, the latest disambiguation solutions are built on neural models 

that model the toponyms beyond the surface forms. These exploit lexical features, like toponyms and 

context windows (Cardoso et al., 2019; Kulkarni et al., 2020) and/or geographical features (Gritta et 

al., 2018) modeled as embedding vectors. These solutions may also be used independent of gazetteers 

(Kulkarni et al., 2020). Because of the strong reported results, a future toponym resolver in Finger 

should be based on similar techniques. 

Lastly, bigger and better geoparsing corpora are needed to accurately measure the performance 

of and allow for further development of Finnish geoparsers – a corpus can be used for testing and 

training. The corpora discussed in this thesis employed one of three approaches: manual annotation 

by a few experts, often the authors, crowdsourcing most of the work through marketplaces such as 

Amazon’s Mechanical Turk or automating the process. Manual annotation mostly costs time, but 

large corpora require a prohibitive amount of work for a small team of annotators: this tactic was used 

in this thesis and e.g. the Local-Global Lexicon (Lieberman et al., 2010). GeoCorpora was first 

annotated by paid workers on a crowdsourcing platform and refined by experts later on, which 

allowed for the annotation of over 6000 tweets (Wallgrün et al., 2018). Lastly, multiple articles 

propose processes that automatically acquire sentences with toponyms and coordinates: these are 

primarily based on Wikipedia, which (at least the English Wikipedia) contains hyperlinks and 

coordinates for articles about places (Laparra & Bethard, 2020; J. Wang et al., 2020). 

All of these approaches could be explored creating further geoparsing corpora for Finnish. 

Automated methods hold much promise, because using them could circumvent the costly (either time 

or funds) annotation process and allow for creation of large datasets. A sufficiently large, high-quality 

corpus would be ideal for training the next-generation of Finnish geoparsers. On the other hand, 

manual annotation would allow for a more nuanced toponym annotation schemes, such as exploring 

the literal vs. associative toponym taxonomy (Gritta et al., 2020) or nested named entity tagging, 

where named entities are allowed to contain named entities (University of Turku [ORG] contains 

Turku [LOC]) (Ringland, 2016). Whichever approach is used, the definition of a toponym, must be 

clearly stated in the annotation schema. This is because the toponym definition flows downstream 

from the corpus to the NER tagger, which in turn affects any geoparser trained or tested on the corpus. 
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5.3. Beyond it all: next steps for geoparsing 

Geoparsing is an active field of study. In the previous sections, I presented some suggestions on how 

to evolve Finger on a technical level. Those advancements would apply to geoparsing as it is 

described in this thesis – however, I believe geoparsing as a task will mature. The task has potential 

to go beyond the concepts presented here: beyond one language, beyond just toponyms, and 

representations of space beyond coordinate points, as I elaborate below. 

This thesis has focused on Finnish geoparsing and discussed the issue mostly through research 

done on English: the language choices were directed by my language capabilities, of course, but also 

on what the previous research has focused on. That is, English as a language of study. The problem 

of lemmatization has been discussed at length, but other differences between the lingua franca and 

smaller ones are worth pondering. For example, gazetteers that, often by default, include the English 

names for places must also have variants for the target language to be usable. What about how English 

may divert the geographical focus to the Anglophone world or how much easier research might be 

using large and richly annotated English Wikipedia in comparison to smaller languages? Recognizing 

these, I believe geoparsing research ought to adopt the Bender rule from computational linguistics. It 

goes like this: “Always name the language(s) you are working on” (Bender, 2019). The central point 

of the rule is to recognize that English is a language among others, and it is possible that techniques 

developed for it are language-dependent or divert research someplace that is not widely applicable. 

For geoparsing, then, when asking questions like is geoparsing a solved problem, I believe it should 

be appended with is geoparsing a solved problem for English / this language?  

This thesis focuses on toponyms as linguistic descriptors of space. The implicit assumption here 

is that, in a sentence with a location reference, the toponym reveals that location. But then think of a 

phrase like 100 km west of Helsinki, where the toponym is merely a landmark used to structure space. 

These types of phrases can describe many forms of relationships, such as adjacency, containment and 

distance between objects (Stock & Yousaf, 2018). To resolve these location referents, recognizing 

the phrases and understanding how to transform them is crucial: if 100 km west of Helsinki is 

recognized, where should the resolved location be placed? To this end, corpora containing these 

phrases have been created (Laparra & Bethard, 2020; Stock et al., 2021). In geoparsing, I believe the 

important question is how much would processing these affect the location information vs. a baseline 

system of geoparsing as usual? In which use cases would such a system bring additional benefits? 

If toponyms are a simplistic way of viewing how space is described through language, so is a 

coordinate point an abstraction of geographical space. How crude of an abstraction depends on the 
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scale that is relevant for the use case (more on this later). While the coordinate points can be grouped 

and clustered in different ways (Hu, 2018b), nonetheless, it is evident that, for example, a continent 

represented by a point tells very little of the extents of that location. A point, as a zero-dimensional 

abstraction, also does not tell anything about the relative size differences between, e.g., an airport and 

a nation: such differences would have to be communicated through attribute data. Laparra and 

Bethard’s (2020) corpus GeoCoDe contains polygons and lines alongside points. They also present a 

metric that measures the amount of areal overlap, instead of the error distance-based metrics presented 

in Section 2.6.2. While a polygon is in many cases more accurate representations of locations than 

points, they are also more demanding computationally and still have varying levels of precision. For 

example, the National Land Survey of Finland offers the municipal borders of Finland dataset22 in 

five different scales, or spatial resolution, each one generalized more than the last. My point is that 

polygons are still abstractions with their strengths and weaknesses. 

An interesting direction is to partition the globe into hierarchical cells (Adams, 2017). The grids 

contain cells in different levels, from exact (e.g. 1 km2) to crude, and the fine-grained cells are 

contained within the general ones. Several deep learning toponym resolvers use such grids to predict 

the likeliest location, but then transform that prediction to a coordinate point (Cardoso et al., 2019; 

Gritta et al., 2018; Kulkarni et al., 2020). I wonder if these grid cells could be returned to the user as-

is; smaller cells to represent fine-grained locations and very general ones for, e.g., nations. The grid 

cells would not be significantly more computationally complex than points, they would approximate 

the location’s scale and fine-grained cells could be aggregated to larger ones should the analysis 

require it. Continuing on this line of thought, I wonder if a type of probability surface could be used 

to inform the user of locational impreciseness when the location lacks clear boundaries (vague 

cognitive regions, like Stadi). 

Returning to the topic of scale and granularity (discussed in Section 2.3.2), I believe it should be 

addressed in future geoparsing research. This is for a few reasons. First, the point-based toponym 

resolution error metrics are not sensitive to the scale of the location resolved. For example, let us say 

a city is resolved to a point that is 20 km away from the gold location, perhaps due to different 

gazetteers or multiple similar entries in one gazetteer. This error is not significant for a human 

interpreter. But what if the toponym geoparsed is a fine-grained one, like a university campus in the 

city and it is resolved to a restaurant in the other side of the city 20 km away? Current metrics treat 

these cases the same, although the latter is a serious misplacement and the former simply a different 

 
22 https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/municipal-division 
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point abstraction of a large area. I thus agree with Gritta et al. (2017, p. 618), who call for an error 

metric that scales in relation to the size of the location. The functional operating scale of geoparsers 

is something that the users should be aware of as well: while some research has explored sub-city 

scale geoparsing (Alex et al., 2019; Rocco et al., 2021), most of the research presented in this thesis 

operates at granularity level of cities and nations. Finger is no different: while there is no theoretical 

reason it could not be applied to, for example, the exploration of sports facilities at a municipal level 

akin to Koivisto (2021), it is limited by gazetteer choice, and an evaluation metric like Accuracy at 

161 km is not primed to find fine-grained errors. I believe, then, that geoparsers should have an 

explicit operating scale, or operating modes, and that those are clearly communicated to the user.  

While I have discussed different nuances of the problem of geoparsing at length, the final goal of 

geoparsing should not be lost – geoparsing is a crucial step in research processes that apply 

geographical analysis to texts: consisting of data retrieval, geoparsing, analysis and visualization (Hu, 

2018b, p. 11). Thus, geoparsing is given relevance and usefulness through applied research. To wrap 

up this thesis, I would like to propose some potential use cases. Geoparsing could be explored as a 

method to geolocate social media users (Zheng et al., 2018) based on their location mention history, 

in the same vein as geotagged post history: and measure for example, if an accurate population 

distribution pattern would emerge similarly to users located with geotags (Järv, 2020). The potential 

here would be to geolocate more users and use that information in whatever succeeding research. The 

conceptual separation between being somewhere and talking about somewhere (from/about data, see 

(Hu, 2018b)) could be explored through a massive geotagged social media data repository, such as 

Hiippala et al. (2020). When a geotagged tweet contains toponyms, to what extent are the geotagged 

locations related to the geoparsed locations? Could from/about data be separated from one another 

and input texts classified in either class? To give a specific example, it would be interesting to explore 

whether visits to national parks (Heikinheimo et al., 2017) could be quantified through geoparsed 

social media content. Or, whether there are differences in the semantics of the content when a user 

visits a place versus discusses it online. These topics and more could be addressed in future research: 

lessons learned from the applied use cases flow back to geoparser research and Finger’s development. 

 

6. Conclusion 

This thesis aimed at adding to the methodical toolbox of geoinformatics by exploring the topic of 

geoparsing: recognizing toponyms in free-from texts and acquiring the correct spatial representation 

for them. A geoparser could, when functioning correctly, offer means of acquiring new, semantically 
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rich geodata: if the locational component is reliable, the attribute data contained in, for example, 

social media posts offers many opportunities. Such a system shows promise for a wide assortment of 

fields from geographers looking for a new way to understand human interaction and quickly emerging 

events to those attempting to understand their topic of study at spatial humanities and yet those 

looking to spatially index and query unstructured texts. I approached the topic from the perspective 

of my native language, Finnish, with the aim of introducing a geoparser for the language and, through 

the creation process, also learn what sort of challenges might emerge when tackling this issue on a 

language that differs from English in many ways. 

The concrete contributions of this work, which are shared openly, are a geoparser for Finnish 

texts, Finger23, and two datasets to evaluate Finnish geoparsers24. The toponym recognition pipeline 

of Finger is built on a deep learning language model and the toponyms resolver on a database query 

– both of these systems, as well as geoparsing on a conceptual level, can be expanded on in many 

ways. Yet the initial evaluation shows promise: the system performed decently on the two datasets. I 

hope that, through further development and applied use, geoparsing and Finger will find their place 

as a source of data in Finnish geospatial research.  
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Appendix A. Annotation practices for Finger-news and Finger-tweets 

Below is a brief description of the nuances of the annotation process, especially how unclear or 

edge-cases were handled. 

Annotating toponyms 

• We decided against marking toponyms as noun modifiers (e.g. Suomen pääministeri, the 

Finnish Prime minister). There might be some unevenness in the annotation of these. 

o Ranskan vallankumous (the French revolution): seen as an event, Ranska not marked 

• We tried to assess from the context whether the toponym was spatial or referred to an 

organization etc. There might be some unevenness on these cases. 
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• Place name embedded in a larger hashtags were not marked (#salonkaupunki, 

#EspooLiikkuu) whereas simpler hashtags (#espoo) were. The hashtag sign is not included 

in the span. 

o If the word was conjugated, often the root was separated from the affix via an 

apostrophe. The whole word was marked in these cases (#Espoo’ssa) 

o From “Vantaa-Keravan hyvinvointialueen” the highlighted was annotated 

• Vague descriptors (e.g. liepeillä in Helsingin liepeillä, in the vicinity of Helsinki) were not 

included in the spans. Established ones are (e.g. Turun saaristo, the Turku archipelago). 

• Tweets are sometimes mixed-language. Toponyms are marked nonetheless (e.g. the hashtag 

#borgå) 

Annotating locations 

• The annotator looked up WGS 84 coordinates from GeoNames’ web service and copied 

them (latitude-longitude format).  

o If the toponym was not in GeoNames, the annotator looked up NLS Place Names 

through NimiSampo, OpenStreetMap and Google Maps.  

o Sometimes, especially in the case of facilities, the annotator had to approximate the 

location visually so that it is, e.g., at the center of the building. 

• In the case of wholly unavailable toponyms (e.g. the defunct administrative area of 

Kaakkois-Pirkanmaa), we decided to keep the annotations but replace the coordinates with a 

NaN tag. 

• A common occurrence especially for Finnish municipalities was that there were multiple 

options for them: one a “seat” of the municipality and the other for the “third-order 

administrative division”. We interpreted these so that the first refers to e.g. the central town 

of the municipality (taajama, keskus) and the second to the area as a whole. Therefore, the 

latter option is used in most of the cases, unless a reference to the administrative center was 

clear from the context. 

 


